COMBINATORIAL INTERACTION TESTING-BASED DAILY
BUILD PROCESS

by
GULSUM UZER

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of the requirements for the degree of

Master of Science

Sabanci1 University
September 2020

COMBINATORIAL INTERACTION

TESTING-BASED DAILY BUILD PROCESS

APPROVED BY:

Assoc. Prof. Dr. Cemal Yilmaz
(Thesis Supervisor)

Assoc. Prof. Dr. Hiisnii Yenigiin

Assoc. Prof. Dr. Hasan Sozer T o A <N

DATE OF APPROVAL: 02.09.2020

GULSUM UZER 2020 ©

All Rights Reserved

ABSTRACT

COMBINATORIAL INTERACTION TESTING-BASED DAILY BUILD
PROCESS

GULSUM UZER
Computer Science and Engineering, MS THESIS, SEPTEMBER. 2020

Thesis Supervisor: Assoc. Prof. Dr. Cemal Yilmaz

Keywords: Combinatorial Interaction Testing, Daily Build Processes, Covering

Arrays, Software Quality Assurance, Software Engineering

A daily build process is a process where the latest version of a software under de-
velopment is obtained from its code repository on a daily basis (typically during
off-work hours), configured, built, and tested against a test suite. The ultimate goal
of this process is to reveal defects in the most fundamental functionalities of the
system as soon as they are introduced into the codebase, so that the turnaround
time for fixing them is reduced as much as possible. In this work, we first introduce
combinatorial interaction testing-based daily build process where a combinatorial
object is computed to systematically test the interactions between system param-
eters on a daily basis. We then introduce a number of different testing strategies
and empirically demonstrate that the proposed approach profoundly improves the
effectiveness of the standard daily build processes.

v

OZET

KOMBINATORYAL ETKILESIM TEST TABANLI GUNLUK DERLEME
SURECI

GULSUM UZER
Bilgisayar Bilimi ve Miihendisligi, YUKSEK LISANS TEZI, EYLUL 2020

Tez Danigmani: Assoc. Prof. Dr. Cemal Yilmaz

Anahtar Kelimeler: Kombinatoryal etkilegim testi, Kongigiirasyon segenekleri,

Giinliik Yapilandirma, Ortme Dizileri, Yazilim Kalite Giivencesi

Giinliik derleme siireci, geligtirilmekte olan bir yazilimin en son siiriimiiniin kod
havuzundan giinliik olarak (genellikle calisma saatleri diginda) alindigi, yapi-
landirildigl, derlendigi ve bir test paketine gore test edildigi bir siirectir. Bu
siirecin nihai amaci, sistemin en temel iglevlerindeki kusurlar1 kod tabanina dahil
edilir edilmez ortaya c¢ikarmaktir, boylece bunlar1 diizeltmek icin geri doniig siiresi
miimkiin oldugunca kisalir. Bu ¢aligmada, ilk olarak, giinliik bazda sistem parame-
treleri arasindaki etkilegimleri sistematik olarak test etmek igin bir kombinatoryal
nesnenin hesaplandigi kombinatoryal etkilesim testi tabanl giinliik derleme stirecini
sunuyoruz. Ardindan bir dizi farkli test stratejisi ortaya koyuyoruz ve deneysel
olarak onerilen yaklagimin standart giinliik derleme siireclerinin etkinligini derin-
lemesine artirdigini gosteriyoruz.

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my advisor Assoc. Prof. Dr. Cemal

Yilmaz for his support, guidance and in-depth knowledge.

I also would like to thank Hanefi Mercan for sharing the knowledge, insightful com-

ments and experience with me.

I am indebted to my big family who always stand by me, made me feel their endless

love, support and encourage me in all areas of my life, regardless of blood ties.

vi

For my life
that comes with all kinds of difficulties and beauty

vii

TABLE OF CONTENTS

LIST OF TABLES ... e
List of Figures xii
1. INTRODUCTION. ... e 1
1.1, Contributionso.oui i 3
1.2. Organization Of The Thesis ..., 3

2. BACKGROUND INFORMATION 5
2.1. Combinatorial Interaction Testingo, 5
2.2. Configuration Space Model 6
2.3. Traditional Covering ATTaYuuiriiii i 6
2.4, SEAS . ot 8
2.5. Method of Constructing Covering Array...................oooiiii... 9
2.6. Daily Build 10
2.7. Coverage Metrics 11
2.7.1. Line and Instruction Coveragec.cooiiiiiiiiiin... 11

2.7.2. Branch Coverageouiiiiiiiiiiiiiiiii 12

2.7.3. Method Coveragec.oouiuiiiiiiiiiiiiiiiian.. 12

2.7.4. Complexityouii 12

3. APPROACH ... 13
3.1. Combinatorial Interaction Testing Strategies 14
311, Strategy 1 .o 14

3.1.20 Strategy 2 ..o 15

3.1.3. Strategy 3 ..o 15

314, Strategy 4 oo 16

3.1.5. Implementation 17

4. EXPERIMEN TS .. 20
4.1. Subject Applications........ ... 20

4110 SUbDJeCtS oo 20

4.1.2. Test SUItes ...t 21

4.1.3. Configuration Space Model 21

4.1.4. Time Intervals....... ... 22

4.2. Evaluation Framework 23
4.3. Operational Framework.......... 24
4.4. Data and Analysis ... 24
441, DiSCUSSION .ottt e 32

5. THREATS TO VALIDITY ... e 33
6. RELATED WORK e 34
6.1. Configuration Space Model i 34
6.2. COVETING ATTAY ...\ttt 35
0.3, SEOAS . .ttt 36
6.4. Daily Build 37

7. CONCLUDING REMARKS 38
8. FUTURE WORK 40
BIBLIOGRAPHY ... 41

iX

LIST OF TABLES

Table 2.1. Total combinations for 3 options
Table 2.2. For 3 options, 2-way CA
Table 2.3. For 3 options, 2-way CA with constraint........................

Table 4.1. Configuration space model used for Apache JSPWiki.
Table 4.2. Configuration space model used for Apache HBase.
Table 4.3. An example of test case and distinct error pair
Table 4.4. JSPWiki: Results obtained from the standard daily build pro-
cess where the default configuration of the SUD is used every day. ...
Table 4.5. JSPWiki: Results obtained from Strategy 1 for the first exper-
imental Setup.o
Table 4.6. JSPWiki: Results obtained from Strategy 1 for the second
experimental Setup. ...
Table 4.7. JSPWiki: Results obtained from Strategy 2 for the first exper-
imental SetUp.o
Table 4.8. JSPWiki: Results obtained from Strategy 2 for the second
experimental Setup.
Table 4.9. JSPWiki: Results obtained from Strategy 3 for the first exper-
imental Setup.
Table 4.10. JSPWiki: Results obtained from Strategy 3 for the second
experimental Setup.
Table 4.11. JSPWiki: Results obtained from Strategy 4 for the first exper-
imental setup.
Table 4.12. JSPWiki: Results obtained from Strategy 4 for the second
experimental setup. ...
Table 4.13. JSPWiki: Overall results obtained from various strategies un-
der different experimental setups............
Table 4.14. HBase: Results obtained from the standard daily build process
where the default configuration of the SUD is used every day.

21
22
24

26

27

28

28

29

Table 4.15. HBase: Results obtained from Strategy 1 for the first experi-
mental setup. ... 29

Table 4.16. HBase: Results obtained from Strategy 1 for the second exper-

imental SetUup.o 29
Table 4.17. HBase: Results obtained from Strategy 2 for the first experi-
mental setup. ... 29

Table 4.18. HBase: Results obtained from Strategy 2 for the second exper-

imental setup. 29
Table 4.19. HBase: Results obtained from Strategy 3 for the first experi-
mental Setup. ... 30

Table 4.20. HBase: Results obtained from Strategy 3 for the second exper-

imental Setup. 30
Table 4.21. HBase: Results obtained from Strategy 4 for the first experi-

mental Setup. ... 30
Table 4.22. HBase: Results obtained from Strategy 4 for the second exper-

imental Setup.o 30

Table 4.23. HBase: Overall results obtained from various strategies under

different experimental setups.......... 30

xi

Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.

List of Figures

The high level architecture of the CIT-daily framework........ 17
The SUD adaptor interface. 18
The covering array generator adaptor interface. 18
The strategy adaptor interface. 18

xii

LIST OF ABBREVIATIONS

CIT : Combinatorial Interaction Testing 1
HCS : Highly Configurable Systems 1
CA 1 Covering ATTAY ...ttt e e 7
MCA : Mixed Covering ATTayouronem e 7
VSCA : Variable Strength Covering Arrayccciiiiiiiiiiiiiiin .. 7
SUD : Software Under Development 13
OPAT : One Parameter At A Time ... 41
OTAT : One Test At A Time ... e 41
GUI : Graphical User Interface i 43
CI : Continuous Integration i 43

xiil

1. INTRODUCTION

A daily build process is a process where the latest version of a software under
development is obtained from its code repository on a daily basis (typically during
off-work hours), configured, built, and tested against a test suite. The ultimate goal
of this process is to reveal the defects in the most fundamental functionalities of the
system as soon as they are introduced into the codebase, so that the turnaround time
for fixing them is reduced as much as possible. Consequently, daily build processes
have been extensively used for testing software systems (Karlsson, Andersson &
Leion, 2000), (Memon, Banerjee, Hashmi & Nagarajan, 2003), (McConnell, 1996).

One thing we observe, however, is that when it comes to the systematic testing
of configurable software systems, the daily build processes are often carried out
by testing the same set of pre-defined configurations every day. In this thesis, we
conjecture that the effectiveness of the daily build processes can significantly be
improved, if the interactions between configuration options are systematically tested

throughout the process.

We, in particular, introduce combinatorial interaction testing-based daily build pro-
cess, in short CIT-daily. CIT-daily systematically sample the configuration space of

the system and test only the selected configurations on a daily basis.

At a very high level, the CIT-daily process can be summarized as follows: 1) get the
latest version of the SUD; 2) systematically sample the configuration space, which
will simply produce a set of configurations to be tested; and 3) configure, build,
and run the SUD’s test suite on each and every configuration selected. Note that
this process (i.e., the steps discussed above) is carried out every day. Note further
that although we, in the thesis, are mainly concerned with configurable systems, the
proposed approach can readily be applicable to other types of systems as long as
these systems have multiple interacting parameters, which is basically the case in
almost all the software systems. In this context, a parameter is defined as a factor
that can either be directly or indirectly set and that can change the behavior of the

SUD. For example, configuration options, input parameters, and events in event-

based systems can all be considered to be parameters, the interactions of which can
be tested by CIT-daily (Cohen, Colbourn & Ling, 2008).

CIT-daily leverages one of the most frequently used combinatorial objects for testing,
namely covering arrays, to systematically sample the configuration spaces (Yilmaz,
Fouche, Cohen, Porter, Demiroz & Koc, 2013).

A covering array takes as input a configuration space model, which specifies a valid
configuration space for testing. More specifically, the model includes a set of configu-
ration options (or parameters in general), their settings, and inter-option constraints
(if any, as not all possible combinations of option settings may be valid in practice).
Given a configuration space model and a coverage strength ¢, a t-way covering array
is a set of configurations, in which each possible combination of option settings for
every combination of ¢ options appears at least once (Yilmaz, 2012) (Fouché, Cohen
& Porter, 2009).

The justification for using t-way covering arrays is that (under certain assumptions)
they can efficiently and effectively reveal all system failures caused by the inter-
actions of ¢ or fewer parameters (Yilmaz et al., 2013). Furthermore, many of the
empirical studies strongly suggest that a majority of the configuration option-related
failures are caused by the interactions of a small number of options. That is, ¢ is quite
small in practice, compared to the number of configuration options. And, when ¢ is
fixed, as the number of configuration options increase, the size of a covering array
represents an increasingly smaller portion of the entire configuration space. Con-
sequently, covering arrays have been extensively used for revealing option-related
failures in an efficient and effective manner (Yilmaz et al., 2013) (Cohen, Dalal,
Fredman & Patton, 1997) (Czerwonka, 2008) (Yilmaz, 2012) (Cohen et al., 2008).

In this thesis, to the best of our knowledge, we for the the first time leverage covering
arrays in daily build processes. To this end, we have, indeed, developed a number of
strategies (Section 3.1). The first strategy simply uses the same t-way covering array
every day, where ¢ is an input to the strategy (Section 3.1.1). The second strategy
computes a different t-way covering array to be tested every day (Section 3.1.2).
The remaining strategies aims to obtain t’-way coverage over time by testing a ¢-
way covering array every day. In particular, the third strategy computes a number of
t-way covering arrays every day and among these covering arrays picks the one that
covers the most number of previously uncovered t'-tuples for testing, where both ¢
and ¢’ are inputs to the strategy (Section 3.1.3). The fourth strategy guarantees to
achieve t’-way coverage in n days by testing t-way covering arrays every day, where
t, t', and n are inputs to the strategy (Section 3.1.4). Furthermore, as a de facto

strategy (the strategy which has been frequently employed in the field), we use the
2

default configurations of our subject applications every day for testing.

To evaluate the proposed approach we carried out a series of experiments (Section
4). In these experiments, we used well-known configurable systems as subject ap-
plications and evaluated the results in a multifaceted manner. In particular, we
compared different strategies by counting distinct errors, distinct test case and error
pairs, tests runs, tests failures, and test skips and by also measuring the structural

code coverage obtained.

The results of these studies strongly suggest that the proposed approach signifi-
cantly improves the effectiveness of the daily build process. For example, for one
subject application, the fourth strategy revealed 11 distinct errors, while the de
facto strategy and the first strategy revealed 0 and 4 distinct errors, respectively.
For another subject application, the de facto strategy, and the first strategy, and

the fourth strategy revealed 1, 2, and 7 distinct errors, respectively.

1.1 Contributions

The contributions of this thesis can be summarized as follows:

e introduction of the combinatorial interaction testing-based daily build process,

namely CIT-daily,
e a number of strategies to further improve the effectiveness of the process,

e an extensible framework for CIT-daily, which be enhanced with alternative

strategies,

e empirical evaluations on well-known configurable systems.

1.2 Organization Of The Thesis

The remainder of the document is organized as follows: Chapter 2 provides back-

ground information on combinatorial interaction testing and on standard daily build

processes; Chapter 3 introduces the proposed approach as well as the different strate-
gies developed; Chapter 4 presents the empirical studies; Chapter 5 discusses threats
to validity; Chapter 6 discusses related work; Chapter 7 presents concluding remarks;

and Chapter 8 concludes with some future work ideas.

2. BACKGROUND INFORMATION

This chapter gives detailed information about concepts as combinatorial interaction
testing, configuration space model, traditional covering arrays, seeding, method of
constructing covering array, daily build process and also coverage metrics that were

used in the thesis.

2.1 Combinatorial Interaction Testing

Many software applications are supported from testing process by containing large
number of test cases to find failures in development process but each defined test
cases in suite is not effective as expected to reveal failures. Instead of test cases, pa-
rameters for them become more important to get different failures and most software
applications have remarkable number of parameters to be used in predetermined
their own test suites (Simos, Zivanovic & Leithner, 2019)(Ahmed, Abdulsamad &
Potrus, 2015).

This case has triggered to have large combination space consisting of interaction
among parameters and it needs exhaustive testing to consider each of them. How-
ever, to use each parameter in different combination with others for testing process
is not practical in case of limited resources. Besides this state, each parameter also
has not revealed any software failure. However, most empirical studies show that

the interaction between parameters has caused different software failures (Kuhn,

Kacker, Lei & Hunter, 2009) (Yilmaz, 2012).

In this perspective, combinatorial interaction testing (CIT) have emerged as a new
method. It offers to get more benefit from testing process of software system by
detecting different software failures as early as possible and use limited time and
resources efficiently (Schmidt & Kruse, 2020). The key insight of the method is to

provide combinations of parameters as input to predetermined test suite. Thus, it
becomes possible to detect failures triggered by interaction of parameters at early
stage with using few resources by processing smaller test suite of the subject appli-
cation (Nie & Leung, 2011).

2.2 Configuration Space Model

Configuration space model is model file for combinatorial interaction testing. It
is used in generating covering array. In general, it includes configuration options,
their settings and in case of existing, it also includes valid constraints. It serves
creating configurations to be used in predetermined test cases as input. If any
constraints exist, the set of configurations in produced covering array do not violate
this constraint. Thus, the model is created carefully. Incorrect configuration space
model causes misuse of resources for testing subject application and gives inaccurate
results (Yilmaz et al., 2013).

This model is typically formed by developers, domain or test experts by analyzing
not only business side of the application but also source code manually. This pro-
cess is important to know impact of each configuration option on subject application
(Ahmed, Gargantini, Zamli, Yilmaz, Bures & Szeles, 2019). After this analysis, the
model should have only crucial configuration options, not all because as the number
of configuration options increase in the model by including unnecessary configura-
tion, the efficiency of the combinatorial interaction testing method decreases. The
reason of it is that the size of covering array is depend on the number of configu-
ration defined in the model. In case of existing more configuration options in the
model, more configuration will be produced for covering array. Also, there will be

unnecessary or ineffective configurations.

2.3 Traditional Covering Array

Traditional covering array that is a set of configurations is created from the informa-

tion placed in configuration space model. Each row of the covering array represents

6

one configuration as a set of parameter values for testing process of subject applica-
tion. It also called as t-way covering array and t generally refers coverage strength
(Yilmaz, 2012) (Schmidt & Kruse, 2020). The term means that every possible com-
bination of t options in configuration space model appears at least once in t-way

covering array.

For instance, there are 2 options with setting level of 2 and 1 options with setting
level of 3. In general way, there should be totally 12 configurations to cover all
relationship of options. However in 2-way covering array, only 6 configurations
are enough to cover all 2-way combinations of three options for exhaustive testing.
It means that any selected two columns contain all combinations for specific two
options placed in selected columns (Nie & Leung, 2011). This state is figured in
Table 2.1 and Table2.2 .

Table 2.1 Total combinations for 3 options

optionl | option2 | option3

True |1 False Table 2.2 For 3 options, 2-way CA
True 1 True

True 2 False optionl | option2 | option3
True 2 True True 1 False
True 3 False False 3 True
True 3 True False 2 False
False 1 False True 2 True
False 1 True False 1 True
False 2 False True 3 False
False 2 True

False 3 False

False 3 True

In addition to them, if any constraint is defined in configuration space model, cover-
ing array does not contain configuration that violates the constraint. For instance,
if there is a constraint like optionl = True => option2 = 3 | the 2-way covering
array should be figured like in Table 2.3. It has already 6 configurations but any

row does not represent a configuration that violates specified constraint.

Table 2.3 For 3 options, 2-way CA with constraint

optionl | option2 | option3
True 2 False
False 3 True
False 1 False
True 1 True
False 2 True
False 3 False

One reason behind selecting 2-way covering array example is that 2-way or 3-way
covering array is commonly used. Up to t = 6, different t-way covering arrays can
be preferred to reveal failures. Most studies in the article point that around %80 of
failures can be detected by 2 and 3-way covering array. While increasing t value up

to 6, the percentage of success of detecting failure can be observed (Kuhn, Lei &

Kacker, 2008).

2.4 Seeds

All configurations in covering array have not same importance for testing process.
Some of them are more critical than other in order to find failures. However, any
covering array cannot make this distinction and all configurations in the array are to
be input for predetermined test cases by considering that they have equal priorities
(Bryce & Colbourn, 2006).

To construct prioritization mechanism among configurations, seeding is used. In
literature, seed points out a set of specified configurations. As mentioned earlier,
covering array contains a set of configurations. In this method, a part of covering ar-
ray includes specific configurations and the remaining content of it is extended from
other configurations. As a result of this process, t-way covering array is incremen-
tally created. Thus, it aims to not only guarantee that determined configurations
are covered by covering array but also not consider which configuration is already
tested before. With the help of it, limited resources and time are used efficiently
(Yilmaz et al., 2013).

The mechanism of seed is also supported by different tools like ACTS (Yu, Lei,

8

Kacker & Kuhn, 2013), PICT (Czerwonka, 2008), SST (Nie, Xu, Shi & Wang,
2006).

2.5 Method of Constructing Covering Array

There are three types of covering array. One of them is denoted by CA(N;t,p,v).
It is fixed size covering array that means all configurations has v level of settings.
p also points out number of existing configuration options. The array size is N
and t represents which way covering array is used for it. Another type is called as
mixed-covering array (MCA) that is denoted by MCA(N;t,p,(vl,v2,03,...up)). Its
difference from previous type of covering array is to not have same level of settings
for the each configuration options. v1,v2,v3...up represent that first configuration
has v1 level of setting, second one has v2 level of settings and continues like in this
order up to pth configuration options. The latest type is named as variable strength
covering array (VSCA) that is denoted by VSCA (N; t,p, (vi, v2, ..., vp), C). Its
size is N x p and it has t-way covering array that contains specification of covering
array C' (Memon, Porter, Yilmaz, Nagarajan, Schmidt & Natarajan, 2004) (Ahmed
& Zamli, 2011).

To generate these kinds of covering array is counted as NP-Hard problem in the
literature. To solve it, four different methods have been proposed and based on
these methods various tools have been implemented (Kobayashi, Tsuchiya & Kikuno,
2002) (Kuliamin & Petukhov, 2011). These methods can be listed in greedy, heuristic
search-based, mathematical and random search-based methods. Besides it, tools can
be listed as ACTS, Jenny, PICT, SST.

In this subsection, we have not focused on mathematical detail of the methods. We
already focused on Jenny tool that is developed on greedy methods because of using
in the thesis.

Jenny is combinatorial interaction testing tool. By giving configuration space model
in its own format, it produces t-way covering array. It has not any user interface so

it can be used in command line as following line.
Jjenny -n8 -sb 4 3 2 5 -wlabc2d -wld2abe | sed -f jenny__gen.sed > jenny__gen.txt

The parameter n represents which t-way is used for generating covering array. Next

parameter s is used for specifying random generator number. It enables us to have

9

different covering array for different parameter value. If the parameter does not
define in the command line, it produces covering array in default by assuming the
value of s is 0. The next list 4 8 2 5 in the line represents what the setting level
of each option is in order. Thus, we have observed that first option has 4 , second
option has 3, third option has 2 and last option has 5 settings. w also points out
constraint structure. -wlabc2d explains that while first option is value of a or b or
¢, second option cannot be value of d. The last part of parameter sed is used for
defining input format. In default, Jenny use alphabetical value for the option but it
is possible to define option and value name specially in file whose extension is sed.

It also write produced covering array to txt file (Zimmerer, 2004).

2.6 Daily Build

Daily build is part of agile driven development. In this type of development, de-
velopers codes what they want to achieve in their local branch of the source code
repository and sent their development to master branch of it in order to merge their
development with existing code. However, it is not easy to do that. In case of huge
projects, there are hundreds of request to be integrated into one and it is not pos-
sible to analyze manually which request can be appropriate for the master branch.
To solve this problem by doing automatically for every day, daily build process is

considered as an alternative solution (Karlsson et al., 2000).

While continuing development process depend on end user requirements, it enables
developers to control the result of their developments with respect to its functionality
and predetermined test suite in daily basis. The flow of it can be summarized as
that the latest version of repository in current day is getting from source repository.
It is packaged, compiled and built as a first stage. If this stage gives successful
result, testing stage as a next step starts running. In this stage, there are some
predefined test suite to run in that. They have already used in it. Then, all results
related to build and test are used by developers or teams .If the first stage does
not result in successful, only build result is produced and daily build is completed
a failing without running testing process. Thus, any developer can easily observe
which test cases are passed, what kind of errors the repository has or whether there
is failure or not as a result of this process (Memon et al., 2003) (Memon & Qing
Xie, 2004) (Memon, Nagarajan & Xie, 2005). The key insight of it is also to help

revealing failures at early stage. If it is considered that software development is

10

quite large and complex activity, any changes on it can cause chaotic situation and
it is quite important to detect it as early as possible (Karlsson et al., 2000). Besides
the insight, it also help minimizing integration risk by checking all iteration on the
version located in master branch daily. Additionally, it keeps quality of source code

repository to a certain level (McConnell, 1996).

2.7 Coverage Metrics

Coverage is a fundamental concept to evaluate efficiency of test suite and track
both quality and maintenance issue for any software. It has various metrics like
line, branch, decision, package, requirement and etc. but we have focused some of
them that are related to the thesis. They will be explained in following subsections
(Shahid, Ibrahim & Mahrin, 2011) (Grinwald, Harel, Orgad, Ur & Ziv, 1998).

2.7.1 Line and Instruction Coverage

Two metrics of them are instruction coverage and line coverage. We have evalu-
ated together because they complements each other. Instruction coverage gives us
information about how many code is covered or missed. While calculating the in-
formation, all code is considered as Java byte code. On the other hand, for line
coverage, it is enough to be executed at least one instruction placed in the line.
For this reason, instruction coverage does not considered as line coverage. They
are different concept from each other. The differences can be summarized with
an basic example like System.out.printin(string temp) command. In general per-
spective, it can be seen as the line has one line and one instruction however Ja-
coco plugin considers that this command line is a single line even if the line has
3 bytecode instructions. These instructions of the line that are extracted by us-
ing javap : java class file dissembler command are getstatic using java/lang/Sys-
tem.out:java/io/PrintStream library, ldc compiling String temp and invokevirtual

using java/io/PrintStream.println:(java/lang/String library).

11

2.7.2 Branch Coverage

Other metric is branch coverage. It counts how many branches are executed or
missed and generates total number for the repository as a result. Also, Jacoco,
coverage plugin used in thesis, categorizes the result in three classes. If all branches
in line have been missed, it shows in red color. If some branches have been executed
and remaining has not in the line, it shows in yellow color. Then, if all branches

have been executed, it shows in green color in generated report.

2.7.3 Method Coverage

Other metric is method coverage. The logic of instruction coverage metric takes part
in this metric. If at least one instruction in the method, the method is counted as
being executed. Besides this, Jacoco plugin accepts that all constructors and static

initializers are methods.

2.7.4 Complexity

The last metric is complexity pointing out cyclomatic complexity. According to
its definition by Watson, Wallace & McCabe (1996) "cyclomatic complexity is the
minimum number of paths that can, in (linear) combination, generate all possible
paths through a method". Jacoco plugin counts all paths for each module and
based on the result, calculates how many paths have been executed or missed then
generates this complexity information. So it is important indication how many cases
are missing for covering associated module (Watson et al., 1996) (Shepperd, 1988).
All these metrics is crucial and effective way for evaluating the test results belonging
to specific repository that runs in associated configuration (Mohamed, Sulaiman &

Endut, 2013).

12

3. APPROACH

At a very high level, CIT-daily takes as input a software under development (SUD),
a configuration space model for the SUD, which specifies the valid configuration
space for testing, and depending on the strategy employed (Section 3.1), one or
more coverage criteria to be satisfied (e.g., coverage strengths). It then operates
as follows (Algorithm 1): 1) the latest version of the SUD is obtained from its
code repository (line 2); 2) the configuration space is systematically sampled by
computing a covering array with the goal of obtaining full coverage under the given
criteria (line 4); and 3) for each and every configuration included in the covering
array, the SUD is configured, built, and tested by running its test suite in the

configuration (lines 5-8).

Note that these steps are carried out every day and that they are readily applicable
to test any software systems (not just the configurable ones) as long as these systems
have some interacting parameters, which can change the behaviour of the system,
such as input parameters and user events. Note further that the ultimate goal of
using covering arrays is to test the interactions between configuration options on a

daily basis, so that option-related failures can be discovered as early as possible.

Algorithm 1 The CIT-daily process.

procedure CIT-DAILY(SUD, model, strategy)
for each day do
Download the latest version of SUD

ca < strategy.run(model)

SUD.configure(cfg)
SUD.build()

1:
2
3
4
5: for each cfg € ca do
6
7
8 SUD .test()

13

3.1 Combinatorial Interaction Testing Strategies

We have developed a number of different combinatorial interaction testing (CIT)
strategies to go with CIT-daily. Below, these strategies are discussed from the
simplest one to the most complex one. Each enhancement was made to further

improve the effectiveness of the CIT-based daily build process.

3.1.1 Strategy 1

Our first strategy, namely Strategy 1, takes as input a coverage strength ¢, computes
a t-way covering array once, and use the same t-way covering array every day to test
the SUD. Note that this is a basic strategy inspired from standard CIT practice;
given t, test the SUD with a t-way covering array to (under certain assumption)
reveal all failures caused by the settings of ¢ or fewer options. Our approach is

different in that we do this on a daily basis by using the latest version of the SUD.

Algorithm 2 Strategy 1
1: procedure STRATEGY1(model, args)

2: t « args{t}
3: ca < deterministically compute a t-way covering array for model

4: return ca

Algorithm 2 presents this strategy. A strategy in the CIT-daily framework takes as
input a configuration space model (model in line 1) and some strategy arguments
(args in line 1). Note that for this work all the strategies are geared towards obtain-
ing combinatorial coverage. Therefore, the strategy parameters are given in terms of
the coverage strengths to be obtained. Note further that to have an extensible CIT-
daily framework, which can support any arbitrary strategy, the framework accepts

the strategy arguments in the form of key-value pairs (line 2).

As indicated in Algorithm 2, Strategy 1 takes as input a coverage strength (line 2)
and computes a t-way covering array to be used with the daily build process (line
3).

14

3.1.2 Strategy 2

Strategy 2, as was the case with Strategy 1, takes as input a coverage strength t.
Unlike Strategy 1, however, Strategy 2 generates a different ¢-way covering array

every day for testing. Algorithm 3 presents this strategy.

The ultimate goal of this approach is to vary the configurations tested as much as
possible throughout the days to reveal more defects, while guaranteeing the same
basic coverage (in this case, t-way coverage). Note that although a different t-way
covering array is used every day, all these covering arrays are guaranteed to cover
all valid t-way combinations of settings. However, the higher-strength combinations
(thus, the configurations) that they cover may change. With varying these “ac-
cidentally covered” combinations, these strategies aims to cover exercise different

behaviors of the SUD.

Algorithm 3 Strategy 2
1: procedure STRATEGY2(model, args)

2: t « args{t}
3: ca < randomly compute a t-way covering array for model

4: return ca

3.1.3 Strategy 3

Strategy 3 takes as input two coverage strengths, namely ¢; and to where ¢ < t9,
together with a positive integer n. The goal is to obtain t9-way coverage over time
by testing a t;-way coverage every day. To this end, every day, Strategy 3 computes
n t1-way covering arrays and then among these arrays picks the one that covers the
most number of previously uncovered ts-tuples in an attempt to reduce the number
of days required to achieve to-way coverage. When the to-way coverage is obtained
the process is repeated, every time starting from scratch. Algorithm 4 presents

Strategy 3.

15

Algorithm 4 Strategy 3
procedure STRATEGY3(model, args)

t1 < args{t:}
to < args{ta}
n<—args{n}

1:

2

3

4

5: cas < {}
6 for n times do

7 ca < randomly compute a t;-way covering array for model
8 cas < casUca

9 ca < Pick the ca in cas with the best t9-way coverage

10: return ca

3.1.4 Strategy 4

Strategy 4 is similar Strategy 3, in the sense that it takes as input ¢ and t3 (¢ < t2)
and aims to achieve to-way coverage by testing a t;-way covering array everyday. It
differs from Strategy 3 in that the number of days in which ¢2-way coverage needs
to be obtained is taken as input, namely k, and Strategy 4 guarantees the coverage

in exactly k days. Algorithm 5 presents this strategy.

To this end, Strategy 4 first computes a to-way covering array (line 5), then divides
this array into k equal or almost equal-sized, non-overlapping partitions (line 6),
and finally uses each part as a seed (Section 2.4) to compute a t;-way covering array
(lines 8-10).

Each, ti-way covering array is used on a different day. Therefore, after k£ days, it
is guaranteed to obtain to-way coverage as the collection of all the configurations
tested throughout the k£ days is guaranteed to contain all the seeds used (i.e., all the

configurations included in the to-way covering array initially computed).

Note that while Strategy 3 is opportunistic, one can determine the number of days

it should take to obtain higher-order coverage in Strategy 4.

16

Algorithm 5 Strategy 4

10:
11:

1
2
3
4
o:
6
7
8
9

. procedure STRATEGY4(model, args)
t1 < args{ti}
to < args{ta}
k < args{k}
ca < randomly compute a to-way covering array for model
seeds < Divide ca into (almost) equal-sized, non-overlapping partitions
cas < {}
for each seed € seeds do
ca < randomly compute a ti-way covering array around seed
cas < casUca

return cas

3.

1.5 Implementation

We have implemented an extensible CIT-daily framework. Figure 3.1 presents the

high level architecture of the framework, which is implemented in Python.

CIT-Daily Framework
SUDAdapter
StrategyAdapter
+ CA_run() : void + download() : void
+ configure() : vold
A le—— + bulld() : vold
+test() : vold
uses
7 Y
Strategy 1 Strategy 2 Strategy 3 Strategy 4
e CA_run() : void + CA_run() : void + CA_run() : void + CA_run() : void
JSPWiki HBase
uses + download() : void + download() : vold

+ configure() : vold + configure() : vold
4 bulld() : vold + bulid() : vold

+ test() : vold + test() : vold

CAGeneratorAdapter Jenny
< Tuses
+ compute_CA() : void + compute_CAV) - void
CIT-daily
|+ main() : vold

Fi

gure 3.1 The high level architecture of the CIT-daily framework.

To ensure that the framework can work with any SUDs, covering array construc-

tors, and CIT strategy, we have leveraged the Adapter design pattern (Ramirez &
Cheng, 2010). That is, the interactions between the CIT-daily framework and the

17

aferomentioned components are captured in the form of an adaptor interface, so that
the framework can be extended with new SUDs, new covering array generators, and

new strategies by simply implementing the respective interfaces.

interface SUD {
void download (void);
boolean configure (Configuration cfg);
boolean build ();
boolean test ();

Report get_ report ();

Figure 3.2 The SUD adaptor interface.

interface CoveringArrayGeneratorAdaptor {
CA compute_CA (ConfigurationSpaceModel model,
CoverageStrength t,
Seed seed ,

boolean randomized)

Figure 3.3 The covering array generator adaptor interface.

interface StrategyAdaptor {
CA run(ConfigurationSpaceModel model,
StrategyArguments args)

Figure 3.4 The strategy adaptor interface.

Figures 3.2-3.4 presents these interfaces by using a Java-like syntax for readability.
Furthermore, we here report somewhat simplified version of these interfaces as in
the actual implementation typically more functions are included in these interfaces
to handle all the low-level details.

Figure 3.2 presents the adaptor interface to be implemented for each SUD. The
interface has the basic operations to download, configure, build, and test the SUD
and harvest the results. In this interface, a configuration (i.e., Configuration) is

represented as a collection of key-value pairs (i.e., configuration option-setting pairs).
18

Figure 3.3 presents the adaptor interface to be implemented for each covering array
generator to be supported by the CIT-daily framework. The interface has an oper-
ation to compute a covering array (either in a deterministic or randomized manner)

for a given configuration space model, coverage strength, and seed.

We have also implemented a number of optimization techniques. For example, our
configuration space model distinguishes between compile-time and runtime options.
A compile-time option is an option, the setting of which is set as a part of the build
process. A runtime option, on the other hand, is an option, which is set at runtime

while the SUD is running.

The CIT-daily framework recognizes static configurations and (if asked) cache these
static configurations on a secondary storage, so that if the same static configuration
is needed in the future, the executables can directly be obtained from the cache,

rather than re-configuring and re-building the system from scratch.

Figure 3.4 presents the adaptor interface to be implemented for each CIT strategy
to be supported by the CIT-daily framework. The interface has an operation to
compute the covering array to be used on the current day. The interface assumes
that the respective function is called once a day. Furthermore, different strategies
may need different number of arguments. Therefore, in the CIT-daily framework

strategy arguments are represented in the form of parameter-value pairs.

19

4. EXPERIMENTS

To evaluate the proposed approach, we have carried out a number of empirical

studies.

4.1 Subject Applications

In these experiments, we used two frequently-used, configurable software sys-
tems, namely Apache JSPWiki (v2.11.0.M7) (Foundation, 2020c) and Apache Hbase
(v2.3.0) (Foundation, 2020a).

4.1.1 Subjects

Apache JSPWiki is a leading WikiWiki engine. Besides supporting all traditional
features of Wiki engine, JSPWiki has numerous additional features (Foundation,
2020c). It was initially released 7 years ago and since then have been constantly
evolving (Foundation, 2020¢). In the experiments, we used JSPWiki with Java JDK
v1l.

Apache HBase is a Hadoop database — a distributed, scalable, and a big data store.
HBase has been evolving for 13 years (Foundation, 2020a). In the experiments, we
used HBase with Java JDK v1.8.

We opted to use these applications as our subject applications because they possess
characteristics that are common to configurable software systems, such as having a

large user base, developed by a team of stakeholders, and evolving continuously.

20

4.1.2 Test Suites

For the subject applications, we used the test cases that were developed by the
developers of these applications and that come with the source code distributions

as the test suites.

More specifically, for JSPWiki, we used a toal of 1023 test cases. And, for HBase,
we used between 1046 and 2110 test case, which changed during the period of ex-

periments due to the addition of the new test cases to the code base.

4.1.3 Configuration Space Model

We, furthermore, read the user manuals, inspect the source code, and run small-scale
experiments (as needed) to determine the configuration space model to be used for

each subject application.

In particular, given the test suites of these subject applications, we attempted to
choose the configuration options and settings that can affect the behavior of the test
cases. And, to keep the cost of the experiments under control, we did this while

reducing the number of options needed.

Table 4.1 Configuration space model used for Apache JSPWiki.

Configuration Options Settings Type

jspwiki.diffProvider ExternalDiffProvider, ContextualDiffProvider, TraditionalDiffProvider compile-time
jspwiki.encoding UTF-8, ISO-8859-1 compile-time
jspwiki.translatorReader.matchEnglishPlurals | TRUE,FALSE compile-time
jspwiki.urlConstructor ShortViewURLConstructor, ShortURLConstructor, Default URLConstructor | compile-time
jspwiki.allowCreationOfEmptyPages TRUE,FALSE compile-time
jspwiki.break TitleWithSpaces TRUE,FALSE compile-time
jspwiki.attachment.allowed .png, .jpg, .zip, .jar compile-time
jspwiki.login.throttling TRUE,FALSE compile-time
jspwiki.pageNameComparator.class HumanComparator, LocalComparator compile-time
jspwiki.attachment.forbidden html, htm, .php, .asp, .exe compile-time
jspwiki.attachment.forceDownload html, htm compile-time
jspwiki.searchProvider LuceneSearchProvider, BasicSearchProvider" compile-time
jspwiki.defaultprefs.template.editor plain, WikiWizard, FCK compile-time
jspwiki.defaultprefs.template.sectionediting TRUE, FALSE compile-time
jspwiki.defaultprefs.template.appearance TRUE, FALSE compile-time
jspwiki.defaultprefs.template.autosuggest TRUE, FALSE compile-time
jspwiki.defaultprefs.template.tabcompletion TRUE, FALSE compile-time

Table 4.1 presents the configuration space model used for JSPWiki in the experi-

ments. The model included 17 compile-time options with varying number of settings.

21

We had 12 options with 2 levels of settings, 3 options with 3 levels of settings, 1

option with 4 levels of setting and 1 option with 5 levels of settings.

Table 4.2 Configuration space model used for Apache HBase.

Configuration Options Settings Type
hbase.master.infoserver.redirect TRUE,FALSE compile-time
hbase.regionserver.info.port.auto TRUE,FALSE compile-time
hfile.block.cache. policy LRU, TinyLFU compile-time
hbase.storescanner. parallel seek.cnable TRUE,FALSE compile-time
dfs.client.read shortcircuit TRUE,FALSE compile-time
hbase. hstore.checksum.algorithm NULL, CRC32, CRC32C compile-time
hbase.regionserver.checksum.verify TRUE,FALSE compile-time
hbase.security.visibility.mutations.checkauths TRUE,FALSE compile-time
hbase.regionserver. handler.abort.on.error.percent | -1, 0, 0.5, 1 compile-time
hbase.regionserver.region.split.policy BusyRegionSplitPolicy, ConstantSizeRegionSplitPolicy, DisabledRegionSplitPolicy, DelimitedKeyPrefixRegionSplitPolicy, SteppingSplitPolicy | compile-time

Similarly, Table 4.2 presents the configuration space model used for HBase in the
experiments. The model involved 10 compile-time options with varying number of
settings. We had 7 options with 2 levels of settings, 1 option with 3 levels of settings,

1 option with 4 levels of setting, and 1 option with 5 levels of settings.

4.1.4 Time Intervals

To perform the experiments, we also needed top determine a date interval, during

which the proposed CIT-based daily process was carried out.

To this end, we basically examined the code repositories of our subject applications
to determine a time frame during which the application was under development.

This enabled us to determine a potential start date for the experiments.

Once this was done, the next question was how to determine the duration of the
experiments (i.e., the number of days, during which the daily build process needed
to be carried out). To this end, we opted to choose the duration with respect to our
most sophisticated strategy, namely Strategy 4. In particular, for the configurations
space model and the strategy parameters used for each subject application, we
determined the maximum number of days required to run Strategy 4 to completion
and used this number as the duration of the experiments. While doing so, we picked
k (Section 3.1.4) such that number of configurations required for testing matches

that of standard covering arrays used by Strategy 1 (Section 3.1.1).

That is, we not only used the same time interval for each strategy, but also made
sure that each strategy tested about the same number of configurations each day,

so that we can compare the results obtained from different strategies.

22

For JSPWiki, we opted to use the time interval from 18-05-2020 to 29-05-2020,
during which 3 commits were made (21st, 23rd, and 25th of May) (Foundation,
2020d). And, for HBase, we used the interval from 20-07-2020 to 28-07-2020, dur-
ing which 7 commits were made (20th, 21st, 22nd, 23rd, 24th, 27th, and 28th of
July) (Foundation, 2020b).

During the experiments, if a strategy ran to completion, we restarted the strategy
from scratch and made sure that the strategy randomly selected its covering arrays
to be tested.

4.2 Evaluation Framework

To evaluate the proposed approach, we used the following metrics:
e test runs: Total number of test cases executed.
e failed test runs: Total number of test cases failed.
e passed test runs: Total number of test cases passed.

e skipped test runs: Total number of test cases skipped; when the assumptions
of a test case is not met by the underlying configuration the test case refused

to run on the configuration, i.e., skipped the configuration.

e distinct errors: Total number of distinct errors observed. The errors ob-
served during testing was obtained by parsing the error logs. The more distinct

errors observed, the better the proposed approach is.

e distinct error-test case pairs: Total number of distinct error-test case pairs
observed. For example, in Table 4.3, while we have 5 distinct error-test case
pairs, we only have 3 distinct errors. The more distinct error-test case pairs

observed, the better the proposed approach is.

e structural code coverage: Amount of instruction, line, branch, and method

coverage obtained (Section 2.7).

23

Table 4.3 An example of test case and distinct error pair

Configuration | Distinct Error 1 | Distinct Error 2 | Distinct Error 3
cfgl TestCase-1 TestCase-3 -

cfg2 - TestCase-2 -

cfg3 TestCase-4 - TestCase-3

We used these metrics both on a daily basis and on a strategy basis. The former
was interested in the values of these metrics after testing the selected covering array
every day. The latter was, on the other hand, interested in the values of these

metrics after carrying out a strategy during the selected time frame.

4.3 Operational Framework

Throughout the experiments, we used the surefire plugin (v3.0.0.M4) with the maven
build system (Foundation, 2020e) to configure and build the SUDs as well as to
run the test cases and collect the results. Furthermore, to obtain the structural
code coverage statistics, we used the Jacoco plugin (v0.8.3) (Mountainminds GmbH
Co. KG, 2020).

To compute the covering arrays, we used Jenny — a well-known covering array gen-
erator (Jenkins, 2020). Another frequently-used generator was ACTS (NIST, 2020).
We, however, opted not to use this generator as it did not support the generation

of randomized covering arrays — a feature which is quite curicial for CIT-daily.

All the experiments were carried out on Google Cloud by using computing engines
running Ubuntu 16.04 on 1 vCPU and 3.75 GB memory per vCPU.

4.4 Data and Analysis

In the experiments, we used two experimental setups for Strategy 4; one where ¢ =2

and t9 = 3, and the other where t; = 2 and to = 4. In the remainder of the document,

these setups will be referred to as first experimental setup and second experimental
24

setup, respectively. Furthermore, see Section 3.1.4 for more information about the

parameters used in these setups.

Consequently, to be able to compare the results of different strategies, we carried out
the remaining strategies with respect to these settings (Section 4.1.4. That is, for
each setup we determined the number of days Strategy 4 needed for completion while
testing the similar number of configuration options with standard 2-way covering
arrays (i.e., the covering arrays used by Strategies 1, 2, and 3). It turned out for
the first experimental setup where ¢; = 2 and t3 = 3, the duration was 9 days for
JSPWiki and 3 days for HBase. And, for the other setup, where t; =2 and t5 =4,
the duration was 12 days for JSPWiki and 9 days for HBase. We, therefore, ran the
remaining strategies (Strategies 1, 2, and 3) for the aforementioned number of days
for each experimental setup and subject application combination. When a strategy
finished before the required number of days had expired, we re-ran the strategy from

scratch.

With respect to the specified time intervals, Strategy 2 covers 99.95 and 96.41 per-
cent of all the 3-tuples in first experimental setup for JSPWiki and HBase, respec-
tively. And, for the second experimental setup, Strategy 2 covers 99.01 and 96.84
percent of all the 4-tuples for JSPWiki and HBase, respectively. Similarly, Strat-
egy 3 covers 79.16 and 36.34 percent of the 3-tuples in the first experimental setup
and 92.03 and 82.09 percent of the 4-tuples in the second experimental setup for
JSPWiki and HBase, respectively.

We, furthermore, compared the results obtained from the CIT-daily processes to
those obtained from the standard practice. In the standard practice, the default
configuration of the SUD is used every day during the daily build process, unless
test cases extensively change the configuration (e.g., runtime configuration) of the
system. To mimic, this standard practice, ever day during the experiments, we
downloaded the latest version of the SUD, built it with the default configuration
(i.e., without performing any configuration), and ran the test cases on the default
configuration. In the remainder of the document, this strategy is marked as “stan-
dard.”

For JSPWiki, Tables 4.4-4.12 and Tables 4.14-4.22 present the results we obtained
from different strategies for JSPWiki and HBase, respectively. In these tables, the
columns depict the dates on which the experiments were carried out, test runs, test
runs passed, test runs failed, test runs skipped, number of distinct errors, number of
distinct error-test case pairs, and various structural code coverage statistics obtained,
respectively. Also, the last rows in these table report the overall results obtained at

the end of the strategy.

25

Furthermore, Tables 4.13 and 4.23 present the overall results obtained from various

strategies under different experimental results for JSPWiki and HBase, respectively.

Table 4.4 JSPWiki: Results obtained from the standard daily build process where
the default configuration of the SUD is used every day.

repo date | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
19.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
20.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
21.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
22.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
23.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
24.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
25.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
26.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
27.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
28.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
29.05.2020 | 1023 1023 0 0 0 0 9293 243 1418 40811
Overall 12276 12276 0 0 0 0 9293 243 1418 40811

Table 4.5 JSPWiki: Results obtained from Strategy 1 for the first experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
19.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
20.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
21.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
22.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
23.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
24.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
25.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
26.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
Overall 24 220968 220104 864 4 4 9294 244 1418 40825

Table 4.6 JSPWiki: Results obtained from Strategy 1 for the second experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
24 24456 96 4 4 7976 172 1075 36616
20.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
21.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
22.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
23.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
24.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
25.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
26.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
27.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
28.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
29.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
Overall 24 294624 293472 1152 4 4 9294 244 1418 40825

26

Table 4.7 JSPWiki: Results obtained from Strategy 2 for the first experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 22 22506 22418 88 4 4 7976 172 1075 36616
19.05.2020 | 23 23529 23437 92 4 4 7976 172 1075 36616
20.05.2020 | 23 23529 23437 92 4 4 7976 172 1075 36616
21.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
22.05.2020 | 25 25575 25425 150 6 6 7937 172 1073 36491
23.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
24.05.2020 | 25 25575 25425 150 6 6 7937 172 1073 36491
25.05.2020 | 22 22506 22374 132 6 6 7937 172 1073 36491
26.05.2020 | 23 23529 23437 92 4 4 7976 172 1075 36616
Overall 187 213807 212735 1072 6 6 9305 245 1418 40849

Table 4.8 JSPWiki: Results obtained from Strategy 2 for the second experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 22 22506 22352 154 7 7 7941 172 1074 36491
19.05.2020 | 25 25575 25400 175 7 7 7941 172 1074 36491
20.05.2020 | 25 25575 25400 175 7 7 7941 172 1074 36491
21.05.2020 | 23 23529 23368 161 7 7 7941 172 1074 36491
22.05.2020 | 23 23529 23368 161 7 7 7941 172 1074 36491
23.05.2020 | 23 23529 23368 161 7 7 7941 172 1074 36491
24.05.2020 | 24 24552 24384 168 7 7 7941 172 1074 36491
25.05.2020 | 23 23529 23368 161 7 7 7941 172 1074 36491
26.05.2020 | 25 25575 25400 175 7 7 7941 172 1074 36491
27.05.2020 | 24 24552 24384 168 7 7 7941 172 1074 36491
28.05.2020 | 23 23529 23368 161 7 7 7941 172 1074 36491
29.05.2020 | 25 25575 25400 175 7 7 7941 172 1074 36491
Overall 259 291555 289560 1995 7 7 9417 245 1418 40894

Table 4.9 JSPWiki: Results obtained from Strategy 3 for the first experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 22 22418 88 4 4 7976 172 1075 36616
19.05.2020 | 23 23437 92 4 4 7976 172 1075 36616
20.05.2020 | 24 24456 96 4 4 7976 172 1075 36616
21.05.2020 | 23 23391 138 6 6 7937 172 1073 36491
22.05.2020 | 24 24408 144 6 6 7937 172 1073 36491
23.05.2020 | 23 23391 138 6 6 7937 172 1073 36491
24.05.2020 | 25 25425 150 6 6 7937 172 1073 36491
25.05.2020 | 24 24408 144 6 6 7937 172 1073 36491
26.05.2020 | 23 23529 23437 92 4 4 7976 172 1075 36616
Overall 197 215853 214771 1082 6 6 9305 245 1418 40849

27

Table 4.10 JSPWiki: Results obtained from Strategy 3 for the second experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 22 22506 22418 88 4 4 7976 172 1075 36616
19.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
20.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
21.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
22.05.2020 | 24 24552 24408 144 6 6 7937 172 1073 36491
23.05.2020 | 22 22506 22374 132 6 6 7937 172 1073 36491
24.05.2020 | 25 25575 25425 150 6 6 7937 172 1073 36491
25.05.2020 | 24 24552 24408 144 6 6 7937 172 1073 36491
26.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
27.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
28.05.2020 | 24 24552 24456 96 4 4 7976 172 1075 36616
29.05.2020 | 25 25575 25425 150 6 6 7937 172 1073 36491
Overall 244 288486 286934 1552 6 6 9305 245 1418 40849

Table 4.11 JSPWiki: Results obtained from Strategy 4 for the first experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
19.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
20.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
21.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
22.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
23.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
24.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
25.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
26.05.2020 | 23 23529 23391 138 6 6 7937 172 1073 36491
Overall 184 211761 210519 1242 6 6 9305 245 1418 40849

Table 4.12 JSPWiki: Results obtained from Strategy 4 for the second experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
18.05.2020 | 23 23529 23276 253 11 11 7937 172 1074 36483
19.05.2020 | 23 23529 23276 253 11 11 7937 172 1074 36483
20.05.2020 | 23 23529 23276 253 11 11 7937 172 1074 36483
21.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
22.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
23.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
24.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
25.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
26.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
27.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
28.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
29.05.2020 | 23 23529 23276 11 11 7937 172 1074 36483
Overall 239 282348 279312 11 11 9268 246 1417 40713

Table 4.13 JSPWiki: Overall results obtained from various strategies under different
experimental setups.

setup strategy | distinct cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
Standard | Standard | 1 12276 | 12276 0 0 0 0 9293 243 1418 40811
Setup 1 | Strategy 1 | 24 220968 | 220104 864 0 4 4 9294 244 1418 40825
Setup 1 | Strategy 2 | 187 213807 | 212735 1072 0 6 6 9305 245 1418 40849
Setup 1 | Strategy 3 | 197 215853 | 214771 1082 0 6 6 9305 245 1418 40849
Setup 1 | Strategy 4 | 184 211761 | 210519 1242 0 6 6 9305 245 1418 40849
Setup 2| Strategy 1 | 24 294624 | 293472 1152 0 4 4 9294 244 1418 40825
Setup 2 | Strategy 2 | 259 291555 | 289560 1995 0 7 7 9417 245 1418 40894
Setup 2 | Strategy 3 | 244 288486 | 286934 1552 0 6 6 9305 245 1418 40849
Setup 2 | Strategy 4 | 239 282348 | 279312 3036 0 11 11 9268 246 1417 40713

Table 4.14 HBase: Results obtained from the standard daily build process where
the default configuration of the SUD is used every day.

repo date | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 2073 2056 1 16 1 1 68676 14886 11893 341665
21.07.2020 | 2073 2056 1 16 1 1 68755 14930 11906 342020
22.07.2020 | 2073 2056 1 16 1 1 68701 14893 11896 341785
23.07.2020 | 2073 2056 1 16 1 1 68684 14905 11888 341734
24.07.2020 | 2073 2056 1 16 1 1 68752 14920 11907 342027
25.07.2020 | 2073 2056 1 16 1 1 68813 14949 11913 342237
26.07.2020 | 2073 2056 1 16 1 1 68634 14899 11875 341517
27.07.2020 | 2073 2056 1 16 1 1 68669 14884 11888 341697
28.07.2020 | 2073 2056 1 16 1 1 68632 14901 11873 341514
Overall 18657 18504 9 144 1 1 47458 8987 8861 243647

Table 4.15 HBase: Results obtained from Strategy 1 for the first experimental setup.

repo date | distinet cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 22 23012 22682 66 264 1 1 53182 10043 8773 268236
21.07.2020 | 22 23012 22682 66 264 1 1 53194 10051 8774 268258
22.07.2020 | 22 23012 22682 66 264 1 1 53196 10051 8774 268300
Overall 22 69036 68046 198 792 1 1 47496 8993 8847 243745

Table 4.16 HBase: Results obtained from Strategy 1 for the second experimental
setup.

repo date | distinet cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 22 23012 22682 66 264 1 1 53182 10043 8773 268236
21.07.2020 | 22 23012 22682 66 264 1 1 53194 10051 8774 268258
22.07.2020 | 22 23012 22682 66 264 1 1 50 10051 8774 268300
23.07.2020 | 22 23012 22660 88 264 2 2 53198 10054 8773 268306
24.07.2020 | 22 23012 22682 66 264 1 1 53192 10043 8771 268263
25.07.2020 | 22 23012 22682 66 264 1 1 53213 10056 8775 268364
26.07.2020 | 22 23012 22682 66 264 1 1 53213 10056 8775 268364
27.07.2020 | 22 23012 22660 88 264 2 2 53198 10054 8773 268306
28.07.2020 | 22 23012 22682 66 264 1 1 53194 10051 8774 268258
Overall 22 207108 204094 638 2376 2 2 53209 10066 8776 268371

Table 4.17 HBase: Results obtained from Strategy 2 for the first experimental setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.

20.07.2020 | 22 46442 42548 3542 352 2 2 53234 10040 8795 268377
21.07.2020 | 21 46221 42504 3381 336 2 2 53219 10042 8790 268302
22.07.2020 | 22 46398 42504 3542 352 2 2 53139 10032 8769 268020
Overall 59 139061 127556 10465 688 2 2 53215 10040 8793 268392

Table 4.18 HBase: Results obtained from Strategy 2 for the second experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 21 44289 40530 3423 336 4 4 53274 10057 8822 268544
21.07.2020 | 21 44310 40572 3402 336 3 3 53168 10058 8770 268171
22.07.2020 | 22 46398 42504 3542 352 2 2 53139 10032 8769 268020
23.07.2020 | 22 46420 42482 3586 352 4 4 53266 10062 8808 268514
24.07.2020 | 22 23012 22638 110 264 3 3 53238 10053 8790 268438
25.07.2020 | 22 23012 22660 88 264 2 2 53016 10039 8757 267453
26.07.2020 | 21 44289 40530 3423 336 4 4 53274 10057 8822 268544
27.07.2020 | 22 23012 22638 110 264 3 3 10046 8770 268102
28.07.2020 | 21 44310 40572 3402 336 3 3 10058 8770 268171
Overall 178 339052 315126 21086 2840 4 4 10089 8882 268985

29

Table 4.19 HBase: Results obtained from Strategy 3 for the first experimental setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 22 46442 42504 3586 352 4 4 53150 10031 8774 268032
21.07.2020 | 21 44289 40572 3381 336 2 2 53140 10042 8771 268013
22.07.2020 | 22 23012 22660 88 264 2 2 B 10049 8790 268407
Overall 61 113743 105736 7055 952 4 4 53455 10056 8792 268245

Table 4.20 HBase: Results obtained from Strategy 3 for the second experimental
setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 22 46442 42548 3542 352 2 2 10040 8795 268377
21.07.2020 | 21 44289 40572 3381 336 2 2 10042 8790 268302
22.07.2020 | 22 46398 42504 3542 352 2 2 10032 8769 268020
23.07.2020 | 22 46398 42482 3564 352 3 3 53239 10050 8790 268421
24.07.2020 | 22 23012 22638 110 264 3 3 53157 10046 8770 268102
25.07.2020 | 21 44310 40551 3423 336 4 4 53319 10051 8803 268755
26.07.2020 | 22 23012 22660 88 264 2 2 10039 8757 267453
27.07.2020 | 21 44289 40530 3423 336 4 4 10057 8822 268544
28.07.2020 | 22 46420 42482 3586 352 4 4 10062 8808 268514
Overall 187 364570 336967 24659 2944 4 4 53393 10067 8824 268773

Table 4.21 HBase: Results obtained from Strategy 4 for the first experimental setup.

repo date | distinct cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 21 22029 21609 168 252 6 6 53200 10022 8775 268228
21.07.2020 | 22 23012 22572 176 264 6 6 53194 10022 8778 268228
22.07.2020 | 22 23012 22572 176 264 6 6 53180 10023 8770 268180
Overall 60 68053 66753 520 780 6 6 532196 | 10017 8778 268220

Table 4.22 HBase: Results obtained from Strategy 4 for the second experimental
setup.

repo date | distinet cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
20.07.2020 | 21 44289 40467 3486 336 7 7 53054 10024 8758 267584
21.07.2020 | 21 44289 40467 3486 336 7 7 53039 10014 8758 267532
22.07.2020 | 22 23012 22550 198 264 7 7 53041 10014 8758 267541
23.07.2020 | 22 46420 42438 3630 352 6 6 53184 10017 8770 268191
24.07.2020 | 21 44310 40551 3423 336 4 4 53319 10051 8803 268755
25.07.2020 | 22 23012 22572 176 264 6 6 53196 10090 8770 268250
26.07.2020 | 22 23012 22572 176 264 6 6 53193 10024 8770 268227
27.07.2020 | 22 23012 22572 176 264 6 6 53180 10023 8770 268180
28.07.2020 | 22 23012 22572 176 264 6 6 53180 10023 8770 268180
Overall 177 294368 276761 14927 2680 7 7 53345 10090 8813 268984

Table 4.23 HBase: Overall results obtained from various strategies under different
experimental setups.

setup strategy | distinet cfgs tested | test runs | tests passed | tests failed | tests skipped | distinct errs. | distinct err-test pairs | line cov. | branch cov. | method cov. | instruction cov.
Standard | Standard | 1 18657 | 18504 9 144 1 1 47458 | 8987 8861 243647
Setup 1| Strategy 1| 22 69036 | 68046 198 792 1 1 8993 8847 243745
Setup 1 | Strategy 2 | 59 139061 | 127556 10817 688 2 2 10040 392
Setup 1 | Strategy 3 | 61 113743 | 105736 7055 952 4 4 10056 268245
Setup 1 | Strategy 4 | 60 68053 | 66753 520 6 6 10017 268220
Setup 2 | Strategy 1| 22 207108 | 204094 638 2 2 10066 268371
Setup 2 | Strategy 2 | 178 339052 | 315126 21086 2840 4 4 10089 268985
Setup 2 | Strategy 3 | 187 364570 | 336967 24659 2044 4 4 10067 268773
Setup 2| Strategy 4 | 177 204368 | 276761 14927 2680 7 7 10090 268984

30

We first observed that among all the strategies that can be used the worst performing
one was the standard strategy, where the default configuration of the SUD is used
every day to test the system. This strategy while revealing no failures for JSPWiki
(Table 4.13), revealed only one distinct error for HBase (Table 4.23).

We next observed that Strategy 1, where the same t-way covering array used ev-
eryday during the daily build process for testing, performed profoundly better than
the standard strategy. Strategy 1 revealed 4 distinct errors under each experimental
setups for JSPWiki (Table 4.13). For HBase, it revealed 1 and 2 distinct errors for
the first and second experimental setups, respectively (Table 4.23).

We then observed that Strategy 2 and 3, where the covering array used every day
changed, had similar performances, which were profoundly better than Strategy 1.
For example, Strategy 3 revealed 6 distinct errors under each experimental setup for
JSPWiki and 4 distinct errors under each experimental setup for HBase. We finally
observed that among all the the strategies we experimented with the best strategy
was Strategy 4. For JSPWiki, Strategy 4 revealed 6 and 11 distinct errors for the
first and second experimental setups, respectively. And, for HBase, it revealed 6 and
7 distinct errors for the first and second experimental setups, respectively. Note fur-
ther that all these achievements were obtained by testing the same or similar number
configurations, i.e., at the same or similar testing costs, compared to Strategy 1, 2,
and 3.

Last but not least, we observed that as to increased we tented to have better results,
especially for Strategy 4. For example, when t9 was increased from 3 to 4 for
JSPWiki, the number of distinct errors revealed by Strategy 4 was increased from
6 to 11.

31

4.4.1 Discussion

As represented results within tables, we expected that coverage metrics would be
consistent. This inconsistency can be caused by selecting tool in order to calcu-
late coverage metric or having random covering array. We cannot strictly track
which configuration is related to where in the code base because of having randomly

generated covering array.

Another point is that we have also expected that distinct error count is different
than distinct error - test case pairs but we cannot observe this case. Each error is
related to one specific test case in selected subject applications. Last but not least,
the daily build processes are typically expected to run throughout the night (in 6
to 8 hours) while the developers are not in their offices. In the experiments, we
tested around 22 configurations per day for JSPWiki, each of which took about 2
hours, and around 24 configurations per day for HBase, each of which took about
2.5 hours. That is, when a single computer were used for testing, the process would
have taken more than a day to execute. Note, however, that multiple computers can
always be used to test the configurations included in a covering array in parallel,

such that the entire process can be carried out during a single night.

32

5. THREATS TO VALIDITY

We have identified various threats to validity for these experiments.

First threat is that we conducted experiments on two subject applications. It may

affect generality of our results.

Second threat can be that we created configuration space model manually. So chosen
configuration option may affect the results. We cannot ensure that the option in

the model is the best choice for selected subject application.

Third threat is that all test cases of chosen applications is implemented by their

developers. It is impossible to examine the content and quality of all test cases.

Fourth threat is that we selected Jacoco plugin for collecting coverage result. Even
though it is commonly used for maven project, accuracy of the plugin and whether

another plugin gives approximate results are questionable points.

However, we believe that CIT-daily is effective and successful to reveal more failures
than applying standard daily build process without any combinatorial interaction
testing approach. Also, experiments in this thesis represent accurate and consistent

results.

33

6. RELATED WORK

This section has represented related work of what has been done about the concepts
that are used in the thesis so far. We have mainly focused on how to be determined
configuration space model, how be generated covering array, how to be used seeds

and also what kind of studies on testing process in daily build process are.

6.1 Configuration Space Model

To determine configuration space model is baseline for combinatorial interaction
testing. Before working with CIT approach, developers or testers are expected to
decide on this model. To reduce this effort on their side and strength the accuracy
of the determined model, a study is conducted by Charles Song and their colleagues.
Song, Porter & Foster (2013) have proposed an algorithm called as iTree. It aims
to achieve high coverage by using a tiny subset of whole configuration space. The
process of algorithm continues iterative with the help of machine learning techniques.
It starts testing a subject application with low strength covering array produced in
CIT approach then it gathers coverage results. By using these results and machine
learning techniques, it observes new interactions that can be candidate for next
covering array in order to increase totally coverage ratio then it repeats these steps.
Finally, the proposed algorithm gives a set of configuration space that achieves high

coverage and set of configurations containing high strength interaction (Song et al.,
2013) (Yilmaz et al., 2013).

34

6.2 Covering Array

Covering array is set of configurations and used for testing subject application in
combinatorial interaction testing approach. Three different types of it is mentioned
in Section 2.5 and constructing covering array can be categorized in two main strate-
gies that are called as one parameter at a time (OPAT) and one test at a time
(OTAT) strategy (Grindal et al., 2005) (Grindal, Offutt & Andler, 2005) (Ahmed
& Zamli, 2011). So, to construct covering array is NP-Hard problem so it requires
great effort to find common construction method (Lei & Tai, 1998) (Hartman &
Raskin, 2004). Because of this situation, there are different tools and methods to
solve the case thus we have easily founded various studies in the literature related

to this concept.

We have gathered reviewed studies under two main part based on strategies men-

tioned above.

First part is related to algorithms developed based on OPAT strategy. A logic
of the strategy is to construct covering array by starting with smallest number of
options and check its coverage in predetermined test suite. Per iteration, the cov-
ering array extends with adding one option in horizontal (Nasser, Sariera, Alsewari
& Zamli, 2015). The most used construction algorithms developed depending on
this strategy is In-Parameter-OrderGeneral (IPOG) (Lei, Kacker, Kuhn, Okun &
Lawrence, 2007) and IPO-s (Calvagna & Gargantini, 2009) IPOG-F and IPOG-D
(Lei, Kacker, Kuhn, Okun & Lawrence, 2008) and IPAD2 (Forbes, Lawrence, Lei,
Kacker & Kuhn, 2008) Also, Klaib et al. (2010) developed different approach called
as a tree based generation for only be used in pairwise testing (Klaib, Muthuraman,
Ahmad & Sidek, 2010).

Another part is related to algorithms developed based on OTAT strategy. The strat-
egy takes into account only one row of the covering array as test case per iteration
and checks coverage ratio of the selected row. The process iterates till all combina-
tions are covered (Nasser et al., 2015). The well known algorithms for the strategy
can be listed as The Automatic Efficient Test Generator (AETG) (Cohen et al.,
1997), mAETG (Cohen, 2004) (Cohen, 2004) , Pairwise Independent Combinatorial
Testing (PICT) (Czerwonka, 2008), Deterministic Density Algorithm (DDA) (Bryce
& Colbourn, 2007) (Bryce & Colbourn, 2009), Classification-Tree Editor eXtended
Logics (CTE-XL) (Lehmann & Wegener, 2000) (Yu, Ng & Chan, 2003), Test Vec-
tor Generator (TVG) (Tung & Aldiwan, 2000) Jenny (2010) (Jenkins, 2020) and
WHITCH (Hartman, Klinger & Raskin, 2010).

35

On the other hand, all developed algorithms or strategies have to cope with optimiza-
tion problem related to size of covering array. To solve this optimization problem,
the more popular methods that are greedy (Cohen et al., 1997) (Czerwonka, 2008),
random search-based (Nie, Xu & Leung, 2009) (Schroeder, Bolaki & Gopu, 2004),
heuristic search-based (Ghazi & Ahmed, 2003), mathematical methods (Grindal,
Offutt & Mellin, 2006) are placed in developed algorithms. While algorithms based
on OTAT strategy use heuristic search based methods, algorithms based on OPAT
strategy use greedy methods (Ahmed & Zamli, 2011).

These optimization methods is good at high interaction strength. Besides them,
there are also different developed algorithm to give good result for small interaction
strength. These can be listed as simulated Annealing (SA) (Stardom, 2001),Genetic
Algorithm (GA), Ant Colony Algorithm (ACA) (Shiba, Tsuchiya & Kikuno, 2004),
Tabu Search (TS) (Nurmela, 2004), Particle Swarm Optimization (Ahmed & Zamli,
2010).

6.3 Seeds

Seeding is one of approaches in the literature to construct covering array. It has a
set of configurations from t-1 way covering array as initial step then generate new
covering array containing both all t-1 way interactions in seed and t-way interactions
that are not equal with interactions in seed. Fouché et al. (2009) and Fouché, Cohen
& Porter (2007) use this approach to construct covering array schedules. By reusing
tested configurations from covering array produced in lower strength as a seed, it
is aimed to increase strength for new covering array. Tai & Lei (2002) uses this
approach to generate new covering array but its goal is not increasing strength. It
produces covering array in same t-way with t-way of seed. Yilmaz (2012) constructs
test aware covering array to reduce total test run by sharing configurations in seed.

Cohen et al. (2008) also measures efficiency of this mechanism in their study.

On the other side, we have used seeding mechanism with opposite direction in our
work. Generally the literature contains that seed is created from configurations of t-
1 way covering array then it is used in generating t-way covering array. However, we
have implemented that a seed is created from set of configurations of t-way covering
array and we have used it to generate t-1 way covering array. By this structure,

we have made sure that all configurations in t-way covering array are covered in t-1

36

way covering array within certain days.

6.4 Daily Build

There are huge number of studies about daily build. It is part of continuous inte-
gration (CI) in agile driven development. On the other hand, there are very limited
resources about running different testing approach in daily build process. Memon
et al. (2003) introduces running smoke tests in daily build with the help of their
automated framework called as DART. Smoke test is for validating basic function-
ality not exhaustive testing so the framework has focused on graphical user interface
(GUI) retesting. McConnell (1996) gives detail information about advantage of run-

ning smoke testing in daily.

There are no other sources than two studies. For this case, we have aimed to
improve the concept that combines combinatorial interaction testing approach with
daily build process rather than only focusing on smoke testing. So, any testing
stage like smoke, regression or integration can be implemented or extended based

on proposed methods.

37

7. CONCLUDING REMARKS

Daily build process in agile development environment has predefined configurations
to test subject application. These same configurations are used for the repository
that is changed by commit. In this case, these configurations only cover specific
test cases and remaining test cases may not be evaluated. It causes to have same
failures in repository even if it has various hidden failures. For this situation, we
have focused on rather than using same configuration on changing repository, it is

able to reveal more failures by using different configurations on the repository.

To reach this goal, we developed an automated framework combining daily build
process that contains stages configure, build and test repository in respectively for
each day and combinatorial interaction testing approach with using different testing
strategies. For running framework correctly, we have to determine configuration
space model that is about whether configuration option is included or not and specify
date interval for handling the repository. After initialization part, at each iteration
in the framework, covering arrays is generated with respect to developed testing
strategies, then last version of selected subject application is downloaded, configured
based on newly generated configuration in covering arrays, built and tested. After

completed work on the repository, all test and coverage results are gathered.

To observe real results obtained from the framework, we conducted two different ex-
periments. Open source Apache JSPWiki and Apache HBase projects was selected
to use in the experiments as subject applications. We firstly run general approach
on the repository and got the number of total and distinct and failures, passing test
cases and coverage information. We then rerun the repository with respect to de-
veloped testing strategies. We observed that the CIT-daily reveals more remarkable
failures than general approach. Even if covering test cases are same with general
approach, with the help of different configuration, the number of total test passed

and failed changes the version of repository from one day to another.

Another remarkable observation is related to effective strategy among other devel-

oped strategies. It is obvious that each developed testing strategies is better than

38

standard daily build process. However, the Strategy 4 is the best in case of detecting

error in the repository earlier.

As a summary, the results of all experiments strongly support that it is more effective
to use combinatorial interaction based daily build process than to use standard daily

build process.

39

8. FUTURE WORK

After getting experiment results, we consider that there is more studies to be done

in this research area.

One issue we are planning to focus is about developing different testing strategies

to support our approach.

We will also enhance the framework to support different covering array generation

tools like ACTS, PICT because in this research we have only used Jenny tool.

Another issue is to carry out the experiments by using more complex configurations

space with larger subject applications.

Besides this, in the thesis we cannot provide clear results about coverage information
because of randomness. If it can be tracked which configuration has impact on which
code block on the software development with the help of changing on coverage, it is

easy to figure out most important configuration interaction for chosen software.

Finally, we will use different techniques to determine configuration option of the sub-
ject application rather than doing manually to support automation of the developed

framework.

40

BIBLIOGRAPHY

Ahmed, B. & Zamli, K. (2011). A review of covering arrays and their application
to software testing. Journal of Computer Science, 7, 1375-1385.

Ahmed, B. S., Abdulsamad, T. S., & Potrus, M. Y. (2015). Achievement of mini-
mized combinatorial test suite for configuration-aware software functional test-
ing using the cuckoo search algorithm. Information and Software Technology,
66, 13-29.

Ahmed, B. S., Gargantini, A., Zamli, K. Z., Yilmaz, C., Bures, M., & Szeles, M.
(2019). Code-aware combinatorial interaction testing. IET Software, 13(6),
600-6009.

Ahmed, B. S. & Zamli, K. Z. (2010). Pstg: a t-way strategy adopting particle swarm
optimization. In 2010 Fourth Asia International Conference on Mathemati-
cal/Analytical Modelling and Computer Simulation, (pp. 1-5). IEEE.

Bryce, R. C. & Colbourn, C. J. (2006). Prioritized interaction testing for pair-wise
coverage with seeding and constraints. Information and Software Technology,
48(10), 960-970.

Bryce, R. C. & Colbourn, C. J. (2007). The density algorithm for pairwise interaction
testing. Software Testing, Verification and Reliability, 17(3), 159-182.

Bryce, R. C. & Colbourn, C. J. (2009). A density-based greedy algorithm for higher
strength covering arrays. Software Testing, Verification and Reliability, 19(1),
37-53.

Calvagna, A. & Gargantini, A. (2009). Ipo-s: incremental generation of combina-
torial interaction test data based on symmetries of covering arrays. In 2009
International conference on software testing, verification, and validation work-
shops, (pp. 10-18). IEEE.

Cohen, D. M., Dalal, S. R., Fredman, M. L., & Patton, G. C. (1997). The aetg
system: An approach to testing based on combinatorial design. IEEE Trans-
actions on Software Engineering, 23(7), 437-444.

Cohen, M. B. (2004). Designing test suites for software interactions testing. Tech-
nical report, AUCKLAND UNIV (NEW ZEALAND).

Cohen, M. B., Colbourn, C. J., & Ling, A. C. (2008). Constructing strength three
covering arrays with augmented annealing. Discrete Mathematics, 308(13),
2709-2722.

Czerwonka, J. (2008). Pairwise testing in the real world: Practical extensions to test-
case scenarios. Microsoft Corporation, Software Testing Technical Articles.

Forbes, M., Lawrence, J., Lei, Y., Kacker, R. N.; & Kuhn, D. R. (2008). Refining
the in-parameter-order strategy for constructing covering arrays. Journal of
Research of the National Institute of Standards and Technology, 113(5), 287.

Fouché, S., Cohen, M. B., & Porter, A. (2009). Incremental covering array failure
characterization in large configuration spaces. In Proceedings of the eighteenth
international symposium on Software testing and analysis, (pp. 177-188).

Fouché, S., Cohen, M., & Porter, A. (2007). Towards incremental adaptive covering
arrays. (pp. 557-560).

Foundation, A. S. (2007 (accessed August, 2020)a). Apache HBase.

Foundation, A. S. (2007 (accessed August, 2020)b). Apache HBase Repository.

41

Foundation, A. S. (2013 (accessed August, 2020)c). Apache JSPWiki.

Foundation, A. S. (2013 (accessed August, 2020)d). Apache JSPWiki Repository.

Foundation, A. S. (2020 (accessed August, 2020)e). Maven Surefire Plugin.

Ghazi, S. A. & Ahmed, M. A. (2003). Pair-wise test coverage using genetic algo-
rithms. In The 2003 Congress on Evolutionary Computation, 2003. CEC’03.,
volume 2, (pp. 1420-1424). IEEE.

Grindal, M., Offutt, J., & Andler, S. F. (2005). Combination testing strategies: a
survey. Software Testing, Verification and Reliability, 15(3), 167-199.

Grindal, M., Offutt, J., & Mellin, J. (2006). Handling constraints in the input
space when using combination strategies for software testing. Institutionen for
kommunikation och information.

Grinwald, R., Harel, E., Orgad, M., Ur, S.; & Ziv, A. (1998). User defined coverage-
a tool supported methodology for design verification. In Proceedings 1998
Design and Automation Conference. 35th DAC.(Cat. No. 98CHS36175), (pp.
158-163). IEEE.

Hartman, A., Klinger, T., & Raskin, L. (2010). Ibm intelligent test case handler.
Discrete Mathematics, 284 (1), 149-156.

Hartman, A. & Raskin, L. (2004). Problems and algorithms for covering arrays.
Discrete Mathematics, 284 (1-3), 149-156.

Jenkins, B. (2005 (accessed August, 2020)). jenny: a pairwise testing tool.

Karlsson, E.-A., Andersson, L.-G., & Leion, P. (2000). Daily build and feature
development in large distributed projects. (pp. 649-658).

Klaib, M. F., Muthuraman, S., Ahmad, N., & Sidek, R. (2010). Tree based test
case generation and cost calculation strategy for uniform parametric pairwise
testing. Journal of Computer Science, 6(5), 542.

Kobayashi, N., Tsuchiya, T., & Kikuno, T. (2002). A new method for constructing
pair-wise covering designs for software testing. Information Processing Letters,
81(2), 85-91.

Kuhn, R., Kacker, R., Lei, Y., & Hunter, J. (2009). Combinatorial software testing.
Computer, 42(8), 94-96.

Kuhn, R., Lei, Y., & Kacker, R. (2008). Practical combinatorial testing: Beyond
pairwise. It Professional, 10(3), 19-23.

Kuliamin, V. V. & Petukhov, A. (2011). A survey of methods for constructing
covering arrays. Programming and Computer Software, 37(3), 121.

Lehmann, E. & Wegener, J. (2000). Test case design by means of the cte xI. In
Proceedings of the 8th Furopean International Conference on Software Testing,
Analysis € Review (EuroSTAR 2000), Kopenhagen, Denmark.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007). Ipog: A
general strategy for t-way software testing. In 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-Based Systems
(ECBS’07), (pp. 549-556). IEEE.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2008). Ipog/ipog-d:
efficient test generation for multi-way combinatorial testing. Software Testing,
Verification and Reliability, 18(3), 125-148.

Lei, Y. & Tai, K.-C. (1998). In-parameter-order: A test generation strategy for
pairwise testing. In Proceedings Third IEEE International High-Assurance
Systems Engineering Symposium (Cat. No. 98EX231), (pp. 254-261). IEEE.

McConnell, S. (1996). Daily build and smoke test. IEEFE software, 13(4), 144.

42

Memon, A., Banerjee, ., Hashmi, N., & Nagarajan, A. (2003). Dart: a framework for
regression testing' nightly/daily builds" of gui applications. In International
Conference on Software Maintenance, 2003. ICSM 2003. Proceedings., (pp.
410-419). IEEE.

Memon, A., Nagarajan, A., & Xie, Q. (2005). Automating regression testing for
evolving gui software. J. Softw. Maintenance Res. Pract., 17, 27-64.

Memon, A., Porter, A., Yilmaz, C., Nagarajan, A., Schmidt, D., & Natarajan, B.
(2004). Skoll: Distributed continuous quality assurance. In Proceedings. 26th
International Conference on Software Engineering, (pp. 459-468). IEEE.

Memon, A. M. & Qing Xie (2004). Empirical evaluation of the fault-detection
effectiveness of smoke regression test cases for gui-based software. In 20th
IEEFE International Conference on Software Maintenance, 2004. Proceedings.,
(pp. 8-17).

Mohamed, N., Sulaiman, R. F. R., & Endut, W. R. W. (2013). The use of cyclomatic
complexity metrics in programming performance’s assessment. Procedia-Social
and Behavioral Sciences, 90, 497-503.

Mountainminds GmbH Co. KG, M. (2009 (accessed August, 2020)). Jacoco Cover-
age Counters.

Nasser, A. B., Sariera, Y. A., Alsewari, A. A., & Zamli, K. Z. (2015). Assess-
ing optimization based strategies for t-way test suite generation: the case for
flower-based strategy. In 2015 IEEE international conference on control sys-
tem, computing and engineering (ICCSCE), (pp. 150-155). IEEE.

Nie, C. & Leung, H. (2011). A survey of combinatorial testing. ACM Computing
Surveys (CSUR), 43(2), 1-29.

Nie, C., Xu, B., & Leung, H. (2009). Using computational search to generate 2-
way covering array. In Proceedings of the International Symposium on Search
Based Software Engineering, Fast Abstract.

Nie, C., Xu, B., Shi, L., & Wang, Z. (2006). A new heuristic for test suite generation
for pair-wise testing. In SEKE, (pp. 517-521).

NIST (2009 (accessed August, 2020)). User Guide for ACTS.

Nurmela, K. J. (2004). Upper bounds for covering arrays by tabu search. Discrete
applied mathematics, 138(1-2), 143-152.

Ramirez, A. J. & Cheng, B. H. (2010). Design patterns for developing dynamically
adaptive systems. In Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, (pp. 49-58).

Schmidt, V. & Kruse, P. M. (2020). Test design with the classification tree method in
presence of variants. In 2020 IEEFE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), (pp. 487-490). IEEE.

Schroeder, P. J., Bolaki, P., & Gopu, V. (2004). Comparing the fault detection
effectiveness of n-way and random test suites. In Proceedings. 2004 Interna-
tional Symposium on Empirical Software Engineering, 2004. ISESE’0/., (pp.
49-59). IEEE.

Shahid, D. M., Ibrahim, S., & Mahrin, M. (2011). A study on test coverage in
software testing.

Shepperd, M. (1988). A critique of cyclomatic complexity as a software metric.
Software Engineering Journal, 3, 30 — 36.

Shiba, T., Tsuchiya, T., & Kikuno, T. (2004). Using artificial life techniques to gen-
erate test cases for combinatorial testing. In Proceedings of the 28th Annual

43

International Computer Software and Applications Conference, 2004. COMP-
SAC 2004., (pp. 72-77). IEEE.

Simos, D. E., Zivanovic, J., & Leithner, M. (2019). Automated combinatorial testing
for detecting sql vulnerabilities in web applications. 2019 IEEE/ACM 14th
International Workshop on Automation of Software Test (AST), 55—61.

Song, C., Porter, A., & Foster, J. S. (2013). itree: efficiently discovering high-
coverage configurations using interaction trees. IEFE Transactions on Soft-
ware Engineering, 40(3), 251-265.

Stardom, J. (2001). Metaheuristics and the search for covering and packing arrays.
Simon Fraser University Burnaby.

Tai, K.-C. & Lei, Y. (2002). A test generation strategy for pairwise testing. IEEE
transactions on software Engineering, 28(1), 109-111.

Tung, Y.-W. & Aldiwan, W. S. (2000). Automating test case generation for the
new generation mission software system. In 2000 IEEE Aerospace Conference.
Proceedings (Cat. No. 00TH8484), volume 1, (pp. 431-437). IEEE.

Watson, A. H., Wallace, D. R., & McCabe, T. J. (1996). Structured testing: A testing
methodology using the cyclomatic complexity metric, volume 500. US Depart-
ment of Commerce, Technology Administration, National Institute of

Yilmaz, C. (2012). Test case-aware combinatorial interaction testing. IEEE Trans-
actions on Software Engineering, 39(5), 684—706.

Yilmaz, C., Fouche, S., Cohen, M. B., Porter, A., Demiroz, G., & Koc, U. (2013).
Moving forward with combinatorial interaction testing. Computer, 47(2), 37—
45.

Yu, L., Lei, Y., Kacker, R. N., & Kuhn, D. R. (2013). Acts: A combinatorial test
generation tool. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation, (pp. 370-375). IEEE.

Yu, Y., Ng, S. P., & Chan, E. Y. (2003). Generating, selecting and prioritizing test
cases from specifications with tool support. In Third International Conference
on Quality Software, 2003. Proceedings., (pp. 83-90). IEEE.

Zimmerer, P. (2004). Combinatorial testing experiences, tools, and solutions.

44

	LIST OF TABLES
	List of Figures
	INTRODUCTION
	Contributions
	Organization Of The Thesis

	BACKGROUND INFORMATION
	Combinatorial Interaction Testing
	Configuration Space Model
	Traditional Covering Array
	Seeds
	Method of Constructing Covering Array
	Daily Build
	Coverage Metrics
	Line and Instruction Coverage
	Branch Coverage
	Method Coverage
	Complexity

	APPROACH
	Combinatorial Interaction Testing Strategies
	Strategy 1
	Strategy 2
	Strategy 3
	Strategy 4
	Implementation

	EXPERIMENTS
	Subject Applications
	Subjects
	Test Suites
	Configuration Space Model
	Time Intervals

	Evaluation Framework
	Operational Framework
	Data and Analysis
	Discussion

	THREATS TO VALIDITY
	RELATED WORK
	Configuration Space Model
	Covering Array
	Seeds
	Daily Build

	CONCLUDING REMARKS
	FUTURE WORK
	BIBLIOGRAPHY

