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ABSTRACT
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MSc. THESIS
AUG 2020

Thesis Supervisor: Asst. Prof. Öznur Taştan Okan
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Accurate classification of patients into molecular subgroups is critical for the devel-
opment of effective therapeutics and for deciphering the underlining mechanisms for
these subgroups. The availability of multi-omics data catalogs for large cohorts of
cancer patients provides multiple views into the molecular biology of the tumors and
the alterations that take place in patient genes such as mutations and differential
expression patterns. At the same time, the molecular interaction networks provide
the biological context for these alterations.

We develop PAMOGK (Pathway based Multi Omic Graph Kernel clustering frame-
work) that integrates multi-omics patient data with existing biological knowledge
on pathways. We use a novel graph kernel that evaluates patient similarities based
on a single molecular alteration type in the context of a pathway. To corroborate
multiple views of patients that are evaluated by hundreds of pathways and molecular
alteration combinations, we use a multi-view kernel clustering approach.

Applying PAMOGK to kidney renal clear cell carcinoma (KIRC) patients results
in four clusters with significantly different survival times (p-value = 1.24e-11).
When we compare PAMOGK to eight other state-of-the-art multi-omics clustering
methods, PAMOGK consistently outperforms these in terms of its ability to
partition KIRC patients into groups with different survival distributions. The
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discovered patient subgroups also differ with respect to other clinical parameters
such as tumor stage and grade, and primary tumor and metastasis tumor spreads.
The pathways identified as important are highly relevant to KIRC. We also extend
our analysis to eight other cancer types with available mutation, protein and gene
expression data. PAMOGK framework is available in github.com/tastanlab/pamogk
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ÖZET

HASTA KÜMELEMESİ İÇİN YOLAK ÇİZGE ÇEKİRDEĞİ BAZLI BİR
ÇOKLU-OMİK YAKLAŞIMI

YASIN İLKAĞAN TEPELI

BİLGİSAYAR BİLİMİ & MÜHENDİSLİĞİ
YÜKSEK LİSANS TEZİ

AĞUSTOS 2020

Tez Danışmanı: Dr. Öznur Taştan

Anahtar Kelimeler: Kanser, Çoklu-bakış kümeleme, Çekirdek metodları, Çizge
çekirdeği, Yolaklar, çoklu-omik verisi

Hastaların moleküler altgruplara doğru sınıflandırılması, etkili tedavilerin geliştir-
ilmesi ve bu alt gruplarda kansere neyin yol açtığını çözmek için önemlidir. Kanser
hastalarının büyük kohortları için çoklu omik veri katologlarının erişilebilir olması,
somatik mutasyon ya da farklı ifadelenme gibi hasta genlerinde gerçekleşen değişim-
leri kataloglayarak tümörlerin moleküler biyolojisine çoklu bakış sağlar. Aynı za-
manda, moleküler etkileşim ağları da, bu değişimler için biyolojik bağlam sağlar.

Çoklu omik hasta verilerini yolaklardaki mevcut biyolojik bilgi ile birleştiren
PAMOGK’u (Yolak tabanlı Çoklu-Omik Çizge Çekirdeği kümelemesi) geliştiriy-
oruz. Bir yolak bağlamında tek bir moleküler değişim tipine göre hasta benzerlik-
lerini değerlendiren yeni bir çizge çekirdeği geliştiriyoruz. Yüzlerce yol ve moleküler
değişiklik kombinasyonları ile değerlendirilen hastaların çekirdek olarak sunulmuş
çoklu görüşlerini birleştirmek için çok görüntülü çekirdek kümeleme yöntemini kul-
lanıyoruz.

Berrak hücreli böbrek kanseri (KIRC) hastalarına PAMOGK uygulanması,
sağkalım süreleri önemli ölçüde farklı olan dört küme ile sonuçlanır (p-değeri
= 1.24e-11). PAMOGK’u diğer sekiz en gelişmiş çoklu-omik kümeleme yöntemiyle
karşılaştırdığımızda, PAMOGK, KIRC hastalarını farklı sağkalım dağılımları olan
gruplara ayırabilme açısından sürekli olarak daha iyi performans gösterir. Bulunan
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hasta alt grupları ayrıca tümör evresi ve derecesi ve primer tümör ve metastaz tümör
yayılımları gibi diğer klinik parametrelere göre de farklılık gösterir. Önemli olarak
tanımlanan yolaklar KIRC ile son derece ilgilidir. Analizimizi mutasyon, protein ve
gen ifadesi verilerine sahip sekiz farklı kanser tipi ile genişletiyoruz. PAMOGK’a,
github.com/tastanlab/pamogk adresinden ulaşılabilir.
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Chapter 1

INTRODUCTION

Cancers are classified based on the tissue of origin. However, cancer is a genom-
ically heterogeneous disease; within the same cancer type, patients bear different
molecular alterations and these differences lead to which differences in the progres-
sion of the disease and response to therapies (Curtis et al., 2012; Weinstein et al.,
2013; Müller et al., 2016). Discovering coherent subgroups of patients with similar
molecular profiles is essential to developing better diagnostic tools and subtype spe-
cific treatment strategies. The cancer subtypes based on molecular alterations have
the potential to guide the clinical decisions for improved therapies (Prasad et al.,
2016). Knowledge of molecular subtypes is also key to gain insight into different
mechanisms that yield these different subtypes to cancer. The problem of stratify-
ing patients based on their molecular profiles is also relevant for complex diseases
other than cancer.

Large scale characterization of patients with omics technologies opens up opportuni-
ties to better characterize each cancer (Verhaak et al., 2010; Toss and Cristofanilli,
2015; Curtis et al., 2012). Most of the early approaches rely on single omic data type
such as gene expression; rather than multiple data types made available by these
technologies. Each omic data presents a view into the tumour; combining these
different views made available by multiple data types help reach a more detailed
and holistic view of the cancer. A view typically refers to a feature space and each
view stores unique information. A view can also be represented as knowledge graph
or kernel matrix instead of feature space. When integrating these data, one would
like to capture both the concordant and complementary information across different
data sets. Therefore, simply combining data and input to a clustering algorithm
does not suffice. To unify different views of the omic data types, several multi-
omics clustering methods have been proposed (reviewed in Rappoport and Shamir,
2018a) to integrate the multi-dimensional data collected on patients. We also take
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a multi-view clustering approach.

Although corroborating multi-omics data is important to construct a better view of
patient similarities, it might not be sufficient to boost the signal as often since only
a small fraction of molecular alterations is common among the patients. Analyzing
molecular data in the context of molecular networks is a widely used approach to
overcome this heterogeneity and sparsity problem (reviewed in Cowen et al., 2017).
Therefore, in addition to integrating the multi-omics data, integration with the
available prior knowledge is critical. To this end, in this thesis, we present PAMOGK
(Pathway based Multi Omic Graph Kernel clustering), a multi-view kernel based
clustering approach which integrates multi-omics patient data with pathways using
graph kernels.

PAMOGK represents each patient as a set of vertex labeled undirected graphs, where
each graph represents the gene interactions in a biological pathway, each vertex rep-
resents a gene, each edge represents the interaction between two genes and each
vertex label is either discrete or continuous value that represents the patient specific
molecular alterations. To quantify patient similarity over a pathway and to attain
an omic view, we use a novel graph kernel, the smoothed shortest path graph kernel
(SmSPK), whose first version was developed in Unal, 2019. While existing graph
kernels are designed to capture the topological similarities of the graphs, SmSPK
captures the similarities of the vertex label within the graph context. This allows us
to capture patients’ similarities that stem from the dysregulation of similar processes
in the pathways. By utilizing multi-view kernel clustering approaches, PAMOGK
stratifies patients into subgroups. PAMOGK also offers additional insights by show-
ing how informative each pathway and the data type is to the clustering process
based on the assigned kernel weights.

We apply our methodology to kidney renal cell carcinoma(KIRC) data made avail-
able through the Cancer Genome Atlas Project (TCGA) (Creighton et al., 2013).
We integrate the patient somatic mutations, gene expression levels, and protein ex-
pression dataset. Compared to the state-of-the-art multi-omics clustering methods,
PAMOGK consistently outperforms in terms of its ability to partition into groups
with different prognosis. Extracting of the relative importance of pathways in the
clustering process show that the discovered pathways that are relevant to KIRC. We
also extract patient clusters by applying PAMOGK to other cancer types and eval-
uate the results. PAMOGK is available at https://github.com/tastanlab/pamogk.

The general framework of multi-view kernel clustering has been presented before
in the thesis Unal (2019). This thesis is a follow up on that earlier work with the
following specific contributions:
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• The representation of the expression data type on the graphs have been up-
dated with continuous labeling.

• Due to problems associated with the earlier pathway dataset used in Unal
(2019), the pathway data resource is updated from KEGG (Kyoto Encyclo-
pedia of Genes and Genomes1) to (NCI-PID) at NDEXBio(Schaefer et al.,
2008).2

• Each step of the framework has been evaluated thoroughly and the decisions
made are justified by comparison to alternate strategies. In the previous work,
the proposed graph kernel was only compared with the radial basis kernel
(RBF). Here, we compare SmSPK thoroughly with the state-of-the-art graph
kernels. The set of multi-view kernel clustering methods that are evaluated
are also expanded.

• In this thesis, we evaluate the framework with different state-of-the-art multi-
omics methods for cancer subtyping, which was not conducted in Unal, 2019.

• We apply the framework to eight other cancer types.

• The entire framework is reimplemented in Python with improvements in sev-
eral steps. 3

• The updated framework performs better in terms of stratifying patients into
well-separated clusters.

The thesis is organized as follows:

• In Chapter 2, we review the traditional and more sophisticated clustering
methods that are widely applied to cancer subtyping. In this chapter, we also
provide background information on the graph kernel methods to which we
compared SmSPK and the different multi-view kernel clustering alternatives
that are experimented in the PAMOGK framework.

• Chapter 3 introduces our proposed framework PAMOGK that includes the
proposed graph kernel SmSPK and utilizes a multi-view kernel clustering
method. We also describe our pathway, patient molecular datasets, and clini-
cal datasets besides the node label assignment techniques.

• We present the results of applying PAMOGK to kidney cancer patients in

1https://www.genome.jp/kegg/

2https://ndexbio.org/#/networkset/8a2d7ee9-1513-11e9-bb6a-0ac135e8bacf

3Mustafa Furkan Akdemir contributed to the implementation
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Chapter 4. The various different methods used in alteration mapping, ker-
nel computation and multi-view kernel clustering steps of the framework; the
graph kernel, the effect of smoothing, choice of multi-view kernel clustering
method are described, evaluated, and discussed. We also present results of
comparing PAMOGK with other state-of-the-art multi-omic clustering meth-
ods. This chapter also investigates the most informative pathways. Lastly
in this section, we also apply PAMOGK to other cancer types and evaluate
results in terms of how well patients are clustered.

• We conclude our work and discuss future directions in Chapter 5.
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Chapter 2

RELATED WORK

In this chapter, we review the related clustering methods used for grouping patients
based on omics data. We review the multi-omics clustering methods. We also
discuss related work that make use of pathways in clustering tasks relevant to patient
subtyping. Finally, we provide background on graph kernels methods and multi-view
kernel clustering methods that have been used in this thesis.

2.1 Traditional Clustering Methods Used

in Cancer Subytping

In this section, we review the traditional clustering algorithms that are used with
a single-omic. Although there are a high number of methods regarding single-omic,
here we focused on the base algorithms such as K-means, hierarchical clustering,
consensus clustering, and spectral clustering rather than modified algorithms. Also,
note that all of these algorithms can be used as multi-omics clustering methods if
datasets are concatenated carefully.

K-means, especially the version that works with kernels (Schölkopf et al., 1998), is
one of the most widely used clustering algorithms across different fields and tasks in
bioinformatics. It basically partitions samples into k number of clusters where k is
a positive integer specified by user. At each iteration, K-means assigns samples into
clusters so that the distance between a cluster center and the samples that belong
to that cluster is minimized. The objective function is then as follows:

min
Sk∈S

K∑
k=1

∑
x∈Sk

||x−Sk||2 (2.1)
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where Sk is the clustering assignments for cluster k, S = {S1, · · · ,SK} is the set of
clusters, K is the number of clusters, and x is a sample.

While modified versions of K-means (Nidheesh et al., 2017; Handhayani and
Hiryanto, 2015; Kannan et al., 2016) are used for clustering in genomics, the al-
gorithm is also used as a part of many cancer subtyping methods (Ren et al., 2015;
Eason et al., 2018).

Hierarchical Clustering builds a hierarchy between possible clusters. There are
two types of hierarchical clustering: agglomerative (Jain and Dubes, 1988)) and
divisive (Kaufman and Rousseeuw, 1990). Agglomerative hierarchical approach,
which is widely used in finding cancer subtypes, accepts each sample as a cluster
at the beginning and combines the clusters that are similar at each step using a
similarity metric between clusters and a dissimilarity metric between samples. On
the other hand, in the divisive approach, it starts with one cluster which consists of
all samples, and this cluster is partitioned at each step.

Hierarchical clustering has been utilized widely in clustering approaches in bioin-
formatics and cancer subtyping problems (Eisen et al., 1998; Eason et al., 2018;
Lapointe et al., 2004; Sotiriou et al., 2003; Bertucci et al., 2005).

Consensus Clustering (Monti et al., 2003a) is an robust approach that combines
multiple clustering results from clustering methods. It needs at least one cluster-
ing method to work with. The chosen clustering methods are applied to different
bootstrapped groups of samples, or patients groups multiple times; and each result
is combined at a consensus matrix that shows the frequency of being in the same
cluster for each of the sample or patient pairs across different runs. Then the con-
sensus matrix can be used as a similarity matrix, or converted into a dissimilarity
matrix to be utilized in clustering.

Consensus clustering is often used in cancer subtyping with other methods such as
K-means, hierarchical clustering or non-negative matrix factorization (NMF) (Gan
et al., 2018; Eason et al., 2018; Ren et al., 2015)

Spectral Clustering (D. Zhou and Burges, 2007) is graph-based clustering method
that make use of K-means. As a first step using methods like the k-nearest neighbor,
a weighted similarity graph is constructed between samples. As a second step,
a Laplacian matrix L = D−W is constructed between pairs of samples where D
is the diagonal degree matrix, and W is the edge weight of sample nodes in the
similarity graph. Then the eigenvectors of each sample from L are used as sample
features and used in the K-means algorithm to cluster the samples.
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Spectral clustering or modified spectral clustering is used in many approaches that
aim to cluster samples in single and multi-omics data (Shi and Xu, 2017; Jiang et al.,
2019; John et al., 2019; Eason et al., 2018).

Non-negative matrix factorization (NMF) (Lee and Seung, 1999) is a method
that assumes data can be represented in a lower dimension. Following this assump-
tion, the input matrix X with dimension n× p is formed by multiplication of two
non-negative (n×k) W and (k×p) H matrices:

X ≈WH. (2.2)

The W and H matrices are found by minimizing the Frobenius Error: ||X−WH||22.
Then the matrix W is used to cluster the samples with lower dimensional data.
Later, by minimizing Frobenius error for each dataset separately and adding a new
common constraint term to minimization, Jialu Liu et al. (2013) proposed sparse
multi NMF for multi-omics data.

NMF is a widely used technique in genomics. The NMF itself or modified versions
of NMFs are also utilized in clustering cancer patients (Frigyesi and Höglund, 2008;
Ma et al., 2019; Brunet et al., 2004).

2.2 Multi-Omics Clustering Methods

In this section, we review the multi-omics clustering methods, which we compared
with our method to cluster cancer patients. Note that we use the term omic here
instead of the view, but most of these methods are known as multi-view clustering
methods. These multi-omics clustering methods have been reviewed in (Rappoport
and Shamir, 2018a) to integrate the multi-dimensional data collected on patients.
These methods mainly include three approaches: Early integration, late integration,
and intermediate integration.

2.2.1 Early Integration Methods

These types of integration methods apply their algorithms after concatenating the
different data types as one data. However, this approach equally weights each
dataset and suffers from the curse of dimensionality as the higher dimensional
datasets can dominate others in the clustering. While some methods just do con-
catenation and clustering, several approaches try to overcome the problems of early
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integration. The traditional single omic clustering methods can be utilized as a
multi-omics clustering approach after data concatenation. There are also more so-
phisticated methods that are statistical models and assume latent lower-dimensional
distribution of data such as LRACluster and iCluster.

In LRACluster (Wu et al., 2015), a probabilistic model is used to model different
types of omics. The probability density function defines the distribution of data over
parameters. For binary data, the Bernoulli distribution; for numeric values, Gaus-
sian distribution; and for count data, Poisson distribution is used. After modeling
data with distributions, the method finds a low-rank approximation of model param-
eters by minimizing the sum of minus likelihood functions of different omics. It also
uses nuclear norm on the low-rank approximation matrix as regularization. Finally,
at each step, the low-rank approximation is clustered using k-means. LRACluster is
applied to 11 different cancer types using gene expression, somatic mutation, copy
number variation, and DNA methylations as omics. They compared their method
with iCluster+ (Mo, S. Wang, et al., 2013) and observed that their method performs
better in terms of accuracy, silhouette width, and time.

iCluster(R. Shen et al., 2009) is an early integration method that assumes a latent
lower-dimensional distribution of data. Although the main idea of the method is
based on lower dimensional distribution, since it concatenates all multi-omics data
before applying the method, it can be considered as early integration. Method
jointly estimates (k×n) cluster indicator matrix Z = (z1, z2. · · · , zk)′ by using the
modelXi =Wi×Z+εi whereXi is the pi×n dataset matrix,Wi is (pi×k) coefficient
matrix, εi is the normally distributed independent error matrix, n is the number of
samples, k is the number of clusters, and pi is the number of genes or proteins in
omic i. The likelihood of the datasets is maximized using expectation maximization
and regularization. K-means is applied to matrix Z at each step to get clustering
assignments. The method is applied to both breast and lung cancer separately using
gene expression and DNA copy number change.

Later on, iCluster+ (Mo, S. Wang, et al., 2013) is proposed to deal with categorical
and count data in addition to real-valued data. Additionally, a faster method with
bayesian regularization, iClusterBayes (Mo, R. Shen, et al., 2017) is proposed
which does not requires any parameter tuning unlike iCluster+.

2.2.2 Late Integration Methods

A second strategy is to deploy late integration approaches (Rappoport and Shamir,
2018a). In this case, the samples are clustered with each omic data type separately,
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and the ensemble’s cluster assignments are combined into a single clustering solu-
tion. The consensus clustering by Monti et al., 2003b is frequently used for cancer
subtyping (Hayes et al., 2006; Verhaak et al., 2010). We review the other methods
that also fall into this category. These approaches have the drawback that they do
not capture the correlations between the different data types. This strategy leads
to poor clustering when each view individually contains a weak signal.

PINS (Nguyen et al., 2017) is proposed as a late integration method, but unlike
other late integration methods, it uses the original input when combining cluster-
ing results from different data types. It first does perturbation clustering for each
omic separately. It then constructs a square connectivity matrix (samples × sam-
ples) for each omic where the value is 1 if patients are in the same clusters and
0, otherwise. Then, connectivity matrices averaged to get a resulting connectiv-
ity matrix, or the voting principle is applied to matrices with a threshold to find
clusters. Furthermore, they looked whether they could divide the clusters into sub-
clusters. Additionally, perturbation is applied to find the optimal number of clusters.
This method is applied to different types of cancer datasets such as KIRC, GBM,
LAML, LUSC, BRCA, and COAD from The Cancer Genome Atlas (TCGA) to find
patient subgroups within these cancer types. mRNA expression, DNA methyla-
tion, and miRNA expression are used as multi-omics. The algorithm is compared
against SNF(B. Wang et al., 2014), iCluster+(R. Shen et al., 2009), Consensus
clustering(CC)(Monti et al., 2003a), and max silhouette (Rousseeuw, 1987) using
Cox regression (Therneau and Grambsch, 2000) p-value as an evaluation metric and
observed to be successful on different cancer types.

2.2.3 Intermediate Integration Methods

To overcome the problems of both early and late integration, several intermediate
approaches have been proposed.

MCCA (Witten and Tibshirani, 2009) is a modified version of Correlation Canon-
ical Analysis(CCA) (Hotelling, 1936) to make CCA available for multiple views or
datasets. The original CCA method finds a linear combination of two omics, re-
spectively X1 and X2. It tries to find two projection vectors a1 with p dimension
and a2 with q dimension that maximizes the correlation between projected vectors
of two omics such that:

max
a1,a2

corr(X1a1,X2a2) (2.3)

Here, the projected vectors U1 =X1a1 and U2 =X1a1 are called canonical variates,
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and each pair of canonical variate U1
k and U2

k are defined with projection vectors
a1
k and a2

k. Also, a new pair of canonical variate should be uncorrelated with the
canonical variates that are found before. Later, these canonical variates are used for
clustering. While there are different types of CCA methods that utilize Bayesian
theorem, kernel, or deep learning; the one that supports multiple views is multiple
canonical correlation analysis MCCA which is using the sum of pairwise correla-
tions. This method is applied to the diffuse large B-cell lymphoma patients. They
partitioned DNA copy number data into 24 and use these as multiple datasets.

SNF (Similarity Network Fusion by B. Wang et al., 2014) is one of the similarity-
based methods. As a first step, for each omic, it creates a similarity matrix, then
using this similarity matrix it creates a similarity network where nodes are the sam-
ples, and edge weights are the values in the similarity matrix. Then an iterative
procedure based on message passing theory is applied to each similarity network.
In this method, each network is updated with the information passed from other
networks. When convergence happens, all networks look similar, which is also the
resulting similarity network. By using this technique, while weak similarity connec-
tions will disappear, the strong and common ones will stay and will have a strong
connection in the resulting graph. In the end, the resulting similarity network is
converted into a similarity matrix, and spectral clustering is applied.

As an application, SNF is applied to cancer patients of glioblastoma, kidney, breast,
lung, and lung cancer from TCGA using the DNA methylation, mRNA, and miRNA
expression data. Results show that fusing these datasets with SNF increases perfor-
mance compared to single-omic experiments.

rMKL-LPP (regularized Multiple Kernel Learning with Locality Preserving Pro-
jections by Speicher and Pfeifer, 2015) is a similarity based method that make use of
dimension reduction. This algorithm applies dimension reduction to each dataset or
omic by preserving the locality which is preserving the similarity between a sample
and it’s neighbors. The method performs the minimization below to find projection
vectors α and kernel weights β = {beta1, · · · , betaM} to form a linear combination of
kernels:

minimizeα,β
N∑

i,j=1

∥∥∥αTKiβ−αTKjβ∥∥∥2
wij

subject to
N∑

i,j=1

∥∥∥αTKiβ∥∥∥2
dij = const.

‖β‖1 = 1

βm ≥ 0, m= 1,2, . . . ,M

(2.4)

where Ki is a matrix that consists of similarity values of a sample i over kernels
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and other samples, M is the number of kernels, ‖β‖ stands for the regularization of
kernel weights, W is the matrix consists of wij which is 1 if i and j are neighbor(k-
nearest), 0 otherwise; D is the constraint matrix consists of dij which prevents
trivial solutions. The terms wij and dij are used to preserve locality. The K-means
is applied to the resulting representation, and the number of clusters is chosen by
using silhouette width.

This method is applied to different cancer types from TCGA such as GBM, KRCCC,
LSCC, COAD, and BIC, compared to SNF (B. Wang et al., 2014) and observed to
be successful.

2.3 Use of Pathways in Related Prediction Tasks

As the molecular networks are widely used, and pathway graphs become well-defined,
some methods utilize biological pathways for different purposes.

Although it is used in a classification task, a new method, Pathway-Induced Mul-
tiple Kernel Learning (PIMKL by Manica et al., 2019) which utilizes pathways
and multiple kernels to classify cancer patients is proposed. The method first de-
fines subnetworks from the biological interaction network in which they use pathway
gene-sets. For each subnetwork defined by a pathway, they combine the topology
information of genes with the molecular measurements of patients and form a sim-
ilarity matrix. To do this, they map the molecular measurements from node label
space to edge label space which measures the interaction between pathway nodes.
Then, they compute the similarity matrix between patients using the normalized
Laplacian matrix. This step is called as pathway induction. After defining multiple
kernels, they combine these kernels to do classification using EasyMKL (Aiolli and
Donini, 2015) which finds the linear combination of these kernels.

PARADIGM (Vaske et al., 2010) is a pathway-based probabilistic approach that
uses factor graphs to cluster cancer patients. For each pathway, multi-omics data
that belong to a patient are combined to infer integrated pathway activity score,
which is the degree of alteration of that patient on the specific pathway. To infer
the activity score, the method maximizes the likelihood of the pathway factor graph
by utilizing the activation level of genes from the genomic data of the patient.
Then these scores form a patient×pathway matrix. As an application, they cluster
glioblastoma and breast cancer patients using uncentered correlation hierarchical
clustering with centroid linkage using copy number and gene expression data.
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2.4 Graph Kernel Approaches

In this section, we review the different graph kernels method to extract
patient×patient kernels from patient graphs. The graph kernels we review in this
section compares different graphs and find similarities between these graphs. Since
our graphs are attributed graphs with continuous values, we choose graph kernels
that can deal with continuous attributes. Unless stated otherwise, for the implemen-
tations of graph kernels, we used GraKel(Siglidis et al., 2018) graph kernel library.

2.4.1 Shortest Path Graph Kernel

The shortest path graph kernel by Borgwardt et al. (Borgwardt and Kriegel, 2005)
is similar to our method in terms of techniques to examine graph. At first, they
convert an node-labeled input graph G= (V,E) where each edge has weight as one
into a shortest path graph S = (V,Es) where V is the set of vertices, E is the set
of edges, Es is the set of edges of the new graph and Es ⊆ E. Then, they label the
new edges with the length of the shortest path between the corresponding vertices.
Afterwards, they define the shortest path kernel function between Si = (Vi,Ei) from
Gi that belongs to patient i and Sj = (Vj ,Ej) from Gj that belongs to patient j as
follows:

K(Si,Sj) =
∑
ei∈Ei

∑
ej∈Ej

k
(1)
walk(ei, ej) (2.5)

where k(1)
walk(ei, ej) is a positive semi-definite kernel on the edge walks of length 1.

For labeled graphs, it is defined as:

k
(1)
walk(ei, ej) =kv(`(vi), `(vj))ke(`(ei), `(ej))kv(`(ui), `(uj))+

kv(`(vi), `(uj))ke(`(ei), `(ej))kv(`(ui), `(vj))
(2.6)

where ei = {vi,ui}, ej = {vj ,uj}, kv is the kernel that compares labels of two vertex
and ke is the kernel that compares shortest path lengths and `() stands for the label
of a node or an edge. Both kv and ke is calculated with dirac kernel.

The most significant difference between is while Shortest path graph kernel compares
the topology of the graph and only look for labels of end vertices of shortest paths,
SmSPK uses the graph structures and shortest paths as a context. Within this
context, it compares the labels of nodes on these paths separately. Originally this
method is not time efficient, as it takes O(n4) time. Although for unlabeled and
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labeled graphs, different speed-up techniques are implemented, for the continuous
attributes, there is no speed-up technique. It is expected that this graph kernel will
not be efficient in terms of time for dense and large graphs.

2.4.2 Propagation Graph Kernel

Propagation Kernel proposed by (Neumann et al., 2016) compares labels of all node
pairs between two label-propagated graphs. At each iteration, first, labels of the
graph are propagated using Pt+1 = TPt where T is the transition matrix and Pt is
n(number of node)× p(number of attributes) node attribute matrix in step t. Sec-
ondly, it calculates kernel value for two propagated graphs i and j using the following
equation:

K(G,G′) =
∑
u∈P

∑
v∈P ′

k(u,v). (2.7)

In the equation, u and v are the nodes of graphs Gi, Gj at iteration t. k(u,v)
is calculated using a bin schema where bins are created for node information, and
the number of elements in these bins is compared between two graphs. For an
efficient calculation, the authors used the Locality Sensitive Hashing method for this
kernel method. As a result, this method compares the number of nodes with similar
information in a graph by propagating node information, unlike our method, which
compares the label information of the same nodes in different contexts. Although
patients bear alteration on very different genes, the propagation kernel might find
all patients similar since non-altered genes will have label 0, and they generally
constitute more than half of the nodes in the graph.

2.4.3 Graph Hopper Kernel

Graph Hopper kernel, like shortest path graph kernels and our graph kernel, com-
pares the shortest paths in graphs. It can deal with labeled and attributed graphs.
The basic notation is given as:

K(G,G′) =
∑
π∈P

∑
π′∈P ′

kp(π,π′) (2.8)

where P is all pairs of shortest paths in graph G and kp(π,π′) is the kernel which
compares the paths π and π′. kp(π,π′) kernel can be computed as summation of
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node kernels along these paths whose lengths are equal:

kp(G,G′) =
|π|∑
j=1

kn(π(j),π′(j)) (2.9)

The node kernel kn can be delta kernel for labeled graphs and linear kernel or
Gaussian kernel for continuous attributed graphs. As we combine 2.8 and 2.9 we
can see that this kernel is the weighted sum of node kernels for each vertex pairs
between two graphs where the weight is the number of times two vertices are in the
same order in shortest paths belongs to two graphs. Like propagation kernel and
unlike our graph kernel, this method finds similarity even if the similarly labeled
nodes are far away since they are comparing all nodes from two graphs and takes
into account how much they are common in terms of being on same length path.
Since it does not compare specific nodes that belong to the same genes, it might
find all patients as similar if there is at least 1 labeled gene.

2.4.4 Wasserstein Weisfeiler Lehman Graph Kernel

Togninalli et al., 2019b proposed a graph kernel that can deal with attributed graphs
with continuous values by combining Wasserstein distance and Weisfeiler Lehman
Graph Kernel schema. The method consists of 3 steps: Calculation node embeddings
of graphs, calculating Wasserstein distance between graphs using calculated node
embeddings, and converting distance to the kernel. In the first step, using Weisfeiler
Lehman schema, they find label or attribute of node vi, xh(vi) = at the step h of the
schema. While calculating xh(.), for the labeled graphs they used the same strategy
that is used in original Weisfeiler Lehman Graph Kernel (Shervashidze et al., 2011),
they also proposed new strategy that is suitable for continues attributed graphs (eq.
5 in (Togninalli et al., 2019b)). At each iteration of Weisfeiler Lehman, they find

Xh
G = [xh(v1), · · · ,xh(vnG)] (2.10)

as WL features where G is the graph, vi is the ith vertex and nG is the number
of nodes in graph G. By concatenating these features in each step, they define
node embedding matrix of graph G with dimension (nG×m(H+1)) where m is the
number of attributes, and H is the number of iterations.

In the second step, using embeddings of nodes, a ground distance is calculated
between graphs. While for the labeled graphs, normalized Hamming distance is used,
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Euclidean distance is utilized for attributed graphs. Then, modified Wasserstein
distance is calculated using minimization below:

Wasserstein Distance(X,X ′) =minP < P,M > (2.11)

where M is the ground distances between elements of X and X ′ that is found before,
P is the joint probability between X and X ′, and <,> is the Frobenius dot product.

Lastly, the kernel is calculated using an instance of a Laplacian kernel for a set of
graphs:

K = e−λD
fW L
w (2.12)

whereDfW L
w is the Wasserstein distance using Weisfeiler Lehman embedding schema.

In terms of performance in the paper, the WWL performs better than both Graph
Hopper kernel and traditional Weisfeiler Lehman graph kernel.

2.5 Multi-View Kernel Clustering Methods

Our framework includes multi-view kernel clustering methods in the last step. After
forming different kernels that reflect the patient’s similarities, from different data
types or pathways, a multi-view kernel clustering method is needed to cluster pa-
tients using these kernels. Therefore, in this section, we have examined different
types of multi-view kernel clustering methods. In these methods, each kernel ma-
trix is considered as a view for samples(patients) to a cluster. These methods aim
to combine these kernels and form a single resulting kernel matrix in an unsuper-
vised manner. The most general and popular approach is to find the weight for
each kernel(view) and take the weighted average to form the resulting kernel using
these weights. These methods mostly formulate an optimization problem where they
minimize a loss function to find these weights. For this linear combination strategy,
we choose to analyze, Kernel K-Means, Multi-view Kernel K-Means with Matrix
Induced Regularization (X. Liu, Dou, et al., 2016), and Localized Multiple Kernel
K-Means (Gönen and Margolin, 2014).
On the other hand, the linear combination of kernels is not the only multi-view
kernel combination technique. We also extract a kernel fusing part of the Similarity
Network Fusion approach and use it as a multi-view kernel clustering approach.

2.5.1 Average Kernel K-Means Method
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K-means method which works on feature space is base clustering algorithm for most
of the clustering algorithms. This algorithm proposes each cluster with the center
of the cluster and minimizes a cost function which includes the sample distances to
the center of their clusters. It is possible to apply these method with kernels. Kernel
k-means (KKM) (Schölkopf et al., 1998) is proposed to apply K-Means algorithm
with kernels and that version solves the optimization problem below 2.13 to find
clusters using one kernel:

min
H∈Rn×k

Tr(K(In−HHT))

s.t. HTH = Ik
(2.13)

Here K represents the kernel matrix, H is the sum of the square loss of over relaxed
cluster assignment matrix and Ix is x-by-x identity matrix. Since it accepts a single
kernel matrix, we input the average of the kernel matrices. We will refer to this
method as average kernel k-means (AKKM). In other words, the weight of each m
kernel matrices becomes 1

m when we compute the weighted combination of these
kernel matrices. We chose AKKM as the base method to compare with other multi-
view kernel clustering algorithms.

2.5.2 Multiple Kernel K-Means with Matrix-Induced Regu-

larization

One of the best performing models which is also applicable to our framework was
Multiple Kernel K-Means with Matrix-Induced Regularization (MKKM-MR). Its
main purpose is to deal with Multiple Kernel K-Means(MKKM)’s lack of ability to
detect relations between kernels. To reduce redundancy among kernel matrices and
enhance the diversity of the selected kernel matrices, MKKM-MR (X. Liu, Dou,
et al., 2016) uses the matrix-induced regularization and the objective is to minimize
sum-of-squared loss over the cluster assignments. The algorithm solves the following
optimization problem:

min
H∈Rnxk,γ∈Rm

+
Tr(Kγ(In−HHT))+ λ

2γ
TMγ

s.t. HTH = Ik
γT1m = 1

(2.14)

Here, k is the number of clusters, n denotes the number of samples, m is the number
of kernel matrices. H is the relaxed clustering assignment matrix, γ = [γ1,γ2, · · · ,γm]
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are the weights of input kernel matrices. Kγ is the best kernel matrix, M is the
matrix that measures the relation between kernel matrices. Ix is the x-by-x dimen-
sional identity matrix, 1m is m dimensional vector of ones. λ is the parameter that
adjusts the trade-off between clustering cost and the regularization term.

In MKKM-MR, one crucial assumption, which can reduce the performance if it
is not fulfilled, is that the method assumes the best kernel comes from the linear
combination of all kernel matrices.

MKKM-MR is evaluated on well-known datasets like Oxford Flower12, ProteinFold3,
UCI-Digital4 and Caltech1025. It is compared to several algorithms, including av-
erage KKM, LMKKM, Multiple KKM, and evaluated in terms of accuracy and
normalized mutual information. It outperforms many well-known strategies and
methods.

2.5.3 Localized Multiple Kernel K-means

LMKMM is another powerful method that optimizes not only the weight of the
kernel matrices but also the weight of the samples(Gönen and Margolin, 2014). We
reimplemented LMKKM in Python, which is originally provided in Matlab and R.
The objective function of LMKKM is as follows:

min
H∈Rn×k,Θ∈Rn×p

+

Tr(HTKΘH−KΘ)

s.t. HTH = Ik
Θ1p = 1n

(2.15)

, where H is relaxed cluster assignment matrix which includes arbitrary real num-
bers, Θ = [θ1, θ2, · · · , θp] is the matrix of the set weights of samples in all ker-
nel matrices in which θi is the weight vectors of samples in ith kernel matrix,
KΘ =∑V

i=1(θiθiT )�Ki is the weighted sum of the kernel matrices where “�” rep-
resents the Hadamard product, Ik is k-by-k identity matrix, 1x represents x dimen-
sional vector of ones, p is the number of kernel matrices and n is the number of

1http://www.robots.ox.ac.uk/~vgg/data/flowers/17/

2http://www.robots.ox.ac.uk/~vgg/data/flowers/102/

3http://mkl.ucsd.edu/dataset/protein-fold-prediction

4http://ss.sysu.edu.cn/~py/

5http://mkl.ucsd.edu/dataset/ucsd-mit-caltech-101-mkl-dataset
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samples in each kernel matrix. The authors utilized the method to cluster patients
from colon and rectal cancer. When evaluated with normalized mutual information,
purity, and the Rand index metrics, this method has a better performance compared
to single-view kernel k-means or multiple kernel k-means.
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Chapter 3

METHODOLOGY

Given a set S of N cancer patients, for which molecular profiles of the tumors are
available, a set of D types of molecular alterations, for each alteration type, every
patient’s alterations, a set of M pathway graphs and a positive integer k, PAMOGK
aims to stratify S into k subgroups through integrating pathways. Formally, we
would like to find a partition C = /C1,C2,/cdots,Ck/ of the set SIn this section,
we detail the steps of PAMOGK and data processing used in our experiment. Let
M be the number of pathways, D be the number of types of molecular alterations
(mutations, altered expression, etc.) available for the patients, and N be the number
of patients.

3.1 PAMOGK Overview

PAMOGK involves three main steps (Figure 3.1). In the first step, each pathway is
represented with an undirected graph. Next, for a given molecular alteration type,
i.e., somatic mutations, a patient’s molecular alterations are mapped on the path-
way. These alterations constitute the patient-specific node labels of the patient’s
graph. Thus, a "view" is constructed for each pathway-molecular alteration type
pair. To assess a pair of patients’ similarity under a view, in the second step, the
novel graph kernel, SmSPK, is computed to quantify a patient pair’s similarity over
a pathway and a molecular alteration type. Each N ×N kernel matrix constitute
a view to the patient similarities. In the final step, to stratify cancer patients into
meaningful subgroups, these multiple kernels are input to a multi-view kernel clus-
tering algorithm. In the following sections, we elaborate on each step of PAMOGK
with more technical details.
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Figure 3.1 The PAMOGK framework (best viewed in color). PAMOGK takes dif-
ferent omic measurements (shown in different colors) and pathways as input. Note
that pathway graphs are shown smaller than usual due to size constraints. Each
pathway-omic pair constitute a view. In a view, each patient is represented with an
undirected graph whose interactions are based on the pathway, and the node labels
are molecular alterations of the genes for that patient. For each view, a patient-
by-patient graph kernel matrix is computed to assess patient similarities under that
pathway-alteration view. In the final step, these views are input to a multi-view
kernel clustering method to obtain the patient clusters.

3.2 Step 1: Patient graph representation

We first convert each pathway to an undirected graph where nodes are genes, and an
edge exists if there is an interaction between the two genes. For each pathway graph
i and patient j, we define an undirected vertex-labeled graph G

(j)
i = (Vi,Ei, `(j)i ).

Vi = {v1,v2, . . . ,vn} is the set of n genes in the pathway i and Ei ⊂ Vi× Vi is a
set of undirected edges between the genes in this pathway. The label set `(j)i =
{l1, l2, . . . , ln} is in the same order of Vi and represents the corresponding vertex’s
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label for patient j. For a specific pathway, the pathway graph structure is the same
for all patients and is defined by the set of interactions in the pathway while the
vertex labels are different and are based on each patient’s molecular alterations.
For a patient j, `(j)i entries are assigned based on the patient’s molecular alteration
profile. For example, in the case of somatic mutations, if the corresponding gene k
is mutated in patient j, the label of value 1 is assigned to this gene (node), and 0
otherwise. At the end of this step, we have N ×M ×D labeled pathway graphs.

3.3 Step 2: Computing Multi-View Kernels with

Graph Kernels

In this step, we would like to assess the similarities of the patients on a given pathway
for a given molecular data type. For this, we resort to graph kernel functions. While
typical kernels take vectors as input, a graph kernel takes two graphs as input and
returns a real-valued number that quantifies the similarity of two input graphs:
K : G ×G 7→ R (Vishwanathan et al., 2008). Powerful graph kernels are presented
in earlier work (Feragen et al., 2013; Shervashidze et al., 2011; Borgwardt and
Kriegel, 2005; Neumann et al., 2016; Togninalli et al., 2019b). However, these
graph kernels are designed to compare graphs with different graph structures and to
identify similarities and differences that arise from these different structures. In our
case, though, we would like to compare graphs with identical topology but different
node label distribution. The graphs’ structures are identical because they are from
the same pathway, and the label distributions are different because of the patient
specific alterations. To assess the similarity of topologically identical graphs with
different node label distribution, we devise a new graph kernel for our purposes.

Inspired from the shortest path graph kernel (Borgwardt and Kriegel, 2005), SmSPK
makes use of all shortest paths of the graphs to characterize them. Both methods
use the shortest paths of the graphs but in different ways with different end goals.
The shortest path kernel (Borgwardt and Kriegel, 2005) compares the end vertices
and lengths of the shortest paths in the graph to measure the similarity of the
input graphs in terms of their topologies, whereas SmSPK compares the similarity
of the node attributes on the shortest paths to capture node attribute similarities.
In SmSPK we also smooth the node labels of a patient in the pathway so that if
two patients have alterations in genes in close proximity, they contribute to the
similarity even though the set of altered genes are not identical. To propagate node
labels along the pathway, we use the random walk with restart, which is a common
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strategy used in various tasks (reviewed in (Cowen et al., 2017)). For a single graph
indexed by g, the label propagation is performed by employing the following formula
for all patients:

S(t+1)
g = αS(t)

g Ag +(1−α)S(0)
g , (3.1)

where Sg
(0) is a patient-by-gene matrix which represents the labels of the vertices in

the graph g at time t= 0 and each row (patient) is determined by `(j)g . Sg
(t) is the

node label matrix at time t. Ag is the degree normalized adjacency matrix of the
pathway graph g. α ∈ [0,1] is the parameter that defines the degree of smoothing.
We iterate over propagation until convergence is attained. We assign node attributes
of the graph for each patient based on the final S. Once we attain the label smoothed
graphs of G(i)

g and G(j)
g , we compute the similarities of these two graphs to each other

as follows:
K(G(i)

g ,G
(j)
g ) =

P∑
p=1

s(i)
p .s(j)

p (3.2)

Here, s(i)
p is the vector that represents the labels of the vertices of the graph Gg on

the shortest path p for patient i after smoothing, P is the number of all pairs of
shortest paths on the graph. The above function is a valid kernel function, as the dot
product is the linear kernel, and the kernel property is preserved under summation.

SmSPK is related to the propagation kernel, which also works on the core principle
of propagating labels on the graph. The two kernels operate on the same principle
of spreading information across the neighbors of a node but assess similarity in
different ways. While SmSPK compares the labels of the same nodes on the same
shortest paths, the propagation kernel compares node label probability distributions
in the entire graph by comparing node label bins. This is not very beneficial in our
case because having similar alterations in different parts of the graph contributes to
the similarity of the graphs. Another key difference is that while SmSPK completes
the smoothing step and then computes the similarity over the shortest paths, the
propagation kernel computes similarity at every propagation step to capture the
graph’s structural differences.

For a given molecular alteration type and a pathway, we compute the SmSPK over
all pairs of patients. The resulting matrix K is a symmetric N ×N matrix, for
which the i, j-th entry is the kernel function evaluated for patient i and patient j
pair. By computing kernel matrices for each pathway and each molecular alteration
type, we obtain M ×D different kernel matrices. We normalize the kernel matrices
by dividing the kernel matrix entry K(i, j) by

√
(K(i, i)∗K(j,j) so that all kernel

entries are in the range 0 and 1.
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3.4 Step 3: Multi-View Kernel Clustering

Each of the kernel matrices computed in the previous section represents a view
of the patients’ similarities. To integrate these views, we resort to existing multi-
view kernel clustering approaches. The multi-view clustering approach allows to
identify the clusters and and the weights associated with each of the views in an
unsupervised manner. In the literature, there are many available multi-view kernel
clustering methods (X. Liu, S. Zhou, et al., 2017). By considering the usability and
efficiency of these algorithms, we choose four candidate algorithms to use in the
multi-view kernel clustering step of PAMOGK. When we experimented with these
four algorithms (see Section 4.3) and among them multiple kernel k-means with
matrix-induced regularization (MKKM-MR) (X. Liu, Dou, et al., 2016) yielded the
best clustering results. Thus the final model of PAMOGK uses MKKM-MR; yet, this
step can be replaced by any multi-view clustering approach as long as the method
accepts kernel matrices as input. In this section, for completeness, we provide a
brief overview of the selected multi-view kernel clustering methods with which we
experimented.

MKKM-MR minimizes the sum-of-squared loss over cluster assignments using
matrix-induced regularization to reduce redundancy among kernel matrices and pro-
motes the diversity of the selected kernel matrices.

Kernel k-means (KKM) (Schölkopf et al., 1998) is a simple but a strong baseline
algorithm. It accepts a single kernel matrix, for this reason, we input the average
of the kernel matrices available for the multiple views. We refer to this method as
average kernel k-means (AKKM).

LMKMM (Gönen and Margolin, 2014) is another powerful method that optimizes
not only the weights of the kernel matrices but also the weight of the samples. We
reimplemented LMKKM in Python, which is originally provided in Matlab and R.

Additionally, SNF (B. Wang et al., 2014) is one of the multi-omics clustering meth-
ods that we review in the Related Work section. It calculates a similarity matrix of
samples using an exponential kernel based on the view created by each data type
separately and constructs a similarity network for each view. In these networks,
samples are nodes and edge weights are the similarities. Through an iterative pro-
cedure based on the message passing algorithm, the networks are fused into a single
network. In addition to comparing PAMOGK to the SNF algorithm in its original
form, we also use the SNF as a possible multi-view clustering method to couple with
SmSPK in the PAMOGK framework. Specifically, we compute the patient similar-
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ities using SmSPK, fuse them with SNF fusion step, and cluster the samples with
kernel k-means or spectral clustering and refer these two versions SNF-KKM and
SNF-Spectral, respectively.

3.5 Dataset and Data Preprocessing

Table 3.1 Data sources and their download dates of datasets used in PAMOGK
experiments.

Data Source Download Date
Somatic Mutations https://www.synapse.org/#!Synapse:syn1701259 March 24, 2019
Gene Expression https://www.synapse.org/#!Synapse:syn417925.5 April 24, 2019
Protein Expression https://www.synapse.org/#!Synapse:syn416783.3 April 24, 2019
Clinical Data https://www.synapse.org/#!Synapse:syn417024.7 April 24, 2019
Pathway Data https://ndexbio.org/#/networkset/8a2d7ee9-1513-11e9-bb6a-0ac135e8bacf April 24, 2019

3.5.1 Pathway data

As the pathway source, we use National Cancer Institute - Pathway Interaction
Database (NCI-PID) at NDEXBio (Schaefer et al., 2008)1. NCI-PID is a curated
database with focus on processes that are relevant to cancer research (download
date: Apr 24, 2019). We filter out a pathway if it does not contain a gene that
overlaps with the omic data gene list. This filtering results with 165 pathways. The
pathway size descriptive statistics are provided in Table 3.2.

Table 3.2 Pathway Size Statistics of 165 pathways.

Average Median Max. number of Min. number of
Nodes 44.6 42 142 2
Edges 231.9 181 1277 1

3.5.2 Patient molecular and clinical data

The molecular and clinical data for KIRC are obtained from the TCGA PanCancer
project (Weinstein et al., 2013). We retrieve the data directly from Synapse2. We

1https://ndexbio.org/#/networkset/8a2d7ee9-1513-11e9-bb6a-0ac135e8bacf

2https://www.synapse.org/#!Synapse:syn300013
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only consider the primary solid tumor samples and make use of three different molec-
ular data types that can directly be mapped to pathways: somatic mutations, tran-
scriptomics, and proteomics data. The transcriptomic data include the RNAseq
gene expression levels, while protein expression is quantified through Reverse Phase
Protein Array (RPPA). The exact data files are listed in Table 3.1 and the number
of genes (or proteins) in these data types are provided in Table 3.3.

Table 3.3 Number of unique genes in omics

Gene expression Protein Expression Somatic Mutation
Number of Genes 17,682 131 13,417

3.5.3 Assigning node labels based on molecular alterations

In the case of mutations, the patient node label is assigned as a binary label based
on the presence or absence of the mutation. In the expression datasets, the gene and
protein expression values are normalized and converted to z-scores relative to other
patients. For each data type, if z-score of a gene (a protein) is greater than 1.96
(which stands for 95% confidence), the gene (the protein) is considered overexpressed
in that patient with respect to the other patients while the genes (the proteins) with
z-score lower than −1.96 is considered underexpressed. For the graphs generated
for the overexpression alteration, we use the z value as the node attribute for the
genes where the z-score is larger than 1.96, and for other genes, a node label of 0
is assigned. Similarly, for the underexpression alteration graph, if the z-values are
less than −1.96, the z-score is used as the node label and otherwise, a value of 0 is
assigned. This threshold label assignment of z-scores considers the extent of change
when the gene is over or under expressed. We also considered alternative strategies
of defining alteration for the expression dataset; as discussed in the results section,
this representation yields better results. Finally, from the three different omic data
sources, five different types of alterations are defined: somatic mutation in a gene,
over and underexpression based on gene expression, over and underexpression based
on protein expression.
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Chapter 4

RESULTS AND DISCUSSION

In this chapter, we detail the experimental set up the in which we evaluated
PAMOGK and present the results attained. We also include our discussions re-
lated to these results.

4.1 Experimental Set up

We apply PAMOGK to discover different subgroups of KIRC patients. The dataset
contains 361 patients whose molecular profiles come from three separate data types:
somatic mutation, gene expression, and protein expression. We define five differ-
ent molecular alteration types based on these three types of omics data (see Sec-
tion 3.5.3). We provide the number of genes and proteins and pathway statistics in
Table 3.2 and Table 3.3. We compute one kernel matrix for each pathway-molecular
alteration type; this results in 825 kernels (165 pathways × 5 molecular alteration
types), each one of which constitutes a distinct view.

Throughout all experiments, we evaluate four different cluster numbers, k ∈
{2,3,4,5}. When computing SmSPK, we try 12 different alpha α values (Table 4.1).
We conduct experiments by using different multi-view clustering methods. These
include average kernel k-means (AKKM), LMKKM, MKKM-MR, SNF-kernel k-
means (SNF-KKM) and SNF-Spectral clustering (SNF-Spectral). The parameter
λ in MKKM-MR is chosen using grid-search (Table 4.1). In the original LMKK-
means iteration count is used for stopping criteria. Here we add one more criterion
which causes stops if the change in objective value is less than 1e-16. The maximum
number of iterations is set to 50.

If a pathway kernel includes a few or no altered genes, we eliminate it before in-
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putting it into multi-view kernel clustering methods to increase time efficiency. The
criteria for this is to eliminate those whose nonzero entries constitute at most 1% of
all entries.

Table 4.1 Hyperparameters used in different algorithms. RBF values are selected
using the median heuristic.

Parameter Symbol Used in Possible value(s)
Number of clusters k All clustering methods {2,3,4,5}
Smoothing α Kernel construction of SmSPK {0,0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
Trade-off λ MKKM-MR 2{−15,−12,−9,··· ,9,12,15}

RBF γ
Somatic Mutation 6.41e-03
Gene Expression 8.01e-04
Protein Expression 1.11e-01

Number of neighbors Ks SNF 20
Number of iterations Ts SNF 20
Max. number of iterations Tl LMKKM 50

We evaluate the clustering results through survival analysis in accordance with the
previous work (Jianfang Liu and al., 2018; Liang et al., 2018; Ricketts and al., 2018;
Gabasova et al., 2017). We compare the survival distributions of the clusters using
Kaplan-Meier (KM) survival curves (Kaplan and Meier, 1958) and log-rank test’s p-
value (Harrington and Fleming, 1982). In the log-rank test, we test whether there is
a statistical difference between the survival times of the clusters. In comparing alter-
native methods, we use the p-value of this log-rank test as the performance criteria.
Specifically, in the figures presented for ease of display, we use −log10(p-value). The
−log10(p-value), smaller the p-value and better the clusters are separated.

4.2 Assessing the Need of a New Graph Kernel

Constructing kernels that capture the similarity of patients is the crucial step of
PAMOGK. First, we would like to understand whether there is any merit in using
SmSPK as opposed to deploying an already existing and powerful graph kernel.
The motivation behind proposing a new kernel is that the existing graph kernels
are designed to capture topological similarities. Since we compare the two patients
on the same pathway, the structure of graphs shall always be the same. On the
other hand, the node label distribution is different as it is patient specific. Thus,
the existing graph kernels computed over the same pathway will consider patients
as overly similar and would not serve our purpose.

To check if the intuition above holds, we analyze the distribution of the kernel values
computed over all the pathways and the overexpressed molecular alteration type.
Since the overexpressed genes are the densest kernels, we choose this data type.
We compare SmSPK with kernels that accept continuous node attributes. These
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kernels include the propagation kernel (Neumann et al., 2016), Graph Hopper kernel
(Feragen et al., 2013) and Wasserstein Weisfeiller Lehman graph kernel (Togninalli
et al., 2019b). We also tried to compare our method with node attributed version
of shortest path graph kernel (Borgwardt and Kriegel, 2005), but due to slow run
time, we abandoned this comparison. We use the implementation provided by the
Grakel library (Siglidis et al., 2018) for propagation and graph hopper kernels. We
use WWL Python library (Togninalli et al., 2019a) provided by authors for the
Wasserstein Weisfeiler Lehman graph kernel.

To assess, whether we need a graph kernel at all, we compare to the case where RBF
kernel is used for the kernel computation step. The RBF kernel function: K(xi,xj) =
exp(−γ‖xi−xj‖), where γ is the kernel parameter and xi and xj the feature vectors
for patients i and j. When RBF kernels are computed, they are directly evaluated
on the omic data. Thus, they are computed over all the genes regardless of their
participation in a pathway. The gamma values of RBF are determined by the
median heuristic (Sejdinovic et al., 2013) (Table 4.1). To make the comparison fair,
we run the method with and without smoothing and choose the results with the
best smoothing parameter assignment for each method (Table 4.1).
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Figure 4.1 (a) Example heatmaps of patient-by-patient kernel matrices calculated by
different kernel choices. The kernel functions include the propagation kernel, graph
hopper kernel, Wasserstein Weisfeiler Lehman, and SmSPK graph kernel methods.
Each kernel belongs to the direct p53 effectors pathway and overexpressed gene data
type. The color black indicates that the similarity of the two patients is evaluated
as 1. (b) The frequency of patient similarities for different kernels over all pathways
with the overexpression molecular data. For example, the darkest navy indicates
the kernel value of 1, and the height of this bar is the proportion of patient-pairs for
which the kernel value is evaluated as 1. All the kernels other than SmSPK assign
patient similarities of 1 very frequently.

First, we analyze the kernel values computed by each kernel. Figure 4.1a displays the
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heatmaps computed by each kernel method on an example pathway (more examples
are provided in Figure A.2). The rows and the columns are patients whereas the cell
entries are colored as proportional to the kernel value computed for the two patients
over a single pathway and data type. Figure 4.1a clearly shows how kernels assign
patient similarities of 1 very frequently.

To better analyze this over all pathways, we analyze the distribution of kernel values
assigned to patients by each of the different kernels. We bin the kernel matrix
entries into groups for each kernel and calculate the frequency of each bin. Next,
we calculate the average frequency for each bin across all computed kernel matrices.
Figure 4.1b shows, for each graph kernel, how the kernel values are distributed
on average. All the kernels other than SmSPK, assign patient similarities of 1
very frequently (the darkest bin). These results confirm our intuition that due to
the identical graph structures, the existing graph kernels are unable to distinguish
patients with different molecular alterations on the same pathway graph.

Additionally, we compare performances of the kernels based on the lowest p-value
attained in the log-rank test on the survival distributions of clusters. In each exper-
iment, each kernel is used with MKKM-MR method, and they are allowed to choose
the hyperparameters from a set of predetermined values. These include k for cluster-
ing, the smoothing parameter α for SmSPK, λ for MKKM-MR. The best clustering
solution obtained for each method is compared in Figure 4.2. We observe that Sm-
SPK outperforms other graph kernels which are compared in this study. This can
be explained based on the previous remark that this graph kernel is formulated to
distinguish graphs with identical topologies. Additionally, although the use of RBF
kernel generally yields good results, the integration of pathway information through
SmSPK brings an improvement to the cluster separations in terms of survival.

4.3 Deciding on the Multi-view Kernel Clustering

Algorithm to Use in PAMOGK

To determine the multi-view kernel clustering algorithm to be used in PAMOGK,
we experiment with different alternatives. The multi-view kernel clustering meth-
ods that we analyze include the MKKM-MR (X. Liu, Dou, et al., 2016), AKKM,
LMKKM (Gönen and Margolin, 2014) and SNF (B. Wang et al., 2014) with
KKM(Kernel K-Means) and spectral clustering (see Section 3.4). For each method,
we report the best clustering solution, which is determined based on the lowest
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Figure 4.2 The log-rank test p-values obtained with different choices of kernels em-
ployed with MKKM-MRmulti-view kernel clustering algorithm. Kernel construction
methods include SmSPK (our method), propagation graph kernel (Neumann et al.,
2016), graph hopper kernel (Feragen et al., 2013), Wasserstein Weisfeiler Lehman
graph kernel (Togninalli et al., 2019b) and radial basis function (RBF) kernel.

p-value attained in the log-rank test on the survival distributions of clusters. In
each experiment, we allow the methods to choose from a set of predetermined val-
ues for each of the hyperparameters. These include k for clustering, the smoothing
parameter α for SmSPK, λ for MKKM-MR.

Figure 4.3 summarizes the results in these experiments for the best clustering solu-
tion, where k = 4. When comparing the three multi-view kernel clustering methods,
we observe that MKKM-MR produces the best results. LMKKM, AKKM, and
SNF based methods yield similar results with the difference that LMKKM performs
slightly better than others. Overall, PAMOGK that uses the MKKM-MR multi-
view clustering outperforms all the other clustering alternatives. Thus, we employ
MKKM-MR in PAMOGK.

The best clustering solution by PAMOGK is obtained when k = 4, smoothing
parameter, α is set to 0.3, and λ for MKKM-MR is set to 8. The KM plot of
the resulting clustering is provided in Figure 4.4a. The survival distributions
significantly differ (log-rank test, p-value = 1.24e-11). We should note that the
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Figure 4.3 The log-rank test p-values obtained with different choices of multi-view
kernel clustering methods with SmSPK as the kernel construction method. The
clustering methods include average kernel k-means (AKKM), localized multiple ker-
nel k-means (LMKKM) (Gönen and Margolin, 2014), multiple kernel k-means with
matrix-induced regularization (MKKM-MR) (X. Liu, Dou, et al., 2016), SNF (B.
Wang et al., 2014) with spectral clustering and kernel k-means (KKM).

solution with k = 3 is also quite good, p-value = 8.13e-11 (Figure 4.4b).

4.4 The Effect of Different Node Label Assignment

Strategies for the Expression Data

We checked some of the design choices we made in attaining these results. The first
one is how to assign node labels based on alterations in gene or protein expression
levels. We compared several alternative strategies,

• PAMOGK-Disc: We dichotomize the alterations based on normalized gene
expression values, z-scores, and use binary labels. Specifically, we construct
two different graphs per one expression data type for a patient, one for over-
expression and one for underexpression for each pathway and compute two
kernel matrices for patients. In the overexpression graphs, if the gene’s z-
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Figure 4.4 (a) Kaplan-Meier survival curves of the best clustering solution for KIRC.
Result obtained with smoothing parameter α= 0.3. The p-value was obtained from
a log-rank test between the groups. (b) Kaplan-Meier survival curves of the second
best clustering solution for KIRC. Result obtained with a smoothing parameter
α = 0.3. The p-value was obtained from a log-rank test between the groups.

value is larger than 1.96, it receives node label as 1 and 0 otherwise. Similarly,
in the underexpression graphs, the z-values < −1.96, receives node label 1,
and others are assigned zero.

• PAMOGK-Cont: Two graphs per pathway and patient are constructed for
the expression data. A gene’s node label is set to its z-score. In the first one,
genes with positive z-score have these numerical scores as node labels, whereas
the other genes are labeled zero. In the second one, only genes with negative
z-score have the z-score as node labels, whereas the other genes receive zero
labels.

• PAMOGK-ACont: One graph per pathway and patient is computed for
expression data, as opposed to the separation of underexpression and overex-
pression. The absolute value of the normalized expression value of the z-score
is used.

• PAMOGK-TCont: In this one, we include the degree of overexpression
and underexpression if the gene is over or underexpressed. In the overexpres-
sion graphs, the gene is assigned the node label z if z > 1.96, and otherwise,
it receives the label 0. Similarly, in the underexpression graphs, the node
with z < −1.96 receives the label z, and otherwise, it receives the label 0.
PAMOGK-TCont considers the extent of the change only if the gene is over-
expressed or underexpressed.
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• PAMOGK-BTCont: Instead of 1.96 threshold, we use the adjusted thresh-
old of Bonferroni(applying Bonferroni correction) by taking into account the
number of genes tested. Overexpression and underexpression kernels are con-
structed as in PAMOGK-TCont, only the threshold is different.

Table 4.2 The different labeling strategies for assigning node labels for the
expression graphs.

Method Pathway-patient
graph labeling

Kernel Construction De-
scription for a Single Path-
way

Best p-
value

PAMOGK-Disc Label = 1 if |z| > 1.96;
............ 0 otherwise

Two separate kernels for over-
expressed values and underex-
pressed values

7.47e-10

PAMOGK-Cont Label = z Two separate kernels for positive
and negative expression

4.17e-09

PAMOGK-ACont
......

Label = |z| Single kernel 9.40e-05

PAMOGK-TCont Label = z if |z| > 1.96;
............ 0 otherwise

Two separate kernels for over-
expressed values and underex-
pressed values

1.24e-11

PAMOGK-
BTCont

Bonferroni Correc-
tion Label = z if |z|
> threshold; ...... 0
otherwise

Two separate kernels for over-
expressed values and underex-
pressed values

2.96e-03

The Table 4.2 summarizes the results obtained by each node label assignment strat-
egy. We observe that using the z-value as the node label without considering the
extent of over and underexpression does not yield better results than our previous
strategy of binary labels PAMOGK-Disc, as seen in the Table 4.2 for the PAMOGK-
Cont and PAMOGK-ACont rows. We suspect this is because when the labels are
propagated on the graph, for the central nodes, even small z-values accumulate,
leading to overly similar patients results. However, when we threshold the values
(PAMOGK-TCont) and take the extent of over or underexpression for those that
are changed more drastically, it leads to a better separation. Thus, the extent of
change might be more meaningful for extreme values. This scheme leads to slightly
better log-rank test p-values. We also experiment with the Bonferroni corrected
version of this strategy. However, it led to inferior results. Because there are many
genes, hardly any gene can pass the threshold; thus, alterations become too sparse.

We further evaluate the three strategies that yield superior results: PAMOGK-
Disc, PAMOGK-Cont, PAMOGK-TCont. We conducted an experiment where we
bootstrapped the KIRC patient samples, found the best clustering for that set of
patients, and compare the log-rank test p-values (Figure 4.5). The higher the val-
ues, the better the clusters are separated in terms of survival distributions in this
figure. We observe that PAMOGK-TCont yields significantly better results than
PAMOGK-Cont at 0.05 significance level (One-tailed Wilcoxon signed-rank test, p-
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Figure 4.5 Comparison of different node labeling techniques for expression data over
10 different bootstrap samples of KIRC patients. The boxplot shows the -log (p-
values) of the log-rank tests conducted on the survival distributions of the clusters
attained on each sample. See Section 4.4 and Table 4.2 for a detailed description of
each of these labeling strategies.

value 0.00499). When we compare PAMOGK-TCont to PAMOGK-Disc, although it
is not statistically significant at 0.05 significance level (One-tailed Wilcoxon signed-
rank test, p-value= 0.175), it produces similar or better results in most cases. We
conclude that both PAMOGK-Disc and PAMOGK-TCont are good strategies. In
this work, we use the PAMOGK-TCont due to its slightly better performance.

4.5 The Effect of Smoothing

Another design choice is whether to use smoothing or not. In selecting the best result
for a method, we allowed all methods to choose from a set of alpha values (Table 4.1),
and 0 was among them, which corresponds to the case where no smoothing is ap-
plied. We observe that the smoothed versions performed better for all methods than
the non-smoothed versions of the input graphs. Specifically, to check the effect of
smoothing on PAMOGK performance, we examine the results obtained in smoothed
and non-smoothed versions. As seen in Figure 4.6a, the smoothed versions achieve
better results. We also run the same experiment with only mutation data as com-
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mon mutations among patients are rare. With smoothing the best results achieve a
p-value = 8.67e-03 whereas without smoothing p-value = 3.79e-01 is attained. These
results show that smoothing is indeed useful in integrating biological knowledge into
the framework.
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Figure 4.6 (a) The log-rank test p-values obtained for multi-omics data and single-
omic data (somatic mutation) with and without smoothing. (b) The frequency of
patient similarities for SmSPK over all pathways with the overexpression molecular
data. For example, the darkest navy indicates the kernel value of 1, and the height
of this bar is the proportion of patient-pairs for which the kernel value is 1. When no
smoothing is used, more than 90% of the values are evaluated to have zero similarity.

We should note that most patient pairs are evaluated to have zero similarity when
there is no smoothing. As an example, Figure 4.6b shows the frequency of patient
similarities for different kernels computed over all pathways with the overexpressed
data for the smoothing parameter α = 0.3. Overexpression is the least scarce al-
teration type; even in this case, when no smoothing is applied, most patients are
evaluated to be dissimilar to each other under different pathways when they do not
share any common alteration. In summary, we conclude that smoothing is useful in
the evaluation of patients using molecular interactions as context.

4.6 Comparison with the State-of-the Art Multi-

Omics Methods

4.6.1 Performance comparison
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Figure 4.7 Comparison of PAMOGK with the multi-omics clustering methods over
10 different trials. Each trial contains a random subsample of KIRC patients. The
boxplot shows the -log (p-values) of the log-rank tests conducted on survival distri-
butions of these clusters. The higher the values, the better the clusters are separated
in terms of survival distributions. (Note that PINS method results are over 9 ex-
periments since in one of trial, it did not return a result.)

We compare PAMOGK with eight other multi-omics methods. These include k-
means (Lloyd, 1982), MCCA (Witten and Tibshirani, 2009), LRACluster (Wu et
al., 2015), rMKL-LPP (Speicher and Pfeifer, 2015), iClusterBayes (Mo, R. Shen,
et al., 2017), PINS (Nguyen et al., 2017), SNF (B. Wang et al., 2014), and finally
Spectral Clustering (D. Zhou and Burges, 2007). When applying K-means and
Spectral Clustering algorithms, the early integration strategy is used, in which the
features from different data types are concatenated and then the concatenated data
is fed into these methods. These methods cover all methods that are included in
a recent comparative benchmark study by Rappoport and Shamir, 2018b with the
exception of multiNMF (Jialu Liu et al., 2013). We were not able to to run the
source code of this work successfully.

In running these algorithms, we set the maximum number of clusters to five and
choose the other parameter configurations for each algorithm exactly as in the bench-
mark study (Rappoport and Shamir, 2018b). To assess the performance of different
methods, we repeatedly subsample the original patient set, and for each subsample,
run the algorithms to find the patient clusters. Each subsample contained 300 pa-
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Table 4.3 The runtimes in seconds for clustering 361 KIRC patients with the three
types of omic data for different methods and PAMOGK.

Method PAMOGK LRACluster PINS SNF rMKL-LPP iClusterBayes Spectral K-means MCCA
Time 352 289 56 7 109 10,898 3 47 6

tients. Due to prohibiting runtime of iClusterBayes, we were able to conduct this
experiment 10 times.

The distribution of log-rank test p-values attained by each method is displayed
in Figure 4.7. The comparison over ten runs shows that PAMOGK is the best
performer among the nine methods. Not only the median performance is high,
but even the 90-th percentile of the trials is superior to almost all methods. It
also displays low variance across different runs. For all methods, for all trials, the
resulting clusters are balanced in terms of the number of patients participating in
the clusters except two trials of MCCA. The log-rank test is known to result in
unrealistically low p-values when one of cluster size is small (Vandin et al., 2015).
In those two trials, MCCA’s extremely low p-values are due to clusters with 9 and
14 members.

4.6.2 Runtime comparisons

We conduct a runtime comparison of the algorithms for clustering all the KIRC
patients using the three different data types. PAMOGK demands more time to run
in comparison to the other methods, with the exception of iClusterBayes Table 4.3.
This is because it calculates many more views of the data based on pathways. A sec-
ond time limiting step is the weight optimization of the kernels in the MKKM-MR
algorithm. Despite these additional requirements, the runtime is within reasonable
limits, and a typical run takes less than 10 minutes without any parallelization.
Replacing the multi-view clustering step with a less demanding algorithm and par-
allelization could reduce the runtime. Note that the runtime reported in Table 4.3
excludes the time that takes to mapping the alterations on the graphs, which is
conducted for once at the beginning for a set of experiments, and takes 8,342 sec-
onds. This costly step can be reduced by using different techniques such as caching.
Experiments are conducted on the following system configuration: CPU: Intel(R)
Xeon(R) CPU E5-2640 v4 @ 2.40GHz CPU. Memory: 256Gb. Operating system:
Ubuntu 16.04.4 LTS.

4.7 Detailed Analysis of KIRC Subgroups
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Discovered by PAMOGK

In this section, we provide a more detailed analysis of the identified KIRC patient
subgroups. For the staging information we use the TNM stating

Table 4.4 Summary of statistical analyses of clinical variables for KIRC subgroups.

Clinical Parameter Test p-value
Age One-way ANOVA 2.200e-01
Gender χ2 4.080e-01
Stage χ2 3.476e-08
Primary Tumor Pathologic Spread χ2 1.349e-07
Distant Metastasis Pathologic Spread χ2 3.766e-04
Neoplasm Histologic Grade χ2 2.104e-09

4.7.1 KIRC Subgroups’ Associations with Other Clinical Pa-

rameters

We analyze the association of clinical parameters of the discovered subgroups other
than survival. The parameters include age, gender, tumor stage, primary tumor
pathological spread, distant metastasis pathological spread, and neoplasm histolog-
ical grade. The associations of categorical variables are determined using χ2 test
while the continuous variables are tested with one-way ANOVA. We find no sta-
tistically significant difference in terms of age (p-value = 0.220 in Figure 4.8) and
gender (p-value = 0.408 Table 4.5). All the other clinical parameters differ across
groups at a statistically significant level (see Table 4.4). The distributions of these
variables across groups are shown in Figure 4.9 and detailed information is provided
in Section A.

Table 4.5 Contingency table for gender vs KIRC clusters. The chi-squared test
results in χ2 = 2.893, p= 0.408, df= 3

Gender Female Male All
Cluster No
1 39 63 102
2 22 40 62
3 26 56 82
4 32 83 115
ALL 119 242 361

The best prognosis group is cluster 1, and the worst prognosis group is cluster 4
(Figure 4.4a). There are clear differences between these two groups in terms of
these additional clinical parameters. More specifically, 53.9% of the patients in
cluster 1 are in stage I, whereas 67.8% of the patients in Cluster 4 are either in
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Figure 4.8 Age distribution of patients in each identified RCC cluster. No statistical
significance across groups is detected via one-Way ANOVA test (p-value = 0.143)
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Figure 4.9 The distribution of tumor-related clinical attributes among KIRC clus-
ters.

stage III or Stage IV (Table A.2). Also, nearly half of the patients in cluster 1
have primary tumor T1, whereas 60% of the patients in cluster 4 have primary
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tumor T3 (see Table A.3). While only 8.82% of the patients of cluster 1 have
distant metastasis, this ratio is 29.6% for cluster 4 patients (Table A.4). Finally,
the fraction of cluster 1 patients with histologic grade G1 and G2 is 61.7%, and
those with G4 is 5.9%. For cluster 4, the percentage for G1 and G2 drops to 20.5%
and G4 increases to 35.7%. (Table A.5). For all prognostic tumor-related features,
cluster 1 always has more patients with a lower degree stage and grade, whereas
cluster 4 always has more patients with a higher degree stage and grade. Overall,
this analysis provides additional evidence that PAMOGK partitions KIRC patients
into clinically meaningful subgroups.

4.7.2 Influential pathways and data types
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Importance

O.E. Genes-p75(NTR)-mediated
signaling

O.E. Genes-Regulation of
nuclear SMAD23 signaling

O.E. Genes-Signaling events
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O.E. Genes-Regulation of
nuclear beta catenin signaling
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Figure 4.10 Top 10 most influential pathway-alteration type pairs for KIRC. O.E.
stands for overexpressed and U.E. stands for under-expression. The relative im-
portance is calculated based on the weights assigned to each kernel matrix of the
associated pair by the MKKM-MR algorithm. The results are obtained for the best
clustering solution, where the number of cluster is 4, kernel matrices are calculated
using SmSPK with smoothing parameter α = 0.3.
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Figure 4.11 Relative importance of the three omic data types for KIRC. One data
type weight was calculated by summing up the kernel weights that is available for
molecular alteration type and pathway pair. The results are obtained for the best
clustering solution, where the number of clusters is 4, and the kernel matrices are
calculated by SmSPK with smoothing parameter α = 0.3.

By inspecting the assigned kernel weights, we can quantify the relative importance
of pathways and molecular data types. For KIRC (k = 4), the direct p53 effectors
pathway and gene overexpression kernel emerge as the most important pathway-
molecular alteration pair (see Figure 4.10 for the top 10 pairs). By averaging the
weights associated with each omic data type, we find that the gene expression is
the top important data type, while protein expression data have almost no effect on
the clustering (Figure 4.11). This could be arising from the fact that the protein
expression data covers only a small number of proteins.
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Figure 4.12 The top 10 pathways, which have the highest relative importance in
clustering for KIRC patients. One pathway weight is calculated by summing the
kernel weights which are calculated using that specific pathway and different omics.
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The top relevant pathway in clustering the patients into subgroups emerges as the
the direct p53 effectors pathway (Figure 4.12). p53 is a tumor suppressor transcrip-
tion factor that regulates the cell division to prevent uncontrolled growth of cells
(Vogelstein et al., 2000). Similarly, the second and the third pathways, which are
PDGFR-beta signaling and ErbB1 downstream signaling pathway (better known as
EGFR), respectively, are critical signaling pathways for cancer (Smith et al., 2005).
The fourth pathway is related to hypoxia-inducible factors (HIFs), which regulate
the expressions of many genes that are related to tumorigenesis (Banumathy and
Cairns, 2010). Additionally, C. Shen et al., 2011 shows that HIF1α is a target of
14q loss, which is commonly associated with poor prognosis in kidney cancer. The
fifth pathway is the Endothelin pathway and earlier results report that Endothelin-1
promotes cell survival in renal cell carcinoma (Pflug et al., 2007).

4.8 Application to Other Cancers

We apply the PAMOGK framework to other cancer types. Out of 12 cancer types
from TCGA PanCancer study, we exclude 3 types of cancer: Acute myeloid leukemia
(LAML) due to lack of primary tumors, rectum adenocarcinoma (READ) since there
is only one patient with all the three omic data type available and colon adenocar-
cinoma (COAD) since none of the patients have passed away(all data is censored).
The remaining cancer types include bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), glioblastoma multiforme (GBM), head and neck squa-
mous cell carcinoma (HNSC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), ovarian serous cystadenocarcinoma (OV), uterine corpus en-
dometrial carcinoma (UCEC). We apply the PAMOGK framework with SmSPK
graph kernel and MKKM-MR as the multi-view kernel clustering algorithm. To
compare, we also apply the RBF kernel and MKKM-MR combination.

Figure 4.13 shows the KM plots and and the log-rank test results’ p-values of the
clusters obtained for the different cancer types. We observe that the clusters are
well separated in terms of the patient survival distribution (Log-rank test, p < 0.05).
However, the p-values are not as small as KIRC in these cancers. The log-rank test
is known to be inaccurate when sample size small or unbalanced (Latta, 1981). Al-
though BLCA clusters are well separated in terms of survival (Figure 4.13a), the
p-value of the log-rank is not that small p-value(1.56e-02). This could be attributed
to the small number of patients in the clusters ( 26 and 23). Another problem of
log-rank test occurs when the number of censored patients are small or unbalanced
across patient groups(Latta, 1981). In the case of OV clusters (Figure 4.13g), pa-
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(b) BRCA (k=3 α=0.3)
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(c) GBM (k=5 α=0.01)
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(d) HNSC (k=5 α=0.5)
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(e) LUAD (k=5, α=0.9).
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(f) LUSC (k=3 α=0.01)
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Figure 4.13 Kaplan-Meir plots for best clustering solution for each cancer type. The
number of clusters (k) and the smoothing parameter value (α) that leads to these
results are provided under each subplot. The log-rank test p-values are shown in
the KM curves.
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tients are well separated; however, 78.57%(22 over 28) of the patients in the second
cluster is censored. This could be the reason why the log rank test yields a poor
p-value(2.47e-02). Similarly, almost 94% of the UCEC patients are censored. That
results in two clusters with high numbers of censored patients(85 out of 87 and 84
out of 93). Although the separation is evident in the Kaplan-Meir curves of the two
clusters, the log-rank test p-value(3.03e-02) does not reflect this strong separation.

One other observation is that some of the clusters of HNSC overlaps (Figure 4.13d)
indicating that a smaller number of clusters could be alternative solution. Thus, we
examine the clusters with k = 3 and k = 4. Similar to k = 5, HNSC clusters are well
separated in terms of patient survival for both k = 3 (p-value = 3.15e-02) and k = 4
(p-value = 1.92e-02).

When we replace SmSPK with RBF and compare the results, we observe that the
clusters of BLCA, BRCA, GBM, LUAD, LUSC, OV, UCEC from PAMOGK is sepa-
rated more successfully than the clusters from RBF in terms of survival(Figure 4.14).
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Figure 4.14 The log-rank test p-values obtained on different cancers when two clus-
tering methods with two different kernel choice is applied: PAMOGK with SmSPK
kernel using pathway graphs and multi-view clustering with RBF kernel without
pathway information.

Although the clusters are well separated in terms of survival distribution, other clin-
ical paremeters do not differ across these clusters Table 4.6. The ones that differ are
as follows: Neoplasm lymph node stage differs (p-value = 3.31e-03) across BRCA
patient subgroups at a statistically significant level(Table A.6). Similarly for HNSC
patients subgroups, neoplasm histologic grade(p-value = 7.70e-04) (Table A.7), clin-
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Table 4.6 Statistical analysis of clinical parameters of other cancer types.

Cancer Clinical Parameter Test p-value

BLCA

Age One-way ANOVA 9.221e-01
Gender χ2 6.051e-01
Diagnosis subtype χ2 8.905e-01
Tumor Stage χ2 5.872e-01
Metastasis stage χ2 5.592e-01
Neoplasm disease stage χ2 6.454e-01
Neoplasm lymph node stage χ2 1.541e-01

BRCA

Age One-way ANOVA 4.864e-01
Gender χ2 4.170e-01
Tumor Stage χ2 3.448e-01
Metastasis stage χ2 7.554e-01
Neoplasm disease stage χ2 2.597e-01
Neoplasm lymph node stage χ2 3.310e-03

GBM Age One-way ANOVA 7.204e-02
Gender χ2 6.632e-01

HNSC

Age One-way ANOVA 2.000e-05
Gender χ2 4.645e-02
Tumor Stage χ2 3.596e-01
Distant metastasis pathologic spread χ2 5.318e-01
Neoplasm histologic grade χ2 7.700e-04
Primary tumor n stage χ2 3.180e-01
Primary tumor m stage χ2 2.277e-01
Primary tumor t stage χ2 4.351e-02
Primary tumor pathologic spread χ2 6.025e-02
Lymph node pathologic spread χ2 5.567e-01
Clinical group stage χ2 2.606e-02

LUAD

Age One-way ANOVA 6.158e-01
Gender χ2 2.565e-01
Tumor Stage χ2 1.357e-01
Distant metastasis pathologic spread χ2 3.661e-01
Primary tumor pathologic spread χ2 2.773e-01
Lymph node pathologic spread χ2 9.164e-02

LUSC

Age One-way ANOVA 4.453e-01
Gender χ2 5.871e-02
Tumor Stage χ2 8.900e-01
Distant metastasis pathologic spread χ2 5.208e-01
Primary tumor pathologic spread χ2 5.348e-01
Lymph node pathologic spread χ2 4.006e-01

OV

Age One-way ANOVA 4.838e-01
Gender χ2 1.000e-00
Tumor Stage χ2 1.431e-01
Neoplasm histologic grade χ2 3.739e-01

UCEC
Age One-way ANOVA 7.069e-01
Gender χ2 1.000e-00
Tumor Stage χ2 5.000e-01

ical group stage(p-value = 2.61e-02)(Table A.8), and clinical primary tumor stage(p-
value = 4.35e-02) (Table A.9) distributed significantly differently. However, for these
parameters, the patients with low degree or grade parameters does not necessarily
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belong to best prognosis cluster. Similarly, patients with high degree parameters are
not distributed highly into the worst prognosis group. Thus, the analysis of tumor
related-clinical parameters for cancer subgroups other than KIRC is inconclusive.
In these cancer types, it could be the other omic data that could be reporter of the
clusters.

4.8.1 Influential pathways for other cancer types

Similar to the pathway analysis with KIRC patient, we also analyze influential path-
ways of clustering application on other cancer patients. We examine the important
pathways that resulted in the best clustering in terms of survival. Since our model
assigns nearly the same weight to each pathway, we couldn’t analyze the pathways
for BLCA and LUSC. For the rest of the cancer types, the most important 10 path-
ways are shown in Figure 4.15-4.20. The direct p53 effectors pathway which we
found as important in the KIRC clustering always ranks as the first or the second
important pathways for all cancer types. p53 is a tumor suppressor transcription
factor that regulates the cell division to prevent uncontrolled growth of cells (Vogel-
stein et al., 2000) and it is important for all cancer types. Similarly, PDGFR-beta
signaling pathway is always among the top two pathways except for the LUAD pa-
tients where it is still in the top 10 most important pathways. Another pathway
that is important for KIRC clusters is ErbB1 downstream signaling pathway (better
known as EGFR) and it is always among the top 10 most important pathways for
all cancer types. These are critical pathways for various cancer types (Smith et al.,
2005). P73 is one of the tumor suppressors of the p53 transcription factors family.
It is observed in many studies that p73 is overexpressed in many different types of
cancers (DeYoung and Ellisen, 2007). Parallel to these studies, PAMOGK finds p73
transcription factor network pathway is found as important for BRCA, OV, LUAD
ve UCEC cancer types. p75NTR is a nerve growth factor receptor and its relation
with other cancer types, especially BRCA, has been shown in many studies(Molloy
et al., 2011). Although there is no conclusive connection for OV, GBM, HNSC,
UCEC; p75NTR-mediated signaling pathway is found among important pathways.
The effect of Histone deacetylases(HDACs), which regulates the activation of many
proteins, on cancer is analyzed and studied before (Glozak and Seto, 2007). Espe-
cially the HDAC1 group is found as effective on the kidney, ovarian, breast, and
colorectal cancers, and PAMOGK also finds Signaling events mediated by HDAC
Class 1 pathway as important for these cancer types. Lastly, the Regulation of nu-
clear beta catenin signaling and target gene transcription pathway which is among
the top 10 influential pathways for BRCA, KIRC, GBM, HNSC, LUAD, UCEC is
important for many cancer types (Shang et al., 2017).
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Figure 4.15 The top 10 pathways, which have the highest relative importance in
clustering BRCA.
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Figure 4.16 The top 10 pathways, which have the highest relative importance in
clustering GBM.
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Figure 4.17 The top 10 pathways, which have the highest relative importance in
clustering OV.
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Figure 4.18 The top 10 pathways, which have the highest relative importance in
clustering HNSC.
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Figure 4.19 The top 10 pathways, which have the highest relative importance in
clustering LUAD.
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Figure 4.20 The top 10 pathways, which have the highest relative importance in
clustering UCEC.
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Chapter 5

CONCLUSION

The heterogeneity of cancer due to genetic and non-genetic factors causes variations
in cancer cells within a cancer type. The advances in next-generation sequencing
technologies and other high-throughput assays, allow characterizing the genome,
proteome, and the transcriptome for large cohorts of patients. This multi-omics
characterization brings up possibilities to refine these subtypes on a molecular level.
These subtypes allow us to design better treatment strategies, make a more accurate
diagnosis, and gain insight into different molecular mechanisms.

While different omic types such as mutations, gene expressions, and protein expres-
sions allow us to analyze patients from different data views, another view is provided
with the known molecular interactions among proteins. Integrating networks also
help overcome the problem that few alterations are shared among cancer patients.

We present PAMOGK for discovering subgroups of patients, which not only operates
by integrating different omics data sets derived from patients but also incorporates
existing knowledge on biological pathways. To corroborate these data sources, we
use a novel graph kernel, SmSPK, that evaluates patient similarities based on their
molecular alterations in known pathways. We employ a multi-view kernel clustering
technique to leverage views constructed by different molecular alteration types and
pathways. The proposed methodology also provides quantitative evidence for the
decisive role of known driver pathways on the clustering process.

We evaluated the different aspects of the framework and the choices we made within
the framework. First of all, our evaluation of the available kernels that could be
used in PAMOGK showed that the proposed graph kernel SmSPK performs better
than other state-of-the-art graph kernels in this task and also outperforms the RBF
kernels. Secondly, we observe that among many multi-view kernel approaches we
use to integrate the multiple graph kernels, MKKM-MR outperforms different multi-
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view kernel clustering algorithms. Thirdly, we evaluate whether specific steps in such
as smoothing of the labels on the graph is necessary. We observe that smoothing
helps to find similarities between patients that do not have a commonly altered gene.
We conclude that especially for sparse data types such as mutation, smoothing
helps fuse information on the pathway. We also evaluated several techniques for
representing dysregulation-related expression patterns on the pathway graphs as
node labels.

When applied to KIRC, PAMOGK results in patient clusters that differ significantly
in their survival distributions and other clinical parameters. We also show that
PAMOGK performs better compared to the state-of-the-art multi-omics approaches.

After all evaluation of PAMOGK on KIRC patients, we also apply the framework
to 8 other available cancer types. We find significantly different patient subgroups
in terms of survival for other cancer types. Moreover, we compare the log-rank test
p-values attained by clustering with PAMOGK to p-values attained by clustering
using RBF kernels for each omic in a multi-view kernel type separately. In 7 out
of 8 cancer types, PAMOGK gives more successful results. However, the clinical
attributes are not distributed differently among the clusters except for BRCA and
HNSC. On the other hand, the critical pathways for these cancer types are similar
to those we found with KIRC. Most of these pathways are crucial for cancer-related
processes.

Some of the earlier work of this thesis has been presented before in the thesis Unal
(2019). This thesis, as a contribution, updates the representation of the expression
data type on graph with a continuous labeling techniques and different techniques
are evaluated during the update process. Since pathway data of earlier work (Unal,
2019) has some problems, pathway data is updated and another database is used.
Additionally, each step of the framework has been evaluated separately and alter-
native strategies are compared to justify the decisions. While earlier work only
compares the proposed graph kernel SmSPK with radial basis function kernel, this
work also use well-known graph kernel methods in comparison. It also expands the
set of compared multi-view kernels with methods that have high-performance in lit-
erature. Moreover, as a new evaluation, the framework PAMOGK is evaluated with
different state-of-the-art multi-omics methods for cancer subtyping. The smoothing
effect, labeling techniques, clinical parameter distributions among clusters are ana-
lyzed and discussed which was not done by Unal (2019). Also code environment is
moved to python with the collaboration of authors of the paper of this thesis. Fi-
nally, the performance in terms of well-separated patient clusters is increased with
these updates.
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One limitation of the current work is that we use the bulk expression results provided
by the TCGA project. However, it is known that there could be a high level of intra-
tumor heterogeneity (Dagogo-Jack and Shaw, 2018), and the bulk tumor might
include a diverse collection of cells harboring distinct molecular signatures. Future
work would be to adapt PAMOGK framework to single-cell measurements as they
become available for large cohorts of patients.

One of the most important aspects of the framework PAMOGK is that it is appli-
cable in different fields and not specific to cancer subtyping. PAMOGK can easily
be adapted to a clustering problem with given knowledge graphs and datasets that
includes feature vectors of samples to label these graphs.

The work can be extended in several directions. In this current work, we use omic
datasets containing somatic mutations, gene, and protein expression as they give
more direct information on the alterations in the pathways. In the future work, one
can map the copy number variations and methylation levels as well to the genes and
use them as additional views.

The proposed kernel matrix characterizes the similarities of patients based on the
shortest path on the graphs. Other graph kernels can be devised to capture patient
similarities on the graphs using other topological features of the graphs.

Furthermore, in the present study, we ignore the direction and label or type of
edges in the pathways. A kernel that explicitly accounts for edge directions can
be more devised. Also, edge types of interactions could lead to a more expressive
representation of the molecular interactions, which we shall investigate in the future.
In place or addition to the pathways, protein-protein interaction networks, or super
pathways where pathway graphs are combined into one graph can be used. However,
it is essential to note that when we do not use separate pathways, we cannot extract
the importance associated with the clustering to each pathway.

Lastly, the multi-view kernel clustering algorithms in the literature are not mostly
designed for a small number of kernels. For our problem, 3 data types and 165
pathways form a large number of kernels, and the number is likely to increase as these
pathways are refined, and more data types are integrated into our framework. Thus,
these multi-view kernel clustering methods might not suffice when the number of
pathways and the data types are increased. The current multi-view kernel methods
usually assign zero-weight to sparse kernels. A new multi-view kernel clustering
method that can combine many kernels without losing the signals in sparse kernels
can be studied as future work.
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APPENDIX A

Kaplan Meier Curves for Different k Values
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Figure A.1 Kaplan-Meier survival curves of the best clustering solutions for KIRC for
different number of clusters k = {2,5}. Results obtained with smoothing parameter
α= 0.2, α= 0.3 for k=2(a), k=5(b), respectively. The p-value is the a log-rank test
on the survival distributions of between the groups.
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Statistical Association of the KIRC Clusters with
the Clinical Parameters

Table A.1 Summary of TNM staging according to AJCC Amin et al., 2017. The
"X" stands for the degree of parameter that cannot be assessed.

Category Definition
T1 Tumor ≤ 7 cm in greatest dimension, limited to the kidney
T2 Tumor ≥ 7 cm in greatest dimension, limited to the kidney

N2
Tumor extends into major veins or perinephric tissues but not
into the ipsilateral adrenal gland and not beyond Gerota’s fas-
cia

T4 Tumor invades beyond Gerota’s fascia
N0 No lymph node metastasis
N1 Metastasis in single lymph node, ≤ 3 cm in greatest dimension.

N2

Metastasis in single lymph node, between 3 and 6 cm in greatest
dimension or
Metastasis in multiple lymph node, ≤ 6 cm in greatest dimen-
sion

N3 Metastasis in lymph node, ≥ 6 cm in greatest dimension
M0 No distant metastasis
M1 Distant metastasis
Stage I T1 - M0
Stage II T2 - M0

Stage III
T1 or T2 - M0(Additionally metastasis in lymph node)
T3 - M0

Stage IV
T4 - M1
Any T - M0

GX Grade cannot be assessed - Tumor cell and tissue is close to
normal

G1 Well differentiated - Tends to grow slowly
G2 Moderately differentiated - Tends to grow rapidly and faster
G3 Poorly differentiated - Tends to grow rapidly and faster
G4 Undifferentiated

Note that for the KIRC subgroups, the Cluster 1 is the patient subgroup with the
best prognosis and the Cluster 4 is the worst prognosis. Refer to Figure 4.4a for
the cluster ids and their survival distributions and please refer to Supplementary
Table A.1 for definition of clinical terms.
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Table A.2 Contingency table for tumor stage vs KIRC clusters. The chi-squared
test results in χ2 = 52.603, p= 3.476e-08, df = 9

Stage I II III IV All
Cluster No
1 55 12 25 10 102
2 39 5 10 8 62
3 50 3 18 11 82
4 24 13 44 34 115
ALL 168 33 97 63 361

Table A.3 Contingency table for primary tumor pathological spread vs KIRC cluster.
Chi-squared test results in χ2 = 49.479, p= 1.349e-07, df = 9

Pathologic Spread T1 T2 T3 T4 All
Cluster No
1 57 14 30 1 102
2 40 6 16 0 62
3 50 5 26 1 82
4 26 16 69 4 115
ALL 173 41 141 6 361

Table A.4 Contingency table of distant metastasis pathological spread vs KIRC
cluster. The chi-squared test results in χ2 = 18.327, p= 3.766e-04, df = 3

Pathologic Spread M0 M1 All
Cluster No
1 93 9 102
2 54 8 62
3 70 12 82
4 81 34 115
ALL 298 63 361

Table A.5 Contingency table for neoplasm histological grade vs KIRC clusters. The
chi-squared test results in χ2 = 65.608, p= 2.104e-09, df = 12

Histologic grade G1 G2 G3 G4 GX All
Cluster No
1 2 61 33 6 0 102
2 2 26 26 8 0 62
3 1 35 38 8 0 82
4 0 21 52 41 1 115
ALL 5 143 149 63 1 361
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Statistical Association of the Other Cancer Clus-
ters with the Clinical Parameters

Table A.6 Contingency table for lymph node stage vs BRCA clusters. The chi-
squared test results in χ2 = 23.037, p= 3.31e−03, df = 8. While clusters 2&3 is the
best prognosis group, the cluster 1 is the worst prognosis group.

Stage N0 N1 N2 N3 NX All
Cluster No
1 41 53 16 9 5 124
2 59 23 10 4 1 97
3 75 49 25 12 1 162
ALL 175 125 51 25 7 383

Table A.7 Contingency table for histologic grade vs HNSC clusters. The chi-squared
test results in χ2 = 39.999, p = 7.7e− 04, df = 16. While clusters 1&3 is the best
prognosis group, the cluster 5 is the worst prognosis group.

Stage G1 G2 G3 G4 GX All
Cluster No
1 8 10 7 0 0 25
2 4 31 9 0 0 44
3 0 19 7 0 0 26
4 2 31 15 1 3 52
5 0 35 11 0 2 48
ALL 14 126 49 1 5 195

Table A.8 Contingency table for clinic group grade vs HNSC clusters. The chi-
squared test results in χ2 = 26.696, p = 2.606e−02, df = 16. While clusters 1&3 is
the best prognosis group, the cluster 5 is the worst prognosis group.

Stage 1 2 3 4 X All
Cluster No
1 8 10 7 0 0 25
2 4 31 9 0 0 44
3 0 19 7 0 0 26
4 2 31 15 1 3 52
5 0 35 11 0 2 48
ALL 14 126 49 1 5 195
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Table A.9 Contingency table for primary tumor t stage vs HNSC clusters. The
chi-squared test results in χ2 = 26.821, p= 4.351e−02, df = 16. While clusters 1&3
is the best prognosis group, the cluster 5 is the worst prognosis group.

Stage T1 T2 T3 T4 TX All
Cluster No
1 1 10 4 5 5 25
2 5 13 8 10 8 44
3 1 7 7 7 4 26
4 0 12 15 21 4 52
5 0 7 15 14 12 48
ALL 7 49 49 57 33 195
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Heatmaps of Kernel Examples

(a) Propagation
Kernel

(b) Graph Hopper
Kernel

(c) Wasserstein
Weisfeiler Lehman
Kernel

(d) Smoothed
Shortest Path
Kernel

Figure A.2 Patient-by-patient kernel matrices calculated by different kernel choices
for KIRC patients. The kernel functions include the propagation kernel, graph
hopper kernel, wasserstein weisfeiler lehman, and SmSPK graph kernel methods.
Each row corresponds to a randomly chosen pathway and molecular interaction
data type. A color black indicates that the two patient similarity is evaluated as 1.
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