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ABSTRACT

INVESTIGATION OF FOURIER FEATURES IN NEURAL NETWORKS AND
AN APPLICATION TO STEERING IN MESH NETWORKS

BULUT KUŞKONMAZ

Electronics Engineering M.Sc. Thesis, September 2020

Thesis Advisor: Assist. Prof. Dr. Hüseyin Özkan
Co-advisor: Prof. Dr. Özgür Gürbüz

Keywords: Fourier features, Neural networks, SLFN, Classification, Kernel,
Steering, Mesh networks

Random Fourier features provide one of the most prominent ways to classify large-
scale data sets when the classification is nonlinear. However, Fourier features, in its
original proposal, are randomly drawn from a certain distribution and are not opti-
mized. In this thesis, we investigate the use of Fourier features by a single hidden
layer feedforward neural network (SLFN) and optimize those features (instead of
drawing randomly) with several gradient-descent based approaches. The optimized
Fourier features are deduced from the radial basis function (RBF kernel), and im-
plemented in the hidden layer of the SLFN which is followed by the output layer.
The resulting classification accuracy is compared with the results of SVM with RBF
kernel. Particularly, (1) we tune the parameters such as the hidden layer size and
RBF kernel bandwidth, and (2) test with ten different classification data sets. The
introduced SLFN provides substantial computational gains with similar accuracy
figures compared to the ones of SVM. We also test our SLFN for steering in wireless
mesh networks and observe promising smart steering capabilities.
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ÖZET

FOURIER ÖZNİTELİKLERİNİN SİNİR AĞLARI İLE İNCELENMESİ VE
ÖRGÜ AĞLARDA BAĞLANTI YÖNLENDİRMEYE UYGULANMASI

BULUT KUŞKONMAZ

ELEKTRONİK MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, EYLÜL 2020

Tez Danışmanı: Assist. Prof. Dr. Hüseyin Özkan
İkinci Danışman: Prof. Dr. Özgür Gürbüz

Anahtar Kelimeler: Fourier öznitelikleri, Sinir ağları, SLFN, Sınıflandırma,
Çekirdek, Bağlantı yönlendirme, Örgü ağları

Rastgele Fourier öznitelikleri, sınıflandırma doğrusal olmadığında büyük ölçekli veri
kümelerini sınıflandırmanın en belirgin yollarından birini sağlar. Bununla birlikte,
orjinal önerisinde Fourier öznitelikleri, belirli bir dağıtımdan rastgele çekilir ve opti-
mize edilmez. Bu tezde, Fourier özniteliklerinin tek gizli katmanlı ileri beslemeli sinir
ağı (SLFN) ile kullanımını araştırıyor ve bu öznitelikleri (rastgele seçim yerine) çeşitli
gradyan-inişi tabanlı yaklaşımlarla optimize ediyoruz. Optimize edilmiş Fourier
öznitelikleri, radyal bazlı fonksiyondan (RBF çekirdeği) çıkarılır ve çıkış katmanının
takip ettiği SLFN’nin gizli katmanında uygulanır. Ortaya çıkan sınıflandırma doğru-
luğu, RBF çekirdeği ile SVM’nin sonuçlarıyla karşılaştırılır. Özellikle, (1) gizli kat-
man boyutu ve RBF çekirdek bant genişliği gibi parametreleri ayarlıyoruz ve (2) on
farklı sınıflandırma veri seti ile test ediyoruz. Sunulan SLFN, SVM’ye kıyasla benzer
doğruluk rakamlarına sahip önemli hesaplama kazançları sağlar. Ayrıca kablosuz ağ
ağlarında bağlantı yönlendirme için SLFN’mizi test ediyor ve gelecek vaat eden akıllı
bağlantı yönlendirme kabiliyetlerini gözlemliyoruz.
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1. INTRODUCTION

Classification is an important problem in machine learning and binary classification
is a fundamental type [2]. Linear classification is a commonly used approach but
it is insufficient when the data is not linearly separable. In such cases, nonlinear
classification is a solution, e.g., kernel machines. Approximation of classification
functions of nonlinear kernel machines with Random Fourier Features (RFF) is
one of the viable techniques [3] since it allows large scale nonlinear classification
with linear techniques (after the randomized kernel expansion) in a computationally
efficient manner [3, 4, 5, 6].

For example, Support Vector Machines (SVM) [2] is a supervised machine learning
algorithm that generates a binary classifier based on labeled data (X,Y ) ∈RN×d×
{−1,1}N×1, where d is the dimension, N is the number of data instances, X is the
data matrix of features that are also associated with binary labels Y describing the
class memberships. SVM learns a separating hyperplane in the feature space. The
hyperplane is defined by its normal vector α ∈Rd×1 and a bias β ∈R such that the
resulting classifier is in the form of f(x) = sign(αTx+β). Then, SVM optimizes the
hyperplane parameters (α,β) using a convex quadratic programming [2].

If one aims to separate classes in nonlinear fashion with SVM, kernelization [2, 7] is
the suitable solution. Instead of relying on dot products in defining the similarity
between two instances xi and xj , one typically uses a kernel (satisfying Mercer’s
condition), e.g., we use radial basis function (RBF) kernel k(x,y) = e−g‖x−y‖

2 in
this thesis, to re-define the similarity (g is the bandwidth parameter that leads to
more complex or simpler nonlinear models when relatively higher or smaller values
are set). This process transforms the data into relatively higher dimension in which
the data becomes linearly separable although it requires nonlinear classification in
its original observation space [2].

An alternative way to perform nonlinear classification is random kernel expansion
via random Fourier Features [3]. For any two instances xi,xj ∈Rd×1, one produces
the corresponding pair of transformed instances xi,xj → zi, zj ∈ R2D×1 such that
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k(xi,xj) can be approximated arbitrarily well by zTi zj as D (dimension of the trans-
form) increases, i.e., k(xi,xj) ' zTi zj . The approximation k(xi,xj) ' zTi zj is based
on projections by random Fourier features as an application of the Bochner’s theo-
rem [3]. Bochner’s theorem allows us to draw projection vector w from p(w) with
p(w) = N(w;µ,Σ) with zero mean µ = 0 and covariance Σ = 2gI (I is the identity
matrix of the appropriate size). Having the kernel space explicitly and compactly
constructed via the transform

Rd×1 3 xt→ zt = 1√
D

[rw1(xt), rw2(xt), · · · , rwD−1(xt), rwD(xt)]T ∈R2D×1

for each instance for a given data stream {xt}, where rw(x) = [cos(wTx),sin(wTx)],
then a linear classifier in the z−space can solve any nonlinear classification problem
provided that the kernel is chosen suitably, e.g., RBF kernel with an appropriate
kernel parameter g. We use this form of transformation in steering application where
we discuss in Chapter 4. There is an alternative way to achieve this transformation.
w is basically the random projection direction that enable us to use the mapping
Zw(x) =

√
2cos(wTx+ b),

Rd×1 3 xt→ zt = 1√
D

[Zw1(xt),Zw2(xt), · · · ,ZwD−1(xt),ZwD(xt)]T ∈RD×1

(where b is chosen from uniformly from [0,2π]) provide random Fourier features
Zw(x) [3]. Since there exists α ∈ RD corresponding to any ᾱ ∈ R2D such that
z̄T ᾱ = zTα which can be straightforwardly observed by phasor addition [8] We use
this version of transformation in Chapter 3 where we investigate Fourier features
via single hidden layer feedforward neural network (SLFN).

Comparison of the computational complexity of SVM with RBF kernel and on-
line linear classification with random Fourier features (resulting online nonlinear
classification with original features) provides an important observation about the
practicality of the random Fourier features in the context of large scale online data
processing. SVM, as an algorithm defined in the batch setting, has the computa-
tional complexity for training and testing O(N3) and O(NNtest), respectively. This
amount of computational complexity is highly challenging with the large scale data
in real-time applications. On the other hand, random Fourier features yield online
algorithms with constant O(1) online processing complexity (in total O(N) after
processing N data instances) at the cost of a transformation complexity O(Dd),
both are per instance, and D and d are relatively small compared to N or Ntest.

For example, considering the test scenario of SVM, classification of a test instance
x requires computing f(x) = ∑NSV

i=1 αik(x,xi) +β. This requires N computation in
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the worst case with O(Nd) complexity since the number NSV of support vectors can
be as large as the number N of training instances. A situation like this would be
inefficient in processing large data sets. Hence, approximating the function f(x)'∑N
i=1αiz

T
x zxi +β = zTx (∑N

i=1αizxi) +β reveals that the SVM kernel classification is
a linear separator after the transformation with random Fourier features, which is
only a constant O(1) online processing complexity (in total O(N) after processing
N data instances) per instance.

However, it is possible to have better classification by optimizing the projection
vectors w that are initially randomly drawn from p(w). Although random Fourier
features have been used with great success in especially large scale classification
qualifying Fourier features as good features, the fact that they are mostly randomly
used and the possibility that they can be learned without completely relying on data
independent randomization is a promising research direction. To this end, several
studies have been conducted to learn Fourier features, with some being fairly recent
as simultaneous developments with the work in the presented thesis. For exam-
ple, the authors optimize the Fourier features using scalable optimization methods
for learning kernels and conduct experiments on a couple of image data sets in
[9]. Unlike the study in [9], we optimize the Fourier features using SLFN and hold
comprehensive experiments using different classification data sets. In [4], they repa-
rameterize the random features by lifting the source of randomness to another space
to optimize them using stochastic gradient descent and keep the original kernel pa-
rameters untouched, whereas we directly update the kernel parameters via SLFN
with no need to preserve the original kernel parameters. The authors in [10] im-
plement the random Fourier feature method using neural networks which contain
multiple layers for learning kernels with small and large scale data sets. This net-
work they propose can optimize multiple kernel parameters using backpropagation
and they conduct experiments on several image and classification data sets. On the
other hand, we propose an SLFN that exploits Fourier features to optimize the ker-
nel, provide several methods using backpropagation, and hold experiments that are
more comprehensive compared to the study in [10]. Unlike the studies we discuss
until here, we deploy our SLFN to steering data set in a wireless mesh network and
obtain outstanding results.

In this thesis, we investigate the use of Fourier features in neural networks, such that
both the Fourier features as well as linear classifier thereafter are learned in the con-
text of nonconvex neural network training. Note that, in a similar fashion with the
aforementioned related examples in the literature, stochastic gradient based training
can be chosen for real-time scalability to voluminous data. Other optimizers such as
minibatch approaches with nesterov momentum updates can surely be used as well.
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In particular, we propose a SLFN which transforms data into high dimension at the
first and hidden layer and then transformed data passes through the second and
output layer which performs linear classification. The hidden layer of the proposed
SLFN implements Fourier features as the hidden layer activations, which reposes
the data in a linearly separable manner (even if it is originally nonlinear) in the high
dimension enabling the use of a linear classifier afterwards. Hence, the training of
the introduced SLFN does not only learn a linear classifier in the high dimensional
transform space as a nonlinear classifier in the original space, but also optimizes
the Fourier features in a data driven manner getting rid of the data-independent
randomness of Fourier features in its original proposal [3]. To this end, we analyze
and compare four different gradient descent based training approaches on an exten-
sive bencmark of datasets, and finally demonstrate a real life application of smart
steering in wireless mesh networks.

1.1 Thesis Contributions

Main contributions of the presented thesis can be summarized as follows.

• We investigate Fourier features in neural networks in detail and deploy random
Fourier features via SLFN to perform nonlinear classification, while tuning
the parameters of hidden layer unit size D and bandwidth parameter g for
efficiency. We apply several training strategies for this investigation.

• We learn the optimal projection directions for Fourier features, which are
drawn from a certain (Fourier transform the kernel in hand to be more precise,
which is a proper distribution) distribution at the initialization of the intro-
duced SLFN, using gradient descent-based backpropagation algorithms. We
compare our proposed learning algorithms with SVM.

• We apply our SLFN to the steering data set as an application in wireless
mesh networks. We conduct a batch analysis via SVM for characterizing the
steering data, and based on this analysis, we propose a batch technique for
smart steering approach.

• Based on the findings of our batch analysis, we develop an online learning
approach (online kernel perceptron), namely, an online technique for smart
steering which is a data-driven, adaptive, real-time algorithm applied to steer-
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ing for the first time in the literature.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we provide the back-
ground of the thesis and related work. Chapter 3 presents the SLFN and algorithms
we propose. Results of our proposed SLFN are given in Chapter 3 as well. In Chapter
4, we introduce our classification based approach for smart steering in wireless mesh
networks, including batch and online steering algorithms.Experiments in Chapter
4 present the steering data we use, preprocessing and our end results. Chapter 5
draws our conclusions.
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2. RELATED WORK

In this chapter, we provide the related work in comparison to the presented thesis.
Various prominent studies are discussed which use random Fourier features (RFF).
Studies that are related to the optimization of Fourier features for several tasks are
discussed as well. We also discuss the use of a single hidden layer feedforward neural
network (SLFN) for various purposes

This thesis focuses on the investigation of RFF using SLFN and optimizes Fourier
features via SLFN to address binary classification problem. A large amount of re-
search has conducted on random Fourier features (RFF), which is a kernel method
has proposed in [3]. The authors in [11] improve the kernel method in terms of
variance of Gaussian kernel and approximation error. In [12], the authors discuss a
detailed investigation on the approximation quality of RFF and propose a proper
RFF approximation for the derivatives of a kernel function. Authors suggest apply-
ing linear clustering algorithms after mapping the data points to a low-dimensional
feature space in [13]. The use of gradient descent for optimizing Fourier features and
the Nyström method to approximate kernel functions are introduced in [5]. These
studies give an investigation of RFF for its novelty, approximation, optimization,
and combine with other algorithms. In this thesis, we investigate RFF using SLFN
and deploy our SLFN to steering application in a wireless mesh network.

RFF has used in various ways to solve nonlinear machine learning problems, and
this is one of the main focuses of this thesis. RFF based learning method is ex-
tended to multiple kernel learning for different channels or features by performing
optimization in Fourier domain [9]. In [4], the authors address issues such as the
computational complexity caused by a huge amount of data points and the problem
of learning kernel parameter address by introducing the reparameterization. The
authors propose Random Fourier features neural networks (RFFNet) in [10], which
can approximate kernels on different layers using backpropagation for training. Un-
like these authors, we focus on learning a single kernel and conduct more extensive
experiment with our SLFN. The authors propose an efficient algorithm for large
data sets in [14], in which variables of random Fourier features are sampled with a
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Bayesian approach using a non-parametric mixture of Gaussians in BaNK algorithm.
In [15], the authors introduce a generic kernel learning (IKL) which focuses on trans-
forming a sample from a base distribution to another kernel to learn the sampling
process of kernel distributions. Another method is the Nyström method, in which
the authors calculate the low-rank matrix via data points to approximate the kernel
matrix; they compare this method with the random Fourier feature method in [16].
The authors in [17] approximate a kernel by using one hidden layer neural network
with RFF and optimize features with gradient descent. The authors introduce an
algorithm in [6], which uses a sequence of Fourier features to provide the maximum
realizable SVM classification margin for supervised learning. In [18], the authors
treat the Fourier transform as a prior distribution over trigonometric functions and
they introduce two PAC Bayesian-based methods. These random Fourier Features
can also be optimized with an appropriate attitude, and this thesis concentrates on
optimizing features and demonstrating an application to steering in wireless mesh
networks.

Kernel methods can be applicable to different tasks. The authors apply the kernel
convolutional layer which provides the kernel trick for the convolutional layers and
they deploy it to small patches of the image in [19] to achieve a better classification
result. Approximating multiple kernels can be useful to address classification prob-
lems. In [20], the authors apply kernel approximation relying on the insight of bag
of words representation (BOW), and they propose efficient match kernels (EMK)
to map local features to a low-dimensional feature space that enables linear classi-
fiers. The authors in [21] extend the concept of Multiple Kernel Learning (MKL)
to a kernel combination with regularization on the kernel parameters as general
MKL (GMKL), which is a gradient descent based algorithm for binary classifica-
tion. In [22], the authors propose multiple kernel learning (MKL) with group Lasso
constraint on kernel weights that provides a proper classification for Alzheimer’s
disease. As discussed until here, kernel approximation can be successfully used to
address various problems, and this thesis considers a kernel approximation (in par-
ticular, we comprehensively investigate random Fourier features in neural networks)
and demonstrates an application to steering in wireless mesh networks.

RFF method becomes a popular concept in machine learning and researchers apply
it in different ways. A generalized RBF kernel with a finite-dimensional approximate
feature map, which is an algorithm that is independent of the number of support
vectors, the authors introduce in [23]. Another study [24] to understand the sam-
pling complexity of online kernel learning. In [25], the authors combine the concept
of RFF with non-linear distributed networks where K nodes are connected and each
node operates with its neighbors. In [26], the authors introduce the concept of
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orthogonality into the RFF in which the Gaussian kernel matrix replace with a ran-
dom orthogonal matrix; they call this method Orthogonal Random Features (ORF).
The same authors further introduced the method Structured Orthogonal Random
Features (SORF), in which discrete orthogonal matrices are used to have a fast
matrix computation. The authors propose an algorithm called Correlated Nyström
Views (XNV) in [27], which is a combination of the Nyström method and Canonical
Correlation Analysis (CCA). In [28], they introduce locally compact abelian groups
for random Fourier features. This new group, based on empirical observations on
the exponentiated X2 kernel, enables algorithms to build non-scale-invariant kernels
and to approximate them linearly using RFF. So far, we discuss several studies that
focus on combining RFF with different approaches and approximate kernels with
various approaches rather than neural networks. Hence, we use SLFN to implement
RFF and approximate kernel.

In this thesis, the neural network we consider for optimizing Fourier features is es-
sentially an SLFN. The authors propose an incremental constructive method with
different activation functions in [29] in which can be efficient to build an incremen-
tal feedforward network. In [30], authors discuss the classification regions that can
be formed by SLFNs with bounded activation functions. They propose a new ro-
bust training algorithm for SLFNs in [31] and this algorithm uses linear nodes and
tapped delay input for the network. Online sequential learning is an efficient learn-
ing approach that is particularly applicable to applications with real-time processing
requirements. In [32], the authors propose online sequential learning based on Ra-
dial Basis Function (RBF) nodes for SLFNs to provide fast and accurate results.
The authors propose Online Sequential Extreme Learning Machine (OS-ELM) in
[33] which enables algorithms to perform sequential learning. OS-ELM can operate
with both additive neurons and RBF kernels, and its parameters do not need tuning.
These studies focus on solving problems using SLFN and apply different approaches
via SLFN and we apply the RFF method using SLFN in this thesis.

Investigating the RFF using SLFN is one of the main focus of this thesis. The
authors examine the behavior of the single and two hidden layer neural networks in
[34] when backpropagation is used. Their experiments show that there is not much
difference in single and two-layer networks in terms of trainability and classification
accuracy. The same authors discuss that single-layer networks have slightly better
trainability and classification accuracy results, and they show two-layer networks
train easier when hidden layers have a more or less equal number of hidden units.
In [35], the authors examine the hidden layers and activation functions and show
how activation functions and gradients behave during training. As discussed so far,
the investigation of SLFN can focus on trainability, classification accuracy, and the
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state of the activation functions. Therefore, we investigate our RFF based SLFN in
terms of classification accuracy and optimization of the parameters of RFF.

Extreme Learning Machine (ELM) is a fast and powerful learning technique for
SLFNs that chooses input weights randomly and determines the output weights
analytically [36] and this technique is similar to the work we do in this thesis.
Various types of ELM are used in literature for various applications and problems
such as in [37], a hybrid algorithm as a combination of ELM and differential evolution
is proposed, called evolutionary extreme learning machine (E-ELM). The authors
introduce a regularized ELM in [38] and this method works for noisy datasets as well.
In [39], the authors propose optimally pruned ELM (OP-ELM), which eliminates
unnecessary nodes and variables. In [40], the authors introduce the error minimized
ELM (EM-ELM), which recursively updates its hidden layer and the number of
hidden nodes until the desired error is calculated. The authors propose OS-ELM
with forgetting mechanism (FOS-ELM) in [41] to address the timeliness problem
that each data instance has a certain period for being valid. Despite the similarity
of ELM and RFF in terms of using linear methods to optimize weights, a gradient-
based approach is used to optimize Fourier features, unlike ELM, in this thesis.

The authors propose a fully complex extreme learning machine (C-ELM) in [42] for
nonlinear channel equalization applications. The only difference between C-ELM
and ELM is that it uses complex input weights and complex bias. [43] extends
the ELM algorithm with radial basis function (RBF) networks for SLFNs and call it
ELM-RBF. [44] proposes pruned ELM (P-ELM), which chooses the hidden nodes ac-
cording to their contribution to the classification accuracy using probabilistic meth-
ods such as chi-squared and information gain. In [45], the authors introduce an
algorithm that uses the essentials of the ELM algorithm combined with a classical
cross-validation approach and they call it ensemble-based ELM (EN-ELM). Mul-
tiLayer Extreme Learning Machine (ML-ELM) is another type of ELM that [46]
proposes for unsupervised learning and calls this method Extreme Learning Ma-
chine Auto Encoder (ELM-AE). In [47], the authors compare ELM and SVM in the
use of the same kernel. ELM provided better results than SVM. In [48], the authors
introduce the regularized OS-ELM (ReOS-ELM), which uses Tikhonov regulariza-
tion for optimization, to address the performance issues of OS-ELM when noisy data
is encountered. So far, we discuss different approaches to ELM whether from the
perspective of several machine learning methods, RBF, and cross-validation. In this
thesis, we investigate the RFF method using SLFN in different ways such as apply-
ing cross-validation to RBF kernel parameters and optimizing the Fourier features
using SLFN.
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We construct an SLFN using Fourier features, and we use the SLFN both to learn
the Fourier features and classify them in optimized kernel space. There are studies
in the literature that evaluates this subject simultaneously with our work. Hence,
these studies are superficial, and this thesis offers an investigation in detail. Besides,
we show the steering application of this approach [49] in which we discuss the related
work for steering in a wireless mesh network in Chapter 4.
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3. LEARNING OF FOURIER FEATURES WITH A NEURAL

NETWORK

Binary classification to classify data with binary output, e.g., recognizing a visual
object as a car or human, has been widely studied in machine learning [50]. There
are various methods to classify data represented by {(xt,yt)}Nt=1: xt ∈ R1×d (d is
the dimension of the data) into the classes, i.e., labels, yt ∈ {1,−1}. In general,
binary classification divides into two sections; linear classification shown in Fig. 3.1a
and non-linear classification shown in Fig. 3.1b. The linear binary classification
has robust techniques such as SVM, logistic regression, perceptron [50, 51]. The
kernel machines, neural networks (SLFN’s), multilayer perceptron, SVM, k-nearest
neighbors, naive bayes [52] are several examples of nonlinear classification methods.
Our main focus for nonlinear classification methods are kernel machines and SLFN,
and we investigate their relations.

(a) (b)

Figure 3.1 An example of linear classification in (a) and nonlinear classification in
(b)

In order to achieve nonlinear modeling capability, we use the kernel approach to non-
linear classification in which a kernel function k(·, ·) encodes the inner product be-
tween any two instances xi and xj in a high dimensional space, where zTi zj = k(xi,xj)
and RD×1 3 z = φ(x) is the mapping to the high dimensional space. [53, 54] This
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mapping of the kernel approach can be considered as the transformation of the
nonlinear data manifold in the observation x space with the kernel similarity into a
Euclidean high dimensional z space with the inner product similarity. Consequently,
one can simply apply a linear classifier in the high dimensional z space to solve a non-
linear classification problem in the observation x space. This approach is also known
as the kernelization of linear techniques or simply "kernel trick", cf. Fig. 3.2 for a
visual interpretation. Furthermore, having defined an appropriate kernel function
is typically sufficient to exploit the power of kernels without constructing the map-
ping φ(·) explicitly. This perhaps provides a conceptual advantage, which -however-
leads to a computational drawback. For example, if we consider the classification
function (with γ and β being the classifier parameters) h(x) =∑Nsv

i=1 γik(x,xi)+β of
the kernelized support vector machines (SVM), it is straightforward to observe that
the computational complexity (in the test phase) is O(Nsv) and the number of sup-
port vectors Nsv can be as large as the size of the training set. This is prohibitively
complex, and thus hinders real time processing in especially the contemporary fast
streaming applications that constantly present data in large scales. Similar issues
appear in the training phase as well, since training is typically more complex than
testing and then the cost of using kernels folds more harshly in large scale data
conditions. Therefore, having constructed the mapping φ(·) explicitly appears to be
the key to designing techniques that are computationally efficient while benefiting
the power of kernels.

Figure 3.2 Visual interpretation of kernel trick that allows nonlinear classification
with linear techniques

Rahimi’s suggestion provides a huge advantage in terms of online learning for which
the data receive sequentially in time, time-indexed as (xt,yt). At each time instance,
an instance of the feature receive, and then the current model updates based on the
feedback. Afterward, the received instance discards without being stored in memory
which makes the storage complexity significantly small. In this framework of online
processing, the computational complexity scales only linearly with the number of
processed instances, and thus, scalability achieves with limited storage needs.
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On the other hand, Rahimi suggests method does not learn the weights which are
chosen randomly in the initial step [3]. Therefore, the efficient model can accomplish
by learning those randomly chosen weights which gives better performance. This
is where the neural network methods involves in this work. We form the kernel
method with deep neural networks and learn the randomly chosen weights using
proper learning approach for better classification performance.

To this end, we consider the kernel approach to binary classification and particularly
concentrate on random Fourier features [3, 5] for an explicit construction of the
kernel space. However, random Fourier features are -in its original proposal [3]-
independent of data. For this reason, and based on the recently studied connections
between random Fourier features and neural networks in [55, 10], our goal is to
investigate various training approaches and algorithms for the learning of Fourier
features in the context of neural networks. Afterwards, we present a comprehensive
set of experiments with 10 different benchmark datasets, and then demonstrate an
application of the learned Fourier features to smart steering (by using the data of
[49]) in wireless mesh networks with significantly superior performance compared to
[49].

In the following, we explain random kernel expansion in detail.

3.1 Random Kernel Expansion

Random Fourier features (RFF) [3] provide a means to compactly approximate a
symmetric and shift invariant kernel function, which can be used to achieve com-
putationally substantial gains in applications of classification with kernels. For any
two instances xi,xj ∈ Rd×1 from the feature space, we produce the corresponding
set of transformed instances xi,xj → zi, zj ∈ R2D×1 such that k(xi,xj) can be ap-
proximated arbitrarily well by zTi zj as D increases, i.e., k(xi,xj)' zTi zj .

Remark: This approximation is important because it allows us to exploit computa-
tionally efficient online linear learners after the transformation, which is equivalent
in principle to training a highly powerful kernel classifier, e.g., SVM with the rbf
kernel, in the original space. Note that the idea behind using the kernel is to replace
the conventional similarity, i.e., dot products in the original space (thanks to that
most linear techniques do only rely on dot products), with an appropriate similarity
measure encoded by a kernel (under Mercer’s conditions [2]). This approximation
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directly embeds that information into an explicitly constructed known space.

We choose the “rbf" kernel

k(xi,xj) = exp(−g||xi−xj ||2)

where g is the bandwidth parameter. In the batch classification analysis part of
the presented study, the bandwidth parameter g is determined with 5-fold cross
validation, and used in the online classification part as is without a need to update.
Also, we emphasize that the method we present can be applied to any shift invariant
kernel under Mercer’s condition.

The approximation k(xi,xj) ' zTi zj is based on random Fourier projections as an
application of the Bochner’s theorem (Rahimi, 2008, [3]). Note that the rbf kernel is
shift invariant and symmetric, i.e., k(xi,xj) = k(0,xi−xj), k̄(xi−xj) = k̄(−xi+xj).
Then, Bochner’s theorem reads

k̄(xi−xj) =
∫
Rd×1

p(w)exp(jwT (xi−xj))dw

=
∫
Rd×1

p(w)
(
cos(wT (xi−xj)) + j sin(wT (xi−xj))

)
dw (due to Euler’s identity)

=
∫
Rd×1

p(w)cos(wT (xi−xj))dw (since k(xi,xj) is real and symmetric)

= Ew[cos(wT (xi−xj))],

= Ew[cos(wTxi)cos(wTxj) + sin(wTxi)sin(wTxj)],

= Ew[rw(xi)rTw(xj)],

' zTi zj ,

where rw(x) = [cos(wTx),sin(wTx)] with

zt = 1√
D

[rw1(xt), rw2(xt), · · · , rwD−1(xt), rwD(xt)]T ∈R2D×1,(3.1)

but we use the mapping Zw(x) =
√

2cos(wTx+ b) with b is chosen from uni-
formly from [0,2π] in this chapter (this mapping also satisfy the condition
Ew[rw(xi)rTw(xj)] = k(xi,xj) [3]), p(w) is a proper probability density, thus, Ew(·) is
the expectation with respect to the multivariate Gaussian density p(w) =N(w;µ,Σ)
with zero mean µ = 0 and covariance Σ = 2gI (I is the identity matrix of the ap-
propriate size),

zt = 1√
D

[Zw1(xt),Zw2(xt), · · · ,ZwD−1(xt),ZwD(xt)]T ∈RD×1,(3.2)

is the transform with the desired approximation holding due to the law of large

14



numbers (sample mean approximating the expectation), and {w1,w2, · · · ,wD} is a
set of i.i.d sampled generated from p(w).

Remark: The density p(w) is chosen Gaussian for the reason by Bochner’s theorem
that it is the Fourier transform of the rbf kernel. The presented approach works
for any shift invariant and symmetric kernel under Mercer’s condition. Hence, for
another kernel, one would need to first compute the Fourier transform to specify the
corresponding density. We continue with the rbf kernel in the rest.

Remark: Hence, we have obtained, explicitly and in a randomized fashion, the
high dimensional space (which is actually infinite dimensional) implied by the rbf
kernel. In this high dimensional space, dot products approximate kernel values in
the original space so that training a linear classifier in the high dimensional space
correspond to nonlinear modeling in the original space as desired. Two advantages
for this construct: 1) we can truncate the dimensionality of the transformation to
a desired degree that fits to the computational requirements of our application and
2) the rate of convergence is fast; in other words, the quality of the approximation
above gets better at an exponential rate in D in accordance with the Hoeffding’s
inequality [56]. Thus, D (dimension of the transform) can be chosen relatively small
enabling efficiency regarding the computation of the transformation.

Considering our previous example one more time, the decision function of the ker-
nelized SVM h(x) =∑Nsv

i=1 γik(x,xi) +β can now be approximated as

h(x)'
Nsv∑
i=1

γiz
T zi+β = zT (

Nsv∑
i=1

γizi) +β = zTα+β,(3.3)

where α=∑Nsv
i=1 γizi. This random mapping with RFF provides substantial gains as

the computational complexity shrinks down to O(1) (from the complexity O(Nsv)
of the kernelized SVM) for testing an instance at the computational cost O(D) of
the random mapping x→ z = φ(x). Furthermore, this random mapping with RFF
does also allow online processing (one example is presented in [5]) for large scale
data in real time while maintaining the nonlinear modeling capability, with again
the complexity O(1) per instance.

We next continue with our approach to learning of the Fourier features in order to
remove the randomization and design a data driven method.

3.2 Learning Fourier Features
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Random Fourier features (RFF) (wr, br)Dr=1 as an i.i.d. sample drawn from p(w)×
U(0,2π) are indeed powerful features -as explained in the previous section- enabling
computationally highly efficient nonlinear classification for large scale data in real
time. However, an improvement is certainly possible by learning such features in
a data driven manner, as opposed to relying on a random sample drawn without
taking into account the data.

α1 αDα2

output layer

hidden layer
(D units)

x1 x2 xd

w11

w21

wd1

w12

w22 wd2

w1D w2D wdD

αk: weight of the k’th
unit to the output

Fourier features:
{cos(wT

r xt + br)}
D
r=1

cos(·)
activation

input
(d dimension)

initialization:
(wr, br)

D
r=1

∼ N(0, 2gI)× U(0, 2π)
g: rbf kernel bandwidth parameter

1

b1

b2

bD

bj: bias to the
jth output

wij: weight of the i’th
input to the j’th unit

Figure 3.3 Visual representation of our single hidden layer feedforward neural net-
work (SLFN), where d is dimension of the input data instance x and D is the size of
the hidden layer implementing the mapping with random Fourier features. The hid-
den layer activation is sinusoidal producing the Fourier features {cos(wTr xt+br)}Dr=1.
Initially, (wr, br)Dr=1 are randomly drawn from the density N(0,2gI)×U(0,2π) which
is guaranteed to provide -even initially- powerful nonlinear classification as it imple-
ments the radial basis function (rbf) kernel. Subsequently, this powerfully initialized
SLFN learns Fourier features as its hidden layer activations via the backpropagation
based optimization.

Our network in Fig. 3.3 consists of two layers, where the first layer does RFF based
random mapping in (3.2). Then the output layer follows with the parameters α and
β as in (3.3). The first and hidden layer includes D units and the corresponding
parameters are randomly initialized as (wr, br)Dr=1 ∼N(0,2gI)×U(0,2π), and thus
the set of random Fourier features (RFF), i.e., {cos(wTr xt + br)}Dr=1, is the set of
hidden layer activations with the sinusoidal activation function cos(·). In this work,
we use the radial basis function (rbf) k(xi,xj) = exp(−g||xi−xj ||2) as the kernel,
where g is the bandwidth parameter and hence the randomization is Gaussian given
by the Fourier transform the rbf kernel: p(w) =N(0,2gI) and I is the d×d identity
matrix. The presented work can be straightforwardly extended to any kernel that
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is symmetric and shift invariant.

We emphasize that this observation, i.e., the connection between RFF and neural
networks, has been recently made in [55, 10]. However, both studies [55, 10] exploit
the mapping in (3.1) to obtain the hidden layer with 2D hidden units. In contrast,
we exploit the mapping in (3.2) and as a result obtain a more compact network
with D hidden units. Another difference is that we opt to learn one magnitude
for the output layer and one phase for the hidden layer per each Fourier feature
in contrast to learning two magnitudes for the output layer in [55, 10] per each
Fourier feature. Since magnitudes are from an unbounded space and phase is from
a bounded interval, we consider that our setting is more advantageous in terms of
training and stable gradients. This advantage is in addition to the aforementioned
benefit of having a more compact network with D units.

We also emphasize that even if the hidden layer of this SLFN (Fig. 3.3) is kept
untrained, the network is still expected to perform well. This is because the hidden
layer is designed and initialized to approximately expand the kernel space, in which
the linear classification can already model almost any nonlinearity in the original
space (provided that the kernel being exploited is appropriate). Thus, RFF also
provides a decent initalization to the subsequent training phase. On the other hand,
training the hidden layer optimizes the edge weights {(wr, br)}Dr=1, which yields the
learning of Fourier features as the hidden layer activations {cos(wTr xt+ br)}Dr=1.

In the following, we investigate several training approaches in the introduced context
of learning Fourier features with SLFNs, and also provide a baseline for comparisons.
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3.3 Various Training Approaches for Learning Fourier Features

This section provides our training approaches which can be categorized as classi-
fication with a) random Fourier features (single layer learning, i.e., online kernel
learning and SVM with rbf kernel), b) selected Fourier features (forward selection),
c) SLFN in the typical training settings and d) SLFN with coordinate descent type
optimization. In those approaches, we use backpropagation together with SGD or
minibatch and cross entropy (CE) or mean square error (MSE) losses.

3.3.1 Single Layer Learning (SL)

This approach -as a baseline for our comparisons- keeps the hidden layer untrained
and only learns the output layer, which essentially implements a kernel machine to
obtain a classifier in the kernel space. One can use here stochastic gradient descent
(SGD) or minibatch for training: both correspond principally to the large scale
online kernel learning in [5]. In addition, SVM with the rbf kernel or linear SVM in
the kernel space expanded by random Fourier features [7, 3] also fall in this category,
since a margin based classifier is trained in the kernel space without an attempt to
optimize the kernel space.

3.3.2 Fourier Feature Selection (FFS)

This approach -as another baseline for our comparisons- follows an alternative to
the neural network based Fourier feature learning, and it is similar in nature to the
feature combination with boosting presented in [57]. In this approach, a typically
large set of Fourier features are first randomly drawn as previously described, and
then useful Fourier features are selected in a greedy manner with the forward se-
lection algorithm. This approach is to compare the compactification power, i.e., to
investigate whether the neural network or fature selection performs favorably with
the same number of Fourier features.
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3.3.3 Two Layer Learning (TL)

This approach is the typical neural network training setting with SGD or minibatch
[53]. Both the hidden and output layer are trained.

3.3.4 Batch-Based Two Layer Learning (TL-B)

This training approach processes the data minibatch by minibatch iteratively, in
a coordinate descent type optimization framework [58]. One iteration learns the
output layer while keeping the hidden layer untrained, and the following iteration
learns the hidden layer while keeping the output layer untrained. Iterations follow
each other in an alternating manner. Each minibatch can be chosen as small as a
single data instance or as a tiny subset.

3.3.5 Epoch-Based Two Layer Learning (TL-E)

This training approach is actually the batch-based two layer training, where each
minibatch is chosen as the complete training dataset. In this case, we call iterations
as epochs and each epoch is a complete pass over the data. This is to better inves-
tigate the coordinate descent type optimization framework [58] with more robust
derivatives.

We next present our experiments, where we extensively investigate Fourier features
based on these training approaches to binary classification. In particular, we first
conduct a performance analysis with 10 different benchmark datasets from various
fields.

3.4 Experiments

The benchmark of 10 classification datasets that we use in this part can be
found in [1] and summarized in Table 3.1. Each dataset is z-score standard-
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ized (zero mean and unit variance) before the processing, and shuffled after-
wards to obtain 10 different permutations. Also, 5-fold cross validation is used
for parameter optimization and in each case, 80% (20%) is reserved for train-
ing (testing). Mean accuracy as well as the cross validation results are re-
ported across 10 different permutations along with the corresponding standard
deviations. Optimized parameters are the dimension of the kernel space D ∈
{0.5,1,2,4,8,10,20,30,50,100}×d (where d is the data dimension and we use ceil-
ing when necessary to round to integer) as well as the kernel bandwidth parameter
g ∈ {0.01,0.02,0.04,0.08,0.15,0.3,0.5,1,2,4,8,10,20,30,40,50}. The optimal values
(resulting from cross validation) in each case of the tested algorithm are given in
Table 3.2. Minibatch size is 100 and the learning rate is 0.01 in all of the experiments.

Table 3.1 Benchmark details as provided in [1]
Data Dimension # of Instances (+,-) # of epochs for minibatches / SGD Data type
Australian 14 650 (363, 287) 300 / 20 Real / Australian Credit Approval
Banana 2 5000 (2769, 2231) 250 / 10 Synthetic
Breast Cancer 10 600 (375, 225) 300 / 20 Real / Diagnostic Wisconsin Breast Cancer Database
Diabetes 8 750 (263, 487) 250 / 20 Real / Pima İndians Diabetes Dataset
Fourclass 2 850 (547, 303) 300 / 20 Synthetic
German Numer 24 1000 (700, 300) 150 / 10 Real / German Credit Data
Phishing 68 11000 (4877, 6123) 10 / 2 Real / Phishing Website Data Set
Splice 60 3000 (1454, 1546) 60 / 10 Real / Splice Junctions in DNA Sequence
Svmguide1 4 7000 (3054, 3946) 150 / 10 Synthetic
Svmguide3 21 1250 (919, 331) 150 / 10 Synthetic

Based on our overall classification results that are reported in Table 3.3, our ob-
servations are as follows: 1) cross entropy (CE) loss yields better results compared
to the loss of mean square error, 2) TL approach generally outperforms the others,
and 3) using minibatch or SGD for optimization seem to not generate a significance
difference. Consequently, SLFN based learning of Fourier features is superior over
a plain kernelization (cf. the comparisons between TL’s and SL) and observed to
be promising in terms of enabling computationally efficient online processing due
to the comparability SGD and minibatch. Also, a joint learning of the Fourier fea-
tures and classifier is observed to outperform the coordinate descent type learning
(cf. the comparisons between TL and TL-B or TL-E). Therefore, we continue our
experiments below with the TL approach trained based on the CE loss and the SGD
optimization since it is observed to outperform the others.
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Table 3.2 Cross validation results: average bandwidth parameter g (upper) and
number D of units in the hidden layer (lower) with the corresponding standard
deviations in each case

TL (CE) SL (CE) TL-E (CE) TL-B (CE) TL (MSE) SL (MSE) TL-E (MSE) TL-B (MSE)

Australian

SGD
0.09 ± 0.03
28 ± 30.72
mini batch
0.08 ± 0.00
882 ± 466.89

SGD
0.11 ± 0.03
112 ± 75.82
mini batch
0.10 ± 0.03
742 ± 596.78

SGD
0.14 ± 0.06
41 ± 40.25
mini batch
0.07 ± 0.03
936 ± 516.32

SGD
0.10 ± 0.04
73 ± 50.26
mini batch
0.09 ± 0.02
619 ± 472.31

SGD
0.12 ± 0.07
276 ± 164.86
mini batch
0.06 ± 0.03
686 ± 500.22

SGD
0.16 ± 0.09
404 ± 420.97
mini batch
0.10 ± 0.10
264 ± 223.59

SGD
0.14 ± 0.06
373 ± 414.68
mini batch
0.09 ± 0.04
356 ± 178.58

SGD
0.14 ± 0.06
213 ± 184.88
mini batch
0.06 ± 0.03
476 ± 362.68

Banana

SGD
1.00 ± 0.00
27 ± 15.10
mini batch
1.20 ± 0.42
72 ± 51.82

SGD
1.20 ± 0.42
78 ± 23.94
mini batch
1.00 ± 0.00
122 ± 56.13

SGD
1.40 ± 0.51
46 ± 17.19
mini batch
1.00 ± 0.00
122 ± 56.13

SGD
1.10 ± 0.31
40 ± 19.84
mini batch
1.00 ± 0.00
106 ± 54.20

SGD
1.70 ± 0.48
150 ± 52.70
mini batch
1.20 ± 0.42
84 ± 66.53

SGD
1.20 ± 0.42
180 ± 42.16
mini batch
1.00 ± 0.00
86 ± 47.18

SGD
1.70 ± 0.48
142 ± 62.85
mini batch
1.10 ± 0.31
74 ± 54.20

SGD
1.80 ± 0.42
170 ± 48.30
mini batch
1.10 ± 0.31
84 ± 67.19

Breast Cancer

SGD
0.11 ± 0.04
175 ± 301.97
mini batch
0.08 ± 0.03
560 ± 333.99

SGD
0.12 ± 0.03
208 ± 172.61
mini batch
0.15 ± 0.05
304 ± 266.13

SGD
0.10 ± 0.04
208 ± 184.80
mini batch
0.10 ± 0.03
500 ± 294.39

SGD
0.11 ± 0.04
166 ± 187.86
mini batch
0.10 ± 0.03
550 ± 134.16

SGD
0.13 ± 0.09
285 ± 303.58
mini batch
0.16 ± 0.10
403 ± 436.39

SGD
0.18 ± 0.09
376 ± 346.12
mini batch
0.14 ± 0.07
357 ± 385.67

SGD
0.15 ± 0.08
156 ± 151.84
mini batch
0.14 ± 0.10
222 ± 313.38

SGD
0.12 ± 0.10
222 ± 152.57
mini batch
0.14 ± 0.07
357 ± 385.67

Diabetes

SGD
0.16 ± 0.07
20 ± 22.92
mini batch
0.10 ± 0.03
359 ± 261.19

SGD
0.17 ± 0.07
52 ± 28.01
mini batch
0.13 ± 0.06
386 ± 308.36

SGD
0.15 ± 0.08
45 ± 47.19
mini batch
0.10 ± 0.03
519 ± 314.09

SGD
0.18 ± 0.10
37 ± 48.89
mini batch
0.10 ± 0.03
519 ± 314.09

SGD
0.17 ± 0.11
231 ± 251.96
mini batch
0.07 ± 0.04
218 ± 298.83

SGD
0.25 ± 0.07
341 ± 327.12
mini batch
0.12 ± 0.08
56 ± 56.11

SGD
0.19 ± 0.09
228 ± 212.50
mini batch
0.11 ± 0.09
126 ± 103.40

SGD
0.17 ± 0.09
312 ± 275.71
mini batch
0.11 ± 0.04
148 ± 119.20

Fourclass

SGD
1.20 ± 0.42
176 ± 51.46
mini batch
1.50 ± 0.52
166 ± 55.81

SGD
1.20 ± 0.42
180 ± 42.16
mini batch
1.10 ± 0.31
190 ± 31.62

SGD
1.70 ± 0.48
172 ± 59.02
mini batch
1.30 ± 0.48
190 ± 31.62

SGD
1.20 ± 0.42
200 ± 0.00
mini batch
1.30 ± 0.48
190 ± 31.62

SGD
1.20 ± 0.42
126 ± 66.70
mini batch
1.00 ± 0.40
74 ± 49.93

SGD
1.20 ± 0.42
98 ± 57.69
mini batch
0.81 ± 0.31
88 ± 64.08

SGD
1.40 ± 0.51
98 ± 76.15
mini batch
1.10 ± 0.51
66 ± 56.48

SGD
1.40 ± 0.51
77 ± 72.56
mini batch
1.10 ± 0.51
66 ± 56.48

German Numer

SGD
0.08 ± 0.02
28 ± 26.56
mini batch
0.05 ± 0.01
672 ± 247.87

SGD
0.13 ± 0.06
44 ± 31.08
mini batch
0.06 ± 0.03
102 ± 142.57

SGD
0.10 ± 0.04
50 ± 55.55
mini batch
0.04 ± 0.02
500 ± 349.22

SGD
0.10 ± 0.03
38 ± 24.29
mini batch
eee ± eee
eee ± eee

SGD
0.12 ± 0.07
144 ± 84.66
mini batch
0.07 ± 0.04
720 ± 464.27

SGD
0.13 ± 0.07
242 ± 345.96
mini batch
0.04 ± 0.05
436 ± 709.93

SGD
0.08 ± 0.05
178 ± 126.08
mini batch
0.05 ± 0.05
288 ± 211.05

SGD
0.11 ± 0.05
149 ± 91.07
mini batch
0.06 ± 0.06
404 ± 340.31

Phishing

SGD
0.09 ± 0.03
116 ± 89.52
mini batch
0.04 ± 0.00
2108 ± 748.34

SGD
0.07 ± 0.01
327 ± 194.45
mini batch
0.08 ± 0.00
1265 ± 897.66

SGD
0.08 ± 0.00
232 ± 129.02
mini batch
0.04 ± 0.00
2652 ± 814.10

SGD
0.08 ± 0.00
113 ± 39.42
mini batch
0.04 ± 0.00
2040 ± 555.21

SGD
0.09 ± 0.04
419 ± 409.90
mini batch
1.05 ± 3.14
1622 ± 2103.48

SGD
0.11 ± 0.03
776 ± 681.66
mini batch
0.11 ± 0.04
1779 ± 2713.28

SGD
0.11 ± 0.03
776 ± 681.66
mini batch
3.05 ± 6.72
1027 ± 1060.35

SGD
0.08 ± 0.02
599 ± 635.31
mini batch
2.05 ± 4.18
2197 ± 2640.60

Splice

SGD
0.08 ± 0.02
45 ± 15.81
mini batch
0.04 ± 0.00
1320 ± 252.98

SGD
0.08 ± 0.02
192 ± 61.96
mini batch
0.01 ± 0.00
246 ± 204.35

SGD
0.06 ± 0.01
138 ± 75.09
mini batch
0.04 ± 0.01
1380 ± 289.82

SGD
0.07 ± 0.01
93 ± 60.74
mini batch
0.04 ± 0.01
1440 ± 419.52

SGD
0.08 ± 0.04
132 ± 78.99
mini batch
0.05 ± 0.03
1014 ± 635.26

SGD
0.14 ± 0.02
336 ± 210.14
mini batch
0.09 ± 0.03
1473 ± 1995.61

SGD
0.07 ± 0.03
162 ± 69.57
mini batch
0.06 ± 0.03
846 ± 670.79

SGD
0.09 ± 0.03
198 ± 189.84
mini batch
0.06 ± 0.03
846 ± 670.79

Svmguide1

SGD
0.85 ± 0.24
40 ± 16.19
mini batch
0.50 ± 0.00
172 ± 125.14

SGD
0.44 ± 0.09
112 ± 46.86
mini batch
0.40 ± 0.10
276 ± 133.93

SGD
0.63 ± 0.26
78 ± 55.43
mini batch
0.40 ± 0.10
304 ± 126.77

SGD
0.60 ± 0.21
73 ± 43.07
mini batch
0.42 ± 0.10
264 ± 121.03

SGD
0.60 ± 0.21
208 ± 139.58
mini batch
0.40 ± 0.10
220 ± 133.66

SGD
0.48 ± 0.06
256 ± 135.05
mini batch
0.29 ± 0.16
100 ± 78.40

SGD
0.50 ± 0.00
228 ± 130.65
mini batch
0.35 ± 0.14
115 ± 124.96

SGD
0.53 ± 0.17
147 ± 143.80
mini batch
0.33 ± 0.13
154 ± 147.23

Svmguide3

SGD
0.16 ± 0.08
48 ± 47.23
mini batch
0.08 ± 0.00
609 ± 320.01

SGD
0.18 ± 0.08
44 ± 24.40
mini batch
0.06 ± 0.03
277 ± 362.07

SGD
0.18 ± 0.06
48 ± 50.90
mini batch
0.07 ± 0.03
668 ± 346.59

SGD
0.15 ± 0.05
64 ± 48.12
mini batch
0.07 ± 0.01
563 ± 362.48

SGD
0.15 ± 0.08
492 ± 359.14
mini batch
0.16 ± 0.10
551 ± 338.58

SGD
0.19 ± 0.07
341 ± 234.64
mini batch
0.19 ± 0.07
546 ± 396.47

SGD
0.14 ± 0.06
441 ± 603.54
mini batch
0.19 ± 0.09
450 ± 377.24

SGD
0.19 ± 0.09
601 ± 360.23
mini batch
0.18 ± 0.08
471 ± 381.25
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Table 3.3 Benchmark results of TL, SL, TL-E and TL-B algorithms with CE/MSE
loss and minibatch/SGD optimizers on ten different data sets

TL (CE) SL (CE) TL-E (CE) TL-B (CE) TL (MSE) SL (MSE) TL-E (MSE) TL-B (MSE)

Australian

SGD
87.23 ± 2.90
mini batch
87.07 ± 1.27

SGD
84.07 ± 3.60
mini batch
85.15 ± 2.17

SGD
84.92 ± 4.65
mini batch
86.84 ± 2.74

SGD
86.23 ± 2.92
mini batch
86.07 ± 2.74

SGD
72.38 ± 16.93
mini batch
69.84 ± 15.37

SGD
70.00 ± 16.92
mini batch
60.15 ± 11.11

SGD
67.84 ± 15.57
mini batch
69.00 ± 14.15

SGD
66.92 ± 14.75
mini batch
63.76 ± 13.03

Banana

SGD
89.32 ± 1.14
mini batch
89.82 ± 0.66

SGD
88.45 ± 1.53
mini batch
89.48 ± 0.65

SGD
89.22 ± 1.11
mini batch
89.35 ± 1.21

SGD
89.68 ± 1.19
mini batch
89.19 ± 1.34

SGD
89.15 ± 1.11
mini batch
85.92 ± 5.59

SGD
87.99 ± 1.28
mini batch
85.59 ± 3.68

SGD
87.83 ± 1.11
mini batch
83.41 ± 3.57

SGD
88.53 ± 1.27
mini batch
84.86 ± 3.07

Breast Cancer

SGD
95.58 ± 1.75
mini batch
95.83 ± 1.90

SGD
94.58 ± 1.63
mini batch
95.16 ± 1.61

SGD
95.66 ± 1.74
mini batch
96.25 ± 1.25

SGD
95.66 ± 1.74
mini batch
95.75 ± 1.80

SGD
68.66 ± 25.47
mini batch
73.16 ± 21.96

SGD
75.25 ± 28.01
mini batch
51.50 ± 20.78

SGD
71.91 ± 25.04
mini batch
59.91 ± 22.18

SGD
76.83 ± 24.44
mini batch
51.41 ± 20.16

Diabetes

SGD
76.46 ± 2.61
mini batch
76.40 ± 1.40

SGD
73.73 ± 3.54
mini batch
73.40 ± 3.14

SGD
74.66 ± 4.39
mini batch
74.86 ± 2.89

SGD
75.00 ± 3.05
mini batch
74.40 ± 3.22

SGD
72.13 ± 6.10
mini batch
63.55 ± 12.58

SGD
61.53 ± 15.66
mini batch
73.55 ± 4.01

SGD
69.06 ± 11.95
mini batch
54.55 ± 13.25

SGD
61.13 ± 18.16
mini batch
63.33 ± 7.68

Fourclass

SGD
99.88 ± 0.23
mini batch
98.41 ± 1.14

SGD
99.47 ± 0.61
mini batch
96.23 ± 1.98

SGD
99.70 ± 0.54
mini batch
96.88 ± 1.53

SGD
99.70 ± 0.47
mini batch
96.88 ± 1.53

SGD
96.00 ± 4.71
mini batch
69.58 ± 17.26

SGD
92.23 ± 8.24
mini batch
64.00 ± 14.80

SGD
93.82 ± 5.87
mini batch
69.52 ± 14.54

SGD
95.35 ± 3.60
mini batch
69.58 ± 14.56

German Numer

SGD
73.90 ± 3.76
mini batch
74.75 ± 2.96

SGD
72.85 ± 2.96
mini batch
68.45 ± 3.55

SGD
72.90 ± 4.18
mini batch
67.90 ± 4.53

SGD
73.50 ± 3.15
mini batch
70.15 ± 3.83

SGD
67.50 ± 13.76
mini batch
57.20 ± 19.13

SGD
61.30 ± 13.82
mini batch
59.00 ± 16.07

SGD
58.90 ± 19.83
mini batch
50.30 ± 18.75

SGD
66.05 ± 13.79
mini batch
48.80 ± 19.73

Phishing

SGD
93.52 ± 0.73
mini batch
92.75 ± 0.61

SGD
92.31 ± 1.08
mini batch
89.90 ± 1.19

SGD
93.34 ± 0.63
mini batch
92.89 ± 0.87

SGD
90.85 ± 5.23
mini batch
92.37 ± 1.81

SGD
77.85 ± 18.16
mini batch
57.28 ± 15.48

SGD
83.06 ± 13.63
mini batch
59.66 ± 8.68

SGD
84.60 ± 13.82
mini batch
68.43 ± 10.20

SGD
83.76 ± 14.11
mini batch
71.40 ± 10.28

Splice

SGD
84.05 ± 1.10
mini batch
83.88 ± 1.24

SGD
78.60 ± 2.64
mini batch
50.05 ± 5.72

SGD
79.10 ± 7.57
mini batch
80.35 ± 2.58

SGD
80.50 ± 6.67
mini batch
80.11 ± 1.98

SGD
72.85 ± 12.90
mini batch
62.06 ± 10.97

SGD
71.83 ± 6.93
mini batch
53.91 ± 4.97

SGD
73.40 ± 9.75
mini batch
59.03 ± 6.58

SGD
72.28 ± 10.73
mini batch
58.80 ± 6.71

Svmguide1

SGD
96.35 ± 0.45
mini batch
96.55 ± 0.37

SGD
95.60 ± 0.61
mini batch
95.78 ± 0.83

SGD
95.76 ± 0.65
mini batch
95.21 ± 1.48

SGD
96.38 ± 0.43
mini batch
95.75 ± 0.56

SGD
95.70 ± 0.88
mini batch
82.80 ± 18.30

SGD
90.49 ± 12.43
mini batch
85.01 ± 17.88

SGD
95.10 ± 1.20
mini batch
84.95 ± 12.50

SGD
90.20 ± 12.46
mini batch
82.32 ± 15.15

Svmguide3

SGD
80.72 ± 3.03
mini batch
79.28 ± 3.10

SGD
77.60 ± 3.95
mini batch
72.92 ± 2.70

SGD
75.52 ± 10.58
mini batch
78.44 ± 2.48

SGD
77.08 ± 9.69
mini batch
76.72 ± 3.37

SGD
69.24 ± 18.13
mini batch
62.64 ± 18.09

SGD
66.00 ± 19.58
mini batch
67.32 ± 15.08

SGD
70.08 ± 7.92
mini batch
68.04 ± 7.20

SGD
73.20 ± 12.86
mini batch
65.80 ± 12.60

Our benchmark results in Table 3.3 are produced by using a similar setting for all
algorithms for fairness. After choosing the best performing TL algorithm (with CE
and SGD) as discussed above, we now further optimize it (TL algorithm with CE
and SGD) standalone in terms of the number of minibatches and learning rate while
comparing to SVM with rbf kernel. The resulting accuracy performance is given in
Table 3.4, where the kernel bandwidth parameter g is used as the cross validated
choice of Table 3.2. We observe that the TL algorithm now performs comparable
with (or slightly outperforms in 8 cases out of 10) SVM with rbf kernel. This
is different from our previous observation in which the TL algorithm significantly
outperforms (in contrast to the comparability or slightly better performance in favor
of the TL algorithm in Table 3.4 compared to SVM with rbf kernel) the SL algorithm
(cf. Table 3.3). Despite this difference, however, we point out that SVM with rbf
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kernel and SL algorithm are in fact similar in principle as they both do not attempt
to optimize the kernel space in which they both train a linear classifier, except that
SVM with rbf kernel incorporates the strong max margin concept as a regularizer
[7]. Therefore, we consider that the use of max margin regularization in SVM with
rbf kernel explains this difference between our observations and also explains the
exception (the only relatively low performance of the TL algorithm compared to
SVM with rbf kernel) in the case of Splice dataset (cf. Table 3.3). Importantly,
due to the comparable performance between the TL algorithm and SVM with rbf
kernel, we conclude that learning Fourier features can compensate for the lack of
max margin regularization. Furthermore, one can expect to outperform SVM with
rbf kernel by also using the max margin regularization along with learning Fourier
feature, as demonstrated next. As a result, we conclude that learning of Fourier
features is largely beneficial by relying on the comparison between the TL and SL
algorithms, as they both do not have the max margin regularization whereas SVM
with rbf kernel has.

Table 3.4 Comparison of TL algorithm (CE and mini batch) with SVM (rbf kernel)
in terms of classification accuracy

Data
(epochs, learning rate)

TL algorithm’s accuracy
(mean / ± std dev)

RBF SVM’s accuracy
(mean / ± std dev)

Australian (500, 0.008) 87.76 / ± 1.70 86.00 / ± 2.13
Banana (400, 0.01) 90.08 / ± 0.45 90.04 / ± 0.75
Breast Cancer (500, 0.01) 96.33 / ± 1.58 96.16 / ± 1.76
Diabetes (550, 0.005) 76.93 / ± 2.17 76.26 / ± 1.94
Fourclass (900, 0.01) 99.94 / ± 0.17 99.88 / ± 0.24
German Numer (350, 0.01) 76.60 / ± 2.47 76.10 / ± 3.00
Phishing (200, 0.01) 94.37 / ± 0.47 96.95 / ± 0.36
Splice (900, 0.001) 84.83 / ± 1.34 91.03 / ± 1.20
Svmguide1 (350, 0.05) 96.84 / ± 0.34 96.79 / ± 0.35
Svmguide3 (250, 0.01) 81.08 / ± 2.99 81.06 / ± 3.07

Our last experiment in this section is to compare learning Fourier features with a)
the introduced SLFN (by the TL algorithm) and with b) forward feature selection.

The idea of FFS approach is that the candidate D size Fourier features chosen
iteratively using linear regression with regularization (regularization parameter as
λ= 100) among the 10D randomly initialized Fourier features. At the first iteration,
we choose the Fourier features with a size of 10 that give the least mean square error
among the 10D set. At the next iteration, the next Fourier features with a size of
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10 are chosen, together with the previously chosen 10 Fourier features, which gives
the least mean square error again. This approach proceeds until the best D Fourier
features are chosen.

The Fourier features chose according to the train set of each data set which is %80
of the data set. Then the training set separated into 5 equal sizes of subset and 4
subsets trained using the SL approach with selected Fourier features and test the
trained model on the test set. D and g parameters determined by 5 fold cross-
validation for the SL approach used for this process.

Table 3.5 Comparison of two layer learning approach, single layer learning approach,
single layer learning with chosen Fourier features (FFS) and linear SVM with Fourier
features in terms of the mean and standard deviation of accuracy

Data
TL (mb, CE) accuracy
(mean ± std dev)

SL (mb, CE) accuracy
(mean ± std dev)

with chosen Fourier features
(mean ± std dev)

Linear SVM with chosen Fourier features
(mean ± std dev)

Australian 87.07 ± 1.27 85.15 ± 2.17 86.30 ± 3.01 85.23 ± 2.70
Banana 89.82 ± 0.66 89.48 ± 0.65 89.61 ± 0.93 90.20 ± 0.70
Breast Cancer 95.83 ± 1.90 95.16 ± 1.61 95.33 ± 2.04 96.41 ± 1.24
Diabetes 76.40 ± 1.40 73.40 ± 3.14 75.33 ± 3.14 75.86 ± 2.10
Fourclass 98.41 ± 1.14 96.23 ± 1.98 97.94 ± 1.18 100.00 ± 0.00
German Numer 74.75 ± 2.96 68.45 ± 3.55 70.50 ± 4.24 74.25 ± 2.67
Phishing 92.75 ± 0.61 89.90 ± 1.19 86.00 ± 2.49 95.64 ± 0.62
Splice 83.88 ± 1.24 50.05 ± 5.72 51.20 ± 5.85 81.38 ± 4.78
Svmguide1 96.55 ± 0.37 95.78 ± 0.83 96.05 ± 0.60 96.71 ± 0.44
Svmguide3 79.28 ± 3.10 72.92 ± 2.70 73.48 ± 2.28 78.88 ± 3.54

In Table 3.5, the accuracy results of the SL algorithm with selected Fourier features
and linear SVM with selected weights compared with TL and SL algorithm. The
results of the SL with selected Fourier features give better accuracy than the SL but
slightly worse results than TL algorithm. This is an expected result since we choose
the best D Fourier features from 10D random Fourier features set, it should exceed
the accuracy results of the SL algorithm. Hence, TL algorithm determines the best
Fourier features when its training process is over which the SL with chosen Fourier
features accuracy is less than TL algorithms accuracy. The results of linear SVM
with selected Fourier features give a baseline for the rest of the results.
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4. AN APPLICATION OF THE PROPOSED APPROACH:

SMART STEERING FOR WIRELESS MESH NETWORKS

4.1 Introduction

Mobile devices have found a widespread use in almost all aspect of our daily lives:
home, work, education and entertainment; and consequently, an increasing number
of smart phones and diverse applications have triggered a surge in mobile data traffic
that is estimated to account 24 for 63 % of all IP traffic [59].

Among various other alternatives, IEEE 802.11 Wi-Fi is the most widely used wire-
less technology, and with the introduction of new MIMO modes together with dual
band operation (2.4 GHz and 5.8 GHz) in IEEE 802.11ac, Wi-Fi link rates have
reached Gbps levels [60]. On the other hand, due to the large attenuation through
walls and floors, those promised broadband rates cannot be achieved with single ac-
cess point (AP) Wi-Fi networks in indoor environments. Nevertheless, the through-
put and coverage of single AP Wi-Fi networks can be significantly enhanced thanks
to the mesh networks, which enable the dynamic organization and configuration of
multiple access points (APs) and multi hop routing [61], [62].

A wireless mesh network typically consists of mesh APs and clients and a gateway
node, as illustrated in Fig. 4.1. The figure illustrates an example home mesh
network, where the gateway AP is connected to the Internet and the clients access
the network via multiple APs, which are connected to each other over the mesh links
with different cost values that correspond to, for instance, the airtime metric [63].

In all Wi-Fi deployments including Wi-Fi mesh networks, an uneven distribution of
wireless clients among APs results in heavily unbalanced networks that suffer from
bandwidth or access problems [64]. Also, portability requires a client to seamlessly
transition from one AP to another while moving from location to location. Prior
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Figure 4.1 An example home mesh network.

to transition, the best target AP needs to be selected, and rather than client-driven
operation [65], the transition decision is better managed centrally, as shown in [66].
For multi band mesh networks employing IEEE 802.11ac, the transition decision
involves not only moving from one AP to the other, but also involves moving to
the appropriate frequency band, which is also referred to as interface. The decision
of transitioning a client to a new mesh AP or to a new interface of a mesh AP, is
similar to the shortest path routing [67]. That is, the total cost of all possible end-
to-end paths from the client to the gateway node is computed by considering the
individual costs of connecting to all possible candidate APs and interfaces along the
path. Afterwards, the end-to-end path with the smallest cost is selected. The cost
metric can involve different link quality metrics, such as Received Signal Strength
Indicator (RSSI) or link rate, or it may implement a joint function, as in [67].

In a mesh network, a client can remain persistently connected to an AP even when
a better alternative is available. This is known as the sticky client problem, which
occurs when the system performs its probing function to observe link metrics, but
refuses to roam to the new AP [65]. This might be due to the incorrect or unstable
reporting of the link metrics, or directly the vendors of devices that do not perform
the probing well. For example, in Fig. 4.1, let the client phone in the second floor
be initially connected to AP 3 to access the Internet. Upon being picked up and
moved to the room next door, despite computing a smaller cost for connecting over
AP 2, if it stays connected to AP 3, then it is said to be sticked to that AP. As a
result of the sticky client problem, the enhancements of the mesh network cannot be
fully realized, and the persistent connections can starve bandwidth in applications
such as video and gaming.

To remedy the sticky client problem, Wi-Fi vendors implement proprietary client
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steering solutions, so that a client is directed forcefully to transition to the best
possible AP in the network (cf. patents [68], [69]). Certain solutions disconnect the
client from the current AP by blacklisting it, while others employ IEEE 802.11v
Basic Service Set (BSS) transition management functions [70]. Steering actions do
not always successfully produce the intended outcome as they can fail due to –for
instance- imperfections in the steering module; hence, the outcome of the steering
operation is also not known prior to the attempt.

In this thesis, we present a data driven machine learning approach for analyzing
steering modules and identifying when and under which conditions AP-change re-
quests succeed or fail. To this goal, we formulate a binary classification problem
based on various network features and train classifiers to learn the critical regions of
successful steering actions in the space of network features. Based on this analysis,
we propose two smart steering approaches that result in successful transitions. Our
contributions and findings can be listed as follows.

• Based on the cloud data collected from a real mesh network employing a
client steering module [68], we observe network features, namely current RSSI,
current cost, target RSSI, target cost, and we characterize the critical regions
of the space of those features, in which the steering actions are more likely to
be successful.

• We conduct a batch analysis via Support Vector Machines (SVM) for charac-
terizing the steering data, and based on this analysis, we propose Batch ML
for Smart Steering approach.

• Based on the findings of our batch analysis, we develop an online learning
approach (online kernel perceptron), namely, Online ML for Smart Steering
which is a data-driven, adaptive, real-time algorithm applied to client steering
for the first time in the literature.

• The presented online kernel perceptron classifier performs learning sequentially
at the cloud from the entire data of multiple mesh networks and operates at
APs for steering, both of which are executed in real-time.

• Our results indicate that even by using only two network features, we can
classify the steering actions with more than 95% accuracy using our batch ML
solution.

• It is shown that the accuracy of our online ML solution is comparable with that
of batch ML by a small margin, but the complexity of the online algorithm is
significantly smaller by orders of magnitude.
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4.1.1 Related Work

A plethora of research has been conducted on handoff and connection management
in wireless networks, since the first generation of cellular systems [71]. Topology
or graph-based handoff schemes have been studied in [72][73][74][75], where connec-
tivity information is exploited with a focus on minimizing latency. However, client
steering is different than the hand off or association problem, as it considers the
case when a transition in a Wi-Fi network fails and a client node remains connected
to the previous AP. Except for some patented solutions such as, [68], [69] from de-
vice vendors, the scientific literature on Wi-Fi client steering, with cloud processing
in particular, is rather limited. The authors in [76] propose a bandwidth-oriented
handoff steering mechanism, called guided tour of handoff, which assumes that the
venue has been surveyed to support indoor localization via fingerprinting based on
the received signal strength from reachable APs. Making use of the radio map con-
veying which APs are available and how strong their signals are at certain locations
in the venue, steering is performed to a better AP for the purpose of enhancing
throughput.

Machine Learning (ML) based studies in wireless communications and networks
have recently received much attention, addressing a wide range of problems from
large-scale MIMO systems to device-to-device (D2D) networks, heterogeneous net-
works to cognitive radio [77]. Since the analysis in our work is based on machine
learning via classification; in this section, we review the related ML approaches
to the wireless network problems. In [78, 79], K-nearest neighbors algorithms are
shown to be beneficial for traffic prediction, for anomaly detection, as well as for
modulation classification. Bayesian learning has been applied to channel parameter
estimation in [80] and to spectrum sensing in [81]. Support Vector Machines (SVM)
is applied for dynamically routing traffic in 5G radio access networks in [82], and
for determining the location of wireless nodes in a certain area, by classifying RSSI
values, in [83]. In [84], classification is employed in a MIMO wireless network to
predict the radio parameters. In [85], for D2D networks, calculation of estimated
time of arrivals is improved to obtain the structure of connections, so that a client
can determine its time of data transfer based on the network it is connected to. A
classification approach can also be used for learning the mobile terminal’s specific
usage pattern in diverse spatiotemporal and device contexts, as discussed in [86].
Another application is wireless network security, where Denial of Service attacks
are detected via classifiers [87]. In such works, APs are classified as authorized
and unauthorized based on Round Trip Time values, and unauthorized APs, which
spread viruses, hack and steal information from connected clients, are detected and
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prevented [88]. In [89], a cognitive radio network is considered and the common
control channel for secondary users during a given frame is selected by employing
an SVM-based learning technique.

On the other hand, SVM is applied in our work for identification of the critical
regions of successful steering actions in a Wi-Fi mesh network. Additionally, based
on this analysis, an adaptive, real-time, online smart steering approach is proposed.
We emphasize that our targeted application of real time and data driven smart client
steering in wireless mesh networks is significantly different than above mentioned
studies, and our study is the first to consider client steering from ML perspective
under such practical constraints.

4.1.2 Chapter Organization

The rest of the chapter is organized as follows. Section 4.2 presents the problem
description. In Section 4.3, the proposed classification based approach for smart
steering is introduced, including batch and online steering algorithms. In Section
4.4, our experimental results are presented with the details of considered data and
preprocessing, and classification results.

4.2 Problem Description

We study the outcomes of a given steering module as a binary classification prob-
lem. Our study is based on the remotely collected data of a Wi-Fi mesh network
consisting of multiple clients, APs, and interfaces, where an interface is essentially
the frequency band utilized in the connection between the AP and a client. Our col-
lected data (after preprocessing) is a sequence of events (successful or unsuccessful)
for each steering action of guidance of a client to another AP or interface. Typically,
whenever a client is considered to be better off if it is connected to another access
point or interface, then an appropriate steering action, i.e. guidance, is issued. An
action does not necessarily result in the intended outcome, generating the labels
“successful” (1) or “unsuccessful” (-1), i.e., Y ∈ {−1,1}Nx1 (N is the number of
actions). We associate these labels with “features” that are certain properties of
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the network at the time of an action: RSSI and cost of the current as well as the
targeted connection of the client, cf. Fig. 4.1 or Fig. 4.2 for an illustration.

RSSI is the received signal strength indicator, whereas cost is an end-to-end metric
that provides additional information about the connection quality. Measured be-
tween the client and the associated AP or between the root AP with gateway and
the other APs, the cost metric per link is often computed, periodically by checking
all possible steering connections to evaluate initiating a steering action [68]. We
emphasize that the cost feature can be considered as a parameter summarizing the
environmental, network- or vendor-specific effects (on steering actions) that are not
counted in the remaining features. In our study, the cost per link is calculated as

50000
(b R

20c+1) , where R is the physical layer link (data) rate, as specified in [68], which is
similar to the airtime metric in [63].

Current and target signal strength as well as the costs for the current and targeted
connections constitute altogether a four dimensional feature vector for each action,
generating the data: X ∈RNx4 along with the feedbacks, i.e., labels, Y ∈{−1,1}Nx1.
Our approach is to train a classifier based on this data for obtaining a model f(x) ∈
{−1,1} in the feature space, which predicts whether an action can succeed or not
before it is issued. Note that this classifier suggests a steering outcome on each single
point in the feature space, even if it is not tried before by the given steering module.
This enables us to explore the whole space and also correct the failing decision points
of the existing steering module. Hence, one can consequently decide when exactly
to request an action. Namely, one can decide to not follow the existing module; and
instead rely on the ones predicted by f(x), which readily defines a novel and data
adaptive steering solution that is certainly better (due to training with feedback)
compared to rule based nonadaptive ones.

We emphasize that a central agent who requests the steering actions might well be
simultaneously observing a large number of mesh networks (for instance, mesh net-
works of different apartments in a building) each of which might well be serving to
multiple clients. For this reason, it is extremely important to devise a model f(x)
whose training is computationally scalable to such large scale networks with rela-
tively small space complexity and adaptive to nonstationarity, i.e., possible changes
in the network behavior. This realistic processing requirement hinders the use of
batch techniques and leads us to consider online algorithms. Therefore, we study
the introduced classification problem in the online processing framework in which
the data is received sequentially in time (then the data is time-indexed as (xt,yt)
without a known horizon like N). At each time instance, an instance of steering
action is received and then the current model is updated based on the feedback.
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Afterwards, the received instance is discarded without being stored so the storage
complexity is significantly small. In this framework of online processing, the com-
putational complexity scales only linearly with the number of processed instances,
and thus, scalability can be achieved with limited storage needs.

As a result, we sequentially observe xt ∈R4×1, and our goal is to learn an online clas-
sifier ft(x) that is sequentially updated at each time with respect to the observed
loss l(ft−1(xt),yt), i.e., cross entropy loss, induced by the feedback yt ∈ {1,−1}.
In addition, we aim to use constant magnitude updates (rather than the conven-
tional update diminishing at a 1/t rate) for adaptation to nonstationarity or drifting
network parameters. Our proposed solution is a data-driven, adaptive and online,
essentially a smart steering module which is a significantly novel contribution to the
literature and expected to open-up new directions in managing large mesh networks.

4.3 The Proposed Classification Approach for Smart Steering

We first investigate the learnibility of the problem, which is unknown, since the
so-called sticky client problem has not been addressed in the literature from the
machine learning perspective. One should first answer several ordinary machine
learning questions such as 1) which features are most informative, 2) is the problem
a linear or nonlinear classification problem, 3) what is the best set of parameters in
training a classifier and 4) what is the baseline accuracy for performance evaluation.
In order to answer such questions, we first conduct a Support Vector Machines
(SVM) [90] based batch analysis (with proper cross-validation and train/test splits
for statistical robustness) for the problem, where SVM is chosen as an example for its
linear and nonlinear modeling capability and any other algorithm such as Adaboost
[2], if desired, can also be used for this purpose. In addition to answering such
questions, i.e., the investigation of learnibility in the specified machine learning
problem, SVM also readily defines a classifier for successful/unsuccessful steering
decisions.

In the envisioned system model shown in Fig. 4.2, steering data of a Wi-Fi mesh
network consisting of multiple clients, APs, and interfaces is remotely collected at
the cloud. SVM analysis considers the entire of the data history collected from all
clients as a batch. The resulting classification leads to Batch ML for Smart Steering
algorithm (this algorithm is developed/trained at the cloud based on the whole data)
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Figure 4.2 Wi-Fi wireless mesh networks with Batch ML and online ML for smart
steering.

is executed at each AP (each AP executes the classification model trained at the
cloud; hence the communications from the cloud to the APs only require the sharing
of the model parameters). Based on the findings of our batch analysis, we develop
our online learning [91] approach, named as Online ML for Smart Steering. To
this end, we exploit a stochastic gradient descent based minimiziation of the cross
entropy loss [92] (that leads to Rosenblatt’s perceptron [93]) in a compact kernel
space [3] for online nonlinear classification, which we call “online kernel perceptron"
(but also called as “Fourier online gradient descent" in [5]). The online algorithm,
which is again executed at each AP but trained at the cloud based on the whole data,
considers only instantaneous values of steering data from all clients (the whole data
at the cloud is processed by the online technique sequentially in an online manner
without storing, whereas the batch technique stores the whole data and uses it
repeatedly). Note that in a mesh network, an AP is able to continuously monitor
all of the clients and their features. Therefore, in both cases of the envisioned batch
or online scenarios, an AP can decide when exactly to issue a successful steering
request (for its own clients), while monitoring the clients, based on the classifier
model it received from the cloud. This gives in our work the smart steering.

The details of the proposed batch and online ML smart steering solutions are de-
scribed next.

4.3.1 Classification Analysis in the Batch Setting
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Support Vector Machines (SVM) [2], in its original form [90], is a machine learning
algorithm that generates a binary linear classifier based on labeled data (X,Y ) ∈
(RNxd×{−1,1}Nx1), where d is the data dimensionality (in our case d = 4), N
is the number of observations (in our case, number of steering actions), X is the
data matrix of features that are also associated with binary labels Y describing the
class memberships. SVM essentially learns a separating hyperplane in the feature
space to discriminate the two classes. The hyperplane is defined by its normal
vector w ∈ Rdx1 and a bias b ∈ R such that the resulting classifier is in the form
f(x) = sign(wTx+ b). Then, SVM solves for the hyperplane parameters (w,b) via

min
w,b,ε

‖w‖2

2 +C
N∑
i=1

εi

subject to

yi(wTx+ b)≥ 1− εi and

εi ≥ 0.

This is a convex quadratic programming [2], hence its minimum can be uniquely
found. Here, C is a parameter that defines the weight of the training set errors εi’s
(for each instance xi ∈ Rd×1) against the (one quarter of the squared) margin 1

‖w‖2

which is maximized, εi’s are referred to as the slack variables that are used to define
errors on training set instances based on their distances to the separating plane (an
instance on the correct side with decision greater than 1 induces no error, otherwise,
the error increases linearly in this cost definition) to solve for data not being linearly
separable [7]. The first term of this cost is for the margin maximization and the
second term is for the error minimization. The result of this optimization is a
separating hyperplane (i.e., equivalently the classifier f(x)) that is located between
the two classes with maximum margin and least possible errors. The trade-off
between these two goals can be controlled by cross validating for C. In this work,
we use MATLAB’s SVM solver [94].

If one is to generalize SVM to nonlinear class separation, the typical solution is
kernelization [2, 7]. Instead of relying on dot products in defining the similarity
between two instances xi and xj , one typically uses a kernel, e.g., radial basis func-
tion (rbf) kernel k(x,y) = e−g‖x−y‖

2 , to re-define the similarity (g is the bandwidth
parameter that leads to more complex (simpler) nonlinear models when relatively
higher (smaller) values are set). This strategy implicitly maps the whole data into
a high dimensional space where the data is linearly separable. The solution in high
dimension then corresponds to nonlinear separation in the original feature space
(under Mercer’s conditions [2]) as desired.
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We point out that SVM is a classification algorithm that works in the batch set-
ting and known to provide decent generalization with especially small scale data.
However, it demands multiple accesses to data both in the training and test phases
with computational complexities O(N3) in training and O(NNtest) in test. This
computational complexity of SVM is certainly prohibitive in terms of scalability to
large scale data in real-time which is inevitably requested in our targeted application
of real-time data driven steering in large mesh networks. Nevertheless, for investi-
gating the classification problem in this thesis, we conduct an SVM analysis first
on a small batch to understand whether the problem is linear or nonlinear, which
features are most informative, what is the best set of parameters and what is the
baseline accuracy provided by SVM. Then, SVM performance is used as a baseline
that is competed against in our online setting in favor of computational efficiency
while not sacrificing much from the performance. On the other hand, the classifier
obtained by SVM can still be used as the Batch ML for Smart Steering for small
scale networks in the envisioned system model shown in Fig. 4.2. In this case, the
classifier is trained by a central and computationally powerful agent at the cloud
based on the whole steering data, whereas the model parameters are shared to the
APs and the APs apply the classifier for steering. This limits the communication
load between the cloud and the APs while not requiring a heavy computation at the
APs since the SVM test complexity is significantly smaller than the SVM training
complexity. As a result, an AP can issue successful steering requests for its clients,
based on its classifier and based on the real-time-observed client features, for ML
based smart steering in this batch scenario.

As it is extensively discussed in our experimental results in Section 4.4, our findings
indicate that the problem is not linear but also not severely nonlinear as well. As for
the features, we observe that in small scale data, feature pairs perform reasonably
well compared to the full dimension. Parameter selection is based on extensive 5-
fold cross validation. Finally, the baseline accuracy is observed to be around 95%
with nonlinear schemes. The reader is referred for all the details to Section 4.4.

As the problem is identified in Section 4.4 to be nonlinear based on SVM analysis
(we use rbf kernel in our experiments for nonlinear modeling), we next discuss an
online nonlinear classification algorithm [5]. This online algorithm is comparable
with SVM in terms of the accuracy, but it is able to process data significantly faster
(compared to SVM) by orders of magnitude. We consider that this is the key to
and an early demonstration of smart data driven and online real-time steering that
is also scalable to large networks or large number of mesh networks.
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4.3.2 Online Classification for Real-time Smart Steering

In this section, we present a method for learning complex, i.e., nonlinear, decision
boundaries in the online setting. To this end, we exploit one of the central ideas
in machine learning for solving nonlinear classification problems, that is, to lift,
i.e., transform, the data to a high dimensional space in which the data is linearly
separable and hence linear methods are applicable [2]. In addition, we often do not
need to explicitly construct that high dimensional space except the pairwise affinities
after the transform. Therefore, it is sufficient to know the inner products that
are encoded by a function known as the “kernel". Nevertheless, kernel techniques
(especially in the case of certain kernels such as rbf) in its original form require
to compute all of the pairwise kernel evaluations (from test to train) every time
an instance is tested, which is usually prohibitively computationally and space-wise
complex. Training is even further problematic [3, 57]. This can be addressed by
explicitly constructing (though not needed in principle) the high dimensional space
through random projections in a compact manner.

We need to guarantee that for online processing, the transformation (i.e. lifting to
high dimension) as well as the classifier are both online. We choose perceptron [93]
for the online classifier. For the transformation, we use a compact kernel expansion
(“compact" means efficient in the sense of the rate of the approximation to the given
kernel, c.f. the explanation below) via a random set of Fourier projections [3], which
certainly does not disturb online processing.

In the following, we first explain the random kernel expansion, then the application
of the perceptron algorithm in the corresponding randomized kernel space and finally
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Online ML for Smart Steering in the envisioned system model shown in Fig. 4.2.

Algorithm 1: Online Kernel Perceptron
Input: w0 is the model parameters for the perceptron in the kernel space, g is
the rbf kernel bandwidth parameter (cross-validated), {αi}Di=1 is the set of
expansion bases randomly (i.i.d) drawn from p(α) =N(α;0,2gI).
Initialize: w0 = [0,0, ...,0,0]T ∈R(2D+1)×1 (last entry is for the bias term).
Initialize: t=1.
while not at the end of the stream do

Receive the instance xt.
Apply the transform:
zt = 1√

D
[rα1(xt), rα2(xt), · · · , rαD−1(xt), rαD(xt)]T ∈R2D×1.

Make the prediction: ŷt = sign(wTt−1zt).
Receive the feedback yt.
if ŷt 6= yt then

wt = wt−1 +ytzt

end
t← t+ 1.

end

4.3.2.1 Perceptron in the Randomized Kernel Space: Online Kernel Per-

ceptron

Having the kernel space explicitly and compactly constructed via the transform

Rd×1 3 xt→ zt = 1√
D

[rα1(xt), rα2(xt), · · · , rαD−1(xt), rαD(xt)]T ∈R2D×1

for each instance in a given data stream {xt} (without an end), then a linear classifier
in the z−space can solve any nonlinear classification problem provided that the
kernel is chosen suitably, e.g., rbf kernel with an appropriate kernel parameter g.
For this purpose, we use the perceptron which trains a linear classifier in the online
setting through stochastic updates.

A time-indexed online linear classifier ft(x) = wTt−1x+ bt−1 parameterized over
(wt−1, bt−1) suffers the loss l(ft−1(xt),yt) at time t. If the loss is chosen as the
cross entropy loss, i.e.,

l(ft−1(xt),yt) =−yt+ 1
2 log(µt−1)− (1− yt+ 1

2 )log(1−µt−1),
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where µt−1 = 1
1+exp(−νft−1(xt)) , then the stochastic gradient update on the model

parameters (wt−1, bt−1) yields (wt, bt). This essentially defines the perceptron algo-
rithm (provided that the sigmoid steepness ν is sufficiently large).

We use perceptron after the random kernel expansion based on the transformed
stream {zt} for online nonlinear modeling. The resulting “online kernel perceptron"
(called as “Fourier online gradient descent" in [5]) is given in Algorithm 1.

(a) (b)

(c) (d)

Figure 4.3 The boundary evolution of the banana dataset. In (a), SVM classification
with 1000 data instances is presented (error penalty parameter is 8 and kernel band-
width parameter is 0.7). In (b), (c) and (d), online kernel perceptron classification
is presented with 100, 250 and 1000 data instances, respectively.
.

The presented online kernel perceptron algorithm is computationally highly superior
over, for instance, the SVM algorithm as it sequentially processes data with linear
complexity whereas the SVM is a batch algorithm. On the other hand, online
kernel perceptron is comparable to SVM performance-wise. For a demonstration
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on a small synthetic dataset, we present the evolution-in-time of the separation
boundary between the two classes in Fig. 4.3. As it is clearly seen when the SVM
boundary of the batch setting is compared with the one that the online algorithm is
convergent to, the presented online kernel perceptron algorithm is able to learn even
complex separations in the sequential setting in a computationally highly superior
manner.

We strongly emphasize that the presented online kernel perceptron can be used as
Online ML for Smart Steering large scale networks in the envisioned system model
shown in Fig. 4.2, in contrast to SVM in the case of Batch ML for Smart Steering
for small scale networks. To this end, the online kernel perceptron is sequentially
learned in a truly online manner at the cloud based on the whole steering data. The
online kernel perceptron is continuously trained at each time at the cloud, and hence,
its parameters (the parameters of the resulting linear classifier in the kernel space
as well as the parameters of the random kernel transformation) are shared at each
time to the APs which execute the received model for steering. This certainly does
not require a computationally powerful agent at the cloud or a powerful processor at
APs, since both the learning of the online kernel perceptron at the cloud as well as its
application at APs are of almost negligible space as well as negligible computational
complexity (compared to the batch algorithm). The communication load between
the APs and the cloud is still limited (compared to the batch algorithm) since
the required number of random Fourier features is relatively small by both theory
explained in this section and the practical findings presented in Section 4.4. As a
result, successful steering decisions can be made in real-time by APs for all clients
in the network by online ML based smart steering as envisioned in Fig. 4.2.

In the following, we present our experimental results.

4.4 Experimental Results

In this section, we present the experimental evaluation of the proposed machine
learning based approaches for smart steering in wireless mesh networks. In Section
4.4.1, we introduce the steering data that we use in our experiments. Then, in
Section 4.4.2, we present our SVM based batch analysis results along with the com-
parisons between linear SVM and kernel SVM. Those comparisons conclude that,
while yielding the baseline accuracy as given in our accuracy tables of performance
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Figure 4.4 Logged data from a typical house use for a single AP (a specific window).

results, the classification of steering actions as successful and unsuccessful is nonlin-
ear and it can be solved powerfully with kernel SVM based on certain mesh networks
features such as the received signal strength (best set of model parameters have been
determined in those comparisons through extensive 5-fold cross-validation). Noting
that the SVM classifier is not suitable for real-time processing, we finally intro-
duce the results of our computationally efficient online solutions in Section 4.4.3 for
real-time steering.

4.4.1 Steering Data

Our experimental results are based on data recorded in a real Wi-Fi mesh network
of typical use of a family house, and include the history of steering actions (event
series) of the in-house clients. A sample data window is given in Fig. 4.4.

Note that, each window consists of the event series of a single steering action (out
of thousands of actions, i.e., steering decisions). Events in a window are sorted
according to their time stamps, forming a time-series. In each row in Fig. 4.4,
there is a specific event with the sender and target MAC addresses with additional
information about the corresponding access point as well as whether the action is
successful. RSSI is a function of the distance between the client and access point,
and the cost is calculated by the steering daemon.

From each window, i.e., from each action, we extract a four dimensional feature
vector including: (1) RSSI for the current connection (Current RSSI) (2) RSSI for
the intended connection for which the action is issued (Target RSSI) (3) cost for the
current connection (Current Cost) and (4) cost for the intended connection (Target
Cost). We also normalize all feature values to [0,1] by subtracting the minimum
and then dividing by the resulting maximum. It is possible to use other features as
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(a) (b)

Figure 4.5 (a) Linear SVM classification based on Current Cost and Current RSSI
for clients in single AP scenario with transition from 2.4 GHz to 5 GHz and (b)
nonlinear SVM classification based on Current Cost and Current RSSI for clients in
single AP scenario with transition from 2.4 GHz to 5 GHz.

well, such as the access point/client id or window time duration. However, we opt
to use the described feature vector for this study, which is already observed to lead
to powerful separation between successful/unsuccessful steering actions.

We point out that APs and their two available frequency bands (i.e. interfaces)
determine the experimental condition. The mobility of the client can be exchanging
the interface between 2.4 GHz and 5 GHz within the same access point or exchanging
the access point within the same interface or exchanging both the interface and
access point. Hence, a (un)successful action refers to a (un)successful exchange
attempt in these cases. As a result, when four dimensional features of steering
actions are classified, the steering module can be updated to improve the success
rate by using the region of successful transitions.

4.4.2 Results of the Batch Analysis

For classifying successful and unsuccessful steering actions of clients, the cloud data
in single and multiple AP scenarios are evaluated based on the client features: Cur-
rent RSSI, Target RSSI, Current Cost and Target Cost. Linear and nonlinear SVM
(with rbf kernel) classifiers have been trained based on different pairs of these fea-
tures with cross validated parameters (75% of the total labeled data has been used
for training, and the remaining part has been used for test. 5-fold cross validation
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Table 4.1 Accuracy results of nonlinear SVM in single AP scenario.

Single AP
From 2.4 GHz interface to 5 GHz interface From 5 GHz interface to 2.4 GHz interface
Train set acc. Test set acc. Train set acc. Test set acc.

Current Cost
-Target RSSI 100 100 98.40 96.19

Target Cost
-Target RSSI 100 98.44 100 99.04

Target RSSI
-Current RSSI 98.83 100 99.36 98.09

Current RSSI
-Target Cost 95.0325 94.4367 99.68 100

Current Cost
-Current RSSI 97.67 96.51 95.54 95.23

Target Cost
-Current Cost 92.073 90.906 100 98.09

All four features 100 96.51 100 98.09

within the training set has been used for optimization of the error penalty and kernel
bandwidth parameters).

For the single AP scenario, steering of clients between different interfaces of the
same AP is considered, steering them from channels of 2.4 GHz band to channels
of 5 GHz band, and vice versa. We have applied both linear and nonlinear SVM
for classifying successful and unsuccessful actions. As shown in Figures 4.5a and
4.5b, better test set classification is achieved by nonlinear SVM (98.8%), with an
improvement of 3% accuracy over linear SVM (nonlinearity in classification can
also be observed in Fig. 4.6). Based on our cross validation: in Fig. 4.5a, the error
penalty parameter is 1; and in Fig. 4.5b, the error penalty parameter is 32 and
the kernel bandwidth parameter is 0.15. For this reason, we opt to continue with
nonlinear SVM in the rest of the thesis.

Table 4.1 summarizes the accuracy performance of the nonlinear SVM classifier
for a single AP scenario, considering six pairs of client features and two possible
transitions from 2.4 (5) GHz interface to 5 (2.4) GHz interface. This table depicts
that the achieved test set accuracy is greater than 90% for all cases, with the (Target
RSSI, Current RSSI) and (Target Cost, Target RSSI) feature pairs yielding the best
classification performance (in the test set) above 98%. Accuracy with all features
seems to be less than the one with feature pairs, which is most likely due to the
redundancy or feature noise, or the induced data sparsity as a result of increased
dimensionality. Consequently, instead of using the 4 features altogether, we choose
the pairs yielding the best accuracy and continue our analysis accordingly. (Here,
we emphasize that using all of the features is certainly expected to yield a superior
or at least comparable performance given sufficient data).

Next, we consider a multiple AP scenario, which involves significantly higher number
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(a) (b)

(c) (d)

Figure 4.6 Classification results of various feature pairs for steering a client from 2.4
GHz interface of an AP to 5 GHz interface of different AP’s.

of steering actions corresponding to transitions between different interfaces within
the same AP as well as between different interfaces of different APs. We have filtered
the data to include only a single event per steering window by considering only the
first steering event per window.

Fig. 4.6 depicts the results of nonlinear SVM classification based on different pairs
of client features. It can be inferred from this figure that (Current RSSI, Current
Cost) feature pair provides the best (and the most natural) classification with highest
accuracy. Unlike this pair, the feature pair of (Current Cost, Target Cost) does not
provide a sufficiently good classification when compared to the other pairs. Fig.
4.6 shows that at the same cost level, when the RSSI gets close to 1, i.e., when
RSSI increases to -30 dBm (1) from -90 dBm (0), actions become successful. This is
expected in such a scenario because clients are in general led to the APs providing a
higher signal strength. Based on our cross validation: the error penalty parameter
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(a) (b)

(c) (d)

Figure 4.7 Classification results with respect to the (Current RSSI, Target RSSI)
pair for steering a client (a) from 2.4 GHz to 5 GHz interface of different AP’s (b)
from 5 GHz to 2.4 GHz interface of different AP’s (c) from 2.4 GHz interface of an
AP to 5 GHz interface of the same AP (d) from 5 GHz interface of an AP to 2.4
GHz interface of the same AP.

and the kernel bandwidth parameter are (8,0.5) in Fig. 4.6a, (2,0.8) in Fig. 4.6b,
(8,0.4) in Fig. 4.6c and (4,0.2) in Fig. 4.6d.

Experiments in the multi AP scenario also show that different steering transitions
can result in different classifier models, since each transition has its own critical re-
gion. The main reason causing different critical regions is that the cost computation
algorithm varies for different transitions. As an example, in Fig. 4.7, we present
classification results based on the (Current RSSI, Target RSSI) pair considering four
different steering transitions: (a) from 2.4 GHz interface to 5 GHz interface of the
same AP (error penalty parameter is 2 and kernel bandwidth parameter is 0.8),

43



Table 4.2 Accuracy results of nonlinear SVM in the multi AP scenario.

Multi AP
From 2.4 GHz interface to 5 GHz interface From 5 GHz interface to 2.4 GHz interface
Train set acc. Test set acc. Train set acc. Test set acc.

Current Cost
-Target RSSI 94.98 93.18 96.42 92.85

Target Cost
-Target RSSI 97.68 95.45 100 100

Target RSSI
-Current RSSI 97.29 96.59 100 100

Current RSSI
-Target Cost 93.82 82.95 100 96.42

Current Cost
-Current RSSI 97.67 96.51 100 100

Target Cost
-Current Cost 92.073 90.906 91.66 82.142

All four features 100 95.45 100 96.42

(b) from 5 GHz interface to 2.4 GHz interface of the different AP (error penalty
parameter is 2 and kernel bandwidth parameter is 0.8), (c) from 2.4 GHz interface
of an AP to 5 GHz interface of another AP (error penalty parameter is 4 and kernel
bandwidth parameter is 0.6), (d) from 5 GHz interface of an AP to 2.4 GHz inter-
face of another AP (error penalty parameter is 2 and kernel bandwidth parameter
is 0.8). Observing Fig. 4.7, it can be seen that, in plots (a) and (d) Target RSSI
and Current RSSI are effective together as a pair for classification. Meanwhile, for
transitions plotted in (b) and (c), Current RSSI alone can identify the successful and
unsuccessful regions. Overall, despite some outliers, the performance of all nonlinear
SVM classifiers provide sufficiently high accuracy, above 96%.

Table 4.2 summarizes the accuracy performance of the nonlinear SVM classifiers for
the multi AP scenario, considering six pairs of client features and different transitions
for steering (In this table, the results are based on the data of interface transitions
from an AP to the same or different AP which result in small mismatches in numbers
compared to Fig. 4.6 and Fig. 4.7 where the transitions are confined in the same
AP or from an AP to a different one). Again, above 90% accuracy is achieved for
all feature pairs (except two cases), and (Target RSSI, Current RSSI) and (Current
Cost, Current RSSI) pairs yield highest (above 96%) overall accuracy.

When the results in Table 4.1 and Table 4.2 are compared, one can deduce that the
accuracy of SVM classifiers in the single AP scenario is better than the one in the
multi AP scenario. This is because, in the multiple AP scenario, APs are placed in
various locations, which affect RSSI and cost parameters hence resulting in a more
complicated classification problem. The last rows of both tables show the accuracy
results for the four dimensional SVM classifier, where SVM creates a hyperplane
with four dimensions, providing accuracy over 95%, which is less than the accuracy
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of the best pairs. One possible reason is the curse of dimensionality: addition of less
effective features creates detrimental effects on the accuracy, when SVM is run with
the same amount of data.

The presented results can be exploited to implement a tester for steering algorithms
(or profiles) used for directing the clients through APs or interfaces in a Wi-Fi
network. The success rate for steering cilents (across not only the previously tried
actions but across the complete feature space to obtain a better evaluation) can be
determined using the critical regions of our classification, and then the best steering
profile (among several options) can be selected to achieve the best performance. In
this work, for instance, a profile for interface transition from 2.4 GHz to 5 GHz is
tested and its success rate for steering has been found to be approximately %73. A
new profile with the best success rate can also be created by optimizing the profile
parameters.

Note that the SVM classifier separating the steering actions that are successful and
unsuccessful can be used to determine the exact time of issuing a steering request
during the mobility of a client. Hence, the successful steering of clients can be made
possible with the least possible overhead of unsuccessful ones. Given the sufficient
number of clients and mobility, the critical regions of the successful actions learned
by the classifier can yield the topological structure of the place the network is used
in. Also, given two different steering profiles, one can evaluate the both profiles
and choose the better one based on the critical regions. Furthermore, such critical
regions of successful actions can readily define an optimal smart steering profile,
that is machine learning based and hence purely data driven.

As a result of our SVM based batch analysis, we have determined that the classifi-
cation problem in hand here is nonlinear, the feature pairs (Target RSSI, Current
RSSI) and (Current Cost, Current RSSI) provide the best accuracy (at the current
level of available data) and the baseline accuracy is around 95%, where the best set
of model parameters have been determined via 5-fold cross validation.

4.4.3 Results of Online Classification

As also extensively discussed previously, an SVM classifier (for instance, when em-
ployed at a central agent) is not capable of learning from data continuously and
hence not capable of real-time monitoring of a possibly cloud based multiple mesh
networks serving a total of hundreds of users (cf. Fig. 4.2), and it is even worse
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(a) (b)

(c) (d)

Figure 4.8 The boundary evolution of the dataset of the transition from 2.4 GHz to
5 GHz of different AP’s with the feature pair (Target RSSI, Current RSSI). In (a),
SVM classification with 1000 data instances is presented (error penalty parameter
is 2 and kernel bandwidth parameter is 0.8). In (b), (c) and (d), online kernel
perceptron classification is presented with 300, 600 and 1000 data instances (kernel
bandwidth parameter is 0.8), respectively.

when the conditions of the networks are highly dynamic and nonstationary requiring
online adaptation. The reason is that the computational complexity of SVM scales
cubicly with the number of training samples which is unbounded in our targeted
cloud based scenario in Fig. 4.2, especially when online adaptation is required due
to nonstationarity.

To handle this and allow real-time monitoring, we presented the online kernel per-
ceptron algorithm for continuously learning from data even with highly nonlinear
class separations. The computational complexity of the presented online algorithm
scales only linearly with the number of samples and its space complexity is only con-
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(a) (b)

Figure 4.9 Online kernel perceptron classification results based on the feature pairs
(Target RSSI, Current RSSI) and (Current Cost, Current RSSI) for clients in multi
AP scenario with transition from 2.4 GHz to 5 GHz are given in (a) and (b), re-
spectively, up to D = 10.

stant. Moreover, the presented algorithm can adapt to dynamic conditions through
stochastic updates.

In the following, our results are used to demonstrate the ability of the presented
online kernel perceptron, which drastically cuts down the computational and space
complexity, in approximating the baseline provided by SVM analysis. Note that our
analysis in this part is confined to the feature pairs (Target RSSI, Current RSSI)
and (Current Cost, Current RSSI) as they are observed to provide the best accuracy
in our SVM analysis.

We start with a visual presentation in Fig. 4.8, which shows a sequence of class sep-
arations during the sequential application of the presented online kernel perceptron
in transition from 2.4 GHz to 5 GHz of different AP’s with the feature pair (Target
RSSI, Current RSSI). We observe that the baseline separation provided by the SVM
is very well approximated at around the 1000’th instance with the online kernel per-
ceptron (note that in this case, we have used D = 50 for an excellent approximation
to the rbf kernel with the bandwidth parameter g matching to the cross validated
one of SVM in Fig. 4.8a). This is in accordance with our observation in Fig. 4.3
which shows that the mesh network data is well-behaved from the machine learning
perspective.

Next, in Fig. 4.9, we evaluate the accumulated average error rate performance of
the presented online kernel perceptron for the feature pairs (Target RSSI, Current
RSSI) and (Current Cost, Current RSSI). In particular, we compare the regular
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Table 4.3 Error rate results of online kernel perceptron in the multi AP scenario.

Multi AP
From 2.4 GHz interface to 5 GHz interface (for D=50) From 5 GHz interface to 2.4 GHz interface (for D=50)
Same AP Different AP Same AP Different AP

Current Cost
-Target RSSI 0.05054 0.1229 0.08091 0.1048

Target Cost
-Target RSSI 0.05712 0.1194 0.04249 0.04249

Target RSSI
-Current RSSI 0.05737 0.06593 0.04576 0.04956

Current RSSI
-Target Cost 0.07806 0.1473 0.05651 0.01919

Current Cost
-Current RSSI 0.05645 0.08131 0.05249 0.02004

Target Cost
-Current Cost 0.3933 0.4229 0.3362 0.4666

perceptron in the original feature space (this corresponds to the “no transform" case
in the figure), which is an online linear classifier, with the online kernel perceptron
for various cases D ∈ {1,2,4,6,8,10}, which is online nonlinear. As D increases, the
error performance improves reaching saturation around D = 6 while outperforming
the regular perceptron (“no transform" case) with D = 4 by about 2− 5% in both
cases (note that here, we match the cross validated bandwidth parameter g from
our SVM analysis in the rbf kernel used in random Fourier expansion). This, one
more time, reinforces that the classification problem we encounter is nonlinear, but
not severely as D = 6 seems sufficient. Hence, we conclude that the intrinsic dimen-
sionality is still higher than the original one, and only 2×D= 12 number of random
Fourier features are sufficient for a powerful classification for our mesh network data.

Finally, in order to evaluate the presented online kernel perceptron algorithm in
terms of its capability of approximating the baseline accuracy provided by our SVM
based batch analysis, we present our error rates results in Table 4.3. In the case
of an excellent approximation to the rbf kernel with D = 50, Table 4.3 reports the
error rates of the online kernel perceptron based on the data of transition from the
interface 2.4 GHz (also from 5 GHz) of an AP to the interface 5 GHz (also to 2.4
GHz) of the same AP or of different APs.

When we compare Table 4.3 with Fig. 4.7, we observe that in the case of, for
instance, the feature pair (Current RSSI and Target RSSI), the online kernel per-
ceptron is able to approximate the baseline within a margin of at most 5− 10%
while drastically reducing the complexity. If the results in Table 4.3 are considered
together with the ones in Table 4.2 for a general comparison, the online kernel per-
ceptron is observed to maintain its approximation power of the baseline except a
few cases.

In Table 4.4, we apply TL algorithm to the steering data set which consists of
several pairs of wireless mesh network features. Results are quite good since they
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give accuracies over 96% in most of the pairs.

Table 4.4 Accuracy results of TL learning algorithm in the multi access point (AP)
scenario

Multi AP Scenario
From 2.4 GHz interface to 5 GHz interface From 5 GHz interface to 2.4 GHz interface
Same AP Different AP Same AP Different AP

Current Cost
Target RSSI

96.83 ± 1.57 90.83 ± 3.96 93.00 ± 2.44 93.50 ± 3.97

Target Cost
Target RSSI

98.50 ± 1.57 95.16 ± 2.40 97.37 ± 2.19 99.00 ± 1.33

Target RSSI
Current RSSI

96.00 ± 1.85 97.00 ± 1.63 98.87 ± 0.67 99.00 ± 1.69

Current RSSI
Target Cost

95.00 ± 1.66 89.33 ± 4.09 98.00 ± 2.03 99.50 ± 0.76

Current Cost
Current RSSI

97.00 ± 4.93 97.16 ± 2.58 98.87 ± 1.30 99.16 ± 2.00

Target Cost
Current Cost

74.16 ± 9.49 74.16 ± 7.19 94.50 ± 1.50 98.33 ± 1.82

4.5 Discussion

Client steering, i.e., requesting changes to the access points (APs) that the clients
are connected to, is used in wireless mesh networks to fully realize the performance
enhancements promised by the mesh configuration in the network, for instance, by
alleviating the sticky client problem. Nevertheless, a change request or a steering
action do not always succeed due to several reasons such as the imperfections in the
steering module, and hence the corresponding client might suffer from an underper-
forming connection.

In this chapter, we address and present a data driven machine learning approach
for analyzing steering modules and identify when exactly and under which condi-
tions steering actions succeed or fail. This identification can be used to improve the
steering module and to develop a novel module that maximizes the overall success
probability. To this goal, we formulate a classification problem in both the batch
(SVM) and online (kernel perceptron) setting based on various network features and
train classifiers to learn the nonlinear critical regions of successful steering actions.
In particular, we propose the sequential, continuous and real-time learning of such
critical regions at the cloud with the presented online kernel perceptron classifier

49



based on the whole data of multiple mesh networks serving many clients. Scalability
of our approach to such large scale networks is straightforward, since the presented
online kernel based algorithm is computationally highly efficient with almost neg-
ligible space complexity while being able to learn highly nonlinear models. In the
course of the sequential stochastic updates (for improvement in terms of the mod-
eling power of the critical regions of the successful steering actions) to our online
algorithm at the cloud, the most recent version of the algorithm at every time can
be executed at APs (via the sharing of the relatively few number of model param-
eters from the cloud to the APs), and this essentially leads to a machine learning
based, data adaptive, online and real time smart steering for wireless mesh networks,
which we name Online Machine Learning for Smart Steering. In our experiments,
we achieve -at least- 95% of classification accuracy in identifying the conditions for
successful steering as a result of our batch analysis (SVM). On the other hand, the
presented online algorithm (kernel perceptron) is observed to successfully approx-
imate the baseline accuracy provided by the batch analysis within a small margin
while drastically cutting down the computational as well as space complexity which
yields our real time data adaptive and optimal, i.e., smart, steering strategy.

Acknowledgement: The initial phase of this thesis has been supported by AirTies
Wireless Networks.
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5. CONCLUSION

We investigate the improvement of optimizing the Fourier features on several binary
classification data sets. In addition to this, we introduce a random Fourier feature-
based two-layer neural network which transforms the data for kernel trick in the first
layer, then apply linear perceptron to classify the data. Four different backpropaga-
tion based learning approaches are applied to this network and they are tested by
10 different benchmark datasets with different instance numbers and dimensions. In
our experiments, the classification accuracy of optimized Fourier features provides
better classification accuracy than the untrained Fourier features. Then we apply
our network with the TL algorithm as a learning method to the steering data we
previously work on. We observed a remarkable improvement between 1 - 45% on
that data set for each Wireless mesh network feature pair so that our proposed
algorithm outperformed the online kernel perceptron.
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