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ABSTRACT

HEURISTIC SEARCH ALGORITHMS TO DETECT COLLUSIVE
OPPORTUNITIES IN DEREGULATED ELECTRICITY MARKETS

ELİF YILMAZ

INDUSTRIAL ENGINEERING M.Sc. THESIS, SEPTEMBER 2020

Thesis Supervisor: Prof. Güvenç Şahin

Keywords: tacit collusion, deregulated electricity markets, heuristic search
algorithm, bi-level programming

In deregulated electricity markets, the main objective is to maintain a competitive
trading environment and satisfy demand at lowest possible cost. However, sus-
taining a competitive environment is challenging and collusion among the Power
Generation Companies (GenCos) might exist. Therefore, the Independent System
Operator (ISO) controls the auction mechanism as a decision-maker for the electric-
ity distribution. In order to guide the ISO to detect collusion, we develop a search
algorithm and its variations by using the bi-level programming problem in Aliabadi,
Kaya & Şahin (2016). We create 26 instances of 3 different problem sizes to test
the performance of the algorithms. We compare the results of the algorithms to the
total enumeration algorithm, which is an exact method to detect collusion but may
not be executed in reasonable time, and among themselves. Moreover, we experi-
ment with the algorithms using alternative single-level formulations of the bi-level
programming problem.
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ÖZET

SERBESTLEŞMİŞ ELEKTRİK PİYASALARINDA GİZLİ ANLAMAŞLARI
TESPİT ETMEK İÇİN SEZGİSEL ARAMA ALGORİTMALARI

ELİF YILMAZ

ENDÜSTRİ MÜHENDİSLİĞİ YÜKSEK LİSANS TEZİ, EYLÜL 2020

Tez Danışmanı: Prof. Dr. Güvenç Şahin

Anahtar Kelimeler: gizli anlaşma, serbestleşmiş elektrik piyasası, sezgisel arama
algoritması, iki seviyeli programlama

Serbestleştirilmiş elektrik piyasalarının temel amacı rekabetçi ticaret ortamını
sürdürmek ve talebi mümkün olan en düşük maliyetle karşılamaktır. Ancak, reka-
betçi pazarın sürdürülmesi zordur ve elektrik üretim şirketleri (GenCos) arasında
gizli anlaşma olabilir. Bu nedenle, bağımsız sistem operatörü (ISO) elektrik
dağıtımında karar verici olarak ihale mekanizmasını kontrol eder. ISO’nun gizli
anlaşmaları tespit edebilmesi için, Aliabadi et al. (2016)’da tanımlanan iki seviyeli
programlama problemini kullanan bir arama algoritması geliştirilmiş, ve bu algo-
ritmanın varyasyonları oluşturulmuştur. Algoritmaları uygulayabilmek için 3 farklı
problem büyüklüğünde 26 örnek oluşturulmuştur. Algoritmaların sonuçları gizli an-
laşmaları tespit etmek için pekin yöntem olan, ancak anlamlı bir sürede uygulana-
mayan tümden sayma algoritmasıyla ve kendi aralarında karşılaştırılmıştır. Ayrıca,
algoritmalar iki seviyeli programlama probleminin farklı tek seviyeli formülasyonları
ile de uygulanmıştır.
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1. INTRODUCTION

In the 1990s, several countries started to liberalize the electricity markets. Today,
most of the produced electricity is traded in deregulated markets. The main goal
of the deregulated electricity markets is to encourage the competitive environment
and satisfy consumer demand at a low price.

There are two types of players in the deregulated electricity market system: Power
Generation Companies and Independent System Operator. Power Generation Com-
panies (GenCos) generate electricity and sell it to consumers. In the day-ahead
market, the GenCos declare their unit prices and production capacities for the elec-
tricity a day before the auction. The Independent System Operator (ISO) controls
the auction mechanism and studies the day-ahead market periodically to designate
the produced electricity based on the GenCos’ bids and production capacities. The
decision-making process of the ISO for the distribution is called the market-clearing
process.

In the deregulated electricity markets, creating a competitive environment is chal-
lenging. Moreover, collusion might exist. Explicit collusion exists when GenCos
make an agreement among themselves. Tacit collusion exists according to the
GenCos strategic behaviors when there is no explicit collusion. Guan, Ho & Pepyne
(2001), Sweeting (2007) and Fabra & Toro (2005) showed tacit collusion might exist
based on strategic behaviors of the GenCos. However, it is a challenging task to
identify a collusion.

Aliabadi et al. (2016) proposed an exact method to detect collusion, however, it is
not solvable in polynomial time. They also developed a multi-objective non-linear
bi-level programming problem to detect collusion in a deregulated electricity market,
which can be solved as an Linear Programming (LP). In this study, we propose a
search algorithm by using the problem formulation defined by Aliabadi et al. (2016)
in order to characterize the solution space. Furthermore, with the aim of improving
the search algorithm, we develop its variants. We compare the algorithms with the
exact method and among themselves.
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The rest of the thesis is organized as follows: Chapter 2 covers the literature review
related to collusion in deregulated electricity markets. In Chapter 3, we introduce
the problem in detail. A search algorithm and its variations are proposed in Chap-
ter 4. Chapter 5 presents our experiments and computational results. The thesis
concludes by Chapter 6.
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2. LITERATURE REVIEW

In the deregulated electricity markets, the aim is to clear the market in a compet-
itive environment and maintain social welfare. Collusion between the GenCos will
disrupt the competitive environment. Therefore, there are studies in order to detect
collusion.

In the literature, different models for the strategic behaviors of the GenCos are pre-
sented such as Cournot, Bertrand, Stackelberg, Conjectural Variation, and Supply
Function Equilibria (SFE). For example, Ruiz & Conejo (2008) apply the Cournot
model and Ruiz, Conejo & Arcos (2010) apply Conjectural Variation to short-term
electricity markets. Mainly, tacit collusion in the electricity markets is studied with
two modeling approaches: Simulation-based models and optimization models within
a game-theoretic framework. Guan et al. (2001), Blume & Heidhues (2008) and
Bernheim & Whinston (1990) explore game-theoretic approaches for repeated games
for tacit collusion. Since the complexity of computing Nash equilibrium for repeated
games is high, often the physical limitations of transmission lines are not considered
such as in Blume & Heidhues (2008) and Ruiz, Kazempour & Conejo (2012). Lee &
Baldick (2003) propose an approach to find the Nash equilibrium in deregulated elec-
tricity markets, where the transmission constraints complicate the market clearing
mechanism and cause the payoff functions to be non-differentiable and non-concave.
However, there is a difficulty in finding the kernel of the solution because it searches
a large number of candidate kernel sub-matrices, which means when the number of
players increases, the difficulty increases.

There are two types of simulation models: Equilibrium models and agent-based
models. Most of the studies work on agent-based simulation (ABS) models for the
electricity markets and Bunn & Oliveira (2001) is one of the pioneers. Tellidou
& Bakirtzis (2007) and Krause, Beck, Cherkaoui, Germond, Andersson & Ernst
(2006) show that dynamic learning modeling is critical for the ABS models for tacit
collusion, where the agents make decisions accordingly. Anderson & Cau (2011)
explores the likelihood of tacit collusion under different market characterizations.
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Shafie-khah, Moghaddam & Sheikh-El-Eslami (2013) propose a model using a heuris-
tic dynamic game theory algorithm based on SFE and in the model the power market
is simulated in a period. They consider the security constraints for the role of the
ISO and the price uncertainty. For the learning model, the study assumes that an
agent could observe some statistics related to previous actions of other agents. Fur-
thermore, they propose a concept to distinguish between tacit and explicit collusion.

In Moiseeva, Hesamzadeh & Dimoulkas (2014), some elements of both game theory
and agent-based simulations are combined and an ex-ante detection algorithm is
introduced. It is assumed that the constraint sets of the agents are confidential and
may vary in time. They use a distributed optimization concept and compare the
outcome of tacit collusion with the outcome of Nash equilibrium over a given time
horizon.

Harrington, Hobbs, Pang, Liu & Roch (2005) formulate an optimization problem to
model tacit collusion, where the GenCos collectively maximize the Nash bargaining
objective subject to a set of incentive compatibility constraints. Liu & Hobbs (2013)
extend this study on a competitive pool-based electricity market operated by the
ISO. They consider transmission congestion in the model in a repeated-game setting.
The resulting model of each GenCo’s profit maximization problem is a Mathematical
Program with Equilibrium Constraints (MPEC) model and an Equilibrium Problem
with Equilibrium Constraints (EPEC) model is obtained when all GenCos problems
are combined. However, an equilibrium may not always exist and the EPEC models
are hard to solve.

Aliabadi et al. (2016) introduce a mathematical model in the form of a multi-
objective non-linear bi-level optimization problem, which is an alternative formula-
tion to the EPEC model presented in Liu & Hobbs (2013). The introduced bi-level
problem represents one iteration of the game and can be solved with linear program-
ming (LP) under some assumptions. They also consider the transmission capacity
constraints. Moreover, they present an algorithm to detect collusion when some suf-
ficient conditions exist. However, the algorithm is computationally expensive since
the computational complexity is O(2n), where n is the number of the GenCos.

In this study, in order to detect collusion, we generate search algorithms to charac-
terize the solution space by using the multi-objective non-linear bi-level optimization
problem introduced in Aliabadi et al. (2016).

4



3. PROBLEM DEFINITION

In the day-ahead operations of a deregulated electricity market, each GenCo offers a
bid to the ISO for a certain period of the next-day. The collection of the submitted
bids is defined as a state and denoted as (b1, b2, . . . , bn), where bi is the bid given by
GenCoi and n is the number of the companies. For a given state, the ISO clears the
market and determines the power assigned to each GenCo. This is how the market
cleared repeatedly for all periods of a day over and over for each day. The market
is affected by GenCos’ strategic behaviors and as a result of the GenCos’ strategic
behaviors, collusion might exist. Aliabadi et al. (2016) characterize the existence of
collusion by identifying the profitability of a collusive state over all Nash equilibria.
In order to clear the market and then calculate the payoffs of the GenCos, the
well-known Direct Current Optimal Power Flow (DC-OPF) problem can be solved.

The DC-OPF problem that also considers the transmission network capacity is for-
mulated using a network. In the network representation, the nodes stand for the
GenCos and the arcs between the nodes are the transmission lines. The GenCos may
not produce power in each auction. Therefore, the set of all nodes is represented as
I, and the set of nodes for which generates power is denoted as IG. Only the nodes
in IG can submit a bid; power will not be allocated to the nodes which are not in
IG.

In order to solve the DC-OPF problem, we assume that all the parameters are
known and the generators can only bid from a given bid set. In the problem, Pmaxi

denotes the maximum production capacity for node i ∈ IG (GenCoi). Di is the
power demand at node i ∈ I. γij represents the admittance of the line connecting
node i ∈ I to node j ∈ I and Fmaxij the maximum flow allowed in the transmission
line connecting node i ∈ I to node j ∈ I. bi is the bid given by node i ∈ IG. θi is
a free variable for the voltage angle at node i ∈ I. The power allocated by node
i ∈ I is a non-negative decision variable, denoted as Pi. The DC-OPF problem is
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represented as follows:

Minimize
{Pi,θi}

∑
i

biPi(3.1a)

subject to Pi−Di =
∑

ij∈BR
γij(θi−θj) ∀i [LMPi](3.1b)

Pi ≤ Pmaxi ∀i [φi](3.1c)

|γij(θi−θj)| ≤ Fmaxij ∀ij ∈BR [ψ+
ij ,ψ

−
ij ](3.1d)

−π ≤ θi ≤ π ∀i(3.1e)

Pi ≥ 0 ∀i(3.1f)

The DC-OPF problem is an LP. The objective function (3.1a) is to minimize the
total cost of the produced electricity. In the flow balance constraint (3.1b), after
the demand is satisfied extra injected power flows to transmission lines. The pro-
duction capacity constraint (3.1c) limits the injected power by the maximum power
of each GenCo. The flow capacity constraint (3.1d) restricts the flow of each line
in the transmission grid, where BR is the set of all available distinct transmission
lines. Constraint (3.1e) defines upper and lower bounds to θi for each node i ∈ I.
Between (3.1b) and (3.1d), the associated dual variables to these constraints are
given in the square brackets. It is known that −π ≤ θi ≤ π would be satisfied by
the structure of the problem even without the constraint (3.1e). Therefore, no dual
variable is assigned to the constraint (3.1e). Once the market is cleared through the
solution of a DC-OPF problem for a given state, the payoff of GenCoi is calculated
as ri =Pi(LMPi−Ci), where Ci is the unit power production cost and the dual vari-
able LMPi of constraint (3.1b) in the DC-OPF problem represents the locational
marginal price at node i.

Aliabadi et al. (2016) studies the detection of collusion in deregulated electricity
markets. For this purpose, they first define how a collusive state is identified. In a
collusive state, each GenCo profits more than it would profit from all Nash equilibria.
In other words, ri > r∗i ≥ 0, ∀i, where ri is the payoff of GenCoi in a collusive state
and r∗i is the maximum payoff of GenCoi can attain from all Nash states and a
state is called as a Nash state when a Nash equilibrium exists for given bids. In the
following, we first discuss alternative ways of detecting collusion analytically.
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3.1 Total Enumeration

As there is a finite number of states, for any repetition of the market clearance the
DC-OPF problem can be solved for each state to attain the earnings of the GenCos
and the payoffs can be compared with the corresponding r∗i ’s. This can be called as
total enumeration. Aliabadi et al. (2016) proved that this method always detects
all collusive states.

Once all the possible states are accounted for and the DC-OPF problem is solved for
each state, Nash states can be identified by simple comparison among the payoffs of
neighboring states. When all Nash states are identified, for all i∈ IG, the maximum
payoff of GenCoi can be obtained from the Nash states, i.e. r∗i , is determined. Then,
each state, which is not a Nash state, is scanned to find out whether it is collusive or
not. When each GenCoi, i∈ IG, of a state has a greater payoff than its corresponding
r∗i , then that state is collusive.

When the number of nodes increases, the computational time of generating all the
states increases exponentially and the computational complexity of enumerating all
possible states is O(2n). Hence, total enumeration is computationally expensive.
Therefore, in the next section we discuss a mathematical formulation to detect a
collusive state, as developed in Aliabadi et al. (2016). It is in the form of a bi-level
programming problem.

3.2 Bi-level Problem

Using a mathematical modelling approach, Aliabadi et al. (2016) develop a multi-
objective non-linear bi-level programming problem to detect collusion in a dereg-
ulated electricity market. The bi-level problem integrates two groups of decision
makers: GenCos and the ISO. In the upper level, GenCos choose their bids with the
aim of maximizing their payoffs. In the lower level, the follower level, the ISO makes
decisions for the power allocation and the nodal price. The optimal solution of the
bi-level problem indicates a collusive state, where it is also an optimal solution that
minimizes the cost of produced electricity of the state.

The lower level of the bi-level programming problem is the DC-OPF problem (3.2e)
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- (3.2j), as explained in Chapter 3. The upper level of the bi-level programming
problem is between (3.2a) and (3.2d). As defined in Chapter 3, LMPi generates the
price of one unit of electricity at a node, Ci is the cost of production for a unit of
power and Pi represents the power assigned to a generator node. ri =Pi(LMPi−Ci)
represents the payoff for a GenCo. bi is a decision variable representing the bid value
of a GenCo, which, can take a value only from a predetermined set of values, denoted
as Bidi. λ is an auxiliary variable used to approximate the original objective function
Maximize
{bi}

(r1, r2, . . . , rn) in Aliabadi et al. (2016) in order to maximize the payoffs
for all GenCos. The bi-level programming model is represented as follows:

Maximize
{bi,λ}

λ(3.2a)

subject to λ≤ Pi(LMPi−Ci) ∀i(3.2b)

Pi(LMPi−Ci)≥ r∗i ∀i(3.2c)

bi ∈Bidi ∀i(3.2d)

Minimize
{Pi,θi}

∑
i

biPi(3.2e)

subject to Pi−Di =
∑

ij∈BR
γij(θi−θj) ∀i [LMPi](3.2f)

Pi ≤ Pmaxi ∀i [φi](3.2g)

|γij(θi−θj)| ≤ Fmaxij ∀ij ∈BR [ψ+
ij ,ψ

−
ij ](3.2h)

−π ≤ θi ≤ π ∀i(3.2i)

Pi ≥ 0 ∀i(3.2j)

From the ISO’s perspective, the objective function (3.2e) is to minimizes the total
cost of produced electricity. In order to approximate the original objective function,
constraint (3.2b) is used to define λ as equal to the minimum of all payoffs. Con-
straint (3.2c) ensures that a collusive state is found, where each GenCo has a payoff
greater than or equal to r∗i .
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3.2.1 Reformulation as a Single-Level Problem

In order to solve a bi-level programming problem with today’s solvers, we have to
reformulate it as a single level problem. One way to convert a bi-level problem into
a single-level problem is to use the Strong Duality theorem defined in Vanderbei
(2014). According to the theorem, if a primal problem has an optimal solution, then
the objective values of the primal and the dual problems will be equal to each other.
Since all the decision variables in the DC-OPF problem has an upper and a lower
bound, the solution space can only be bounded or infeasible. Therefore, a solution
state cannot be obtained from the bi-level programming problem if the DC-OPF
problem has no feasible solution. Hence, while converting the bi-level problem to a
single level problem, we add the dual constraints of the lower level problem, and a
constraint to enforce the equality of the primal and dual objective values. For this
conversion, the dual of the lower level (DC-OPF) problem can be written as follows:

Maximize
∑
i

DiLMPi−
∑
i

Pmaxi φi−
∑
ij

Fmaxij (ψ+
ij +ψ−ij)(3.3a)

subject to LMPi−φi ≤ bi ∀i(3.3b)

∑
ij∈BR

γij(LMPj−LMPi)+
∑

ij∈BR
γij(ψ−ij −ψ

+
ij)+

∑
ji∈BR

γji(ψ+
ji−ψ

−
ji) = 0 ∀i(3.3c)

φi ≥ 0 ∀i(3.3d)

ψ+
ij ,ψ

−
ij ≥ 0 ∀ij ∈BR(3.3e)

Based on the dual of the lower level problem, the bi-level problem is reformulated
as a regular (single-level) problem as follows:

Maximize
{bi,λ,Pi,θi,LMPi,φi,ψ

+
ij
,ψ−

ij
}

λ

(3.4a)

s.t. λ≤ Pi(LMPi−Ci) ∀i(3.4b)

Pi(LMPi−Ci)≥ r∗i ∀i(3.4c)

bi−LMPi+φi ≥ 0 ∀i(3.4d)
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∑
ij∈BR

γij(LMPj−LMPi)+
∑

ij∈BR
γij(ψ−ij −ψ

+
ij)+

∑
ji∈BR

γji(ψ+
ji−ψ

−
ji) = 0 ∀i(3.4e)

Pi−Di =
∑

ij∈BR
γij(θi−θj) ∀i(3.4f)

Pi ≤ Pmaxi ∀i(3.4g)

γij(θi−θj)≤ Fmaxij ∀ij ∈BR(3.4h)

γij(θi−θj)≥−Fmaxij ∀ij ∈BR(3.4i)

∑
i

biPi =
∑
i

DiLMPi−
∑
i

Pmaxi φi−
∑
ij

Fmaxij (ψ+
ij +ψ−ij)(3.4j)

−π ≤ θi ≤ π ∀i(3.4k)

Pi,φi ≥ 0 ∀i(3.4l)

ψ+
ij ,ψ

−
ij ≥ 0 ∀ij ∈BR(3.4m)

bi ∈Bidi ∀i(3.4n)

The objective function of the single level problem is the same with the objective
function of the upper level of the bi-level problem (3.4a). All the constraints of both
the upper level and lower level problems are the constraints of the single level prob-
lem as (3.4b)-(3.4c) and (3.4f)-(3.4g). As a result of the Strong Duality Theorem;
the constraints of the dual problem (3.3b)-(3.3c) and the equality of the objective
functions of the primal-dual problems of the lower level problem, are introduced as
(3.4d)-(3.4e) and (3.4j), respectively. Constraints (3.4h) and (3.4i) correspond to
linearization of (3.2h).

3.2.2 Solving the Reformulation

As mentioned before, r∗i is the maximum payoff that GenCoi obtains from the Nash
states. Since the Nash states are not known, in advance r∗i ’s cannot be calculated
without using an algorithm similar to the total enumeration. Therefore, the con-
straint (3.4c) is removed from the model. However, a feasible solution of the problem
may not necessarily be collusive anymore. As a matter of fact, a solution can be
suspected to be collusive as the payoffs are still maximized for each GenCo. Yet,
there is no guarantee. Therefore, we name the obtained state as a suspicious state
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since it is suspicious of being collusive.

The single-level formulation is an MINLP (with assumption bis are integer). It is
clear that working with an MILP would be much easier. The constraints (3.4b)
and (3.4j), have nonlinear expressions PiLMPi and Pibi. A multiplication of two
continuous decision variables can be linearized by an approximation.

According to the complementary slackness conditions of the DC-OPF problem,

Pi(bi−LMPi+φi) = 0(3.5)

(Pi−Pmaxi )φi = 0(3.6)

Therefore,

Pi > 0⇒ bi = LMPi−φi(3.7)

Pi 6= Pmaxi ⇒ φ= 0 and LMPi = bi(3.8)

Then; bi is a lower bound for LMPi or LMPi = bi. Therefore, the constraint (3.4b)
is replaced with λ ≤ Pi(bi−Ci). Now, only Pibi creates the non-linearity in the
model.

We consider the linearization of the constraint by using similar linearization method
as in Pozo, Sauma & Contreras (2013):

• The representation of the bid sets is changed: the kth element of a bid set
is denoted as Bidik, where k is a number which is less then or equal to the
number of bid values that GenCoi can take.

• Bik is defined a binary variable to represent whether associated bid from the
bid set is chosen. When GenCoi bids the kth element of the bid set Bidik, the
value of Bik is equal to 1.

• Vik is defined as an auxiliary variable, which equals to PiBik.

Accordingly, (3.4b) and (3.4j) are replaced by

λ≤
∑
k∈K

BidikVik−PiCi ∀i(3.9a)
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bi =
∑
k∈K

BidikBik ∀i(3.9b)

∑
k∈K

Bik = 1 ∀i(3.9c)

Vik ≤ Pmax
i Bik ∀i and k(3.9d)

Vik ≤ Pi ∀i and k(3.9e)

Vik ≥ Pi−Pmax
i [1−Bik] ∀i and k(3.9f)

∑
i

∑
k∈K

BidikVik =
∑

i

DiLMPi−
∑

i

Pmax
i φi−

∑
ij

Fmax
ij (ψ+

ij +ψ−ij)(3.9g)

Vik ≥ 0 ∀i and k(3.9h)

Bik ∈ {0,1} ∀i and k(3.9i)

Finally, we have a MILP problem to solve. Since r∗i ’s are not known, the original
formulation is modified and the constraint that guarantees the formulation to find
a collusive state is removed. A solution to the MILP problem can be suspected to
be a collusive state. This state is only one of the states in the solution space. It is
known that there can be multiple collusive states. Therefore, we call this problem
SCSF to stand for "suspiciouslly collusive state finder", and also use SCSFP to refer
to the problem formulation. In Chapter 4, with the aim of detecting all of the
collusive states; we generate search algorithms, which solves the SCSF problem in
each iteration to find another state.
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4. ALGORITHMS

The original multi-objective problem formulation of the bi-level problem might have
multiple optimal solutions each of which corresponds to a state in the feasible solu-
tion space. However, changing the objective function to a singleton might disallow
this. One may overcome this obstruction by solving the problem iteratively while
prohibiting the already found solutions in each iteration. The interactive scheme
may continue until no feasible solution is attained. Furthermore, since the constraint
(3.4c) is removed from the problem formulation assuming that r∗i ’s are unknown, a
state obtained from the problem is not ensured to be collusive. However, the states
are suspicious of being collusive. In this respect, we develop a search algorithm in
order to designate suspicious states by iteratively solving the SCSF problem and
approximating r∗i ’s.

4.1 Elementary Search

It is known that each payoff of a collusive state (ri) is strictly greater than the
corresponding payoffs of all Nash states, i.e. ri > r∗i ≥ 0, ∀i ∈ IG. Therefore, it
is guaranteed that in a collusive state, all GenCoi’s, i ∈ IG, can have a non-zero
payoff. In this respect, in each iteration of the Elementary Search algorithm, a state
with no zero payoffs is found; it is declared as suspicious for being collusive. The
iterations continue until a zero payoff is obtained for at least one of the GenCos.
From one iteration to the next, we modify the mathematical formulation not to find
the most recently found solution as well as all previous solutions.

The Elementary Search algorithm starts solving the SCSF problem. From the solu-
tion of the problem, a state, which is denoted as s, and λ are obtained. Instead of
checking each payoff for having a non-zero value, basicallymin

i
{ri}, i.e. λ, is checked

for a non-zero value. When λ > 0, to avoid obtaining the same suspicious state in
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the next iteration, a constraint is added to the problem formulation. This iteration
is repeated until a solution with λ = 0 is found. At the end of each iteration, a
new constraint is added to the formulation to avoid finding the most recently found
solution. This algorithm is shown in Figure 4.1.

The new constraints added at the end of each iteration are called suspicious cuts.
Since every bid has an associated binary variable, the new constraint should prohibit
that the associated binary variables are equal to 1 at the same time, as

∑
i

Bik ≤ n−1 ∀ bi ∈ (b1, b2, . . . , bn), bi =Bidik

for a given state s, where n is the number of the nodes. The Find & Cut module, in
Algorithm 1, summarizes this operation for a given state s. On line 2 in Algorithm
1, the state s is added to SuspS, where SuspS is a set for the suspicious states and
at the beginning of the algorithm it is an empty set. Then, on line 3 in Algorithm
1, the suspicious cut is added to the SCSF problem.

Algorithm 1 Find & Cut
1: Input: SuspS, s, model
2: SuspS← SuspS∪{s}
3: Add suspicious cut to the SCSF problem
4: Output: SuspS, model

The Elementary Search algorithm iteratively solves a modified SCSF problem until a
zero payoff, i.e. λ= 0, is obtained or the problem becomes infeasible as demonstrated
in the flow chart in Figure 4.1.

Figure 4.1 Elementary Search Algorithm
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At the end of the Elementary Search algorithm, it is not exactly known which
suspicious states are actually collusive since they are obtained without knowing r∗i ’s.
However, as mentioned before, in a collusive state all GenCo’s have a non-zero payoff,
it is guaranteed to have the all collusive states in the set SuspS. The algorithm
can be considered also as an efficient frontier search with additional constraints; the
likelihood of a suspicious state being actually collusive can be low, but, the algorithm
is not expected to be as costly as the total enumeration, from a computational point
of view. Instead, the likelihood of a suspicious state being actually collusive can be
increased with some information on Nash states, which we exploit further next.

4.2 A Search Algorithm with Partial Nash Information

When the Elementary Search algorithm terminates, non-collusive states can be elim-
inated from the suspicious states and all the collusive states can be designated, if
r∗i ’s are known. Since computing r∗i ’s based on the total enumeration or similar ap-
proaches are expensive, one way to do such elimination is to approximate r∗i ’s with
the aim of increasing the likelihood of a suspicious state being actually collusive. It
is clear that r∗i ≥ rNi , where rNi denotes a payoff of a Nash state. Therefore, infor-
mation regarding only one Nash state is used in order to approximate r∗i ’s. When
the payoffs of a Nash state is obtained, according to these payoffs, some states are
excluded from being suspicious. Hence, the algorithm searches suspicious states by
using partial Nash information and we name it as the SwpN to stand for "Search
with partial Nash".

The Nash Finder, in Algorithm 2, outlines the steps of scanning states until a Nash
state is found. PS denotes the number of possible states and at most PS times
a state can be generated. First generated state is the combination of the initial
elements of the bid sets, then each state is generated by changing one bid of the
previously generated state. For a generated state, on line 4, the DC-OPF problem
is solved and on line 5 the payoffs (rsi ) are calculated. νis denotes a state, which
is a neighbor to the state s based on the bid of GenCoi. The neighborhood of a
state includes all of the neighbor states based on the bid of GenCoi for all i ∈ IG.
On line 8 in Algorithm 2, the DC-OPF problem is solved for each neighbor νis in
the neighborhood; the payoffs (rν

i
s
i ) are computed for each i ∈ IG on line 9 . When

the DC-OPF problem is solved and rν
i
s
i ’s are calculated for each νis, i ∈ IG; on line

12, the payoffs of the state and the payoff of the neighbors are compared. For each
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i ∈ IG; if rsi is greater than or equal to each rν
i
s
i , that state is a Nash state. Then,

state s is added to the set Nash. The payoff of the found Nash state is denoted as
rNi . If the state is not a Nash state, then the same process is repeated with another
generated state until there is no possible state.

Algorithm 2 Nash Finder
1: Input: Nash, PS
2: for k ∈ range(PS) do
3: Generate a state s
4: Solve the DC-OPF problem for s
5: Compute rsi ’s
6: for each i ∈ IG do
7: for each νis of s do
8: Solve the DC-OPF problem for νis
9: Compute rν

i
s
j ’s, ∀j ∈ IG

10: end for
11: end for
12: if rsi ≥ r

νi
s
i , ∀i,νis then

13: Nash←Nash∪{s}
14: Go to line 16
15: end if
16: end for
17: Output: Nash

After a Nash state is found, the algorithm proceeds with eliminating some of the
suspicious states. The Elimination module, in Algorithm 3, summarizes the steps
of the elimination procedure with respect to rNi . On line 3, for each state s in
the set SuspS, each payoff of the state is compared to its corresponding payoff
of the Nash state. If rsi > rNi for all i ∈ IG then, state s is added to the set Post-
Elimination SuspS. Post-Elimination SuspS includes states which are still suspicious
of being collusive after the elimination. After all states s ∈ SuspS are checked for
the elimination criteria, the Elimination module terminates.

Algorithm 3 Elimination
1: Input: SuspS, Post-Elimination SuspS, rNi ’s
2: for each s ∈ SuspS do
3: if rsi > rNi , ∀i then
4: Post-Elimination SuspS ← Post-Elimination SuspS ∪ {s}
5: end if
6: end for
7: Output: Post-Elimination SuspS
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The SwpN algorithm starts with the same procedure as the Elementary Search
algorithm; right before the termination, it executes an elimination procedure which
decreases the number of suspicious states without eliminating any actually collusive
state. The flow of the algorithm is illustrated in Figure 4.2.

Figure 4.2 SwpN Algorithm

Since only guaranteed to be non-collusive states are excluded from being suspicious,
at the end of the algorithm, the number of non-collusive states declared as suspicious
is smaller, in comparison to the Elementary Search algorithm.

4.3 Variations of the Search Algorithm with Partial Nash Information

We propose some possible improvements and alternative versions of the SpwN algo-
rithm. We discuss whether finding a Nash state before solving the SCSF problem
can be beneficial from a computational point of view and how the algorithms can
reach to the actual collusive states faster.

4.3.1 The Search with Partial Nash Information-Neighborhood Search

Algorithm

It is known that solving the DC-OPF problem is faster than solving a SCSF problem.
Hence, to detect suspicious states faster, the DC-OPF problem is solved for the
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neighbors of suspicious states which are obtained as solutions of the SCSFP. While
scanning the neighbors of a suspicious state, the neighbor state is added to set
SuspS and a suspicious cut is added to the SCSF problem, when minimum payoff
of a neighbor is non-zero.

The Neighborhood Search module, in Algorithm 4, outlines the procedure for search-
ing the neighborhood of a state. In Algorithm 4, for a neighbor of a given state s,
the DC-OPF problem is solved and the payoffs are calculated on lines 4-5. On lines
6-8, the neighbor is checked for the conditions of being suspicious. When a neighbor
is suspicious, the Find & Cut module (in Algorithm 1) is called. After scanning
each neighbor νis, ∀i ∈ IG, of the state s, the module terminates.

Algorithm 4 Neighborhood Search
1: Input: SuspS, s
2: for each i ∈ IG do
3: for each νis of s do
4: Solve the DC-OPF problem
5: Compute rν

i
s
j ’s , ∀j ∈ IG

6: if min
j
{rν

i
s
j }> 0 then

7: Find & Cut
8: end if
9: end for

10: end for
11: Output: SuspS

After the neighborhood of a suspicious state is scanned, a modified SCSF problem
is solved until λ = 0 or it becomes infeasible. Later, as in the SwpN algorithm,
a Nash state is found by calling the Nash Finder, and some non-collusive states
are eliminated in the Elimination module. The flow chart of the new version algo-
rithm is shown in Figure 4.3. We call this version SwpN-NS, where NS stands for
"Neighborhood Search".
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Figure 4.3 SwpN-NS Algorithm

Since the SwpN-NS algorithm searches the neighborhood of the suspicious states, it
is expected to be faster than the SwpN algorithm.

4.3.2 The Preprocessing-Search with Partial Nash Information Algorithm

As stated before, the DC-OPF problem is solved to find a Nash state, and solving
the DC-OPF problem is faster than solving the SCSF problem. Once the payoffs
of a state are calculated from the result of a DC-OPF problem, then the state can
be checked for being suspicious. When a state is suspicious, the SCSF problem can
be modified to avoid obtaining the same suspicious state unnecessarily. In these
respects, a new version of the SwpN algorithm, where a Nash state is found before
solving the SCSF problem is developed.

Aliabadi et al. (2016), prove that no Nash equilibrium exists in the neighborhood
of a collusive state. This implies that there cannot be any collusive state in the
neighborhood of a Nash state. Therefore, constraints for each neighbor of the Nash
state are added to the SCSF problem to prohibit obtaining these states. These
operations are outlined in the Nash Finder with Find & Cut module, in Algorithm
5.

Initially, the Nash Finder with Find & Cut module proceeds exactly as the Nash
Finder module. The only difference is that the state is checked for being suspicious
on lines 6-8, whenever the DC-OPF problem is solved. When a state is suspicious,
it is added to SuspS and a suspicious cut is added to the SCSF problem, on lines
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13-15. When a Nash state is found, a suspicious cut is added to the SCSFP for each
neighbor of the Nash state on lines between 23 and 29.

We name this algorithm a pp-SwpN since the Nash Finder is used at a preprocessing,
hence pp, stage.

Algorithm 5 Nash Finder with Find & Cut
1: Input: Nash, SuspS, PS
2: for k ∈ range(PS) do
3: Generate a state s
4: Solve the DC-OPF problem for s
5: Compute rsj ’s, ∀j ∈ IG
6: if min

j
{rsj}> 0 then

7: Find & Cut
8: end if
9: for each i ∈ IG do

10: for each νis of s do
11: Solve the DC-OPF problem for νis
12: Compute rν

i
s
j ’s , ∀j ∈ IG

13: if min
j
{rν

i
s
j }> 0 then

14: Find & Cut
15: end if
16: end for
17: end for
18: if rsi ≥ r

νi
s
i , ∀i,νis then

19: Nash←Nash∪{s}
20: Go to line 23
21: end if
22: end for
23: for s ∈Nash do
24: for each i ∈ IG do
25: for each νis of s do
26: Add suspicious cut to the SCSF problem
27: end for
28: end for
29: end for
30: Output: Nash, SuspS

In the new algorithm, a modified SCSF problem is solved iteratively after a Nash
state is found. When λ = 0 or the problem becomes infeasible, the algorithm pro-
ceeds with elimination. The flow chart of the new algorithm is demonstrated in
Figure 4.4.
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Figure 4.4 pp-SwpN Algorithm

The pp-SwpN algorithm starts solving the SCSF problem with more constraints,
which narrows down the solution space. It is expected that a SCSF problem will
be solved iteratively with less number of iterations in comparison to the pp-SwpN
algorithm. This implies that the new algorithm might be faster.

4.3.3 The Preprocessing-Search with Partial Nash Information and

Neighborhood Search Algorithm

We intend to improve the pp-SwpN algorithm by integrating ideas used in the SwpN-
NS algorithm. Accordingly, we name this algorithm as pp-SwpN-NS.

As mentioned in Section 4.3.1, searching the neighborhood of a suspicious state
might be an opportunity to speed up the SwpN algorithm. Therefore, in the pp-
SwpN-NS algorithm, the neighborhood is searched for suspicious state obtained from
the solution of a SCSF problem.

The Elimination module excludes some suspicious states from being suspicious ac-
cording to the elimination criteria, which depends on the payoffs of a Nash state.
When a Nash state is found at the initial step of a algorithm, the parameters of the
elimination criteria is known while solving a SCSF problem. Therefore, instead of
eliminating those suspicious states at the end, a state obtained from a SCSF prob-
lem is added to SuspS when it satisfies the elimination criteria. In this respect, the
Find & Cut with Elimination, in Algorithm 6, is developed as an improved version
of the Find & Cut module. On line 3, a suspicious cut is added to the SCSF problem
when the minimum payoff of a state is non-zero. On lines 4-6, the state is added to
Post-Elimination SuspS, when each payoff of the state is greater than or equal to
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the corresponding payoff of the Nash state.

Algorithm 6 Find & Cut with Elimination
1: Input: Post-Elimination SuspS, Nash, s
2: if min

i
{rsi }> 0 or λ > 0 then

3: Add suspicious cut to the SCSF problem
4: if rsi > rNi , ∀i then
5: Post-Elimination SuspS ← Post-Elimination SuspS ∪ {s}
6: end if
7: end if
8: Output: Post-Elimination SuspS

The Neighborhood Search module is also improved; the new module is summarized
in the Neighborhood Search with Elimination module, in Algorithm 7. In the new
version, on line 7, the neighbor states are added to Post-Elimination SuspS instead
of SuspS, when each payoff of a neighbor is greater than the corresponding payoff
of the Nash state.

Algorithm 7 Neighborhood Search with Elimination
1: Input: SuspS, s
2: for each i ∈ IG do
3: for each νis of s do
4: Solve the DC-OPF problem
5: Compute rν

i
s
j ’s , ∀j ∈ IG

6: if min
j
{rν

i
s
j }> 0 then

7: Find & Cut with Elimination
8: end if
9: end for

10: end for
11: Output: Post-Elimination SuspS

As in the pp-SwpN algorithm, the pp-SwpN-NS algorithm proceeds with the Elimi-
nation module after the iterations with SCSFP are completed. Figure 4.5 shows the
flow chart of the pp-SwpN-NS algorithm.
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Figure 4.5 pp-SwpN-NS Algorithm

In the pp-SwpN-NS algorithm, we improve the pp-SwpN algorithm by using the
knowledge of rNi ’s and searching the neighborhood of the suspicious states. In Section
4.3.4, we discuss how to improve the pp-SwpN-NS algorithm.

4.3.4 The Preprocessing-Search with Partial Nash Information and

Neighborhood of Neighbors Search Algorithm

As already indicated, searching a neighborhood of a state is an advantage from
the computational point of view. Furthermore, since a state and its neighbors are
expected to receive similar payoffs, the likelihood of being suspicious for a neighbor of
a suspicious state is high. In a variant of the pp-SwpN-NS algorithm, neighborhoods
of suspicious neighbor states are scanned while finding a Nash state.

In the new variant, the only difference is due to solving the DC-OPF problem for each
neighbor of a suspicious neighbor state and checking the neighbors of the neighbor
states for the conditions of being suspicious. The exploratory Nash Finder with Find
& Cut module, in Algorithm 8, summarizes the new search process of finding a Nash
state. On lines 4-5, the DC-OPF problem is solved for a state and the payoffs are
computed. On lines 6-8, the state is checked for being suspicious. If it is suspicious,
the Find & Cut module is called. Then, for each neighbor νis of s based on the bid
of GenCoi, i ∈ IG, the DC-OPF problem is solved and the neighbors are checked
for being suspicious on lines 11-13. When νis is suspicious, the Find & Cut module
is called on line 14. For each neighbor ννijs , the DC-OPF problem is solved and
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the payoffs are computed (lines 17-18), where ννijs is a neighbor of the neighbor
state (νis) based on the bid of GenCoj , j ∈ IG. According to the minimum payoff
of ννijs , the neighbor of a neighbor of the state is checked for being suspicious. If
it is suspicious, the Find & Cut module is called (lines 19-21). On lines 23-26, the
neighbor (νis) is checked to find out if it is a Nash state. When the neighbor is a
Nash state, then it is added to Nash. After each neighbor of a state is checked for
being Nash, the state is checked for being a Nash state on lines 30-35. When the
state is not a Nash state, then the same procedure is done for another state. On
lines 35-42, a suspicious cut for each neighbor of a Nash state is added to the SCSF
problem.
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Algorithm 8 Nash Finder with Neighbors Neighborhood Search
with Find & Cut
1: Input: Nash, SuspS, PS
2: for l ∈ range(PS) do
3: Generate a state s
4: Solve the DC-OPF problem
5: Compute rsj ’s , ∀j ∈ IG
6: if min

j
{rsj}> 0 then

7: Find & Cut
8: end if
9: for each i ∈ IG do

10: for each νis of s do
11: Solve the DC-OPF problem for νis
12: Compute rν

i
s
j ’s, ∀j ∈ IG

13: if min
j
{rν

i
s
j }> 0 then

14: Find & Cut
15: for each j ∈ IG do
16: for each ννijs of νis do
17: Solve the DC-OPF problem for ννijs
18: Compute rνν

ij
s

k , ∀k ∈ IG
19: if min

k
{rνν

ij
s

k }> 0 then
20: Find & Cut
21: end if
22: end for
23: if r

νi
s
j ≥ r

νν
ij
s

j , ∀j,ννijs then
24: Nash←Nash∪{νis}
25: Go to line 35
26: end if
27: end for
28: end if
29: end for
30: if rsi ≥ r

νi
s
i , ∀i,νis then

31: Nash←Nash∪{s}
32: Go to line 35
33: end if
34: end for
35: end for
36: for s ∈Nash do
37: for each i ∈ IG do
38: for each νis of s do
39: Add suspicious cut to the SCSF problem
40: end for
41: end for
42: end for
43: Output: Nash, SuspS
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In the new version algorithm, a Nash state is found and all the neighbors of the
Nash state are prohibited from being suspicious by the Nash Finder with Neighbors
Neighborhood Search with Find & Cut module. Then, the algorithm iteratively
solves the SCSF problem as in the pp-SwpN-NS algorithm. When λ is a positive
value, from one iteration to another, the Find & Cut with Elimination and Neighbor-
hood Search with Elimination modules are applied. When λ is zero, the Elimination
module is executed then, the algorithm terminates. We call this version pp-SwpN-
NoNS where NoNS stands for "Neighborhood of Neighbors Search". The flow of the
pp-SwpN-NoNS algorithm is shown in Figure 4.6.

Figure 4.6 pp-SwpN-NoNS Algorithm

The pp-SwpN-NoNS algorithm, aims to reduce the computational time of the pp-
SwpN-NS algorithm. It scans the neighborhoods of the neighbors during the process
of finding a Nash state. In comparison to the pp-SwpN-NS algorithm, it might obtain
more suspicious states before solving the SCSF problem and add more constraints to
the formulation. In this respect, it is expected that the pp-SwpN-NoNS algorithm
is cheaper from the computational point of view.
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5. COMPUTATIONAL RESULTS

In this chapter, we examine the results of the total enumeration and the search
algorithms proposed in Chapter 4. The performance measures of the algorithms
are the computational time, the ratio of found collusive and the ratio of collusive
coverage since the aim of this work is to improve the solution space characterization
and detect the collusive states faster. In order to evaluate the accuracy of the collu-
sive state detection, the actual collusive states are found by the total enumeration
method. The ratio of found collusive is calculated as the actual number of collusive
states divided by the number of suspicious states. The ratio of collusive coverage
is equal to the number of found collusive states divided by the actual number of
collusive states.

In order to compare the performance of the algorithms, three problem sizes of in-
stances are created: small, medium, and medium-plus cases. In total 26 instances
are created; 10 of them are small, 10 of them are medium, and 6 of them are
medium-plus. The small cases have 5 nodes and 3 of them are the power genera-
tion nodes, the medium and the medium-plus cases have 7 nodes and 4 of them are
the power generation nodes, however, the bid sets of the medium-plus cases include
more bidding options than for the medium cases. For the small cases IG= {1,2,5},
and for the medium and medium-plus cases IG= {1,2,5,6}. In Tables 5.1, 5.2 and
5.3, the bid sets are provided for the small, medium and medium-plus cases, respec-
tively. Other parameters such as Ci,Di,P

max
i , and Fmaxij of the cases are provided

in Appendix A.

Table 5.1 The Bid Sets of GenCos for the Small Cases

Cases Bid Sets

GenCo1 {22,27,32,37,42,47,52}
GenCo2 {21,26,31,36,41,46,51}
GenCo5 {30,35,40,45,50}
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Table 5.2 The Bid Sets of GenCos for the Medium cases

Cases Bid Sets

GenCo1 {21,26,31,36,41,46,51}
GenCo2 {22,27,32,37,42,47,52}
GenCo5 {33,38,43,48,53}
GenCo6 {14,19,24,29,34,39,44,49,54}

Table 5.3 The Bid Sets of GenCos for the Medium-Plus Cases

Cases Bid Sets

GenCo1 {21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51}
GenCo2 {22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52}
GenCo5 {33,35,37,39,41,43,45,47,49,51,53}
GenCo6 {14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44}

It is known that there might be alternative solutions, therefore computed profits from
the solution of the DC-OPF problem and the SCSF problem might be different. In
this study, we work on cases that have a unique optimal solution from the DC-OPF
problem.

We conduct our experiments on an Intel Xeon processor with 2.40 GHz speed and
12 GB RAM, with 64-bit Windows 7 operating system. The total enumeration and
the algorithms are coded with Python 3.7, and Gurobi 9.0.2 is used as a solver.
The experiments are repeated for 3 times and the average computational time is
reported as the computational time. We observe that the algorithms perform faster
when we set the Heuristics parameter of Gurobi as zero instead of the default value.
Therefore, in this study, the value of the Heuristics parameter is zero while solving
MILP and MINLP problems.

5.1 Total Enumeration Results

As described in Chapter 3.1, all collusive states can be detected by enumerating
all states and solving the DC-OPF problem. When all the states are enumerated;
there are 245 states for the small cases, 2205 states for the medium cases and 7986
states for the medium-plus cases. Tables 5.4, 5.5 and 5.6 show the number of Nash
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states, the number of collusive states and computational time (in seconds) for small,
medium and medium-plus cases, respectively. The average computational time of
the small cases is 11.14 seconds, 96.95 seconds for the medium cases, and 1445.82
seconds for the medium-plus cases.

Table 5.4 Total Enumeration Results of Small Cases

Number of Number of Computational
Cases Nash States Collusive States Time

Small 1 2 5 13.29
Small 2 2 5 11.1
Small 3 6 5 11.18
Small 4 1 6 13.52
Small 5 2 7 10.29
Small 6 3 9 9.98
Small 7 3 6 9.79
Small 8 2 5 9.55
Small 9 4 3 11.69
Small 10 2 13 10.96

Table 5.5 Total Enumeration Results of Medium Cases

Number of Number of Computational
Cases Nash States Collusive States Time

Medium 1 10 28 94.09
Medium 2 12 81 80.85
Medium 3 4 4 107.5
Medium 4 2 52 108.46
Medium 5 3 29 123.49
Medium 6 1 9 113.45
Medium 7 5 16 106.39
Medium 8 10 38 82.02
Medium 9 5 19 76.83
Medium 10 40 54 76.39

Table 5.6 Total Enumeration Results of Medium-Plus Cases

Number of Number of Computational
Cases Nash States Collusive States Time

Medium-plus 1 11 1316 1441.7
Medium-plus 2 4 438 1461.1
Medium-plus 3 12 715 1439.34
Medium-plus 4 11 844 1444.87
Medium-plus 5 5 903 1449.41
Medium-plus 6 20 561 1438.5
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In the following sections, the identified collusive states are called as the actual collu-
sive states. Moreover, the performance of the proposed algorithms in Chapter 4 will
be evaluated according to the actual collusive states and the computational time of
the total enumeration.

5.2 The Elementary Search Algorithm Results

In this section, in order to demonstrate that working with an MILP is much faster
than an MINLP, the Elementary Search algorithm is executed for both of the for-
mulations in Chapter 3.2.1 and in Chapter 3.2.2. In Tables 5.7, 5.9 and 5.11, the
performance of the Elementary Search algorithm applied with the MILP problem is
shown for the small, medium and medium-plus cases, respectively. The performance
of the Elementary Search algorithm applied with the MINLP problem for the small
and medium cases are presented in the tables 5.8 and 5.10. For medium-plus cases
the performances Elementary Search algorithm applied with the MINLP problem
are not presented because it costs more than 6 hours for each case, which is ex-
tremely slower than the performance of the Elementary Search algorithm applied
with the MILP problem.

Table 5.7 Results of the Elementary Search Algorithm Applied with the MILP Prob-
lem for Small Cases

Number of Ratio of Ratio of Computational
Cases Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 66 0.076 1 12.16
Small 2 87 0.057 1 12.88
Small 3 14 0.357 1 1.67
Small 4 40 0.150 1 6.89
Small 5 80 0.088 1 12.05
Small 6 68 0.132 1 11.77
Small 7 99 0.061 1 21.33
Small 8 66 0.076 1 10.37
Small 9 56 0.054 1 6.28
Small 10 87 0.149 1 17.17
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Table 5.8 Results of the Elementary Search Algorithm Applied with the MINLP
Problem for Small Cases

Number of Ratio of Ratio of Computational
Cases Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 66 0.076 1 39.70
Small 2 87 0.057 1 54.54
Small 3 14 0.357 1 12.10
Small 4 52 0.115 1 39.06
Small 5 85 0.082 1 51.45
Small 6 68 0.132 1 34.21
Small 7 99 0.061 1 52.69
Small 8 69 0.072 1 36.86
Small 9 58 0.052 1 29.93
Small 10 87 0.149 1 44.73

Table 5.9 Results of the Elementary Search Algorithm Applied with the MILP Prob-
lem for Medium Cases

Number of Ratio of Ratio of Computational
Cases Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 38 0.737 1 12.78
Medium 2 398 0.204 1 148.29
Medium 3 570 0.007 1 394.21
Medium 4 927 0.056 1 652.4
Medium 5 271 0.107 1 80.33
Medium 6 398 0.023 1 146.09
Medium 7 38 0.421 1 16.09
Medium 8 38 1 1 17.19
Medium 9 28 0.679 1 19.98
Medium 10 89 0.607 1 46.02
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Table 5.10 Results of the Elementary Search Algorithm Applied with the MINLP
Problem for Medium Cases

Number of Ratio of Ratio of Computational
Cases Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 38 0.737 1 50.65
Medium 2 398 0.204 1 445.23
Medium 3 599 0.007 1 655.7
Medium 4 952 0.055 1 1329.74
Medium 5 271 0.107 1 320.84
Medium 6 398 0.023 1 272.96
Medium 7 38 0.421 1 54.5
Medium 8 38 1 1 41.81
Medium 9 28 0.679 1 41.26
Medium 10 89 0.607 1 68.21

Table 5.11 Results of the Elementary Search Algorithm Applied with the MILP
Problem for Medium-Plus Cases

Number of Ratio of Ratio of Computational
Cases Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 1840 0.715 1 5170.81
Medium-plus 2 3359 0.130 1 8764.97
Medium-plus 3 1208 0.592 1 1961.12
Medium-plus 4 1633 0.517 1 4477.55
Medium-plus 5 1633 0.553 1 5315.3
Medium-plus 6 1416 0.396 1 2863.37

There is a significant computational time difference when the MILP problem is used
instead of the MINLP problem in the Elementary Search algorithm. Therefore,
we compare the performance of the total enumeration and the Elementary Search
algorithm applied with the MILP problem. Also, in the following sections, we con-
tinue implementing the proposed algorithms by using the MILP problem, which is
denoted as SCSFP.

Since the Elementary Search algorithm guarantees to find all of the collusive states,
the ratio of collusive coverage is equal to 1 for each of the cases. For some of the cases
(especially for the medium-plus cases), the computational times are higher than the
computational time of the total enumeration. Moreover, for a great majority, the
ratio of found collusive is low. Therefore, one will prefer the total enumeration in
order to ensure all of the find states are guaranteed to be the collusive states. Note
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that for the Elementary Search algorithm, the number of suspicious states is equal
to how many times the SCSFP problem is iteratively solved.

5.3 The SwpN Algorithm Results

In this section, the SwpN algorithm is executed for all of the cases. The performance
measures for all of the cases are shown in Tables 5.12, 5.13, 5.14 for small, medium
and medium-plus cases, respectively.

Table 5.12 The SwpN Algorithm Results for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 66 5 1 1 25.49
Small 2 87 22 0.227 1 22.43
Small 3 14 12 0.417 1 4.94
Small 4 40 6 1 1 17.82
Small 5 80 7 1 1 20.60
Small 6 68 14 0.643 1 20.75
Small 7 99 6 1 1 30.02
Small 8 66 5 1 1 20.68
Small 9 56 5 0.6 1 12.78
Small 10 87 22 0.591 1 23.06

Table 5.13 The SwpN Algorithm Results for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 38 28 1 1 14.39
Medium 2 398 81 1 1 149.74
Medium 3 570 4 1 1 301.83
Medium 4 927 52 1 1 592.76
Medium 5 271 29 1 1 115.75
Medium 6 398 9 1 1 208.98
Medium 7 38 16 1 1 17.53
Medium 8 38 38 1 1 15.27
Medium 9 28 19 1 1 19.25
Medium 10 89 54 1 1 37.04
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Table 5.14 The SwpN Algorithm Results for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 1840 1316 1 1 4847.44
Medium-plus 2 3359 895 0.489 1 10259.64
Medium-plus 3 1208 781 0.915 1 2434.96
Medium-plus 4 1633 951 0.887 1 4745.43
Medium-plus 5 1633 1018 0.887 1 5965.63
Medium-plus 6 1416 599 0.937 1 3311.66

As mentioned in Chapter 4, in the SwpN algorithm there is an addition to the
Elementary Search algorithm, which is the elimination part. Therefore, for the
most of the cases, the computational time of the SwpN algorithm is higher. But the
ratios of found collusive are improved and most of the found suspicious states are
the actual collusive states (the ratios of found collusive are equal or close to 1). In
Tables 5.12, 5.13 and 5.14, the number of solved SCSFP also represents the number
of suspicious states before the elimination and it is equal to the number of suspicious
states in the Elementary Search algorithm.

Since it is guaranteed that the Elimination module cannot eliminate any actual
collusive state, the ratio of collusive coverage for each state is equal to 1 as in the
Elementary Search algorithm.

5.4 The Results for the Variations of the SwpN Algorithm

In this section, we discuss the results of the alternative versions of the SwpN algo-
rithm and find out if the algorithms reach to actual collusive states faster than the
total enumeration.

5.4.1 The SwpN-NS Algorithm Results

Tables 5.15, 5.16 and 5.17 present the performances of the SwpN-NS algorithm.
As noted before, in the SwpN-NS algorithm, the aim is to reduce the number of
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times an SCSF problem is solved in comparison to the SwpN algorithm by solving
the DC-OPF problem for neighboring states. As a result, the number of times an
SCSFP solved is decreased. Therefore, the computational time is reduced for each
case.

Since the elimination criteria is not changed, the ratio of found collusive and the
ratio of collusive coverage remain the same as in the SwpN algorithm.

Table 5.15 The SwpN-NS Algorithm Results for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 11 5 1 1 9.55
Small 2 18 22 0.227 1 14.29
Small 3 4 12 0.417 1 4.57
Small 4 11 6 1 1 11.10
Small 5 13 7 1 1 10.96
Small 6 11 14 0.643 1 8.83
Small 7 18 6 1 1 10.24
Small 8 13 5 1 1 8.98
Small 9 13 5 0.6 1 9.42
Small 10 17 22 0.591 1 9.65

Table 5.16 The SwpN-NS Algorithm Results for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 6 28 1 1 11.48
Medium 2 54 81 1 1 56.59
Medium 3 81 4 1 1 97.08
Medium 4 123 52 1 1 150.89
Medium 5 45 29 1 1 53.86
Medium 6 56 9 1 1 81.27
Medium 7 6 16 1 1 8.89
Medium 8 6 38 1 1 9.05
Medium 9 6 19 1 1 10.22
Medium 10 19 54 1 1 24.58
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Table 5.17 The SwpN-NS Algorithm Results for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 131 1316 1 1 561.08
Medium-plus 2 1551 883 0.496 1 6031.35
Medium-plus 3 197 783 0.913 1 795.80
Medium-plus 4 427 951 0.887 1 2149.65
Medium-plus 5 439 1016 0.889 1 2089.94
Medium-plus 6 124 564 0.995 1 916.52

5.4.2 The pp-SwpN Algorithm Results

In Chapter 4, in the pp-SwpN algorithm, a Nash state is found before iteratively
solving an SCSF problem. The performance of the pp-SwpN algorithm for each
small, medium and medium-plus cases are presented in Tables 5.18, 5.19 and 5.20.

Table 5.18 The pp-SwpN Algorithm Results for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 53 5 1 1 23.33
Small 2 65 22 0.227 1 20.21
Small 3 13 12 0.417 1 4.51
Small 4 1 6 1 1 10.43
Small 5 63 7 1 1 16.46
Small 6 53 14 0.643 1 18.14
Small 7 66 6 1 1 21.02
Small 8 47 5 1 1 15.95
Small 9 43 5 0.6 1 10.97
Small 10 65 22 0.591 1 18.01
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Table 5.19 The pp-SwpN Algorithm Results for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 38 28 1 1 18.46
Medium 2 362 81 1 1 149.49
Medium 3 538 4 1 1 287.64
Medium 4 756 52 1 1 498.04
Medium 5 253 29 1 1 106.53
Medium 6 285 9 1 1 169.87
Medium 7 38 16 1 1 17.15
Medium 8 38 38 1 1 15.65
Medium 9 28 19 1 1 17.47
Medium 10 89 54 1 1 38.79

Table 5.20 The pp-SwpN Algorithm Results for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 1840 1316 1 1 5052.09
Medium-plus 2 2757 902 0.486 1 8904.93
Medium-plus 3 1208 782 0.914 1 2772.90
Medium-plus 4 1633 951 0.887 1 4861.44
Medium-plus 5 1633 1018 0.887 1 5369.48
Medium-plus 6 1416 599 0.937 1 3306.68

The ratio of found collusive and the ratio of collusive coverage remain the same
as in the SwpN algorithm and the SwpN-NS algorithm. But the computational
time increases for most of the cases. Therefore , the SwpN-NS algorithm definitely
performs better than the pp-SwpN algorithm. Especially for a medium-plus case,
one will prefer the total enumeration instead of the pp-SwpN algorithm.

5.4.3 The pp-SwpN-NS Algorithm Results

As proposed before, in the pp-SwpN-NS algorithm, initially a Nash state is found as
in the pp-SwpN algorithm and the neighborhood of a suspicious state is searched,
while solving an SCSF problem iteratively. In Tables 5.21, 5.22 and 5.23, the results
for the pp-SwpN-NS algorithm are presented.
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Table 5.21 The pp-SwpN-NS Algorithm Results for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 12 5 1 1 12.60
Small 2 13 22 0.227 1 8.83
Small 3 4 12 0.417 1 4.47
Small 4 1 6 1 1 9.66
Small 5 12 7 1 1 9.97
Small 6 10 14 0.643 1 9.00
Small 7 15 6 1 1 11.05
Small 8 12 5 1 1 12.13
Small 9 9 5 0.6 1 6.43
Small 10 12 22 0.591 1 9.78

Table 5.22 The pp-SwpN-NS Algorithm Results for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 6 28 1 1 8.71
Medium 2 56 81 1 1 59.44
Medium 3 84 4 1 1 89.35
Medium 4 106 52 1 1 127.62
Medium 5 43 29 1 1 53.41
Medium 6 51 9 1 1 82.26
Medium 7 6 16 1 1 8.61
Medium 8 6 38 1 1 7.61
Medium 9 6 19 1 1 10.64
Medium 10 19 54 1 1 22.36

Table 5.23 The pp-SwpN-NS Algorithm Results for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 131 1316 1 1 584.12
Medium-plus 2 1552 900 0.487 1 6102.11
Medium-plus 3 199 783 0.913 1 955.08
Medium-plus 4 428 951 0.887 1 1966.24
Medium-plus 5 445 1017 0.888 1 1926.68
Medium-plus 6 124 564 0.995 1 628.32

The ratio of found collusive and the ratio of collusive coverage are the same as in the
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other variations of the SwpN algorithm. But the computational times of the cases
are better than they are with the pp-SwpN algorithm. The number of solved SCSF
problem is less than or equal to the number of times in the pp-SwpN algorithm. This
clearly shows that solving the DC-OPF problem is computationally less expensive
than solving a SCSF problem. Therefore pp-SwpN-NS performs better than the
pp-SwpN algorithm.

5.4.4 The pp-SwpN-NoNS Algorithm Results

Tables 5.24, 5.25 and 5.26, show the number of times an SCSF problem is solved,
the number of suspicious states and also the other performance measures for the
pp-SwpN-NoNS algorithm for each created cases. For the small and the medium
cases, the pp-SwpN-NoNS algorithm performs as the fastest. However, the perfor-
mance of the medium-plus cases for the pp-SwpN-NoNS algorithm cannot exceed
the performance for the pp-SwpN-NS algorithm.

Table 5.24 The pp-SwpN-NoNS Algorithm Results for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 7 5 1 1 8.56
Small 2 13 22 0.227 1 10.38
Small 3 3 12 0.417 1 3.75
Small 4 1 6 1 1 10.49
Small 5 12 7 1 1 9.54
Small 6 5 14 0.643 1 8.12
Small 7 13 6 1 1 9.40
Small 8 6 5 1 1 6.83
Small 9 9 5 0.6 1 7.57
Small 10 14 22 0.591 1 9.18
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Table 5.25 The pp-SwpN-NoNS Algorithm Results for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 6 28 1 1 11.07
Medium 2 43 81 1 1 56.16
Medium 3 74 4 1 1 95.16
Medium 4 88 52 1 1 125.90
Medium 5 43 29 1 1 53.38
Medium 6 26 9 1 1 67.20
Medium 7 6 16 1 1 8.43
Medium 8 6 38 1 1 9.10
Medium 9 6 19 1 1 10.39
Medium 10 19 54 1 1 23.39

Table 5.26 The pp-SwpN-NoNS Algorithm Results for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 131 1316 1 1 768.59
Medium-plus 2 1522 905 0.484 1 6313.62
Medium-plus 3 199 783 0.913 1 1080.62
Medium-plus 4 428 951 0.887 1 1550.49
Medium-plus 5 445 1017 0.888 1 2108.35
Medium-plus 6 124 564 0.995 1 839.73

5.5 Discussions

Since the ratio of found collusive and the ratio of collusive coverage are the same
or really close to each other, we compare the SwpN algorithm and its variations
according to the computational time.

The computational times of the SwpN-NS, pp-SwpN-NS, and pp-SwpN-NoNS al-
gorithms are close to each other. Moreover, these algorithms perform better than
the total enumeration from the computational point of view. Especially for the
small and the medium cases, the pp-SwpN-NoNS algorithm executes faster. For the
medium-plus cases, mostly the SwpN-NS algorithm performs better.
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As mentioned before, we convert the bi-level problem to a single-level problem by
applying the Strong Duality theorem. However, there are several ways to convert a
bi-level problem. In order to observe how the reformulations affect the performance
of the SwpN algorithm and its variations, we execute the algorithms by using the
MILP model based on SOS type 1 variables, which is defined in Ebadi Torkayesh
(2020). The formulation is provided in Appendix B and the results of the algorithms
executed with the reformulation based on SOS type 1 variables are provided in
Appendix C. According to the results, for the medium and medium-plus cases, the
algorithms perform faster with the reformulation based on SOS type 1 variables.
However, the computational times of the algorithms with the SCSF problem are
better for the small cases. Moreover, the performance of the pp-SwpN-NS algorithm
exceeds the performance of the other algorithms.
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6. CONCLUSION

In this study, we present a search algorithm and its variations to detect collusion in
deregulated electricity markets; our aim is to develop effective and efficient heuris-
tic algorithms, particularly in comparison to the total enumeration. Therefore, we
create 26 cases that belong to 3 different problem sizes in order to compare the per-
formance of the algorithms to the total enumeration results and among themselves.
The performances are compared based on accuracy and speed.

Initially, the algorithms are executed by using the SCSF problem. While comparing
the results of the Elementary Search and SwpN algorithms, we observe that adding
elimination criteria based on partial Nash information increases the accuracy of
detecting the actual collusive states as suspicious. Since the elimination criteria are
not changed among the SwpN algorithm and its variations, the accuracy of detecting
the actual collusive states as suspicious is not changed. However, the computational
time differs. According to the results of the SwpN algorithm and its variations, the
pp-SwpN algorithm performs as the slowest. The computational times increase as
the numbers of SCSF problem solved increase. For the majority, the pp-SwpN-NoNS
algorithm performs as the fastest for the small and medium cases, and the SwpN-NS
algorithm is the fastest for the medium-plus cases. Moreover, these computational
times are much better than the computational times of the total enumeration, except
in some cases.

Furthermore, we execute the SwpN algorithm and its variations with the MILP
model based on SOS type 1 variables reformulation. The reformulation is developed
in Ebadi Torkayesh (2020) as an alternative formulation to the SCSF problem. Even
though the performances of the small cases cannot exceed the performance of the
total enumeration (in terms of accuracy and speed), for the medium and medium-
plus cases the computational times are decreased and the accuracy of detecting the
actual collusive states as suspicious are close to 1. Moreover, in comparison between
the variations of the SwpN algorithm, the pp-SwpN-NS algorithm performs the
fastest.
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In conclusion, the ISO as the decision-maker may change its algorithm preference
based on the problem size and the method of conversion from a bi-level to a single-
level problem. For small cases, the pp-SwpN-NoNS algorithm with the SCSF prob-
lem will be more useful. For larger cases, the pp-SwpN-NS algorithm with the
reformulation based on SOS type 1 variables should be preferred.

As future work, the SwpN algorithm and its variations can be implemented with
alternative formulations. An example of such a reformulation is converting a bi-level
problem to a single-level by using KKT conditions. Furthermore, an alternative for-
mulation to the DC-OPF problem can be used to solve the market-clearing problem.

Another future work area might be extensions of the bid sets or/and the number
of power generation companies. Total enumeration might not be able to detect
collusion in polynomial time as the problem size gets larger. However, the SwpN
algorithm and its variations might solve the extended problem in a reasonable time.
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Appendix A

Table 1 The Demand and Cost Values for the Small Cases

Parameter Types GenCo1 GenCo2 GenCo3 GenCo4 GenCo5

Demand (Di) 3 10 276 34 201
Cost (Ci) 20 20 - - 30

Table 2 The Demand and Cost Values for the Medium and Medium-Plus Cases

Parameter Types GenCo1 GenCo2 GenCo3 GenCo4 GenCo5 GenCo6 GenCo7

Demand (Di) 17 10 8 6 13 0 12
Cost (Ci) 20 20 - - 30 10 -

Table 3 The Pmax Values for the Small Cases

Cases Pmax
1 Pmax

2 Pmax
5

Small 1 320 258 214
Small 2 262 495 249
Small 3 371 202 362
Small 4 363 450 415
Small 5 353 260 346
Small 6 345 259 272
Small 7 355 326 236
Small 8 340 278 234
Small 9 234 302 232
Small 10 234 487 327

Table 4 The Pmax Values for the Medium Cases

Cases Pmax
1 Pmax

2 Pmax
5 Pmax

6

Medium 1 43 43 43 31
Medium 2 21 23 28 23
Medium 3 36 34 30 31
Medium 4 36 46 33 41
Medium 5 24 32 39 37
Medium 6 65 25 33 47
Medium 7 62 45 45 44
Medium 8 80 42 31 32
Medium 9 25 69 74 57
Medium 10 55 31 15 69
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Table 5 The Pmax Values for the Medium-Plus Cases

Cases Pmax
1 Pmax

2 Pmax
5 Pmax

6

Medium-Plus 1 132 291 31 85
Medium-Plus 2 61 34 24 21
Medium-Plus 3 33 54 48 26
Medium-Plus 4 29 52 30 31
Medium-Plus 5 31 54 21 33
Medium-Plus 6 27 41 43 28

Table 6 The Fmax Values for the Small Cases

Fmax
12 & Fmax

13 & Fmax
24 & Fmax

25 & Fmax
34 & Fmax

45 &
Cases Fmax

21 Fmax
31 Fmax

42 Fmax
52 Fmax

43 Fmax
54

Small 1 170 234 195 186 285 367
Small 2 156 466 171 423 207 26
Small 3 124 348 432 473 300 401
Small 4 80 224 251 222 380 300
Small 5 76 227 239 306 150 208
Small 6 103 369 375 253 198 59
Small 7 100 226 492 443 128 35
Small 8 170 234 195 186 285 367
Small 9 367 210 167 324 264 185
Small 10 264 450 462 478 306 31

Table 7 The Fmax Values for the Medium Cases

Fmax
12 & Fmax

13 & Fmax
24 & Fmax

25 & Fmax
34 & Fmax

45 & Fmax
56 & Fmax

71 &
Cases Fmax

21 Fmax
31 Fmax

42 Fmax
52 Fmax

43 Fmax
54 Fmax

65 Fmax
17

Medium 1 29 25 32 17 40 18 43 37
Medium 2 17 29 26 18 23 42 43 37
Medium 3 20 15 32 8 17 11 6 30
Medium 4 16 36 25 8 8 44 7 13
Medium 5 17 25 20 36 39 38 12 33
Medium 6 47 45 13 12 45 31 6 17
Medium 7 29 25 32 17 40 18 43 37
Medium 8 69 99 24 22 34 21 45 35
Medium 9 56 63 33 16 48 18 46 65
Medium 10 23 79 64 59 88 37 97 68

Table 8 The Fmax Values for the Medium-Plus Cases

Fmax
12 & Fmax

13 & Fmax
24 & Fmax

25 & Fmax
34 & Fmax

45 & Fmax
56 & Fmax

71 &
Cases Fmax

21 Fmax
31 Fmax

42 Fmax
52 Fmax

43 Fmax
54 Fmax

65 Fmax
17

Medium-Plus 1 278 68 185 45 13 281 24 92
Medium-Plus 2 278 68 185 45 13 281 24 92
Medium-Plus 3 29 14 8 42 10 16 35 27
Medium-Plus 4 29 14 8 42 10 16 35 27
Medium-Plus 5 29 14 8 42 10 16 35 27
Medium-Plus 6 29 14 8 42 10 16 35 27
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Appendix B

Maximize λ(1a)

s.t. λ≤
∑
k∈K

BidikVik−PiCi ∀i(1b)

bi =
∑
k∈K

BidikBik ∀i(1c)

∑
k∈K

Bik = 1 ∀i(1d)

Vik ≤ Pmaxi Bik ∀i and k(1e)

Vik ≤ Pi ∀i and k(1f)

Vik ≥ Pi−Pmaxi [1−Bik] ∀i and k(1g)

Vik ≥ 0 ∀i and k(1h)

∑
ij∈BR

γij(LMPj−LMPi)+
∑

ij∈BR
γij(ψ−ij −ψ

+
ij)+

∑
ji∈BR

γji(ψ+
ji−ψ

−
ji) = 0 ∀i(1i)

Pi−Di =
∑

ij∈BR
γij(θi−θj) ∀i(1j)

Pi ≤ Pmaxi ∀i(1k)

bi−LMPi+φi ≥ 0 ∀i(1l)

v11
i = Pi ∀i(1m)

v12
i = bi−LMPi+φi ∀i(1n)

v21
i = φi ∀i(1o)

v22
i = Pmaxi −Pi ∀i(1p)

v31
ij = ψ+

ij ∀ij ∈BR(1q)

v32
ij = Fmaxij −γij(θi−θj) ∀ij ∈BR(1r)

v41
ij = ψ−ij ∀ij ∈BR(1s)

v42
ij = Fmaxij +γij(θi−θj) ∀ij ∈BR(1t)

γij(θi−θj)≤ Fmaxij ∀ij ∈BR(1u)
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γij(θi−θj)≥−Fmaxij ∀ij ∈BR(1v)

−π ≤ θi ≤ π ∀i(1w)

v11
i ,v

12
i ,v

21
i ,v

22
i SOS1 ∀i(1x)

v31
ij ,v

32
ij ,v

41
ij ,v

42
ij SOS1 ∀ij ∈BR(1y)

bi ∈Bidi ∀i(1z)

Pi ≥ 0 ∀i(1aa)

LMPi free ∀i(1ab)

Bik ∈ {0,1} ∀i and k(1ac)

Vik,ψ
+
ij ,ψ

−
ij ≥ 0 ∀i and k(1ad)
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Appendix C

Table 9 The Results of the SwpN Algorithm with the Reformulation based on SOS
Type 1 Variables for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 66 5 1 1 16.00
Small 2 87 22 0.227 1 17.84
Small 3 14 12 0.417 1 3.96
Small 4 40 6 1 1 16.03
Small 5 80 7 1 1 26.51
Small 6 68 14 0.643 1 26.12
Small 7 99 6 1 1 41.18
Small 8 66 5 1 1 23.77
Small 9 56 5 0.6 1 14.53
Small 10 87 22 0.591 1 17.68

Table 10 The Results of the SwpN Algorithm with the Reformulation based on SOS
Type 1 Variables for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 38 28 1 1 11.43
Medium 2 398 81 1 1 149.62
Medium 3 570 4 1 1 254.43
Medium 4 927 52 1 1 558.93
Medium 5 271 29 1 1 110.73
Medium 6 398 9 1 1 157.55
Medium 7 38 16 1 1 12.34
Medium 8 38 38 1 1 12.60
Medium 9 28 19 1 1 9.46
Medium 10 89 54 1 1 26.46

Table 11 The Results of the SwpN Algorithm with the Reformulation based on SOS
Type 1 Variables for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 1840 1316 1 1 1429.19
Medium-plus 2 3359 845 0.518 1 3075.82
Medium-plus 3 1208 784 0.912 1 1621.77
Medium-plus 4 1633 951 0.888 1 1788.04
Medium-plus 5 1633 1018 0.887 1 1165.94
Medium-plus 6 1416 598 0.938 1 1773.54

50



Table 12 The Results of the SwpN-NS Algorithm with the Reformulation based on
SOS Type 1 Variables for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 12 5 1 1 16.14
Small 2 17 22 0.227 1 16.80
Small 3 4 12 0.417 1 6.64
Small 4 11 6 1 1 16.71
Small 5 15 7 1 1 17.23
Small 6 11 14 0.643 1 13.64
Small 7 18 6 1 1 13.80
Small 8 13 5 1 1 15.20
Small 9 12 5 0.6 1 11.75
Small 10 18 22 0.591 1 14.82

Table 13 The Results of the SwpN-NS Algorithm with the Reformulation based on
SOS Type 1 Variables for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 6 28 1 1 14.03
Medium 2 55 81 1 1 85.69
Medium 3 81 4 1 1 129.18
Medium 4 126 52 1 1 207.97
Medium 5 46 29 1 1 93.09
Medium 6 56 9 1 1 139.96
Medium 7 6 16 1 1 11.96
Medium 8 6 38 1 1 10.58
Medium 9 6 19 1 1 8.13
Medium 10 19 54 1 1 22.09

Table 14 The Results of the SwpN-NS Algorithm with the Reformulation based on
SOS Type 1 Variables for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 131 1316 1 1 356.20
Medium-plus 2 1547 849 0.516 1 2875.14
Medium-plus 3 199 782 0.914 1 686.44
Medium-plus 4 432 951 0.888 1 1692.36
Medium-plus 5 441 1016 0.889 1 788.71
Medium-plus 6 124 564 0.995 1 688.43
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Table 15 The Results of the pp-SwpN Algorithm with the Reformulation based on
SOS Type 1 Variables for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 53 5 1 1 16.77
Small 2 65 22 0.227 1 16.15
Small 3 13 12 0.417 1 4.37
Small 4 1 6 1 1 7.98
Small 5 63 7 1 1 18.92
Small 6 53 14 0.643 1 16.32
Small 7 66 6 1 1 18.73
Small 8 47 5 1 1 15.85
Small 9 43 5 0.6 1 10.62
Small 10 65 22 0.591 1 15.33

Table 16 The Results of the pp-SwpN Algorithm with the Reformulation based on
SOS Type 1 Variables for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 38 28 1 1 10.76
Medium 2 362 81 1 1 122.22
Medium 3 538 4 1 1 184.08
Medium 4 756 52 1 1 352.37
Medium 5 253 29 1 1 88.79
Medium 6 285 9 1 1 119.91
Medium 7 38 16 1 1 10.11
Medium 8 38 38 1 1 10.44
Medium 9 28 19 1 1 8.06
Medium 10 89 54 1 1 20.05

Table 17 The Results of the pp-SwpN Algorithm with the Reformulation based on
SOS Type 1 Variables for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 1840 1316 1 1 1445.67
Medium-plus 2 2757 847 0.518 1 3324.92
Medium-plus 3 1208 785 0.911 1 1087.95
Medium-plus 4 1633 951 0.888 1 1561.48
Medium-plus 5 1633 1017 0.888 1 1470.10
Medium-plus 6 1416 598 0.938 1 1375.20
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Table 18 The Results of the pp-SwpN-NS Algorithm with the Reformulation based
on SOS Type 1 Variables for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 10 5 1 1 13.11
Small 2 14 22 0.227 1 14.98
Small 3 4 12 0.417 1 5.54
Small 4 1 6 1 1 10.99
Small 5 14 7 1 1 14.73
Small 6 10 14 0.643 1 12.16
Small 7 14 6 1 1 13.95
Small 8 12 5 1 1 11.62
Small 9 11 5 0.6 1 11.46
Small 10 14 22 0.591 1 15.44

Table 19 The Results of the pp-SwpN-NS Algorithm with the Reformulation based
on SOS Type 1 Variables for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 6 28 1 1 8.96
Medium 2 56 81 1 1 66.92
Medium 3 75 4 1 1 73.75
Medium 4 108 52 1 1 117.59
Medium 5 42 29 1 1 50.59
Medium 6 52 9 1 1 77.06
Medium 7 6 16 1 1 8.15
Medium 8 6 38 1 1 8.13
Medium 9 6 19 1 1 8.26
Medium 10 19 54 1 1 19.28

Table 20 The Results of the pp-SwpN-NS Algorithm with the Reformulation based
on SOS Type 1 Variables for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 131 1316 1 1 295.41
Medium-plus 2 1546 844 0.519 1 2734.65
Medium-plus 3 201 784 0.912 1 739.62
Medium-plus 4 431 951 0.888 1 1061.03
Medium-plus 5 442 1016 0.889 1 1018.45
Medium-plus 6 124 564 0.995 1 643.26
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Table 21 The Results of the pp-SwpN-NoNS Algorithm with the Reformulation
based on SOS Type 1 Variables for the Small Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Small 1 8 5 1 1 15.01
Small 2 12 22 0.227 1 15.22
Small 3 3 12 0.417 1 6.16
Small 4 1 6 1 1 15.27
Small 5 12 7 1 1 13.57
Small 6 5 14 0.643 1 12.38
Small 7 13 6 1 1 17.19
Small 8 6 5 1 1 13.29
Small 9 11 5 0.6 1 11.35
Small 10 13 22 0.591 1 14.97

Table 22 The Results of the pp-SwpN-NoNS Algorithm with the Reformulation
based on SOS Type 1 Variables for the Medium Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium 1 6 28 1 1 13.32
Medium 2 43 81 1 1 93.21
Medium 3 76 4 1 1 121.03
Medium 4 91 52 1 1 195.37
Medium 5 42 29 1 1 88.89
Medium 6 26 9 1 1 126.33
Medium 7 6 16 1 1 14.46
Medium 8 6 38 1 1 12.41
Medium 9 6 19 1 1 8.30
Medium 10 19 54 1 1 20.62

Table 23 The Results of the pp-SwpN-NoNS Algorithm with the Reformulation
based on SOS Type 1 Variables for the Medium-Plus Cases

Number of Number of Ratio of Ratio of Computational
Cases solved SCSFP Suspicious

States
Found Collusive Collusive Cov-

erage
Time

Medium-plus 1 131 1316 1 1 321.08
Medium-plus 2 1521 852 0.514 1 2744.03
Medium-plus 3 201 784 0.912 1 772.86
Medium-plus 4 431 951 0.882 1 432.42
Medium-plus 5 442 1016 0.889 1 1207.19
Medium-plus 6 124 564 0.995 1 566.30
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