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ABSTRACT

REFORMULATIONS OF A BI-LEVEL OPTIMIZATION PROBLEM
DETECTING COLLUSIONS IN DEREGULATED ELECTRICITY MARKETS

ALI EBADI TORKAYESH

Industrial Engineering M.Sc. THESIS, September 2020

Thesis Supervisor: Prof. Dr. Güvenç Şahin

Keywords: Deregulated electricity markets, Tacit collusion, Game theory, Bi-level
optimization, Reformulations

Main goal of deregulated electricity markets is to provide an environment with per-
fect competition among generation companies. Tacit collusion is considered as one
of the main threats that may disrupt the competition in electricity markets operated
by an independent system operator and increase the electricity price. In order to
detect collusion opportunities in the market, we present reformulations for a game-
theoretic bi-level optimization problem (Aliabadi et al. 2016). There exists no
commercial solvers to directly solve a bi-level problem. First, we improve the exist-
ing equivalent reformulations of the problem (Çelebi et al. 2019). Then, we propose
two new reformulations based on Karush–Kuhn–Tucker (KKT) conditions together
with Active Set Theory, and Special Ordered Set (SOS) variables. Four groups of
test instances with varying size are used to show and compare the efficiency and
effectiveness of the reformulations in detecting collusive opportunities.
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ÖZET

SERBESTLEŞMIŞ ELEKTRİK PİYASALARİNDAKİ GİZLİ ANLAŞMALARI
TESPİT EDEN İKİ SEVİYELİ BİR OPTİMİZASYON PROBLEMİNİN

REFORMÜLASYONLARI

ALI EBADI TORKAYESH

Endüstri Mühendisliği YÜKSEK LİSANS TEZİ, Eylül 2020

Tez Danışmanı: Prof. Dr. Güvenç Şahin

Anahtar Kelimeler: Serbestleşmiş elektrik piyasası, Gizli anlaşma, Oyun teorisi, İki
seviyeli optimizasyon, Reformülasyonlar

Serbestleşmiş elektrik piyasasının temel amacı, üretim şirketleri arasında tam bir
rekabet ortamı sağlamaktır. Gizli anlaşmalar, bağımsız bir sistem operatörü tarafın-
dan işletilen elektrik piyasalarında rekabeti bozabilecek ve elektrik fiyatını artırabile-
cek ana tehditlerden biri olarak kabul edilmektedir. Piyasadaki gizli anlaşma fırsat-
larını tespit eden oyun teorik bir iki seviyeli optimizasyon problemi (Aliabadi et al.
2016) için reformülasyonlar sunuyoruz . İki seviyeli bir problemi doğrudan çözecek
ticari bir çözücü yoktur. Öncelikle problemin mevcut eşdeğer reformülasyonlarını
iyileştiriyoruz (Çelebi et al. 2019). Ardından, Aktif Küme Teorisi ile birlikte Karush-
Kuhn-Tucker (KKT) koşullarına ve ayrıca Özel Sıralı Küme (SOS) değişkenlerine
dayalı iki yeni reformülasyon öneriyoruz. Farklı boyutlarda dört problem grubu kul-
lanarak, gizli anlaşma fırsatlarını tespit etmede reformülasyonların verimliliğini ve
etkililiğini göstermek ve karşılaştırmak için bilgisayısal çalışmalar yapıyoruz.
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1. Introduction

Determining electricity price is one of the important daily issues in many countries,
as electricity price is associated with the level of social welfare. In general, elec-
tricity markets can be categorized into two groups of regulated electricity markets
and deregulated electricity markets. Governments have the major power in regu-
lated electricity markets where a single company applies an exclusive plan to have
complete control over the daily tradings. On the other hand, no major company
takes control in a deregulated electricity market where power generation companies
(GenCos) compete over the electricity price through an auction mechanism.

In order to maximize the social welfare and sustain the competition among GenCos,
deregulated electricity markets aim to attain affordable electricity prices. A major
challenge in deregulated electricity market is designing a fully competitive market;
otherwise, GenCos would be able to use deficiencies of such mechanisms to decrease
the level of competition against public welfare. Therefore, one of the core condi-
tions to attain a competitive market is to control and prevent any non-competitive
agreement or opportunity (collusion) between GenCos to manipulate the electricity
price bids (Chamberlin, 1929). Independent System Operator (ISO), as the deci-
sion maker, is responsible for preventing collusion opportunities in the market by
regulating the auction mechanism. For this purpose, several restrictive policies can
be taken in order to avoid collusion opportunities. However, detection of collusion
opportunities is a very hard task for the ISO due to the tacit nature of agreements
among GenCos.

Aliabadi et al. (2016) employ a game-theoretic approach to represent the market
clearing process of the deregulated electricity markets and develop a bi-level opti-
mization problem under transmission network constraints. However, they propose a
complete-enumeration algorithm in order to detect collusion opportunities. Çelebi
et al. (2019) solve the bi-level model proposed in Aliabadi et al. (2016) with two
new mixed integer programming reformulations. In this study, we first improve the
reformulations proposed by Çelebi et al. (2019); then, two new reformulations based
on KKT optimality conditions together with Active Set Method (Gümüş & Floudas,
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2005) and SOS Type-1 variables (Siddiqui & Gabriel, 2013) are developed for the
bi-level problem. For the computational experiments, an iterative algorithm is used
to search for collusion opportunities using each reformulation.

The remainder of the thesis is organized as follows. In Section 2, we review the
literature of deregulated electricity markets and decision making approaches for
market clearing mechanism, analysis of strategic behaviors of GenCos, and detection
of tacit collusion. The bi-level problem and market clearing model are presented in
Section 3. In Section 4, mathematical reformulations of the bi-level problem are
presented. In Section 5, we present our computational study and computational
results. Finally, we conclude in Section 6.
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2. Literature Review

Studies on collusion opportunities in deregulated electricity markets is a growing
sub-field in power systems research. During recent years, researchers have developed
preventive mechanisms to attain more collusion-free deregulated markets. One of
the important factors that can give insights about the conspiring behaviors in dereg-
ulated electricity markets, is the strategic behavior of GenCos which have been an-
alyzed in the literature using conjectural variation models (Ruiz et al. 2010, Ruiz
et al. 2012), simulation models (Aliabadi et al. 2017a, Aliabadi et al. 2017b),
and optimization-based approaches (Weber & Overbye 1999, Aliabadi et al. 2016,
Pineda Morales 2016).

The strategic behavior of a GenCo is reflected in the behavior of the GenCo in a com-
petitive environment through its bidding pattern. Game theory based approaches
have been applied widely for different kinds of electricity market problems during
recent decades. Conjectural variation models, as one of the well-known game theory
techniques, are frequently used to analyze strategic behavior of GenCos. Conjectural
variation models are learning based analytical models that are used to estimate the
strategic behavior of GenCos considering reactions of rival GenCos in a competitive
environment. In one of the very first studies, Song et al. (2004) present a learning
method based on conjectural variation to estimate and analyze the strategic bidding
performance of generation companies. In order to consider the possible uncertain-
ties and inconsistencies in the electricity market, Liu et al. (2007) apply conjectural
variation to analyze strategic bidding performance of GenCos by considering logical
inconsistency and possibility of abundant equilibria that can happen, and therefore,
have an effect on the strategic bidding performance of GenCos. In order to consider
the effect of strategies of rival GenCos, Wang (2009) uses a conjectural variation
based Q-learning algorithm to study the bidding strategy performance of GenCos.
To consider the uncertainties that may happen in the electricity market in each pe-
riod of time, Alikhanzadeh & Irving (2011) present an optimization framework for
strategic bidding and forecasting process of GenCos using conjectural variation. The
proposed methodology investigates how strategic behavior of GenCos changes in re-
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sponse to changes in behaviors of their rival GenCos. Apart from the conjectural
variation models, other game theoretic models such as Nash equilibria, Cournot,
and Stackelberg games have been extensively applied. In this regard, Dixon et al.
(2006) present an experimental study to identify the more efficient strategic behav-
iors of GenCos using Nash equilibria as collusive, Cournot, and Stackelberg games.
To include the effect of strategic behaviors on profit of the GenCos, Ruiz et al.
(2010) propose an equilibrium based model to assess electricity markets in terms of
profit maximization as well as demand satisfaction. In another study to consider
the uncertainty, Benjamin (2016) develops a Nash equilibrium based model for tacit
collusion in electricity market with demand uncertainty. The author concludes that
increasing number of GenCos has no effect on the equilibrium, while increasing the
number of GenCos can have a supporting effect on the collusive equilibria.

Agent-based simulation is another well-known technique employed to analyze strate-
gic behavior of GenCos in deregulated electricity markets using specific types of
reinforcement learning algorithms such as Q-learning algorithm. Naghibi-Sistani
et al. (2006) utilize a Q-learning algorithm to analyze the strategic behavior of
GenCos. They show that GenCos with higher reinforcement learning capability are
more likely to adopt the optimal pricing policy in the market. In order to consider
the uncertainty of the system that may happen in the future, Botterud et al. (2007)
propose a multi-agent simulation model to analyze the generation expansion poten-
tial in electricity markets. They use a probabilistic dispatch algorithm in order to
calculate electricity prices and profits of GenCos on a case study in Korea. In order
to analyze the effects of tacit collusion on strategic behaviors of GenCos, Tellidou
& Bakirtzis (2007) develop an agent-based simulation model to analyze the market
performance and possibility of tacit collusion through a repeated game where each
game denotes an hourly electricity auction. In a similar study to analyze the effects
of collusion, Jabbari Zideh & Mohtavipour (2017) present a simulation framework
to analyze GenCos’ behavior and demand nodes within a transmission network us-
ing a learning algorithm, called state-action-reward-state-action, and the standard
Boltzmann exploration strategy based on the Q-value for tacit collusion in electricity
markets. They use a small network with three nodes to perform a computational
experiment with the proposed simulation model. Li & Shi (2012) employ an agent-
based simulation model for strategic bidding for a deregulated electricity market of
wind power considering the effect of short-term forecasting accuracy of power gen-
eration. Using a similar methodology, Aliabadi et al. (2017a) use an agent-based
simulation model to analyze the effects of learning and risk aversion on strategic
bidding behavior of GenCos as well as to determine locational prices and dispatch
quantities. Results show that minor changes in the risk aversion level of even only
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one GenCo can have dramatic effects on bid offers and profits of all GenCos. Market
design and its properties are basic elements that are considered by researchers to
analyze the strategic behavior of GenCos in electricity markets using agent-based
simulation frameworks. Aliabadi et al. (2017b) utilize an agent-based simulation
under a game-theoretical and learning framework to analyze the strategic behav-
ior of GenCos under different types of market-clearing mechanisms. Results show
that the market converges to a similar state under most parameter combinations.
Recently, Poplavskaya et al. (2020) present an agent-based simulation model to
analyze two important parameters, balancing capacity of market and price of bal-
ancing for the European electricity market and their effects on the bidding pattern
of GenCos. Results for an independent balancing market indicate that having one
ISO would reduce the cost of balancing.

Optimization-based approaches have also been employed to study strategic behavior
of GenCos in electricity markets. For the first time in the literature, Liu & Hobbs
(2013) propose Mathematical Programs with Equilibrium Constraints (MPEC) and
Equilibrium Problems with Equilibrium Constraints (EPEC) considering network
constraints to model tacit collusion with an objective to maximize the profits of
GenCos in a competitive pool-based electricity market which is operated by an
ISO. They develop several heuristic algorithms to solve both models with some
numerical instances. Bi-level optimization is frequently used to formulate game-
theoretic models in electricity markets (Niknam et al. 2013, Kardakos et al. 2014,
Yazdani-Damavandi et al. 2017). Kardakos et al. (2014) present a game-theoretic
framework to analyze the strategic bidding behaviors of GenCos in order to find the
optimal bidding pattern in an electricity market. For this purpose, they propose
a bi-level problem under different approaches for network transmission constraints
where upper level problem maximizes profits of GenCos and lower level solves a
market clearing problem. In order to solve the bi-level problem, they transform the
bi-level problem into a single-level MPEC. Karush–Kuhn–Tucker (KKT) conditions
and strong duality theory are applied to transform the MPEC model to a mixed
integer linear programming (MILP) model. In order to analyze the efficiency of the
models, they consider four different types of transmission networks. Nevertheless,
these authors have not included the possibility of collusion opportunities within
the proposed models as well as the impact of collusion opportunities on profits of
GenCos, perfectness of competitions, and competitiveness of the electricity mar-
ket. In addition to bi-level optimization problems, other optimization tools have
been utilized to address the strategic behaviors of GenCos and collusion opportu-
nities. Samadi & Hajiabadi (2019) propose an analytical framework in two stages
for evaluation of collusion opportunities in electricity markets. In the first stage,
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market-clearing problem is formulated as a quadratic problem. In the second stage,
profits of GenCos are calculated using a Jacobain matrix which is used to develop
several indicators for assessment of collusion opportunities.

Aliabadi et al. (2016) present a game-theoretic framework to determine collusion
opportunities in deregulated electricity markets operated by the ISO. A bi-level op-
timization model is formulated for a strategic bidding problem considering network
constraints and maximizing profits of GenCos while solving a market clearing prob-
lem. In one of the latest works, Çelebi et al. (2019) propose two reformulations
for the bi-level optimization problem in Aliabadi et al. (2016). To the best of our
knowledge, no commercial solvers and solution approaches exist to solve a bi-level
problem directly; therefore, the proposed reformulations are equivalent single-level
problems that can be solved using commercial solvers.

Meta-heuristic algorithms have shown to be reliable to investigate the strategic bid-
ding behavior of GenCos and to detect tacit collusion in electricity markets. Cau
& Anderson (2003) apply a genetic algorithm to find out patterns such as collusive
behaviors among GenCos. Ma et al. (2005) propose a chance-constrained pro-
gramming model to investigate bidding strategies of GenCos in electricity markets.
In order to solve the proposed mathematical model, a hybrid solution approach is
developed using genetic algorithm and Monte Carlo simulation. Soleymani (2011)
develops a hybrid solution approach using particle swarm optimization and simu-
lated annealing algorithms to investigate the strategic behavior of GenCos using a
game-theoretic framework based on a supply equilibrium model in electricity mar-
kets. Moreover, the proposed solution approach is also utilized to analyze the ex-
pected strategic behavior of GenCos. As the enumeration algorithm in Aliabadi
et al. (2016) fails to solve problems with a large number of GenCos, Esen (2019) de-
velops a genetic algorithm to solve their problem. In a similar work on detection of
collusion opportunities, Mohtavipour & Zideh (2019) present an optimization based
iterative algorithm to detect collusion opportunities with a simulation model. Sedeh
& Ostadi (2020) present a dynamic programming problem to optimize the bidding
strategy of GenCos in order to maximize their profits considering the seasonality
trend in market clearing process. They use a genetic algorithm to solve the dy-
namic programming problem where the expected profit of each bidding strategy is
calculated using a Monte Carlo simulation model. Ostadi et al. (2020) propose a
hybrid framework using the Markowitz model and a genetic algorithm to optimize
the bidding pattern of GenCos through maximizing their profits and minimizing the
acceptance risk of the offered bids in daily auctions.
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3. Problem Definition

In deregulated electricity markets, an auction problem is solved repeatedly by the
ISO where bid prices and available production capacity are submitted by GenCos
for a given period of the day-ahead market in a competitive environment. Given
the bid offers from the GenCos, the ISO solves a decision-making problem to clear
the market in order to maximize the social welfare by minimizing the electricity
procurement cost (Aliabadi et al., 2016). The main goal of deregulated electric-
ity markets is to attain affordable electricity prices in a competitive environment.
However, the possibility of GenCos conspiring on electricity price would hinder the
level of competition and increase tacit collusion opportunities. To address this is-
sue, Aliabadi et al. (2016) develop a game-theoretic bi-level problem to determine
collusion opportunities while maximizing the profits of GenCos and minimizing elec-
tricity procurement cost through a mathematical formulation that also considers the
market clearing process.

Table 3.1 Notation for the DC-OPF problem formulation

Notation Definition
i set of nodes i ∈ I
ig set of generator nodes ig ∈ I
BR set of transmission line between node i and node j, denoted as (i, j)
Pmaxi maximum generation capacity of GenCoi
bi bid of GenCoi submitted to the ISO
Di demand at node i

γij
negative of the susceptance of the line (1 / reactance of the line)
connecting node i to node j

Fmaxij

power flow limit in the transmission line connecting
node i to node j

Ci pu-adjusted production cost ($/MW) of electricity by GenCoi
Pi variable for generation amount by GenCoi at node i
θi voltage angle at node i
LMPi locational marginal price of electricity at node i

7



Two well-known approaches have been frequently employed to formulate the market
clearing process; alternating current optimal power flow (AC-OPF) problem and
direct current optimal power flow (DC-OPF). AC-OPF problem is a non-linear non-
convex optimization problem and approximated by the DC-OPF problem formula-
tion in a linear form. Using notation in Table 3.1, the DC-OPF problem formulation
in Aliabadi et al. (2016) becomes

minimize
{Pi,θi}

∑
i

biPi(3.1a)

subject to Pi−Di =
∑

∀(i,j)∈BR
γij(θi− θj) ∀i, [LMPi](3.1b)

Pi ≤ Pmaxi ∀i, [φi](3.1c)

|γij(θi− θj)| ≤ Fmaxij ∀(i, j) ∈BR, [ψ+
ij ,ψ

−
ij ](3.1d)

−π ≤ θi ≤ π ∀i,(3.1e)

Pi ≥ 0 and θi free ∀i,(3.1f)

where variables in the brackets at the end of each constraint represent the dual
variables.

The objective function (3.1a) minimizes the total electricity procurement cost. Con-
straint (3.1b) is the flow balance constraint which ensures the transmission of the
excessive generated power of a node to the other connected nodes. Constraint (3.1c)
limits the power injection level up to the capacity of the corresponding power pro-
ducer at each node. Constraint (3.1d) controls the maximum allowed flow in each
line of the transmission network. Constraint (3.1e) restricts the voltage angle at
each node by upper and lower bounds. Constraint (3.1f) represents the bounds for
decision variables.

According to the solution of the DC-OPF problem in (3.1a)-(3.1e), profit for GenCoi
can be calculated as

ri = Pi(LMPi−Ci)

where LMPi is obtained from the dual of DC-OPF problem.

In a real day-ahead electricity market, the ISO repetitively clears the market for
each time period and then determines assigned power of each GenCo and electricity
price at each node. Aliabadi et al. (2016) develop a game-theoretic framework
for understanding collusion among GenCos in electricity markets. The market is
modeled as a game where the set of submitted bids by GenCos (b1 ∈B1, ..., bn ∈Bn)
is considered as the state of the game and profits of GenCos are calculated based
on the solution of the DC-OPF problem. Among all possible states, a collusive
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state is defined as an equilibrium where the profit is greater than that at any Nash
equilibrium (r∗i ) for all GenCos, and thus, GenCos have no incentive to deviate.
Aliabadi et al. (2016) defines Nash equilibrium as a bidding strategy where any
GenCoi are not able to make a better payoff than the payoff of Nash equilibrium by
selecting another bid until all other GenCos do not change their bids. In this regard,
all states with positive profits are considered as suspicious to be collusive; however,
only those suspicious states are considered as real collusive states where their profits
are strictly greater than that at any Nash equilibrium (r∗i ). Mathematically, if there
exists a state where rCollusivei > r∗i ∀i ∈ ig, while r∗i representing the best Nash
payoff for GenCoi, this state is considered as collusive according to Aliabadi et al.
(2016).

In order to identify collusive states, Aliabadi et al. (2016) propose a bi-level prob-
lem maximizing the profits of all GenCos at the upper level, while minimizing the
electricity procurement cost through the DC-OPF problem at the lower level. In the
original problem, each GenCo maximizes its own profit; however, they approximate
and simplify the objective function by maximizing the minimum of the profits of all
GenCos. The proposed bi-level problem by Aliabadi et al. (2016) is

maximize
{bi,λ}

λ(3.2a)

subject to λ≤ Pi(LMPi−Ci) ∀i,(3.2b)

minimize
{Pi,θi}

∑
i

biPi(3.2c)

subject to Pi−Di =
∑

∀(i,j)∈BR
γij(θi− θj) ∀i, [LMPi](3.2d)

Pi ≤ Pmaxi ∀i, [φi](3.2e)

|γij(θi− θj)| ≤ Fmaxij ∀(i, j) ∈BR, [ψ+
ij ,ψ

−
ij ](3.2f)

−π ≤ θi ≤ π ∀i,(3.2g)

Pi ≥ 0 and θi free ∀i,(3.2h)

where bi denoting the bid submitted by GenCoi is now a decision variable.

In the bi-level problem, the upper level objective function (3.2a) maximizes the
profits of all GenCos using an auxiliary variable λ which is enforced by constraint
(3.2b) to the minimum profit among all GenCos. In the lower level problem, the
DC-OPF problem is solved according to the upper level bid decisions by GenCos.

In the next step, the bi-level problem is to be transformed to single-level so that it
can be be solved. The techniques that transform bi-level problem into a single-level
require dual information from the lower level problem (3.2c)-(3.2h). Thus, Çelebi
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et al. (2019) formulate the dual problem as

maximize
∑
i

DiLMPi−
∑
i

Pmaxi φi−
∑

∀(i,j)∈BR
Fmaxij (ψ+

ij +ψ−ij)(3.3a)

subject to LMPi−φi ≤ bi ∀i(3.3b) ∑
(i,j)∈BR

γij(LMPj−LMPi)+
∑

(i,j)∈BR
γij(ψ−ij −ψ+

ij)

+
∑

(j,i)∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(3.3c)

LMPi free ∀i(3.3d)

φi ≥ 0 ∀i(3.3e)

ψ+
ij ,ψ

−
ij ≥ 0 ∀(i, j) ∈BR(3.3f)

where decision variables LMPi, LMPj , ψ+
ij , ψ−ij , and φi are defined in the original

primal problem formulation for DC-OPF in (3.1a)-(3.1f) as the dual variables.

In next section, we discuss the importance of techniques for transforming the bi-level
problem to a single-level problem. Next, four reformulations are presented to trans-
form the bi-level problem to a single-level problem based on different approaches.
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4. Reformulations of the Bi-level Problem

Developing reformulations of a bi-level problem and transforming it to a single-level
problem is an essential task in solving such problems. We are unable to solve bi-
level problems directly and there exist no commercially available solvers for such
problems. Therefore, reformulations become very important techniques in trans-
forming a bi-level problem into single-level so that it can be potentially solved with
commercial solvers.

4.1 Reformulations with MPEC model

In order to solve the bi-level problem, we may reformulate the bi-level problem as
a MPEC using dual formulation and complementary constraints. MPEC is one
of the well-known approaches to solve bi-level problems (Dempe 2003, Luo et al.
1996). MPEC is employed in non-linear programming with variational inequality
or complementary constraints (Li et al. 2018, Ye et al.2016, Baumrucker & Biegler
2010, Hobbs et al. 2000). Unlike the bi-level problems, MPEC is a two-level op-
timization problem with an upper-level problem and a lower-level complementary
problem (Pineda et al. 2018). The bi-level problem is equivalent to an MPEC if the
lower-level problem can be reformulated by KKT optimality conditions (Gabriel et
al. 2012, Pineda et al. 2018). An MPEC is formulated in the following general form
as

minimize f(x,y,z)(4.1a)

subject to h(x,y,z) = 0(4.1b)

g(x,y,z)≥ 0(4.1c)

0≤ x⊥ y ≥ 0(4.1d)

11



Accordingly, the bi-level problem in (3.2a)-(3.2h) can be rewritten as an MPEC as

maximize
{bi,λ}

λ(4.2a)

subject to λ≤ Pi(LMPi−Ci) ∀i ∈ ig(4.2b)

Pi ≥ 0⊥ bi−LMPi+φi ≥ 0 ∀i ∈ ig(4.2c)

θi free⊥
∑

(i,j)∈BR
γij(LMPj−LMPi)+

∑
(i,j)∈BR

γij(ψ−ij −ψ+
ij)

+
∑

(j,i)∈BR
γji(ψ+

ji−ψ
−
ji) = 0, ∀i

(4.2d)

LMPi free⊥ Pi−Di =
∑

ij∈BR
γij(θi− θj) ∀i(4.2e)

φi ≥ 0⊥ Pi ≤ Pmaxi ∀i ∈ ig(4.2f)

ψ+
ij ≥ 0⊥ γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.2g)

ψ−ij ≥ 0⊥−γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.2h)

−π ≤ θi ≤ π ∀i(4.2i)

Objective function (4.2a) and constraint (4.2b) belong to the upper level of the
bi-level problem in (3.2a) - (3.2h). Constraint (4.2c) shows the complementarity
between (3.3b) in the dual problem and (3.2h) in the bi-level problem. Constraint
(4.2d) shows the complementarity between constraint (3.3c) and constraint (3.2h).
Constraint (4.2e) shows the complementarity between constraint (3.3d) and con-
straint (3.2d). Complementarity between constraint (3.3e) in the dual problem and
constraint (3.2e) in the bi-level model is shown in constraint (4.2f). Constraints
(4.2g) and (4.2h) are complementary constraints related to (3.3f) and (3.2f). Con-
straint (4.2i) restricts the voltage angle at each node by upper and lower bounds.

One of the main issues with MPEC models is related to their feasible regions that
are not necessarily convex or connected topological space. A well-known approach
to solve MPEC models is to reformulate them as MILP. Next, new MILP reformu-
lations are presented for the MPEC model in (4.2a)-(4.2i).

4.1.1 Reformulation1: MILP model based on FAM Method

Çelebi et al. (2019) use KKT conditions for lower level problem to reformulate the
MPEC problem in (4.2a)-(4.2i) as a MILP. They propose a reformulation based on
the methodology presented in Fortuny-Amat & McCarl (1981) in order to convert
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the MPEC model in (4.2a)-(4.2i) to a MINLP. Fortuny-Amat & McCarl (1981) use
binary variables to address the issues related to complementary slackness conditions.
General form of this method is formulated as below where zj is a binary variable
and M is a sufficiently big parameter.

yj ≤Mzj j ∈ J(4.3a)

xj ≤ (1− zj)M j ∈ J(4.3b)

where (4.3a) and (4.3b) are two constraints that replace the complementarity be-
tween yj and xj in an MPEC.

In our first reformulation named as Reformulation1, four binary variables, wi, xi,
yij , and zij , corresponding to the complementary constraints are introduced. The
resulting formulation becomes

maximize
{bi,λ}

λ(4.4a)

subject to λ≤ Pi(LMPi−Ci) ∀i ∈ ig(4.4b)

Pi ≥ 0 ∀i(4.4c)

Pi ≤M1i(1−wi) ∀i(4.4d)

bi−LMPi+φi ≤M2iwi ∀i ∈ ig(4.4e)

bi−LMPi+φi ≥ 0 ∀i ∈ ig(4.4f) ∑
(i,j)∈BR

γij(LMPj−LMPi)+
∑

(i,j)∈BR
γij(ψ−ij −ψ+

ij)

+
∑

(j,i)∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(4.4g)

Pi−Di =
∑

(i,j)∈BR
γij(θi− θj) ∀i(4.4h)

φi ≥ 0 ∀i(4.4i)

φi ≤M3i(1−xi) ∀i(4.4j)

Pi ≥ Pmaxi −M4ixi ∀i ∈ ig(4.4k)

Pi ≤ Pmaxi ∀i ∈ ig(4.4l)

ψ+
ij ≥ 0 ∀(i, j) ∈BR(4.4m)

ψ+
ij ≤M5ij(1−yij) ∀(i, j) ∈BR(4.4n)

γij(θi− θj)≥ Fmaxij −M6ijyij ∀(i, j) ∈BR(4.4o)

γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.4p)

ψ−ij ≥ 0 ∀(i, j) ∈BR(4.4q)
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ψ−ij ≤M7ij(1− zij) ∀(i, j) ∈BR(4.4r)

γij(θi− θj)≤−Fmaxij +M8ijzij ∀(i, j) ∈BR(4.4s)

γij(θi− θj)≥−Fmaxij ∀(i, j) ∈BR(4.4t)

−π ≤ θi ≤ π ∀i(4.4u)

wi,xi ∈ {0,1} ∀i(4.4v)

yij , zij ∈ {0,1} ∀(i, j) ∈BR(4.4w)

Objective function (4.4a) and constraint (4.4b) belong to the upper level problem
of the bi-level problem. Using FAM method described in (4.3a)-(4.3b), constraints
(4.4c)-(4.4f) are associated with complementary constraint (4.2c). Constraints
(4.4i)-(4.4l) are associated with complementary constraint (4.2f). Constraints
(4.4m)-(4.4p) are related to complementary constraint (4.2g). Constraints (4.4q)-
(4.4t) are related to complementary constraint (4.2h). Constraints (4.4v) and
(4.4w) represent the binary variables.

Proposition 4.1.1. When constraint (4.4b) is replaced by λ ≤ Pi(bi−Ci), in the
resulting constraint, bi provides a lower bound for LMPi value.

Proof. The proposed Reformulation1 is a non-linear program due to constraint
(4.4b) where two continuous variables Pi and LMPi are multiplied. In order to
facilitate the linearization the constraint, LMPi is replaced with bi. If we consider
constraint (3.2b) in the bi-level model and constraint (3.3b) in the dual of lower
level and their complementary problems in the MPEC model,

Pi(bi−LMPi+φi) = 0
(Pi−Pmaxi )φi = 0

so,

Pi > 0→ bi = LMPi−φi
Pi 6= Pmaxi → LMPi = bi,φi = 0

LMPi value is either LMPi = bi or LMPi > bi. �

Following the replacement, we utilize the approach considered by Jin et al. (2013),
Pozo et al. (2012), and Kazempour et al. (2013) to linearize the non-linear term that
includes the multiplication of two continuous variables Pi and bi. First, we represent
bi by Bidik which is comprised of possible discrete values bi and newly defined
Bik which is a binary variable such that bi = ∑

k∈KBidikBik where ∑k∈KBik =
14



1. Thereafter, we introduce a new auxiliary variable Vik = PiBik to the model.
Linearized model after resolving the non-linearity due to multiplication of Pi and bi
is represented below.

maximize
{Bik,λ}

λ(4.5a)

subject to λ≤
∑
k∈K

BidikVik−PiCi ∀i(4.5b)

bi =
∑
k∈K

BidikBik ∀i(4.5c)

∑
k∈K

Bik = 1 ∀i(4.5d)

Vik ≤ Pmaxi Bik ∀i and k(4.5e)

Vik ≤ Pi ∀i and k(4.5f)

Vik ≥ Pi−Pmaxi [1−Bik] ∀i and k(4.5g)

Vik ≥ 0 ∀i and k(4.5h)

Pi ≥ 0 ∀i(4.5i)

Pi ≤M1i(1−wi) ∀i(4.5j)

bi−LMPi+φi ≤M2iwi ∀i(4.5k)

bi−LMPi+φi ≥ 0 ∀i(4.5l) ∑
(i,j)∈BR

γij(LMPj−LMPi)+
∑

(i,j)∈BR
γij(ψ−ij −ψ+

ij)

+
∑

(j,i)∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(4.5m)

Pi−Di =
∑

(i,j)∈BR
γij(θi− θj) ∀i(4.5n)

φi ≥ 0 ∀i(4.5o)

φi ≤M3i(1−xi) ∀i(4.5p)

Pi ≥ Pmaxi −M4ixi ∀i(4.5q)

Pi ≤ Pmaxi ∀i(4.5r)

ψ+
ij ≥ 0 ∀(i, j) ∈BR(4.5s)

ψ+
ij ≤M5i(1−yij) ∀(i, j) ∈BR(4.5t)

γij(θi− θj)≥ Fmaxij −M6ijyij ∀(i, j) ∈BR(4.5u)

γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.5v)

ψ−ij ≥ 0 ∀(i, j) ∈BR(4.5w)

ψ−ij ≤M7(1− zij) ∀(i, j) ∈BR(4.5x)

γij(θi− θj)≤−Fmaxij +M8zij ∀(i, j) ∈BR(4.5y)

γij(θi− θj)≥−Fmaxij ∀(i, j) ∈BR(4.5z)
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−π ≤ θi ≤ π ∀i(4.5aa)

Bik ∈ {0,1} ∀i and k(4.5ab)

wi,xi ∈ {0,1} ∀i(4.5ac)

yij , zij ∈ {0,1} ∀(i, j) ∈BR(4.5ad)

Constraints (4.5b)-(4.5h) and (4.5ab) are new constraints derived through lineariza-
tion process. Big M parameters in the model are defined asM1i = Pmaxi ,M2i = 100,
M3i = 100, M4i = Pmaxi , M5ij = 100, M6ij = 2Fmaxij , M7ij = 100, and M8ij = 2Fmaxij .

4.1.2 An Improved-Reformulation1

We now want to take a closer look at Reformulation1 proposed by Çelebi et al. (2019)
and improve it using several observations. For this purpose, we present Propositions
4.1.2, 4.1.3, and 4.1.4 in order to eliminate the redundant constraints and to add
valid inequalities.

Proposition 4.1.2. For a given transmission link (i,j) ∈BR, Fmaxij −γij(θi−θj)≥ 0
and Fmaxij + γij(θi− θj) ≥ 0 are redundant when M6ij = M8ij = 2Fmaxij in γij(θi−
θj)≥ Fmaxij −M6ijyij and γij(θi− θj)≤−Fmaxij +M8zij constraints.

Proof. Consider constraints (4.5u) - (4.5v) and constraints (4.5y) - (4.5z) from the
Reformulation1.

Fmaxij −γij(θi− θj)≤M6ijyij(4.6a)

Fmaxij −γij(θi− θj)≥ 0(4.6b)

Fmaxij +γij(θi− θj)≤M8ijzij(4.6c)

Fmaxij +γij(θi− θj)≥ 0(4.6d)

According to possible values of yij and zij , four cases could occur:

1.1 yij = 0, zij = 0: It is not possible as summation of (4.6a) and (4.6c) yields
2Fmaxij ≤ 0 which cannot happen. Either yij or zij must be positive in the
formulation.

1.2 yij = 1, zij = 0: Constraint (4.6a) results in γij(θi− θj) ≥ −Fmaxij and con-
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straint (4.6c) yields γij(θi−θj)≤−Fmaxij . It follows that γij(θi−θj) =−Fmaxij

which holds for constraints (4.6b) and (4.6d).

1.3 yij = 0, zij = 1: Constraint (4.6a) leads to γij(θi− θj)≥ Fmaxij and constraint
(4.6c) constitutes γij(θi−θj)≤ Fmaxij . It results in γij(θi−θj) = Fmaxij that is
feasible for constraints (4.6b) and (4.6d).

1.4 yij = 1, zij = 1: Constraints (4.6a) and (4.6c) produce constraint (4.6d) and
(4.6b), respectively.

�

Proposition 4.1.3. Constraint Pi ≤ Pmaxi is redundant given that M1i = M4i =
Pmaxi in Pi ≤M1i(1−wi) and Pi ≥ Pmaxi −M4ixi constraints.

Proof. According to possible values of wi, and xi, four cases could occur:

2.1 wi = 0, xi = 0:

Pi ≤ Pmaxi(4.7a)

Pi ≥ Pmaxi(4.7b)

leads to Pi = Pmaxi which holds for Pi ≤ Pmaxi .

2.2 wi = 0, xi = 1:

Pi ≤ Pmaxi(4.8a)

Pi ≥ 0(4.8b)

always satisfy Pi ≤ Pmaxi .

2.3 wi = 1, xi = 1:

Pi ≤ 0(4.9a)

Pi ≥ 0(4.9b)

produces Pi = 0 holds for Pi ≤ Pmaxi .

2.4 wi = 1, xi = 0:

Pi ≤ 0(4.10a)

Pi ≥ Pmaxi(4.10b)
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is infeasible so could not happen. �

Proposition 4.1.4. According to Propositions 4.1.2 and 4.1.3, yij + zij ≥ 1 and
wi ≤ xi are valid inequalities.

Proof. In Proposition 4.1.2, yij = 0, zij = 0 case is impossible. It is cut off by yij +
zij ≥ 1 constraint. We eliminate wi = 1,xi = 0 case in Proposition 4.1.3 by wi ≤ xi
inequality. �

Applying the proposed propositions on the Reformulation1, we develop a new for-
mulation which is called Improved-Reformulation1.

4.1.3 Reformulation2: MILP model based on Strong-Duality conditions

Çelebi et al. (2019) transform the bi-level problem into a single-level problem using
strong duality approach. They use the primal-dual constraints of the DC-OPF
problem in (3.1a) - (3.1f) to transform the lower level of the bi-level problem to a
set of constraints as follows.

maximize
{bi,λ}

λ(4.11a)

subject to λ≤ Pi(LMPi−Ci) ∀i(4.11b)

Pi ≥ 0 ∀i(4.11c)

bi−LMPi+φi ≥ 0 ∀i(4.11d) ∑
(i,j)∈BR

γij(LMPj−LMPi)+
∑

(i,j)∈BR
γij(ψ−ij −ψ+

ij)

+
∑

(j,i)∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(4.11e)

Pi−Di =
∑

(i,j)∈BR
γij(θi− θj) ∀i(4.11f)

φi ≥ 0 ∀i(4.11g)

Pi ≤ Pmaxi ∀i(4.11h)

ψ+
ij ≥ 0 ∀(i, j) ∈BR(4.11i)

γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.11j)

ψ−ij ≥ 0 ∀(i, j) ∈BR(4.11k)

γij(θi− θj)≥−Fmaxij ∀(i, j) ∈BR(4.11l)
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−π ≤ θi ≤ π ∀i
(4.11m)

∑
i

biPi =
∑
i

DiLMPi−
∑
i

Pmaxi φi−
∑

(i,j)∈BR
Fmaxij (ψ+

ij +ψ−ij)(4.11n)

Constraint (4.11n) is derived based on the strong duality condition for the lower
level problem of the DC-OPF. Reformulation2 in (4.11a) - (4.11n) is a non-linear
model due to (4.11b) and (4.11n) constraints. In order to resolve the issue related
to the non-linearity of constraints (4.11b) and (4.11n), we replace Pi with LMPi

and linearize the model in the same way that is done in the Reformulation1 through
new variables and parameters as Vik, Bik and Bidik that includes possible discrete
values of bi variable. Linearized form of Reformulation2 becomes

maximize
{bi,λ}

λ(4.12a)

subject to λ≤
∑
k∈K

BidikVik−PiCi ∀i(4.12b)

bi =
∑
k∈K

BidikBik ∀i(4.12c)

∑
k∈K

Bik = 1 ∀i(4.12d)

Vik ≤ Pmaxi Bik ∀i and k(4.12e)

Vik ≤ Pi ∀i and k(4.12f)

Vik ≥ Pi−Pmaxi (1−Bik) ∀i and k(4.12g)

Vik ≥ 0 ∀i and k(4.12h)

Pi ≥ 0 ∀i(4.12i)

bi−LMPi+φi ≥ 0 ∀i(4.12j)

φi ≥ 0 ∀i(4.12k)

Pi ≤ Pmaxi ∀i(4.12l) ∑
(i,j)∈BR

γij(LMPj−LMPi)+
∑

(i,j)∈BR
γij(ψ−ij −ψ+

ij)

+
∑

(j,i)∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(4.12m)

Pi−Di =
∑

(i,j)∈BR
γij(θi− θj) ∀i(4.12n)

ψ+
ij ≥ 0 ∀(i, j) ∈BR(4.12o)

γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.12p)

ψ−ij ≥ 0 ∀(i, j) ∈BR(4.12q)

γij(θi− θj)≥−Fmaxij ∀(i, j) ∈BR(4.12r)
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−π ≤ θi ≤ π ∀i(4.12s)

LMPi free ∀i(4.12t)

Bik ∈ {0,1} ∀i and k(4.12u) ∑
i

∑
k∈K

BidikVik =
∑
i

DiLMPi−
∑
i

Pmaxi φi

−
∑
ij

Fmaxij (ψ+
ij +ψ−ij)

(4.12v)

Constraints (4.12b) - (4.12h) are linearized constraints for (4.11b), and (4.12t) is
linearized form of the constraint (4.11n).

4.1.4 Reformulation3: MILP model based on KKT conditions and Active

Set Method

We propose another reformulation to transform the bi-level problem to a single-
level problem using KKT conditions together with Active Set Method in Gümüş &
Floudas (2005). They employ KKT conditions when the lower problem is convex. In
order to use these conditions, we need to ascertain a new formulation for the bi-level
problem in (3.2a) - (3.2h). In order to apply this method, right hand sides of the
equality constraints and less than or equal to inequality constraints in the bi-level
problem must be zero. With these changes, the bi-level problem is formulated as

maximize
{bi,λ}

λ(4.13a)

subject to λ−Pi(LMPi−Ci)≤ 0 ∀i,(4.13b)

minimize
{Pi,θi}

∑
i

biPi(4.13c)

subject to Pi−Di−
∑

∀(i,j)∈BR
γij(θi− θj) = 0 ∀i, [LMPi](4.13d)

Pi−Pmaxi ≤ 0 ∀i, [φi](4.13e)

|γij(θi− θj)|−Fmaxij ≤ 0 ∀(i, j) ∈BR, [ψ+
ij ,ψ

−
ij ](4.13f)

−π ≤ θi ≤ π ∀i,(4.13g)

−Pi ≤ 0 ∀i, [αi](4.13h)

One of the main difference of Reformulation3 and Reformulation1 is that in addition
to dual variables that were defined earlier, we define a dual variable as αi associated
with constraint (4.13h). Next, we need to use KKT conditions on the lower level of
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the modified bi-level problem in (4.13a) - (4.13h). For a constraint g(x,y)≤ 0, the
following procedure is executed:

Step 1. Let s be a slack variable so that s+ g(x,y) = 0. Since s = −g(x,y), thus,
s≥ 0, ∀j holds.

Step 2. Let u≥ 0 be the dual variable of constraint g(x,y)≤ 0.

Step 3. The complementary slackness conditions can be written as u.s= 0.

Step 4. A KKT stationary condition u(−g(x,y)) = 0 is added to replace constraint
g(x,y) to the lower level.

Accordingly, Reformulation3 becomes

maximize λ(4.14a)

subject to λ−Pi(LMPi−Ci)≤ 0 ∀i(4.14b) ∑
(i,j)∈BR

γij(LMPj−LMPi)+
∑

(i,j)∈BR
γij(ψ−ij −ψ+

ij)

+
∑

(j,i)∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(4.14c)

Pi−
∑

(i,j)∈BR
γij(θi− θj) =Di ∀i(4.14d)

− bi+LMPi−φi+αi = 0 ∀i(4.14e)

φi(Pmaxi −Pi) = 0 ∀i(4.14f)

ψ+
ij

(
Fmaxij −γij(θi− θj)

)
= 0 ∀(i, j) ∈BR(4.14g)

ψ−ij
(
Fmaxij +γij(θi− θj)

)
= 0 ∀(i, j) ∈BR(4.14h)

αiPi = 0 ∀i(4.14i)

−π ≤ θi ≤ π ∀i(4.14j)

Pi,αi ≥ 0 ∀i(4.14k)

ψ+
ij ,ψ

−
ij ≥ 0 ∀(i, j) ∈BR(4.14l)

LMPi free ∀i(4.14m)

Constraint (4.14i) and (4.14k) are new constraints related to (4.13h). Active set
Method in Gümüş & Floudas (2005) is then applied to resolve the non-convexity
caused by KKT complementary slackness conditions in (4.14f) - (4.14h). Based on
this method, we replace a constraint in the form of u.s= 0 by defining a new binary
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variable v and a sufficiently big parameter M as follows.

u−Mv ≤ 0, j ∈ J(4.15a)

s−M(1−v)≤ 0, j ∈ J(4.15b)

u,s≥ 0, j ∈ J(4.15c)

v ∈ {0,1}(4.15d)

As we take a look at the model (4.14a) - (4.14m), we also observe the non-linearity
constraints (4.14b), (4.14f) - (4.14i). The same method which was applied to linearize
the non-linear terms in Reformulation1 and Reformulation2 is also used here. As a
matter of fact, we formulate a linearized version as

maximize λ(4.16a)

subject to λ≤
∑
k∈K

BidikVik−PiCi ∀i(4.16b)

bi =
∑
k∈K

BidikBik ∀i(4.16c)

∑
k∈K

Bik = 1 ∀i(4.16d)

Vik ≤ Pmaxi Bik ∀i and k(4.16e)

Vik ≤ Pi ∀i and k(4.16f)

Vik ≥ Pi−Pmaxi [1−Bik] ∀i and k(4.16g)

Vik ≥ 0 ∀i and k(4.16h)

Pi−
∑

ij∈BR
γij(θi− θj) =Di ∀i(4.16i)

−Pi ≤ 0 ∀i(4.16j) ∑
ij∈BR

γij(LMPj−LMPi)+
∑

ij∈BR
γij(ψ−ij −ψ+

ij)

+
∑

ji∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(4.16k)

− bi+LMPi−φi+αi = 0 ∀i(4.16l)

φi−M1iv
1
i ≤ 0 ∀i(4.16m)

Pmaxi −Pi−M2i(1−v1
i )≤ 0 ∀i(4.16n)

ψ+
ij −M3ijv

2
ij ≤ 0 ∀(i, j) ∈BR(4.16o)

−γij(θi− θj)+Fmaxij −M4ij(1−v2
ij)≤ 0 ∀(i, j) ∈BR(4.16p)

ψ−ij −M5ijv
3
ij ≤ 0 ∀(i, j) ∈BR(4.16q)
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γij(θi− θj)+Fmaxij −M6ij(1−v3
ij)≤ 0 ∀(i, j) ∈BR(4.16r)

αi−M7iv
4
i ≤ 0 ∀i(4.16s)

Pi−M8i(1−v4
i )≤ 0 ∀i(4.16t)

v1
i +v4

i ≤ 1 ∀i(4.16u)

v2
ij +v3

ij ≤ 1 ∀(i, j) ∈BR(4.16v)

Pi ≤ Pmaxi ∀i(4.16w)

γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.16x)

γij(θi− θj)≥−Fmaxij ∀(i, j) ∈BR(4.16y)

−π ≤ θi ≤ π ∀i(4.16z)

v1
i ,v

4
i ∈ {0,1} ∀i(4.16aa)

v2
ij ,v

3
ij ∈ {0,1} ∀(i, j) ∈BR(4.16ab)

Pi,αi ≥ 0 ∀i(4.16ac)

LMPi free ∀i(4.16ad)

Bik ∈ {0,1} ∀i and k(4.16ae)

Vik ≥ 0 ∀i and k(4.16af)

ψ+
ij ,ψ

−
ij ≥ 0 ∀(i, j) ∈BR(4.16ag)

Constraints (4.16b)-(4.16h) are linearized form of constraint (4.14b). Constraints
(4.16m)-(4.16n) are associated with constraint (4.14f). Constraints (4.16o)-(4.16p)
are associated with constraint (4.14g). Constraints (4.16q)-(4.16r) are associated
with constraint (4.14h). Constraints (4.16s)-(4.16t) are associated with constraint
(4.14i). Constraints (4.16u)-(4.16v), and constraints (4.16aa)-(4.16ab) are related
with constraints (4.15c)-(4.15d) of the active set method. Big M parameters are
defined as M1i = 100, M2i = Pmaxi , M3ij = 100, M4ij = 2Fmaxij ,M5ij = 100, M6ij =
2Fmaxij , M7i = Pmaxi , and M8i = Pmaxi .

In order to develop an improved version of Reformulation3, some redundant con-
straints are eliminated using propositions 4.1.2 and 4.1.3 which eliminates con-
straints (4.16w)-(4.16y). The new formulation derived after applying propositions
is called Improved-Reformulation3.
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4.1.5 Reformulation4: MILP model based on SOS type 1 variables

One of the well-known techniques to transform a bi-level problem to a single-level
MILP is to use SOS variables which is applied by reformulating the complementary
conditions. SOS type 1 refers to a set of variables; in such a set, only one of the
variable can take a positive value (Siddiqui Gabriel 2013, Pineda et al. 2018). The
general form of SOS type 1 variables is defined as follow.

v1 = u

v2 = g(x,y)

where v1 and v2 are SOS type 1 variables. Furthermore, SOS type 1 variables can
be applied for Reformulation1 where SOS type 1 variables are utilized to express
the complementary conditions. Using this technique, problem formulation in (4.2a)
- (4.2i) can be alternatively reformulated as

maximize
{bi,λ}

λ(4.17a)

subject to λ≤
∑
k∈K

BidikVik−PiCi ∀i(4.17b)

bi =
∑
k∈K

BidikBik ∀i(4.17c)

∑
k∈K

Bik = 1 ∀i(4.17d)

Vik ≤ Pmaxi Bik ∀i and k(4.17e)

Vik ≤ Pi ∀i and k(4.17f)

Vik ≥ Pi−Pmaxi [1−Bik] ∀i and k(4.17g)

Vik ≥ 0 ∀i and k(4.17h) ∑
ij∈BR

γij(LMPj−LMPi)+
∑

ij∈BR
γij(ψ−ij −ψ+

ij)

+
∑

ji∈BR
γji(ψ+

ji−ψ
−
ji) = 0 ∀i

(4.17i)

Pi−Di =
∑

ij∈BR
γij(θi− θj) ∀i(4.17j)

Pi ≤ Pmaxi ∀i(4.17k)

bi−LMPi+φi ≥ 0 ∀i(4.17l)

v11
i = Pi ∀i(4.17m)

v12
i = bi−LMPi+φi ∀i(4.17n)

v21
i = φi ∀i(4.17o)

v22
i = Pmaxi −Pi ∀i(4.17p)
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v31
ij = ψ+

ij ∀i(4.17q)

v32
ij = Fmaxij −γij(θi− θj) ∀i(4.17r)

v41
ij = ψ−ij ∀i(4.17s)

v42
ij = Fmaxij +γij(θi− θj) ∀i(4.17t)

γij(θi− θj)≤ Fmaxij ∀(i, j) ∈BR(4.17u)

γij(θi− θj)≥−Fmaxij ∀(i, j) ∈BR(4.17v)

−π ≤ θi ≤ π ∀i(4.17w)

v11
i ,v

12
i SOS1 ∀i(4.17x)

v21
i ,v

22
i SOS1 ∀i(4.17y)

v31
ij ,v

32
ij SOS1 ∀i, j(4.17z)

v41
ij ,v

42
ij SOS1 ∀i, j(4.17aa)

Pi ≥ 0 ∀i(4.17ab)

LMPi free ∀i(4.17ac)

Bik ∈ {0,1} ∀i and k(4.17ad)

Vik ≥ 0 ∀i and k(4.17ae)

ψ+
ij ,ψ

−
ij ≥ 0 ∀ij ∈BR(4.17af)

In the proposed reformulation4 in (4.17a) - (4.17af), we have four SOS type 1 vari-
ables which have produced new SOS type 1 constraints (4.17m) - (4.17t). Con-
straints (4.17m) - (4.17n) are associated with constraint (4.2c). Constraints (4.17o)
- (4.17p) are related to constraint (4.2f). Constraints (4.17q) - (4.17r) are associ-
ated with constraint (4.2g), and constraints (4.17s) - (4.17t) are associated with
constraint (4.2h).

4.2 Comparison of Reformulations

Four reformulations are proposed to transform the bi-level problem. Based on FAM
method, KKT conditions were used for the Reformulation1. In Reformulation2,
strong-duality conditions were used for the lower level problem. In a similar way to
what Reformulation1 was derived, Reformulation3 was formulated based on KKT
conditions together with Active Set Method. In Reformulation4, we use SOS vari-
ables.
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As we compare the proposed reformulations based on the number of variables and
constraints, Reformulation2 has the least number of constraints and binary variables.
Reformulation1 and Reformulation3 have almost the same number of constraints as
they are based on KKT conditions. Reformulation4 has lower number of constraints
in comparison to Reformulation1 and Reformulation3, but has higher number of
constraints in comparison to Reformulation2. The main advantage of SOS variables
is that no large constant is required. Moreover, both improved-Reformulation1 and
Improved-Reformulation3 decrease the size of Reformulation1 and Reformulation3
in terms of number of constraints, respectively.
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5. Computational Study

To illustrate performance and efficiency of the proposed reformulations to detect
collusion opportunities, several test instances are generated in four size groups as
small, medium, medium-plus, and large. The most important challenge to generate
the test instances is to ensure that there is at least one collusive state.

5.1 Test Instances

For each size group, the transmission network is fixed, i.e., the nodes, GenCos, the
transmission links, demands, and production costs are given. The parameters that
are randomly generated are Pmaxi and Fmaxij . In order to generate test instances, we
solve the DC-OPF problem using the total enumeration algorithm for each randomly
generated Pmaxi and Fmaxij values and check whether the generated instance has any
collusive states. Instance generation process is a computationally challenging task
since each generated instance has to be solved with DC-OPF problem. As the size
of instance increases, DC-OPF takes longer time to be solved. For small instances,
it took averagely 145 minutes to generate one instance with at least one collusive
state. For medium instances, the instance generation process averagely took 360
minutes for an instance with at least one collusive state. However, the instance
generation process gets more challenging as the size of instances increases. For
example, instance generation process averagely took 3 weeks to generate a medium-
plus instance with at least one collusive state. For large instances, the instance
generation process took approximately 6 weeks to generate an instance with at
least one collusive state. After completing the instance generation process, we filter
instances by eliminating those which have alternative solutions when we solve the
DC-OPF problem.
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5.1.1 Small instances

Small instances are generated based on the transmission grid in Aliabadi et al.
(2016). Table 5.1 represents the important parameters of these instances while
Figure 1 shows the network with five nodes and six transmission arcs where three
of them are GenCos. Production costs (Ci) and offered bids (Bi) are represented in
Table 5.1. GenCo1 and GenCo2 have seven and GenCo3 has five distinct bid offers.
Therefore, in total, we have 7*7*5=245 bid-offer states in the market. Demand of
each node is presented in Figure 5.1.

Table 5.1 Small network parameters

Ci($/MW) Bi($/MW)
GenCo-1 20 {22,27,32,37,42,47,52}
GenCo-2 20 {21,26,31,36,41,46,51}
GenCo-5 30 {30,35,40,45,50}

Figure 5.1 Small network grid

Using the small transmission grid network, we generate ten instances with different
Pmaxi and Fmaxij values which are presented in Table 5.2. The number of Nash states
and collusive states found with the total-enumeration of all states solving the DC-
OPF problem as suggested in (4.2a) - (4.2i) are also shown in Table 5.2. We also
report the running time of the enumeration algorithm in Table 5.2.
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Table 5.2 Small network instances

Instance Pmaxi Fmaxij

Nash
states

Collusive
states

Time

1 1. 320, 2. 258, 5. 214
1.2. 170, 1.3. 234,
2.4. 195, 2.5. 186,
3.4. 285, 4.5. 367

2 5 13.29

2 1. 262, 2. 495, 5. 249
1.2. 156, 1.3. 466,
2.4. 171, 2.5. 423,
3.4. 207, 4.5. 26

2 5 12.56

3 1. 371, 2. 202, 5. 362
1.2. 124, 1.3. 348,
2.4. 432, 2.5. 473,
3.4. 300, 4.5. 401

6 5 11.64

4 1. 363, 2. 450, 5. 415
1.2. 80, 1.3. 224,
2.4. 251, 2.5. 222,
3.4. 380, 4.5. 300

1 6 11.77

5 1. 353, 2. 260, 5. 346
1.2. 76, 1.3. 227,
2.4. 239, 2.5. 306,
3.4. 150, 4.5. 208

2 7 12.46

6 1. 345, 2. 259, 5. 272
1.2. 103, 1.3. 369,
2.4. 375, 2.5. 253,
3.4. 198, 4.5. 59

3 9 12.15

7 1. 355, 2. 326, 5. 236
1.2. 100, 1.3. 226,
2.4. 492, 2.5. 443,
3.4. 128, 4.5. 35

3 6 12.16

8 1. 340, 2. 270, 5. 234
1.2. 170, 1.3. 234,
2.4. 195, 2.5. 186,
3.4. 285, 4.5. 367

2 5 12.14

9 1. 234, 2. 302, 5. 232
1.2. 367, 1.3. 210,
2.4. 167, 2.5. 324,
3.4. 264, 4.5. 185

4 3 11.78

10 1. 234, 2. 487, 5. 327
1.2. 264, 1.3. 450,
2.4. 462, 2.5. 478,
3.4. 306, 4.5. 31

2 13 11.89
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5.1.2 Medium instances

In order to increase the size of market, we add two more nodes to the network
grid, one of which also becomes a GenCo. According to Table 5.3, GenCo1 and
GenCo2 have seven, GenCo5 has five, and the new GenCo6 has nine distinct bid
offers. In total, there exist 7*7*5*9=2205 bid-offer states in the medium-size market.
Production costs (Ci), offered bids (Bi), and node demands are presented in Table
5.3 and Figure 5.2.

Table 5.3 Medium network parameters

Ci($/MW) Bi($/MW)
GenCo-1 20 {21,26,31,36,41,46,51}
GenCo-2 20 {22,27,32,37,42,47,52}
GenCo-5 30 {33,38,43,48,53}
GenCo-6 10 {14,19,24,29,34,39,44,49,54}

Figure 5.2 Medium network grid
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According to parameters of the medium network, ten instances are generated again
by varying Pmaxi and Fmaxij values. Generated instances, parameter values and
problem characteristics are presented in Table 5.4. The number of Nash states and
collusive states as well as the running time of the enumeration algorithm are also
presented in Table 5.4.

Table 5.4 Medium network instances

Instance Pmaxi Fmaxij

Nash
states

Collusive
states

Time

1
1. 43, 2. 43,
5. 43, 6. 31

1.2. 29, 1.3. 25, 1.7. 37,
2.4. 32, 2.5. 17, 3.4. 40,

4.5. 18, 5.6. 43
10 28 157.54

2
1. 21, 2. 23,
5. 28, 6. 23

1.2. 17, 1.3. 29, 1.7. 37,
2.4. 26, 2.5. 18, 3.4. 23,

4.5. 42, 5.6. 43
12 81 129.45

3
1. 36, 2. 34,
5. 30, 6. 31

1.2. 20, 1.3. 15, 1.7. 30,
2.4. 32, 2.5. 8, 3.4. 17,

4.5. 11, 5.6. 6
4 4 145.11

4
1. 36, 2. 46,
5. 33, 6. 41

1.2. 16, 1.3. 36, 1.7. 13,
2.4. 25, 2.5. 8, 3.4. 8,

4.5. 44, 5.6. 7
2 52 153.21

5
1. 24, 2. 32,
5. 39, 6. 37

1.2. 29, 1.3. 25, 1.7. 37,
2.4. 32, 2.5. 17, 3.4. 40,

4.5. 18, 5.6. 43
3 29 160.45

6
1. 62, 2. 25,
5. 33, 6. 47

1.2. 47, 1.3. 45, 1.7. 17,
2.4. 13, 2.5. 12, 3.4. 45,

4.5. 31, 5.6. 6
1 9 156.23

7
1. 62, 2. 45,
5. 45, 6. 44

1.2. 29, 1.3. 25, 1.7. 37,
2.4. 32, 2.5. 17, 3.4. 40,

4.5. 18, 5.6. 43
5 16 148.52

8
1. 80, 2. 42,
5. 31, 6. 32

1.2. 69, 1.3. 99, 1.7. 35,
2.4. 24, 2.5. 22, 3.4. 34,

4.5. 21, 5.6. 45
10 38 123.25

9
1. 25, 2. 69,
5. 74, 6. 57

1.2. 56, 1.3. 63, 1.7. 65,
2.4. 33, 2.5. 16, 3.4. 48,

4.5. 18, 5.6. 46
5 19 124.58

10
1. 55, 2. 31,
5. 15, 6. 69

1.2. 23, 1.3. 79, 1.7. 68,
2.4. 64, 2.5. 59, 3.4. 88,

4.5. 37, 5.6. 97
40 54 129.85
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5.1.3 Medium-plus instances

In order to generate instances that are closer to real-life cases, we take the structure
of medium network grid and increase the number of bid offers by each GenCo. New
bid offers of each GenCo are presented in Table 5.5. Based on Table 5.5, GenCo1

and GenCo2 have sixteen, GenCo5 has eleven, and GenCo6 has sixteen distinct
bid offers. In total, there exist 16*16*11*16=45056 bid-offer states in medium-size
market. The increase in bid offers lead to a great increase in bid-offer options in the
market.

Table 5.5 Medium-plus network parameters

Ci($/MW) Bi($/MW)
GenCo-1 20 {21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51}
GenCo-2 20 {22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52}
GenCo-5 30 {33,35,37,39,41,43,45,47,49,51,53}
GenCo-6 10 {14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44}

Table 5.6 Medium-plus network instances

Instances Pmaxi Fmaxij

Nash
states

Collusive
states

Time

1
1. 132, 2. 291,
5. 31, 6. 85

1.2. 278, 1.3. 68, 1.7. 92,
2.4. 185, 2.5. 45, 3.4. 13,

4.5. 281, 5.6. 24
11 1316 2350.51

2
1. 61, 2. 34,
5. 24, 6. 21

1.2. 278, 1.3. 68, 1.7. 92,
2.4. 185, 2.5. 45, 3.4. 13,

4.5. 281, 5.6. 24
4 438 2228.56

3
1. 33, 2. 54,
5. 48, 6. 26

1.2. 29, 1.3. 14, 1.7. 27,
2.4. 8, 2.5. 42, 3.4. 10,

4.5. 16, 5.6. 35
12 715 2349.37

4
1. 29, 2. 52,
5. 30, 6. 31

1.2. 29, 1.3. 14, 1.7. 27,
2.4. 8, 2.5. 42, 3.4. 10,

4.5. 16, 5.6. 35
11 844 2289.42

5
1. 31, 2. 54,
5. 21, 6. 33

1.2. 29, 1.3. 14, 1.7. 27,
2.4. 8, 2.5. 42, 3.4. 10,

4.5. 16, 5.6. 35
5 903 2140.23

6
1. 27, 2. 41,
5. 43, 6. 28

1.2. 29, 1.3. 14, 1.7. 27,
2.4. 8, 2.5. 42, 3.4. 10,

4.5. 16, 5.6. 35
20 561 2514.78
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According to parameters of the medium transmission grid network, six instances
are generated again by varying Pmaxi and Fmaxij values. Generated six medium-plus
instances and their related parameters are represented in Table 5.5. The number
of Nash states and collusive states as well as the running time of the enumeration
algorithm are also presented in Table 5.6. As we observe, the running time of
the enumeration algorithm has increased significantly as the number of offered bids
increased.

5.1.4 Large instances

In order to further extend the transmission grid network, we construct a new grid
network with nine nodes, five of which are GenCos (Figure 5.3). Table 5.7 presents
the parameters of the large test instances. GenCo1 has twelve, GenCo2 has ten,
GenCo5 has five, GenCo6 has ten, and the newGenCo9 has twelve distinct bid offers.
In total, there exist 12*10*5*10*12=72000 bid-offer states in large-size market.

Table 5.7 Large network parameters

Ci($/MW) Bi($/MW)
GenCo-1 20 {21,26,31,36,41,46,51,56,61,66,71,76}
GenCo-2 20 {22,27,32,37,42,47,52,57,62,67}
GenCo-5 30 {33,38,43,48,53}
GenCo-6 10 {14,19,24,29,34,39,44,49,54,59}
GenCo-9 25 {35,40,45,50,55,60,65,70,75,80,85,90}

According to parameters of the large network, three instances are generated by
varying Pmaxi and Fmaxij values. Generated three large instances and their related
parameters are presented in Table 5.8. The number of Nash states and collusive
states as well as the running time of the enumeration algorithm are also presented
in Table 5.8. In comparison to the previous test instances, the running time of large
instances has increased dramatically due to the increase in number of offered bids
and number of GenCos.
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Figure 5.3 Large network grid

Table 5.8 Large network instances

Instances Pmaxi Fmaxij

Nash
states

Collusive
states

Time

1
1. 38, 2. 35, 5. 43,

6. 80 , 9. 69

1.2. 12 , 1.3. 39, 1.7. 80,
1.9. 13, 2.4. 33, 2.5. 75,
2.8. 90, 2.9. 40, 3.4. 48,
4.5. 70, 5.6. 17, 5.8. 96,

6.9. 19, 8.9. 59,

1 855 4220.03

2
1. 84, 2. 69, 5. 38,

6. 29, 9. 30

1.2. 12 , 1.3. 39, 1.7. 80,
1.9. 13, 2.4. 33, 2.5. 75,
2.8. 90, 2.9. 40, 3.4. 48,
4.5. 70, 5.6. 17, 5.8. 96,

6.9. 19, 8.9. 59,

1 43 5344.37

3
1. 32, 2. 51, 5. 85,

6. 32, 9. 23

1.2. 12 , 1.3. 39, 1.7. 80,
1.9. 13, 2.4. 33, 2.5. 75,
2.8. 90, 2.9. 40, 3.4. 48,
4.5. 70, 5.6. 17, 5.8. 96,

6.9. 19, 8.9. 59,

40 5 4438.56
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5.2 Computational Results

In order to test both efficiency and effectiveness of the proposed reformulations
in detecting collusive opportunities, we develop a search algorithm called as the
iterative algorithm to solve reformulations using all generated test instances. As r∗i
values are not known and cannot be determined by solving reformulations; therefore,
a state found from solving the reformulations cannot be completely guaranteed to
be collusive. In this regard, feasible solutions, states, found by the reformulations
are considered to be suspicious of being collusive.

Figure 5.4 Iterative algorithm

In the reformulations, λ value represents the minimum of profits of each GenCoi

(ri). Based on the definition of the collusive state, the profit of each GenCoi is
strictly greater than its profits at any Nash state (ri > r∗i ). This means that all
GenCos in a collusive state definitely have non-zero profits. The iterative algorithm
solves the reformulations and continues finding new solutions as long as λ > 0 which
means that the algorithm continues to solve the reformulation model as long as
it finds a state that its minimum profit (λ) is positive. In order to avoid finding
the same recently found suspicious states in subsequent iterations, a constraint is
added to the model. Constraints added in each iteration are named as suspicious
cuts. Using the suspicious cuts, we eliminate suspicious states which are found in
previous iterations by restricting the associated binary variables Bik. In other words,
suspicious cut hinders sum of the associate binary variables to be 1 at the same time.
Mathematically, the suspicious cut for all bi in solution space is expressed as

∑
iBik ≤ n−1 ∀ bi ∈ suspicious solution

where n denotes the number of GenCos. Iterative algorithm continues to solve the
model until it finds a solution with zero profit (λ = 0) or the problem becomes
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infeasible (Figure 5.4).

Without knowing true r∗i values, it is not exactly known which suspicious solutions
are exactly real collusive states. However, based on the definition of the collusive
state, we know that all real collusive states are definitely included among suspicious
solutions that are found using the iterative algorithm for reformulations. In order to
measure the performance of each reformulation, we compare the results of each refor-
mulation with results of enumeration algorithm that were obtained using DC-OPF
problem. For the purpose of comparison, Esen (2019) introduced two performance
measures as found ratio, and coverage ratio. Found ratio which is now renamed as
detection accuracy (DA) denotes the accuracy of the algorithm represented as the
ratio of the number of real collusive states to the total number of suspicious states
found, is expressed as

Detection accuracy = # of collusive states found
# of suspicious states found

While coverage ratio (CR) denotes the sensitivity of the algorithm represented as
the ratio of the number of collusive states found by a reformulation to the total
number of collusive states. Coverage ratio is calculated as

Coverage ratio = # of collusive states found
# of real collusive states

Using the two performance measures defined above, results of reformulations for
each test instance are presented based on the number of suspicious solutions (SS),
DA, CR, the running time, and the first λ value. All reformulations are solved with
Python 3.7 using GUROBI 9.0.2 solver. Computational tests are conducted on an
Intel Xeron(R) CPU E5-2640 processor with 2.60 GHz speed and 16 GB RAM, with
64-bit Windows 7 operating system.

Table 5.9 presents the results of reformulations for small test instances. CR values
are 1 for all the small instances which means that the proposed reformulations are
successful in detecting all collusive states in each instance. Based on the definition
of DA by Esen (2019), it is known that DA has a negative relationship with number
of SS such that high number of SS would lead to lower DA value. Small instance
7 has the highest number of states that are suspicious of being collusive. On the
other hand, small instance 3 has the lowest number of states which are suspicious
of being collusive. DA of each reformulation is strongly affected by the number of
solutions that are suspicious of being collusive; therefore, lower number of suspicious
solutions would increase the value of DA ratio. In the last column of Table 5.9,
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first λ value of each reformulation is reported. Results show that λ value derived
by all reformulations are the same in all small instances. Figure 5.5 presents the
performance of reformulations in terms of their running time for iterative algorithm.
As the running time of small test instances is very low, reformulations have very
similar performances; however, Reformulation2 has shown better performance in
most of the instances. Improved-Reformulation1 and Improved-Reformulation3 have
shown better performances in some of the instances in comparison to Reformulation1
and Reformulation3, respectively.

Table 5.9 Results for small instances

Instances Reformulation SS DA CR Time λ

1

Reformulation1 66 7.5% 100% 10.13 16.64
Improved-Reformulation1 66 7.5% 100% 10.89 16.64

Reformulation2 66 7.5% 100% 14.53 16.64
Reformulation3 66 7.5% 100% 10.91 16.64

Improved-Reformulation3 66 7.5% 100% 12.71 16.64
Reformulation4 66 7.5% 100% 11.42 16.64

2

Reformulation1 87 5.7% 100% 14.75 27.35
Improved-Reformulation1 87 5.7% 100% 25.12 27.35

Reformulation2 87 5.7% 100% 22.16 27.35
Reformulation3 87 5.7% 100% 15.72 27.35

Improved-Reformulation3 87 5.7% 100% 16.6 27.35
Reformulation4 87 5.7% 100% 15.58 27.35

3

Reformulation1 14 35.7% 100% 2.22 13.8
Improved-Reformulation1 14 35.7% 100% 4.42 13.8

Reformulation2 14 35.7% 100% 3.83 13.8
Reformulation3 14 35.7% 100% 2.71 13.8

Improved-Reformulation3 14 35.7% 100% 3.89 13.8
Reformulation4 14 35.7% 100% 3.66 13.8

4

Reformulation1 40 15% 100% 6.52 19.39
Improved-Reformulation1 40 15% 100% 10.92 19.39

Reformulation2 40 15% 100% 6.54 19.39
Reformulation3 40 15% 100% 5.99 19.39

Improved-Reformulation3 40 15% 100% 9.27 19.39
Reformulation4 40 15% 100% 9.05 19.39

5

Reformulation1 80 8.8% 100% 15.21 26.19
Improved-Reformulation1 80 8.8% 100% 15.72 26.19

Reformulation2 80 8.8% 100% 14.34 26.19
Reformulation3 80 8.8% 100% 16.09 26.19
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Table 5.9 Results for small instances

Instances Reformulation SS DA CR Time λ

Improved-Reformulation3 80 8.8% 100% 17.56 26.19
Reformulation4 80 8.8% 100% 16.54 26.19

6

Reformulation1 68 13.2% 100% 12.77 16.89
Improved-Reformulation1 68 13.2% 100% 15.72 16.89

Reformulation2 68 13.2% 100% 12.63 16.89
Reformulation3 68 13.2% 100% 12.93 16.89

Improved-Reformulation3 68 13.2% 100% 14.61 16.89
Reformulation4 68 13.2% 100% 12.75 16.89

7

Reformulation1 99 6.1% 100% 18.32 17.14
Improved-Reformulation1 99 6.1% 100% 20.43 17.14

Reformulation2 99 6.1% 100% 15.83 17.14
Reformulation3 99 6.1% 100% 21.93 17.14

Improved-Reformulation3 99 6.1% 100% 20.22 17.14
Reformulation4 99 6.1% 100% 18.45 17.14

8

Reformulation1 66 7.6% 100% 13.58 17.2
Improved-Reformulation1 66 7.6% 100% 11.93 17.2

Reformulation2 66 7.6% 100% 7.53 17.2
Reformulation3 66 7.6% 100% 19.52 17.2

Improved-Reformulation3 66 7.6% 100% 16.68 17.2
Reformulation4 66 7.6% 100% 15.59 17.2

9

Reformulation1 56 5.4% 100% 10.36 17.98
Improved-Reformulation1 56 5.4% 100% 9.61 17.98

Reformulation2 56 5.4% 100% 7.97 17.98
Reformulation3 56 5.4% 100% 15.53 17.98

Improved-Reformulation3 56 5.4% 100% 15.98 17.98
Reformulation4 56 5.4% 100% 12.35 17.98

10

Reformulation1 87 14.9% 100% 15.26 33.94
Improved-Reformulation1 87 14.9% 100% 14.85 33.94

Reformulation2 87 14.9% 100% 12.38 33.94
Reformulation3 87 14.9% 100% 14.78 33.94

Improved-Reformulation3 87 14.9% 100% 17.49 33.94
Reformulation4 87 14.9% 100% 9.48 33.94

Considering the running time of the total enumeration algorithm with the DC-OPF
problem for small instances in Table 5.2, we observe that in most of instances re-
formulations perform better than the total enumeration algorithm. In instances 1,
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3, and 4, running time of all reformulations is better than those of the total enu-
meration. Only Improved-Reformulation1 and Reformulation2 perform well with
instance 8. In instance 9, Reformulation2 again performs better than other refor-
mulations and total enumeration. In instance 10, Reformulation4 performs better
than all reformulations and total enumeration in terms of the running time. In the
rest of instances, reformulations fail to perform better than the total enumeration.

Figure 5.5 CPU time of reformulations for small instance

Table 5.10 presents the results of reformulations for medium test instances. In all
instances except instance 4, the CR value is 1 which means that reformulations
detect all collusive states. Reformulation4 fails to completely detect all collusive
states in instance 4 but still most of the collusive states are covered and only one
collusive state is missed. Instances 1, 7, 8, and 9 have the lowest suspicious solu-
tion among all medium instances. DA results in Table 5.10 show that these cases
have obtained better DA values. In the last column of Table 5.10, first λ values
of each reformulation is reported. Results show that λ values derived by all refor-
mulations are same in all medium instances and there is no difference in λ value of
reformulations in each test instance. Figure 5.6 presents the performance of refor-
mulations in terms of their running time using iterative algorithm. As the size of
problem increases in medium instances, the running time of medium test instances
increases as well. Reformulation3 and Reformulation4 have shown better perfor-
mances among all reformulations. Unlike small instances, Reformulation2 does not
show a good performance for medium instances. Except in 3 instances, Improved-
Reformulation1 shows better performance in comparison to Reformulation1. How-
ever, Improved-Reformulation3 does not show better performance in comparison to
Reformulation3, as the Reformulations3 yields better running time values in most
of the instances.
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Table 5.10 Results for medium instances

Instances Reformulation SS DA CR Time λ

1

Reformulation1 38 73.7% 100% 8.92 1.55
Improved-Reformulation1 38 73.7% 100% 7.52 1.55

Reformulation2 38 73.7% 100% 15.72 1.55
Reformulation3 38 73.7% 100% 7.64 1.55

Improved-Reformulation3 38 73.7% 100% 8.06 1.55
Reformulation4 38 73.7% 100% 8.61 1.55

2

Reformulation1 398 20.4% 100% 106.25 2.35
Improved-Reformulation1 398 20.4% 100% 97.48 2.35

Reformulation2 398 20.4% 100% 95.28 2.35
Reformulation3 398 20.4% 100% 99.14 2.35

Improved-Reformulation3 398 20.4% 100% 129.03 2.35
Reformulation4 398 20.4% 100% 107.05 2.35

3

Reformulation1 570 0.7% 100% 147.91 1.99
Improved-Reformulation1 570 0.7% 100% 132.59 1.99

Reformulation2 570 0.7% 100% 271.15 1.99
Reformulation3 570 0.7% 100% 142.94 1.99

Improved-Reformulation3 570 0.7% 100% 179.56 1.99
Reformulation4 570 0.7% 100% 136.04 1.99

4

Reformulation1 927 5.6% 100% 419.75 2.03
Improved-Reformulation1 927 5.6% 100% 401.11 2.03

Reformulation2 927 5.6% 100% 563.24 2.03
Reformulation3 927 5.6% 100% 321.26 2.03

Improved-Reformulation3 927 5.6% 100% 414.29 2.03
Reformulation4 927 5.5% 98.1% 405.98 2.03

5

Reformulation1 271 10.7% 100% 60.59 2.05
Improved-Reformulation1 271 10.7% 100% 57.56 2.05

Reformulation2 271 10.7% 100% 72.52 2.05
Reformulation3 271 10.7% 100% 78.59 2.05

Improved-Reformulation3 271 10.7% 100% 92.37 2.05
Reformulation4 271 10.7% 100% 69.09 2.05

6

Reformulation1 398 2.3% 100% 378.54 2.04
Improved-Reformulation1 398 2.3% 100% 370.41 2.04

Reformulation2 398 2.3% 100% 319.63 2.04
Reformulation3 398 2.3% 100% 242.39 2.04

Improved-Reformulation3 398 2.3% 100% 238.54 2.04
Reformulation4 398 2.3% 100% 180.71 2.04
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Table 5.10 Results for medium instances

Instances Reformulation SS DA CR Time λ

7

Reformulation1 38 42.1% 100% 12.31 1.01
Improved-Reformulation1 38 42.1% 100% 12.18 1.01

Reformulation2 38 42.1% 100% 10.95 1.01
Reformulation3 38 42.1% 100% 8.08 1.01

Improved-Reformulation3 38 42.1% 100% 10.47 1.01
Reformulation4 38 42.1% 100% 12.35 1.01

8

Reformulation1 38 100% 100% 13.14 1.23
Improved-Reformulation1 38 100% 100% 15.19 1.23

Reformulation2 38 100% 100% 9.54 1.23
Reformulation3 38 100% 100% 9.38 1.23

Improved-Reformulation3 38 100% 100% 9.61 1.23
Reformulation4 38 100% 100% 13.88 1.23

9

Reformulation1 28 67.9% 100% 6.56 0.13
Improved-Reformulation1 28 67.9% 100% 9.87 0.13

Reformulation2 28 67.9% 100% 15.87 0.13
Reformulation3 28 67.9% 100% 9.64 0.13

Improved-Reformulation3 28 67.9% 100% 9.27 0.13
Reformulation4 28 67.9% 100% 11.07 0.13

10

Reformulation1 89 60.7% 100% 11.88 0.39
Improved-Reformulation1 89 60.7% 100% 13.35 0.39

Reformulation2 89 60.7% 100% 27.68 0.39
Reformulation3 89 60.7% 100% 23.81 0.39

Improved-Reformulation3 89 60.7% 100% 23.35 0.39
Reformulation4 89 60.7% 100% 17.54 0.39

Considering the running time of the total enumeration for medium instances in Table
5.4, we observe that reformulations perform very well, as the running times of all
reformulations are lower than those of total enumeration in instances 1, 2, 5, 7, 8, 9,
and 10. However, reformulations do not perform very well in instances 4, and 6. In
instance 3, all reformulations except Reformulation2 and Improved-Reformulation3
perform better than total enumeration.
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Figure 5.6 CPU time of reformulations for medium instances

Table 5.11 presents the results of reformulations for medium-plus instances. In all
instances, reformulations detect all collusive states; therefore the CR value is 1 in all
of them. High number of bid-offer states in medium-plus instances has increased the
possibility of having many solutions which are suspicious of being collusive (Table
5.11). In the last column of Table 5.11, first λ value of each reformulation is reported.
Results show that λ values derived by all reformulations are same in all medium-plus
instances and there is no difference in λ of reformulations in each instance. Figure
5.7 presents the performance of reformulations in terms of their running time using
iterative algorithm. In comparison to market size of the medium instances, the size of
problem increases more than 20 times in medium-plus instances which dramatically
affects the running time of instances. Reformulation4 shows better performance in
most of the instances, followed by Improved-Reformulation3 and Reformulation3.
Reformulation2 shows the worst performance among all reformulations. In some
instances, running time of Reformulation4 is approximately 3 to 5 times better than
Reformulation2. Improved-Reformulation1 just shows better performances in two
instances 5 and 6 in comparison to Reformulation1. Improved-Reformulation3 also
does not show better performance in all instances in comparison to Reformulation3;
however, Improved-Reformulation3 shows outstanding performance in instance 6
where it yields best value in comparison to all reformulations.
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Table 5.11 Results for medium-plus instances

Instances Reformulation SS DA CR Time λ

1

Reformulation1 1840 71.5% 100% 1614.27 2
Improved-Reformulation1 1840 71.5% 100% 1916.35 2

Reformulation2 1840 71.5% 100% 6124.41 2
Reformulation3 1840 71.5% 100% 1488.46 2

Improved-Reformulation3 1840 71.5% 100% 1327.96 2
Reformulation4 1840 71.5% 100% 1130.57 2

2

Reformulation1 3359 13% 100% 4697.24 1.37
Improved-Reformulation1 3365 13% 100% 5181.54 1.37

Reformulation2 3359 13% 100% 9341.49 1.37
Reformulation3 3359 13% 100% 5300.58 1.37

Improved-Reformulation3 3359 13% 100% 6095.11 1.37
Reformulation4 3359 13% 100% 3304.56 1.37

3

Reformulation1 1208 59.2% 100% 751.58 2.74
Improved-Reformulation1 1208 59.2% 100% 1163.91 2.74

Reformulation2 1208 59.2% 100% 1883.48 2.74
Reformulation3 1208 59.2% 100% 968.51 2.74

Improved-Reformulation3 1208 59.2% 100% 806.51 2.74
Reformulation4 1208 59.2% 100% 789.95 2.74

4

Reformulation1 1633 51.7% 100% 1361.36 2.16
Improved-Reformulation1 1633 51.7% 100% 1545.82 2.16

Reformulation2 1633 51.7% 100% 4525.21 2.16
Reformulation3 1633 51.7% 100% 1114.58 2.16

Improved-Reformulation3 1633 51.7% 100% 1123.06 2.16
Reformulation4 1633 51.7% 100% 890.59 2.16

5

Reformulation1 1633 55.3% 100% 1211.84 1.96
Improved-Reformulation1 1633 55.3% 100% 1025.26 1.96

Reformulation2 1633 55.3% 100% 7096.12 1.96
Reformulation3 1633 55.3% 100% 614.2 1.96

Improved-Reformulation3 1633 55.3% 100% 752.67 1.96
Reformulation4 1633 55.3% 100% 701.56 1.96

6

Reformulation1 1416 39.6% 100% 1152.57 2.51
Improved-Reformulation1 1416 39.6% 100% 1029.18 2.51

Reformulation2 1416 39.6% 100% 5981.75 2.51
Reformulation3 1416 39.6% 100% 796.46 2.51

Improved-Reformulation3 1416 39.6% 100% 271.32 2.51
Reformulation4 1416 39.6% 100% 374.59 2.51
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Considering the running time of the total enumeration for medium-plus instances in
Table 5.6, we observe that all reformulations perform better than the total enumera-
tion in only instance 3. However, the reformulations show outstanding performance
in other instances. For example, in instances 1, 4, 5, and 6, all reformulations per-
form very well except for Reformulation2 which solves the model in high time in
comparison to other reformulations. Reformulations does not perform well only in
instance 2 where none of them get better running times in comparison to the total
enumeration.

Figure 5.7 CPU time of reformulations for medium-plus instances

Table 5.12 presents the results of reformulations for large instances. As the size of
problem increases significantly in large instances, we decide to limit the running time
of reformulations to one day or equally 86400 seconds. In instance 1, only Improved-
Reformulation3 succeeds to detect all collusive states. It also finds highest number
of suspicious solutions among all reformulations. In instance 2, all reformulations
except Reformulation1 find all collusive states. Unlike other reformulations, Refor-
mulation4 detects all collusive states in less than a day, for almost 70145.45 seconds.
In instance 3, all reformulations succeed in detecting collusive states in less than
a day. Improved-Reformulation3 shows the best performance to detect collusive
states in very short time among all reformulations. According to Table 5.12, we
observe that unlike small, medium, and medium-plus instances, reformulations find
different number of suspicious solutions. Based on this observation, results indicate
that Reformulation4 has the highest DA value in instance1. In instances 2 and 3,
we observe that DA values of all reformulations are better than DA value of Refor-
mulation2, while other reformulations obtain same DA values. Figure 5.8 illustrates
the performance of reformulations based on their running time for large instances.
Similar to previous results, first λ values for each large instance is given in the last
column of Table 5.12 where we observe that all reformulations obtain same λ values
in each instance.
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Considering the running time of the total enumeration for large instances in Table
5.8, none of the reformulations perform better than total enumeration in instance
1, and 2. Only Reformulation3 and Improved-Reformulation3 perform better than
the total enumeration in instance 3.

Table 5.12 Results for large instances

Instances Reformulation SS DA CR Time λ

1

Reformulation1 3548 11.2% 46.5% 86400 2.81
Improved-Reformulation1 3492 11% 44.9% 86400 2.81

Reformulation2 4378 11.6% 59.2% 86400 2.81
Reformulation3 4870 11.5% 65.6% 86400 2.81

Improved-Reformulation3 7660 11.2% 100% 86400 2.81
Reformulation4 4328 12.8% 64.6% 86400 2.81

2

Reformulation1 3316 1% 76.7% 86400 2.80
Improved-Reformulation1 4106 1% 100% 86400 2.80

Reformulation2 4730 0.9% 100% 86400 2.80
Reformulation3 4221 1% 100% 86400 2.80

Improved-Reformulation3 4221 1% 100% 86400 2.80
Reformulation4 4221 1% 100% 70145.45 2.80

3

Reformulation1 1421 0.4% 100% 11513 2.12
Improved-Reformulation1 1421 0.4% 100% 10374 2.12

Reformulation2 1434 0.3% 100% 22110 2.12
Reformulation3 1421 0.4% 100% 3160 2.12

Improved-Reformulation3 1422 0.4% 100% 2850 2.12
Reformulation4 1421 0.4% 100% 10466 2.12

Figure 5.8 CPU time of reformulations for large instances
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6. Conclusions

The main goal of deregulated electricity markets is to provide a completely competi-
tive environment in order to attain affordable electricity prices and finally maximize
the social welfare. Collusion is the most important threat for the competitiveness
of an electricity market where GenCos agree to conspire and restrict the competi-
tion. In order to detect collusion opportunities in deregulated electricity market,
we present several reformulations for a game-theoretic based bi-level problem in Ali-
abadi et al. (2016). First, we present two reformulations in Çelebi et al. (2019); then,
we improve one of the reformulations in Çelebi et al. (2019) using several propositions
in order to eliminate the redundant constraints. Second, we present two new refor-
mulations for the bi-level problem based on KKT conditions together with Active
Set Method, and SOS variables. In first new reformulation, we use KKT conditions
and Active Set Method to derive a new reformulation which is named as Reformu-
lation3. We improve Reformulation3 by eliminating the redundant constraints and
name it as Improved-Reformulation3. In the second new reformulation, we use SOS
variables to reformulate the bi-level problem which is named as Reformulation4.

In order to show the quality of solutions and performances of the reformulations,
we present several test instances in four size groups of small, medium, medium-plus,
and large. Two measures as DA and CR are defined to show the performances of
reformulations in detection of collusion opportunities. Results indicate that Refor-
mulation1 and Reformulation2 proposed by Çelebi et al. (2019) only works well for
small-size instances and it does not perform well in medium, medium-plus and large
instance in terms of computational time among all reformulations. Reformulation4,
Reformulation3, and Improved-Reformulation3 have shown better performances in
most of test instances among all reformulations, respectively. As we compare the
performance of the reformulations with total enumeration algorithm, we observe that
Reformulation4, Improved-Reformulation3, and Reformulation3 have shown better
performances in most of test instances among all reformulations, respectively.

This work can be extended in several directions. One of the main limitations of the
proposed MILP reformulations in this thesis is related to the fact that such models
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do not perform efficiently as the market size increases. In other words, the running
time of test instances increases significantly as their size increases. Therefore one
may use heuristic or metaheuristic algorithms to solve the reformulations in com-
putationally efficient and reasonable time for real-life practices. Similarly, heuristic
or metaheuristic algorithms can be used as the total enumeration algorithm might
not be able to perform well in real-life practices with large number of bids. Based
on the observations from the reformulations and the computational study, although
Reformulation2 has less complications, it does not perform well as the market size
increases in medium, medium-plus and large test instances. For this issue, one may
develop a new reformulation based on an improved version of Reformulation2 which
can be able to perform well even in larger instances. Another extension may in-
clude another decision making problem to prevent collusion opportunities focusing
on capacity of transmission lines and bid options which will finally lead to a tri-level
problem. One may use different types of market clearing paradigms for the same
problem in this thesis in order to analyze the effects of market clearing mechanisms
on detecting collusion opportunities. In another study, one may consider the uncer-
tainty in some of the parameters like demand, production cost while preventing the
collusion opportunities.
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