
BOOSTING LARGE-SCALE GRAPH EMBEDDING WITH
MULTI-LEVEL GRAPH COARSENING

by
TAHA ATAHAN AKYILDIZ

Submitted to the Graduate School of Engineering and Natural Sciences
in partial fulfilment of

the requirements for the degree of Master of Science

Sabancı University
May 2020

Taha Atahan Akyıldız 2020 c©

All Rights Reserved

ABSTRACT

BOOSTING LARGE-SCALE GRAPH EMBEDDING WITH MULTI-LEVEL
GRAPH COARSENING

TAHA ATAHAN AKYILDIZ

Computer Science and Engineering, Master’s Thesis, 2020

Thesis Supervisor: Asst. Prof. Kamer Kaya

Keywords: Graph coarsening, graph embedding, GPU, parallel graph algorithms,
link prediction

Graphs can be found anywhere from protein interaction networks to social networks.
However, the irregular structure of graph data constitutes an obstacle for running
machine learning tasks such as link prediction, node classification, and anomaly
detection. Graph embedding is the process of representing graphs in a multi-
dimensional space, which enables machine learning tasks to be run on graphs. Al-
though, embedding is proven to be advantageous by a series of works, it is compute-
intensive. Current embedding approaches either can not scale to large graphs or
they require expensive hardware for such purposes. In this work we propose a novel,
parallel multi-level coarsening method to boost the performance of graph embed-
ding both in terms of speed, and accuracy. We integrate the proposed coarsening
approach into a GPU-based graph embedding tool called Gosh, which is able to
embed large-scale graphs with a single GPU at a fraction of the time compared to
the state-of-the-art. When coarsening is introduced, the run-time of Gosh improves
by 14× while scoring greater AUCROC for the majority of medium-scale graphs.
For the largest graph in our data-set with 66 million vertices, and 1.8 billion edges,
embedding takes under an hour, and 93.4% AUCROC is achieved. Moreover, we
investigate the relationship between quality of the coarsening on the quality of the
embeddings. Our preliminary experiments show that the coarsening decisions must
be balanced and the proposed coarsening strategy novel performs well for graph
embedding.

iii

ÖZET

BÜYÜK ÖLÇEKLİ ÇİZGE GÖMME İŞLEMLERİNİ İYİLEŞTİRMEK İÇİN
ÇOK KATMANLI ÇİZGE İNDİRGEME

TAHA ATAHAN AKYILDIZ

Bilgisayar Bilimi, Yüksek Lisans Tezi, 2020

Tez Danışmanı: Asst. Prof. Kamer Kaya

Anahtar Kelimeler: çizge irileştirme, çizge katıştırma, ekran kartı, bağlantı
tahmini, paralel algoritmalar

Çizgeler protein etkileşim ağlarından sosyal ağlara hemen her yerde bulunmaktadır.
Fakat çizgelerin düzensiz veri yapısı, çizgelerin üzerinde bağlantı tahmini, düğüm
sınıflama ve aykırılık belirleme gibi makine öğrenmesi görevleri çalıştırmak adına
bir engel teşkil etmektedir. Çizge gömme, çizgeleri çok boyutlu bir uzayda tanım-
layarak, çizgeler üzerinde makine öğrenmesi görevlerinin kolayca çalıştırılabilmesini
sağlamaktadır. Literatürde bir dizi çalışma bu metodun faydalarını göstermiş olsa
da, çizge gömme yoğun işlem teşkil eden bir metottur. Güncel gömme uygula-
maları, ya büyük ölçekli çizgeleri işleyememekte ya da işlemek için pahalı bir do-
nanım gerektirmektedir. Bu çalışmada orijinal, paralel ve çok katmanlı bir çizge
indirgeme metodu ileri sürmekteyiz. Bu metot çizge gömmenin performansını hem
zaman hem de doğruluk açısından geliştirmektedir. Bu çalışmada, bahsedilen metot,
Gosh adlı büyük ölçekli çizgeleri tek bir ekran kartı ile işleyebilen bir çizge gömme
uygulamasına entegre edilmiştir. Çizge indirgeme metodu entegre edildiğinde, Gosh
ortalama olarak 14 kat daha hızlı çalışmakta ve orta büyüklükteki çizgelerin çoğunda
daha başarılı AUCROC değerleri elde etmektedir. Veri setindeki, 66 milyon düğüm
ve 1.8 milyar bağlantı bulunan en büyük çizgeyi, Gosh, 93.4% AUCROC elde ed-
erken işlemi bir saatin altında tamamlamıştır. Bunlara ek olarak bu çalışmada, çizge
indirgeme kalitesinin çizge gömme kalitesine etkisini incelemekteyiz. Deneylerimiz
indirgeme sürecinin dengeli olması gerektiğini ve ileri sürülen indirgeme metodunun
çizge gömme açısından üstün bir performans sergilediğini göstermektedir.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Kamer Kaya for his endless support, and my
family and friends for supporting me throughout my work in Sabancı.

v

To my family & friends

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . xi

1. INTRODUCTION . 1

2. BACKGROUND AND NOTATION . 4

3. GOSH IN A NUTSHELL . 7

4. GRAPH COARSENING . 10
4.1. Graph Embedding Frameworks that Utilize Coarsening 11

4.1.1. MILE: A Multi-Level Framework for Scalable Graph Embedding 11
4.1.2. HARP: Hierarchical Representation Learning for Networks. . . . 13

4.2. GOSH Coarsening . 14
4.2.1. Complexity analysis: . 16

4.3. Parallel GOSH Coarsening. 17
4.4. Grappolo . 18

5. GRAPH EMBEDDING . 20
5.1. Random-Walk-based Graph Embedding . 21

5.1.1. DeepWalk: Online Learning of Social Representations 21
5.1.2. LINE: Large-scale Information Network Embedding 22
5.1.3. VERSE: Versatile Graph Embeddings from Similarity Measures 23
5.1.4. GraphVite . 24

5.2. GOSH Embedding . 25
5.2.1. Small Dimensions . 26

6. EXPERIMENTS . 28
6.1. Evaluation Pipeline . 29
6.2. Coarsening Experiments . 31

6.2.1. Experiments on Coarsening Performance . 31

vii

6.2.2. Experiments on Coarsening Quality . 33
6.2.2.1. Experiments on Coarsening Depth 40

6.3. Embedding Experiments . 45
6.3.1. Large-scale graphs. 45
6.3.2. Experiments on Small Dimensions . 47

6.4. Speed Up Break-Down . 47

7. CONCLUSION . 49

BIBLIOGRAPHY. 51

viii

LIST OF TABLES

Table 2.1. Notation used in the thesis. 6

Table 6.1. Medium- and large-scale graphs used in the experiments.
Thanks to Leskovec & Krevl (2014) for com-dblp, com-amazon,
soc-pokec, wiki-topcats, com-orkut, com-lj, soc-LiveJournal,
and com-friendster; to Rossi & Ahmed (2015) for soc-sinaweibo,
and twitter_rv; to Meusel (2015) for hyperlink2012; to Mislove,
Marcon, Gummadi, Druschel & Bhattacharjee (2007) for youtube. . . . 30

Table 6.2. Gosh configurations, fast, normal and small for medium-scale
and large-scale graphs. A version with no coarsening is also used in
the experiments. 31

Table 6.3. Performance of Gosh coarsening with naive, ordered, and opti-
mized version, and τ = 16 threads. 32

Table 6.4. MILE vs Gosh coarsening on com-orkut. A parallel coarsening
with τ = 16 threads is used for Gosh. 33

Table 6.5. Execution times, the number of levels and the size of the last-
level graphs for sequential and parallel coarsening with τ = 2,4,8,16
threads for the large-scale graphs. The training graph with a split
ratio of 0.8 is used for all the graphs. For hyperlink2012 Coarsening
Stopping Threshold of 0.83 is used for τ = 4,8, and 16. 34

Table 6.6. The performance of Gosh integrated with different types of
coarsening. The training graph with a split ratio of 0.8 is used for all
the graphs. Gosh-normal is used for the experiments. 36

Table 6.8. Link prediction results on medium-scale graphs. Every data-
point is the average of 15 results. VERSE and Gosh uses τ = 16
threads. MILE is a sequential tool. Both GraphVite and Gosh uses
the same GPU. The speedup values are computed based on the exe-
cution time of VERSE . 40

ix

Table 6.7. The performance ofGosh is displayed for coarsening levels 2,3,5,
and 7. The training graph, with a split ratio of 0.8, is used for all the
graphs. 44

Table 6.9. Link prediction results on large graphs. Every data-point is the
average of 6 results. GraphVite and MILE fail to embed any of the
graphs due to excessive memory usage or an execution time larger
than 12 hours. τ = 16 threads used for both VERSE and Gosh. 46

Table 6.10. Performance of Gosh with (SM = Yes) & without (SM = No)
small-dimension embedding and τ = 16 threads. 47

x

LIST OF FIGURES

Figure 3.1. Multilevel embedding performed by Gosh: first, the coars-
ened set of graphs are generated. Then, the embedding matrices are
trained until M0 is obtained. The original graph is coarsened down
into a smaller graph, and then that graph is coarsened, and so on.
The smallest graph is then embedded, and its embeddings are pro-
jected onto the higher graph, and then that graph is embedded and
that continues upwards until the original graph is embedded. 7

Figure 3.2. Memory model of large graphs algorithm embedding graph Gi.
1) Embedding sub-matrices are copied between the host and GPU as
needed, 2) When sample pool Sj,k

i is ready, it is copied to an empty
buffer. 3) When a sample pool on the GPU is used up, it is replaced
by the next sample pool from the buffer. 9

Figure 4.1. MILE Coarsening Strategy . 12
Figure 4.2. HARP Coarsening Strategy . 13
Figure 4.3. MultiEdgeCollapse: Since green vertex (4) has the highest

degree it is processed first. Unlike vertex 3, vertices 4 and 5 can not
be mapped to the same super vertex since their degrees are bigger
than the density of the graph. Hence they are mapped to the same
super with vertices 2, and 6 respectively. 15

Figure 5.1. GraphVite Embedding with Multiple GPUs (Zhu, Xu, Tang
& Qu, 2019) . 24

Figure 6.1. Medium-scale graph results for different coarsening strategies
and configurations. 37

Figure 6.2. Large-scale graph results for different coarsening strategies and
configurations. 39

Figure 6.3. Performance profile of Gosh using ulta-fast configuration with
different coarsening strategies for the entire data-set. 39

xi

Figure 6.4. Performance profile of Gosh using fast configuration with dif-
ferent coarsening strategies for the entire data-set. 42

Figure 6.5. Performance profile of Gosh using normal configuration with
different coarsening strategies for the entire data-set. 42

Figure 6.6. Performance profile of Gosh using slow configuration with dif-
ferent coarsening strategies for the entire data-set. 43

Figure 6.7. Performance profile of Gosh with different coarsening strate-
gies, and embedding configurations for the entire data-set. Colors,
and markers represent the configuration, and the coarsening strategy
respectively. 43

Figure 6.8. The speedups obtained from running intermediate versions of
Gosh compared to our multi-core CPU implementation with 16 threads. 48

xii

1. INTRODUCTION

Graphs are ubiquitous. They can be found anywhere from social and communica-
tion networks to co-occurrence and protein interaction networks, and many more.
Judicious analysis of graphs yields far-reaching insights to many areas of research
and industry. Recently, there has been a growing interest in the literature in repre-
senting graph vertices in vector space, where a vertex is represented by a relatively
small number of dimensions. This type of low dimensional representation of graphs,
namely graph embedding, paves the way to running machine learning tasks such
as link prediction, node classification, and anomaly detection on graphs. However,
graph embedding is a computation-intensive process, where naive implementations
do not scale to real-world sized graphs. One way to tackle this issue is to reduce the
size of the graphs without disturbing the structural properties of the original graph.
A popular method in the literature, graph coarsening, is an efficient, and effective
way for approximating large graphs with smaller ones. Our preliminary experiments
show that leveraging graph coarsening not only improves the run-time, but also the
quality of the embedding.

In the literature, there have been a series of works which proposed powerful graph
embedding methods. However, these approaches, even with parallel implementa-
tions, can not scale to real-world sized graphs which are relatively larger. Other
works that utilized coarsening (Chen, Perozzi, Hu & Skiena, 2017; Liang, Gurukar &
Parthasarathy, 2018) are also unable to scale to larger graphs, and they do not have
parallel implementations for coarsening. The only GPU implementation, GraphVite
(Zhu et al., 2019), is able to relax this limitation but requires multiple GPUs, and
does not leverage coarsening.

In this thesis, we propose a novel, parallel, and multi-level coarsening algorithm
for graph embedding. The algorithm shrinks graphs efficiently and prevents giant
vertex sets from forming. This is achieved by introducing a new coarsening method
called MultiEdgeCollapse, where the vertices are sorted in terms of their degree
and processed in descending order. Moreover, vertices that have a relatively higher
degree are not permitted to merge. We also present Gosh, a CPU-GPU hybrid,

1

multi-level graph embedding tool that leverages coarsening for boosting both the
speed of the tool and the quality of the embeddings generated. With a single GPU,
Gosh can handle any graph that fits on the host memory. First, a coarsened set
of graphs is obtained by iteratively shrinking the graph. Then starting from the
coarsest graph, GPU embedding is executed, and the initial embedding is obtained.
Then using the coarsening information, the embedding is expanded for the training
on the next level. This process is repeated until embedding is executed on the
original graph, and the final embedding is obtained.

The contributions of the thesis can be summarized as follows:

• A novel multi-level coarsening algorithm is proposed, which is able to shrink
graphs efficiently and boost the performance of graph embedding in terms of
both speed and accuracy. When coarsening is introduced, the run-time of
Gosh improves by 14× on medium-scale graphs. Moreover the version with
coarsening scores greater AUCROC for 5 out of 8 graphs.

• We further introduce a parallel version of the novel coarsening algorithm, which
generates similar coarsening sets compared to the sequential implementation
while being up to 7.5× faster. On the largest graph in our data-set, parallel
coarsening constitutes an 80% improvement on the run-time of Gosh.

• To the best of our knowledge, we are the first ones to analyze the quality of the
coarsening on the quality of the embeddings. An extensive set of experiments
using four different coarsening strategies demonstrates that smart coarsening
has a positive impact on the quality of the embeddings.

• Multilevel coarsening and smart work distribution across levels enable Gosh to
generate accurate embeddings at a fraction of the time compared to the state-
of-the-art. For instance, on the graph com-lj, GraphVite, a state-of-the-art
GPU-based embedding tool, spends around 11 minutes to reach 98.33% AU-
CROC score on the task of link prediction, while Gosh is able to score 98.33%
in a single minute. Furthermore, according to Zhu et al. (2019), GraphVite
takes 20 hours with 4 Tesla P100 GPUs on the graph com-friendster which
has 60 million vertices and 1.8 billion edges. On a single Titan X GPU, Gosh
reaches 93.4% link prediction AUCROC score within 45 minutes.

The rest of the thesis is organized as follows: in Chapter 2, the notation used in the
thesis is given. In Chapter 3, the high-level description ofGosh is outlined. Following
that, in Chapter 4, graph coarsening, and in Chapter 5, graph embedding, are
described in detail by summarizing related work from the literature. The proposed
algorithms are also introduced in Chapters 4 and 5. In Chapter 6, these algorithms

2

are judiciously evaluated, and comparisons with state-of-the-art tools are provided.
Chapter 7 concludes the thesis.

3

2. BACKGROUND AND NOTATION

A graph G = (V,E) is a collection of nodes represented by V , and E represents
the connection information between V , where E ⊆ (V × V). ∀(u,v) ∈ E, if G is
undirected (u,v) ∈E =⇒ (v,u) ∈E. On the other hand, if G is directed (u,v) does
not imply (v,u). The set of outgoing neighbors of a vertex u ∈ V is denoted as
Γ+(u) = {v ∈ V : (u,v) ∈ E}. Similarly, the incoming neighbors of a vertex v ∈ V is
denoted as Γ−(v) = {u ∈ V : (u,v) ∈ E}. The set of all neighbors of a vertex u ∈ V
is denoted as Γ(v) = Γ−(v)⋃Γ+(v). For undirected graphs, Γ(v) = Γ+(v) = Γ−(v).

An embedding of G is a matrix M of size |V |×d, where |V |, and d is the amount
of rows, and columns respectively. A row M[v] is a vector of features representing
a vertex v ∈ V . Various random-walk based embedding methods are proposed in
the literature (Grover & Leskovec, 2016; Perozzi, Al-Rfou & Skiena, 2014; Tang,
Qu, Wang, Zhang, Yan & Mei, 2015; Tsitsulin, Mottin, Karras & Müller, 2018;
Zhu et al., 2019). For all of the mentioned works, updating the embedding vector
is similar where stochastic gradient decent algorithm is utilized for optimization.
Gosh employs the embedding method of VERSE (Tsitsulin et al., 2018), which is
empirically shown to be faster and has a smaller memory footprint compared to the
state-of-the-art. Furthermore, VERSE can be operated with various similarity mea-
sures Q, which is especially effective for different machine learning tasks. VERSE
defines two distribution on a vertex, where the first one simv

Q is computed using
the similarity measure Q, and the other one simv

E is computed by calculating the
cosine similarities of the embedding vector M[v] to every other vertex u ∈ V . As
a post-processing step, a soft-max layer is applied to normalize the obtained distri-
butions. VERSE aims to minimize the difference between simv

E , and simv
Q, which

is also discussed as minimizing the Kullback-Leibler divergence by Tsitsulin et al.
(2018).

During VERSE embedding, a logistic regression classifier is trained in order to dis-
tinguish the positive samples selected from simv

Q, and the negative samples selected
from a noise distribution N . To be more precise, ∀v ∈ V , e number of positive
updates, and e×ns number of negative updates are executed. In Algorithm 1, the

4

Algorithm 1: UpdateEmbedding
Data: M[v], M[sample], b, lr
Result: M[v], M[sample]

1 score← b−σ(M[v]�M[sample])× lr ;
2 M[v]←M[v] + M[sample] · score;
3 M[sample]←M[sample] + M[v] · score;

details of a single update on the embedding is depicted. Given the embedding vector
M[v] of the source v ∈ V , the embedding vector M[sample] of the sample, b for in-
dicating the sign of the update, and lr as the learning rate; first a score is calculated
using the learning rate, sign indicator, and the sigmoid σ of the dot product of the
vectors. Then using the calculated score both embeddings are updated accordingly.

Given G = (V,E), graph coarsening is the process of structurally approximating G
with a new graph G′ = (V ′,E′) such that G′ has fewer vertices and edges. This is
done through means of collapsing (disjoint) sets of vertices in G into super-vertices
which will form the vertex set of G′.

In a multi-level setting, the initial graph G0 =G is coarsened in multiple levels and
a set G = {G0,G1, · · · ,GD−1} of graphs is generated where GD−1 is the coarsest, i.e.,
the smallest graph. In this work, we evaluate the efficiency of a coarsening level
based on the rate of shrinking defined as

(|Vi−1|− |Vi|)/|Vi−1|.

We followed a vertex-centric measurement since the size of the embedding matrix
and the number of samples required for an iteration change with respect to the
number of vertices. We also consider the effectiveness of the overall coarsening
strategy which compares the embedding quality of a strategy to that of another for
the same graph embedded with the same parameters.

The notation used in the thesis is given in Table 2.1.

5

Symbol Definition

G0 = (V0,E0) The original graph to be embedded.
Gi = (Vi,Ei) Represents a graph, which is coarsened i times.
Γ+(u) The set of outgoing neighbors of vertex u.
Γ−(u) The set of incoming neighbors of vertex u.
Γ(u) Neighborhood of u, i.e., Γ+

Gi
(u)⋃Γ−Gi

(u).
d # features per vertex, i.e., dimension of the embedding.
ns # negative samples per vertex.
σ Sigmoid function.
simm Similarity metric used in training.
e Total number of epochs that will be performed
lr Learning rate.
D Total amount of coarsening levels.
G The set of coarsened graphs created from a graph G=G0.
p Smoothing ratio for epoch distribution.
ei # epochs for coarsening level i.
Mi Embedding matrix obtained for Gi.
M The set of mappings used in coarsening.
mapi Mapping information from Gi−1 to Gi.
Vi The partitioning of vertex set Vi.
Pi The partitioning of embedding matrix Mi.
Ki # parts in Vi.
PGP U # embedding parts to be placed on the GPU.
SGP U # sample pools to be placed on the GPU.
B # positive samples per vertex in a single sample pool.

Table 2.1 Notation used in the thesis.

6

3. GOSH IN A NUTSHELL

Given a graph G0, Gosh generates the embedding matrix M0 (see Algorithm 2).
Mainly, two stages are required for this process namely, coarsening and training:

1.1 A set, G = {G0,G1, . . . ,GD−1}, of coarsened graphs is created iteratively (see
left of Figure 3.1), where a super vertex/node v ∈ Vi represents one or more
vertices u, .. ∈ Vi−1 (Line 1). The mapping information is also stored for the
graph for the correct projection of the embedding vectors, which is performed
in the next stage.

1.2 The training process starts from the coarsest graph GD−1 in order to generate
the first embedding matrix MD−1. Then the embedding vectors are projected
to the respective locations in MD−2, and the training continues using GD−2.
To generalize the embedding, matrix Mi is trained with the graph Gi and
projected to embedding matrix Mi−1 (Lines 3- 10).

The training process is repeated until M0 is obtained (see right of Figure 3.1). To
obtain Mi−1 from Mi the mapping information of Gi−1 is used, where Mi[u] =
Mi−1[v] iff u ∈ Vi is a super node of v ∈ Vi−1.

Gosh is implemented in such a way that it provides support for large-scale graphs,

Figure 3.1 Multilevel embedding performed by Gosh: first, the coarsened set of
graphs are generated. Then, the embedding matrices are trained until M0 is

obtained. The original graph is coarsened down into a smaller graph, and then
that graph is coarsened, and so on. The smallest graph is then embedded, and its
embeddings are projected onto the higher graph, and then that graph is embedded

and that continues upwards until the original graph is embedded.

7

which the memory footprint of the embedding matrix, and the graph itself exceeds
the memory of the device. The size of the matrix is approximately 16G for practical
sizes, e.g., |V | = 128M and d = 128. To add, with double precision, one needs to
have 128GB memory on the device to store the entire matrix. This is not possible
for contemporary devices. Gosh can handle graphs of all sizes with a single GPU.

Algorithm 2: Gosh
Data: G0, ns, lr, lrd, p, e, threshold, PGP U , SGP U , B
Result: M

1 G ←MultiEdgeCollapse (G0, threshold);
2 Randomly initialize MD−1;
3 for i from D−1 to 1 do
4 ei← calculateEpochs(e, p, i);
5 if Gi and Mi fits into GPU then
6 CopyToDevice(Gi, Mi);
7 Mi← TrainInGPU (Gi, Mi, ns, lr, lrd, ei);
8 else
9 Mi← LargeGraphGPU(Gi, Mi, ns, lr, lrd, ei, PGP U , SGP U , B);

10 Mi−1← ExpandEmbedding(Mi, mapi−1);
11 return M0;

For all the graphs in G, if both Gi and Mi can fit in the GPU memory (Line 5), Gi

and the projection of Mi is directly copied to the device. Thanks to coarsening, this
is the case for many of the levels during the embedding process even when the original
graph is huge. For this case, the embedding process is completed in a single step
(Lines 6-7), where the samples are generated on the GPU. Otherwise, the samples
are generated on the CPU and the embedding is carried out by copying respective
portions of the samples, Mi and Gi in batches (Line 9) (see Figure 3.2). This
thesis focuses on the coarsening algorithm and multi-level embedding which reduces
the cost significantly. The details of the case where the graph and the embedding
vector do not fit in the GPU memory can be found in (Akyildiz, Aljundi & Kaya,
2020).

The multi-level nature of Gosh brings out an interesting problem: how one will
distribute the epoch budget e to the levels? A naive approach would be to distribute
the epochs evenly through out the levels. If fewer epochs are reserved for the higher
levels the embedding process will be faster. To add, the corresponding embedding
matrices will have a significant impact on the overall process as they are projected to
further levels. On the contrary, if more epochs are reserved for the higher levels the
embedding will be more fine tuned. Based on our preliminary experiments, where
we tried a combination of uniform, and geometric distribution of the epochs, Gosh
performs best with a mixed strategy. As a default, a portion p of the epochs are

8

Figure 3.2 Memory model of large graphs algorithm embedding graph Gi. 1)
Embedding sub-matrices are copied between the host and GPU as needed, 2)

When sample pool Sj,k
i is ready, it is copied to an empty buffer. 3) When a sample

pool on the GPU is used up, it is replaced by the next sample pool from the buffer.

distributed uniformly. The remaining p− 1 epochs are distributed geometrically.
Training at level i uses ei = e/D+ e′i epochs where e′i is half of e′i+1. The value p
is called the smoothing ratio and is left as a configurable parameter for the user to
establish an interplay between the performance and accuracy. The epoch distribu-
tion strategy is also left as a configurable parameter, where the user can choose the
default, or a completely uniform, or geometric distribution.

Learning rate is another configurable parameter of Gosh that significantly affects
the quality of multi-level embedding. Once again, because of the multi-level nature
of the algorithm, another question arises: how to set the learning strategy for each
level? In short, Gosh uses the same initial learning rate for all the levels. In other
words, the algorithm resets the learning rate as the initial input for the training of
each Mi and decrease it after each epoch. The learning rate for epoch j at the ith
level is equal to lr×max

(
1− j

ei
,10−4

)
.

9

4. GRAPH COARSENING

As data becomes an integral part of our daily lives in terms of both personal and
commercial use, the amount of data generated, and stored is increasing rapidly.
Similarly, real world graph data is also getting larger and larger each and every day.
Although large amounts of data is desirable for applications, processing such data
on a modern processor is becoming impractical due to overlong run-times. This is
especially troublesome for graph algorithms, where the time complexity scales with
the amount of vertices and edges in the graph. To tackle this problem, researchers
focused on finding generic ways to simplify graphs, where the main goal is to decrease
the size of the graph while preserving its structural properties. There exist two
approaches in the literature; namely, graph sparsification and graph coarsening:

Graph sparsification aims to decrease the amount of edges that are present in the
graph while preserving the amount of vertices in the graph. In other words, the
sparsified graph is an approximation of the original graph. In recent years, it is shown
that any arbitrary graph can be represented by a sparser version in terms of pairwise
distances (Peleg & Schäffer, 1989), eigenvalues (Spielman & Teng, 2008), and cuts
(Tsay, Lovejoy & Karger, 1999). Moreover, these techniques are also utilized in
applications where the amount of edges constitutes a bottleneck (Batson, Spielman,
Srivastava & Teng, 2013; Calandriello, Lazaric, Koutis & Valko, 2018).

Graph coarsening, similar to graph sparsification, reduces the number of edges, and
additionally reduces the number of vertices by grouping vertices under super vertices.
This process results in a coarser version of the input graph, where each vertex in the
coarse graph represents/contains one or more vertices in the original graph. Due to
its ability to shrink input data, it is mainly, but not exclusively, used to accelerate
algorithms that have a high time complexity. In the literature, coarsening is widely
adopted in algorithms that apply a multi-level setting. Graph partitioning (Hen-
drickson & Leland, 1995; Karypis & Kumar, 1998a) and visualization (Harel & Ko-
ren, 2000; Hu, 2005) research pioneered the adoption of graph coarsening algorithms
in computer science. Recent studies show that graph coarsening is further utilized in
machine learning research that operates on graph-structured data (Gavish, Nadler

10

& Coifman, 2010; Lafon & Lee, 2006). Furthermore a series of works shows how
graph coarsening is utilized in Convolutional Nueral Networks (CNNs) (Bronstein,
Bruna, LeCun, Szlam & Vandergheynst, 2017; Bruna, Zaremba, Szlam & LeCun,
2013). Although coarsening is widely adopted, and is utilized in various applications,
unlike graph sparsification, it does not have an established theory in the literature.
Graph coarsening approaches, and implementations vary greatly especially in dif-
ferent branches of graph research. Although there have been recent attempts to
demystify graph coarsening (Loukas, 2018), its success still remains a mystery.

4.1 Graph Embedding Frameworks that Utilize Coarsening

To the best of our knowledge, there are two studies in the literature, which ap-
ply multi-level graph embedding by the means of coarsening (Chen et al., 2017;
Liang et al., 2018). Intriguingly, coarsening is applied in order to improve different
paradigms of the respective algorithms. While MILE (Liang et al., 2018) aims to
accelerate the embedding process, HARP (Chen et al., 2017) proposes that the
multi-level setting can be utilized to boost the accuracy of preexisting embedding
algorithms.

4.1.1 MILE: A Multi-Level Framework for Scalable Graph Embedding

MILE (Multi-Level Embedding Framework) proposes a novel algorithm to relax
computational complexity and memory requirement limitations of preexisting em-
bedding methods. MILE shows that contemporary embedding algorithms cannot
scale to millions of vertices, and edges on a modern processor. MILE tackles this
problem by repeatedly shrinking the graph into smaller ones by utilizing a hybrid
matching algorithm. Then it only runs embedding on the smallest graph, where
the embedding method can be selected from the existing methods in the literature.
Finally, it refines the embedding for the coarsest graph through a Graph Convolu-
tional Neural Network (GCNN) up to the original graph, resulting with the final
embedding.

MILE applies a hybrid matching scheme, which includes SEM (Structural Equiva-
lence Matching) and NHEM (Normalized Heavy Edge Matching), as demonstrated

11

Figure 4.1 MILE Coarsening Strategy

in Figure 4.1 (Karypis & Kumar, 1998b). With SEM, two vertices are matched if
and only if they are incident on the same set of neighbourhoods, where the vertices
are interchangeable and structurally equivalent. With NHEM, for an unmatched
vertex u, a neighbour of u, v, is matched where the weight of the edge (u,v) is the
largest. For NHEM, edges are normalized in a fashion where the ones connecting
to high-degree vertices are penalized, which in turn prevents forming huge super
vertices. To coarsen a graph, first SEM is applied and all the structurally equivalent
vertices are matched. Then the edges are normalized. Normalization is followed by
NHEM and all the matched vertices are collapsed under respective super vertices.
This processes is applied iteratively until the coarsest graph is obtained.

After the coarsest graph is obtained, a baseline method for embedding is run, and
an embedding for the coarsest graph is generated. For the embedding algorithm,
MILE provides the following approaches by Perozzi et al. (2014), Cao, Lu & Xu
(2015), Grover & Leskovec (2016) and Qiu, Dong, Ma, Li, Wang & Tang (2018),
but it can be extended to any baseline method.

For the final step of the MILE framework, first, the embedding vectors of the coarser
graphs are directly projected to the embedding of the larger graphs. All the vertices
that are collapsed under the same super vertex are assigned the same embedding
vector. This constitutes a big problem, where the problem only gets more serious
as more levels of coarsening is introduced. Hence, during projection, embedding
vectors are refined with the help of a GCN. GCN takes the projections, and graph
adjacency matrix as input. Embeddings go trough l convolution layers and the
refined versions are provided as an output. We refer the reader to (Kipf & Welling,
2016a) for more on GCNs.

MILE is evaluated for node classification (Perozzi et al., 2014). The data-sets used in
the experiments range from 4 thousand vertices and 37 thousand edges to 9 million
vertices and 40 million edges. According to the results, MILE is able to speed
up the embedding process up to an order of magnitude (depending on the level
of coarsening), without degrading the quality of the embeddings. For some graphs,

12

Figure 4.2 HARP Coarsening Strategy

MILE performs better than the baseline algorithm and for some graphs it performed
worse without a substantial difference. However, since embedding is only applied
to the last level, as the coarsening levels increase the quality of the final embedding
decreases. Although MILE improves the run time of embedding algorithms without
degrading the quality of the embeddings, it still comes short for graphs which have
tens of millions of vertices and billions of edges. The main bottleneck for MILE is
the coarsening process which is analyzed in Chapter 6.

4.1.2 HARP: Hierarchical Representation Learning for Networks

HARP (Hierarchical Representation Learning for Networks) by Chen et al. (2017)
is a general meta-strategy to improve state-of-the-art algorithms for graph embed-
ding. It recursively coarsens the input graph to get a set of smaller graphs with
the same structure of the original graph. Unlike MILE, after coarsening, HARP
runs embedding on all the levels. First, embedding is run on the coarsest level,
then the vectors of the generated embedding are projected to the embedding of the
larger graph. This process is repeated until the learning phase is completed on the
original graph. The authors claim that this schema addresses several shortcomings
of state-of-the-art (Grover & Leskovec, 2016; Perozzi et al., 2014; Tang et al., 2015)
embedding algorithms. First, all of the sample-based, state-of-the-art embedding
algorithms focus on extracting information from the imminent neighbourhood of
vertices. According to the authors, this completely ignores long-distance global pat-
terns. Second, since all the algorithms utilize stochastic gradient decent, without a
multi-level setting, the learning process can get stuck on a local minima.

HARP also applies a hybrid coarsening scheme. The scheme has two key parts; edge
collapse, and star-collapse for preserving first-order, and second-order proximity
respectively. With edge collapse (Hu, 2005), the vertices that have an edge in
between are collapsed such that no vertex can be collapsed more than once. On
the other hand, star collapse is an efficient coarsening method for graphs with large

13

degree (hub) vertices, where edge collapse needs a lot of iterations to coarsen. With
star collapse, low degree peripheral vertices are mapped to the same super vertex as
shown in Figure 4.2. The hybrid scheme first applies star collapse, and than adopts
edge collapse for each coarsening step. Coarsening is applied recursively until a
small enough graph, which has less than 100 vertices, is obtained.

The performance of HARP is evaluated on Node Classification with three graphs
ranging from (3 thousand vertices, 5 thousand edges and 6 classes) to (10 thousand
vertices, 333 thousand edges, and 39 classes). For the experiments, DeepWalk (Per-
ozzi et al., 2014), Node2Vec (Grover & Leskovec, 2016), and Line (Tang et al., 2015)
are used as baseline methods. HARP performed better than the respective baselines.
It improved Line, DeepWalk, and Node2Vec 7, 5, and 2 percent on average respec-
tively. Although HARP conceptually proves that coarsening boosts the quality of
the embeddings, it can not scale to millions of vertices, and edges.

4.2 GOSH Coarsening

Gosh employs a fast algorithm to keep the structural information within the coarsed
graphs while maximizing the coarsening efficiency and effectiveness. Coarsening
efficiency at the ith level is measured by the rate of shrinking defined as

(|Vi−1|− |Vi|)/|Vi−1|.

On the other hand, the effectiveness is measured in terms of its embedding quality
compared to other possible coarsenings of the same graph embedded with the same
parameters. An agglomerative coarsening approach MultiEdgeCollapse, which
generates vertex clusters in a way similar to the one used in (Chen et al., 2017) is
adapted. In the ith level, given Gi = (Vi,Ei), the vertices in Vi are processed one by
one. If v is not marked, it is marked, and mapped to a cluster, i.e., a new vertex in
Vi+1 and its edges are processed. If an edge (v,u) ∈Ei, where u is not marked, u is
added to v’s cluster. Then, all of the vertices in v’s cluster are shrunk into a super
vertex vsup ∈Gi+1.

MultiEdgeCollapse preserves both the first- and second-order proximites (Tang
et al., 2015) in a graph. The former measures the pairwise connection between
vertices, and the latter represents the similarity between vertices’ neighborhoods.
It achieves that by collapsing the vertices that belong to the same neighborhood

14

Figure 4.3 MultiEdgeCollapse: Since green vertex (4) has the highest degree it
is processed first. Unlike vertex 3, vertices 4 and 5 can not be mapped to the same
super vertex since their degrees are bigger than the density of the graph. Hence

they are mapped to the same super with vertices 2, and 6 respectively.

around a local, hub vertex. However, if this process is handled carelessly, two,
giant hub vertices can be merged. It is observed that this degrades the effectiveness
and efficiency of the coarsening. The effectiveness degrades since the structural
equivalence is not preserved in the lower levels of the coarsening, where most of the
vertices are represented by a small set of super vertices. Furthermore having a small
set of giant supers inhibits the graph from being coarsened further, resulting in an
insufficient efficiency. To mitigate this, a new condition for matching is introduced
to the algorithm, where u ∈ Vi can not be put into the cluster of v ∈ Vi if |ΓGi

(u)|
and |ΓGi

(v)| are both larger than |Ei|
|Vi| . Consequently, assuming that the hub vertices

will have a higher degree than the density of Gi, two of them can no longer be in the
same cluster. Preliminary experiments show that this simple rule has a significant
effect on both the efficiency and the effectiveness of the coarsening. The rule is
further improved by changing the threshold from |Ei|

|Vi| to
|Ei|
|Vi| + 1 in order to be able

to coarsen cliques.

As mentioned above, when a vertex is marked and added to a cluster, its edges are
not processed further and it does not contribute to the coarsening. Performing the
coarsening with an arbitrary ordering may degrade the efficiency since large vertices
can be locked by the vertices with small neighborhoods. Hence, when an edge
(u,v) ∈ Ei is used for coarsening for a hub-vertex v ∈ Vi, to maximize efficiency,
we prefer u ∈ Vi to be inserted in to the cluster of origin v. To provide this, an
ordering is procured by sorting the vertices with respect to their respective degrees
and this ordering is used during coarsening. This ensures processing vertices with
a higher degree before the vertices with smaller neighborhoods and this results in a
substantial increase in the coarsening efficiency.

The details of the coarsening phase are given in Algorithm 3. The algorithm takes
an uncoarsened graph G = G0 and returns the set of coarsened graphs G along
with the mapping information to be used to project the embedding matrices M.
G andM are initialized as {G0} and empty set, respectively. Starting from i = 0,
the coarsening continues until a graph Gi+1 with less than threshold vertices is

15

generated. As mentioned above, first the vertices in Gi are sorted with respect to
their neighborhood sizes. Then the coarsening is performed and a smaller Gi+1

is generated. We also store the mapping information mapi used to shrink Gi to
Gi+1. This will be used later to project the embedding matrix Mi+1 obtained for
Gi+1 to initialize the matrix Mi for Gi. To add, threshold= 100 is used for all the
experiments in the paper which is the default value for Gosh.

Algorithm 3: MultiEdgeCollapse
Data: G0 = (V0,E0), threshold
Result: G,M

1 G ← {G0},M←∅, i← 0;
2 while |Vi|> threshold do
3 order← Sort(Gi);
4 for v ∈ Vi do mapi[v]←−1;
5 δ← |Ei|/|Vi|;
6 cluster← 0;
7 for v in order do
8 if mapi[v] =−1 then
9 mapi[v]← cluster;

10 cluster← cluster+ 1;
11 foreach (v,u) ∈ Ei do
12 if |ΓGi

(v)| ≤ δ or |ΓGi
(u)| ≤ δ then

13 if mapi[u] =−1 then
14 mapi[u]←mapi[v];

15 Gi+1← Coarsen(Gi,mapi);
16 G ← G∪{Gi+1},M←M∪{mapi}, i← i+ 1;

4.2.1 Complexity analysis:

All the algorithms, coarsening and embedding, use the Compressed Sparse
Row (CSR) graph data structure. In CSR, an array, adj holds the neighbors of
every vertex in the graph consecutively. This array is a list of all the neighbors of
vertex 0, followed by all the neighbors of vertex 1, and so on. Another array, xadj,
holds the starting indices of each vertex’s neighbors in adj, with the last index being
the number of edges in the graph. In other words, the neighbors of vertex i are
stored in the array adj from adj[xadj[i]] until adj[xadj[i+ 1]].

MultiEdgeCollapse has three stages; sorting (line 3), mapping (lines 7–14)
and coarsening (line 15). A version of counting sort is implemented for the first

16

stage with a time complexity of O(|V |+ |E|). For mapping, the algorithm traverses
all the edges in the graph. This has a time complexity of O(|V |+ |E|). Finally,
coarsening the graph requires sorting the vertices with respect to their mappings
and going through all the vertices and their edges within the CSR, which also has
a time complexity of O(|V |+ |E|).

4.3 Parallel GOSH Coarsening

As the literature suggests, when the embedding is performed on the CPU, embedding
dominates the total execution time. Nonetheless, with fast embedding as in Gosh,
this is not the case. Thus, coarsening on the CPU is parallelized for Gosh.

For parallelization, we employ locks, which are needed mainly for two reasons: First,
two threads can attempt to map the same vertex to two different mapped vertices
at the same time. Second, a thread might attempt to map a vertex v (line 14 of
Algorithm 3) while another is currently on the process of mapping (line 9) other
vertices to v; this makes v both a mapped and a mapping vertex. Both of these
occurrences lead to inconsistent coarsenings due to race conditions. To avoid race
conditions, we use a lock per each entry of mapi. To update mapi[v] and mapi[u] as
in lines 9 and 14, the thread first tries to lock mapi[v] and mapi[u], respectively. If
the lock is obtained, the process continues. Otherwise, the thread skips the current
candidate and continues with the next vertex. One caveat is the update on the
counter cluster. Hence, instead of using a separate variable for super vertex ids,
the parallel version uses the hub-vertex id for mapping. That is mapi[v] is set to v
unlike line 9 of the sequential algorithm. With this implementation, mapi does not
provide a mapping to actual vertex IDs in Gi+1. This can be fixed in O(|V |) time
via sequential traversals of the mapi array, which first detect/count the vertices that
has mapi[v] = v and reset the mapi values for all.

The parallel coarsened graph construction is not straightforward. After the mapping,
the degrees of the (super) vertices in Gi+1 are not yet known. To alleviate that, we
allocate a private Ej

i+1 region in the memory to each thread tj , 1 ≤ j ≤ τ . These
threads create the edge lists of the new vertices on these private regions which are
then merged on a different location of size |Ei+1|. To do that, first a sequential scan
operation is performed to find the region in Ei+1 for each thread. Then, the private
information is copied to Ei+1.

17

An important problem that needs to be addressed for all the steps above is load
imbalance. Since the degree distribution on the original graph can be skewed and
becomes more skewed for the coarsened graphs, a static vertex-to-thread assignment
can reduce the performance. Hence, Gosh uses a dynamic scheduling strategy, which
uses small batch sizes for all the steps above.

4.4 Grappolo

Thus far, this chapter elaborated on different coarsening strategies that are used for
graph embedding. However, these strategies lack formal justification. The perfor-
mance of the aforementioned coarsening algorithms can only be evaluated with the
quality of the embeddings that are generated. Although it has not been directly
used for graph embedding, high-quality, state-of-the-art clustering and community
detection algorithms have been proposed in the literature. A well known commu-
nity detection tool Grappolo (Halappanavar, Lu, Kalyanaraman & Tumeo, 2017; Lu,
Halappanavar & Kalyanaraman, 2014) is selected for further investigating the effect
of coarsening on the embeddings.

Grappolo is a CPU-parallel clustering tool. The tool is built upon the Louvain
method (Blondel, Guillaume, Lambiotte & Lefebvre, 2008) which is an efficient,
greedy, and iterative solution for generating hierarchy of communities (i.e., clusters).
The main idea of Louvain is to maximize the modularity of the clusters. A cluster
has a high modularity if it has dense connections in between the cluster and sparse
connections with vertices belonging to different clusters. In a multilevel setting, at
ith level, for Gi = (Vi,Ei), the structure Pi =

(
C

(i)
1 ,C

(i)
2 , . . . ,C

(i)
k

)
is the communities

where 1 ≤ k ≤ |Vi|, the modularity of the graph is calculated with the following
expression:

(4.1) Qi = 1
2m

∑
j∈Vi

ej→C(i)(j)−
∑

C∈Pi

(
ac

2m ×
ac

2m

)

where ej→C(i)(j) denotes the sum of the edge weights in Ej→C(i)(j) which is the set
of edges that connects vertex j ∈ Vi to the vertices in its community C(i)(j). The
value aC denotes the sum of the edge weights of all the vertices in community C (Lu
et al., 2014; Newman & Girvan, 2004).

18

To maximize the modularity, the Louvain method applies the following steps itera-
tively: first, each vertex v ∈G is assigned to their own cluster Ci, where |Vi|= |Ci|
holds true after the initialization. Then for every vertex, the modularity gain for
moving that vertex to its neighbouring communities are calculated. If all the move
gains are negative it means that the current vertex already belongs to the correct
community. Hence, no move operations are carried out. Alternatively, if there exists
a move with a positive gain, the vertex is assigned to a neigbouring community with
the maximum modularity gain. After each vertex is processed in this fashion, all
the communities are collapsed under respective super vertices, where a new coarse
version of the graph, Gi = (Vi,Ei), is created. The output of each iteration, Gi, is
the input for the next iteration. The algorithm is terminated once the modularity
score converges.

Experimental results display the success of Grappolo. According to the results, its
parallel implementation is able to produce communities with a better modularity
output compared to the sequential implementation of the Louvain method. More-
over, Grappolo is up to 16× faster than the vanilla algorithm using 32 threads. Its
success comes from the heuristics constructed for extracting parallelism out of the
algorithm.

Although it is excelled for modularity maximization, as mentioned above, Grappolo
is not proposed for graph embedding in a multilevel setting. In order to utilize Grap-
polo, Gosh is adapted to work with Grappolo clusters. First the code is patched to
print out the communities for intermediate iterations. Then a graph re-constructor
is written in order to generate a graph from Grappolo cluster information. The rest
of the algorithm is the same with the original one, where the set of coarsened graphs
is processed to extract an embedding as mentioned in the previous chapter.

19

5. GRAPH EMBEDDING

The first works on graph embedding are introduced in the early 2000s (Belkin &
Niyogi, 2001; Roweis & Saul, 2000). These algorithms are developed utilizing di-
mensionality reduction techniques. For this approach, the connection information
between the vertices is represented as a matrix. This matrix is then factorized to
obtain an embedding. The main goal is to preserve the structural properties of the
graph. However, there are two major problems with factorization based approaches.
Firstly, the approach to factorize the matrix varies in terms of the properties of the
graph, which inhibits such approaches to be generalized. Secondly, these approaches
have a time complexity of O(V 2), thus can not scale to real-world size graphs.

In recent years, similar to many areas of research, deep neural network based meth-
ods became popular for graph embedding. Wang, Cui & Zhu (2016) explored the
possibility of preserving both the first, and second-order proximities by the means
of deep auto encoders. Cao, Lu & Xu (2016) combined random surfing with deep
auto encoders. However, both approaches are computationally expensive. More-
over, for each vertex, the global neighbourhood is required as input. Kipf & Welling
(2016b) relaxed this limitation by defining a convolution operation on the graph,
which iteratively aggregates the local neighborhood.

We encourage the reader to read (Cai, Zheng & Chang, 2017; Goyal & Ferrara, 2018)
for more information on matrix factorization, and deep neural-network-based graph
embedding approaches. In the rest of this chapter, first, random-walk-based graph
embedding approaches will be presented. Then, Gosh embedding will be described
in detail.

5.1 Random-Walk-based Graph Embedding

20

Random-walk-based methods are used in the literature for approximating the cen-
trality and analyzing the similarity between vertices. Recently, a series of works
(Grover & Leskovec, 2016; Perozzi et al., 2014; Tang et al., 2015; Tsitsulin et al.,
2018) demonstrated the effectiveness of random walks in graph embedding. Fur-
thermore, Zhu et al. (2019) showed that with a GPU implementation the run-time
can be improved immensely without loosing any accuracy.

5.1.1 DeepWalk: Online Learning of Social Representations

DeepWalk (Perozzi et al., 2014) proposes a novel approach to graph embedding. The
authors generalized the recent advancements in language modelling, and supervised
feature learning (Bengio, Courville & Vincent, 2012) for this task. Especially, the
advancements in language modelling, as in representing words as vectors (Mikolov,
Chen, Corrado & Dean, 2013), paved the way for DeepWalk. The tool learns social
representations of a graph’s vertices Vi ∈ Gi as Mi by utilizing a series of short
random walks. Through these random walks, DeepWalk captures neighborhood
similarity, and community membership. The authors state that their algorithm
provides adaptable, community aware, low dimensional and continuous embeddings.

DeepWalk consists of two parts; a random walk generator, and following that, an
update procedure. The random walk generator first samples a vertex. Then one of
its neighbours is selected uniformly randomly. This constitutes a step of the walk.
For DeepWalk, exactly t steps are taken to generate a complete walk, where t is a
configurable parameter for the algorithm. Then all the collocations of the vertices
visited in the walk are generated, and the embedding vectors are updated. Updates
are carried out using SkipGram (Mikolov et al., 2013) algorithm.

DeepWalk is evaluated on the machine learning task of node classification. The
authors distance themselves from previous work (Neville & Jensen, 2002), where,
unlike DeepWalk, the label information is used in training. Three graphs are used
for the evaluation. The largest one has one million vertices, and three million edges.
The experiments are carried out in an iterative manner where the percentage of the
number of label vertices is increased in each iteration. The experiments revealed
that DeepWalk performs better than the competition. Only in a few experiments,
SpectralClustering (Tang & Liu, 2011) performs better than DeepWalk. DeepWalk’s
representations provide up to 10% higher F1-scores while in various experiments
DeepWalk provides better scores with less labeled nodes.

21

5.1.2 LINE: Large-scale Information Network Embedding

LINE (Tang et al., 2015) proposes a graph embedding approach with a novel objec-
tive function which preserves the local, and global graph structures for various types
of graphs. Moreover, LINE introduces a novel edge-sampling algorithm that tackles
the shortcomings of the classical SGD (Stochastic Gradient Decent) algorithm. The
efficiency and the effectiveness of the algorithm are demonstrated through empirical
experiments.

LINE presents two new concepts for measuring the similarity between the vertices;
first-order proximity and second-order proximity. The first-order proximity is de-
fined as the local pairwise proximity between two vertices u,v ∈ Vi, i.e., the vertex set
of the coarsened graph in the ith level, where the weight on the edge (u,v) indicates
the magnitude. If no edge is incident between (u,v) then the first-order proximity is
0. The second order proximity of u,v ∈ Vi, is determined by the similarity between
the neighborhoods of the respective vertices. Let Sv as the set containing the first-
order proximities of v ∈ Vi to ∀u ∈ Vi. The second-order proximity between u, and v
is determined by the similarity between Sv, and Su. If there is no common element
in Su, and Sv then the second-order proximity is zero.

To take the second-order proximity into account, first a random source vertex is
selected. Then, a neighbour of the source, the context vertex, is chosen randomly
proportional to the edge weights, where the vertices which have a stronger connection
have a higher probability to be selected. The updates on the source vertex are
performed on the original embedding, and the updates on the context vertex are
performed on the context embedding which is a separate data structure used to
carry the second-order information to its neighbor vertices. For this approach, the
first-order proximity, and the second-order proximity is captured by the original
embedding, and the context embedding respectively. Finally, the two embeddings
are concatenated, and provided as the output.

The algorithm is evaluated on the machine learning task of node classification. The
data-set which is used to evaluate LINE is comparatively larger than that of the
data-set used for DeepWalk. The data-set consists of five graphs, where the smallest
one contains 1 million vertices, and 3 million edges, and the largest one contains
2 million vertices, and 1 billion edges. As reported in the work, LINE not only
decreases the run-time compared to the previous approaches but also improves the
quality of the embeddings.

22

5.1.3 VERSE: Versatile Graph Embeddings from Similarity Measures

To the best of our knowledge, VERSE (Tsitsulin et al., 2018) is the latest of a series of
works (Grover & Leskovec, 2016; Perozzi et al., 2014; Tang et al., 2015) that presents
new similarity measures for graph embedding. VERSE also introduces a versatile
framework that explicitly learns any similarity measure for graph vertices. The
authors argue that real-world tasks rely on a mix of three different kinds of properties
namely; community structure, roles, and structural equivalence. They state that a
feature-learning algorithm should be able to capture all three properties. VERSE is
able to achieve such a task by its inherent design. As stated, any similarity measure
can be incorporated into VERSE without having the need to change its core.

By default VERSE has three instantiations that utilize different similarity measures
simm; (i) Personalized Page Rank (PPR), (ii) Adjacency Similarity, and (iii) Sim-
Rank. Personalized Page-Rank similarity (Page, Brin, Motwani & Winograd, 1999)
is a well-known similarity measure. Given an initial distribution s, the similarity
measure can be defined as

(5.1) πs = (α× s) + (1−α)×πs×A

where πs is the current similarity vector and A is the normalized adjacency matrix.
The average explored size of the neighbourhood is determined by the damping fac-
tor α. As shown by Page et al. (1999), a random walk with stopping probability
of (1-α) converges to PPR. Thus, a sample in the PPR algorithm constitutes the
starting vertex and the last visited vertex of the respective random walk. The adja-
cency similarity measure is actually a sub variant of PPR, where the damping factor
is zero. For this measure, only the imminent neighbors of the starting vertex can
be sampled. It is a powerful measure for tasks that require extracting first-order
proximity like link prediction. The last measure, SimRank (Jeh & Widom, 2002),
measures the structural equivalence (similarity) of vertices. In a nutshell, for Sim-
Rank, if two vertices’ neighbourhoods are similar then the vertices are similar too.
Although, VERSE performs best with SimRank, it is an exhaustive measure with
a time complexity of O(n4). Hence, it is infeasible to use SimRank as a similarity
measure when working with large-scale graphs.

VERSE is evaluated on various different machine learning tasks such as link predic-
tion, node classification, node clustering, and graph reconstruction. The size of the
graphs used for the experiments range from 10 thousand vertices, and 178 thousand
edges to 3 million vertices, and 234 million edges. For the experiments VERSE uses
three different variants; original VERSE with PPR similarity measure, HSVERSE

23

Figure 5.1 GraphVite Embedding with Multiple GPUs (Zhu et al., 2019)

which selects the best similarity measure out of the aforementioned three, and an
exhaustive version FVERSE which is not scalable. Although the VERSE variants
outperform the competition in general, for some graphs and tasks, DeepWalk and
LINE surpasses the three, and for others, they produce comparable results.

5.1.4 GraphVite

To the best of our knowledge, GraphVite (Zhu et al., 2019) is the first, and besides
Gosh, the only GPU-based graph embedding algorithm. As stressed in previous
sections, CPU-based embedding algorithms are unable to scale to graphs with tens
of millions of vertices. GraphVite successfully relaxes this limitation by introducing
a CPU-GPU hybrid system, where augmented edge samples are generated in the
CPU, and embedding is performed utilizing multiple GPUs. Moreover, an efficient
synchronization algorithm is proposed to reduce the communication cost between
CPUs and GPUs.

The first stage of GraphVite is to augment the original network with random walks.
For this, GraphVite follows an online strategy similar to (Tang et al., 2015), where
the samples are generated on the fly. To generate a batch of positive samples, a
departure vertex is selected uniformly randomly. Then a random walk is performed
starting from the selected vertex, where vertex pairs within a predefined distance
are picked as positive samples. Finally, samples from multiple walks are gathered
in a single sample pool and shuffled to increase the performance of optimization
(Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra & Riedmiller, 2013).
In the embedding stage, the training process is divided into small fragments and

24

distributed among multiple GPUs (see Figure 5.1). For n GPUs, the vertex and
context embedding are divided into n parts. This results in an n×n partition of the
sampling pool, where a pair of blocks that does not share a row or column can be
used for training concurrently without the need for synchronization. One down-side
for this approach is that negative samples can only be generated from the blocks
that are in the GPU. However, selecting negative samples from the entire graph
would require extensive CPU-GPU communication which in turn would decrease
the speed immensely.

For the evaluation of GraphVite, four graphs ranging from 1 million vertices and 5
million edges to 65 million vertices and 1.8 billion edges are used. Node classification
and link prediction are used as machine learning tasks. GraphVite is able to obtain
speedups up to 19× with 6 CPU cores and a single GPU. The speedup increases to
51× with 24 CPU cores and 4 GPUs while preserving the quality of the embeddings.
Although size limitations are relaxed to a certain degree with GraphVite’s state-of-
the-art CPU-GPU hybrid implementation, to embed graphs which have more than
12 million vertices, GraphVite requires multiple GPUs. Furthermore, a graph with
65 million vertices and 1.8 billion edges takes 20 hours to train using 4 Tesla P100
GPUs. Thus, as shown in Section 6.3, there is still a substantial amount of room
for improvement.

5.2 GOSH Embedding

The learning step for Gosh is GPU parallel, lock-free, and configurable. The SGD-
based updates, which are based on the similarity measures described in 5.1.3, are
utilized for training. Unlike CPUs, working on a GPU makes an efficient, lock-free
implementation harder to achieve. Niu et al. Niu, Recht, Re & Wright (2011) sug-
gest that a lock-free SGD implementation, that have no mechanics to prevent race
conditions, performs similar to a race-condition-free implementation in terms of the
learning quality on multi-core processors. However, unlike multi-core processors,
GPU’s can run millions of threads in parallel. Our preliminary experiments show
that with GPU’s, race conditions significantly deteriorate the quality of the learn-
ing, hence the quality of the embeddings. Thus, Gosh follows a moderately more
restricted implementation which is still not race free.

To reduce the number of race conditions one needs to carefully utilize the architec-
ture of the device. First the epochs are synchronized using CUDA. This ensures

25

that no two epochs are processed concurrently. Furthermore, given an epoch, Gosh
traverses Vi in parallel, and assigns source vertices to a single GPU-warp, where
multiple positive/negative samples are used to update the embedding (see Algo-
rithm 1) one after another (see Algorithm 4). The aforementioned features of Gosh
ensures that a vertex v ∈ Vi cannot be a source vertex for two concurrent updates.
However, v can be selected as a positive, or a negative sample by another warp while
v is assigned to a warp as a source vertex. Similarly, v can be sampled by two differ-
ent source vertices concurrently. Although the updates on Mi[v] can be disturbed
by race conditions, the synchronization implemented in Gosh are sufficient enough
to robustly perform the embedding process (see Section 6.3).

For graphs that can fit in the device memory, as shown in Algorithm 4, both positive
and negative samples are generated during training. Given a source vertex v ∈ Vi,
the positive sample is selected uniformly random from ΓGi

(v). Moreover, negative
samples are selected from a uniformly-random noise distribution, which is modelled
over Vi. Depending on the similarity measure, considering each graph is Gi is highly
sparse, negative sample selection has a very little probability of error. Algorithm 1
shows the updates performed after each sampling in Algorithm 4 in lines 4, 7.

Gosh utilizes shared memory for the updates on source vertices. During the updates,
given a source vertex v ∈ Vi, a positive and ns negative updates are performed.
This constitutes (1 +ns)× d accesses to Mi[v]. Even for practical sizes like ns =
3,d = 128; global memory access hinders the performance of Gosh. To improve
the performance, first, Mi[v] is copied to shared memory. Then all updates for
positive, and negative samples are performed on the shared memory. Finally, Mi[v]
is copied back to global memory. Unlike the embedding vectors of source vertices,
the embedding vectors of the sampled vertices Mi[u], where u∈ Vi, are only updated
once. Hence, these vectors are kept in global memory, where the reads and writes
are performed in a round-robin fashion. This way of access on Mi[u] is coalesced.
Mi[u][j+(32×k)] is accessed by thread j at the kth access where 32 is the number
of threads within a warp.

5.2.1 Small Dimensions

Originally, in Gosh, an update on a sample (u,v) ∈ Vi is carried out by a warp. To
be more specific, we choose a source vertex v ∈ Vi, and carry out s negative and
a positive update. These updates on the source vertex are all handled by a single
warp. This is important for coalesced access (see 5.2). However, assuming that

26

Algorithm 4: TrainInGPU
Data: Gi, Mi, ns, lr, ei

Result: Mi

1 for j = 0 to ei−1 do
2 lr′← lr×max

(
1− j

ei
,10−4

)
;

/* Each src below is assigned to a GPU warp */
3 for ∀src ∈ Vi in parallel do
4 u← GetPositiveSample(Gi);
5 UpdateEmbedding(Mi[src], Mi[u], 1, lr′);
6 for k = 1 to ns do
7 u← GetNegativeSample(Gi);
8 UpdateEmbedding(Mi[src], Mi[u], 0, lr′);

a warp contains 32 threads, if one wants to train an embedding which has d < 32
then 32−d number of threads will remain idle which yields to the under utilization
of the device. Hence, the original implementation performs poorly on embeddings
with smaller dimensions. To mitigate this problem a specialized implementation for
dimensions smaller than 32 is integrated to Gosh. The number of threads responsible
for a source vertex is set as the smallest multiple of 8 larger than or equal to d, i.e.,
8 or 16. Hence, depending on d, we can assign 2 or 4 samples to a single warp.

27

6. EXPERIMENTS

In this chapter, first the system configurations, state-of-the-art tools, and data-
sets used in the experiments are described. Then, the evaluation pipeline will be
described in detail. Following that, experiments on coarsening performance and
quality will be displayed. Lastly, results on embedding quality will be given, and
the speed-up breakdown of Gosh is presented.

System configuration: For the experiments, a single machine with 2 sockets, each
with 8 Intel E5-2620 v4 CPU cores running at 2.10GHz with two hyper-threads per
core (32 logical cores in total), and 198GB RAM is used. To avoid the effects
of hyper-threading, only 16 threads are used for parallel executions. The GPU
experiments use a single Titan X Pascal GPU with 12GB of memory.

The server has Ubuntu 4.4.0-159 as the operating system. CPU codes are compiled
with gcc 7.3.0 with -O3. For CPU parallelization, OpenMP multi-threading is used.
For GPU implementations and compilation, nvcc with CUDA 10.1 and optimization
flag -O3 are used. The GPUs are connected to the server via PCIe 3.0 x16. For
GPU implementations, all the relevant information for the calculations are stored
on the device, unified memory is not used.

Tools used for evaluation: The following state-of-the-art tools are selected to
compare and evaluate the performance of Gosh:

VERSE : PPR similarity measure and α = 0.85 are used as recommended by
the authors. For VERSE , the epoch number and the learning rate are set to
e ∈ {600,1000,1400} and lr = 0.0025, respectively. Out of the three runs, the best
AUCROC score is reported.

GraphVite: The default values are used for the hyper-parameters as recommended
by the authors and LINE is chosen as the base embedding method. Two settings are
created for GraphVite; a fast setting with e = 600 epochs, and a slow setting with
e= 1000 epochs.

MILE : The following parameters are used for the model: DeepWalk as a base

28

embedding method, MD-GCN as a refinement method, 8 levels of coarsening, and
a learning rate of lr = 0.001. MILE does not allow for the number of epochs to be
configured.

For Gosh, four different versions, Gosh-ultra-fast, Gosh-fast, Gosh-normal, and
Gosh-slow is used with the parameters given in Table 6.2. The configurations differ
in terms of the number of epochs, smoothing ratio, and learning rate. As the number
of epochs e and the smoothing ratio p decrease, lr increases to compensate for the
reduced amount of work on the original graph with faster learning. The only dif-
ference between Gosh-ultra-fast, and Gosh-fast is the amount of epochs designated
for training. Furthermore, we include a version of Gosh which does not perform
coarsening. This configuration spends all of the epochs on the original graph. In
addition to these differences, for medium-scale graphs, a larger number of epochs is
used for each configuration compared to large-scale graphs.

For Gosh and VERSE , a single epoch is defined as executing |E| number of up-
dates on the embedding Mi in order to match the definition of an epoch given by
GraphVite Zhu et al. (2019) for the fairness of the comparisons.

Datasets: We use various graphs in the evaluation process to cover many structural
variations and to evaluate the tools in terms of performance and quality as fairly
and thoroughly as possible. The graphs differ in terms of their origin, the number
of vertices, and density. The properties of these graphs are given in Table 6.1. The
medium-scale graphs, with less than 10M vertices, and large-scale ones are separated
in the table.

6.1 Evaluation Pipeline

The embedding quality of Gosh, VERSE , MILE , and GraphVite are evaluated with
link prediction, which is one of the most common machine learning tasks used in
the literature to evaluate graph embedding tools (Grover & Leskovec, 2016; Lerer,
Wu, Shen, Lacroix, Wehrstedt, Bose & Peysakhovich, 2019; Tsitsulin et al., 2018;
Zhu et al., 2019).

For evaluation, the input graph G is split into train and test sub-graphs as Gtrain =
(Vtrain,Etrain) and Gtest = (Vtest,Etest). Gtrain contains 80% of the edges of G,
where Gtest contains the remaining 20%. To make sure Vtest⊆ Vtrain, all the isolated
vertices in Gtrain are removed. In addition to this, all (u,v)∈Gtest edges, where u or

29

Table 6.1 Medium- and large-scale graphs used in the experiments. Thanks to
Leskovec & Krevl (2014) for com-dblp, com-amazon, soc-pokec, wiki-topcats,
com-orkut, com-lj, soc-LiveJournal, and com-friendster; to Rossi & Ahmed
(2015) for soc-sinaweibo, and twitter_rv; to Meusel (2015) for hyperlink2012;

to Mislove et al. (2007) for youtube.

Graph |V| |E| Density

com-dblp 317,080 1,049,866 3.31
com-amazon 334,863 925,872 2.76
youtube 1,138,499 4,945,382 4.34
soc-pokec 1,632,803 30,622,564 18.75
wiki-topcats 1,791,489 28,511,807 15.92
com-orkut 3,072,441 117,185,083 38.14
com-lj 3,997,962 34,681,189 8.67
soc-LiveJournal 4,847,571 68,993,773 14.23
hyperlink2012 39,497,204 623,056,313 15.77
soc-sinaweibo 58,655,849 261,321,071 4.46
twitter_rv 41,652,230 1,468,365,182 35.25
com-friendster 65,608,366 1,806,067,135 27.53

v are /∈Gtrain are also removed. Then, the target algorithm is executed with a newly
generated Gtrain to get an embedding. By using the generated embedding, a Logistic
Regression model is trained using LogisticRegression module from scikit-learn
for medium scale graphs. For the relatively larger ones, |Vtrain| > 10M , classical
logistic regression exceeds the memory limitations of our system. Thus, for such
graphs, the SGDClassifier module from scikit-learn with a Logistic Regression
solver is used. Finally, the existence of the edges in Gtest is predicted by the model,
and the AUCROC score is reported (Fawcett, 2006).

For the prediction pipeline, two matrices Rtrain and Rtest are created. Each (row)
vector Rtrain is generated by the element-wise multiplication of two vectors from
M0[v] and M0[u] ∈M0, where u,v ∈ V0. This represents either a positive or a
negative sample. To be more precise, Rtrain contains |Etrain| amount of positive
samples, where a positive sample corresponds to an edge (u,v) ∈ Etrain. Moreover,
the same number of negative samples from (Vtrain×Vtrain)\Etrain is generated and
added as vectors to Rtrain to make a balanced training set. Rtest is created in a
similar fashion by using Gtest instead of Gtrain as the source of the samples. Unlike
Rtest, for the last column of Rtrain, a label representing a positive or negative sample
is concatenated to the end of the vector.

30

Table 6.2 Gosh configurations, fast, normal and small for medium-scale and
large-scale graphs. A version with no coarsening is also used in the experiments.

Configuration p lr enormal elarge

Ultra-fast 0.1 0.050 400 -
Fast 0.1 0.050 600 100
Normal 0.3 0.035 1000 200
Slow 0.5 0.025 1400 300
No coarsening - 0.045 1000 200

6.2 Coarsening Experiments

6.2.1 Experiments on Coarsening Performance

The impact of the features described in Section 4.2 on coarsening efficiency, and
quality is demonstrated in Table 6.3. To clearly display the effects of the heuristical
optimization, e.g., sorting and preventing two large vertices to merge, three different
versions of Gosh coarsening are prepared.

• The naive version does not include processing the vertices in terms of their
degree and allows two large vertices to merge if they are mapped. For both
relatively smaller and larger graphs, this version performs poorly regarding
coarsening efficiency.

• An improved version of naive is ordered, where the vertices are sorted, and
processed in descending order. With this version, a slight improvement in
coarsening efficiency is noted. However, the coarsening quality degrades sub-
stantially; it regresses from 0.964 to 0.921 for com-friendster (Table 6.3). This
is caused by an underlying problem which is amplified by sorting. When two
hub vertices u,v ∈ Vi ∧ (u,v) ∈ Ei ∧Γ(v) ≥ Γ(u), are merged, the coarsening
efficiency decreases immensely. A substantial amount of vertices might have
been mapped by u. This potential reduction will not happen, since u is locked
and can not be treated as a mapping vertex.

• With the optimized version, which applies both of the heuristical optimiza-
tions, this problem is mitigated, where the largest graph in the data-set com-
friendster is reduced from 63 million vertices to only 823 vertices in ten itera-
tions. Furthermore a substantial improvement is also demonstrated regarding

31

Table 6.3 Performance of Gosh coarsening with naive, ordered, and optimized
version, and τ = 16 threads.

Graph V AUCROC Tt (s) Level Tc (s) |Vi| |Ei|
|Vi|

yo
ut

ub
e

naive 0.959 106.50 1 0.13 1021590 7.75
2 0.06 636896 4.84

ordered 0.956 79.57
1 0.17 1021590 7.75
2 0.04 480714 4.18
3 0.03 378836 2.84

optimized 0.98 9.28

1 0.17 1021590 7.75
2 0.04 302683 12.27
3 0.02 87718 32.78
4 0.01 21356 94.29
5 0.01 4436 216.26
6 - 895 324.06
7 - 380 298.84
8 - 195 182.82

co
m-

fr
ie

nd
st

er

naive 0.964 43260.00 1 80.6 62603304 46.16
2 15.99 28689906 64.23

ordered 0.921 44912.40 1 61.99 62603304 46.16
2 9.5 26666122 44.72

optimized 0.972 2316.51

1 133.09 62603304 46.16
2 98.9 20410136 131.66
3 36.69 6390812 370.22
4 7.36 1298192 842.45
5 2.02 194157 1685.39
6 0.5 29415 3424.18
7 0.18 8370 4094.04
8 0.06 3421 3019.52
9 0.01 1814 1795.11
10 0.01 1100 1098.59
11 - 823 822

coarsening quality; 1%, and 2% increase is observed in Table 6.3 for graphs
com-friendster and youtube, respectively. This further highlights the impor-
tance of an effective and efficient coarsening, which is judiciously analyzed in
Section 6.2.2.

In Table 6.4, a brief comparison of MILE and Gosh with 16 threads on the graph
com-orkut is shown. Since MILE does not have a stopping criterion for coarsening,
the same amount of coarsening levels is used for both algorithms. While coarsening
a graph of 3 million vertices and 100 million edges, Gosh is 264 times faster than
MILE. Moreover, Gosh is significantly more efficient regarding the number of vertices
obtained at each level. For instance, in 8 levels, Gosh shrinks com-orkut to only
230 vertices, while MILE shrinks it to 12062 vertices. Although this does not relate

32

Table 6.4 MILE vs Gosh coarsening on com-orkut. A parallel coarsening with
τ = 16 threads is used for Gosh.

i Time (s) |Vi| i Time (s) |Vi|

M
IL
E

0 - 3056838

G
os
h

0 - 3056838
1 249.77 1535168 1 4.44 975132
2 237.39 768804 2 1.23 213707
3 184.72 384752 3 0.62 46667
4 151.24 192507 4 0.16 8084
5 139.23 96308 5 0.03 2000
6 128.47 48183 6 0.01 701
7 117.75 24107 7 < 0.01 375
8 99.73 12062 8 < 0.01 275

Total 1308.31 - Total 6.60 -

the quality of the coarsening to the quality of embedding, it is important in terms
of performance, since the training time is affected by the number of vertices at each
level.

Table 6.5 provides the details of the coarsenings obtained from the sequential and
parallel coarsening algorithms with τ = 2,4,8,16 threads. As the results show, par-
allel coarsening reaches a similar number of levels and the graphs at the last-level
are of similar sizes, except hyperlink2012, where the runs with τ = 4,8,16 perform
relatively poorly compared to the sequential run, and the run with τ = 2. Al-
though a performance decrease is observed, we found that the issue can be solved
by tuning Gosh accordingly. By using coarsening stopping threshold of 83% instead
of 80% Gosh is able to score similar results on hyperlink2012 for all the runs.
With a similar coarsening quality, the parallel algorithm is 5–8× faster compared
to the sequential counterpart. As described in Section 4.2.1, the time complexity is
O(|V |+ |E|) and in practice, |E| dominates the workload. Although there are other
parameters, the variation in the speedups is in concordance with the variation in the
number of edges. For instance, soc-sinaweibo only has 200M edges and yields the
smallest speedup value of 5.41×. On the other hand, the largest speedup 7.57× is
obtained for com-friendster, which is the largest in our data-set with 1.8B edges.

6.2.2 Experiments on Coarsening Quality

To demystify the impact of coarsening on the quality of the embeddings, four coars-
ening strategies are integrated into Gosh. All of them merge the vertices in the
current level with a super-vertex which can be considered as the center of the corre-

33

Table 6.5 Execution times, the number of levels and the size of the last-level graphs
for sequential and parallel coarsening with τ = 2,4,8,16 threads for the large-scale
graphs. The training graph with a split ratio of 0.8 is used for all the graphs. For
hyperlink2012 Coarsening Stopping Threshold of 0.83 is used for τ = 4,8, and 16.

Graph τ Time (s) Speedup D |VD−1| |ED−1|

hyperlink2012

1 287.824 - 13 234 53792
2 224.93 1.28× 13 125 15442
4 128.26 2.24× 13 100 9884
8 77.73 3.7× 13 117 13560
16 46.88 6.14× 13 117 13572

soc-sinaweibo

1 117.606 - 10 230 52632
2 80.35 1.28× 10 187 34778
4 46.05 2.55× 10 198 39000
8 28.1 4.19× 10 209 43472
16 21.76 5.41× 9 358 127716

twitter_rv

1 534.92 - 15 132 17000
2 400.24 1.34× 13 159 24580
4 226.05 2.37× 13 117 13454
8 131.18 4.1× 13 113 12630
16 77.07 6.94× 13 127 16002

com-friendster

1 2154.48 - 11 901 810874
2 1549.43 1.39× 11 768 589056
4 782.53 2.75× 11 765 584460
8 424.93 5.07× 11 788 620156
16 284.465 7.57× 11 795 631230

34

sponding cluster (which will be a single vertex in the next level). That is in all, the
vertices are gathered around the super-vertices to form a cluster. Similarly, all the
coarsening approaches have the potential to significantly reduce the training time
since the graphs obtained in the multi-level setting are smaller than the original one.
However, how they approach to the problem, and more formally, how much they
have respect for the topology, i.e., the proximity information, during the coarsening
are completely different. In fact, they are devised to create a coarsening spectrum
and better understand the impact on the AUCROC scores. At one hand of the
spectrum, there is anti which always bets against the proximity and coarsens only
independent sets. The next one, random, form random clusters. The proposed strat-
egy used in Gosh, novel, merges only the neighbor vertices and favors both first and
second-order proximities. However, it also has heuristic optimizations that prevent
merging hub vertices, and favors the gathering of low-degree vertices around the
hub vertices. Hence, it can be placed as next to random in the spectrum. The last
strategy, grappolo, totally respects to the graph structure and proximities. It forms
the clusters and refine them to obtain the best community structure and maximize
the modularity to the most. Hence, by nature, compared to the other three, it hides
more edges during the coarsening levels and obtains sparser graphs. It can be placed
to the other end of the spectrum.

• anti: this version is similar to the random version. The only difference is that
another condition is introduced for mapping. If (u,v) ∈ Ei, u, and v can not
be mapped under the same super vertex.

• random: with random coarsening, for each vertex v ∈ Vi, if the vertex is not
mapped, a vertex u ∈ Vi is selected uniformly randomly. If u is not mapped, it
is mapped to the same super vertex k ∈ Vi+1 as v. |Γ(v)| number of selections
are executed for each vertex.

• novel: this version refers to the original coarsening strategies that is used in
Gosh. For more information turn to Sections 4.2, and 4.3.

• grappolo: this version uses the code provided by (Lu et al., 2014). For more
information turn to Section 4.4.

As the previous experiments, e.g, Table 6.3, show, coarsening is an indispensible
tool to cope with big graphs during graph embedding. It boosts the training perfor-
mance by several orders of magnitude and enables better utilization of the memory-
restricted accelerators such as GPUs. Hence, we can assume that it will always be
on for Gosh, as well as the future and better embedding tools. However, it is hard to
demystify which coarsening strategy is the best and why. We devise this experiment

35

to delve into this and grasp the nature of the optimization led by the decisions taken
during the coarsening in a more detailed way. It will not be fair if the strategies are
considered as the competitors. For instance, grappolo is a modularity maximization
tool and it is not proposed for graph embedding (as novel is not proposed to maxi-
mize modularity). In short, the three other strategies are judiciously chosen to form
the spectrum with novel as described above.

Clustering similar vertices, which share an edge or similar to each other, is useful
since these vertices will have the same embedding vector when the multilevel em-
bedding moves up, i.e., uncoarsens, throughout the process. The strategies anti
and random located at one hand of the spectrum cannot leverage this behaviour.
However, from a different angle, if graph topology and proximities are the ultimate,
sole information to be exploited, most of the edges will be hidden in the lower levels.
That is, there will be less (positive) information to learn in these levels. In fact,
considering the runtime performance, this is a desired thing to have. Furthermore,
one important benefit of a multilevel setting is the ability to take big leaps to a
good solution which also makes the optimization process effectively jump over local
minimas. If there exist less information to process one cannot exploit this property
well. We conjecture that there must be some form of balance in between these two
behaviours.
Table 6.6 The performance of Gosh integrated with different types of coarsening.
The training graph with a split ratio of 0.8 is used for all the graphs. Gosh-normal

is used for the experiments.

Graph Algorithm Tt (s) D |VD−1| |ED−1|

youtube

anti 10.33 7 172 29260
random 8.26 8 127 15998

novel 8.10 8 202 37848
grappolo 287.824 4 10997 20039

twitter_rv

anti 1400.69 10 279 77562
random 1195.78 11 195 37584

novel 1031.19 12 158 24780
grappolo 4586.12 4 11720 40782

For a glimpse of how these coarsening strategies behave, one can look at Table 6.6.
The first three strategies perform more levels compared to grappolo. For instance, on
youtube and twitter_rv, grappolo takes 4 levels to coarsen the graph having 20 and
40 thousand edges, respectively. On the other hand, the other three strategies can
reach the same number of edges in at least 8 and 10 levels, respectively. As expected,
the behaviour of anti and random are almost similar in terms of coarsening. As
Table 6.6 shows, for both youtube and twitter_rv, random goes one level deeper
and reaches a smaller amount of vertices in the coarsest level. In addition, the

36

time-to-train values for grappolo are higher, since the epochs are distributed to less
number of levels containing relatively larger graphs.

Figure 6.1 Medium-scale graph results for different coarsening strategies and
configurations.

The embedding performance of the aforementioned strategies on different Gosh con-
figurations are given in Figures 6.1 and 6.2 for medium- and large-scale graphs re-
spectively. In terms of embedding performance, for the configurations ultra-fast
and fast, anti has a slight edge over random, and for the rest, the performance of
both strategies are not distinguishable. For both strategies, the AUCROC scores
significantly improve when the number of epochs increases, i.e., when the configura-
tions are changed from ultra-fast to slow. We believe that this happens due to bad
decisions which ignore vertex proximities. Note that with anti, and also for most
of the cases in random, vertices in independent sets will have the same embedding
vector at the beginning of each level. When the number of epochs increases, Gosh
has more fuel to fix the negative impact of the coarsening decisions which do not
take the proximities into account. Although in a smaller scale, such an improvement
is also observed for novel in medium-scale graphs. On these graphs, novel almost
always perform better than anti and random. This emphasizes the importance of

37

taking the proximity information into account during coarsening, on the quality of
the embeddings.

Especially for large-scale graphs in Figure 6.2, novel suffers to generate a quality
embedding with a low epoch budget, where grappolo scores the best with the excep-
tion of twitter_rv. Note that as explained above, the approaches do not use the
same number of levels since grappolo produces significantly less coarsening levels.
That is the amount of work done by grappolo are substantially larger than the rest
for fast configurations. In fact, compared to novel, grappolo does 28×, and 4.5×
more work on graphs youtube and twitter_rv with normal configuration. Still,
it seems to have less AUCROC variation when the configuration and the number
of epochs change. When the epoch budget is increased, novel becomes superior to
grappolo for most of medium- and large-scale graphs. Since novel tends to generate
smaller graphs with less number of vertices compared to grappolo, it can perform
larger optimization steps, i.e., updates that change the embedding of more vertices
at once. For instance, on youtube with slow configuration, for the original graph, 70,
and 220 epochs are reserved for novel, and grappolo respectively. Hence, for novel,
the embedding on the original graph in the final level can be considered as a fine
tuning whereas it is one of the main steps in grappolo. Furthermore, for novel, using
more levels also make the embedding process much faster since most of the epochs
are spent on smaller graphs. That being said, a good coarsening strategy should not
create thousands of levels since in this case, most of the epoch budget will be used
for coarsened and similar graphs. Although we do not know the optimal number for
each graph, based on our experience and the experiments we performed (presented
in the next subsection), using around 10 levels creates a good balance in terms of
runtime and embedding performance.

To better profile the relative performance of the coarsening strategies, Figures 6.3,
6.4, 6.5, 6.6, and 6.7 are provided. For these figures the respective algorithms, and
configurations are compared against the best performing result for each graph. T
(x-axis) represents the distance of a result relative to the best performing result in
terms of AUCROC. Furthermore, a point on the chart, T = y, and #ofgraphs= x,
indicates the amount of graphs x, where the respective version scores an AUCROC
at most y% worse than the best. The experiments until this point show that grappolo
is the most stable coarsening strategy. That is the variation in the AUCROC scores
is less when Gosh is configured differently. Indeed, due to the epoch distribution
strategy employed by Gosh, using less number of levels increase the amount of the
work performed. However, using less, as novel does, has the advantage of perform-
ing more impactful moves. As mentioned above, novel uses less epochs in the last
level for fine tuning compared to grappolo. As Figure 6.3 shows, grappolo is the best

38

Figure 6.2 Large-scale graph results for different coarsening strategies and
configurations.

Figure 6.3 Performance profile of Gosh using ulta-fast configuration with different
coarsening strategies for the entire data-set.

39

coarsening strategy with the ultra-fast configuration in terms of AUCROC scores
(also having relatively more expensive execution times). We believe that for cheap
configurations, the proposed strategy novel does not have enough number of epochs
to fine tune the embeddings in the last level. However, when Gosh configurations
move from ultra-fast to slow (Figures 6.3–6.6), the proposed coarsening strategy
becomes better, and stays faster than grappolo in terms of embedding time. Fig-
ure 6.7 shows the performance profile of all coarsening-configuration pairs. Similar
conclusions follow: anti and random need more epochs to obtain a decent perfor-
mance. Although, grappolo is more robust and successful with less epochs, the novel,
which uses a more balanced strategy, becomes better in terms of AUCROC when
the number of epochs is increased.

6.2.2.1 Experiments on Coarsening Depth

Through Table 6.7, the effects of running Gosh with different coarsening levels D
on the amount of work, and the quality of the embedding are presented. As de-
scribed in Section 5.2, due to the epoch distribution strategy of Gosh, when the
coarsening depth increases the total amount of work that is reserved for the finer
levels decreases. For separate runs of Gosh with different coarsening levels, one may
expect a decrease both on the training time, and the quality of the output, since
the amount of epochs transferred from the finer levels to coarser levels will take
less amount of time, and the updates on the coarser levels will be less instrumental.
While the former is true, according to our preliminary experiments, and the analysis
by Chen et al. (2017) the latter is the other way around. Gosh coarsening groups
similar vertices under the same super vertex, which makes a single update on the
coarser levels more powerful. This not only compensates for the reduced amount of
work but also boosts the performance of Gosh for larger D.

Table 6.8 Link prediction results on medium-scale graphs. Every data-point is the
average of 15 results. VERSE and Gosh uses τ = 16 threads. MILE is a sequential

tool. Both GraphVite and Gosh uses the same GPU. The speedup values are
computed based on the execution time of VERSE .

Graph Algorithm Ttotal (s) Speedup AUCROC(%)

com-dblp

VERSE 247.99 1.00× 97.82
MILE 136.65 1.81× 97.65
GraphVite-fast 13.97 17.70× 97.80
GraphVite-slow 19.93 12.40× 98.08
Gosh-fast 0.72 344.43× 96.45
Gosh-normal 2.08 119.23× 97.38

40

Gosh-slow 3.84 64.58× 97.63
Gosh-NoCoarse 29.97 8.27× 93.31

com-amazon

VERSE 216.18 1.00× 97.71
MILE 146.29 1.48× 98.14
GraphVite-fast 12.45 17.36× 97.40
GraphVite-slow 16.84 12.83× 97.82
Gosh-fast 0.69 313.30× 97.20
Gosh-normal 1.88 114.99× 98.29
Gosh-slow 3.59 60.22× 98.43
Gosh-NoCoarse 24.60 8.79× 90.13

com-lj

VERSE 12502.72 1.00× 98.86
MILE 3948.62 3.17× 80.19
GraphVite-fast 373.58 33.47× 98.04
GraphVite-slow 644.43 19.40× 98.33
Gosh-fast 16.27 768.45× 96.82
Gosh-normal 55.01 227.28× 98.33
Gosh-slow 153.72 81.33× 98.46
Gosh-NoCoarse 675.25 18.52× 98.32

com-orkut

VERSE 45994.93 1.00× 98.65
MILE 11904.31 3.86× 90.38
GraphVite-fast 1246.38 36.90× 98.02
GraphVite-slow 2199.25 20.91× 98.05
Gosh-fast 43.30 1062.24× 97.35
Gosh-normal 185.12 248.46× 97.63
Gosh-slow 487.33 94.38× 97.69
Gosh-NoCoarse 2301.89 19.98× 97.64

wiki-
topcats

VERSE 8709.48 1.00× 99.31
MILE 4953.68 1.76× 86.04
GraphVite-fast 310.47 28.05× 96.42
GraphVite-slow 544.06 16.01× 96.28
Gosh-fast 11.34 768.03× 98.13
Gosh-normal 40.76 213.68× 98.33
Gosh-slow 93.86 92.79× 98.50
Gosh-NoCoarse 549.65 15.85× 98.51

youtube

VERSE 1365.36 1.00× 98.04
MILE 1328.62 1.03× 94.17
GraphVite-fast 63.90 21.37× 97.07
GraphVite-slow 104.76 13.03× 97.45
Gosh-fast 2.76 494.70× 96.16
Gosh-normal 7.15 190.96× 97.78
Gosh-slow 15.32 89.12× 97.93
Gosh-NoCoarse 158.60 8.61× 97.16

soc-pokec

VERSE 9182.53 1.00× 98.32
MILE 2848.78 3.22× 85.75
GraphVite-fast 370.73 24.77× 97.42
GraphVite-slow 607.07 15.13× 97.37
Gosh-fast 16.34 561.97× 96.34
Gosh-normal 54.66 167.99× 96.49
Gosh-slow 131.06 70.06× 96.67
Gosh-NoCoarse 598.95 15.33× 97.28

soc-
LiveJournal

VERSE 14965.76 1.00× 97.61
MILE 6210.58 2.41× 80.84
GraphVite-fast 745.33 20.08× 99.23
GraphVite-slow 1209.95 12.37× 99.31
Gosh-fast 29.74 503.22× 98.58
Gosh-normal 112.72 132.77× 98.87
Gosh-slow 183.64 81.50× 98.76
Gosh-NoCoarse 1348.74 11.10× 98.88

41

Figure 6.4 Performance profile of Gosh using fast configuration with different
coarsening strategies for the entire data-set.

Figure 6.5 Performance profile of Gosh using normal configuration with different
coarsening strategies for the entire data-set.

42

Figure 6.6 Performance profile of Gosh using slow configuration with different
coarsening strategies for the entire data-set.

Figure 6.7 Performance profile of Gosh with different coarsening strategies, and
embedding configurations for the entire data-set. Colors, and markers represent

the configuration, and the coarsening strategy respectively.

43

Table 6.7 The performance of Gosh is displayed for coarsening levels 2,3,5, and 7.
The training graph, with a split ratio of 0.8, is used for all the graphs.

Graph # of Levels Time (s) AUCROC

com-dblp

2 15.47 0.976
3 11.12 0.977
5 5.32 0.977
7 3.10 0.979

com-amazon

2 14.29 0.969
3 10.45 0.98
5 5.10 0.984
7 2.95 0.985

youtube

2 69.15 0.974
3 45.07 0.972
5 19.98 0.975
7 11.25 0.980

soc-pokec

2 482.84 0.965
3 326.63 0.963
5 136.50 0.969
7 75.07 0.975

com-lj

2 539.76 0.972
3 365.27 0.973
5 157.48 0.978
7 86.62 0.985

com-orkut

2 1756.51 0.974
3 1117.92 0.975
5 474.36 0.979
7 263.20 0.983

wiki-topcats

2 370.3 0.977
3 226.45 0.980
5 95.71 0.985
7 54.85 0.992

soc-LiveJournal

2 1056.7 0.989
3 713.24 0.989
5 307.47 0.991
7 166.80 0.993

44

6.3 Embedding Experiments

Tables 6.8, and 6.9 provide the execution times and AUCROC scores of the tools
evaluated on medium-scale and large-scale graphs, respectively. For evaluation,
VERSE results are determined as a baseline, and the speedups are provided relative
to VERSE . The following observations can be made from the experiments:

• Gosh-fast is an accelerated solution that produces accurate embeddings, which
is faster compared to all the systems under evaluation. It can achieve a speedup
over VERSE of up to three orders of magnitude and an average of 600× with
a maximum loss in AUCROC of 2% and an average loss of 1.16%. When
compared to MILE , it is superior in terms of AUCROC in three-quarters of
the graphs while being at least two orders of magnitude faster.

• At an average loss in AUCROC of 0.54%, GraphVite can achieve an average
speedup of 23.44×.

• Gosh-normal not only demonstrates the speed/quality trade-off of Gosh but
also its flexibility. Switching from Gosh-fast to Gosh-normal, although the
speed reduces on average by a factor of 3, AUCROC scores increase by 0.76%
on average.

• Gosh-slow demonstrates the flexibility of Gosh, where its accuracy comes close
to the best tool for every graph. Compared to VERSE , Gosh-slow has an
average loss of 0.24% in AUCROC, however it still has an average speedup of
79.24×.

• To compare Gosh with the state-of-the-art GPU implementation GraphVite,
the best AUCROCs scores are used from several runs with different configura-
tions. For half of the graphs, Gosh produce better AUCROC scores compared
to GraphVite. The values are similar; on average, Gosh achieves 0.16% higher
AUCROCs than GraphVite, while being 5.2× faster than GraphVite on aver-
age.

6.3.1 Large-scale graphs

Since the number of edges is significantly larger than medium-scale graphs, and the
amount of work in an epoch scales with |Ei|, for larger graphs, embedding with a

45

smaller number of epochs is sufficient. Consequently, compared to medium-scale
graphs, lower number of epochs is used for the relatively larger ones.

GraphVite results are not reported since, for all the large-scale graphs, the exe-
cutable runs out of CPU memory on our machine. We find that GraphVite on
hyperlink2012 is reported to achieve 94.3% link-prediction AUCROC after an em-
bedding for 5.36 hours using four Tesla P100s GPUs Zhu et al. (2019). Gosh-normal
achieves an AUCROC of 97.20% after an embedding taking only 0.2 hours using a
single Titan X GPU (26.8× speedup). It is also reported that GraphVite takes 20.3
hours on com-friendster Zhu et al. (2019) where Gosh-normal requires only 0.76
hours (26.7× speedup).

MILE ran out of memmory for twitter_rv, and com-friendster, and cannot
embed hyperlink2012 and soc-sinaweibo before the 12 hour timeout.

As shown in Table 6.9, VERSE times out on 3 out of the 4 graphs, where
soc-sinaweibo is the only graph that an embedding is generated. Compared to
Gosh-slow, it scores a 0.52% higher AUCROC while being 26× slower.

Table 6.9 Link prediction results on large graphs. Every data-point is the average
of 6 results. GraphVite and MILE fail to embed any of the graphs due to excessive
memory usage or an execution time larger than 12 hours. τ = 16 threads used for

both VERSE and Gosh.

Graph Algorithm Time (s) Speedup AUCROC (%)

hyperlink2012

VERSE Timeout - -
Gosh-fast 201.02 - 87.60
Gosh-normal 724.09 - 97.20
Gosh-slow 1676.93 - 98.00

soc-sinaweibo

VERSE 20397.79 1.00× 99.89
Gosh-fast 48.88 417.30× 70.27
Gosh-normal 352.86 57.81× 97.00
Gosh-slow 759.85 26.84× 99.37

twitter_rv

VERSE Timeout - -
Gosh-fast 261.08 - 91.78
Gosh-normal 994.46 - 97.36
Gosh-slow 2128.70 - 98.50

com-friendster

VERSE Timeout - -
Gosh-fast 680.33 - 85.17
Gosh-normal 2720.82 - 93.40
Gosh-slow 5000.96 - 94.98

46

6.3.2 Experiments on Small Dimensions

The performance of Gosh is analyzed with running different number of vertices in
a single warp for small d values. The results on com-orkut and soc-LiveJournal
are given in Table 6.10. With SM, we observe 2.63× and 1.84× speedups for d= 8
and 16, respectively. Moreover, for soc-LiveJournal, we obtain 2.70× and 1.85×
speedups for d = 8 and d = 16. As expected, with or without SM, d = 32 timings
are almost the same. Without small-dimension technique (SM), Gosh takes ap-
proximately the same time for d = 8,16 and 32 although 4× and 2× less work is
performed for d= 8 and 16.

Table 6.10 Performance of Gosh with (SM = Yes) & without (SM = No)
small-dimension embedding and τ = 16 threads.

Graph SM d Time (s) Graph SM d Time (s)

co
m-

or
ku

t No
8 63.72

so
c-

Li
ve

Jo
ur

na
l

No
8 40.13

16 64.20 16 40.46
32 64.95 32 41.22

Yes
8 24.27

Yes
8 14.86

16 34.98 16 21.82
32 64.54 32 40.93

6.4 Speed Up Break-Down

As shown in Figure 6.8, a comparison of intermediate versions of Gosh is reported
over the 16-thread CPU implementation. The experiments are conducted with six
graphs; two large-scale graphs (com-friendster, and hyperlink2012), and four
medium-scale graphs. The results for the versions that do not include coarsening
on large-scale graphs are not reported due to time constraints.

There is a significant difference between the two GPU versions that do not use
coarsening. Naive GPU implementation results in an average slowdown of 3.3×,
where the Optimized GPU version scores 5.4× faster. The results emphasize the
hardware oriented programming nature of GPUs. For the Optimized GPU version
global memory is organized to have coalesced accesses, and shared memory is utilized
to reduce the number of global memory accesses.

The biggest jump is introduced by the version Sequential Coarsening, which scores
an average speedup of 45× over the CPU version while maintaining the embedding

47

Figure 6.8 The speedups obtained from running intermediate versions of Gosh
compared to our multi-core CPU implementation with 16 threads.

quality as shown in Table 6.8. This is due to the cumulative nature of the updates
on the coarsened graphs. A single update on a super vertex is propagated to all the
vertices it contains.

The performance of Gosh is further improved with the addition of parallel coarsen-
ing. The performance difference between Parallel Coarsening and Sequential Coars-
ening is greater for larger graphs. For instance, on com-friendster, sequential,
parallel coarsening, and training with normal configurations take 2468.52, 235.38,
and 2720.82 seconds respectively (Table 6.5). In other words, parallel coarsening
results in an 80% improvement on performance.

48

7. CONCLUSION

In this thesis, a novel, parallel, and multi-level coarsening algorithm is proposed for
boosting the performance of large-scale graph embedding. The algorithm leverages a
newly designed, agglomerative coarsening approach called MultiEdgeCollapse.
By comparing intermediate versions of the approach, the effectiveness of newly in-
troduced features are presented. Furthermore a comparison between sequential, and
parallel coarsening is provided. Compared to the sequential one, the parallel algo-
rithm is able to generate coarsenings in similar quality, while being 6.5× faster on
average. The parallel algorithm outperforms state-of-the-art coarsening techniques
both in terms of efficiency, and speed. Compared to state-of-the-art, the algorithm
is able to obtain a graph which is 44× smaller, while being 264× faster. Further-
more the performance in terms of embedding quality is evaluated by comparing the
algorithm to a high quality, and to two low quality coarsening algorithms. The ex-
periments shows that the quality of the coarsening positively effects the quality of
the embedding, where the proposed algorithm outperforms the rest in three-quarters
of the data-set.

A CPU-GPU hybrid, high quality and multi-level graph embedding tool is also
presented. The tool is able to embed any directed, or undirected graph on a single
GPU, which applies a partitioning schema that is able to generate samples during
embedding. The high-level architecture of the tool which includes work distribution,
partitioning and coarsening, and the techniques which are leveraged to minimize
GPU idling, and maximize GPU utilization are described in detail. Our preliminary
experiments shows that the proposed tool out performs the-sate-of-art by 27×, while
generating an embedding which is similar or better in quality. To add, the quality
of the embeddings are evaluated with the machine learning task of link prediction.
Lastly, a new, and flexible performance evaluation pipeline for graph embedding,
which can evaluate various tools on different machine learning tasks is also outlined.

As future work, we would like to extend our work to various different machine
learning task, i.e, node classification, and anomaly detection. We believe that it
is important to investigate the performance of the coarsening on different machine

49

learning tasks, and explore the possibility of integrating additional metrics to the
coarsening.

50

BIBLIOGRAPHY

Akyildiz, T. A., Aljundi, A. A., & Kaya, K. (2020). Gosh: Embedding big graphs
on small hardware. In 49th International Conference on Parallel Processing -
ICPP, ICPP ’20, New York, NY, USA. Association for Computing Machinery.

Batson, J., Spielman, D., Srivastava, N., & Teng, S.-H. (2013). Spectral sparsifi-
cation of graphs: Theory and algorithms. Communications of the ACM, 56,
87–94.

Belkin, M. & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, NIPS’01,
(pp. 585–591)., Cambridge, MA, USA. MIT Press.

Bengio, Y., Courville, A., & Vincent, P. (2012). Representation learning: A review
and new perspectives.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast un-
folding of communities in large networks. Journal of Statistical Mechanics:
Theory and Experiment, 2008 (10), P10008.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., & Vandergheynst, P. (2017). Ge-
ometric deep learning: Going beyond euclidean data. IEEE Signal Processing
Magazine, 34 (4), 18–42.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and
locally connected networks on graphs.

Cai, H., Zheng, V. W., & Chang, K. C.-C. (2017). A comprehensive survey of graph
embedding: Problems, techniques and applications.

Calandriello, D., Lazaric, A., Koutis, I., & Valko, M. (2018). Improved large-scale
graph learning through ridge spectral sparsification. In Dy, J. & Krause, A.
(Eds.), Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Research, (pp. 688–697).,
Stockholmsmässan, Stockholm Sweden. PMLR.

Cao, S., Lu, W., & Xu, Q. (2015). Grarep: Learning graph representations with
global structural information. In Proc. 24th ACM Int. Conf. on Info. and
Knowledge Management, CIKM ’15, (pp. 891–900)., NY, USA. ACM.

Cao, S., Lu, W., & Xu, Q. (2016). Deep neural networks for learning graph rep-
resentations. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, (pp. 1145–1152). AAAI Press.

Chen, H., Perozzi, B., Hu, Y., & Skiena, S. (2017). Harp: Hierarchical representation
learning for networks.

Fawcett, T. (2006). An introduction to roc analysis. Pattern Recogn. Lett., 27 (8),
861–874.

Gavish, M., Nadler, B., & Coifman, R. R. (2010). Multiscale wavelets on trees,
graphs and high dimensional data: Theory and applications to semi supervised
learning. In Proceedings of the 27th International Conference on International
Conference on Machine Learning, ICML’10, (pp. 367–374)., Madison, WI,
USA. Omnipress.

Goyal, P. & Ferrara, E. (2018). Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151, 78–94.

51

Grover, A. & Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
Halappanavar, M., Lu, H., Kalyanaraman, A., & Tumeo, A. (2017). Scalable static

and dynamic community detection using grappolo. In 2017 IEEE High Per-
formance Extreme Computing Conference (HPEC), (pp. 1–6).

Harel, D. & Koren, Y. (2000). A fast multi-scale method for drawing large graphs.
volume 6, (pp. 183–196).

Hendrickson, B. & Leland, R. (1995). A multi-level algorithm for partitioning
graphs. In Supercomputing ’95:Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, (pp. 28–28).

Hu, Y. (2005). Efficient and high quality force-directed graph drawing. Mathematica
Journal, 10, 37–71.

Jeh, G. & Widom, J. (2002). Simrank: A measure of structural-context similar-
ity. In Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02, (pp. 538–543)., New York,
NY, USA. Association for Computing Machinery.

Karypis, G. & Kumar, V. (1998a). A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Sci. Comput., 20 (1), 359–392.

Karypis, G. & Kumar, V. (1998b). Multilevelk-way partitioning scheme for irregular
graphs. Journal of Parallel and Distributed Computing, 48 (1), 96 – 129.

Kipf, T. N. & Welling, M. (2016a). Semi-supervised classification with graph con-
volutional networks.

Kipf, T. N. & Welling, M. (2016b). Semi-supervised classification with graph con-
volutional networks.

Lafon, S. & Lee, A. B. (2006). Diffusion maps and coarse-graining: a unified frame-
work for dimensionality reduction, graph partitioning, and data set parame-
terization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28 (9), 1393–1403.

Lerer, A., Wu, L., Shen, J., Lacroix, T., Wehrstedt, L., Bose, A., & Peysakhovich,
A. (2019). Pytorch-biggraph: A large-scale graph embedding system.

Leskovec, J. & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

Liang, J., Gurukar, S., & Parthasarathy, S. (2018). Mile: A multi-level framework
for scalable graph embedding.

Loukas, A. (2018). Graph reduction with spectral and cut guarantees.
Lu, H., Halappanavar, M., & Kalyanaraman, A. (2014). Parallel heuristics for

scalable community detection.
Meusel, R. (2015). The graph structure in the web – analyzed on different aggrega-

tion levels. Journal of Web Science, 1, 33–47.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space.
Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., & Bhattacharjee, B. (2007).

Measurement and analysis of online social networks. In Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, IMC ’07, (pp. 29–42).,
New York, NY, USA. ACM.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &
Riedmiller, M. (2013). Playing atari with deep reinforcement learning.

Neville, J. & Jensen, D. (2002). J. neville and d. jensen (2000). iterative classification
in relational data. proceedings of the aaai 2000 workshop learning statistical.

52

http://snap.stanford.edu/data

Newman, M. E. J. & Girvan, M. (2004). Finding and evaluating community struc-
ture in networks. Physical Review E, 69 (2).

Niu, F., Recht, B., Re, C., & Wright, S. J. (2011). Hogwild! a lock-free approach to
parallelizing stochastic gradient descent. In Proc. 24th Int. Conf. on Neural
Information Processing Systems, NIPS’11, (pp. 693–701)., NY, USA. Curran
Associates Inc.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web. In WWW 1999.

Peleg, D. & Schäffer, A. A. (1989). Graph spanners. Journal of Graph Theory,
13 (1), 99–116.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of so-
cial representations. In Proc. 20th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, KDD ’14, (pp. 701–710)., NY, USA. ACM.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embed-
ding as matrix factorization. Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining - WSDM ’18.

Rossi, R. A. & Ahmed, N. K. (2015). The network data repository with interactive
graph analytics and visualization. In AAAI.

Roweis, S. T. & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science, 290 (5500), 2323–2326.

Spielman, D. A. & Teng, S.-H. (2008). Spectral sparsification of graphs.
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-

scale information network embedding. In Proc. 24th Int. Conf. on World Wide
Web, (pp. 1067–1077). IW3C2.

Tang, L. & Liu, H. (2011). Leveraging social media networks for classification. Data
Min. Knowl. Discov., 23, 447–478.

Tsay, A., Lovejoy, W., & Karger, D. (1999). Random sampling in cut, flow, and
network design problems. Mathematics of Operations Research, 24, 383–413.

Tsitsulin, A., Mottin, D., Karras, P., & Müller, E. (2018). Verse: Versatile graph
embeddings from similarity measures. In Proc. World Wide Web Conference,
WWW ’18, (pp. 539–548)., Republic and Canton of Geneva, CHE. IW3C2.

Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, (pp. 1225–1234)., New York, NY, USA.
Association for Computing Machinery.

Zhu, Z., Xu, S., Tang, J., & Qu, M. (2019). Graphvite: A high-performance cpu-
gpu hybrid system for node embedding. In The World Wide Web Conference,
WWW ’19, (pp. 2494–2504)., NY, USA. ACM.

53

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	BACKGROUND AND NOTATION
	GOSH IN A NUTSHELL
	GRAPH COARSENING
	Graph Embedding Frameworks that Utilize Coarsening
	MILE: A Multi-Level Framework for Scalable Graph Embedding
	HARP: Hierarchical Representation Learning for Networks

	GOSH Coarsening
	Complexity analysis:

	Parallel GOSH Coarsening
	Grappolo

	GRAPH EMBEDDING
	Random-Walk-based Graph Embedding
	DeepWalk: Online Learning of Social Representations
	LINE: Large-scale Information Network Embedding
	VERSE: Versatile Graph Embeddings from Similarity Measures
	GraphVite

	GOSH Embedding
	Small Dimensions

	EXPERIMENTS
	Evaluation Pipeline
	Coarsening Experiments
	Experiments on Coarsening Performance
	Experiments on Coarsening Quality
	Experiments on Coarsening Depth

	Embedding Experiments
	Large-scale graphs
	Experiments on Small Dimensions

	Speed Up Break-Down

	CONCLUSION
	BIBLIOGRAPHY

