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ABSTRACT

VEHICLE RELOCATION PROBLEMS IN FREE-FLOATING CAR-SHARING
SYSTEMS

PINAR ÖZYAVAŞ

Industrial Engineering, Master’s Thesis, 2020

Thesis Supervisor: Asst. Prof. Amine Gizem Tiniç

Keywords: free-floating car-sharing systems, time-space network, vehicle relocation
problem

Car-sharing systems have attracted plenty of attention for the past few decades as
a means to fulfill constantly growing mobility needs especially in urban areas, and
to alleviate the difficulties caused by economical and environmental problems due
to excessive (and increasing) private car ownership. One of the main challenges
faced in car-sharing systems is to maintain a good balance between vehicle sup-
ply and user demands by means of relocating the vehicles from regions with excess
supply to regions with excess demand. We examine two vehicle relocation prob-
lems in a free-floating car-sharing system, which allows users to pick up/drop off
vehicles from/to any location of their choice, and pay as they go. Vehicle reloca-
tions are typically performed by dedicated personnel, also known as operators, in
car-sharing systems. First, we propose an operator-based vehicle relocation model
which provides a relocation plan for the vehicles along with a set of routes for the
operators consistent with the planned relocation tasks. Second, we formulate a hy-
brid relocation problem where, in addition to operators, users are also encouraged to
participate in repositioning of the vehicles in return for a discount. Both problems
are formulated as mixed-integer programs on appropriately defined time-space net-
works. Furthermore, new sets of instances are generated, and the proposed models
are used to obtain solutions to these problem instances. A computational study is
conducted to evaluate the operational efficiency of the car-sharing system based on
key performance indicators, namely, objective value, number of rejected users and
vehicle/operator utilization levels.
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ÖZET

SERBEST DOLAŞIMLI ARAÇ PAYLAŞIM SİSTEMLERİNDE ARAÇ YER
DEĞİŞTİRME PROBLEMLERİ

PINAR ÖZYAVAŞ

Endüstri Mühendisliği, Yüksek Lisans Tezi, 2020

Tez Danışmanı: Dr. Öğretim Üyesi Amine Gizem Tiniç

Anahtar Kelimeler: araç yer değiştirme problemi, serbest dolaşımlı araç paylaşım
sistemleri, zaman-mekan ağı

Araç paylaşım sistemleri, özellikle kentsel alanlarda sürekli artan hareketlilik
ihtiyaçlarını karşılamak ve aşırı (ve artan) özel araç mülkiyeti nedeniyle ekonomik
ve çevresel sorunların yol açtığı zorlukları hafifletmek için son birkaç on yıl boyunca
büyük ilgi görmüştür. Araç paylaşım sistemlerinde karşılaşılan temel zorluklardan
biri, araçların fazla arz olduğu bölgelerden aşırı talep gören bölgelere taşınması vası-
tasıyla araç tedariği ve kullanıcı talepleri arasında iyi bir denge sağlamaktır. Kul-
lanıcıların istedikleri herhangi bir yerden araç almalarını/bir yere araç bırakmalarını
ve kullandıkları kadar ödeme yapmalarını sağlayan serbest dolaşımlı bir araç pay-
laşım sisteminde iki araç yer değiştirme sorununu inceliyoruz. Araç paylaşım sistem-
lerinde, araçların yer değiştirmesi tipik olarak operatör olarak da bilinen özel per-
sonel tarafından gerçekleştirilir. İlk olarak, planlanan yer değiştirme görevleriyle tu-
tarlı olarak operatörler için bir dizi rota ile birlikte, taşıtlar için de bir yer değiştirme
planı sağlayan operatör tabanlı bir araç yer değiştirme modeli öneriyoruz. İkinci
olarak, kullanıcıların indirim karşılığında araç yer değiştirmelerine katılmaya teşvik
edildiği karma bir araç yer değiştirme problemi formüle ediyoruz. Her iki problem
de uygun şekilde tanımlanmış zaman-mekan ağlarında karma-tamsayılı programlar
olarak formüle edilmiştir. Ayrıca yeni örnek kümeleri oluşturulmuş ve önerilen mod-
eller bu sorun örneklerine çözüm bulmak için kullanılmıştır. Araç paylaşım sistemi-
nin operasyonel verimliliğini, temel performans göstergelerine, yani amaç fonksiyonu
değerine, reddedilen kullanıcı sayısına ve araç / operatör kullanım seviyelerine, göre
değerlendirmek için sayısal bir çalışma yapılmıştır.

v



ACKNOWLEDGEMENTS

I will never forget these 2 years at Sabanci University which led me to the world
of research and changed my life. I’m extremely grateful to have Dr. Gizem Tiniç
as my advisor. I always received a great deal of support and assistance from her.
She believed in me more than myself and continuously encouraged me even when
the road got tough. I cannot imagine a better advisor in my master’s studies. I
feel very lucky to be her first student and I am sure that she will continue to be an
inspiration to her future students as much as she has been to me.

A special thanks to my dear friend Ece for encouraging me to apply to Sabanci
University. Without her, it would not be possible for me to be where I am now. We
shared many great memories together, supported each other during tough times. I
am very happy that we will continue to share more memories together in another
city and another country. I have met many great people at Sabanci University. I
owe each of them a big thank you: Polen, Bahar, Yunus Emre, Duygu, Elif, Simge,
Ali, Hadi, Sahand, Büşra, Semih, Ömer. I will always remember our long meal
times and coffee breaks. I am also so thankful to have my close friends outside the
university: Gizem, Gülpembe, Buse, and Şüheda. They were always there for me in
every possible way.

Most importantly, none of this would have been possible without the unconditional
support of my family: my parents Gülsen and Şahin, my one and only sister Ezgi,
and my dear grandmother Ayşe. I love them to the moon and back. Last but not
least, I would like to thank my boyfriend Yasin. He is a true genius in coding. I would
not be able to survive without his guidance in improving my programming skills. I
can hardly find proper words to express how much it means to me to have him in
my life. I am thankful to him for sticking by me, and showing me unconditional
love. I cannot wait for the memories we will share together in a different country.

vi



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. PROBLEM DESCRIPTION and FORMULATIONS . . . . . . . . . . . . . . . 13
3.1. The operator-based vehicle relocation problem (VR-O) . . . . . . . . . . . . . . . 14
3.2. The hybrid vehicle relocation problem (VR-H) . . . . . . . . . . . . . . . . . . . . . . . . 20

4. COMPUTATIONAL EXPERIMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1. Generation of test instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1. Locations and travel times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2. User requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.3. Starting locations of vehicles and operators . . . . . . . . . . . . . . . . . . . . 28

4.2. Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1. The effect of changing the fleet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2. The effect of changing the staff level . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3. The effect of variations in demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4. Comparison between operator-based and hybrid relocation

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.5. An alternative user incentive scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.6. Increasing the time granularity of the network . . . . . . . . . . . . . . . . . 54

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



LIST OF TABLES

Table 2.1. Classification of cited articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2.2. Classification of cited articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 4.1. Parameters for the number of users, vehicles, and operators . . . . 30
Table 4.2. Abbreviations used in the tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 4.3. Results of operator-based relocation problem for small-size in-

stances in the instance class U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 4.4. Results of operator-based relocation problem for medium-size

instances in the instance class U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 4.5. Results of operator-based relocation problem for large-size in-

stances in the instance class U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 4.6. Results of hybrid relocation problem for small-size instances in

the instance class U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 4.7. Results of hybrid relocation problem for medium-size instances

in the instance class U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 4.8. Results of hybrid relocation problem for large-size instances in

the instance class U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 4.9. Results of operator-based relocation problem regarding the

growth of user demand (Fixed number of vehicles and operators) . . . . . 49
Table 4.10. Results of hybrid relocation problem regarding the growth of

user demand (Fixed number of vehicles and operators) . . . . . . . . . . . . . . . 51
Table 4.11. Comparison between operator-based and hybrid relocation

model based on average values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 4.12. Results of hybrid relocation problem regarding different incen-

tive types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 4.13. Results of hybrid relocation problem regarding different time

discretization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table A.1. Results of operator-based relocation problem for small-size in-
stances in the instance class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



Table A.2. Results of operator-based relocation problem for medium-size
instances in the instance class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table A.3. Results of operator-based relocation problem for large-size in-
stances in the instance class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table A.4. Results of hybrid relocation problem for small-size instances in
the instance class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Table A.5. Results of hybrid relocation problem for medium-size instances
in the instance class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table A.6. Results of hybrid relocation problem for large-size instances in
the instance class C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Table A.7. Results of operator-based relocation problem for small-size in-
stances in the instance class UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table A.8. Results of operator-based relocation problem for medium-size
instances in the instance class UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table A.9. Results of operator-based relocation problem for large-size in-
stances in the instance class UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table A.10.Results of hybrid relocation problem for small-size instances in
the instance class UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table A.11.Results of hybrid relocation problem for medium-size instances
in the instance class UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table A.12.Results of hybrid relocation problem for large-size instances in
the instance class UC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



LIST OF FIGURES

Figure 3.1. An example of a time-space network . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 4.1. The Generated Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 4.2. Operator-based model plots for small-size users (Fixed # of

operators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 4.3. Operator-based model plots for medium-size users (Fixed num-

ber of operators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 4.4. Operator-based model plots for large-size users (Fixed number

of operators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 4.5. Hybrid model plots for small-size users (Fixed number of op-

erators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 4.6. Hybrid model plots for medium-size users (Fixed number of

operators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 4.7. Hybrid model plots for large-size users (Fixed number of op-

erators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 4.8. Operator-based model plots for small-size users (Fixed number

of vehicles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4.9. Operator-based model plots for medium-size users (Fixed num-

ber of vehicles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 4.10. Operator-based model plots for large-size users (Fixed number

of vehicles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 4.11. Hybrid model plots for small-size users (Fixed number of ve-

hicles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 4.12. Hybrid model plots for medium-size users (Fixed number of

vehicles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 4.13. Hybrid model plots for large-size users (Fixed number of ve-

hicles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

x



1. INTRODUCTION

Based on a recent study by the United Nations, the proportion of the world’s popu-
lation living in urban areas, currently around 55%, is projected to reach 68% by 2050
(United Nations, 2018). A natural consequence of this is the ever-increasing need for
urban mobility. However, constantly growing mobility need has serious economic,
social, and environmental implications such as higher costs for road infrastructure
and maintenance, traffic congestion, and greenhouse gas emissions, which call for
adopting more efficient and sustainable ways to move people and goods around. In
response to that, shared mobility systems have emerged, and various alternatives are
available such as ride-sharing, car-sharing, and electric scooter/bike sharing. Car-
sharing systems are perhaps among the most popular and convenient alternatives
of shared mobility. Although it has been a phenomenon since the foundation of the
very first known car-sharing system in the late 1940s, car-sharing has grown signif-
icantly and enjoys a wide acceptance all around the world in the following decades,
especially after Zipcar was launched in 2000. According to Shaheen (2020), as of
October 2018, more than 198.000 vehicles were available for about 32 million users
in 47 countries.

Unlike traditional car rental services, car-sharing is intended for people that are in
the need of a vehicle for a short period time to travel relatively smaller distances. In
essence, vehicles distributed across a given service region are available for people to
rent for short amounts of time, and pay as they go. Car-sharing systems are quite
practical and affordable not only for people who do not own a vehicle and need one
from time to time, but they also appeal to people who have a private vehicle of their
own yet want to avoid parking hassles (car-sharing operators typically have reserved
parking spots/stations across their service region).

Existing car-sharing systems are typically station based and they can be classified
into two main categories: two-way and one-way car-sharing systems. In two-way
systems, vehicles must be returned to the stations where they are picked up from.
In one-way systems, however, users are allowed to return the vehicles to any station
of their preference.
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In recent years, a new car-sharing business model, known as free-floating, has been
introduced and launched in several countries around the world. Free-floating car-
sharing systems have attracted great attention and started to become more and
more popular especially with the advances in modern positioning technologies that
enable real-time tracking of vehicles. In contrast to one-way and two-way car-sharing
systems, free-floating systems do not involve well-defined stations. Instead, vehicles
can be located at any point (that is a legal parking spot) within the service region
of the car-sharing operator so that users can take and leave vehicles without visiting
a station before or after a trip. This makes it an advantageous alternative among
others.

In free-floating car-sharing systems, the proximity of available vehicles to users’ re-
quested pick-up locations may have a significant impact on rental decisions of the
users. Simply put, if a user struggles finding a vehicle that is (or will soon be)
available and close to her origin of request, she will likely choose not to use the
car-sharing system and seek other alternatives. According to a survey in Becker
et al. (2017), 53% of free-floating car-sharing users stated that they would prefer
using public transportation if they could not find vehicles close to their origin lo-
cations. During the day, certain areas within the service region experience high
demand. This may result in the loss of potential user demand. On the other hand,
other areas may have many idle vehicles. Since the size of the car-sharing industry
exceeds billions of dollars as outlined in the report by Wadhwani and Saha (2020),
increasing the utilization level of the resources by managing the system effectively
is crucial in order to facilitate vehicle accessibility and provide reliable service. To
achieve this, vehicles should be relocated from areas of excess supply to areas of
excess demand so that the vehicle distribution across the service region matches the
anticipated demand distribution as closely as possible. Two different strategies can
be adopted in vehicle relocation: operator-based and user-based relocations. In the
former strategy, vehicles are repositioned within the network by dedicated relocation
personnel, whereas in the latter, users are engaged in the relocation operations by
means of alternative trip suggestions. In return, users receive an incentive (e.g. a
discount) that is determined by the manager of the car-sharing system.

In this thesis, we focus on vehicle relocation problems arising in free-floating car-
sharing systems. More specifically, we consider two problems that differ based on
the adopted relocation strategy, namely the operator-based vehicle relocation prob-
lem and and the hybrid (operator and user-based) vehicle relocation problem. We
present multi-commodity network flow formulations for both problems developed us-
ing properly defined time-space networks. On these networks, vehicle and operator
activities can be represented using flow variables in an integrated manner.

2



The remainder of this thesis is organized as follows: Chapter 2 reviews the related
literature. Chapter 3 formally describes the vehicle relocation problems and provides
their mathematical models. These models are then utilized to evaluate the impact of
varying problem parameters on the operational efficiency of the car-sharing system
under the aforementioned relocation strategies as well as to investigate the benefit
of involving users in relocation tasks. New sets of test instances have been generated
as described in Chapter 4 and used in the computational experiments for which the
results are presented in Chapter 4 along with detailed discussions of our findings.
Finally, Chapter 5 provides concluding remarks as well as outlining several directions
for future research.
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2. LITERATURE REVIEW

Vehicle relocation problems arising in different car-sharing systems has been studied
in the literature from various perspectives. Majority of the existing studies consider
a deterministic problem framework. Boyaci et al. (2015) propose a multi-objective
mixed integer programming (MIP) model which solves a (electric) vehicle relocation
problem in a one-way car-sharing system with reservations considering charging
constraints. Their model also determines the optimal fleet size as well as the number
and the locations of the stations. Due to the large number of relocation variables, the
proposed model becomes computationally intractable for problem sizes encountered
in practice. The authors present an aggregate model to overcome this difficulty, and
perform sensitivity analyses to investigate the effect of parameters such as demand,
accessibility distance, and subsidies on the performance of the car-sharing system
system. Nourinejad et al. (2015) develop two integrated multi-travelling sales person
formulations which simultaneously optimize vehicle relocation and staff rebalancing
decisions. Their model suffers from a large number of variables and constraints as
well. Although they apply a refinement step, which eliminates redundant variables
and constraints, the modified model remains incapable of solving larger instances.
Therefore, the authors develop and employ a decomposition based method to solve
the problem in which vehicle relocation and staff rebalancing decisions are made
sequentially.

Weikl and Bogenberger (2015) develop a six step approach to the vehicle (electric and
conventional) relocation problem in free-floating car-sharing systems. First, macro-
scopic zones, each represented as a collection of (adjacent) microscopic hexagons, are
determined. In the second step, vehicle distribution for different periods is obtained
using historical data. Vehicle relocations among macroscopic zones are identified
using a MIP. After that, two rule based models are used to relocate vehicles among
the microscopic hexagons within each macroscopic zone. In the last step, service
trips of staff are planned. Bruglieri et al. (2018) work on a multi-objective (elec-
tric) vehicle relocation problem involving staff routing decisions. They formulate it
as a MIP, and propose an exact solution method, which is not able to solve large
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instances efficiently. Thus, a two phase heuristic algorithm is developed. In the
first phase, an initial set of feasible staff routes is constructed using three different
techniques. In the second phase, another MIP is solved to select routes from the
initial set constructed in the first phase.

Recently, Folkestad et al. (2020) address vehicle relocation in free-floating car-
sharing systems. Unlike other studies, their primary goal is to ensure the relocation
of electric vehicles that are in need of charging by staff members, who are provided
with service vehicles to travel to the locations where they have to pick up the elec-
tric vehicles to be repositioned. Assuming that user demands are known, a MIP is
presented to find the routes of staff members and service vehicles as well as vehicle-
charging station pairs. To overcome the computational burden when solving real
life (large) problem instances, the authors devise a metaheuristic algorithm.

All the studies mentioned above investigate the vehicle relocation problem in a
deterministic setting. There are also a number of papers that considered vehicle
relocation problems from a stochastic point of view. Nair and Miller-Hooks (2011)
propose a stochastic MIP under demand uncertainty. The authors aim to identify a
relocation plan that ensures the service quality of the system –measured in terms of
user satisfaction– is reliable with a probability of at least p. The vehicles are assumed
to be relocated before their service period starts. In some cases, the stochastic MIP
may have a nonconvex feasible region. The authors propose two techniques to solve
the problem effectively. Fan (2014) also take demand uncertainty into account and
develop a multi-stage stochastic model to optimize strategic allocation of vehicles
in the system. Several assumptions are made when modeling the problem. More
specifically, users are assumed to request vehicles on the day before they need a
vehicle, and the vehicles are returned a day later. A vehicle trip from one location
to another is therefore assumed to take one day. A complete scenario-tree based
approach is used to obtain a solution to the problem and a seven-stage experimental
network, i.e., seven days and four locations, is designed to test the proposed solution
approach.

More recently, in Benjaafar et al. (2017) and He et al. (2019), the vehicle relo-
cation problem is formulated using stochastic dynamic programming. The above-
mentioned assumptions of Fan (2014) are not present in either of these studies.
Instead, users are allowed to request vehicles at any time and keep the vehicles for
as long as they wish. Moreover, the system provides the users with the flexibility
to return the vehicles at any point within a predefined service region. Hence, we
can say that Benjaafar et al. (2017) and He et al. (2019) consider a free-floating
car-sharing system. Benjaafar et al. (2017) represent the problem in a more general

5



framework by allowing multiple service periods and multiple locations for the opti-
mal policy. They employ approximate dynamic programming to solve the problem.
He et al. (2019), on the other hand, seek to find solutions through distributionally
robust optimization.

Repoux, Kaspi, et al. (2019) investigate the operational decisions in a reservation
based one-way car-sharing system. Two dynamic policies for staff based relocations
are provided. The performances of these dynamic relocation policies are evaluated
by means of solving a MIP formulation in which it is assumed that the system has
knowledge over the future demand. Two policies are also compared using the event
based simulation framework of Repoux, Boyacı, et al. (2015). Wang et al. (2019)
address the problems of (1) finding the number of vehicles to be relocated, (2) the
routes of these vehicles, and (3) the routes of the relocation personnel consistent
with the vehicle routes. A probabilistic approach is proposed to assess the station-
based relocation needs, i.e., to tackle the first problem. Solutions of the second and
the third problems are obtained via an integer linear programming (ILP) model.
Warrington and Ruchti (2019) develop a network flow formulation for a vehicle
relocation problem arising in shared mobility systems such as bike-sharing, one-
way car-sharing, and e-scooter sharing systems. Assuming demand uncertainty, the
network flow formulation is converted into a two-stage stochastic program.

Various simulation-based models have also been proposed in the literature. Barth
and Todd (1999) study the vehicle relocation problem in one-way car-sharing systems
and use a simulation model to assess the operational efficiency of the system. The
model mainly focuses on identifying user waiting times and the required number
of relocations to satisfy user demand. In another study by Repoux, Boyacı, et al.
(2015), an event-based simulation model is introduced to explore the performance of
their proposed formulations with a focus on determining vehicle relocations based on
user demand (in short term) as well as staff assignments according to the relocation
needs. The impact of fleet size and staff level, number of spots per station, minimum
battery level, and different strategies related to the relocations are explored using
efficiency indicators through event-based simulation.

Many researchers have interpreted vehicle relocation and/or staff rebalancing prob-
lems by means of flows in a time-space network. Kek et al. (2009) present a MIP to
simultaneously optimize vehicle relocations and staff activities including relocation,
travelling, and maintenance. A solution to the MIP model is utilized to determine
favorable parameters. The performance of these parameters based on different in-
dicators are evaluated in a simulation framework. Diana Jorge et al. (2012) test a
MIP model proposed by Almeida Correia and Antunes (2012) using an agent-based
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simulation approach. The MIP model aims to choose the locations of car-sharing
stations from a set of possible sites. The simulation model focuses on observing
how the change in user demand and relocation policy affect the one-way car-sharing
system when different scenarios related to the number of stations are considered. D.
Jorge et al. (2014) study a slightly different version of the same MIP formulation to
decide on the vehicle relocations given the locations of the stations. Multiple reloca-
tion policies are tested with a simulation model similar to Diana Jorge et al. (2012).
For the vehicle relocation problem, the mathematical model is used to obtain upper
bounds whereas the simulation model is employed towards achieving more realistic
results.

Krumke et al. (2014) consider a setting with semi-autonomous vehicles, which can be
relocated in convoys, and thus, modeled the vehicle relocation problem as a pickup
and delivery problem on a time-space network. In particular, they propose a min-
cost flow formulation and a max-profit flow formulation, where the former aims to
find a least cost set of routes for vehicle convoys while satisfying all the demand,
and the latter aims to find a most profitable set of routes for vehicle convoys with a
limited relocation budget. Santos and Correia (2015) extend the optimization model
proposed by Kek et al. (2009) in a way to allow staff to move with the same vehicle,
which is known as trip joining, or to move with an alternative transportation option.
Although they are able to find solutions to small problem instances, their model does
not scale well to solve large instances. Another time-space network based model is
introduced in Carlier et al. (2015), which is an integer program to maximize the
satisfied demand in a one-way car sharing system with a limited number of vehicles
and a limited number of relocation operations. The authors carry out computational
experiments and show that their model can handle randomly generated instances of
realistic size.

Ait-Ouahmed et al. (2017) focus on a vehicle relocation and staff repositioning prob-
lem with electric vehicles, and introduce a MIP formulation with an integrated ob-
jective function and recharging constraints. In order to solve larger instances, the
problem is decomposed into two subproblems by considering vehicle routing and
staff routing aspects individually. First, a greedy heuristic algorithm is used to con-
struct a solution to the vehicle routing problem, which provides information on the
relocation operations to be performed by the staff members. Then, a routing plan
for staff is obtained by another greedy heuristic. The authors also propose a tabu
search algorithm to obtain better results with respect to objective function value
and efficiency. Both algorithms are tested via simulation. For the same problem,
Xu et al. (2018) formulate a nonlinear and nonconvex MIP, and derive an equivalent
–with respect to the optimal solution– convex program. By assuming elastic de-
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mand, vehicle and staff activities, fleet size, and trip pricing are jointly determined.
Possible extensions of the model are also studied such as assigning a capacity to each
station, and designating the locations of the stations. The authors also suggest that
if the service region is categorized properly as suggested in Weikl and Bogenberger
(2015), their model is applicable to free-floating car-sharing systems as well.

More recently in Zhao et al. (2018), a MIP formulation is proposed which allows
(electric) vehicle and staff activities to be observed dynamically by representing
them through different sets of time-space paths. Battery capacity and charging time
are regarded among the constraints of the problem. The authors develop a solution
approach based on Lagrangian relaxation combined with forward dynamic program-
ming, branch-and-bound, and greedy algorithm. Another recent study by Gambella
et al. (2018) addresses the (electric) vehicle relocation problem in a station-based
one-way car-sharing system using time-space networks. Initial distributions of ve-
hicles and staff are obtained by a MIP model that maximizes the profit from the
satisfied user demand. The overnight relocation and staff activities are scheduled by
another MIP model taking into account the solution of the first model. Both exact
and heuristic approaches to tackle large-scale instances are described and sensitivity
to relocation cost and battery capacity of the electric vehicles are evaluated. Boyacı
and Zografos (2019) introduce spatial and/or temporal flexibility of user demand
in one-way (electric) car-sharing systems. They consider several operational deci-
sions such as demand acceptance or rejection, vehicle relocation, staff assignment
to vehicle relocation operations, and vehicle assignment to user demand. Vehicle
assignment decisions are made by a simulation model for the sake of finding solu-
tions quickly. A joint optimization model for staff and vehicles is adopted in case
the simulation model produces unsatisfactory solutions.

There are also studies that incorporate user-based vehicle relocation strategies within
their framework. Febbraro et al. (2012) model a discrete event scheme which allows
users drop off vehicles either at a location of their choice or at a location suggested
based on the solution of a MIP. They observe that the number of vehicles and users’
acceptance of suggested locations have a significant impact on the demand rejection
rate. In a recent study by Febbraro et al. (2019), the discrete event scheme proposed
in Febbraro et al. (2012) is enhanced by introducing relocations by staff members as
well. Whenever a user rejects an offered drop-off location, a staff member relocates
the vehicle to this location. They also add another step to their approach which
seeks to optimize the discounts associated with user-based relocations.

As seen above, a number of studies integrating vehicle and operator routing aspects
in vehicle relocation problems exists in the literature such as Ait-Ouahmed et al.

8



(2017), Gambella et al. (2018), Zhao et al. (2018), Xu et al. (2018). Nevertheless,
all these studies assume that user requests should be satisfied as soon as they are
received. We consider a problem setting where user requests can be covered within a
prespecified time frame defined by introducing waiting times that users can tolerate.
In terms of operator-based vehicle relocations, this distinguishes our models from
the models in other available studies. According to Niels and Bogenberger (2017),
in free-floating car-sharing systems, a user is satisfied if there is an available vehicle
within 300 to 500 meters of the user’s location. In other words, the user may not be
able to find a vehicle exactly at her demand point, and may need to walk in order
to pick up a nearby vehicle. Another scenario could be that a user finds an available
vehicle upon waiting for a certain (and an acceptable) amount of time. Therefore,
setting deadlines for meeting user demands has the potential be quite useful for
car-sharing systems in practice.

In terms of the adoption of a hybrid relocation strategy, Boyacı and Zografos (2019)
is the closest study to ours. They focus on a one-way station-based electric car-
sharing system, and investigate the effect of spatial and temporal flexibility of users
on the system performance. Their modeling approach is similar to ours in the sense
that vehicle and operator movements are formulated on parallel time-space networks
using flow variables, and user flexibility is incorporated into the modeling framework
through incentives in the form of price discounts. The main difference of our study
is in the definition of alternative trips that can be suggested to users and in the
incentive scheme employed. Alternative pick-up/drop-off locations that can be sug-
gested to a user should be within a predefined range of the user’s origin/destination
stations in their case. Same applies to the offered and requested pick-up times. Our
alternative trip suggestions, on the other hand, are compiled by jointly considering
spatial and temporal aspects of user flexibility without compromising acceptability,
that is, we restrict our attention only to what we refer to as appealing suggestions
for each user. In particular, we assume that a pair of pick-up/drop-off locations can
be offered to a user if the total trip duration of the user does not increase (compared
to her planned trip) and the user does not have to travel longer than a prespeci-
fied threshold between her origin and the suggested pick-up location, and between
the suggested drop-off location and her destination in total. Moreover, the earliest
possible pick-up time is the user’s request arrival time in our problem setting unlike
Boyacı and Zografos (2019), who allow picking up vehicles earlier than requested.
Our model provides a pick-up time suggestion based on the request arrival time, the
total time it takes for the user to travel from her origin to the suggested pick-up
location and from the suggested drop-off location to her destination.

In Boyacı and Zografos (2019), the user is given a discount on a per kilometer basis
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for pick-up/drop-off stations that are different from the requested origin/destination
stations, and on an hourly basis for changing the requested pick-up time. We de-
ploy a simpler incentive scheme where users are provided with a fixed percentage
discount on their original rental prices depending on whether they are offered pick-
up/drop-off locations other than their origin/destination locations or not. We also
evaluate a variable percentage discount scenario in our experiments. Finally, Boyacı
and Zografos (2019) assume that travel times and driving distances of the users re-
main constant, whereas in our case, they depend on the suggested pick-up/drop-off
locations.

For a comprehensive review of the literature on vehicle relocation problems and
solution approaches, we refer the reader to a recent survey by Illgen and Höck
(2019). We classify the articles cited above with respect to the type of car-sharing
system considered, vehicle type, relocation strategy, focus, and solution approach.
The classification of the cited articles can be found in Tables 2.1 and 2.2.
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Articles CS type
Vehicle
type

Relocation
type

Focus Solution Approach

Barth and
Todd (1999)

OW E Platoon
Measures of

effectiveness, FS,
no. of stations

Simulation

Kek et al.
(2009)

OW C OB
VR, SR and

activities, operating
parameters

MIP on a time-space
network, heuristic,

simulation
Nair and

Miller-Hooks
(2011)

OW C OB VR
Stochastic MIP,

simulation

Almeida
Correia and
Antunes
(2012)

OW C -
no., size, and

location of depots
MIP

Febbraro
et al. (2012)

OW C UB
VR, demand
acceptance or

rejection
IP, simulation

Diana Jorge
et al. (2012)

OW C OB
Station locations,
vehicle distribution

MIP on a time-space
network, agent based

simulation
D. Jorge

et al. (2014)
OW C OB VR

MIP on a time-space
network, simulation

Fan (2014) OW C OB VR
Multi-stage stochastic

LP
Krumke et al.

(2014)
OW C

Vehicle
platoon

VR, convoy routing
ILP on a time-space

network
Repoux,

Boyacı, et al.
(2015)

OW E OB VR, SR
Event-based
simulation

Boyaci et al.
(2015)

OW E OB
VR, FS, number of

stations
Multi-objective MIP

Nourinejad
et al. (2015)

OW C OB VR, SR MIP, decomposition

Weikl and
Bogenberger

(2015)
FF C, E OB

VR, SR, FS, zone
categorization

MIP

Santos and
Correia
(2015)

OW C OB VR, SR
MIP on a time-space

network

Carlier et al.
(2015)

OW C OB VR
ILP on a time-space

network

Table 2.1 Classification of cited articles
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Articles
Car-

sharing
type

Vehicle
type

Relocation
type

Focus Solution Approach

Ait-Ouahmed
et al. (2017)

OW E OB VR, SR

MIP on a time-space
network, greedy and
bi-level tabu search

algorithms
Benjaafar

et al. (2017)
OW or FF C OB VR

Markov decision
process

Bruglieri
et al. (2018)

OW E OB VR, SR
Multiple objective
MIP, heuristics

Xu et al.
(2018)

OW E OB
VR, SR, FS, trip

pricing
MIP

Zhao et al.
(2018)

OW E OB VR, SR
MIP on a time-space
network, Lagrangian

relaxation
Gambella

et al. (2018)
OW E OB VR, SR

MIP on a time-space
network, heuristics

He et al.
(2019)

FF C OB VR
Stochastic dynamic

program
Wang et al.

(2019)
OW E OB VR, SR MIP, simulation

Warrington
and Ruchti

(2019)
OW - OB VR

LP, two-stage
stochastic

programming
Repoux,

Kaspi, et al.
(2019)

OW C OB VR, SR
Dynamic relocation
algorithms, MIP,

simulation

Boyacı and
Zografos
(2019)

OW E UB, OB

Demand
acceptance or
rejection, VR,
staff and vehicle

assignment

MIP, simulation

Febbraro
et al. (2019)

OW C UB, OB

VR, demand
acceptance or

rejection, optimal
discount

IP, Simulation

Folkestad
et al. (2020)

FF E OB

VR and vehicle
assignment to

charging stations,
SR and service
vehicles routing

MIP, metaheuristic

Abrreviations: OW: One-way, FF: Free-floating, E: Electric, C: Convenitonal, OB: Operator-based

UB: User-based, FS: Fleet size, VR: Vehicle relocation, SR: Staff routing

Table 2.2 Classification of cited articles

12



3. PROBLEM DESCRIPTION and FORMULATIONS

The car-sharing systems that we consider in this thesis consist of three types of
entities: vehicles, operators (dedicated personnel of the company providing the car-
sharing service), and users. Due to spatial and temporal variations in demand, vehi-
cle distribution across the service region does not always closely match the demand
distribution, thereby, necessitating (some) vehicles to be re-positioned to different
locations. In this chapter, we formally define two vehicle relocation problem vari-
ants within the context of free-floating car-sharing systems, i.e., the operator-based
vehicle relocation problem (VR-O) and the operator and user-based (hybrid) vehicle
relocation problem (VR-H). For both problem variants, we develop multi-commodity
network flow formulations in which the vehicle, operator, and user movements are
modeled on a time-space network. Our primary goal is not to develop a solution
methodology, but rather to investigate the operational efficiency of a free-floating
car-sharing system in its simplest form although our formulations can serve as bases
for an effective solution algorithm.

In free-floating car-sharing systems, the service region does not involve well-defined
stations at which the vehicles should be picked-up or returned. In essence, users
are free to drop-off the cars at any location within the service region that qualifies
as a legitimate parking spot. Moreover, a user does not have to make a reservation
in advance, she can just make a pick-up request whenever she needs a car. At the
time of her request, she does not have to reveal her destination, nor the return time
of the vehicle at that destination. This highly dynamic and stochastic nature of
free-floating car-sharing systems makes it quite challenging to model and solve the
vehicle relocation problem efficiently. However, companies providing this type of
car-sharing service collect plenty of data at the user level by continuously tracking
their vehicles. Based on this data, they can make predictions about the timing and
the origin-destination locations of future requests. Furthermore, users do not mind
providing this information if they are asked to do so. According to the results of
a survey in Herrmann et al. (2014), around 89 % of the respondents are willing
to provide the information regarding their destinations before they book a vehicle.
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With this motivation, we study the VR-O and the VR-H in a deterministic setting
where origin-destination locations and the request arrival time are assumed to be
known for each user. We present the detailed descriptions of the VR-O and the
VR-H along with our assumptions, and provide our mathematical formulations in
the sequel.

3.1 The operator-based vehicle relocation problem (VR-O)

In the operator based vehicle relocation problem, re-positioning tasks are performed
only by the operators. We represent this problem on a time-space network obtained
by discretizing a finite planning horizon into T periods. We assume that user re-
quests within this planning horizon, characterized by an origin-destination pair as
well as a request arrival time for each user, are known beforehand. Moreover, since
a user would not be willing to wait (or walk) for an extended period of time to pick
up a car, we construct a deadline for every user by adding a constant slack (spec-
ified in terms of number of periods) to the user’s request arrival time. If a vehicle
cannot be supplied to the user before this deadline, we consider the user’s request
to be rejected. Otherwise, we assume that the user picks up a vehicle and drives
directly to her destination. Given the user requests, and the initial locations of the
vehicles and the operators across the service region, the VR-O aims to identify a
set of vehicle and operator paths to provide service to a set of user requests in a
way to strike a balance between minimizing relocation related costs and maximizing
revenue from the satisfied requests. We use the following notation to formulate the
VR-O.

Sets and Parameters

• T : number of time-steps/periods in the planning horizon (depends on the time
discretization scheme)

• N = {1, ..,n}: locations of interest in the service region (initial vehicle/operator
locations, users’ origin-destination locations)

• A= {(i, j) : i, j ∈N,i 6= j}: set of links connecting the locations in N

• tij : travel time associated with arc (i, j)∈A (in terms of number of time-steps)
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• V : set of vehicles

• U : set of users

• O: set of operators

• G = (N ,A): a time-expanded network with N = {(i, t) : i∈N,t∈ {0, . . . ,T}}∪
{(0,0),(n+1,T ),(r∗,T )} and A=AT ∪AR∪AW ∪AD ∪AS , where

– (0,0): artificial source node

– (n+1,T ): artificial sink node

– AT : set of travelling arcs, i.e., arcs of the form ((i, t),(j, t+ tij)) for
(i, j) ∈ A and 0≤ t≤ T − tij

– AR: set of relocation arcs, same as the set of travelling arcs, but defined
separately in order to differentiate between the two cases where a vehicle
is being relocated by an operator, and where it is picked up by a user and
moved to a different location

– AW : set of waiting arcs, i.e., arcs of the form ((i, t),(i, t+ 1)) for
(i, t),(i, t+1) ∈N

– AD: set of dummy arcs, flow over which represents rejection of users

– AS : set of artificial arcs connecting the artificial source node (0,0) to the
nodes (i,0), and the nodes (i,T ) to the artificial sink node (n+1,T ), for
i ∈N .

• ca: the cost associated with an operator using the arc a ∈ AT ∪AR (pro-
portional to the travel time tij where i and j are the source and the target
locations of the arc a)

• pu: profit obtained if user u is served; penalty incurred if the user is rejected
(proportional to the travel time tij where i and j are the origin and the des-
tination of user u)

• ou,du: origin and destination locations of user u

• [eu, lu]: time window associated with user u (eu is the time index at which user
u makes a rental request, and lu = eu + tou,du + su, where su is the number of
time steps that the user is willing to wait)

• Au = Au
T ∪Au

W ∪Au
D, where Au

T ,Au
W ,Au

D are the sets of travelling, waiting,
and dummy arcs that can be used by user u, respectively, i.e.,
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– Au
T = {((ou, t),(du, t+ tou,du)) : t ∈ {eu, . . . , eu + su}}

– Au
W = {((ou, t),(ou, t+1)) : t∈ {eu, . . . , eu +su−1}}∪{((du, t),(du, t+1)) :

t ∈ {eu + tou,du , . . . , lu−1}}

– Au
D = {((ou, eu + su),(r∗,T ))}, where (r∗,T ) is a dummy node which ab-

sorbs the rejected user flow.

• Oi: number of operators initially available at location i ∈N

• Vi: number of vehicles initially available at location i ∈N

Decision Variables

xv
a =

1 if vehicle v uses arc a

0 otherwise
for a ∈ A,v ∈ V

yu
a =

1 if user u uses arc a

0 otherwise
for a ∈ A, u ∈ U

zo
a =

1 if operator o uses an arc a

0 otherwise
for a ∈ A, o ∈O

As indicated above, the time-space network contains T + 1 timed copies of each
location in the set N as well as the artificial source and sink nodes. Figure 3.1
depicts an example time-space network, which is defined by three locations and
T = 3 periods. All vehicle and operator paths originate from the (artificial) source
node and end at the (artificial) sink node using (artificial) black arcs. The travel
time between locations 1 and 2 is two time steps, whereas it takes one time step
and three time steps to travel between locations 2 and 3, and between locations 1
and 3, respectively. A unit flow per each rejected user request is sent to the dummy
node through the dummy arcs shown in blue. To make the example network simple,
we only show dummy arcs from the last timed copy of each location. However, in
our original network, we define dummy arcs from multiple timed copies of the origin
location of each user to the dummy node after reaching the maximum waiting time.
In order to represent activities of vehicles, operators, and users, different sets of arcs
(waiting (→), relocation (→), and travelling (99K) arcs) are defined.
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source

1
t= 0

1
t= 1

1
t= 2

1
t= 3
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sink2 2 2 2

dummy

22 2 2

3 3 3

Figure 3.1 An example of a time-space network

For a given node (i, t) ∈ N , we use δ−(i, t) to denote the set of all incoming arcs of
(i, t) and δ+(i, t) to denote the set of all outgoing arcs of (i, t). Finally, for a vector
α ∈R|S| and S′ ⊆ S, we let α(S′) = ∑

s∈S′ αs. The VR-O can then be formulated as
follows.

min
∑

a∈AR

∑
v∈V

cax
v
a +

∑
a∈AT

∑
o∈O

caz
o
a

−
∑

a∈AT

∑
u∈U

puy
u
a +

∑
a∈AD

∑
u∈U

puy
u
a (3.1)

s.t.xv(δ+(0,0)) = 1 v ∈ V (3.2)∑
v∈V

xv(δ−(i,0)) = Vi i ∈N (3.3)

xv(δ+(i, t))−xv(δ−(i, t)) = 0 i ∈N,t ∈ {0, . . . ,T},v ∈ V (3.4)

yu(δ+(ou, eu)) = 1 u ∈ U (3.5)

yu(δ−(du, lu))+yu(Au
D) = 1 u ∈ U (3.6)

yu(δ+(ou, t))−yu(δ−(ou, t)) = 0 t= eu +1, . . . , eu + su,u ∈ U (3.7)

yu(δ+(du, t))−yu(δ−(du, t)) = 0 t= eu + tou,du , . . . , lu−1,u ∈ U (3.8)

zo(δ+(0,0)) = 1 o ∈O (3.9)∑
o∈O

zo(δ−(i,0)) =Oi i ∈N (3.10)

zo(δ+(i, t))− zo(δ−(i, t)) = 0 i ∈N,t ∈ {0, . . . ,T},o ∈O (3.11)∑
o∈O

zo
a =

∑
v∈V

xv
a a ∈ AR (3.12)
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∑
u∈U

yu
a =

∑
v∈V

xv
a a ∈ AT (3.13)

∑
a∈AD

(
∑
v∈V

xv
a +

∑
o∈O

zo
a) = 0 (3.14)

∑
a∈A\Au

yu
a = 0 u ∈ U (3.15)

xv
a ∈ {0,1} a ∈ A,v ∈ V (3.16)

yu
a ∈ {0,1} a ∈ A,u ∈ U (3.17)

zo
a ∈ {0,1} a ∈ A,o ∈O (3.18)

The objective function (3.1) minimizes the relocation cost (incurred by fuel cost of
the relocated vehicles plus the travelling cost of operators) and the rejection penalty
(incurred by rejected requests) minus the reward gained from the satisfied requests.
Constraints (3.2) ensure that one unit of flow emanates from the artificial source
node for each vehicle. The vehicles are distributed to their initial locations in the
time-space network through the constraints (3.3). The flow conservation for the
vehicles is assured with the constraints (3.4). Constraints (3.5) ensure that the unit
flow associated with a given user u emanates from location ou at time eu, and is
eventually absorbed either by the node (du, lu) (if the user is served), or by the
dummy node (if the user is rejected) due to constraints (3.6). For every user, flow
balance equations at the user’s origin and destination locations are given by (3.7) and
(3.8), respectively. Operator flow constraints are imposed by the equations (3.9)–
(3.11), which are analogous to the vehicle flow constraints in (3.2)–(3.4). Constraints
(3.12) guarantee that the number of vehicles is equal to the number of operators
on each relocation arc since the vehicles cannot relocate themselves. Similarly, the
number of vehicles should be equal to the number of users on each travelling arc as
indicated by the constraints (3.13). As the dummy arcs can only carry (rejected)
user flow by definition, constraint (3.14) sets the total vehicle and operator flow
on these arcs equal to zero. Moreover, a given user u cannot have positive flow
on any arc that does not belong to the set Au due to constraints (3.15). Finally,
(3.16)–(3.18) specify the domain restrictions for the variables.

Solving the formulation (3.1)–(3.18) produces a path in the time-space network per
each vehicle, operator, and user. However, we assume that all vehicles and operators
are identical except possibly for their initial locations. Even considering different
initial locations, only the number of vehicles/operators available at a particular loca-
tion matters, not the individual vehicles/operators present at that location. Hence,
the VR-O can also be modeled and solved using aggregate vehicle and operator
flows, which leads to a formulation with a fewer variables and constraints. If one
needs to identify the paths corresponding to each vehicle and operator separately,
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the solution produced by the aggregate formulation can easily be decomposed into
individual vehicle and operator paths by solving (3.2)–(3.18) with additional con-
straints specifying the total vehicle and operator flow values.

Letting xa = ∑
v∈V x

v
a and za = ∑

o∈O z
o
a, we obtain the following integer program-

ming formulation for the VR-O:

min
∑

a∈AR
caxa +

∑
a∈AT

caza

−
∑

a∈AT

∑
u∈U

puy
u
a +

∑
a∈AD

∑
u∈U

puy
u
a (3.19)

s.t.x(δ+(0,0)) = |V | (3.20)

x(δ−(i,0)) = Vi i ∈N (3.21)

x(δ+(i, t))−x(δ−(i, t)) = 0 i ∈N,t ∈ {0, . . . ,T} (3.22)

yu(δ+(ou, eu)) = 1 u ∈ U (3.23)

yu(δ−(du, lu))+yu(Au
D) = 1 u ∈ U (3.24)

yu(δ+(ou, t))−yu(δ−(ou, t)) = 0 t= eu +1, . . . , eu + su,u ∈ U (3.25)

yu(δ+(du, t))−yu(δ−(du, t)) = 0 t= eu + tou,du , . . . , lu−1,u ∈ U (3.26)

z(δ+(0,0)) = |O| (3.27)

z(δ−(i,0)) =Oi i ∈N (3.28)

z(δ+(i, t))− z(δ−(i, t)) = 0 i ∈N,t ∈ {0, . . . ,T} (3.29)

za = xa a ∈ AR (3.30)∑
u∈U

yu
a = xa a ∈ AT (3.31)

∑
a∈AD

(xa + za) = 0 (3.32)

∑
a∈A\Au

yu
a = 0 u ∈ U (3.33)

xa ∈ Z+ a ∈ A (3.34)

yu
a ∈ {0,1} a ∈ A,u ∈ U (3.35)

za ∈ Z+ a ∈ A (3.36)
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3.2 The hybrid vehicle relocation problem (VR-H)

In the hybrid vehicle relocation problem, re-positioning tasks can be performed by
both the operators and the users. Suppose that we have the option to provide the
users with some discount in order to incentivize them to relocate the vehicles they
rent. We consider the following two options, which can be offered separately or
simultaneously:

• Offer an alternative pick-up location with 50% discount on the original rental
price

• Offer an alternative drop-off location with 50% discount on the original rental
price

The percentage discount can be altered according to the choice of the car-sharing
provider. For a given user, we restrict our attention only to appealing suggestions,
i.e., to the alternative pick-up/drop-off locations which are within a reasonable dis-
tance of the actual origin/destination of the user (offered locations must be reason-
ably close so that the user is willing to walk to/from those locations), and which do
not increase the total trip duration of the user. Therefore, we assume that a user
will accept the incentive (if offered any), and benefit from a discounted price. In
particular, when only one of the options is offered, the user receives a 50% discount
whereas when both options are offered, the user gets to rent a vehicle for free. Note
that, there may, and in most cases will, be multiple alternatives that can be offered
to a user. Due to our assumption that the users are willing to accept any alternative
(appealing) suggestion, and the fact that every incentive incurs a cost (reduction in
profit) for the rental company, it is important to determine which users should be
provided with an alternative trip suggestion, and which pick-up/drop-off location(s)
should be offered to those users as well as the timing of the suggested trip (defined
by the pick-up time of the vehicle).

To model user-based relocations on our time-expanded network, we introduce the
following (additional) notation and extend some of our existing definitions:

• τij : time it takes to walk from location i to location j (in terms of number of
time-steps)

• au
ij : binary parameter which indicates whether a trip from location i to location
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j is acceptable for user u or not. Mathematically, we let

au
ij =

1 if eu + τou,i + tij + τj,du ≤ lu
0 otherwise

i, j ∈N,u ∈ U

• Su = {(i, j) : au
ij = 1, τou,i + τj,du ≤ su}∪{(ou, r

∗)}: set of pick-up/drop-off lo-
cation pairs that can be offered to user u. Note that the pairs (i, j) with i= ou

and/or j = du are included in Su, and the pair (ou, r
∗) is added to Su to model

the case where the user is rejected service.

• Pu = i ∈N : (i, j) ∈ Su: set of possible pick-up locations for user u

• Du = i ∈N : (j, i) ∈ Su, i 6= r∗: set of possible drop-off locations for user u

• lptiu = lu−minj:(i,j)∈Su
{tij + τj,du}: latest possible pick-up time from location

i considering all possible drop-off locations for user u

• edtju = eu + mini:(i,j)∈Su,j 6=r∗{τou,i + tij}: earliest possible drop-off time at lo-
cation j considering all possible pick-up locations for user u

• pu
ij : profit obtained when the user is offered (i, j) ∈ Su as the pair of pick-up

and drop-off locations, in particular:

pu
ij =



pu if (i, j) = (ou,du)

−pu if (i, j) = (ou, r
∗)

0 if i 6= ou and j 6= du

0.5∗pu otherwise

for u ∈ U,(i, j) ∈ Su

• Au = Au
T ∪Au

W ∪Au
D, where Au

T ,Au
W ,Au

D are the sets of traveling, waiting,
and dummy arcs that can be used by user u, respectively, i.e.,

– Au
T = {((i, t),(j, t+ tij)) : (i, j) ∈ Su, j 6= r∗, t ∈ {eu + τou,i, . . . , lu− τj,du −

tij}}

– Au
W = {((i, t),(i, t+1)) : i∈Pu, t∈ {eu +τou,i, . . . , lpt

i
u−1}}∪{((j, t),(j, t+

1)) : j ∈Du, t ∈ {edtju, . . . , lu− τj,du−1}}

– Au
D = {((ou, eu + su),(r∗,T ))}, where (r∗,T ) is a dummy node which ab-

sorbs the rejected user flow.
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Decision Variables

xa = the number of vehicles on arc a for a ∈ A

za = the number of operators on arc a for a ∈ A

yu
a =

1 if user u uses arc a

0 otherwise
for a ∈ A, u ∈ U

wu
ij =

1 if pair (i, j) is selected for user u

0 otherwise
for u ∈ U , (i, j) ∈ Su

Below we present the hybrid vehicle relocation model, where users –in addition to the
operators– are also employed in vehicle relocation operations through fare discounts.

min
∑

a∈AR

caxa +
∑

a∈AT

caza−
∑
u∈U

∑
(i,j)∈Su

pu
ijw

u
ij (3.37)

s.t.x(δ+(0,0)) = |V | (3.38)

x(δ−(i,0)) = Vi i ∈N (3.39)

x(δ+(i, t))−x(δ−(i, t)) = 0 i ∈N,t ∈ {0, . . . ,T} (3.40)

yu(δ+(i,eu + τou,i)) =
∑

j:(i,j)∈Su

wu
ij i ∈ Pu,u ∈ U (3.41)

yu(δ−(j, lu− τj,du)) =
∑

i:(i,j)∈Su

wu
ij j ∈Du,u ∈ U (3.42)

yu(Au
D) = wu

ou,r∗ u ∈ U (3.43)

yu(δ+(i, t))−yu(δ−(i, t)) = 0
t= eu + τou,i +1, . . . , lptui

i∈ Pu,u ∈ U (3.44)

yu(δ+(j, t))−yu(δ−(j, t)) = 0
t= edtju, . . . , lu− τj,du −1

j∈Du,u ∈ U (3.45)∑
(i,j)∈Su

wu
ij = 1 u ∈ U (3.46)

z(δ+(0,0)) = |O| (3.47)

z(δ−(i,0)) =Oi i ∈N (3.48)

z(δ+(i, t))−z(δ−(i, t)) = 0 i ∈N,t ∈ {0, . . . ,T} (3.49)

za = xa a ∈ AR (3.50)∑
u∈U

yu
a = xa a ∈ AT (3.51)

∑
a∈AD

(xa +za) = 0 (3.52)

∑
a∈A\Au

yu
a = 0 u ∈ U (3.53)

∑
a∈Au

T

yu
a ≤ 1 u ∈ U (3.54)

xa ∈ Z+ a ∈ A (3.55)
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yu
a ∈ {0,1} a ∈ A,u ∈ U (3.56)

za ∈ Z+ a ∈ A (3.57)

wu
ij ∈ {0,1} u ∈ U,(i, j) ∈ Su (3.58)

The objective function (3.37) aims to minimize the cost incurred (1) by operators
traveling and relocating vehicles, and (2) by discounts offered to users. Constraints
(3.38) guarantee that all vehicle flow originates from the artificial source node. The
initial vehicle distribution across the network is defined by the constraints (3.39).
Vehicle flow conservation constraints are given by (3.40). Constraints (3.47)–(3.49)
serve the same purpose for operators. Constraints (3.41) ensure that for each user,
the corresponding path in the time-space network starts from the node defined by
the pick-up location offered to the user and the earliest time at which the user is
ready to pick up a vehicle at that location –considering the walking time if the
suggested pick-up location is different from the user’s origin. Due to (3.42), the
user’s path in the time-space network should end at the node defined by the drop-
off location offered to the user and the latest time by which the user arrives at that
location –considering the walking time if the suggested drop-off location is different
from the user’s destination. Constraints (3.43) indicate that if a user is rejected
service, then the unit flow associated with the user is sent to the dummy node. For
every user, flow conservation constraints considering all candidate pick-up and drop-
off locations and times are given by the equations (3.44) and (3.45). Constraints
(3.46) assure that only one pair of origin-destination locations, among all candidates,
should be offered to each user. Constraints (3.50) and (3.51) equate the number of
vehicles with the number of operators on each relocation arc, and the number of
vehicles with the number of users on each travelling arc, respectively. Constraint
(3.52) sets the vehicle and operator flow equal to zero on dummy arcs. Moreover,
a given user u cannot have positive flow on any arc that does not belong to the set
Au due to constraints (3.53). Constraints (3.54) guarantee that each user should
use at most one travelling arc. Finally, (3.55)–(3.58) impose domain restrictions on
the variables.

Using the formulations presented in this chapter, we perform computational ex-
periments to analyse the operational efficiency of free-floating car-sharing systems
through several performance metrics. The results of our experiments are provided
in the next chapter.
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4. COMPUTATIONAL EXPERIMENTS

This chapter presents the results of our computational experiments, which have been
conducted to (1) investigate the operational efficacy of a free-floating car-sharing
system under two vehicle relocation strategies, assuming a deterministic problem
framework, and (2) assess the benefits of crowdsourcing (part of) the relocation
tasks by means of incentivizing users. To this end, we employ the mathematical
formulations developed in the previous chapter.

4.1 Generation of test instances

We generated new test instances to use in our experiments due to the lack of bench-
mark instances in the literature –most of the existing studies focusing on vehicle re-
location problems perform tests using real data gathered from car-sharing providers
in the industry and such data sets are not made publicly available due to confiden-
tiality issues.

Three sets of instances have been generated, differing based on the geographical
distribution of the locations representing the service network: uniform (U),
clustered (C), and a combination of uniform and clustered (UC) instances. In
what follows, our instance generation scheme is described in detail along with our
parameter choices.
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4.1.1 Locations and travel times

For each instance used in our computational study, the service region is represented
by a network consisting of 50 randomly selected points inside the two-dimensional
box defined by −20 ≤ x ≤ 20 and −20 ≤ y ≤ 20. In uniform instances, these 50
locations are uniform randomly distributed across the two-dimensional box, whereas
in clustered instances, they are selected in a way that they form five non-overlapping
clusters, each being a subset of the box. In combined instances, some locations are
selected in a way to form clusters while the others are uniform randomly distributed.
The generated locations for each instance can be found in the Figure 4.1.
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(c) Locations in combined
instances

Figure 4.1 The Generated Locations

Based on these locations, pairwise Euclidean distances are computed first. Assuming
that the travel time and cost are directly proportional to the distance traveled, the
distance values are also regarded as the travel times (in minutes) and the travel costs
between locations. In all experiments, a planning horizon of two hours is considered,
and it is discretized into 12 equal time steps of 10 minutes when constructing the
time-space network. Travel times are converted into time steps so that they are
represented properly in the time-space network. In particular, to obtain the number
of time steps needed to travel from one location to another in the time-space net-
work, the corresponding travel time is divided by the length of a time step, i.e., 10
minutes, and rounded up. As a consequence, some travel times, and therefore, costs
of the solutions to VR-O or VR-H may be overestimated, but will never be under-
estimated. Hence, it is important to note here that solving the models (3.19)–(3.36)
and (3.37)–(3.57) on the time-space network constructed with the aforementioned
time discretization scheme will provide upper bounds on the true optimal values.
One can increase the time granularity of the network through a finer discretization
in order to get closer to optimal solutions at the expense of having to solve the prob-
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lems on significantly larger networks. The steps of the procedure used for generating
the locations and calculating the travel times between different locations (in terms
of time steps) are outlined in Algorithm 1.

Algorithm 1 Location Generation & Travel Time Calculation
1: Given: a two-dimensional box, geography (geo), number of locations (n), time

step size (t)
2: locations= ∅
3: Initialize travel_times and travel_time_steps to be empty dictionaries
4: for i= 1,2, . . . ,n do
5: Randomly generate a location loci (a pair of coordinates) within the two-

dimensional box w.r.t. the given geography geo (U, C, or UC)
6: locations← locations∪{loci}
7: end for
8: for i= 1,2, . . . ,n do
9: for j = 1,2, . . . ,n do
10: Initialize distij to be the Euclidean distance between loci and locj
11: travel_times← travel_times∪ ((i, j)→ distij)
12: travel_time_steps← travel_time_steps∪ ((i, j)→ ddistij/te)
13: end for
14: end for
15: return locations, travel_times, travel_time_steps
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4.1.2 User requests

A user request is characterized by a pair of origin-destination locations, arrival time
of the request (specified in terms of time index), and the number of time steps that
the user is willing to wait for picking up a vehicle after making the rental request. For
each user, an origin-destination pair is randomly selected from the set of 50 locations
generated earlier to represent the service network such that the travel time between
the selected locations is at least 10 minutes. The motivation behind this restriction
is that rentals of shorter duration are expected to take place relatively less frequently
(given the fact that a vehicle may not be available for pick up immediately and that
it may be faster for a user to just use other means of transport instead of waiting
for a vehicle only to make a short trip). However, it should be noted here that
the travel time between an origin-destination pair does not necessarily indicate the
rental duration since a user might make a detour, or drive to a distant location,
and then come back to the starting point (or to a nearby location) to drop off the
vehicle. We do not account for such cases due to the way in which the time-space
network is constructed although it can easily be modified to do so. In particular,
varying rental durations for a given origin-destination pair can be incorporated into
our modeling framework by introducing additional arcs to the time-space network
corresponding to different rental durations. Moreover, if the origin is the same as the
destination for some users, copies of the nodes associated with those locations can
be created. For the sake of simplicity, we impose a minimum travel time restriction
of 10 minutes when generating our instances.

According to a survey conducted by Herrmann et al. (2014) with a number of users
of a free-floating car-sharing system, around 95% of the participants stated that they
are willing to wait for up to half an hour to pick up a vehicle. Hence, we assume that
users will tolerate waiting for a maximum of three time steps. Considering that this
tolerance level will also depend on the planned rental durations of users, the number
of time steps that a user can be kept waiting at her origin location is adjusted based
on the travel time between the origin and destination locations of that user. More
specifically, it is presumed that each user will tolerate a waiting time of no more
than the minimum of the travel time between her origin and destination, and three
time steps. This means, if the user’s travel time is less than three time steps, the
allowable waiting time of the user is set to her travel time; otherwise, it is set to
three time steps. Request arrival times of users are taken to be randomly generated
integers within the planning horizon of 12 time steps, indicating, for each user, the
time index at which a rental request is made. For example, if the request arrival
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time of a user is two, it means that the user’s request is assumed to be received at
the end of the second time step. For a given user u, the request arrival time eu is
generated in a way to ensure that the closing of the time window lu does not exceed
T (which is 12 in our experiments) so that there is a chance to serve the user within
the planning horizon based on the availability of vehicles close to the user’s origin.

The steps of the procedure used for generating the parameters related to user re-
quests are provided in Algorithm 2.

Algorithm 2 Generation of Parameters for User Requests
1: Given : output of Algorithm 1 (locations, travel_times, travel_time_steps), number of users

(users)
2: Initialize OD_pairs, waiting_time_steps, and arrival_times to be empty dictionaries
3: for u= 1,2, . . . ,users do
4: do
5: Randomly select two distinct locations i and j from locations

6: while travel_times[i, j]< 10
7: ou← i, du← j

8: OD_pairs←OD_pairs∪ (u→ (ou,du))
9: waiting_time_steps← waiting_time_steps∪ (u→min{3, travel_time_steps[ou,du]})
10: Randomly generate an integer k between 0 and T − travel_time_steps[ou,du] −

waiting_time_steps[u]
11: arrival_times← arrival_times∪ (u→ k)
12: end for
13: return OD_pairs,waiting_time_steps,arrival_times

4.1.3 Starting locations of vehicles and operators

Positions of the vehicles at the beginning of the planning horizon are chosen ran-
domly from among a subset of the 50 locations defining the service network, par-
ticularly, among the locations that lie inside the circle with a radius of 10 units
centered at the origin (0,0). If no such locations exist, we increment the radius of
the circle by one unit and repeat the same steps until at least four distinct locations
are identified.

We limit our selection of the initial operator locations to four randomly chosen
points among the very same subset of locations defined above (i.e., the ones that
coincide with the circle of radius 10, centered at the origin). For each operator, a
starting location is then designated by randomly selecting one of these four points.
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The procedure used for generating the starting locations of vehicles and operators
is presented in Algorithm 3.

Algorithm 3 Starting Locations of Vehicles and Operators
1: Given : locations returned by Algorithm 1, number of vehicles (v), number of operators (o),

radius(r)
2: Initialize st_loc,st_loc_v,st_loc_o,base_o to be empty lists
3: while the length of st_loc is less than 4 do
4: for i in locations do
5: if i lies inside the circle with a radius of r centered at the origin (0,0) and i is not in
st_loc then

6: st_loc← st_loc∪{i}
7: end if
8: end for
9: r← r+1
10: end while
11: st_loc_v ← Randomly choose a location v times from st_loc with replacement
12: base_o ← Randomly choose four locations from st_loc without replacement
13: st_loc_o ← Randomly choose a location o times from base_o with replacement
14: return st_loc, st_loc_v, base_o, st_loc_o

4.2 Experimental setup and results

This section presents the results of our computational experiments performed by
solving the mathematical formulations developed for VR-O and VR-H in Chap-
ter 3. The models were implemented using the Gurobi Python interface, and the
procedures used for generating test instances were also implemented in Python pro-
gramming language. All computational experiments were carried out on a 64-bit
machine with Intel Xeon E5-2640 v3 processor at 2.60 GHz using 12.4 GB of RAM,
and executed in single thread mode. Run time is measured in seconds. As mentioned
earlier, three sets of instances (i.e., uniform (U), clustered (C), and a combination
of uniform and clustered (UC)) were generated using the methods described in the
previous section.

Each test set contains small, medium and large instances with varying numbers of
users, vehicles, and operators. The numbers of vehicles and operators are adjusted
based on the number of users. For each instance class (U, C, or UC), Table 4.1
demonstrates the numbers of vehicles and operators considered for different num-
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bers of users. Every combination (of the number of vehicles and the number of
operators) in each row corresponds to an instance configuration, e.g., there are 15
configurations with 10 users for a given instance class. Moreover, we generate five
different versions of each instance configuration by varying the user-related param-
eters (OD pairs, request arrival times, and allowable waiting times), which makes
a total of 75 instances involving 10 users, per instance class. We grouped the in-
stances with 10, 15, or 20 users as small-size instances, those with 30, 40, or 50
users as medium-size instances, and the others (with 75 and 100 users) as large-size
instances. Considering all three test sets, a total of 1800 instances were used in
our experiments. Both formulations (3.19)-(3.36) and (3.37)–(3.57) were solved for
these 1800 instances.

Since users may be offered alternative pick-up and/or drop-off locations in the hybrid
vehicle relocation model, we also need an estimate of the time it takes for users to
walk (or travel by other means of transport such as biking etc.) from one location
to another. We compute the time it takes for a user to travel from her actual origin
to the suggested pick-up location, or from the suggested drop-off location to her
actual destination, without a vehicle of the car-sharing provider, by multiplying
the distance traveled with four, and then dividing the resulting number by 10 and
rounding up to obtain its time-step equivalent.

# of users # of vehicles # of operators
10 2, 3, 4, 5, 10 1, 2, 3
15 2, 3, 4, 5, 10, 15 1, 2, 3
20 2, 3, 4, 5, 10, 15, 20 1, 2, 3
30 5, 10, 15, 20 3, 5, 7
40 5, 10, 15, 20 3, 5, 7
50 5, 10, 15, 20 3, 5, 7
75 10, 20, 30, 40, 50 5, 10, 15
100 10, 20, 30, 40, 50 5, 10, 15

Table 4.1 Parameters for the number of users, vehicles, and operators

Gurobi is capable of solving all instances to optimality within a reasonable amount
of time under the above settings. For each instance and relocation model, we report
the run time as well as several statistics used as performance indicators to measure
the operational efficiency under a given relocation strategy, i.e., the objective value,
vehicle and operator utilization, the number of rejected users, and in the case of the
hybrid relocation model, statistics regarding origin/destination changes for users.
The vehicle and operator utilization values are calculated using equations 4.1 and
4.2, i.e., by taking the ratio of the total time spent by the vehicles traveling (with
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users) to the total time spent by the vehicles, and the ratio of the total time spent
by the operators relocating the vehicles to the total time spent by the operators,
respectively.

Vehicle Utilization = Total travel time of (all) vehicles
The number of vehicles × The length of planning horizon (4.1)

Operator Utilization = Total relocation time of (all) operators
The number of operators × The length of planning horizon (4.2)

Moreover, for the hybrid relocation model, changes in pick-up/drop-off locations of
users are also examined by partitioning the users into four categories as follows:

• users that are offered a pick-up location different from their origin

• users that are offered a drop-off location different from their destination

• users that are offered a pick-up location different from their origin, and a
drop-off location different from their destination

• users that are offered their origin and destination as pick-up and drop-off
locations

The number of users in each of these four categories is calculated according to the
wu

ij values and reported in order to demonstrate users’ contribution to relocation
operations.

Our results for the instance class U are summarized in Tables 4.3–4.8, and the
abbreviations used when presenting the results are listed in Table 4.2. As mentioned
earlier, we experimented with five versions of each instance configuration obtained
by changing the set of users while keeping everything else (the service network and
the starting locations of vehicles and operators) constant. We report the results
averaged out over these five instances for a particular configuration.

In addition, we create scatter plots to better illustrate how the performance indica-
tors behave when parameter values are varied. Because we observe similar trends
for instance classes U, C, and UC in general, we only provide the plots for the
instance class U. Note that to be able to evaluate the impact of increasing the
number of users/vehicles/operators on system performance, we keep the existing
users/vehicles/operators as is and introduce new ones on top of those when gen-
erating our instances. For each version of a given instance configuration, we can
say that smaller instances are derived from larger ones by omitting a subset of the
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users/vehicles/operators.

We discuss our findings based on the results of our computations on the uniform in-
stance set in the following subsections. Similar conclusions are drawn from the tests
with other instance sets (see Appendix A for detailed results) regarding the behavior
of the performance indicators with changes in parameter values and relocation strat-
egy. If we make a comparison based on the network geography, both models yield
superior results on clustered instances among others in terms of the objective value
and the number of rejected users. This can be explained by shorter travel times
between the location pairs belonging to the same cluster, making it easier for users
and operators to access the vehicles positioned inside their cluster. Hence, cluster-
ing user requests and positioning resources (vehicles and operators) accordingly may
improve the overall performance of free-floating car-sharing systems.

Notation Definition
# of V/O/U The number of vehicles/operators/users
OV Objective value
T(s) Run time (in seconds)
VU Vehicle utilization
OU Operator utilization
#RU The number of rejected users
OC The number of users with a pick-up location different from their origin
DC The number of users with a drop-off location different from their desti-

nation
ODC The number of users with a pick-up location different from their origin

and a drop-off location different from their destination
NC The number of users with a pick-up location same as their origin and a

drop-off location same as their destination

Table 4.2 Abbreviations used in the tables
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# of V/O/U OV T(s) VU OU #RU
2/1/10 158.21 142.7 0.31 0.21 6.8
2/2/10 126.51 60.46 0.37 0.16 6
2/3/10 121.32 54.65 0.39 0.11 5.8
3/1/10 142.57 191.12 0.22 0.19 6.6
3/2/10 81.3 71.11 0.34 0.21 4.8
3/3/10 53.59 71.44 0.36 0.14 4.4
4/1/10 123.59 191.12 0.19 0.21 6.2
4/2/10 42.67 88.7 0.29 0.21 4.2
4/3/10 13.18 82.75 0.33 0.17 3.2
5/1/10 102.01 189.74 0.16 0.17 6
5/2/10 12.9 65.75 0.25 0.19 3.6
5/3/10 -24.34 79.21 0.28 0.16 2.8
10/1/10 83.91 315.73 0.08 0.19 5.8
10/2/10 -6.75 66.51 0.13 0.19 3.4
10/3/10 -46.88 41.63 0.15 0.18 2.2

2/1/15 254.34 166.59 0.37 0.17 11.2
2/2/15 231.92 64.57 0.41 0.12 10.8
2/3/15 226.07 56.14 0.43 0.09 10.4
3/1/15 234.41 219.3 0.28 0.2 10.8
3/2/15 172.7 76.41 0.39 0.19 9
3/3/15 147.2 67.86 0.42 0.16 8.6
4/1/15 214.13 225 0.23 0.26 10.6
4/2/15 117.13 83.39 0.35 0.23 7.6
4/3/15 83.59 84.63 0.39 0.18 7
5/1/15 180.66 221.74 0.2 0.24 9.8
5/2/15 63.38 77.93 0.31 0.22 7
5/3/15 23.47 81.82 0.36 0.21 5.8
10/1/15 110.2 350.09 0.12 0.22 8.8
10/2/15 7.21 66.17 0.17 0.21 6
10/3/15 -64.3 48.31 0.21 0.21 4.2
15/1/15 105.5 362.83 0.08 0.22 8.8
15/2/15 -0.27 70.43 0.11 0.21 6
15/3/15 -72.14 41.63 0.14 0.22 4

2/1/20 377.3 192.81 0.39 0.17 15.8
2/2/20 355.76 69.58 0.42 0.12 15.4
2/3/20 351.53 57.75 0.42 0.07 15.2
3/1/20 344.37 261.47 0.3 0.22 15.2
3/2/20 283.52 68.81 0.4 0.16 13.4
3/3/20 263.11 72.48 0.42 0.12 13
4/1/20 321.98 249.48 0.25 0.23 15.2
4/2/20 206.62 83.33 0.38 0.21 12.2
4/3/20 177.25 79.87 0.41 0.17 11.4
5/1/20 265.06 266.06 0.23 0.25 14
5/2/20 151.72 80.23 0.34 0.21 11
5/3/20 107.39 85.33 0.39 0.19 9.8
10/1/20 142.89 402.99 0.16 0.23 11.8
10/2/20 27.98 52.83 0.21 0.23 8.8
10/3/20 -58.23 39.11 0.26 0.24 6.4
15/1/20 128 425.73 0.11 0.24 11.4
15/2/20 10 48.44 0.14 0.23 8.8
15/3/20 -77.92 44.41 0.17 0.24 6
20/1/20 128 408.57 0.08 0.24 11.4
20/2/20 -2.9 50.07 0.11 0.24 8.2
20/3/20 -88.22 46.39 0.13 0.23 6

Table 4.3 Results of operator-based relocation problem for small-size instances in
the instance class U
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# of V/O/U OV T(s) VU OU #RU
5/3/30 307.79 115.17 0.45 0.17 18.6
5/5/30 267.6 394.11 0.49 0.12 18
5/7/30 258.17 524.93 0.49 0.09 18.2
10/3/30 60.75 74.13 0.32 0.24 13.4
10/5/30 -90.6 263.44 0.39 0.21 9.4
10/7/30 -141.62 381.17 0.41 0.16 8.8
15/3/30 29.28 44.19 0.22 0.24 13
15/5/30 -154.06 270.72 0.28 0.22 8.2
15/7/30 -257.91 418.74 0.31 0.21 5
20/3/30 10.47 53.66 0.16 0.23 13
20/5/30 -194.95 51.94 0.22 0.23 7.2
20/7/30 -331.64 306.32 0.25 0.21 4.2

5/3/40 512.65 113.04 0.51 0.15 26.8
5/5/40 482.2 436.91 0.53 0.11 26.4
5/7/40 477.2 541.66 0.53 0.08 26.4
10/3/40 159 53.03 0.38 0.22 19.8
10/5/40 30.03 256.39 0.45 0.2 16.4
10/7/40 -16 406.08 0.47 0.16 15.8
15/3/40 95.25 62.8 0.27 0.22 18.8
15/5/40 -119.35 258.5 0.34 0.23 13.6
15/7/40 -237.3 421.65 0.38 0.21 10.4
20/3/40 86.06 36.22 0.21 0.23 18.8
20/5/40 -165.81 82.38 0.26 0.24 12.6
20/7/40 -345.92 355.64 0.3 0.22 8.6

5/3/50 728.04 97.72 0.56 0.15 35.6
5/5/50 682.21 443.58 0.58 0.09 35.2
5/7/50 676.75 576.54 0.58 0.06 35.2
10/3/50 277.53 57.82 0.44 0.2 26.8
10/5/50 149 257.37 0.5 0.17 23.6
10/7/50 113.69 401.45 0.52 0.14 23.4
15/3/50 183.28 63.76 0.31 0.22 25
15/5/50 -80.7 245.6 0.39 0.23 18.8
15/7/50 -218.37 432.48 0.43 0.2 15.8
20/3/50 157.09 67.62 0.24 0.21 24.8
20/5/50 -150.94 80.48 0.31 0.22 18
20/7/50 -375.37 369.18 0.35 0.22 12.8

Table 4.4 Results of operator-based relocation problem for medium-size instances
in the instance class U
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# of V/O/U OV T(s) VU OU #RU
10/5/75 648.09 263.24 0.55 0.14 45.2
10/10/75 619.47 191.61 0.56 0.08 44
10/15/75 614.64 154.31 0.57 0.06 44.4
20/5/75 -7.71 87.02 0.4 0.22 31.6
20/10/75 -403.93 395.49 0.48 0.17 23.4
20/15/75 -504.11 321.52 0.5 0.13 21.8
30/5/75 -240 323.27 0.29 0.23 27.6
30/10/75 -788.24 425.95 0.38 0.23 15.2
30/15/75 -1004 394.85 0.4 0.18 10
40/5/75 -364.92 85.18 0.23 0.25 25.6
40/10/75 -917.78 291.13 0.29 0.23 12.8
40/15/75 -1108.21 246.53 0.31 0.18 8.4
50/5/75 -393.39 88.16 0.19 0.24 25.4
50/10/75 -949.53 264.87 0.24 0.23 12.2
50/15/75 -1143.74 245.48 0.25 0.18 7.4

10/5/100 1215.97 274.09 0.6 0.12 68.4
10/10/100 1201.44 207.47 0.6 0.07 68.4
10/15/100 1197.57 157.79 0.6 0.04 68.4
20/5/100 281.01 108.47 0.47 0.2 49.2
20/10/100 -21.7 421.92 0.53 0.16 42.8
20/15/100 -79.25 327.48 0.55 0.11 41.2
30/5/100 -121.67 404.00 0.36 0.24 41.2
30/10/100 -770.8 522.15 0.45 0.21 27
30/15/100 -1007.65 436.92 0.49 0.17 22.8
40/5/100 -296.97 103.17 0.29 0.26 38
40/10/100 -1013.18 315.32 0.36 0.22 22.6
40/15/100 -1367.77 278.97 0.4 0.21 14
50/5/100 -348.02 90.81 0.23 0.25 37.2
50/10/100 -1098.27 308.07 0.3 0.25 21
50/15/100 -1449.66 254.30 0.33 0.21 12.8

Table 4.5 Results of operator-based relocation problem for large-size instances in
the instance class U
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# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
2/1/10 118.28 140.33 0.4 0.18 5.8 1.2 0.6 0 2.4
2/2/10 89.47 54.62 0.49 0.14 4.8 1 1.8 0 2.4
2/3/10 85.34 50.26 0.49 0.1 4.8 1 1.6 0 2.6
3/1/10 92.13 192.93 0.3 0.19 5.6 1.2 0.8 0 2.4
3/2/10 42.38 69.45 0.4 0.18 4.2 1.2 1 0 3.6
3/3/10 28.82 77.37 0.44 0.16 3 1.2 1.6 0 4.2
4/1/10 60.94 212.18 0.27 0.26 4.6 1.6 0.8 0 3
4/2/10 1.61 73 0.34 0.19 3 1.4 1.4 0 4.2
4/3/10 -22.23 66.48 0.38 0.15 2.2 2 1.6 0 4.2
5/1/10 33.84 218.48 0.24 0.28 3.6 2.4 1.2 0 2.8
5/2/10 -32.46 77.86 0.3 0.21 2.4 1.6 1.2 0 4.8
5/3/10 -58.9 59.61 0.32 0.17 1.8 1 1.2 0 6
10/1/10 18.87 282.29 0.12 0.3 3.6 2 1 0 3.4
10/2/10 -55.41 60.24 0.16 0.24 1.8 1.6 0.8 0 5.8
10/3/10 -82.7 49.17 0.17 0.18 1.2 1.6 0.8 0 6.4
2/1/15 217.34 176.27 0.45 0.15 10.2 1.4 1 0 2.4
2/2/15 201.52 62.51 0.53 0.13 9.6 1.4 1.2 0 2.8
2/3/15 195.97 56.85 0.52 0.09 9.6 1.2 1.2 0 3
3/1/15 162.53 246.19 0.39 0.19 9.2 1.6 1 0 3.2
3/2/15 125.97 70.08 0.44 0.15 8 1.4 1.4 0 4.2
3/3/15 111.48 64.98 0.47 0.11 7.6 1.4 1.6 0 4.4
4/1/15 117.37 234.85 0.34 0.2 8 2.2 1.2 0 3.6
4/2/15 57.62 94.98 0.42 0.17 6.2 1.6 2 0 5.2
4/3/15 35.02 69.57 0.45 0.15 5.6 1.8 2.8 0 4.8
5/1/15 68.26 236.14 0.31 0.23 6.8 2.6 1.6 0 4
5/2/15 3.32 82.25 0.38 0.23 5 1.6 2 0 6.4
5/3/15 -35.51 62.48 0.41 0.19 4 2.2 1.6 0 7.2
10/1/15 -6.65 359.58 0.18 0.23 5.4 2.8 1 0 5.8
10/2/15 -86.64 58.9 0.22 0.26 3.2 2.4 1.6 0 7.8
10/3/15 -130.88 43.41 0.24 0.22 2.4 1.4 1.8 0 9.4
15/1/15 -7.81 370.16 0.12 0.24 5.6 3 0.6 0 5.8
15/2/15 -91.23 56.76 0.15 0.26 3.2 2 1.8 0 8
15/3/15 -140.8 38.24 0.16 0.21 2 2 1.6 0 9.4
2/1/20 344.92 189.49 0.46 0.17 15 1.2 1 0 2.8
2/2/20 318.68 65.95 0.52 0.1 14 1.8 1.8 0 2.4
2/3/20 315.38 61.54 0.53 0.08 14 1.2 2.2 0 2.6
3/1/20 275.72 274.04 0.4 0.17 13.2 1.8 1.8 0 3.2
3/2/20 234.88 81.23 0.48 0.14 12.2 1.6 1.8 0.2 4.2
3/3/20 220.45 70.52 0.52 0.11 11.6 2 3 0.2 3.2
4/1/20 189.21 259.4 0.39 0.19 11.6 2.8 1.8 0 3.8
4/2/20 130.43 75.14 0.47 0.17 10.2 1.2 2.4 0.2 6
4/3/20 100.32 72.63 0.51 0.13 9 2.2 3.6 0.2 5
5/1/20 122.23 283.76 0.37 0.26 9.4 3.8 2.2 0.2 4.4
5/2/20 49.16 70.58 0.43 0.18 8.2 2 2.8 0.4 6.6
5/3/20 19.41 69.48 0.46 0.16 7.4 2.6 2 0.4 7.6
10/1/20 -14.79 414.07 0.23 0.25 7 3.4 3 0.2 6.4
10/2/20 -106.33 80.02 0.28 0.25 4.8 4 2.6 0 8.6
10/3/20 -168.4 82.41 0.31 0.23 3.2 3.6 3.2 0 10
15/1/20 -35.98 388.74 0.16 0.21 7 3.2 2.2 0.6 7
15/2/20 -121.98 69.35 0.19 0.23 4.6 4 2.2 0 9.2
15/3/20 -186 44.56 0.21 0.22 3 4 2.8 0 10.2
20/1/20 -43.27 378.01 0.12 0.21 6.8 2.8 2.4 0.6 7.4
20/2/20 -130.82 35.28 0.14 0.22 4.6 3 2.2 0.2 10
20/3/20 -197.8 57.14 0.16 0.22 2.8 3.6 2.4 0.2 11

Table 4.6 Results of hybrid relocation problem for small-size instances in the
instance class U
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# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
5/3/30 199.13 78.76 0.55 0.14 14.8 3.6 3.6 0.4 7.6
5/5/30 149.87 401.53 0.59 0.1 14.2 2.8 3.4 0.6 9
5/7/30 140.66 555.02 0.59 0.07 14.2 2.8 3.6 0.6 8.8
10/3/30 -128.98 84.16 0.41 0.22 7.4 5.2 4.8 0 12.6
10/5/30 -231.57 229.57 0.46 0.18 5 5.8 5.4 0.2 13.6
10/7/30 -267.05 383.46 0.48 0.15 4.4 5.2 5 0.2 15.2
15/3/30 -178.23 79.71 0.29 0.24 6.4 6.6 4.2 0 12.8
15/5/30 -309.02 253.37 0.34 0.21 3.2 5.4 4.8 0 16.6
15/7/30 -353.94 410.25 0.34 0.19 2.6 2.8 4.2 0 20.4
20/3/30 -199.98 83.82 0.22 0.25 6 5.4 5 0 13.6
20/5/30 -343.94 90.91 0.25 0.21 2.8 5.2 4.2 0 17.8
20/7/30 -433.22 277.57 0.27 0.18 1.8 3.2 3.8 0 21.2
5/3/40 392.99 108.68 0.61 0.14 23 3.8 4.8 0.4 8
5/5/40 366.09 399.45 0.62 0.09 22 4.8 5 0.6 7.6
5/7/40 360.62 535.34 0.62 0.07 22 4.6 5.2 0.6 7.6
10/3/40 -77.81 77.1 0.5 0.2 13 6.2 7.2 0.2 13.4
10/5/40 -167.91 223.09 0.55 0.18 10.6 7.2 7 0.2 15
10/7/40 -191.46 380.6 0.55 0.13 10.6 6.4 6.8 0.4 15.8
15/3/40 -217.08 92.66 0.37 0.24 10 7.6 6.8 0.2 15.4
15/5/40 -362.92 251.53 0.42 0.22 6.4 7.8 6.2 0.2 19.4
15/7/40 -432.37 393.34 0.44 0.18 5.2 6.6 6.4 0.2 21.6
20/3/40 -245.65 74.86 0.28 0.23 9.8 7.2 6.6 0.2 16.2
20/5/40 -421.1 98.98 0.33 0.24 5.2 7.4 6.2 0.2 21
20/7/40 -544.03 293.42 0.35 0.21 3 6.4 5.4 0.2 25
5/3/50 596.36 116.29 0.64 0.09 31.4 4.4 4.6 0.4 9.2
5/5/50 571.33 414.12 0.65 0.06 31 4.6 4.6 0.4 9.4
5/7/50 567.6 552.48 0.65 0.05 30.4 5.4 4.8 0.4 9
10/3/50 7.79 100.09 0.57 0.19 18.4 8.4 8 0.4 14.8
10/5/50 -72.31 244.78 0.6 0.14 16.6 8.4 8.4 0.6 16
10/7/50 -84.61 409.44 0.61 0.11 16.4 8 8.4 0.6 16.6
15/3/50 -229.73 114.99 0.44 0.24 13.8 7.6 9 0.8 18.8
15/5/50 -376.97 246.09 0.49 0.21 10.2 7.8 8.8 1 22.2
15/7/50 -440.03 387.32 0.51 0.19 9 8.2 7.4 0.6 24.8
20/3/50 -281.05 120.32 0.34 0.23 12.8 10 7 0.8 19.4
20/5/50 -486.54 108.51 0.39 0.24 8 8.2 7.8 0.8 25.2
20/7/50 -637.98 301.45 0.42 0.22 5.2 8 6.8 0.4 29.6

Table 4.7 Results of hybrid relocation problem for medium-size instances in the
instance class U
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# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
10/5/75 388.11 270.58 0.65 0.1 36.4 9 8.6 0.6 20.4
10/10/75 380.16 237.65 0.65 0.05 36.4 9.2 8.8 0.6 20
10/15/75 378.11 224.98 0.65 0.03 36.8 8.8 8.4 0.6 20.4
20/5/75 -491.76 190.68 0.52 0.22 17.8 16.4 10.6 0.6 29.6
20/10/75 -730.17 477.61 0.56 0.15 13.4 13.6 11.2 0.2 36.6
20/15/75 -783.48 392.17 0.57 0.11 12.4 13.2 11.4 0.4 37.6
30/5/75 -788.57 354.94 0.39 0.25 12.6 15.6 11.6 0.4 34.8
30/10/75 -1147.4 454.67 0.43 0.21 5.6 11.2 8.8 0.2 49.2
30/15/75 -1278.74 358.70 0.45 0.17 3.4 8.6 7.6 0.4 55
40/5/75 -884.97 135.27 0.3 0.26 10.8 14.6 12.8 0.4 36.4
40/10/75 -1235.9 276.05 0.33 0.21 4.6 10.2 9.4 0.2 50.6
40/15/75 -1365.02 240.29 0.34 0.17 2.8 6.6 7.2 0 58.4
50/5/75 -899.43 135.52 0.24 0.26 10.4 14.6 12.6 0.4 37
50/10/75 -1265.97 263.63 0.27 0.22 3.8 11.6 8.6 0.2 50.8
50/15/75 -1393.21 231.34 0.27 0.16 2.8 6 7.4 0 58.8
10/5/100 942.56 296.26 0.69 0.06 58.4 10.6 11.6 0.4 19
10/10/100 939.05 273.09 0.69 0.03 58.2 10.6 11.2 0.6 19.4
10/15/100 937.73 276.06 0.69 0.02 58.2 10.4 11.4 0.6 19.4
20/5/100 -280.19 221.51 0.6 0.16 32.8 17.4 14.6 0.6 34.6
20/10/100 -440.12 510.63 0.63 0.11 30.4 15.4 16.6 0.4 37.2
20/15/100 -472.49 434.27 0.63 0.08 29.2 15 16.8 0.6 38.4
30/5/100 -931.82 450.28 0.49 0.23 19.6 22.2 15.6 0.4 42.2
30/10/100 -1279.76 565.43 0.53 0.19 13.8 16.8 15.4 0.2 53.8
30/15/100 -1403.58 492.25 0.55 0.15 11.8 15.2 13.6 0.6 58.8
40/5/100 -1131.67 182.58 0.39 0.26 15.6 22.6 15.6 0.8 45.4
40/10/100 -1553.78 357.94 0.43 0.22 8.2 16.8 13.4 0.2 61.4
40/15/100 -1733.18 348.61 0.45 0.19 5.6 11.8 11 0 71.6
50/5/100 -1167.11 170.66 0.31 0.27 15.6 20.8 15 0.4 48.2
50/10/100 -1617.04 338.46 0.35 0.23 7.4 16.4 13.2 0 63
50/15/100 -1796.42 313.77 0.36 0.19 4.8 11.2 11 0 73

Table 4.8 Results of hybrid relocation problem for large-size instances in the
instance class U
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4.2.1 The effect of changing the fleet size
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Figure 4.2 Operator-based model plots for small-size users (Fixed # of operators)
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Figure 4.3 Operator-based model plots for medium-size users (Fixed number of
operators)
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Figure 4.4 Operator-based model plots for large-size users (Fixed number of
operators)
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Figure 4.5 Hybrid model plots for small-size users (Fixed number of operators)
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Figure 4.6 Hybrid model plots for medium-size users (Fixed number of operators)
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Figure 4.7 Hybrid model plots for large-size users (Fixed number of operators)
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Figures 4.2–4.7 demonstrate the effect of increasing the number of vehicles on the
objective function value, the number of rejected users, vehicle utilization, and opera-
tor utilization for a fixed number of operators and a fixed number of users. The first
three performance indicators exhibit an overall decreasing trend, whereas the opera-
tor utilization tends to increase with increasing number of vehicles. Since more user
requests can be satisfied when a larger number of vehicles is available, the number
of rejected users decrease, resulting in an improvement in the objective function val-
ues. We observe that although introducing more vehicles to the car-sharing system
benefits the users, it may lead to a significant reduction in vehicle utilization rates,
which implies that the vehicles are idle most of the time. Considering each vehicle
has to be maintained by the company to meet certain standards and user expec-
tations, marginal profit earned by serving a few more users may not be enough to
offset the additional expenses incurred by including more vehicles in the car-sharing
system with low utilization rates. Making an efficient use of the existing resources
is therefore more sustainable instead of having plenty of resources that mostly stay
idle. Briefly, when the numbers of operators and users are fixed, our results show a
trade-off between demand satisfaction and vehicle utilization, and the fleet size can
be adjusted in a way to achieve a targeted service level while keeping the utilization
at an acceptable rate. Managing the fleet effectively (assignment of available vehicles
to users, repositioning of the vehicles, scheduling the vehicle refueling/maintenance
activities etc.) is a key to increase user satisfaction and vehicle occupancy levels
simultaneously.

Operator utilization tends to increase in general although we also observe a reduction
in some rare cases. The increased utilization can be explained simply by the fact
that a larger number of vehicles translates into more vehicles per operator, and
possibly more relocation tasks to be performed within the planning horizon. Despite
that, the relocation tasks performed by the operators can change in a way to take
less time in total, which in turn, decreases their utilization on average. As an
example, in the case of 10 users, four vehicles, and two operators (for the operator-
based relocation model), the operators perform five relocations which take 57.5
minutes in total. On the other hand, when the number of vehicles is increased to
five, the operator performs six relocations which take 43.78 minutes in total. Even
though the total number of relocation tasks handled by the operator increases,
the amount of time required decreases. As a result, operator utilization decreases
from 19% to 18%. Similarly, for the hybrid relocation model, when the number of
vehicles is increased from three to four in the presence of 15 users and two operators,
five relocation operations take place in a total of 50.72 minutes compared to four
relocation operations which take 57.62 minutes when there are three vehicles. As
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a consequence, operator utilization, drops down from 24% to 21%. We should also
note here that depending on the locations of the vehicles, it is also possible that
relocation needs decline when more vehicles are available to serve a given number
of user requests.

Overall, we conclude that for a given number of users and operators, increasing the
fleet size up to a certain point leads to remarkable improvements in the number
of rejected users and the objective value at the expense of deteriorating vehicle
utilization levels. For example, considering the uniform problem instances with
50 users, seven operators and 15 vehicles, providing an additional five vehicles for
service yields nearly a 71% reduction in the objective value and a 19% increase in
the number of requests served when only operator-based relocations are allowed. In
the hybrid relocation case, the objective value decreases by 45%, and the number
of users served increases by 42%. It should be noted however that enlarging the
fleet beyond a certain size results only in marginal gains in terms of these two
performance measures, while significantly lowering the average vehicle utilization
rate. This indicates the importance of sizing the fleet so as to achieve a good
balance between demand satisfaction and vehicle utilization levels. Flooding the
service region with vehicles when the demand is relatively stable and no additional
operators are available does not benefit car-sharing providers as it would be overly
expensive to maintain a fleet with majority of the vehicles being idle most of the
time.
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4.2.2 The effect of changing the staff level
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Figure 4.8 Operator-based model plots for small-size users (Fixed number of
vehicles)
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Figure 4.9 Operator-based model plots for medium-size users (Fixed number of
vehicles)
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Figure 4.10 Operator-based model plots for large-size users (Fixed number of
vehicles)

1 2 3
# of operators

200

100

0

100

200

300

Ob
jec

tiv
e 

va
lu

e

Small-size users

15users-2
15users-3
15users-4
15users-5
15users-10
15users-15

20users-2
20users-3
20users-4
20users-5
20users-10
20users-15
20users-20

# of vehicles
10users-2
10users-3
10users-4
10users-5
10users-10

(a) Objective value

1 2 3
# of operators

2

4

6

8

10

12

14

# 
of

 re
jec

te
d 

us
er

s

Small-size users

15users-2
15users-3
15users-4
15users-5
15users-10
15users-15

20users-2
20users-3
20users-4
20users-5
20users-10
20users-15
20users-20

# of vehicles
10users-2
10users-3
10users-4
10users-5
10users-10

(b) No of rejected user

1 2 3
# of operators

0.1

0.2

0.3

0.4

0.5

Ve
hic

le 
ut

iliz
at

ion

Small-size users

15users-2
15users-3
15users-4
15users-5
15users-10
15users-15

20users-2
20users-3
20users-4
20users-5
20users-10
20users-15
20users-20

# of vehicles
10users-2
10users-3
10users-4
10users-5
10users-10

(c) Vehicle utilization

1 2 3
# of operators

0.10

0.15

0.20

0.25

0.30

Op
er

at
or

 u
til

iza
tio

n

Small-size users

15users-2
15users-3
15users-4
15users-5
15users-10
15users-15

20users-2
20users-3
20users-4
20users-5
20users-10
20users-15
20users-20

# of vehicles
10users-2
10users-3
10users-4
10users-5
10users-10

(d) Operator utilization

Figure 4.11 Hybrid model plots for small-size users (Fixed number of vehicles)
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Figure 4.12 Hybrid model plots for medium-size users (Fixed number of vehicles)
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Figure 4.13 Hybrid model plots for large-size users (Fixed number of vehicles)
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Figures 4.8–4.13 depict the relationship between the staff level and different perfor-
mance indicators. For a fixed number of vehicles and a fixed number of users, the
objective value and the number of rejected users demonstrate a declining trend as
the number of operators increase, similar to what we observed earlier in subsection
4.2.1. This can be attributed to the fact that having more operators dedicated to
repositioning tasks facilitates a better matching of the supply (of vehicles) with the
demand, making it easier/faster for users to access the vehicles. As a consequence,
vehicle utilization level tends to become larger as shown in the associated plots.

The improvements in the observed values of these three performance indicators are
more evident for those instances in which the vehicle-to-operator ratio, that is, the
number of vehicles per operator, is higher. For example, considering the operator-
based model and the group of instances involving 50 users and three operators,
hiring an additional four operators leads to 339% reduction in the objective value
in the presence of 20 vehicles compared to only a %7 reduction when there are five
vehicles. The hybrid relocation model seems to yield relatively more robust results
with varying staff levels because the car-sharing system does not rely on operators
for relocation tasks. Regarding the same instance group with 50 users, increasing
the number of operators from three to seven improves the objective value by approx-
imately 126% and 4% for 20 vehicles and five vehicles, respectively. Our objective
function does not involve a fixed cost term for hiring an operator. Therefore, we can
not observe the trade-off between the number of operators and the objective func-
tion. Especially for the operator-based relocation model, when there is a fixed cost,
increasing the number of operators may not be that useful to the objective function.
It is also worth mentioning that under the hybrid relocation strategy, increasing the
number of operators contributes to the objective value by having fewer users change
their pick-up/drop-off locations and employing more operators in relocation tasks.
This is a result of the discount scheme used in our model and the fact that our
objective function does not involve a fixed cost term for operators; it may be less
costly to have an operator reposition a vehicle rather than offering a discount to a
user to do it, depending on the profit associated with that user.

Operator utilization level has a tendency to decrease despite a few exceptional cases.
With the deployment of additional operators, the number of vehicles per operator
gets smaller, thereby reducing the workload per operator. Note that reduced work-
load does not necessarily imply that a particular operator will be employed less (or
less frequently). Rather, it implies that more resources are available to fulfill the
same relocation needs. Because we use the average utilization as a measure, opera-
tor utilization rate exhibits a decreasing pattern in general. Especially when hiring
more operators does not result in a significant change with respect to the (number
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of) user requests served, performing similar (or sometimes even the same) reloca-
tion tasks with a larger number of operators leads to a lower operator utilization
on the average. As mentioned earlier, there are some cases where an increase in
operator utilization is reported. This is observed to happen in a few small/medium
size instances where the number of operators is incremented from one to two in
small size instances, and from three to five in medium size instances. For these in-
stance groups, the corresponding curves that represent the number of rejected users
show a relatively more obvious decrease, hence, having one or two more operators
contributes towards increasing the efficiency of the car-sharing system.

We conclude that hiring more operators benefits the overall system performance
as long as it yields a considerable increase in vehicle occupancy, and by extension,
service level. As in the case of fleet size, the staff level may be determined based on
the objective value, the number of user requests served, and the vehicle utilization
ratio while keeping the operator utilization at a reasonable rate. Since including too
many operators in the system may cause (at least some) operators to mostly remain
idle, finding an optimal threshold for the number of operators considering the fleet
size and user demands can impact the service quality of the system significantly.
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4.2.3 The effect of variations in demand

# of V/O/U OV T(s) VU OU #RU
5/3/10 -24.34 79.21 0.28 0.16 2.8
5/3/15 23.47 81.82 0.36 0.21 5.8
5/3/20 107.39 85.33 0.39 0.19 9.8
5/3/30 307.79 115.17 0.45 0.17 18.6
5/3/40 512.65 113.04 0.51 0.15 26.8
5/3/50 728.04 97.72 0.56 0.15 35.6
10/3/10 -46.88 41.63 0.15 0.19 2.2
10/3/15 -64.3 48.31 0.21 0.21 4.2
10/3/20 -58.23 39.11 0.26 0.24 6.4
10/3/30 60.75 74.13 0.32 0.24 13.4
10/3/40 159 53.03 0.38 0.22 19.8
10/3/50 277.53 57.82 0.44 0.2 26.8
10/5/30 -90.6 263.44 0.39 0.21 9.4
10/5/40 30.03 256.39 0.45 0.2 16.4
10/5/50 149 257.37 0.5 0.17 23.6
10/5/75 648.09 263.24 0.55 0.14 45.2
10/5/100 1215.97 274.09 0.6 0.12 68.4
15/3/15 -72.14 41.63 0.14 0.22 4
15/3/20 -77.92 44.41 0.17 0.24 6
15/3/30 29.28 44.19 0.22 0.24 13
15/3/40 95.25 62.8 0.27 0.22 18.8
15/3/50 183.28 63.76 0.31 0.22 25
20/5/30 -194.95 51.94 0.22 0.23 7.2
20/5/40 -165.81 82.38 0.26 0.24 12.6
20/5/50 -150.94 80.48 0.31 0.22 18
20/5/75 -7.71 87.02 0.4 0.22 31.6
20/5/100 281.01 108.47 0.47 0.2 49.2

Table 4.9 Results of operator-based relocation problem regarding the growth of
user demand (Fixed number of vehicles and operators)

Tables 4.9 and 4.10 present the results obtained by varying the number of user
requests while keeping the numbers of vehicles and operators constant for the VR-O
and the VR-H, respectively. In Table 4.9, we see that all the performance indicators
except operator utilization have a tendency to increase. This is not surprising given
that we have the same amount of resources, i.e., a fixed number of vehicles and
a fixed number of operators. Hence, after a certain point, these resources will
fall short of covering the growing demand as a result of which more users will be
rejected. Moreover, with an increased number of requests, vehicle utilization is also
expected to get higher because there will be a larger set of alternatives regarding
the assignment of vehicles to users, that is, a vehicle that was not used before is
now more likely to be assigned to a user, or similarly, a vehicle that was mostly idle
before may now serve additional users. Improving the vehicle utilization level will
have a positive impact on the objective value. On the other hand, achieving this
may require performing more relocation operations, hence, bringing additional cost.

We observe that under the operator-based relocation strategy, the increase in the to-
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tal rejection penalty and relocation cost typically exceeds the improvement resulting
from the profit gained by making a more effective use of the vehicles, and conse-
quently, the objective value deteriorates. Nevertheless, we cannot draw the same
conclusion for the objective value under the hybrid relocation strategy based on the
results in Table 4.10. For the first and third instance groups (five vehicles/three op-
erators and 10 vehicles/five operators), the objective value consistently gets worse
whereas we observe the opposite for the fourth instance group (15 vehicles/three
operators) except the decrease in 30 users as the number of requests increase. For
the other two groups, the objective value is improved to a certain extent, but then
starts becoming worse.

Even though the involvement of additional users contributes to relocation operations
and facilitates serving more requests, the reward gained from the satisfied user
requests does not always compensate for the cost associated with rejected users
and relocation discount, resulting in an increase in the objective value. We observe
this to be the case especially when there is a significant reduction in the operator
utilization ratio. Diminished use of operators implies that most of the relocation
tasks are undertaken by the users, and therefore, we speculate that the increase in
the objective value is mainly due to the discounts offered to users taking part in
relocation operations. In other cases, i.e., when the operator utilization remains
at a fairly steady level, growing demand can yield remarkable improvements in the
objective value as a result of (more) users being involved in repositioning the vehicles.

Similar to the operator-based model, vehicles are used more effectively as the number
of requests increase in the case of the hybrid model. This arises from the fact that
the vehicles are easier to access across the entire service network since users can also
relocate them.

Finally, it is expected that the increase in the number of users necessitates more
relocation operations implying higher operator utilization (especially under the
operator-based relocation strategy). However, our results do not indicate a particu-
lar trend in that respect. Even though a larger number of relocations is observed to
take place in general with more user requests, it does not always lead to an increase
in the amount of time required for these relocation operations. Furthermore, re-
gardless of the relocation strategy, when there are more user requests to be fulfilled,
the set of users served in an optimal solution may be altered substantially in a way
to acquire a larger amount of profit. Accordingly, the number of operator-based
relocations as well as their total duration may increase or decrease.
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# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
5/3/10 -58.9 59.61 0.32 0.17 1.8 1 1.2 0 6
5/3/15 -35.51 62.48 0.41 0.19 4 2.2 1.6 0 7.2
5/3/20 19.41 69.48 0.46 0.16 7.4 2.6 2 0.4 7.6
5/3/30 199.13 78.76 0.55 0.14 14.8 3.6 3.6 0.4 7.6
5/3/40 392.99 108.68 0.61 0.14 23 3.8 4.8 0.4 8
5/3/50 596.36 116.29 0.64 0.09 31.4 4.4 4.6 0.4 9.2
10/3/10 -82.7 49.17 0.17 0.18 1.2 1.6 0.8 0 6.4
10/3/15 -130.88 43.41 0.24 0.22 2.4 1.4 1.8 0 9.4
10/3/20 -168.4 82.41 0.31 0.23 3.2 3.6 3.2 0 10
10/3/30 -128.98 84.16 0.41 0.22 7.4 5.2 4.8 0 12.6
10/3/40 -77.81 77.1 0.5 0.2 13 6.2 7.2 0.2 13.4
10/3/50 7.79 100.09 0.57 0.19 18.4 8.4 8 0.4 14.8
10/5/30 -231.57 229.57 0.46 0.18 5 5.8 5.4 0.2 13.6
10/5/40 -167.91 223.09 0.55 0.18 10.6 7.2 7 0.2 15
10/5/50 -72.31 244.78 0.6 0.14 16.6 8.4 8.4 0.6 16
10/5/75 388.11 270.58 0.65 0.1 36.4 9 8.6 0.6 20.4
10/5/100 942.56 296.26 0.69 0.06 58.4 10.6 11.6 0.4 19
15/3/15 -140.8 38.24 0.16 0.21 2 2 1.6 0 9.4
15/3/20 -186 44.56 0.21 0.22 3 4 2.8 0 10.2
15/3/30 -178.23 79.71 0.29 0.24 6.4 6.6 4.2 0 12.8
15/3/40 -217.08 92.66 0.37 0.24 10 7.6 6.8 0.2 15.4
15/3/50 -229.73 114.99 0.44 0.24 13.8 7.6 9 0.8 18.8
20/5/30 -343.94 90.91 0.25 0.21 2.8 5.2 4.2 0 17.8
20/5/40 -421.1 98.98 0.33 0.24 5.2 7.4 6.2 0.2 21
20/5/50 -486.54 108.51 0.39 0.24 8 8.2 7.8 0.8 25.2
20/5/75 -491.76 190.68 0.52 0.22 17.8 16.4 10.6 0.6 29.6
20/5/100 -280.19 221.51 0.6 0.16 32.8 17.4 14.6 0.6 34.6

Table 4.10 Results of hybrid relocation problem regarding the growth of user
demand (Fixed number of vehicles and operators)

4.2.4 Comparison between operator-based and hybrid relocation strate-

gies

Next, we compare the results obtained with the operator-based relocation model
and the hybrid relocation model to investigate how the adopted relocation strategy
impacts the operational efficiency of the car-sharing system measured by the perfor-
mance indicators defined earlier. Recall that the main difference between these two
models is that in the former, repositioning of the vehicles is carried out only by oper-
ators, whereas in the latter, users are also engaged in relocation activities by picking
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up/dropping off the vehicles at locations different from their origin/destination in
exchange for a discount. Even if the numbers of vehicles and operators in the service
network remain the same, we observe that the values of the performance indicators
change significantly depending on the relocation strategy. In particular, our results
clearly demonstrate the advantages of involving the users in relocation operations in
terms of the number of requests served, the objective value, the vehicle and operator
utilization levels.

Table 4.11 reports the values of our performance indicators averaged out over all uni-
form instances including the same number of users to be able to assess the benefits of
allowing user-based relocations in addition to employing operators. For a given num-
ber of users and a given performance indicator, the average values are presented first
for the operator-based model (VR-O), then for the hybrid model (VR-H). Followed
by these two numbers, the percentage difference with respect to the operator-based
value is provided. Negative (positive) percentages refer to a decrease (increase) in
the associated quantity obtained by adopting the hybrid strategy. As an example,
for the instances with 100 users, the average objective value decreases by 199%, the
average number of rejected users decreases by 36%, the average vehicle utilization
ratio increases by 18%, and the average operator utilization ratio decreases by 11%.

The flexibility arising from the sheer existence of alternative service options for
users enables making more effective use of the vehicles, which contributes towards
higher vehicle utilization levels, lower rejection rates and increased profitability.
Consequently, we observe a considerable improvement in the objective values. On
the other hand, adoption of the hybrid relocation strategy has a negative effect on
operator utilization. This is not surprising due to the diminishing need for operators
when users participate in relocating the vehicles. Moreover, having a user reposition
a vehicle may be more convenient and less expensive than deploying an operator for
the same task, especially when no operators are available nearby.

OV % #RU % VU % OU %
#U VR-O VR-H change VR-O VR-H change VR-O VR-H change VR-O VR-H change
10 65.58 21.33 -67 4.79 3.49 -27 0.26 0.32 23 0.18 0.19 6
15 113.06 44.27 -61 8.13 6.2 -24 0.28 0.34 21 0.2 0.19 -5
20 162.63 62.64 -61 11.45 8.55 25 0.27 0.35 30 0.2 0.18 -10
30 -19.73 -163.02 -726 11.42 6.9 -40 0.33 0.4 21 0.19 0.18 -5
40 79.83 -128.38 -261 17.87 11.73 34 0.38 0.47 24 0.19 0.18 -5
50 178.52 -72.18 -140 24.58 16.93 -31 0.43 0.53 23 0.17 0.16 -6
75 -396.22 -741.21 -87 23.67 14 -41 0.37 0.44 19 0.18 0.17 -6
100 -245.26 -732.52 -199 38.33 24.64 -36 0.44 0.52 18 0.18 0.16 -11

Table 4.11 Comparison between operator-based and hybrid relocation model based
on average values
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4.2.5 An alternative user incentive scheme

Incentive scheme used in the hybrid relocation model determines the degree of dis-
count offered to users, and hence, is likely to have a considerable impact on the
profitability of the car-sharing system. In our formulation of the VR-H, we consid-
ered a simple incentive scheme where a user is given 50% discount on the original
rental price if the user is offered either an alternative pick-up location or an alter-
native drop-off location, and a free rental if the user is offered both an alternative
pick-up location and an alternative drop-off location. To explore how the perfor-
mance of the system changes when a different incentive scheme is adopted, we now
consider total walking distances of users when offering discounts to the users. First,
for every user u and every pair of candidate pick-up/drop-off locations (i, j) ∈ Su,
we calculate the total of the (walking) distances from the user’s actual origin ou to
i and from j to the user’s actual destination du. Second, we apply a normalization
step to bring these distance values into the range [0,1] by assigning 0 to the min-
imum distance and 1 to the maximum distance for each user. We then use these
normalized values as discount scores, in other words, the percentage discount offered
to user u for picking up a vehicle at i and dropping it off at j such that (i, j) ∈ Su

will be equal to the corresponding normalized distance.

To find out the effect of this walking distance based incentive scheme on overall
system performance, an additional set of experiments was performed on the uni-
form instances containing 100 users. The average values of performance indicators
are reported in Table 4.12 where “fixed” and “variable” in the first column refer
to our original incentive scheme and the walking distance based incentive scheme,
respectively.

Based on the results, we observe slightly worse results with respect to the objective
value, the vehicle utilization ratio and the service level when a discount based on
the distance that a user has to walk before picking up or after dropping off a vehicle
is offered. Even though the alternative incentive scheme ensures a relatively more
fair distribution of reward among the users, the discount level generally increases in
pairs of candidate pick-up/drop-off locations (i, j) ∈ Su for each user. As a conse-
quence, user-based relocations become more expensive and less users are employed
in relocation tasks (see the increase in the values under the column NC). Higher
discount level affects the number of served users inversely. It is more profitable to
the system to reject some users instead of relocating vehicles to serve them. This, in
return, decreases the average vehicle occupancy rates. Moreover, less user involve-
ment in relocation operations increases the dependence on operators, and thus, the
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average operator utilization levels.

Incentive Type # of V/O/U OV T(s) VU OU #RU OC DC ODC NC
fixed 10/5/100 942.55 296.26 0.69 0.06 58.4 10.6 11.6 0.4 19

variable 10/5/100 998.02 892.32 0.69 0.07 60.6 6.6 9.8 1.2 21.8
fixed 10/10/100 939.73 273.09 0.69 0.03 58.2 10.6 11.2 0.6 19.4

variable 10/10/100 992.73 1261.65 0.69 0.03 60.4 6.8 9.6 1 22.2
fixed 10/15/100 937.73 276.06 0.69 0.02 58.2 10.4 11.4 0.6 19.4

variable 10/15/100 992.21 538.82 0.69 0.02 60.4 7 9.6 1 22
fixed 20/5/100 -280.18 221.5 0.59 0.16 32.8 17.4 14.6 0.6 34.6

variable 20/5/100 -187.71 422.6 0.58 0.18 34.8 13.6 13 0.6 38
fixed 20/10/100 -440.11 510.63 0.63 0.11 30.4 15.4 16.6 0.4 37.2

variable 20/10/100 -357.51 719.94 0.62 0.12 32.6 10.8 14.4 0.4 41.8
fixed 20/15/100 -472.49 433.27 0.63 0.08 29.2 15 16.8 0.6 38.4

variable 20/15/100 -392.38 588.9 0.62 0.08 32.4 10 12.8 0.6 44.2
fixed 30/5/100 -931.82 450.28 0.49 0.23 19.6 22.2 15.6 0.4 42.2

variable 30/5/100 -802.21 442.36 0.48 0.24 22.6 15.8 12.8 1 47.8
fixed 30/10/100 -1279.76 565.43 0.53 0.19 13.8 16.8 15.4 0.2 53.8

variable 30/10/100 -1176.53 607.57 0.52 0.19 16.2 12.2 11.6 0.8 59.2
fixed 30/15/100 -1403.58 492.25 0.55 0.15 11.8 15.2 13.6 0.6 58.8

variable 30/15/100 -1307.97 518.52 0.54 0.16 13.8 10.8 11 1 63.4
fixed 40/5/100 -1131.67 182.58 0.39 0.26 15.6 22.6 15.6 0.8 45.4

variable 40/5/100 -985.88 607.57 0.38 0.27 18.6 16.8 12.2 1.4 51
fixed 40/10/100 -1553.78 357.94 0.43 0.22 8.2 16.8 13.4 0.2 61.4

variable 40/10/100 -1447.43 385.93 0.43 0.24 10.6 13 11.2 0.4 64.8
fixed 40/15/100 -1733.18 348.61 0.44 0.19 5.6 11.8 11 0 71.6

variable 40/15/100 -1657.13 376.56 0.44 0.2 6.6 9.8 9.4 0.2 74
fixed 50/5/100 -1167.11 170.65 0.31 0.27 15.6 20.8 15 0.4 48.2

variable 50/5/100 -1021.12 246.1 0.31 0.28 18.2 15.4 12 2 52.4
fixed 50/10/100 -1617.04 338.45 0.35 0.22 7.4 16.4 13.2 0 63

variable 50/10/100 -1508.47 400.54 0.35 0.24 9.4 12.6 12.2 0.2 65.6
fixed 50/15/100 -1796.41 313.77 0.36 0.19 4.8 11.2 11 0 73

variable 50/15/100 -1721.49 315.27 0.36 0.2 5.8 7.6 9.8 0.2 76.6

Table 4.12 Results of hybrid relocation problem regarding different incentive types

4.2.6 Increasing the time granularity of the network

As mentioned earlier, we discretized the planning horizon using a time step length
of 10 minutes. Due to the rounding process in our calculation of the travel times
in terms of number of time steps, some travel times are overestimated. Hence,
the discretization scheme adopted in our experiments yields approximate solutions
to the VR-O and the VR-H. The effect of overestimated travel times on solution
quality can be reduced by refining the time-space network, i.e., using shorter time
steps. This will enlarge the search space, and likely increase the computational effort
required to solve the models. However, working on a finer network, one can expect
to obtain solutions that are closer to optimal. To this end, we explore the effect
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of increasing the granularity of our time-expanded networks by reducing the time
step length to five minutes. We perform experiments using the hybrid relocation
model on the uniform instances with 100 users to observe the impact of changing the
discretization scheme. Average values of the performance indicators are reported in
Table 4.13.

Discretization Scheme # of V/O/U OV T(s) VU OU #RU OC DC ODC NC
10 min 10/5/100 942.55 296.26 0.69 0.06 58.4 10.6 11.6 0.4 19
5 min 10/5/100 825.1 2144.6 0.73 0.07 57.4 7.2 11.2 0.6 23.6
10 min 10/10/100 939.73 273.09 0.69 0.03 58.2 10.6 11.2 0.6 19.4
5 min 10/10/100 808.3 748.86 0.73 0.04 57.4 8 9.6 0.2 24.8
10 min 10/15/100 937.73 276.06 0.69 0.02 58.2 10.4 11.4 0.6 19.4
5 min 10/15/100 807 726.4 0.73 0.03 57 8.2 9.8 0.2 24.8
10 min 20/5/100 -280.18 221.5 0.59 0.16 32.8 17.4 14.6 0.6 34.6
5 min 20/5/100 -483.43 862.09 0.63 0.19 29.2 15 14.4 0.2 41.2
10 min 20/10/100 -440.11 510.63 0.63 0.11 30.4 15.4 16.6 0.4 37.2
5 min 20/10/100 -671.55 3066.41 0.66 0.12 26.4 12.2 14.4 0.4 46.6
10 min 20/15/100 -472.49 433.27 0.63 0.08 29.2 15 16.8 0.6 38.4
5 min 20/15/100 -713.46 2355.5 0.66 0.09 25.4 12.4 14.4 0.4 47.4
10 min 30/5/100 -931.82 450.28 0.49 0.23 19.6 22.2 15.6 0.4 42.2
5 min 30/5/100 -1105.99 1753.94 0.5 0.26 17 19.6 13.4 0.2 49.8
10 min 30/10/100 -1279.76 565.43 0.53 0.19 13.8 16.8 15.4 0.2 53.8
5 min 30/10/100 -1469 2802.9 0.55 0.22 11 12.8 12.6 0.2 63.4
10 min 30/15/100 -1403.58 492.25 0.55 0.15 11.8 15.2 13.6 0.6 58.8
5 min 30/15/100 -1607.45 2511.6 0.57 0.18 7.6 10.2 12.4 0 69.8
10 min 40/5/100 -1131.67 182.58 0.39 0.26 15.6 22.6 15.6 0.8 45.4
5 min 40/5/100 -1244 705.58 0.39 0.28 15 19.4 12.4 0 53.2
10 min 40/10/100 -1553.78 357.94 0.43 0.22 8.2 16.8 13.4 0.2 61.4
5 min 40/10/100 -1654.84 1790.29 0.43 0.24 7.2 13.6 9.6 0 69.6
10 min 40/15/100 -1733.18 348.61 0.44 0.19 5.6 11.8 11 0 71.6
5 min 40/15/100 -1805.97 1341.46 0.45 0.2 4.2 6.8 10 0 79
10 min 50/5/100 -1167.11 450.28 0.31 0.27 15.6 20.8 15 0.4 48.2
5 min 50/5/100 -1268.82 566.35 0.31 0.3 14.2 18.4 13.4 0 54
10 min 50/10/100 -1617.04 338.45 0.35 0.22 7.4 16.4 13.2 0 63
5 min 50/10/100 -1703.11 1583.21 0.35 0.24 6.6 12 11.4 0 70
10 min 50/15/100 -1796.41 313.77 0.36 0.19 4.8 11.2 11 0 73
5 min 50/15/100 -1850.05 974.87 0.36 0.2 4.2 6 8.4 0 81.4

Table 4.13 Results of hybrid relocation problem regarding different time
discretization schemes

Decreasing the time step length from 10 minutes to five minutes leads to a better
approximation of the travel times, giving rise to a larger number of paths that users,
vehicles, and operators can take in the time-space network. As a result, alternative
opportunities will emerge for serving the demand within the planning horizon, i.e.,
some solutions that were deemed infeasible before (in the 10 minute discretization
scenario) will now be feasible. Thus, when shorter time steps are used, the objective
value is expected to be improved, or in the worst case, remain unchanged. This
fact is supported by our results, that is, we observe an average reduction of 20% in
the (average) objective values based on our experiments. Our results also suggest
a slight growth in the average number of served user requests as well as vehicle
and operator utilization levels. Nevertheless, these improvements are achieved at
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the cost of a notable increase in solution times although they remain within an
acceptable range.

Finally, we remark that in a problem setting where all travel times are integer (in
minutes), our formulations can be used to produce optimal solutions with a time
step length of one minute although dealing with such large time-space networks is
typically more challenging and computationally expensive. In that case, an efficient
solution approach manipulating a proper family of partially time expanded networks
may be developed instead of using an off-the-shelf solver on the fully time expanded
network (see Boland et al. (2017)).
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5. CONCLUSION

In this thesis, we consider two vehicle relocation problems encountered in free-
floating car-sharing systems and propose multi-commodity flow formulations based
on time-space networks. First, we address an operator-based vehicle relocation prob-
lem, namely the VR-O, in which vehicles are repositioned only by dedicated staff. In
this problem, the goal is to decide on (1) which user requests to be served given their
time windows and (2) the routes of the vehicles and the operators during a finite
planning horizon. We propose two formulations for the VR-O. The first formulation
treats each vehicle, operator, and user as separate commodities, and is capable of
producing detailed solutions, i.e., a route/path per each individual commodity in
the time-space network. Assuming that all vehicles and operators are identical, we
derive a second, and a more compact, formulation for the VR-O by using aggregate
vehicle and operator flow variables. Since the aggregate formulation involves signif-
icantly fewer variables and constraints, it can be solved more efficiently compared
to the first model.

Later, we study a hybrid relocation problem, namely the VR-H, in which users
are incentivized to take part in relocation tasks in addition to the operators. In
particular, each user is offered a pick-up location and a drop-off location, among a
set of alternatives, which may not be the same as the user’s origin and/or destination.
In case the suggested trip is different from the user’s requested trip, the user benefits
from a discounted price depending on the duration of her requested trip. Although
these discounts lead to a reduction in the profit gained from certain users, they may
help achieving better vehicle utilization levels, thereby increasing overall profitability
of the car-sharing system. Hence, which users to provide with an incentive to change
their pick-up and drop-off locations and by how much, should also be determined in
the VR-H. The aggregate formulation proposed for the VR-O is extended to cover
these additional decisions.

Most of the existing data sets used for computational testing purposes in the car-
sharing literature are not publicly available. Therefore, we generate new sets of
instances of different geographies, i.e., clustered, uniformly distributed, and a com-
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bination of clustered and uniformly distributed. The results obtained by solving
these test instances with our mathematical models are analyzed thoroughly. We
evaluate different vehicle, operator, and user related parameter configurations to
gain deeper insights into the operational performance of free-floating car-sharing
systems. We examine the effect of different parameter configurations on several
performance indicators, i.e., objective value, number of rejected users, vehicle and
operator utilization levels.

We aim to evaluate the operational performance of a given car-sharing provider with
our models. The difficulties arising from the deterministic and static assumptions
in our models can be dealt by using the proposed models in a rolling horizon frame-
work. By solving the models with a shorter planning horizon on a rolling basis, the
computational challenges with longer planning horizons can be handled easily. If
a longer planning horizon is preferred, the length of a time step can be increased
and then for certain areas (a subset of locations in the network), the network can
be refined to obtain better solutions. Additionally, in case of changes in given input
information, the models can be re-solved based on the updated input information.

Our computational results show that adopting a hybrid relocation strategy over an
operator-based one can remarkably increase the profitability of the car-sharing sys-
tem by attaining higher service levels. For small-size instances (10, 15, 20 users),
the number of rejected users decreases on the average by 27%, 24%, 25%, respec-
tively. For medium-size instances (30, 40, 50 users), we obtain an average 39%,
34%, 31% reduction in the same quantity, which drops down by 41% and 36% in
case of large-size instances (75, 100 users), respectively. It is worth noting that, a
significant decrease in the objective value results from smaller user rejection rates
in all instance sets.

It is also suggested by our results that it is particularly important to decide carefully
on the size of the vehicle fleet and the staff level to be maintained with respect to
given demand. Hence, car-sharing companies should devote a sufficient amount of
time and effort to examine alternative scenarios with varying parameter configura-
tions to achieve better performance.

We also carry out two additional experiments, one by changing the time discretiza-
tion scheme and another by considering a different incentive mechanism. We are
able to experimentally show that the choice of time granularity of the network plays
an important role in improving the performance of the car-sharing system. We also
observe that the choice of user incentive scheme is likely to contribute to the results.

Last but not least, we observe better results for both models regarding objective
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value and the number of rejected users in clustered instances compared to other
network geographies. Hence, clustering user demands and positioning resources
strategically across the network may provide a worthwhile opportunity to further
enhance the overall performance of car-sharing systems.

The relocations in our current models are designed to satisfy user demands in the
planning period. The final distribution of vehicles and operators does not necessarily
reflect the optimal distribution for the next planning period. At the end of the
planning horizon, vehicles and operators may be positioned in an anticipation of
future demand. This can be achieved by adding two sets of constraints to our models,
one for the vehicles and one for the operators. In the long term, distributing vehicles
to their optimized final locations (equivalently, the optimized starting locations for
the next planning period) taking into account the user demands for the next period
could be useful for the car-sharing systems.

This thesis helps us enhance our understanding of vehicle relocation problem in
free-floating car-sharing systems under different relocation strategies. This study is
not specifically designed to explore the effect of users’ behaviour. We assume that
users will accept picking up/dropping off vehicles close to their origin/destination
locations when they are provided with an incentive. However, this assumption may
not always hold in real life. Even though a user accepts the trip suggested to
her, she may change her mind while en-route and decide to keep the vehicle for a
longer period of time, or leave the vehicle at a different location etc. She may even
cancel the trip completely. Therefore, to produce more robust solutions to vehicle
relocation problems, it would be interesting to develop a modeling approach or a
solution framework incorporating different user behaviors.

Additionally, we assume that we have perfect knowledge of the demand, i.e., the
demands are considered to be static and deterministic. This is a limiting assumption
for a real life free-floating car-sharing system, which is highly dynamic and stochastic
in nature. Hence, another direction for future research could be to devise a method
that is capable of finding solutions at the operational level under stochastic (and
possibly also dynamically arriving) user requests as well as to examine the impact of
stochasticity of demand on the performance of car-sharing systems. Another limiting
assumption could be deterministic travel times. Depending on the day or the hour,
travelling from one location to another location may take different amounts of time.
Alternatively, the time travelled in opposite directions can be different. Considering
the presence of uncertainties in real life, the possibility of travel time variability
warrants further investigation.

Finally, autonomous vehicles will likely transform and (re-)shape urban mobility in
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the not-so-distant future. As a promising mode of transportation, these vehicles
may also have an enormous impact on the future of car-sharing industry. Hence,
it is important to further investigate the opportunities of autonomous (or semi-
autonomous) vehicle integration in car-sharing systems.
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APPENDIX A
Table A.1 Results of operator-based relocation problem for small-size instances in
the instance class C

# of V/O/U OV T(s) VU OU #RU
2/1/10 116.73 391.67 0.27 0.18 6.6
2/2/10 83.95 396.99 0.36 0.13 5.6
2/3/10 77.14 372.98 0.36 0.1 5.6
3/1/10 101.18 397.8 0.22 0.22 6
3/2/10 45.29 418.34 0.31 0.19 4.4
3/3/10 22.47 311.72 0.34 0.15 4
4/1/10 81.76 438.64 0.18 0.25 5.6
4/2/10 -6.67 518.77 0.29 0.22 3.4
4/3/10 -36.78 517.77 0.33 0.22 2.2
5/1/10 58.13 498 0.16 0.28 5
5/2/10 -34.64 541.38 0.26 0.24 2.6
5/3/10 -78.39 495.85 0.3 0.22 1.2
10/1/10 18.06 424.82 0.09 0.29 4.4
10/2/10 -68.84 533.29 0.14 0.26 1.8
10/3/10 -113.11 491.14 0.17 0.22 0.2

2/1/15 197.49 432.14 0.36 0.19 10.8
2/2/15 159.48 492.59 0.44 0.12 9.8
2/3/15 151.9 389.34 0.46 0.1 9.4
3/1/15 164.14 471.76 0.29 0.22 10
3/2/15 94.21 403.39 0.4 0.22 8
3/3/15 69.02 281.81 0.43 0.16 7.4
4/1/15 143.93 478.83 0.24 0.25 9.4
4/2/15 20.49 506.67 0.37 0.24 6.4
4/3/15 -18.87 534.68 0.42 0.19 5.4
5/1/15 120.72 599.84 0.21 0.28 9
5/2/15 -13.37 647.61 0.32 0.22 5.8
5/3/15 -75.04 577.16 0.37 0.19 4
10/1/15 58.92 669.86 0.12 0.25 7.4
10/2/15 -95.04 634.2 0.19 0.24 3.8
10/3/15 -161.26 647.38 0.22 0.23 1.8
15/1/15 21.54 507.73 0.09 0.29 6.8
15/2/15 -118.84 693.7 0.13 0.23 3.6
15/3/15 -190.11 416.88 0.16 0.24 1.2

2/1/20 316.32 579.16 0.38 0.16 15.6
2/2/20 267 515.78 0.49 0.12 14.4
2/3/20 263.12 403.12 0.49 0.07 14.4
3/1/20 265.4 651 0.32 0.22 14.4
3/2/20 194.28 509.36 0.42 0.2 12.6
3/3/20 167.6 365.95 0.47 0.13 12.4
4/1/20 231.37 564.45 0.27 0.25 13.6
4/2/20 95.65 684.97 0.43 0.24 10.2
4/3/20 47.82 577.33 0.46 0.17 9.6
5/1/20 190.45 558.15 0.24 0.25 12.8
5/2/20 33.24 729.97 0.38 0.25 8.8
5/3/20 -27.73 748.28 0.43 0.21 7.4
10/1/20 97.7 623.59 0.15 0.27 10.8
10/2/20 -98.37 656.46 0.23 0.27 6.2
10/3/20 -188.01 688.94 0.28 0.25 3.4
15/1/20 55.16 566.59 0.11 0.31 10
15/2/20 -148.15 630.55 0.17 0.25 5.4
15/3/20 -238.39 416.67 0.2 0.26 2.6
20/1/20 53.48 645.95 0.08 0.29 10
20/2/20 -151.95 718.82 0.13 0.26 5.2
20/3/20 -247.19 456.84 0.15 0.26 2.4
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Table A.2 Results of operator-based relocation problem for medium-size instances
in the instance class C

# of V/O/U OV T(s) VU OU #RU
5/3/30 86.87 809.07 0.51 0.16 15.6
5/5/30 57.75 470.32 0.53 0.12 14.8
5/7/30 52.4 361.54 0.54 0.09 14.6
10/3/30 -182.89 763.59 0.35 0.24 9.2
10/5/30 -319.63 612.53 0.42 0.21 5
10/7/30 -378.9 368.31 0.44 0.18 3.4
15/3/30 -300.93 453.28 0.26 0.24 6.6
15/5/30 -455.83 431.13 0.31 0.23 2
15/7/30 -523.47 288.82 0.33 0.18 0
20/3/30 -319.85 398.54 0.2 0.24 6.2
20/5/30 -474.9 380.3 0.24 0.23 1.6
20/7/30 -541.45 241.07 0.25 0.18 0

5/3/40 322.23 854.85 0.54 0.16 24.8
5/5/40 283.54 471.01 0.57 0.12 24
5/7/40 274.04 364.35 0.58 0.09 23.8
10/3/40 -47.89 882.1 0.41 0.25 16.8
10/5/40 -217.7 662.29 0.48 0.22 12.8
10/7/40 -285.66 440.86 0.5 0.17 11.2
15/3/40 -229.27 445.05 0.31 0.25 13
15/5/40 -451.85 412.42 0.38 0.28 7
15/7/40 -554.66 356.37 0.42 0.25 3.8
20/3/40 -258.87 413.51 0.24 0.24 12.4
20/5/40 -499.61 428.97 0.29 0.26 6.4
20/7/40 -621.75 296.46 0.32 0.23 2.8

5/3/50 523.22 838.6 0.56 0.14 34
5/5/50 483.47 501.23 0.6 0.11 33
5/7/50 480.54 423.87 0.6 0.08 33
10/3/50 83.03 881.48 0.45 0.23 24.8
10/5/50 -103.95 690.92 0.52 0.19 21
10/7/50 -171.4 484.52 0.54 0.15 18.6
15/3/50 -120.59 488.42 0.34 0.26 20.6
15/5/50 -411.62 493.07 0.43 0.24 13.2
15/7/50 -554.06 375.9 0.47 0.21 9.8
20/3/50 -166.16 443.09 0.27 0.24 19.6
20/5/50 -501.35 454.24 0.34 0.23 11.4
20/7/50 -688.19 338.29 0.38 0.23 6.6
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Table A.3 Results of operator-based relocation problem for large-size instances in
the instance class C

# of V/O/U OV T(s) VU OU #RU
10/5/75 314.59 623.74 0.59 0.15 41.4
10/10/75 250.59 329.38 0.61 0.08 40.6
10/15/75 249.20 326.18 0.61 0.06 40.6
20/5/75 -449.14 535.10 0.44 0.24 24.8
20/10/75 -836.32 356.80 0.52 0.2 15.6
20/15/75 -930.10 300.51 0.54 0.14 13.6
30/5/75 -700.32 508.52 0.32 0.26 20.2
30/10/75 -1221.96 335.64 0.4 0.22 7.2
30/15/75 -1404.92 262.92 0.42 0.18 1.6
40/5/75 -777.66 438.85 0.25 0.24 19.2
40/10/75 -1294.59 277.18 0.3 0.22 5.6
40/15/75 -1467.05 222.79 0.32 0.18 0.4

50/5/75 -837.57 498.22 0.2 0.25 17.8
50/10/75 -1342.71 195.28 0.25 0.22 4.6
50/15/75 -1501.03 123.84 0.26 0.18 0.2
10/5/100 840.28 772.99 0.62 0.1 64.8
10/10/100 791.09 450.59 0.64 0.07 63.8
10/15/100 789.38 429.73 0.64 0.04 63.6
20/5/100 -184.87 538.88 0.5 0.21 42.6
20/10/100 -530.30 318.26 0.56 0.15 36.2
20/15/100 -600.86 288.47 0.58 0.11 34.4
30/5/100 -681.22 478.11 0.39 0.26 32.8
30/10/100 -1325.66 344.07 0.48 0.23 17
30/15/100 -1543.02 301.40 0.51 0.19 11.6
40/5/100 -827.85 467.11 0.3 0.27 30
40/10/100 -1540.87 274.32 0.38 0.24 12.4
40/15/100 -1842.08 253.98 0.42 0.21 4
50/5/100 -934.47 500.13 0.25 0.27 28
50/10/100 -1631.93 265.95 0.31 0.25 10.6
50/15/100 -1916.66 203.51 0.34 0.21 2.2
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Table A.4 Results of hybrid relocation problem for small-size instances in the in-
stance class C

# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
2/1/10 85.64 247.42 0.36 0.22 5 1.8 0.2 0 3
2/2/10 61.86 184.02 0.39 0.14 5.2 1 0 0 3.8
2/3/10 59.82 213.93 0.39 0.1 4.8 1.2 0.4 0 3.6
3/1/10 50.18 335.99 0.29 0.23 4.4 2 0 0 3.6
3/2/10 4.26 318.29 0.35 0.18 3.2 2.4 0.2 0 4.2
3/3/10 -6.33 174.85 0.37 0.14 3 1.8 0.4 0 4.8
4/1/10 31.2 512.59 0.23 0.25 4 2.2 0 0 3.8
4/2/10 -51.09 408.24 0.33 0.2 2 2.4 0.2 0 5.4
4/3/10 -75.43 201.3 0.35 0.18 1.4 1.8 0.2 0 6.6
5/1/10 -13.24 430.13 0.23 0.31 2.6 3.8 0 0 3.6
5/2/10 -81.11 304.63 0.3 0.24 1 2.4 0.2 0 6.4
5/3/10 -100.46 308.44 0.31 0.21 0.6 1.6 0.2 0 7.6
10/1/10 -58.65 401.2 0.13 0.29 1.8 3.8 0.2 0 4.2
10/2/10 -114.09 380.81 0.16 0.24 0.4 2 0.4 0 7.2
10/3/10 -132.83 435.2 0.17 0.19 0 1.6 0.2 0 8.2
2/1/15 146.01 438.69 0.48 0.16 9.2 2.4 1.2 0 2.2
2/2/15 118.53 208.08 0.53 0.12 8.6 1.6 1.4 0 3.4
2/3/15 115.93 176.49 0.53 0.09 8.6 1.4 1.2 0 3.8
3/1/15 88.44 396.41 0.4 0.22 7.4 3.6 0.8 0 3.2
3/2/15 39.78 377.63 0.46 0.15 6.4 2.6 1.8 0 4.2
3/3/15 19.81 208.55 0.49 0.14 6 2.2 1.4 0 5.4
4/1/15 43.4 467.36 0.34 0.25 6 4.8 0.8 0 3.4
4/2/15 -41.5 482.04 0.43 0.2 4 4.6 1.2 0 5.2
4/3/15 -76.47 368.97 0.48 0.18 3.2 3.2 1.8 0 6.8
5/1/15 -7.52 568.07 0.32 0.25 5.2 4.2 0.6 0.2 4.8
5/2/15 -95.49 432.84 0.38 0.22 3.2 3.6 1.6 0 6.6
5/3/15 -130.91 383.89 0.43 0.21 1.8 3.4 1.4 0 8.4
10/1/15 -87.5 502.77 0.19 0.31 3 6.4 0 0.2 5.4
10/2/15 -165.44 492.43 0.23 0.27 0.8 5.4 0.8 0 8
10/3/15 -198.24 565.64 0.24 0.22 0.2 3.6 0.6 0 10.6
15/1/15 -118.06 464.59 0.13 0.3 2.6 6.2 0.2 0 6
15/2/15 -193.6 451.59 0.15 0.25 0.6 5 0.4 0 9
15/3/15 -219.57 380.29 0.16 0.2 0 3.6 0.4 0 11
2/1/20 233.79 293.37 0.57 0.11 13.4 3 1.2 0.4 2
2/2/20 218.63 126.41 0.59 0.07 13 2.2 1.8 0.2 2.8
2/3/20 218.63 105.09 0.59 0.05 13 2.2 1.8 0.2 2.8
3/1/20 151.86 350.2 0.49 0.16 11.6 4.4 0.4 0 3.6
3/2/20 112.25 359.28 0.55 0.14 10.6 2.8 2.2 0 4.4
3/3/20 101.27 173.31 0.55 0.09 10.4 3.2 2.2 0 4.2
4/1/20 93 451.87 0.44 0.23 9.4 5.6 1.4 0 3.6
4/2/20 10.3 458.3 0.51 0.19 7.8 4.4 2.4 0 5.4
4/3/20 -15.74 376.6 0.53 0.14 6.8 4.4 2.4 0 6.4
5/1/20 20.91 612.63 0.39 0.24 7.8 6.4 1.6 0 4.2
5/2/20 -76.71 216.99 0.47 0.22 5.2 5 2.4 0 7.4
5/3/20 -113.58 195.27 0.5 0.19 4.2 4.4 2.6 0 8.8
10/1/20 -110.52 601.31 0.25 0.29 4.6 8.2 1.6 0 5.6
10/2/20 -215.66 486.98 0.29 0.29 2 6 1 0 11
10/3/20 -261.85 451.07 0.31 0.25 0.8 5.6 0.6 0 13
15/1/20 -157.47 597.41 0.18 0.32 3.6 7.6 1.4 0 7.4
15/2/20 -260.77 529.1 0.2 0.26 1.2 5.8 1 0 12
15/3/20 -296.63 365.53 0.22 0.24 0.2 4.6 1 0 14.2
20/1/20 -158.62 608.72 0.13 0.32 3.6 7.8 1.2 0 7.4
20/2/20 -263.67 511.96 0.15 0.26 1.2 5.8 0.8 0 12.2
20/3/20 -300.94 344.13 0.16 0.22 0.2 5.4 0.6 0 13.8
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Table A.5 Results of hybrid relocation problem for medium-size instances in the
instance class C

# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
5/3/30 -21.51 636.22 0.62 0.13 10.8 5.4 4.6 0.4 8.8
5/5/30 -46.38 406.26 0.62 0.09 10.4 5.6 4.8 0.2 9
5/7/30 -47.99 427.16 0.62 0.06 10.4 5.6 4.6 0.2 9.2
10/3/30 -352.14 528.44 0.44 0.21 2.4 9.4 4.2 0 14
10/5/30 -432.47 595.14 0.47 0.17 0.8 6.6 4.2 0 18.4
10/7/30 -461.03 410.76 0.48 0.14 0.4 5.8 3.8 0 20
15/3/30 -442.42 381.34 0.31 0.22 1 8.6 3 0 17.4
15/5/30 -517.88 383.44 0.33 0.18 0 4.6 2.2 0 23.2
15/7/30 -551.21 269.88 0.33 0.15 0 2.4 1.4 0 26.2
20/3/30 -456.41 394.24 0.23 0.24 1.2 6.6 2.2 0 20
20/5/30 -532.79 356.27 0.25 0.18 0 3.8 1.4 0 24.8
20/7/30 -563.9 247.8 0.25 0.15 0 2.4 0.6 0 27
5/3/40 163.85 656.76 0.67 0.1 19 7.6 5.2 0.2 8
5/5/40 133.2 406.14 0.69 0.07 18.6 7.2 5.4 0 8.8
5/7/40 130.65 363.57 0.69 0.05 18.6 7.2 5.4 0 8.8
10/3/40 -297.17 590.31 0.52 0.21 8 11.8 5 0.4 14.8
10/5/40 -405.23 678.33 0.56 0.16 6 9.4 5.4 0.6 18.6
10/7/40 -448.59 425.86 0.58 0.14 5 8.6 6 0.4 20
15/3/40 -497.24 413.39 0.4 0.24 3.6 13.8 3.6 0.2 18.8
15/5/40 -610.25 422.32 0.43 0.21 1.2 9.6 4.8 0 24.4
15/7/40 -665.62 321.61 0.45 0.19 0.4 6.2 3.6 0 29.8
20/3/40 -537.18 380.79 0.31 0.26 3.2 10.4 4 0.2 22.2
20/5/40 -644.84 426.65 0.33 0.22 0.8 7.6 4 0 27.6
20/7/40 -701.51 312.82 0.34 0.19 0 5.8 2.4 0 31.8
5/3/50 342.37 573.03 0.7 0.08 27.8 8.4 6.6 0 7.2
5/5/50 316.09 507.63 0.72 0.06 27.4 7.8 6 0.2 8.6
5/7/50 313.78 391.63 0.72 0.04 27.4 7.8 5.6 0.4 8.8
10/3/50 -236.74 831.35 0.6 0.16 13.8 13.2 7 0.6 15.4
10/5/50 -334.46 696.64 0.63 0.12 12.2 12 6.6 0.8 18.4
10/7/50 -379.46 498.82 0.64 0.11 11 10.8 9 0.4 18.8
15/3/50 -531.56 514.18 0.48 0.22 7.4 16.2 4.4 0.6 21.4
15/5/50 -662.5 476.02 0.51 0.2 4 14 4.8 0.2 27
15/7/50 -736.48 346.87 0.53 0.17 2.2 13.8 4.4 0.4 29.2
20/3/50 -605.8 515.17 0.37 0.27 5 16.2 4.4 0.6 23.8
20/5/50 -747.79 459.63 0.4 0.22 2 14.6 4.6 0 28.8
20/7/50 -825.39 342.56 0.41 0.2 1 10.4 3.2 0 35.4
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Table A.6 Results of hybrid relocation problem for large-size instances in the instance
class C

# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
10/5/75 14.09 689.76 0.72 0.09 30.2 16.6 11.2 0.6 16.4
10/10/75 -17.77 443.07 0.73 0.06 29.8 14.2 11.8 0.6 18.6
10/15/75 -18.48 428.12 0.73 0.03 29.8 13.4 12.6 0.6 18.6
20/5/75 -949.76 502.58 0.55 0.18 8.2 20.6 11.2 0.8 34.2
20/10/75 -1127.33 355.90 0.59 0.14 4.6 18.4 10.2 0.4 41.4
20/15/75 -1183.01 338.53 0.6 0.1 3.4 16.8 10.4 0.2 44.2
30/5/75 -1166.95 470.48 0.4 0.25 4.2 19.6 7.6 0 43.6
30/10/75 -1364.71 364.10 0.42 0.18 1.2 10.8 5.8 0 57.2
30/15/75 -1456.01 316.76 0.43 0.15 0 5 3.8 0 66.2
40/5/75 -1213.99 518.17 0.3 0.25 3.2 19.6 7.2 0 45
40/10/75 -1410.03 354.08 0.32 0.19 0.4 9.8 4 0 60.8
40/15/75 -1497.20 332.17 0.32 0.15 0 3.8 1.6 0 69.6
50/5/75 -1253.66 541.60 0.24 0.25 3 18.2 7.2 0 46.6
50/10/75 -1445.23 243.39 0.26 0.2 0.2 7.8 4.4 0 62.6
50/15/75 -1526.75 189.85 0.26 0.15 0 3.4 1.6 0 70
10/5/100 503.04 820.71 0.74 0.05 50.8 19.2 14.8 0.2 15
10/10/100 478.16 533.24 0.75 0.03 50 18.6 15.6 0.2 15.6
10/15/100 477.80 538.58 0.75 0.02 50 18.6 15.8 0.2 15.4
20/5/100 -789.05 627.02 0.63 0.15 22 28.2 15.8 0.2 33.8
20/10/100 -959.24 475.07 0.66 0.11 17.8 26.4 16.6 0.6 38.6
20/15/100 -1005.23 426.51 0.67 0.08 17.8 25.2 15.8 0.6 40.6
30/5/100 -1404.97 658.95 0.5 0.23 7.8 30.4 11.8 0.4 49.6
30/10/100 -1664.33 549.46 0.54 0.19 3.8 21.8 9 0.6 64.8
30/15/100 -1791.16 530.96 0.55 0.15 2 18.8 8.4 0 70.8
40/5/100 -1526.79 610.08 0.39 0.25 6.4 27 10.8 0.4 55.4
40/10/100 -1800.84 458.98 0.41 0.21 2 17.8 5.4 0.2 74.6
40/15/100 -1935.76 404.15 0.42 0.18 0.2 9.6 3.6 0 86.6
50/5/100 -1591.71 645.80 0.31 0.26 6 25.4 10.2 0.4 58
50/10/100 -1857.22 300.15 0.33 0.22 1.6 14.4 6 0 78
50/15/100 -1987.37 267.42 0.34 0.18 0 7.2 4.2 0 88.6
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Table A.7 Results of operator-based relocation problem for small-size instances in
the instance class UC

# of V/O/U OV T(s) VU OU #RU
2/1/10 162.96 353.06 0.26 0.19 7.2
2/2/10 115.49 221.14 0.4 0.17 6.2
2/3/10 110.22 223.26 0.4 0.11 6
3/1/10 141.5 348.3 0.21 0.23 6.8
3/2/10 70.3 204.43 0.33 0.23 4.8
3/3/10 48.19 208.52 0.39 0.18 4
4/1/10 107.51 392.78 0.19 0.22 6
4/2/10 29.63 248.23 0.28 0.19 4.2
4/3/10 -4.59 310.36 0.34 0.2 2.6
5/1/10 93.28 354.3 0.17 0.25 5.8
5/2/10 3.84 286.34 0.25 0.23 3.4
5/3/10 -43.79 280.02 0.31 0.2 2.2
10/1/10 58.25 355.89 0.09 0.25 5
10/2/10 -37.3 219.17 0.14 0.23 2.8
10/3/10 -94.76 204.52 0.17 0.21 0.8

2/1/15 231.07 397.99 0.39 0.22 10.8
2/2/15 192.91 213.03 0.48 0.15 10
2/3/15 186.34 216.64 0.48 0.09 10
3/1/15 215.14 441.03 0.28 0.26 10.4
3/2/15 142.84 242.55 0.4 0.21 8.4
3/3/15 111.93 211.97 0.45 0.17 7.6
4/1/15 185.87 464.39 0.24 0.3 9.6
4/2/15 87.6 277.93 0.35 0.22 7.4
4/3/15 35.88 257.21 0.42 0.21 5.8
5/1/15 169.73 509.06 0.2 0.22 9.6
5/2/15 48.99 301.87 0.3 0.22 7
5/3/15 -13.93 275.7 0.37 0.22 4.8
10/1/15 104.75 442.42 0.12 0.22 8.6
10/2/15 -25.03 231.1 0.18 0.26 5.4
10/3/15 -102.6 195.6 0.22 0.24 3.2
15/1/15 77.63 448.39 0.09 0.24 8.2
15/2/15 -56.67 522.98 0.13 0.25 4.8
15/3/15 -151.8 414.27 0.16 0.24 2.4

2/1/20 367.25 494.62 0.39 0.21 15.4
2/2/20 318.49 210.37 0.5 0.12 15
2/3/20 316.53 214.19 0.5 0.08 14.8
3/1/20 341.56 526.2 0.31 0.23 15
3/2/20 257.4 212.25 0.43 0.19 13.2
3/3/20 219.09 195.09 0.49 0.13 12.8
4/1/20 314.82 571.98 0.26 0.26 14.4
4/2/20 183.64 265.88 0.4 0.2 12
4/3/20 130.72 282.23 0.46 0.18 10.4
5/1/20 296.18 592.43 0.21 0.24 14.2
5/2/20 146.09 317.42 0.34 0.2 11
5/3/20 58.04 294.74 0.43 0.2 9
10/1/20 191.4 527.33 0.14 0.25 12.4
10/2/20 33.36 257.61 0.22 0.27 8.6
10/3/20 -74.49 213.05 0.27 0.25 6
15/1/20 143.74 516.23 0.11 0.28 11.6
15/2/20 -23.08 586.6 0.16 0.28 8.2
15/3/20 -148.09 428.88 0.2 0.28 4.8
20/1/20 143.52 550.83 0.08 0.29 11.6
20/2/20 -25.75 112.31 0.12 0.31 7.8
20/3/20 -157.19 222.56 0.15 0.29 4.6
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Table A.8 Results of operator-based relocation problem for medium-size instances
in the instance class UC

# of V/O/U OV T(s) VU OU #RU
5/3/30 275.01 290.4 0.46 0.18 18.2
5/5/30 216.12 275.44 0.52 0.13 17.4
5/7/30 205.51 208.26 0.52 0.1 17.2
10/3/30 58.96 229.39 0.32 0.27 13
10/5/30 -130.13 606.4 0.4 0.22 9.2
10/7/30 -211.37 480.12 0.44 0.2 7.2
15/3/30 -35.08 490.4 0.24 0.29 11
15/5/30 -254.88 492.58 0.31 0.26 6.2
15/7/30 -360.91 451.91 0.34 0.23 3.2
20/3/30 -50.99 254.43 0.18 0.29 10.8
20/5/30 -274.41 313.22 0.24 0.27 5.4
20/7/30 -384.33 298.44 0.26 0.23 2.6

5/3/40 462.86 299.74 0.51 0.16 26.8
5/5/40 407.4 252.66 0.54 0.1 26
5/7/40 400.31 217.48 0.54 0.07 25.6
10/3/40 154.95 224.67 0.37 0.25 19.6
10/5/40 -64.23 556.19 0.47 0.2 16
10/7/40 -152.65 451.41 0.51 0.17 14
15/3/40 -4.9 485.59 0.29 0.3 16.2
15/5/40 -260.23 498.45 0.37 0.25 11.2
15/7/40 -407.34 500.11 0.42 0.24 6.8
20/3/40 -35.56 252.59 0.22 0.31 16.2
20/5/40 -290.3 347.07 0.28 0.27 10.6
20/7/40 -458 336.07 0.32 0.26 5.8

5/3/50 666.93 308.38 0.54 0.13 35.2
5/5/50 627.72 266.87 0.57 0.09 34.8
5/7/50 621.87 238.82 0.57 0.06 34.8
10/3/50 243.74 257.75 0.43 0.22 27.6
10/5/50 58.83 515.74 0.51 0.19 23.4
10/7/50 -0.72 488.66 0.53 0.14 22.8
15/3/50 19.13 562.52 0.34 0.27 23
15/5/50 -265.17 584.18 0.43 0.24 17
15/7/50 -399.9 546.3 0.47 0.22 13.2
20/3/50 -29.4 298.16 0.27 0.28 22
20/5/50 -335.22 403.57 0.34 0.27 15
20/7/50 -521 361.72 0.38 0.25 10
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Table A.9 Results of operator-based relocation problem for large-size instances in
the instance class UC

# of V/O/U OV T(s) VU OU #RU
10/5/75 510.26 582.36 0.56 0.14 44.8
10/10/75 451.20 481.66 0.59 0.08 43.4
10/15/75 449.37 421.74 0.59 0.05 43.4
20/5/75 -217.40 459.41 0.42 0.27 29.8
20/10/75 -589.07 385.13 0.51 0.2 21.8
20/15/75 -718.50 311.22 0.53 0.15 19.6
30/5/75 -490.95 611.64 0.32 0.28 24.2
30/10/75 -1036.55 387.18 0.4 0.26 11
30/15/75 -1269.92 207.33 0.44 0.21 4.8
40/5/75 -569.72 599.85 0.24 0.3 23
40/10/75 -1144.87 283.19 0.31 0.26 9
40/15/75 -1372.44 178.80 0.33 0.21 3
50/5/75 -606.26 503.67 0.2 0.28 22.2
50/10/75 -1213.32 300.63 0.25 0.24 7.8
50/15/75 -1435.57 158.82 0.27 0.2 1.8

10/5/100 840.28 772.99 0.61 0.13 64.8
10/10/100 791.09 450.59 0.62 0.06 63.8
10/15/100 789.38 429.73 0.62 0.04 63.6
20/5/100 -184.87 538.88 0.5 0.24 42.6
20/10/100 -530.30 318.26 0.56 0.16 36.2
20/15/100 -600.86 288.47 0.58 0.11 34.4
30/5/100 -681.22 478.11 0.39 0.28 32.8
30/10/100 -1325.66 344.07 0.48 0.24 17
30/15/100 -1543.02 301.40 0.51 0.19 11.6
40/5/100 -827.85 467.11 0.31 0.28 30
40/10/100 -1540.87 274.32 0.38 0.26 12.4
40/15/100 -1842.08 253.98 0.42 0.22 4
50/5/100 -934.47 500.13 0.25 0.27 28
50/10/100 -1631.93 265.95 0.31 0.25 10.6
50/15/100 -1916.66 203.51 0.34 0.22 2.2
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Table A.10 Results of hybrid relocation problem for small-size instances in the in-
stance class UC

# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
2/1/10 112.07 329.63 0.4 0.25 5.6 1.8 1 0 1.6
2/2/10 74.61 141.32 0.49 0.18 4.8 1 1 0 3.2
2/3/10 67.02 137.35 0.49 0.12 4.8 1 1 0 3.2
3/1/10 83.86 340.62 0.31 0.26 4.6 2.2 1 0 2.2
3/2/10 31.97 260.29 0.4 0.23 3.4 1.8 1 0 3.8
3/3/10 2.5 113.11 0.43 0.16 2.8 1.4 1 0 4.8
4/1/10 50.1 339.53 0.26 0.25 4.2 2.2 1 0 2.6
4/2/10 -9.33 223.16 0.35 0.25 2.6 2 0.8 0 4.6
4/3/10 -38.06 296.22 0.39 0.2 1.8 1.2 0.8 0 6.2
5/1/10 25.96 431.17 0.23 0.26 3.6 2.6 0.8 0 3
5/2/10 -46.6 295.52 0.31 0.25 1.6 2.2 1.2 0 5
5/3/10 -79.2 295.42 0.34 0.21 1 1 0.8 0 7.2
10/1/10 -12.97 394.72 0.12 0.24 3.2 2 1 0 3.8
10/2/10 -89.18 246.4 0.17 0.2 1 2.8 0.8 0 5.4
10/3/10 -126.4 188.9 0.18 0.18 0.2 1.8 0.8 0 7.2
2/1/15 194.05 425.88 0.46 0.19 9.8 1 1.4 0 2.8
2/2/15 157.69 172.8 0.52 0.13 9 0.8 1 0 4.2
2/3/15 154.76 180.84 0.54 0.09 9 0.6 1.4 0 4
3/1/15 162.66 455.65 0.37 0.26 9 1.4 1.2 0 3.4
3/2/15 97.22 237.65 0.45 0.2 7.2 1.6 1.4 0 4.8
3/3/15 71.81 184.13 0.5 0.16 6.8 1 1.6 0 5.6
4/1/15 108.13 489.42 0.32 0.25 7.6 2 1.8 0 3.6
4/2/15 34.18 207.28 0.41 0.24 5.6 2 1.2 0 6.2
4/3/15 6.84 246.24 0.44 0.18 5.2 1 1.2 0 7.6
5/1/15 71.53 535.07 0.28 0.26 7 2.8 1.4 0 3.8
5/2/15 -15.88 275.05 0.37 0.27 4.4 2.8 1.2 0 6.6
5/3/15 -54.47 303.33 0.41 0.21 3.6 2 1 0 8.4
10/1/15 2.2 458.89 0.17 0.3 5.2 3.8 1 0 5
10/2/15 -93.45 266.08 0.22 0.25 2.8 3.2 2 0 7
10/3/15 -151.69 170.58 0.25 0.24 1 3 1.6 0 9.4
15/1/15 -35.77 378.08 0.12 0.28 4.8 3.2 2 0 5
15/2/15 -129.12 516.04 0.15 0.26 2.2 4.2 1.2 0.2 7.2
15/3/15 -190.07 338.3 0.17 0.24 0.4 3 1.2 0 10.4
2/1/20 291.37 520.46 0.56 0.11 13.6 2.6 1.2 0.2 2.4
2/2/20 263.03 208.84 0.61 0.09 13.2 1.8 1.2 0 3.8
2/3/20 263.03 202.42 0.61 0.06 13.2 1.8 1.2 0 3.8
3/1/20 221.94 566.52 0.48 0.2 12.4 2.4 1.6 0.2 3.4
3/2/20 171.56 253.5 0.55 0.13 11.2 2.6 1.6 0.2 4.4
3/3/20 156.94 186.54 0.57 0.11 10.6 2.8 1.2 0.2 5.2
4/1/20 161.34 588.95 0.43 0.24 11 3.2 1.2 0.2 4.4
4/2/20 85.15 263.52 0.5 0.18 9 3.8 1.4 0.2 5.6
4/3/20 63.22 230.95 0.54 0.16 8.8 2.6 1.8 0 6.8
5/1/20 106.68 567.33 0.38 0.24 9.6 4.6 1.4 0.4 4
5/2/20 22.3 313.63 0.47 0.19 7.6 5.2 1.2 0.2 5.8
5/3/20 -15.68 322.93 0.5 0.16 6.8 4.8 1.4 0.2 6.8
10/1/20 3.27 610.2 0.23 0.27 7.6 4.8 2.4 0 5.2
10/2/20 -113.3 270.5 0.29 0.27 4.4 5.8 1.6 0 8.2
10/3/20 -181.02 214.44 0.33 0.27 2.4 5.2 1.4 0 11
15/1/20 -41.71 612.8 0.17 0.32 6.2 6.4 1.4 0.4 5.6
15/2/20 -158.81 573.14 0.21 0.28 3 6.8 2 0.4 7.8
15/3/20 -235.16 416.07 0.23 0.26 1.8 4 1.8 0 12.4
20/1/20 -45.58 493.62 0.12 0.32 6.2 6.2 1.4 0.2 6
20/2/20 -166.68 145.3 0.15 0.29 3.2 6.8 1.6 0.2 8.2
20/3/20 -240.49 215.97 0.17 0.28 1.8 3.4 2 0 12.8
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Table A.11 Results of hybrid relocation problem for medium-size instances in the
instance class UC

# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
5/3/30 158.92 365.09 0.57 0.17 14.2 5 1.8 0.6 8.4
5/5/30 122.14 320.3 0.59 0.1 13.8 4.6 3 0.2 8.4
5/7/30 115.94 294.92 0.59 0.08 13.2 4.8 2.8 0.2 9
10/3/30 -139.53 242.92 0.41 0.24 7.4 7.6 2 0.2 12.8
10/5/30 -243.64 589.26 0.46 0.2 5.4 6.4 3.4 0 14.8
10/7/30 -290.69 498.94 0.48 0.16 4.4 4.8 3.6 0 17.2
15/3/30 -240.58 556.14 0.31 0.28 4.8 9.4 2.6 0 13.2
15/5/30 -358.19 524.23 0.34 0.23 2.4 6.8 2.8 0.2 17.8
15/7/30 -420.56 458.98 0.36 0.2 1.2 5.6 1.8 0 21.4
20/3/30 -251.09 275.16 0.23 0.28 5.2 8.4 2.6 0 13.8
20/5/30 -378.35 334.02 0.26 0.24 2 6.6 2.6 0 18.8
20/7/30 -443.8 309.94 0.27 0.21 0.6 5.2 1.6 0 22.6
5/3/40 311.91 334.14 0.64 0.11 22.2 7.6 2.2 0.2 7.8
5/5/40 293.05 324.31 0.63 0.07 22 6 2.8 0 9.2
5/7/40 288.72 269.6 0.63 0.05 22 6 2.8 0 9.2
10/3/40 -144.83 265.38 0.51 0.19 11.8 10 3.8 0.2 14.2
10/5/40 -244.49 595.65 0.55 0.17 9.8 10 3.6 0.4 16.2
10/7/40 -286.86 459.74 0.56 0.13 9.2 7.4 4.8 0.4 18.2
15/3/40 -335.98 613.5 0.39 0.26 7.8 10.6 3.8 0.2 17.6
15/5/40 -471.29 526.54 0.43 0.24 4.4 7.6 5 0.2 22.8
15/7/40 -541.61 537.26 0.46 0.2 2.6 8 3.8 0.2 25.4
20/3/40 -361.58 333.77 0.3 0.29 6.8 12 3.6 0.2 17.4
20/5/40 -509.87 347.72 0.34 0.25 3 9.4 4 0 23.6
20/7/40 -588.69 363.42 0.35 0.22 1.6 8 3 0 27.4
5/3/50 521.1 331.29 0.66 0.1 31.2 6.8 2.2 0.2 9.6
5/5/50 502.18 306.49 0.68 0.07 30.8 6.2 3.2 0.2 9.6
5/7/50 499.71 266.87 0.68 0.05 30.8 6.2 3.2 0.2 9.6
10/3/50 -40.64 262.84 0.56 0.17 18.4 11.8 4.8 0 15
10/5/50 -127.53 577.6 0.59 0.14 16.8 11.2 4.8 0.2 17
10/7/50 -160.79 501.02 0.61 0.12 16 10.8 5.2 0.2 17.8
15/3/50 -353.86 603.37 0.46 0.26 11.6 13.4 4.6 0.2 20.2
15/5/50 -483.74 645.53 0.51 0.21 8.8 13.8 5.2 0 22.2
15/7/50 -553.57 526.57 0.52 0.18 7.8 9.8 5.8 0 26.6
20/3/50 -422.97 335.66 0.36 0.29 9.6 15.6 4.6 0 20.2
20/5/50 -586.53 419.96 0.4 0.25 5.6 14.4 6 0 24
20/7/50 -688.25 393.44 0.43 0.23 3.2 12.6 4.4 0 29.8
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Table A.12 Results of hybrid relocation problem for large-size instances in the in-
stance class UC

# of V/O/U OV T(s) VU OU #RU OC DC ODC NC
10/5/75 254.33 537.02 0.67 0.09 36.4 10.6 8.8 0.4 18.8
10/10/75 224.84 503.90 0.69 0.06 35.4 11 9.6 0.2 18.8
10/15/75 223.85 442.97 0.69 0.04 35.4 11 9.6 0.2 18.8
20/5/75 -620.11 496.85 0.52 0.24 16.8 16 9.2 0 33
20/10/75 -828.79 397.65 0.57 0.16 12.4 13.8 9.2 0.2 39.4
20/15/75 -917.14 338.16 0.58 0.12 11.4 11.4 8.2 0 44
30/5/75 -922.23 601.92 0.39 0.29 10 18.4 6.6 0.2 39.8
30/10/75 -1225.60 336.73 0.44 0.23 3.2 13.6 7 0 51.2
30/15/75 -1363.43 219.61 0.45 0.18 1 7.8 5.8 0 60.4
40/5/75 -1021.25 572.95 0.3 0.28 8.8 17.8 6.8 0 41.6
40/10/75 -1308.28 316.13 0.33 0.23 2.6 10.8 5.8 0 55.8
40/15/75 -1437.70 204.48 0.34 0.18 0.4 6.4 4.6 0 63.6
50/5/75 -1070.65 560.63 0.24 0.29 8 16.6 6.6 0 43.8
50/10/75 -1366.14 299.12 0.27 0.22 2 10 5.4 0 57.6
50/15/75 -1487.49 185.32 0.27 0.18 0 5.4 3.4 0 66.2
10/5/100 748.62 599.81 0.71 0.06 57 13.2 10.2 0.2 19.4
10/10/100 729.11 530.59 0.72 0.04 56.8 11.6 11.8 0.2 19.6
10/15/100 729.11 483.29 0.72 0.03 57 10.6 11.8 0.2 20.4
20/5/100 -497.09 520.45 0.6 0.17 30.4 20 14.6 0 35
20/10/100 -653.85 459.43 0.63 0.11 27.4 16 15.2 0 41.4
20/15/100 -723.05 389.60 0.65 0.09 26 17.2 13.4 0.4 43
30/5/100 -1094.42 657.47 0.49 0.27 18.2 22 9.6 0.4 49.8
30/10/100 -1417.40 398.57 0.53 0.2 10.2 21.2 10.8 0 57.8
30/15/100 -1590.16 256.56 0.56 0.16 7 20.2 9.4 0 63.4
40/5/100 -1260.39 680.24 0.38 0.28 14.6 24.2 9.6 0 51.6
40/10/100 -1627.54 374.44 0.42 0.23 6.4 17.8 8.2 0 67.6
40/15/100 -1815.47 228.56 0.44 0.19 3 11.8 7 0 78.2
50/5/100 -1371.77 640.15 0.31 0.28 13.2 23.4 8.4 0 55
50/10/100 -1729.31 356.00 0.34 0.22 5.4 17.2 7.6 0 69.8
50/15/100 -1905.50 199.14 0.35 0.19 2.6 10.2 5.6 0 81.6
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