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ABSTRACT

ESTIMATING THE CARBON EMISSIONS CAUSED BY ELECTRIC VEHICLE
USE IN TURKEY USING MARGINAL EMISSION FACTORS

MOHAMED S. MAAROUF

Industrial Engineering M.Sc. Thesis, August 2020

Thesis Supervisors: Assist. Prof. Dr. Murat Kaya, Assist. Prof. Dr. Tuğçe Yüksel

Keywords: Electric vehicles, Carbon emissions, Marginal Emission Factor (MEF),
Marginal power plant, Simulation, Electric load profile

Electric vehicles (EVs) produce zero carbon emissions during their use. However,
generation of the electricity to charge EVs does cause emissions. In this study, we
calculate the carbon emissions caused by the introduction of 10,000 hypothetical EVs
in Turkey. To this end, we first develop a simulation model that characterizes the
hourly power demand of EVs based on distributions of EV model characteristics, trip
times and lengths as well as charging decisions of EV users. We then characterize the
supply side by determining the marginal power plants and estimating the Marginal
Emission Factor (MEF) for the Turkish power system. We use real hourly generation
data of the country by different fuel types, under four different seasons and three
time-of-day periods, for years 2014 and 2019. We find the MEFs for Turkey in 2019 to
range between 100-332 kgCO2/MWh, which are much lower than the MEFs reported
for other countries. Finally, we bring the supply and demand studies together to
calculate the carbon emissions of the hypothetical EV fleet. We observe the EVs
fleet to cause between one fifth and one third of the emissions of a similar internal
combustion engine car fleet.
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ÖZET

ELEKTRİKLİ ARAÇ KULLANIMININ SEBEP OLDUĞU KARBON
SALINIMININ MARJİNAL SALINIM FAKTÖRLERİ KULLANIMIYLA

TAHMİNİ

MOHAMED S. MAAROUF

Endüstri Mühendisliği Yüksek Lisans Tezi, Ağustos 2020

Tez Danışmanları: Dr. Öğr. Üyesi Murat Kaya, Dr. Öğr. Üyesi Tuğçe Yüksel

Anahtar Kelimeler: Elektrikli araçlar, Karbon salınımı, Marjinal Salınım Faktörü,
Marjinal elektrik santrali, Benzetim, Elektrik yük profili

Elektrikli araçlar (otomobiller) kullanım sırasında karbon salınımına sebep olma-
zlar. Ancak, bu araçların şarj edilmesi için gerekli elektriğin üretimi salınıma yol
açar. Bu çalışmada, Türkiye’de 10,000 farazi elektrikli aracın kullanılması duru-
munda ortaya çıkacak ek karbon salınımını tahmin etmeyi amaçladık. Bu amaçla,
araç modeli, yolculuk zamanı ve mesafeleri, ve araç kullanıcılarının şarj kararlarının
dağılımlarına göre ortaya çıkacak saatlik elektrik yük dağılımlarını ortaya koyan bir
benzetim modeli oluşturduk. Tedarik tarafında da, ülkenin elektrik sistemindeki
marjinal elektrik santral tipini tahmin ettik ve marjinal karbon salınım faktörünü
hesapladık. Bu amaçla, 2014 ve 2019 yılları için dört ayrı mevsim ve üç ayrı gün za-
manı kırılımında farklı santral tiplerinin gerçek üretim verilerini kullandık. Türkiye
elektrik sistemindeki marjinal emisyon faktörünün 2019 yılında başka ülkelerden
daha düşük bir seviyede (100-332 kgCO2/MWh) gerçekleştiğini tespit ettik. Son
olarak, çalışmanın tedarik ve talep taraflarını bir araya getirerek farazi elektrikli
araç filosunun yol açacağı karbon salınımlarını hesapladık. Elektrikli araç filosu-
nun, içten yanmalı motorlu araç filosunun beşte biri ila üçte biri arasında karbon
salınımına yol açtığını gözlemledik.
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1. INTRODUCTION

With the increasing threat of climate change and global warming, there is a growing
interest in greenhouse gas (GHG) emissions mitigation. Many nations within the
EU and UN must abide by strict mitigation efforts enforced by the Kyoto Protocol
and the Paris Agreement. Climate change poses a significant threat to Turkey since
not only has it raised the average temperatures, but it has also caused drought.
Therefore, it is of high priority to introduce climate change mitigation actions, such
as decommissioning more fossil fuel based power plants and introducing renewables,
or implementing a new carbon tax.

The transportation sector produces 24% of the overall global CO2 emissions, with
road vehicles being responsible for almost 75% of the sectors CO2 emissions (IEA,
2019). For several years, the automotive industry has been keen on reducing fossil
fuel dependency and on supporting environmental policies, thus increasingly shifting
their focus on the development of electric vehicles (EVs) from conventional internal
combustion engine vehicles (ICEVs). The global EV fleet has been continuously
growing with EVs becoming more technologically advanced and adhering to more of
the needs of the general public. The share of EV sales in several countries has become
quite large; in 2019, around 56% of the vehicle sales in Norway were comprised of
EVs and PHEVs, in Iceland around 18% and in China 5.6% (Statista, 2020), where a
large portion of the global passenger vehicle fleet exists. Nevertheless, the expected
increase in the number of EV sales around the world provides several challenges
to the electricity system brought about by EVs charging. Moreover, it is often the
case that EVs charge at peak load times (Lojowska, Kurowicka, Papaefthymiou &
Van Der Sluis, 2011; Morrissey, Weldon & O’Mahony, 2016; Qian, Zhou, Allan &
Yuan, 2011; Schauble, Kaschub, Ensslen, Jochem & Fichtner, 2017) which may be
exigent for the electricity grid. A single EV can increase a household’s electricity
consumption by 50% (Brouwer, Kuramochi, van den Broek & Faaij, 2013). In this
thesis, our goal is to understand how a shift to EVs in Turkey would affect the
country’s CO2 emissions abatement.

Our particular research interest is the consequential effect of EV charging on abated
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CO2 emissions in Turkey. Throughout this study, we consider an EV to be a battery
electric vehicle (BEV), i.e., it only relies on its electrical battery and does not use any
other fuels, such as diesel or gasoline. EVs are considered to produce zero emissions
during travel, however, one must also consider that EV charging puts an extra load
on the electricity grid, prompting power plants to produce more electricity which
often results in carbon dioxide emissions. In countries with low carbon intensity
in their electricity generation system, EVs can be advantageous in CO2 mitigation.
However, in countries like the U.S. where there are regions which rely heavily on
electricity generation from coal, EVs have been shown to be only slightly better than
ICEVs. In countries such as China and India which have high carbon intensity in
the electricity production, it was found that diesel cars can mitigate more or equal
levels of GHG emissions when compared to EVs (Doucette & McCulloch, 2011).
Therefore, it is crucial to determine the resulting emissions from EV charging to
properly assess the abated GHG emissions.

In the first section of this chapter, we discuss the different approaches to finding
the extra electricity load resulting from EV charging. Next, we discuss the different
approaches to quantifying the abated CO2 emissions resulting from EV charging.
Finally, we provide the roadmap for the thesis.

1.1 Determining the Extra Power Load Resulting from EV Charging

Electrifying a passenger fleet would significantly reduce the carbon dioxide emissions
coming from conventional combustion engines. However, the introduced EVs would
also require charging, which would increase the load on the electricity grid. To
quantify and analyze the consequent effect of EVs charging on the electricity load,
mainly whether peak loads will shift or significantly increase, one must have access
to existing data or somehow simulate the travel behavior of EVs. Depending on an
EVs travel behavior, its electricity demand varies.

To properly assess and quantify the impact of EV charging on a region’s electric-
ity demand, it is essential to first grasp the travel patterns and charging behavior
of EV owners. Unfortunately, in regions or countries where EVs have not been
widely adopted, such as Turkey, EV data in terms of surveys or field trials is scarce.
Despite having small scale trials or surveys in regions with very low numbers of
EVs, these trials or surveys do not properly represent the general population. The
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scarcity of data prompts researchers to find alternative methods which simulate or
estimate the EV travel and charging behavior. In regions with ample numbers of
EVs, researchers conduct surveys, field trials, interviews or questionnaires to gather
data from EV owners; on which they conduct statistical analysis to create charg-
ing profiles and reach conclusions on EV charging and travel behavior (Corchero,
González-Villafranca & Sanmartí, 2015; Franke & Krems, 2013).

One of the shortcomings of most travel surveys is that they are often based on driving
behavior of owners of conventional internal combustion engine vehicles who may not
have the same driving habits as EV owners. In addition, travel surveys are often
recorded by hand and are susceptible to human error. Hence, assumptions must
be made to estimate the time EVs are charged and the duration of their charging
time. Although there are a couple of studies that employ EV travel and charging
surveys (Morrissey et al., 2016; Quiros-Tortos, Navarro-Espinosa, Ochoa & Butler,
2018), they often lack representative numbers of EVs and also neglect the use of
accessories, such as lights and air conditioning; which also contribute to battery
drain. Moreover, results from field trials and surveys are usually only valid for the
region where the data was gathered.

Using limited real data, researchers develop statistical or stochastic models for the
entire charging and use process of an EV to bypass the assumptions made in travel
surveys. Such use processes include start times of charging events, travel patterns
as well as the resulting loads on the electricity grid. The arrival and departure times
of the EV, as well as the initial and final state of charge (SoC: The level of charge
in the battery) i.e., the level of charge at which EV begins and ends a charge event,
respectively can often be considered as random variables, and so stochastic modeling
is often quite useful.

Stochastic models are best suited to capture the uncertainty in the travel and charg-
ing patterns of EV users. Stochastic electricity load models produce probability
distributions of electric demand rather than one single estimate. The variability
in these stochastic models originates mainly from both the vehicle usage pattern
and the charging behavior. For example, Brady & O’Mahony (2016) employed a
stochastic simulation while also using Bayesian inference to generate travel pat-
terns. Brady then employed copula functions to examine the dependence structures
between the random variables. In another stochastic model, Crozier, Morstyn & Mc-
Culloch (2019) identified unique EV usage profiles using K-means clustering, then
formulated a model and parameterized it by using field trial data.

Due to the lack of travel pattern data for both conventional vehicles and electric
vehicles in Turkey, a stochastic simulation is necessary to properly model the possible
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charging and travel behavior of the EVs introduced to the Turkish passenger fleet.
In our model, we simulated travel patterns for EVs as well as their charging to
generate the data required to calculate the extra hourly load on the electricity grid.
Using travel pattern probability density functions and other data provided by certain
studies, we conducted a stochastic simulation using the Arena simulation software
(Simulation with Arena, 2009). Arena is a discrete event simulation software that
is used to model complex systems with a large number of interactions. Our model
simulates EV travel between home and work. The model also simulates the charging
behavior of EVs at the workplace and at home. The output of the model is an hourly
load profile for the EVs charging in the system. This load profile is then used as
an estimate of the electricity demand of the EVs. In the next section, we discuss
the different approaches to quantifying the CO2 emissions resulting from the extra
generation needed to meet the estimated demand.

1.2 Approaches to Quantifying Carbon Emissions

Researchers are often interested in the changes in electricity demand that will result
from an intervention, such as switching from fossil fuel based heating to electric
heating, applying pricing incentives to shift peak loads or in our case, to estimate
the extra power demand resulting from EV charging. It is thus necessary to quantify
how much CO2 emissions will be abated when there is a mitigation action to evaluate
its efficiency and effectiveness.

When decision makers and researchers wish to evaluate demand side mitigation ac-
tions, they often use average emissions factors (AEFs) or marginal emissions factors
(MEFs). For a power grid, an AEF is defined as the CO2 emissions per average unit
of electricity delivered for the entire grid (Hawkes, 2014), while an MEF is defined
as the unit change in CO2 emissions related to a unit change in electricity demand.
AEFs can often be misleading while assessing the benefit of an intervention and have
been shown to result in high errors (Bettle, Pout & Hitchin, 2006; Hawkes, 2010;
Siler-Evans, Azevedo & Morgan, 2012). Not all power plants in an electricity sys-
tem respond proportionally to a change in demand, it is rather the opposite, only
specific power plants respond to unit changes in demand. Such power plants are
known as marginal power plants. Hence, depending on the fuel resource and effi-
ciency of the marginal power plants, the emissions abated by reducing the electricity
load vary. Previous research has shown that the effects of marginal interventions
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are significantly different from those calculated by system averages. In some cases
using AEFs greatly underestimate avoided emissions as much as 50% (Bettle et al.,
2006; Hawkes, 2010; Marnay, Fisher, Murtishaw, Phadke, Price & Sathaye, 2002;
Siler-Evans et al., 2012).

Finding the marginal power plant in a power system in a given period of time is
often difficult because of political, economic and technical constraints in the elec-
tricity grid. Additionally, the type and quality of fuel consumed by the marginal
power plant affects the marginal emission factor, which may vary from one region to
another. Estimates of carbon emissions may also not be available for a given region
or country. These difficulties prompt researchers to find ways to circumvent the lack
of data.

Researchers have devised multiple approaches to find the marginal emissions factors,
including the merit order approach. The merit order is defined as the order at
which power plants respond to incoming marginal demand, where a plant responds
to demand before another if its marginal cost for producing a unit of electricity
is lower. This approach implicitly assumes that the only factor that determines
whether a plant is a marginal power plant or not is the marginal cost of production
of electricity, which may not be the case in practice. An example of this would be
a dam hydro plant, the price of generation may be low of this plant, however, its
operators may not generate electricity during a dry season.

An alternative approach is to use empirical methods. For example, some researchers
employ regression analysis to obtain MEFs from historical electricity generation
data (Hawkes, 2014; Siler-Evans et al., 2012). One advantage of using the re-
gression approach over the merit order approach is that one can temporally dis-
aggregate the results by year, by season or by time-of-day. In our study, we
adopted a similar approach and have applied linear regression to hourly electric-
ity generation data to find the MEFs for Turkey. Our dataset is obtained from
the transparency platform of by Enerji Piyasaları İşletme A.Ş. (EPİAŞ) available
at https://seffaflik.epias.com.tr/transparency/index.xhtml. Finding the MEFs for
Turkey is essential to evaluate the efficiency of CO2 abatement of the intervention
we analyze, electrifying a portion of the Turkish passenger vehicle fleet.
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1.3 Thesis Goals

Our goals in this study are as follows:

• Simulating the travel patterns and charging behavior of EVs in Turkey by
developing an appropriate simulation model.

• Generating the hourly electricity load profile resulting from EV charging.

• Determining the marginal power plants in the Turkish electricity system in
different time periods.

• Estimating the MEFs for Turkey for each season and daily period.

• Comparing the marginal plants as well as MEFs between years 2014 and 2019

• Generating a carbon emissions profile using the calculated MEFs and the load
profile.

• Comparing the carbon emissions produced from EV charging with carbon
emissions that would be produced from a fleet of comparable internal combus-
tion engine vehicles.

1.4 Contributions to Literature

In the demand side of our study, we contribute to the literature by generating a
simulation framework for EV charging behavior and travel patterns in Turkey using
the simulation software Arena. To our knowledge, this is the first such simulation
model for Turkey. The charging and travel distributions produced, as well as the
hourly charging profiles can be used by researchers and adapted for other research
purposes related to EVs in Turkey.

In the supply side of our study, we calculated the Marginal Emission Factors (MEFs)
for the Turkish power system separately for each season and daily period. We also
estimated the marginal plant types in the merit order. These findings may be used
by researchers for making calculations on the Turkish electricity grid and also in
evaluating the carbon abatement resulting from various interventions.
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1.5 Organization of Thesis

The following chapters are structured as follows: in the current chapter (Introduc-
tion), we present the problem definition, motivation and a general overview of our
study. In the second chapter, we review recent and relevant literature on generating
the load profiles due to EV charging. We then review existing work on quantify-
ing emissions and literature on the methods to produce such metrics. Then, we
discuss previous research that covers both load profile generation and emission mea-
surement. In the third chapter, we present the simulation design that we used to
produce the hourly load profiles. Then, we show the results of the simulation. In the
fourth chapter, we present background information on the Turkish electricity grid,
including generation shares and installed capacities for different fuel types, as well
as the calculated MEFs for the Turkish electricity grid by season and time-of-day
for two sample years. Finally, in the fifth chapter, we combine the demand side of
the study, i.e., the load profiles, and the supply side of the study, i.e., the MEFs,
and we analyze and discuss the results and present our conclusions.
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2. LITERATURE REVIEW

In this chapter, we cover the recent literature related to the demand and supply sides
of our study. The first section covers literature on owners’ EV charging and travel
behavior as well as existing simulation models, which is important for understanding
the demand side of the study and analyze the expected additional demand resulting
from EV charging. The second section covers the different approaches to quantifying
the consequent CO2 emissions resulting from the electricity generation fulfilling the
extra demand required by EV charging. The third section includes research that
combines the demand side analysis and the supply side analysis.

2.1 Determining EV Charging Behavior and Travel Patterns

To properly assess the power consumption of EV charging, researchers study the
charge profiles and travel patterns of EVs. These EV charge profiles, also known
as load profiles, can either be empirical profiles, produced purely through empirical
data, or synthetic profiles, generated from simulations which may or may not be
based on empirical data. Empirical load profiles can be produced by analyzing
existing data in terms of field trials (Franke & Krems, 2013), travel surveys (Moon,
Park, Jeong & Lee, 2018), questionnaires and interviews. However, there is often a
lack of charge event and travel data for EVs especially in regions where EVs have not
been widely adopted. The scarcity of data prompts researchers to create synthetic
EV fleet profiles using ample, limited or no historic data. Most synthetic load profiles
are generated by stochastic simulations, since stochastic simulation models properly
capture the uncertainty in EV travel patterns and charging behavior. Researchers
have also compared results between empirical and synthetic load profiles (Schauble
et al., 2017).

Different studies may adopt different temporal disaggregation for their empirical
8



or synthetic load profiles, analyzing the power consumption of EV charging over
a long period of time such as a season, several months or a year, while others
analyze the power consumption over periods in a day, hour or half hourly. In our
study’s purposes, an hourly accuracy for the load profiles is sufficient since the
highest temporal disaggregation possible in the electricity generation data used in
the supply side of the study is also hourly.

2.1.1 Travel Surveys and Field Trials

One method to analyze EV owner travel patterns and charging behavior is to con-
duct surveys or field trials through GPS data or questionnaires. In questionnaires,
data is collected by asking EV owners or prospective EV owners about their travel
and charging behavior. Alternatively, GPS tracking devices installed in EVs may
continuously collect travel and charging data. The data collected gets statistically
analyzed to reach meaningful conclusions. Existing research in this field can be
especially beneficial for our study since it provides insight into actual EV owner
behavior, enabling us to create a more realistic simulation model. In addition, it
allows us to validate our simulations results with real data.

A large group of researchers rely on data collected from GPS-tracked EVs. For
example, Franke & Krems (2013) conducted a field trial for 79 EVs using GPS
tracking over a course of six months in Germany and analyzed their charging pat-
terns. Franke & Krems also compared EV charging behavior with phone charging
behavior and observed that true vehicle ranges affect charging decisions. The au-
thors found that EV drivers charge their vehicles three times per week on average
rather than whenever possible, while their average daily distance traveled was 38
km. In addition, the authors observed that home charging accounted for 83.7% of
charging events with 71% of drivers preferring to charge at home, while only 4.8% of
drivers charged their EV in a public charging space. Similarly, while conducting an
extensive analysis of charge event data collected in Ireland between the years 2012
and 2015 which included over 40,400 charge events, Morrissey et al. (2016) found
that the majority of EV drivers prefer to charge their vehicles at home during peak
load hours in the evening. In addition, given the choice between home or public
charging, the authors observed that the majority of EV users charged their vehicles
at home or at work rather than using public charging.

Corchero et al. (2015) gathered charging and travel data from 2011 to 2013 from
689 EVs in six European countries; covering more than 140,000 trips and 230,000
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charging events. Corchero found the average state-of-charge (SoC) when EV owners
recharged their vehicles to be 60%, which suggests that EV owners do not wait un-
til their battery is empty to charge. Quirós-Tortós, Ochoa & Lees (2016) gathered
results from over 200 EVs in the UK, which included 68,000 charging events. The
data was used to create probability density functions such as the one for the initial
SoC when charging starts and the final SoC at which charging ends. These probabil-
ity density functions aide researchers in designing stochastic models that represent
EV demand. Expanding on their original work, Quiros-Tortos et al. (2018) used
probability density functions based on Gaussian mixture models (GMMs) to statis-
tically represent charging metrics of EVs. The GMMs were formed by using real
data gathered from 221 EVs over the course of two years in the largest EV trial in
the UK and Europe. The EV analysis in the study showed that EVs may charge
more than once per day and that most EV owners begin charging their EVs when
its SoC is between 25% and 75%, with 70% of charging events ending with a fully
charged battery.

Coban & Tezcan (2019) surveyed 50 plug-in Hybrid EV and full EV owners in
Turkey. The EVs in the dataset were both public and private EVs. The authors
then produced the home and work arrival time distributions, the daily trip distance
distribution and evaluated the effects of the EVs’ charging on power transformers.
The average daily distance traveled of the EVs in this survey was found to be 32 km
which is in line with the value we used in our model.

2.1.2 Synthetic EV Load Profiles

An alternative approach to using travel surveys and field trials is to develop syn-
thetic EV load profiles through simulation models. A synthetic model must prop-
erly capture the stochastic nature of EV travel and charge event durations, such
as departure time, travel distance, plug-in time and the frequency of recharging.
Stochastic models are thus very well-suited when it comes to capturing variability
and uncertainty in travel patterns and charging behavior of EV users. Researchers
that develop stochastic models are often motivated by either modeling EV behavior
to generate travel patterns and charging profiles to aide other researchers; develop
load profiles to estimate when EVs will charge and quantify their hourly demand;
to determine the effectiveness of load shifting actions; or to analyze the effect of
EV charging on the electricity grid itself (Sadeghianpourhamami, Refa, Strobbe &
Develder, 2018). The data available on EV charging and travel patterns in Turkey is

10



extremely limited, making synthetic and empirical load profiles especially attractive
for our study. Therefore, the first motivation cited above is relevant to our research.
The second motivation is also relevant, since through it we are able to compare our
own simulation results and generated load profile with results from other research
works. The third motivation, although not directly related to our research, invites
an interesting discussion by providing insight into future actions that can help ease
the strain on the electricity grid. The last motivation is not directly related with
our research, so we will not dwell deeply into it.

The initial travel models were developed before EV use became widespread, and were
based on data from internal combustion engine vehicles’ owners (Grahn, Alvehag
& Soder, 2014; Lampropoulos, Vanalme & Kling, 2010; Mousavi Agah & Abbasi,
2012; Pashajavid & Golkar, 2014) especially in countries where EVs have not yet
been introduced. Since EVs have recently penetrated global markets on a larger
scale, recent studies and stochastic models conducted have relied on historic EV
data. For example, Schauble et al. (2017) presented a model that made use of
empirical data from three electric mobility studies to estimate the potential increase
in electricity demand due to EV charging. Using the data set, which was collected
over a period of more than two years, Schauble simulated different EV charging
profiles. The authors found that uncontrolled EV charging could lead to peaks
during the day, which will strain the power grid. Tehrani & Wang (2015) used the
National Household Travel Survey database to develop a stochastic model based on
queuing theory to predict EV charging and the consequent load on the electricity
grid. The authors also used a copula approach to represent dependence structures
between the random variables. They found that PEVs can increase the load power
demand at certain hours.

Shaaban, Atwa & El-Saadany (2013) tested four probability density functions on
travel data from the NHTS: Exponential, Lognormal, Gamma and Weibull. The
authors categorized the travel data by travel purpose such as business, commuting
and education. The authors then used the maximum likelihood method to estimate
the parameters of probability density functions that best fit the real data. Data for
purposes with low average distance traveled per trip were most likely fitted by a
Lognormal distribution. The data for purposes with high average distance traveled
per trip were more likely fitted by using a Weibull distribution, which concurs with
Tehrani & Wang (2015)’s work. Qian et al. (2011) formulated a stochastic model
for EV charging to analyze its effect on the electricity grid, with the charging start
time and the initial SoC as random variables. A comparative analysis was carried
out on four EV charging scenarios: uncontrolled domestic charging, uncontrolled off
peak domestic charging, smart domestic charging and uncontrolled public charging
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throughout the day. Uncontrolled charging denotes charging that occurs at any
time of day without an incentive for EV users to charge at certain periods through
a lower cost, essentially meaning that the price of electricity is fixed throughout the
day. Controlled charging denotes charging that is incentivized by lower costs during
non-peak hours. In a smart charging scenario, EVs are able to feed electricity into
the electricity grid for profit. In the uncontrolled charging scenario, an EV market
penetration of 10% is found to result in an increase in daily peak demand by 17.9%,
while a 20% market penetration is observed to result in an increase of 35.8% in peak
load. The authors assumed that half of EVs charge at their workplace and the other
half charge at home using only slow charging at both locations. These assumptions,
however, are not necessarily realistic.

Several stochastic models are based on Monte Carlo simulations (Ashtari, Bibeau,
Shahidinejad & Molinski, 2012; Chen, Chen, Huang & Jin, 2016; Harris & Webber,
2014; Lojowska et al., 2011; Lojowska, Member, Kurowicka, Papaefthymiou, Sluis
& Member, 2012; Su, Lie & Zamora, 2019; Wang & Infield, 2018; Zhou, Li & Wu,
2018). The Monte Carlo approach uses random sampling to estimate a mathematical
function. For example, Harris & Webber (2014) examined the effects of EV charging
on the regional level by a Monte Carlo simulation. The results of the simulation were
compared and validated with empirical charging data gathered from households in
three U.S. states. The authors found that uncontrolled PEV charging in the three
regions would increase peak load power demand by less 2% if medium improvements
and growth to the grid occur. Using actual traffic data, Zhou et al. (2018) created
probability distribution models and formulated a Monte Carlo simulation model to
simulate EV travel patterns and charging behavior. The authors also developed a
multiobjective charging strategy with multiple constraints to determine the opti-
mal charging strategy that would reduce the grid peak load, lower charging costs
and achieve success in EV travel plans. Lojowska et al. (2012) presented a Monte
Carlo simulation that made use of three variables selected from data provided by
the Dutch Ministry of Transportation: EV arrival times and departure times from
charging locations, and trip distances. Due to the statistical independence property
of the selected variables, the authors used a copula function to join the univariate
distribution functions to form the multivariate distribution functions for both single
and double journeys, which was in turn used to in the Monte Carlo simulation to
model vehicle travel and charging patterns. The authors then generated the load
profile for the EVs. Ashtari et al. (2012) examined vehicle usage and charge pattern
data collected from 76 EVs using GPS recording devices in Canada. The authors
developed one deterministic method and three stochastic methods to predict the EV
charging profiles. Results show that the load due to EV charging peaks at evening
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hours when EV owners return home.

Some other stochastic models rely on Markov chains (Fischer, Harbrecht, Surmann
& McKenna, 2019; Iversen, Møller, Morales & Madsen, 2017; Shepero & Munkham-
mar, 2018; Ul-Haq, Cecati & El-Saadany, 2018; Wang & Infield, 2018). EVs may be
assumed to occupy one state at a given time from a set of finite states (such as parked
and charging, traveling, and parked but not charging). Thus, it is possible to model
EV charging and use as a discrete state and time Markov chain process based on
historical data. For example, Ul-Haq et al. (2018) designed a Markov chain Monte
Carlo model with three states: drive, park and charge. Ul-Haq observed different
peak loads for uncontrolled charging on weekdays and weekends. After statistically
analyzing German mobility data, Fischer et al. (2019) proposed a stochastic bot-
tom up model to describe EV usage by using a non-homogeneous Markov chain,
considering socioeconomic and sociodemographic factors. The model’s results were
compared with a mobility study’s dataset for validation. The authors found that
an additional EV in a household can increase the duration of evening peak times
as well as the level of the annual peak of the system. In addition, the authors
found that the daily evening peak would begin 45 minutes earlier than usual due to
EV owners charging their vehicles once they arrive home. Wang & Infield (2018)
combined both of the earlier ideas and created a time-inhomogenous Markov chain
Monte Carlo (MCMC) simulation.

Hu, Dong & Lin (2019) developed a model based on cumulative prospect theory
and using NHTS data from 2017 to study EV charging behavior and power demand
profiles. Among the key findings was that EV drivers charge their vehicles on average
when their SoC is 41%, with most charge events starting between 40-50% SoC. Most
charging in the day time occurred at workplaces, while most charging at evening
time occurred at homes.

Other researchers rely on big data and data mining techniques to estimate EV
travel patterns, charging behavior and the load on the electricity grid. For example,
Arias & Bae (2016) used big data methodologies along with historic traffic and
weather data from South Korea to create a model that forecasts EV charging demand
that takes weather and traffic conditions into consideration. Crozier et al. (2019)
applied K-means clustering to identify three unique EV usage modes in the UK. To
properly model the uncertainty in both EV travel and EV charging, the authors then
formulated a stochastic model and parameterized it by trial data and then applied
it to data obtained from the National Travel Survey. The formulated stochastic
model successfully predicted 80% of charges from the EV trial data, while assuming
charging occurred after the final trip in the day successfully predicted 42% of the
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data. In addition, the predicted peak demand resulting from aggregated EV charging
in this model was 30% lower than the standard assumption, showing that studies
using the latter assumption most likely overestimate demand peaks.
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2.1.3 Applications to Synthetic EV Load Profiles

Researchers are often interested in employing policies that can change EV charging
behavior, such as pricing techniques, to inducing a change in the habits of EV
charging that can shift the load on the electricity grid from the peak periods to
other low load periods.

EV charging can be classified into three types (Zhou et al., 2018): (a) uncontrolled
charging (simple or dumb charging); (b) controlled charging (tariff-driven charging),
i.e., charging where there are different pricing options for electricity depending on
the time of day such that peak times are usually the most costly; and (c) intelligent
charging, i.e., when an EVs extra battery energy can be utilized as a source of
energy for the grid where the EV either returns electricity to the grid (vehicle-
to-grid or V2G) or reduce their charging rate. Several researchers have studied
different scenarios of controlled and uncontrolled charging and their impacts on the
electricity grid. For example, Kara, Macdonald, Black, Bérges, Hug & Kiliccote
(2015) collected data from more than 2000 non-residential electric vehicle supply
equipment located in California over the course of one year. 580,000 charge events
were analyzed and load flexibility and trends were found. The goal of the study was
to better understand the benefits of smart charging for different stakeholders. Two
case studies were also developed; a case where loads were shifted from high cost
periods to low costs periods, and a second study where EV aggregations were used
to decrease current contribution to peak load times in the grid.

Babrowski, Heinrichs, Jochem & Fichtner (2014) examined six European mobility
studies and developed an algorithm that extracts EV load curves for weekdays and
weekends by assuming different charging scenarios. The authors analyzed the effect
of different parameters such as the charging location and charging power on the
EV load curves in three different scenarios. Their results show that the ability to
charge at work significantly affects the uncontrolled charging curve. In addition, the
results show that controlled charging could ease the strain on the electricity grid
due to peak loads. Canizes, Soares, Costa, Pinto, Lezama, Novais & Vale (2019)
used a travel simulation tool to simulate EV owner behavior. Analyzing the effect
of variable electricity prices on the EV owner behavior, Canizes found variable price
charging to be beneficial to EV owners in all scenarios, compared to fixed price
charging. The variable prices were determined based on distribution marginal price
(DLMP) and continuously updated according to the EV owners’ trips and travel
behavior. The study’s results show that variable prices for EV charging is beneficial
to EV owners in all scenarios.
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2.2 Quantifying CO2 Emissions

Adding a significant number of EVs to the Turkish passenger vehicle fleet would
lead to an increased demand of electric power from the grid due to EV charging.
To respond to demand, active power plants would need to increase their output or
other additional plants may need to kick in, causing additional carbon emissions.
Thus, it is important to quantify the extra emissions coming from the additional
generation in order to properly assess the effects of EV introduction.

Mitigation actions are often evaluated using two metrics, Average Emissions Factors
(AEFs) and Marginal Emissions Factors (MEFs). For a power grid, an AEF is
defined as the average CO2 emissions per average unit of electricity delivered to the
entire electricity grid. MEFs are defined as the unit change in CO2 emissions caused
by a unit change in electricity demand. When evaluating a mitigation action (such
as the introduction of EVs in a transportation sector), results based on AEFs have
been shown to lead to high errors and often underestimate the abated emissions
(Bettle et al., 2006; Hawkes, 2010; Marnay et al., 2002). In certain regions where
renewable energy sources are used extensively, the AEFs calculated to be lower than
the MEFs; whereas, in regions where coal is extensively used, the AEF is higher than
the MEF (Siler-Evans et al., 2012). Use of the AEF metric assumes that all plants
in an electricity system respond equally to changes in demand implicitly, which is
not the case. Only specific power plants, known as marginal power plants, respond
to unit changes in demand. The second type of power plants in an electricity grid
are known as base-load power plants (Zheng, Han, Li, Member & Zhu, 2015). These
power plants are responsible for the base load in the electricity grid. It is important
to note that the two types of power plants are not mutually exclusive, for example, a
base-load power plant during day hours may become a marginal plant during night
time hours. Similarly, a certain power plant may be responsible for a large portion of
the base load and also respond actively to changes in demand, thus being marginal
as well. Moreover, when analyzing an intervention’s effectiveness using AEFs, it is
assumed that the structure of the energy system will not change (Hawkes, 2014),
which is rarely the case. New power plants are commissioned and old ones are
decommissioned, thus there are often long term changes in the electricity system.

Depending on the fuel type, the efficiency of the marginal plants and the technology
used, the amount of produced emissions varies. Various methods have been devised
by researchers to determine the marginal power plants to find the electricity grid’s
MEFs. This is often difficult to do with lack of data, which motivates researchers to
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develop methods that circumvent the need to find the marginal power plants. Next,
we discuss the alternative methods for calculating an MEF.

Approaches developed by researchers to find MEFs can be classified into two groups
(Ryan, Johnson & Keoleian, 2016): (1) power system optimization models and (2)
approaches based on empirical data. Power system optimization models include eco-
nomic dispatch models such as unit commitment models, and models which follow
the merit order approach. Approaches based on empirical data include statistical
relationship models that are based on historic data. The main advantage of the
statistical approach is that it reduces model complexity, but it also relies greatly
on empirical data. Power system optimization models and economic dispatch mod-
els estimate MEFs using sophisticated techniques, but their complexity and strict
assumptions restrict broad use (Li, Smith, Yang & Wilson, 2017).

Economic dispatch models determine the order by which power plants respond to
demand. One approach to finding that order is the merit order approach. The merit
order is defined as the order at which power plants respond to incoming marginal
demand, where a plant responds to demand before another if its marginal cost for
producing a unit of electricity is lower. Several researchers have used the merit
order approach to calculate emission factors (Bettle et al., 2006; Hitchin & Pout,
2002; Marnay et al., 2002). There are several methods by which the merit order
can be found. A couple of studies rely on real historical data, for example, Hitchin
& Pout (2002) used an unconstrained merit order approach to find the AEFs and
MEFs, however, they did not consider plant availability, maintenance schedules or
bottlenecks in the transmission system. Bettle et al. (2006) revised and improved on
Hitchin’s model by designing a model using historical half hourly data for England
and Wales to determine the merit order. However, the merit order was found by
ranking generating plants in order of their level of utilization, meaning that power
plants that were generating close to a full capacity were assumed to be first in the
merit order since they are On most of the time.

An alternative method to finding MEFs or AEFs is to use unit commitment models.
This method is particularly useful in determining the emission factors in future
scenarios. Unit commitment models are optimization models that determine which
will be utilized first to meet forecasted electricity demand. The objective of the
model is to minimize total operational cost while adhering to electricity demand and
technological constraints. For example, one of the three methods that Marnay et al.
(2002) developed was a unit commitment model. Howard, Waite & Modi (2017)
developed a unit commitment model for the State of New York and New York
City to determine the average emissions and MEF. Razeghi & Samuelsen (2016)
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examined the environmental and economic impacts of EVs, finding that using a unit
commitment model would avoid an increased capacity investment in the system.

Many researchers prefer empirical methods that employ statistical relationship mod-
els, such as regression analysis, to the merit order approach. There are several ad-
vantages to regression analyses, for example, it circumvents the assumptions made
about the generator merit order (McKenna, Barton & Thomson, 2017). In addition,
with regression analysis one can temporally disaggregate the results and thus ana-
lyze the data by season, month or hour. For each temporal disaggregation, a specific
MEF can be produced. Moreover, knowledge of the exact marginal power plants
is not necessary when determining the MEF using regression analysis. A popular
approach is to use linear regression (Hawkes, 2010,1; Li et al., 2017; McKenna et al.,
2017; Siler-Evans et al., 2012). To calculate the MEF with regression analysis, the
total hourly change in electricity generation and the total hourly change in emissions
produced are calculated. Next, due to the fact that these two variables are highly
correlated, linear regression can be utilized. The slope of the produced line of best
fit in the linear regression is defined as the MEF. This method circumvents the need
to know the marginal plants beforehand or any information on the structure of the
electricity grid, the two mentioned variables are the only prerequisites for calculat-
ing the MEF. For example, Hawkes (2010) estimated marginal CO2 rates for Great
Britain by applying linear regression to half-hourly change in the grid emissions
versus half hourly change in electricity generation using 2002-2009 data. Hawkes’s
approach allowed fine temporal disaggregation of results, showing that the electric-
ity grid in Great Britain does not necessarily obey merit order principles. Hawkes
reported that MEF was 690 kgCO2/MWh, while the AEF was 510 kgCO2/MWh.

Improving on their earlier work, Hawkes (2014) introduced the concepts of long and
short term MEFs, taking into consideration structural changes in the mix of gen-
erators. Short term MEFs can be calculated in the same manner as Hawkes did in
his earlier work, while long term MEFs take into consideration the decommissioning
or commissioning of marginal power plants due to future increases or decreases in
electricity demand. The long term MEFs were estimated in Great Britain based on
historic data from 2009 - 2012, and were found to be around 260 - 530 kgCO2/MWh
for the following decade in the British power system. Similar to Hawkes’s calcula-
tions for Great Britain, Siler-Evans et al. (2012) used linear regression to determine
the MEFs for the U.S. electricity grid and compared AEFs and MEFs. However,
Siler-Evans’s approach was limited since it considered fossil fuel generation as a
proxy for total generation, which is not necessarily true, with the share of renew-
ables increasing everyday in the U.S. electricity grid, renewables are found to be at
the margin for some hours or levels of demand (Thind, Wilson, Azevedo & Mar-
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shall, 2017). Citing the earlier limitation of Siler-Evans’s approach, Thind et al.
(2017) built on Silver-Evans’s work and extended it by using the total generation
for their analyses and not just fossil fuels. Furthermore, Thind et al. (2017) explored
how AEFs and MEFs vary by state in the U.S. and corporation. Thind found that
average MEFs are often lower than AEFs, which indicates that policy makers who
use AEFs may overestimate the emissions reductions due to an energy efficiency
program.

Numerous researchers have employed MEFs to determine emissions abatement asso-
ciated with interventions in the electricity sector, such as energy efficient buildings
(Min, Azevedo & Hakkarainen, 2015), electricity storage (Hittinger & Azevedo,
2015) and vehicle charging (Brouwer et al., 2013; Gai, Wang, Pereira, Hatzopoulou
& Posen, 2019; Razeghi & Samuelsen, 2016; Tamayao, Michalek, Hendrickson &
Azevedo, 2015; Yuksel, Tamayao, Hendrickson, Azevedo & Michalek, 2016). For
example, McKenna et al. (2017) followed in Hawkes’s steps and used linear regres-
sion to calculate the MEFs for Ireland, then analyzed the impact on CO2 emissions
of electrical storage systems under different scenarios for storing electricity gener-
ated from wind power. In the next section, we discuss literature that evaluates
the emissions produced from electricity generation fulfilling extra demand from EV
charging.

2.3 Evaluating Abated CO2 Emissions from Introducing EVs into the

Passenger Vehicle Fleet

Research in this field has been carried out by several groups (Razeghi & Samuelsen,
2016): the first group of researchers focus on the generation side of the electricity
grid, attributing the level of success of EVs in mitigating GHG emissions on the
charging profiles, charging levels and the grid mix. The second group focuses on
the interaction of EVs with the distribution system, the distribution transformers
and the distribution substations, as well as the consequences of using vehicle-to-grid
(V2G) approaches. Other studies focus on the impacts of EVs on electricity market
prices. Our study is part of the first group, therefore, we shall not cover literature
related to other groups.

Similar to our approach, several researchers have calculated the expected load due to
EV charging under different scenarios, either through simulations or by extrapolating
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historic data, and have determined MEFs to evaluate the abated greenhouse gas
emissions (Gai et al., 2019; Razeghi & Samuelsen, 2016; Tamayao et al., 2015; Yuksel
et al., 2016). For example, Tamayao et al. (2015) characterized regional lifecycle
marginal CO2 emissions of EVs across several regions in the U.S. and found that
different regions have significantly different MEFs. In addition, Tamayao observed
that delayed charging in EVs after peak hours results (i.e., charging after midnight)
in higher CO2 emissions as a consequence of increased marginal generation from coal
during night time hours. Yuksel et al. (2016) investigated how marginal emissions
produced from conventional vehicles, charging of plug-in hybrid vehicles and battery
electric vehicles vary as a result of different regional grid mixes, travel patterns and
air temperature. Climate often has a significant effect on the charging patterns of
EVs especially in colder regions, since heating contributes greatly to the battery
drain of EVs.
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3. DETERMINING THE ADDITIONAL POWER DEMAND

FROM EVS

We have developed a stochastic simulation model in Arena that considers the vari-
ability in travel patterns, arrival times, departure times and the uncertainty as to
whether to charge the EV or not. We consider an EV population of 10,000 vehicles.
We determine the charge profiles for each of these vehicles in order to quantify the
hourly extra generated electricity needed to meet the charging demand and observe
the consequent abated CO2 emissions.

We developed our simulation model using the Arena simulation software. Arena is
a discrete event simulation and automation software which uses the SIMAN simula-
tion language and processor. In Arena, simulation models are designed by creating
modules, which are the basic building blocks of Arena. Modules in Arena are nodes
through which entities pass, originate or exit the model. Modules are connected
by connector lines that specify the direction of the flow of entities. Entities can
be anything from vehicles, people, products. Each entity may have a set of at-
tributes or variables. In our model, the only entity type is the EV. The process type
modules are used to model processes within the simulation. These processes can
represent machining, time spent in queues, servicing, or in our case, EV travel and
EV charging events.

This chapter on the demand side of the study is organized as follows: In Section
3.1, we discuss the simulation model’s design and logic. We also list the general
model assumptions (labeled with G), travel-related assumptions (labeled with T)
and charge-related assumptions (labeled with C). In Section 3.2, we display and
analyze the simulation results. Finally, in Section 3.3, we discuss the important
conclusions and observations on the simulation results.
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3.1 Simulation Design

The uncertainty in EV electric demand may originate from a variety of sources,
such as the uncertainty in the daily travel distance of an EV, the departure time,
the arrival time to the destination, the time between arriving to the destination and
beginning to charge, the ability to charge at work or not, the battery capacity, the
EV’s on road efficiency, the weather conditions, and several behavioral factors such
as the EV owner’s choice of when and where to charge. Therefore, we develop a
stochastic simulation model to properly address several of these variables.

Six EV models are considered in our simulation model, Tesla Model 3, Nissan Leaf,
Renault Zoe, Hyundai Kona, BMW i3 and Tesla X. These EV models were selected
based on the highest number of sales of EVs in the worldwide market, excluding
Chinese EV models. The percentage share of each EV in the model is also based on
the sales history of these EV models. Each EV model we consider is characterized
by its battery capacity (kWh) and on road efficiency (kWh/km). The efficiency may
or may not include energy losses due to factors such as heating, air conditioning or
lighting. EVs in our model as considered to be personal or private EVs, i.e., they are
not used for business or public use, such as taxis or delivery vehicles (assumption
G1). We assume the initial state of charge (SoC) of the vehicles to come from a
uniform distribution between 80% to 100%. All days in the simulation are workdays
(assumption G2), and are assumed to be identical in nature, i.e., the exact workday
has no effect on the random variables in the model, which is concurrent with what
was found by Quiros-Tortos et al. (2018).

The travel patterns and distances traveled by EV owners are necessary to model the
energy dissipated while driving. EV owners only travel from their home to work and
from their work back to home (assumption T1). Average distances are available on
occasion for certain countries and regions, however, they are not sufficient to create
a realistic model. Due to the lack of travel data in Turkey for both conventional
vehicles and EVs, we use parameters from other studies such as travel distance
distributions. We model the distance between work and home as a random variable
coming from a Weibull distribution with α = 15 and β = 1.23 (assumption T2).
This average distance is similar to what Coban & Tezcan (2019) found for Turkey in
their survey study with EV owners. The authors found the daily average distance
traveled to be 32 km, while our average daily distance traveled is 30 km (twice the
one-way trip average distance).

In literature, we observed Lognormal distributions for relatively low average dis-
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tances and Weibull distributions for relatively longer average distances (Calearo,
Thingvad, Suzuki & Marinelli, 2019; Shaaban et al., 2013; Tehrani & Wang, 2015;
Ul-Haq et al., 2018). Our average daily traveled distance (which is twice the average
trip length), α, is within the range of average daily travel distances found in several
research articles (Coban & Tezcan, 2019; Corchero et al., 2015; Fischer et al., 2019;
Franke & Krems, 2013; Hu et al., 2019; Zhou et al., 2018). Some researchers have
preferred different distributions (Zhou et al., 2018) such as the Birnbaum-Sanders
distribution. Similar to Fischer et al. (2019), we assumed that the distance traveled
back from work to home is identical to the distance traveled earlier from work to
home and it is sampled once from the distribution at the beginning of the simulation
(assumption T3). The distance traveled between work and home is also considered
to be an attribute of the EV (assumption T4). The SoC of the battery of an EV in
the model decreases linearly with distance traveled (assumption T5).

We added a lower bound of 5 km for the trip length since it is infrequent for an EV
owner to use his vehicle if the trip is less than 5 km in length. In addition, we added
an upper bound of 60 km for the trip length, since few EV drivers would drive more
than 45 each way in their daily commute. The resulting trip length distribution is
shown in Figure 3.1.

Figure 3.1 Trip Length Distribution

According to our chosen distribution, around 73% of EVs travel between 5 km and
20 km per one way trip, while just over 27% of EVs travel between 20 and 45 km.
We only consider home-work travel and thus two daily trips. Zhou et al. (2018)
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observed that 25% of EVs traveled once per day (one way trip), around 40% of
EVs traveled twice per day, under 20% of EVs traveled thrice per day and under
15% traveled more than three times per day. Analyzing a German mobility study’s
results, Fischer et al. (2019) found that the average daily number of trips was 2.06.
Therefore, our distribution s not conflicting with available the data in literature. In
our model, an EV travels at 25 km/h if the trip distance is below 30 km, and 50
km/h if the trip distance is above 30 km (assumption T6).

Figure 3.2 Home Departure Time Distribution

The departure time of an EV from home or work is a random variable. Departure
from home begins at 6 a.m. where EVs are delayed using a time delay variable
sampled from a uniform distribution between 0 and 2 hours (assumption T7) to
simulate EV departure between 6 a.m. and 8 a.m. As shown in Figure 3.2, the
EVs first depart from home sometime between 6 a.m. and 9 a.m. with the majority
of them leaving between 7 a.m. and 8 a.m. This is expected since the departure
time of an EV is based only on our assumption that it is a random variable coming
from a uniform distribution that results in a departure time between 6 a.m. and 8
a.m. This distribution is very similar to what Lojowska et al. (2011) found in their
analysis which is based on empirical data. Lojowska found that a very low portion
of EVs departed from home after 9 a.m.
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Figure 3.3 Work Departure Time Distribution

As shown in Figure 3.3, EV owners begin to leave their work at 4 p.m. or later
and travel towards home, with their departure time being sampled from a normal
distribution with a mean of 1.5 hours and a standard deviation of 0.5 hours (as-
sumption T8). Analyzing real traffic data, Zhou et al. (2018) found that the normal
distribution best fits the departure time of an EV from work during evening hours.

As mentioned in the literature review chapter, EV charging can be categorized into
three types (Zhou et al., 2018): simple charging (dumb or uncontrolled charging),
controlled charging (tariff-driven charging), and intelligent charging (charging that
allows V2G). We assume that only uncontrolled charging will take place, since these
EVs will be considered as early adopters. It is important to incorporate workplace
charging in the simulation model, since several researchers have found that the
ability to charge at work significantly influences the charging curve (Ashtari et al.,
2012; Babrowski et al., 2014). However, we assume that no public charging occurs.
This assumption is based on several pieces of literature that conclude that most EV
charging happens at home (Franke & Krems, 2013; Morrissey et al., 2016). It is also
assumed in our model that an EV may be charged at most twice per day, once at
the workplace and once at home (assumption C1). This assumption is based on the
fact that very few EVs charge for more than two times a day. Analyzing empirical
data Quiros-Tortos et al. (2018) found that 70% of EVs charged only once per day,
while daily second charging events consisted less than a third of all events. EVs that
charged three or more times per day consisted less than 8% of all EVs. In addition,
Zou, Wei, Sun, Hu & Shiao (2016) observed that EV taxis in Beijing charge on
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average 1.84 times a day, albeit covering an average distance of 117.98 km a day - a
much higher distance than our average daily traveled distance. Indeed the decision
to charge among EV owners not only depends on the level of SoC and the need to
charge, but also upon behavioral reasons.

The EV owner charges their vehicle at home or at work if their SoC is below a certain
level that we may refer to as the "charging threshold". We assume the charging
threshold to come from a triangular distribution (25%, 50%, 75%)(assumption C2).
This assumption is in parallel to what is observed in studies based on empirical data
and travel surveys such as in Franke & Krems (2013); Hu et al. (2019); Leou, Su
& Lu (2014). This assumption is based on the observation that 65% of EV owners
charge their EVs if their SoC is between 25% and 75% Quiros-Tortos et al. (2018).
Some studies assume EVs to charge if their SoC drops below 50% (Lojowska et al.,
2011), however, this assumption is not accurate given the results of (Quiros-Tortos
et al., 2018). Some other researchers assume charging upon arrival for every parking
event, however, this assumption contradicts empirical data (Fischer et al., 2019).

We assume that only 40% of EVs have the infrastructure to charge at work. Those
that can do so using a level two 22 kW charger (assumption C2). Charging at home
is always available and occurs using a standard 3.7 kW charger (assumption C4).
The battery SoC increases linearly with time during charging (assumption C5). The
time at which EVs begin to charge at work depends on the work arrival time and a
time delay, which we sample from a Weibull distribution with a mean of 1 hour and
a shape parameter 1 (assumption C6). This random variable models the concept
that a large portion of EVs begin charging soon after they arrive to work, but also
some may begin to charge later. In fact, simulation results of Chen et al. (2016)
indicate that 60% of EVs wait between 0 to 5 minutes before charging at public
charging stations. On the other hand, around 5% of EV owners waited for more
than an hour to charge their vehicle, which may indicate that waiting times at work
would be negligible, especially in a scenario where the number of EVs is only a small
portion of the passenger vehicle fleet. Thus, the decision to wait before charging at
work is considered to be due to EV owner behavioral preferences, not on whether
the charging spots are taken by another EV owner or not. Similarly, Quiros-Tortos
et al. (2018) found that it is highly likely that EVs begin charging once they arrive
home on weekdays or weekends.
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Our simulation model is based on several assumptions to properly model the complex
EV charging behavior and travel patterns, without loss of generality. Some of these
were already mentioned. Here, we summarize all under three categories: general
model assumptions; travel-related assumptions; and charge-related assumptions.

General Model Assumptions:

G1 All EVs are considered to be personal/private EVs, i.e., not EVs for business
use such as delivery vehicles or taxis.

G2 Only a typical workday is modeled repeatedly. All workdays are assumed to be
identical.

G3 The energy efficiency values of EVs are taken to be between to 15 and 16
kWh/100 km depending on the EVs model. Note that this may or may not
include energy losses due to accessories such as lighting, AC and heating.

Travel-related Assumptions:

T1 Trips only occur between work and home.

T2 Trip distances are sampled from a Weibull distribution with α = 15 km and β
= 1.23.

T3 Distance between work and home is identical for both daily travel events and is
sampled once from the distribution at the beginning of the simulation.

T4 Distance between work and home is an attribute of the EV and does not change
throughout the simulation.

T5 The SoC is assumed to decrease linearly with distance traveled.

T6 Travel speed is 25 km/h if the travel distance is below 30 km, and 50 km/h if
the travel distance is at or above 30 km.

T7 Departure time from home begins at 6 a.m. and a time delay is introduced which
is sampled from a Uniform distribution with a minimum of 0 and maximum of
2 hours. This time delay simulates EV departure from home between 6 a.m.
and 8 a.m.

T8 Departure time from work begins at 4 p.m. and is distributed with a normal dis-
tribution that has mean 1.5 and stdev 0.5 hours, which is similar to departure
time distribution found by Zhou et al. (2018).
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Charge-related Assumptions:

C1 Charging can only occur at most once at home and once at work per day, which
is similar to results found byFranke & Krems (2013); Morrissey et al. (2016)

C2 The decision to charge depends only on the level of SoC of the EV: if it is
below a certain threshold, the EV owner charges their vehicle. The threshold
is sampled from a triangular distribution (25%, 50%, 75%). This result is
concurrent with distributions found by Franke & Krems (2013); Quiros-Tortos
et al. (2018).

C3 Only level two charging is available at work (22 kW).

C4 Only slow charging is available at home (3.7 kW).

C5 SoC increases linearly with charging duration.

C6 40% of EV owners are able to charge at work. Most EV owners begin charging
once they arrive at work. However, some of them may decide to charge later.
This is modeled by introducing a delay between the arrival time and the plug in
time where the delay is a random variable sampled from a Weibull distribution
with α = 1 hour and β = 1.23.

3.2 Simulation Results

We run the simulation for a duration of 30 workdays and for 10,000 EVs and observed
over 60,000 charge events. We first present the time distributions observed, such as
when EVs begin charging at work or at home, and when they arrive at home or at
work. We then present the hourly power demand distribution i.e., the load profile
of the EVs.

Since home departure time only depends on the home departure time random vari-
able, as expected, EVs departed between 6 a.m. and 8 a.m., with the majority of
them departing between 7 a.m. and 8 a.m. as shown in Figure 3.2. The work arrival
time to work depends on the the departure time from home, the speed of the EV and
trip distance. We observed most EVs to arrive to work between 7 a.m. and 9 a.m.
as shown in Figure 3.4. This is similar to what Lojowska et al. (2011) observed.
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Figure 3.4 Work Arrival Time Distribution

Most EVs begin charge at work between 8 a.m. and 11 a.m. as shown in Figure 3.5.
This is expected since the time at which EVs begin to charge is highly dependent
on their arrival time to work, which was observed to mostly occur between 7 a.m.
and 9 a.m. The majority of charge events that occurred at work ended with a full
battery. Similarly, Quiros-Tortos et al. (2018) found that 70% of EVs fully charge
their battery by the end of a charging event.

Figure 3.5 Work Charge Plug-in Time Distribution
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As dictated by the relevant distribution, the majority of EVs depart from work
between 5 p.m. and 7 p.m. as shown in Figure 3.3. This distribution is similar to
what Zhou et al. (2018) found. As shown in Figure 3.6, EVs arrived home mostly
between 5 p.m. and 8 p.m. The home arrival time is dependent on several factors;
the work departure time, the trip length and the speed of travel.

Figure 3.6 Home Arrival Time Distribution

The time at which EVs begin to charge at home depends on when an EV arrives
home, and on the time delay mentioned earlier. A limited number of EVs begin
charging after midnight. This is concurrent with results based on empirical data:
Schauble et al. (2017) found that only 1.8% of charging events begin between mid-
night and 6 a.m. Moreover, the authors found that around 97% of EVs which charge
at home end their charging event with a full battery.
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Figure 3.7 Home Charging Plug-in Time Distribution

Next, we present the resulting hourly power demand in Figure 3.10. We observe
two peaks, corresponding to work charging (between 9 a.m. and 10 a.m.), and home
charging (between 9 p.m. and 11 p.m.). The two peaks observed are concurrent
with findings from several pieces of literature based on empirical data. For example,
Quiros-Tortos et al. (2018) observed that the first charging event either occurs at 8
a.m. before work hours or after 6 p.m. On the other hand, if a second charging event
does occur, it usually occurs after 6 p.m. Our hourly charging results are also in
line with several simulation models’ results. For example, Shepero & Munkhammar
(2018) observe two peaks, at morning hours due to workplace charging, and during
evening hours due to home charging. An evening peak was expected and has been
observed in several other simulation results (Lojowska et al., 2011).

Figure 3.8 Hourly EV Power Demand in kWh

We observed that around 77% of charge events occurred at home, and around 23%
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at the workplace. On average, an EV had zero charges on 79% of the days, charged
at home on 15% of the days and has charged at work on 5% of the days.

We had run the simulation with lower number of EVs before for many iterations. We
observe the results stabilize after 1000 EVs; hence we find it sufficient to consider
only 10,000 EVs in this study. If the load profile of a larger number of EVs were to
be generated, the current load profile would simply be multiplied by a factor which
is equivalent to desired number of EVs divided by 10,000. This is a result of EVs
in the simulation being independent from one another, i.e., charging one EV does
not affect the availability of charging for another vehicle since there are no limited
number of charging locations or queues for charging spots.

In order to check the effects of the availability of workplace charging, we conduct
a sensitivity analysis. We test multiple scenarios for the availability of workplace
charging by rerunning the model twice, once with a workplace charging availability
of 20% and once with 60%. The significant change observed when 60% of EVs were
able to charge at work was that the height of the peak corresponding to workplace
charging became higher than that of home charging for the 20% and 40% workplace
charging availability scenarios. In addition, the peak height of home charging was
reduced as a result of more people charging at work. For the 20% workplace charg-
ing availability scenario, the height of the peak corresponding to workplace charging
is even lower than that of the 40% availability scenario, and the peak height corre-
sponding to home charging is higher. Moreover, the maximum peak height among
the three scenarios is observed in the 20% scenario during the home charging period.

Figure 3.9 Hourly EV Power Demand in kWh with 20% Workplace Charging
Availability

32



Figure 3.10 Hourly EV Power Demand in kWh with 40% Workplace Charging
Availability

Figure 3.11 Hourly EV Power Demand in kWh with 60% Workplace Charging
Availability

Figures 3.11 and 3.9 show the hourly EV charging distribution for 60% and 20%
EV charging availability scenarios respectively. In the 60% charging availability
scenario, 68% of charge events occurred at home and 32% of charge events occurred
at work. As mentioned earlier, in the 40% charging availability scenario, 77% of
charge events occurred at home and 23% of charge events occurred at work. In
the 20% charging availability scenario, 88% of charge events occurred at home and
12% of charge events occurred at work. Thus we conclude that the availability of
workplace charging would significantly affect the hourly load profile of the EVs.
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4. DETERMINATION OF THE MARGINAL PLANTS AND

SYSTEM MEF

EVs are considered to produce zero CO2 emissions in travel. However, one must also
account for the generation of electricity required for their charging. Introducing EVs
may increase the electricity load, especially at the peak load times in the evening
when EV owners return from work and start charging at home. The increased load
prompts power plants to generate more electricity and thus produce more emissions.
Therefore, it is important to quantify the additional emissions produced from EV
charging to estimate the abated CO2. As mentioned in the literature review section,
we chose the Marginal Emissions Factor (MEF) to measure emissions as this measure
is more suitable for the task than the alternative metric, Average Emissions Factor
(AEF). An MEF quantifies how much emissions are produced when an extra unit of
electricity is generated. On the other hand, the AEF measures the average amount
of emissions produced when a unit of electricity is generated. The power plants
generating electricity at full capacity are not necessarily the ones responding to
additional demand and so the generation mix at the margin is often not the same
as the general generation mix. Thus, using AEFs to evaluate a mitigation action
often results in high errors. Among alternative methods to calculate MEFs, we used
a regression approach.

In the first section of this chapter, we discuss the capacity and generation shares of
different fuel types in the Turkish electricity grid. We also introduce how we tempo-
rally disaggregate our dataset. In the second section, we present our methodology
to determine the marginal power plant in the system for a given time period, and
we compare and contrast changes in marginal power plants between 2014 and 2019.
In the third section, we discuss the method by which we calculate the system MEF.
Finally, we present the calculated MEFs, the key results of our analysis as well as
our calculated AEFs for comparison.
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4.1 Capacity and Generation Shares of Fuels in the Turkish Electricity

System

Here, we first discuss the fuel types that power the Turkish electricity system and
the datasets used in this study. Then, we discuss the trends in available installed
capacities of each fuel type. Finally, we discuss the trends in the share of each fuel
type in total power generation.

The capacity and generation mix in the Turkish electricity system has considerably
changed in the last decade. In an effort to reach higher energy independence and to
curb import costs, the Turkish government has taken several steps to diversify the
country’s energy portfolio and reduce reliance on imported energy resources such
as natural gas. Several subsidies were given for renewable energy resources such
as wind and solar, which is reflected in the increased capacity and generation from
renewables. To increase reliance on local energy resources, investment has steadily
increased in coal-based power plants.

The datasets used in this study are obtained from the transparency
platform of Enerji Piyasaları İşletme A.Ş. (EPİAŞ) available at
https://seffaflik.epias.com.tr/transparency/index.xhtml. The transparency plat-
form has many useful datasets on the Turkish electricity grid, including the available
installed capacity. The platform also reports the total hourly generation and the
specific hourly generation of each fuel type, which we used in our calculations. The
fuel types include natural gas, wind, lignite, black coal, imported coal, fuel oil,
geothermal, dammed-hydro, biomass and run-of-river (r-o-r) hydro. Two separate
types of hard coal are reported: "imported coal" and "black coal". The latter refers
to the local hard coal produced in the Zonguldak region of Turkey. We combine
these two categories under the "hard coal" label as they are both hard coals with
similar calorific values.

We first disaggregate the data obtained from the transparency platform by year and
then by season, according to each season’s equinox. Table 4.1 presents the date
ranges for each season of 2019. Note that the winter season extends to year 2020.
The data is then further disaggregated according to three time-of-day periods: day
hours (6:00 – 17:59), peak hours (18:00 – 22:59) and night hours (23:00 – 5:59).
This disaggregation of times of the day follows from the three periods defined by
the Turkish ministry of energy. Thus, for each year there are 12 datasets consisting
of three time-of-day periods for each of the four seasons.
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Table 4.1 Date Intervals for Seasons of 2019

Season Dates

Spring 21/03/2019 – 20/06/2019
Summer 21/06/2019 – 22/09/2019
Fall 23/09/2019 – 21/12/2019
Winter 22/12/2019 – 19/03/2020

We study and compare the results between years 2014 and 2019 (hence 24 datasets)
to understand the effects of recent developments in the Turkish power mix on emis-
sions. As we see in Table 4.2, the total installed capacity has increased by 42%
from 2014 in 2019. Consistent with the government’s efforts to reduce reliance on
imported fuels, the capacity of both natural gas and fuel oil has decreased (by 9%
and 77% respectively). Again, consistent with the government’s policy of increas-
ing reliance on local resources, lignite and local hard coal capacities have increased
by 58% and 42% respectively. The share of imported hard coal also increased sig-
nificantly; in fact it almost doubled. Thanks to generous subsidies and decreasing
costs, capacity increases in renewable fuels has been dramatic. Wind, geothermal
and biomass installed capacities have increased by 415%, 1249%, and 67600% re-
spectively. Hydro capacity has also increased; 21% for dammed-hydro and 312% for
run-of-river hydro. Close to nonexistent in 2014, solar capacity has also increased
greatly. However, most of its installed capacity is in unlicensed power plants. In
fact, solar generation accounted for 95.5% of unlicensed generation in Turkey in
2019.

Table 4.2 Installed Capacities (MW) of Each Fuel Type in Years 2014 and 2019

Fuel Total
Natural
Gas

Wind Lignite
Black
Coal

Import
Coal

Fuel
Oil

Geo
-thermal

Hydro
(Dam)

R-o-r Solar Others

2014 42500 17100 1290 3810 547 3490 1010 79 13071 1700 0 300
2019 64300 14500 6500 5160 309 6970 239 1080 16252 6510 6000 828
Change 21800 -2600 5210 1350 -238 3480 -771 1000 3200 4810 6000 528

Next we discuss the shares of fuels in power generation. Power generation shares do
not necessarily follow the capacity shares as the utilization rates (capacity factors)
of plants using different fuel types differ from each other. Tables 4.3 and 4.4 present
the generation share of each fuel type in 2014 and 2019 respectively. The shares are
given separately for each of the four seasons and the three time-of-day periods
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Table 4.3 Shares of Electricity Generation by Fuel Source in 2014

Fuel Spring Summer Fall Winter

Day Peak Night Day Peak Night Day Peak Night Day Peak Night

Hydro (Dam) 12% 14% 6% 16% 14% 10% 10% 11% 3% 14% 15% 8%
Natural Gas 47% 46% 49% 48% 49% 50% 49% 48% 50% 42% 41% 40%
Hydro (r-o-r) 7% 6% 6% 3% 2% 2% 5% 4% 4% 8% 7% 7%
Hard Coal 14% 14% 16% 15% 15% 17% 16% 16% 20% 15% 16% 19%
Lignite 14% 14% 17% 13% 13% 15% 14% 13% 16% 13% 12% 15%
Wind 3% 3% 3% 3% 4% 4% 4% 4% 4% 4% 5% 6%
Others 3% 3% 3% 2% 3% 2% 2% 4% 3% 4% 4% 5%

Table 4.4 Shares of Electricity Generation by Fuel Source in 2019

Fuel Spring Summer Fall Winter

Day Peak Night Day Peak Night Day Peak Night Day Peak Night

Hydro (Dam) 30% 32% 29% 24% 25% 17% 19% 21% 11% 21% 23% 15%
Natural Gas 14% 14% 10% 20% 20% 20% 24% 24% 21% 22% 22% 19%
Hydro (r-o-r) 14% 14% 16% 5% 5% 5% 3% 4% 4% 7% 7% 8%
Hard Coal 15% 15% 15% 23% 22% 26% 27% 25% 31% 23% 22% 27%
Lignite 15% 14% 17% 16% 15% 18% 17% 16% 20% 12% 12% 14%
Wind 6% 7% 7% 8% 10% 10% 5% 6% 6% 9% 9% 11%
Others 6% 4% 6% 4% 3% 4% 5% 4% 7% 6% 4% 6%

We find natural gas to be responsible for the largest proportion of electricity gen-
eration in 2014, followed by lignite, hard coal and dammed-hydro. 2014 was a
particularly dry year for Turkey, causing a sharp decline in hydro power production
in that year. In 2019, dammed-hydro share has significantly increased to become
the main electricity generator, surpassing natural gas, hard coal and lignite. On the
other hand, the share of natural gas has harshly decreased, which is in line with
the efforts taken by the Turkish government to reduce reliance on imported natural
gas. Reliance on hard coal in 2019 has visibly increased in summer, fall and win-
ter seasons. Lignite’s share is relatively the same for 2014 and 2019. Run-of-river
(r-o-r) hydro’s share has almost doubled between 2014 and 2019, however, there is
no large seasonal variation within the year with the exception of spring seasons,
when r-o-r hydro generation increases due to the increased volume of rivers caused
by the melting of snow. Wind power generation has increased considerably, which
is expected given the large increase in wind power capacity.

In 2019, we observe an increase in dammed-hydro generation share during peak
hours in all seasons. Due to climatic reasons, dams in Turkey have quite limited
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water inventory. In order to make the most of this limited resource, dam operators
often generate power at peak hours when the power price is highest. Moreover, the
State Electricity Generation Company (EÜAŞ), which operates many of the largest
dammed-hydro plants in Turkey, is also known to operate its plants primarily in
peak hours to suppress electricity prices in the market. These motivations cause
a comparatively high percentage of dammed-hydro generation in peak hours. This
also explains why the generation share of dammed-hydro is quite low in night hours
in all seasons in both 2014 and 2019.

We observe an increase in the lignite and hard coal generation shares during night
hours for all seasons in both 2014 and 2019. This is expected since base load coal
power plants are known to be active at close to full capacity, and have a little role
in responding to additional demand.

4.2 Determining the Marginal Power Plant Types

As mentioned earlier, our dataset is comprised of hourly power generation data for
Turkey for each fuel. We first disaggregate the data into years, then into seasons.
The data is then further disaggregated according to three daily periods. Thus, we
created 24 data sets consisting of three different time-of-day periods for four different
seasons for each of 2014 and 2019.

Marginal Emissions Factor of a power system is determined by the marginal plants
in the system. Thus, one often needs to first determine which plant types are on
the margin for a given time period. Researchers such as Hawkes (2010), Siler-Evans
et al. (2012), Thind et al. (2017) and Gai et al. (2019) used linear regression to
calculate the MEF. This method circumvents the need to know the marginal plants
prior to calculating the MEFs. In addition to calculating the MEF, Siler-Evans et al.
(2012) and Gai et al. (2019) ran regression models between the total hourly change
in electricity generation in a power system and the hourly change in electricity
generation of a specific fuel type. The slope of the line of best fit of these two
variables indicates approximately how much of the change in demand is met by that
fuel type. A larger slope indicates that the fuel type is more likely to be on the
margin. Despite not needing to find the marginal plant types to calculate the MEF,
we also follow this approach because it invites an interesting discussion and provides
insight on the electricity grid and generation mix on the margin.
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For each season and time-of-day combination, for a specific fuel type f , we first
calculate the hourly change in total electricity generation (represented by ∆T ) and
the hourly change in electricity generation (represented by ∆G). For an hour t and
for fuel type f :

∆Tt = ∆Tt − ∆Tt−1

∆Gt,f = ∆Gt,f − ∆Gt−1,f

We then use linear regression to determine a line of best fit between these two
variables. The resulting slope of the line of best fit, defined in this study as βf , gives
us a measure of how power plants using this fuel type respond to changes in total
power. As a selected example, Figure 4.1 shows ∆GHydroDam and ∆GNaturalGas

plotted against ∆T for all three time-of-day periods for the winter season of 2019.
Figure 4.2 shows the corresponding plots for lignite and wind. The slopes in Figure
4.1 indicate that these fuels have a high βf and actively respond to changes in
demand. On the other hand, the very low slopes of the lines of best fit in Figure 4.2
indicate that these fuels generate electricity at a constant level and do not actively
respond to changes in demand. The remaining graphs for year 2019 is presented in
the appendix.
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Figure 4.1 Winter 2019 ∆GHydroDam and ∆GNaturalGas
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Figure 4.2 Winter 2019 ∆GLignite and ∆GW ind
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Table 4.5 shows our calculated βf in 2014 and 2019 for each time-of-day, using winter
values as an example. For both years 2014 and 2019, we observe dammed-hydro and
natural gas to be the two main plant types on the margin. The proportion of extra
electricity demand that these two plant types respond to differs between 2014 and
2019, and also between seasons and between time-of-day periods. However, these
two plant types still remain on the margin. We find dammed-hydro in winter 2019
to have a higher βHydroDam regardless of time-of-day and thus is more active on
the margin than in winter 2014. This is generally the case regardless of time-of-
day or season when comparing 2014 and 2019. Natural gas on the other hand, is
less often on the margin, its βNaturalGas is consistently smaller in 2019 compared to
2014. βHardCoal has generally decreased and is still not on the margin despite having
an increasingly large installed generation capacity since 2014. Similarly, lignite is
still not on the margin, since lignite plants are likely to be used as baseload power
plants that operate all the time. Asphaltite is quite similar to lignite, but with a
much smaller production share, and its βAsphaltite was observed to be very small in
both 2014 and 2019. Fuel oil power plants can technically respond to changes in
demand, however, they were not found to be on the margin either, having a very low
βF uelOil. Wind, solar, geothermal and r-o-r plants are still not on the margin. This
is an expected result, since their generation cannot be increased to meet additional
electricity demand, being dependent on uncontrollable environmental factors. The
remaining tables that present the seasonal comparisons for βf between 2014 and
2019 can be found in the appendix.

Table 4.5 βf for Winter 2014 and Winter 2019

Fuel Day Peak Night

2014 2019 2014 2019 2014 2019

Hydro (Dam) 0.50 0.65 0.68 0.73 0.43 0.50
Natural Gas 0.39 0.30 0.24 0.21 0.47 0.41
Hydro (r-o-r) 0.10 0.04 0.05 0.03 0.05 0.04
Hard Coal 0.02 0.03 0.01 0.01 0.03 0.03
Lignite 0.00 0.01 0.01 0.01 0.02 0.01
Wind 0.00 0.00 0.01 0.03 0.01 0.01

Table 4.6 shows the comparisons between the different seasons in year 2019.
Dammed hydro is most active on the margin in summer with slightly lower
βHydroDam in fall. However, in winter and spring βHydroDam is visibly low. On
the other hand, natural gas has the highest βNaturalGas in the winter and spring
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seasons. βNaturalGas is highest during night time periods, which indicates higher re-
liance on natural gas to respond to extra demand at night. βHydroDam is significantly
higher during peak time hours, which supports the hypothesis that dammed-hydro
is used rigorously primarily to respond to changes in extra peak time demand. This,
in turn can be explained by dam operators taking advantage of the relatively high
power prices at these hours. Night time MEFs are observed to be much higher than
peak or day time MEFs. This is also expected as most dammed-hydro plants choose
not to operate at night hours due to low power prices.

Table 4.6 βf for Each Season and Time-of-Day of 2019

Fuel Spring Summer Fall Winter

Daytime Peak Night Daytime Peak Night Daytime Peak Night Daytime Peak Night

Hydro (Dam) 0.59 0.65 0.44 0.72 0.82 0.57 0.70 0.82 0.47 0.65 0.73 0.50
Natural Gas 0.29 0.22 0.32 0.25 0.13 0.30 0.27 0.08 0.45 0.30 0.21 0.41
Hydro (r-o-r) 0.02 0.03 0.05 0.02 0.03 0.06 0.02 0.05 0.05 0.04 0.03 0.04
Hard Coal 0.11 0.06 0.11 0.04 0.02 0.00 0.02 0.01 0.03 0.03 0.01 0.03
Lignite 0.01 0.01 0.02 0.00 0.01 0.03 0.01 0.01 0.02 0.01 0.01 0.01
Wind -0.04 0.03 0.01 0.05 0.02 0.08 0.00 0.06 0.02 0.00 0.04 0.01

Based on the βf ’s we calculated, we conclude that lignite, hard coal, asphaltite,
wind, solar, hydro (r-o-r), geothermal, fuel oil and biomass are not on the margin in
2019. Throughout our analysis, the ∆G’s of these fuel types have consistently had
a low correlation coefficient with ∆T .

4.3 Calculating the System MEF

Here, we explain how we calculate the system MEF for a given season and time-of-
day combination. Since we do not have access to the emissions data for each fuel,
we obtained the hourly change in emissions for each fuel by multiplying the fuel’s
carbon dioxide intensity factor (IF) (measured in kgCO2/MWh) by its ∆Gt,f . Table
4.7 contains the list of Turkish electricity grid IFs we used, obtained from Ozcan
(2016), Atilgan & Azapagic (2016) and Yilan, Kadirgan & Çiftçioğlu (2020).
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Table 4.7 Emission Intensity Factors of Fuels Used

Fuel Intensity factor (kgCO2/MWh)

Natural gas 482
Hard Coal 1192
Lignite 1062
Hydro (Dam) 50

Then, we calculate the change in total emissions for a given hour (represented by
∆Et) by summing each fuel type’s ∆Et,f for that hour. For every hour t and fuel
type f :

∆Et,f = ∆Gt,f x IFf

∆Et,f = ∆Et,f − ∆Et−1,f

∆Et = ∑
f ∆Et,f

In our ∆Et calculation, we chose to ignore the change in emissions of asphaltite,
fuel oil and biomass, since their ∆G’s and consequently their ∆E’s were consistently
low, having almost no effect on the MEF’s value. Lignite, having a βLignite with a
much larger value than that of the latter mentioned fuels, only very slightly affected
the system MEF when removed from the emissions calculation. Wind, solar, hydro
r-o-r and geothermal were assumed to produce no emissions.

Once ∆E, the total hourly change in emissions produced (in kilograms of carbon
dioxide) and ∆T , the total change in hourly electricity generation (in MWh) are
calculated, we use linear regression to obtain a line of best fit between these two
variables. The slope of the line of best fit is defined as the system MEFx for that x
time combination (such as winter 2014 Peak). As mentioned in the literature review,
Hawkes (2010) first used this approach to calculate the MEF. Similarly, Siler-Evans
et al. (2012) used the same approach to calculate the MEFs for the US. Thind et al.
(2017) criticized Siler-Evans MEF calculation since it only focused on fossil fuels and
did not consider renewables to be on the margin. Similar to Thind et al. (2017), we
consider both fossil fuels and renewable energy sources.

The calculated MEFs for season and time-of-day combination x for the years 2014
and 2019 are displayed in Table 4.8. In all but one time combination, MEFs no-
ticeably decreased from 2014 to 2019. This is due to the fact that dammed-hydro
appears more on the margin in 2019 than natural gas (as can be seen in the βf values
given in Table 4.6) which lowers the MEF. Interestingly, peak hours’ MEFs are much
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lower than that of daytime hours or night hours. This is because dammed-hydro
generates more electricity in response to demand during peak hours. MEFs are gen-
erally higher during night hours. This is likely due to natural gas and dammed-hydro
plants shutting down in response to the decreased levels of demand, while hard coal
and lignite power plants remain operational.

The R2 values of the generated regression models range between 0.2 and 0.8. All
R2 values for 2014 and 2019 are reported in Table A.2 of the appendix. Using the
Weka software, we conducted 10-fold cross validated regression method for several
datasets; but this approach did not yield higher R2 values compared to the ones of
normal regression models.

Table 4.8 Calculated MEFs (kgCO2/MWh) for Each Season and Time-Of-Day in
Years 2019 and 2014

Year Spring Summer Fall Winter

Day Peak Night Day Peak Night Day Peak Night Day Peak Night

2019 316 217 332 199 128 200 195 100 292 216 167 263
2014 241 230 241 248 191 320 238 207 328 236 177 298

We have also calculated the MEFs for each season in years 2014 and 2019 without
the time-of-day temporal disaggregation (Table 4.9). As a selected example, Figure
4.3 shows the line of best fit between ∆E and ∆T for the spring season of 2019.
The slope of the line of best fit is the MEF for the spring season of 2019. These
regression models generally achieve higher R2 values than our original models that
have time-of-day disaggregation; however, one also loses valuable information due
to pooling.
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Figure 4.3 MEF for the Spring Season of 2019

Table 4.9 MEFs (kgCO2/MWh) for Each Season in Years 2019 and 2014

Year Spring Summer Fall Winter

2019 312 191 208 254
2014 273 247 251 250

We calculated the average emissions factors (AEFs) for each season and time-of-day
in 2019 to compare them with our calculated MEFs. Since the hourly emissions data
in Turkey is not available, we multiplied the CO2 intensity factor (in kgCO2/MWh)
by the hourly generation data (in MWh) to obtain the hourly emissions in a similar
fashion to the earlier calculations for the hourly change in emissions. The IF of
asphaltite was assumed to be that of lignite since they have similar calorific values.
Table 4.10 presents the calculated AEFs for each season and time-of-day in 2019
and 2014. The AEFs in 2019 are consistently lower than the AEFs in 2014 with the
exception of fall 2019.

Table 4.10 AEFs (kgCO2/MWh) for Each Season and Time-Of-Day in 2019 and
2014

Year Spring Summer Fall Winter

Day Peak Night Day Peak Night Day Peak Night Day Peak Night

2019 433 419 440 559 537 607 635 604 698 529 516 583
2014 559 554 622 562 570 619 591 583 658 550 548 614
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As shown in the Table, AEFs consistently overestimate the emissions produced per
unit of electricity generated, and would thus incorrectly evaluate the mitigation
action and provide a lower abatement efficiency. If we had used AEFs, we would
multiply the AEF by the hourly load profile of the EVs simulated in chapter 3.
Since our AEFs are consistently higher than our calculated MEFs, the resulting
emissions from EV charging would be significantly higher, and thus underestimate
the emission abatement efficiency of the EVs.
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5. CALCULATING THE ADDITIONAL EMISSIONS DUE TO EV

USE AND COMPARISON WITH INTERNAL COMBUSTION
ENGINE VEHICLES

5.1 Calculating the Additional Emissions due to EV use

After simulating the hourly load profiles for EVs in the third Chapter and calculating
the marginal emissions factors (MEFs) for each season and time-of-day in the fourth
Chapter, we are now able to combine both halves of the study and generate the
hourly emissions profile. In our simulation model, there are no differences between
days of the week nor between days in different seasons, therefore, the same load
profile can be used for all four seasons. Using the calculated MEFs, we multiply
each season’s MEFs (kgCO2/MWh) by the load profile (MWh). Each time-of-day
MEF is multiplied by the load in the corresponding hours. For example, to generate
the emissions profile for summer of 2019, we multiply the summer day hours MEF
for 2019 by the load of each hour between 6 a.m and 5 p.m. Similarly, we multiply
the summer peak hours MEF by the load for each our between 6 p.m. and 10 p.m.,
and we repeat the same for night hours to obtain the hourly emissions profile. Thus,
for every hour t:

Emissionst = Loadt x MEFt

Figure 5.1 presents the emissions profile for spring 2019. Spring 2019 had the highest
peaks in its emissions profile since it had the highest MEFs among all the other
seasons of 2019. Interestingly, our findings suggest that it is more environmentally
friendly for EVs to charge during peak time hours, since MEFs are consistently low
during these times as a result of dammed-hydro being more active on the margin.
The general shape of the load and the location of its peaks do not change between
seasons, however, the magnitude and height of each peak does change since MEFs
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change between times of day and seasons.

Figure 5.1 Emissions Profile for Spring 2019

The emissions profile for summer 2019 is presented in Figure 5.2. All the peaks in
the emissions profile of summer are consistently lower than that of the other seasons.
This is a consequence of the MEFs of summer 2019 being generally lower than the
MEFs of the other seasons.

Figure 5.2 Emissions Profile for Summer 2019

In Figure 5.3, the peaks in the emission profile of fall 2019 are slightly higher than
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summer as a result of fall’s MEFs being higher than that of summers.

Figure 5.3 Emissions Profile for Fall 2019

The peaks in winter 2019’s emission profile is slightly lower than that of fall but not
too dissimilar as visible in Figure 5.4. The MEFs of winter 2019 are only slightly
lower than those of the fall season for 2019.

Figure 5.4 Emissions Profile for Winter 2019

Our results show that EVs, when introduced in Turkey, have a stronger carbon
emissions abatement potential compared to other countries. The MEFs we estimate
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for Turkey are significantly lower than those found by other researchers for other
countries. Hawkes (2010) calculated an MEF of 600 kgCO2/MWh for Great Britain
and Hawkes (2014) estimated that the long range MEF for Great Britain in 2050
would be between 260 and 530 kgCO2/MWh. McKenna et al. (2017) calculated an
MEF of 547 kgCO2/MWh for Ireland. Thind et al. (2017) found an MEF equal
to 597 kgCO2/MWh for the Midcontinent Independent System Operator region in
the United States. Siler-Evans et al. (2012) found an MEF of 834 kgCO2/MWh
Midwest Reliability Organization region of the United States. On the other hand,
our calculated MEFs for Turkey ranged between 100 and 332 kgCO2/MWh.

5.2 Comparison with an Internal Combustion Engine Vehicle Fleet

The 10,000 EVs in our simulation traveled a total of around 9,422,000 km in 30
days. To compare the emissions produced by this EV fleet with that produced by
diesel fueled vehicles, we multiply the distance traveled by the EVs by the amount
of emissions produced per km traveled by a diesel fueled vehicle. On average, a
diesel fueled vehicle produces 0.1215 kgCO2/km, which is quite close to that which
is produced by gasoline fueled vehicles, 0.1234 kgCO2/km (EEA, 2018). Hence, the
emissions produced by diesel fueled vehicles when traveling 9,422,000 km would be
around 1,144,773 kgCO2 and gasoline fueled vehicles around 1,162,674 kgCO2. The
amount of emissions produced due to EV charging varies depending on the season the
considered 30 days occur in, since the MEFs differ between seasons and time-of-day
periods. Table 5.1 shows the monthly emissions resulting from EV charging for each
season of 2019. It is observed that the highest amount of monthly emissions produced
(observed in spring) is a third of the emissions produced by diesel and gasoline fueled
vehicles. The lowest amount of monthly emissions produced (observed in summer)
was a fifth of what was produced by diesel and petrol fueled vehicles in the same
time period.

The primary factor that leads to our result is the dammed-hydro being on the
margin. We should note, however, that if the EV power demand is realized at high
values, the available dammed-hydro capacity on the margin would not be sufficient.
In this case, the subsequent plants on the merit order will be used, in which case the
system MEF will increase. With the completion of ongoing constructions, dammed-
hydro generation capacity of Turkey will be increasing in the coming years; however
this increase will be limited. Thus, in the future, it is highly likely that other fuel
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sources will step up to fulfill the increasing demand for energy, and consequently raise
the MEFs for the Turkish electricity system. The direction of MEF change will be
determined by whether Turkey increases generation from fossil fuels or renewables.
In the long run, it may not remain environmentally beneficial for EVs to charge
during peak hours. Our findings will be useful in devising incentive schemes to
motivate EV users to charge during pre-determined times in which system MEF
relatively small.

Table 5.1 Monthly Emissions Resulting from EV Charging for Each Season in 2019
(in kgCO2)

Year Spring Summer Fall Winter

Emissions (kgCO2) 388,623 235,409 263,899 293,902

The installed capacity for dammed hydro was 16.2 GW in 2019. The average gen-
eration of dammed hydro in 2019 was 7.9, 9.1 and 5.5 GW for the day, peak and
night time-of-day periods, respectively. Thus, dammed hydro has between 7.1 and
10.7 GW of spare capacity. The highest generation electricity demand of EVs as
a result of charging was 3.6, 5.3 and 5.0 GW for day, peak and night time-of-day
periods, respectively. Upon inspection of our earlier calculated beta values, with the
current installed capacity and the aide of other marginal plant types, dammed hy-
dro can take on the extra power demand resulting from the charging of a relatively
small number of EVs, such as 20,000. However, it is important to note that the
generational capacity of dams falls as the water level is reduced. In addition, the
dam operators may choose not to generate electricity due to socio-political reasons,
since water is a valuable resource. Hence, the long term MEF might change with
the increasing number of EVs. In the future, it would be useful for the analysis to
obtain expert opinion on the maximum installed capacity that dammed hydro can
reach in Turkey.

In this study, we have conducted a limited sensitivity analysis over the effects of
the availability of workplace charging on the power load profiles of EVs. We ob-
served that the availability of workplace charging greatly affects the power load
peak heights for workplace charging and home charging. In addition, it also affects
the maximum peak height in the power load profile. Further sensitivity analysis
should be conducted over additional parameters once the simulation model is ex-
panded further. This will enable a better understanding of the effects of different
parameters and future scenarios.
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Research in this topic can be improved further if emissions are calculated or reported
separately for each individual power plant. This would circumvent the need to
multiply the carbon intensity factor by the hourly generation data in order to obtain
the hourly emissions. Using the reported emissions directly would be more accurate
since using a single carbon intensity factor assumes that all power plants using a
certain fuel type produce the same amount of carbon dioxide when generating a
unit of electricity. However, this may not be the case, since the efficiency of power
plants decline with their age. In addition, technological differences also contribute
to the carbon intensity factor of each power plant. In a similar fashion, if more
data on existing EVs in Turkey becomes available, such as the average trip distance,
starting and ending battery State of Charge (SoC) and average traveling speeds, our
EV simulation model can be improved.

Given the availability of the earlier mentioned data, a more realistic demand sim-
ulation may be further developed. This can be achieved by adding trips to other
destinations, including limited charging spots (finite resources) and more realistic
EV modeling in general. In addition, a more realistic supply model may also be
further developed, hourly MEFs may be calculated as well as long term MEFs.
Moreover, researchers may be interested in analyzing the effects of different electric-
ity prices on the EV owners charging habits. Moreover, long term MEFs may be
calculated for Turkey in a similar fashion to what Hawkes (2014) did.
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APPENDIX A

Table A.1 βf for each season and Time-of-Day of 2014

Fuel Spring Summer Fall Winter

Day Peak Night Day Peak Night Day Peak Night Day Peak Night

Hydro (Dam) 0.51 0.60 0.60 0.54 0.64 0.45 0.49 0.66 0.40 0.50 0.68 0.43
Natural Gas 0.34 0.25 0.27 0.38 0.31 0.40 0.40 0.24 0.47 0.39 0.24 0.47
Hydro (r-o-r) 0.12 0.08 0.05 0.07 0.05 0.03 0.10 0.06 0.05 0.10 0.05 0.05
Hard Coal 0.04 0.06 0.06 0.03 0.01 0.06 0.02 0.03 0.05 0.02 0.02 0.03
Lignite 0.01 0.01 0.01 0.00 0.01 0.03 0.00 0.03 0.01 0.00 0.01 0.02
Wind -0.01 0.00 0.02 -0.02 -0.01 0.03 -0.01 -0.01 0.00 0.00 0.01 0.01

Table A.2 Regression Models’ R2 for Seasonal and Time-of-Day Disaggregated
Datasets

Year Spring Summer Fall Winter

Day Peak Night Day Peak Night Day Peak Night Day Peak Night

2019 0.60 0.43 0.30 0.50 0.37 0.18 0.47 0.21 0.43 0.56 0.42 0.35
2014 0.61 0.45 0.32 0.73 0.49 0.36 0.66 0.41 0.53 0.69 0.35 0.50

Table A.3 Regression Models’ R2 for Seasonal Disaggregated Datasets

Year Spring Summer Fall Winter

2019 0.61 0.53 0.55 0.55
2014 0.61 0.71 0.67 0.73

58


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Determining the Extra Power Load Resulting from EV Charging
	Approaches to Quantifying Carbon Emissions
	Thesis Goals
	Contributions to Literature
	Organization of Thesis

	LITERATURE REVIEW
	Determining EV Charging Behavior and Travel Patterns
	Travel Surveys and Field Trials
	Synthetic EV Load Profiles
	Applications to Synthetic EV Load Profiles

	Quantifying CO2 Emissions
	Evaluating Abated CO2 Emissions from Introducing EVs into the Passenger Vehicle Fleet

	DETERMINING THE ADDITIONAL POWER DEMAND FROM EVS
	Simulation Design
	Simulation Results

	DETERMINATION OF THE MARGINAL PLANTS AND SYSTEM MEF
	Capacity and Generation Shares of Fuels in the Turkish Electricity System
	Determining the Marginal Power Plant Types
	Calculating the System MEF

	CALCULATING THE ADDITIONAL EMISSIONS DUE TO EV USE AND COMPARISON WITH INTERNAL COMBUSTION ENGINE VEHICLES
	Calculating the Additional Emissions due to EV use
	Comparison with an Internal Combustion Engine Vehicle Fleet

	BIBLIOGRAPHY
	APPENDIX A -4em

