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ABSTRACT

STABILITY, CONTROL AND ACOUSTIC MANIPULATION OF

MAGNETICALLY ACTUATED HELICAL SWIMMERS

HAKAN OSMAN ÇALDAĞ

MECHATRONICS ENGINEERING Ph.D DISSERTATION, AUGUST 2020

Dissertation Supervisor: Prof. Serhat Yeşilyurt

Keywords: microrobotics, low Reynolds number swimming, acoustics, helical

swimmers

Microswimmers are prospective agents for manipulation in fluid environments at low
scales. Potential use cases include targeted drug delivery and microsurgery. Mag-
netized helical microswimmers are used extensively in the literature as they can be
actuated externally with a rotating magnetic field. This dissertation reports on the
modes of instability of magnetized helical swimmers and proposes several solutions
to enable controlled navigation, which is crucial considering the potential biomedical
applications. The modes of instability are characterized with a kinematic model that
relies on snap-shot solutions of Stokes equations. Pusher-mode instability occurs in
confined environments, resulting in helical trajectories. A novel, magnetic steering
control algorithm is proposed to suppress the oscillatory trajectories. Contrary to
the state-of-the-art, this method doesn’t require any orientation feedback and per-
forms equally well. On top of magnetic steering, acoustic fields are demonstrated
to be beneficial in reducing wobbling. The bio-compatible nature of acoustic fields
makes it an ideal complement to the magnetic field. A novel and efficient computa-
tional model for the calculation of the acoustic radiation force on helices (which is
costly otherwise) is presented where the helix is approximated as a chain of spheres
for which simple analytical formulae exist. The sum of forces on spheres is very
close to the force acting on the helix. The approach is utilized in simulating the
trajectories of helical swimmers under acoustic and magnetic fields with promising
results. In experiments, magnetic swimmers made from thin wires are placed under
magnetic and acoustic fields. Viscosity reduces acoustic propulsion significantly.
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ÖZET

MANYETIK ALANLA YÜZÜDÜRÜLEN SARMAL YÜZÜCÜLERIN

KARARLILIĞI, KONTROLÜ VE AKUSTIK MANIPÜLASYONU

HAKAN OSMAN ÇALDAĞ

MEKATRONİK MÜHENDİSLİĞİ DOKTORA TEZİ, AĞUSTOS 2020

Tez Danışmanı: Prof. Dr. Serhat Yeşilyurt

Anahtar Kelimeler: mikrorobotik, düşük Reynolds numarasında yüzme, akustik,

sarmal yüzücüler

Mikroyüzücüler küçük ölçeklerde ve sıvı ortamlarda manipülasyon için kullanıla-
bilecek elemanlardır. Hedef dokuya ilaç teslimi ve mikroşirüji gibi potansiyel kul-
lanım alanları mevcuttur. Manyetik sarmal mikroyüzücüler dönen manyetik alanla
dışarıdan yüzdürülebildiği için sıklıkla kullanılmaktadır. Bu tezde manyetik sarmal
yüzücülerin dengesizlik halleri raporlanmış ve kontrollü yüzdürme için (biyomedikal
uygulamalar bağlamında önemlidir) çeşitli çözüm önerileri sunulmuştur. Denge-
sizlik halleri anlık Stokes çözümlerinin kullanıldığı kinematik bir modelle incelen-
miştir. Kanal içinde sarmal yörüngeye sebep olan itici-modu kararsızlığı olmaktadır.
Bu salınımları önlemek için yeni bir manyetik yönlendirmeli kontrol algoritması
sunulmuştur. Literatürdeki çalışmaların aksine, bu yöntemde eğim bilgisine ihtiyaç
duyulmamakta ve buna rağmen kıyaslanabilir sonuçlar elde edilmektedir. Manyetik
yönlendirmenin üzerine, akustik alanın da yalpalamayı azaltmakta faydalı olduğu
gözlemlenmiştir. Akustik dalgaların biyouyumluluğu bu yöntemi manyetik alan üz-
erine ideal bir tamamlayıcı kılmaktadır. Helisler üzerine etkiyen akustik radyasyon
kuvvetinin hesaplanmasında helisin bir küre zinciri olarak temsil edildiği (küreler
için basit formüller mevcuttur) yeni ve verimli bir hesaplama yöntemi (diğer yön-
temlerle verimsizdir) sunulmaktadır. Kürelere etkiyen toplam kuvvet, helise etkiyen
kuvvete çok yakındır. Bu yaklaşım sarmal yüzücülerin akustik ve manyetik alan
altındaki yörüngelerini hesaplamada kullanılmış ve umut vaat eden sonuçlar elde
edilmiştir. Deneylerde ince telden yapılmış manyetik yüzücüler akustik ve manyetik
alan altına yerleştirilmiştir. Viskozite akustik itkiyi büyük ölçüde azaltmaktadır.
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1. INTRODUCTION

Inspired by flagellated natural organisms such as Escherichia coli, artificial helical

microswimmers hold great potential in becoming the robotic agents for the fluidic

environments at low scales. Potential applications include micromanipulation, tar-

geted drug delivery, opening of clogged arteries and micromixing. These swimmers,

ranging in size from nanometers to millimeters, are generally actuated by external

magnetic fields. The majority of magnetized helical swimmers consists of two main

parts: A helical tail which enables propulsion and a head that contains the mag-

netized material for enabling actuation. Under a rotating magnetic field, the head

rotates the whole swimmer as it tries to adjust its magnetization vector with the

rotating field. The rotation of the field leads to propulsion through the rotation of

the helix.

Magnetic actuation has several benefits: Its external nature means there is no need

for on-board actuation mechanisms such as motors. No visual contact is required

for swimmer actuation. Magnetic actuation is also bio-compatible which is quite

important as many potential use cases are biomedical. These benefits underlie the

reason magnetized helical swimmers are popular in the literature both for in vivo

and in vitro applications. On the other hand, the magnetic actuation brings about

several modes of instability, resulting in wobbling and stutters in swimmer motion.

The objective of this thesis is to characterize the oscillatory trajectories of mag-

netized helical swimmers and and propose solutions to suppress them to enable

controlled navigation which is crucial considering the medical use cases. The modes

of instability are investigated and characterized in detail with respect to physical

parameters of the system. Next, a control algorithm is introduced that successfully

suppresses the oscillatory trajectories. Noting that the feedback control algorithm

requires swimmer position information which is not always available at a great ac-

curacy, the dissertation also proposes a passive way to eliminate the oscillatory

trajectories through the means of acoustic fields. Acoustic fields are widely adopted

in medical applications for their bio-compatible and non-invasive nature, thus, the

fields complement the magnetic fields very well. The effects of acoustic radiation
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on helical swimmers are investigated both numerically and experimentally. The nu-

meric approach approximates a slender helix as an array of spheres. There are no

known analytical formulae for the acoustic radiation force on helices while simple

analytical formulae are available for spheres. It is shown that the total acoustic force

on the helix can be closely approximated through the sum of the forces acting on the

spheres placed along the helical structure. This model is incorporated into a resistive

force theory-based model of magnetized helical swimming to derive the trajectories

and velocities of swimmers under acoustic actuation. In experiments, helical swim-

mers made out of thin wires are actuated both magnetically (with a Helmholtz coil

setup) and acoustically (with immersed transducers) in viscous liquid. The effects

of acoustic field on propulsion velocity is demonstrated and simulations are utilized

to confirm the experimental observations.

The findings of this thesis are expected to not only improve the understanding on

the stability of helical microswimmers but also provide insight into solutions that do

and do not require any feedback for controlled navigation which is a crucial element

for biomedical applications. Several novel computational models presented in the

thesis simplify the evaluation of trajectories of helical swimmers in magnetic and/or

acoustic fields.

1.1 Background

In accordance with the multi-disciplinary nature of the thesis subject, magnetic

helical swimmers will be introduced first and then the studies on acoustic radiation

and actuation will be discussed through numerical and experimental studies.

1.1.1 Swimming with a Helical Tail

Microswimmer locomotion ensues from the dominance of viscous effects at small

scales where inertial effects are negligible. At low Reynolds numbers, forces and

torques act instantaneously. This also means that swimming cannot be achieved by

time-reciprocal motion (Purcell, 1977). Linear and angular swimming velocities are

related to the forces and torques on the swimmer through a resistance matrix whose
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elements depend on factors such as the swimmer geometry and boundaries nearby.

Man & Lauga (2013) derive the full resistance matrix for helical swimmers in bulk

fluid using the resistive force theory, which relates the hydrodynamic force acting on

a helix locally through normal and perpendicular drag coefficients and it is widely

used in modeling of helical swimmers (Gray & Hancock, 1955). On the other hand,

the theory does not take long-range hydrodynamic interactions into account which

are crucial especially for thick tails and near-boundary swimming (Lighthill, 1976).

Natural microorganisms swim in viscous media in several different ways: Some or-

ganisms deform their body to move which is a slow but simple way (Alt & Hoffmann,

2013). Other organisms have developed specialized structures to move such as the

cilia in the paramecium or flagella in bacteria (Lauga, 2016). The bacteria swim by

rotating their flagella in both directions, resulting in two modes of rotation: The

swimmer is said to be in the pusher-mode if the flagella is pushing the head and

it is called the puller-mode if the flagella is pulling the head. Flagellated microor-

ganisms swim in the pusher-mode most of the time and this is one of the reasons

why they follow circular trajectories and accumulate around surfaces (Berke et al.,

2008; Galajda et al., 2007). On the other hand, confinement is helpful in achieving

directed swimmer motion: It was observed that the bacteria have higher velocities

in 10 µm channels than in 50 µm channels Berg & Turner (1990).

The major challenge in realizing an artificial micro-swimming structure lies in the

method of actuation. There are several methods actively studied in the literature.

One of them is chemical actuation by using Janus particles. These particles are

composed of two different materials at each side of the particles; this structure can

be functionalized such that one side would react with the surrounding fluid and

this would generate motion. Such particles often require toxic environments such

as hydrogen peroxide and this limits their use in biomedical applications (Xuan

et al., 2014). Furthermore, the swimmer is destroyed once it is used. Another

method involves the use of light: In a recent study, cylindrical microswimmers made

of liquid-crystal elastomers that response to light are manufactured (Palagi et al.,

2016). By exposing light to these swimmers periodically as strips, propulsion is

achieved through peristaltic motion. This method requires continuous visual contact

with the swimmer. In comparison to several different methods of actuation, magnetic

fields appear to be the most advantageous: They are bio-compatible and external;

they don’t require specific fluids and they work without any visual contact with the

swimmer (Martel, 2013). Magnetized helical swimmers are best suited for magnetic

manipulation through a rotating field as the gradient fields pose health risks beyond

a certain strength and controlled navigation is more challenging with field gradients

Abbott et al. (2009).
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Artificial helical microswimmers are inspired by the flagellated bacteria. Among

the initial attempts was Dreyfus et al.’s (2005) bio-hybrid swimmer that was com-

posed of a red blood cell and a linear chain of colloidal magnetic particles. When a

time-varying magnetic field is applied, the tail exhibits undulating motion and this

results in net propulsion. With the developments in micro fabrication technologies,

completely artificial swimmers could be manufactured: Zhang et al. (2009) report a

self-scrolling methodology to achieve helical ribbons made from GaAs/Ga bi-layer

structure. The helical structure has a diameter of 2.8 µm and a length of several

tens of µm. The ribbon has a magnetic head at one end which is used for propulsion

through rotating magnetic fields. More recent studies utilize advanced technologies

such as 3D direct laser writing to manufacture helices (Peters et al., 2016; Tottori

et al., 2012).

1.1.2 Modes of Instability

Two distinct cases of instability are reported for magnetically actuated helical swim-

mers in the literature. The first case is the wobbling of helices at low frequencies

as observed experimentally by Peyer et al. (2010) and Ceylan et al. (2019). Man

& Lauga (2013) characterize the wobbling of rotating slender helices with Mason

number (Ma), which is defined as the ratio of viscous and magnetic torques, and

find that the wobbling angle increases as Ma decreases. This points to either high

magnetic field strength or low rotation rate of the swimmer as the sources of insta-

bility in terms of magnetic actuation parameters. The other form of instability is

called step-out, and occurs when the strength of the magnetic field is not sufficient

to produce a magnetic torque to overcome the viscous torque (Zhang et al., 2009).

Low-frequency wobbling of helical swimmers is observed in bulk swimming, whereas

step-out occurs in bulk (Zhang et al., 2009) or confined swimming (Caldag et al.,

2017).

Effects of hydrodynamic interactions on swimmers at low Reynolds number have

been studied extensively in the literature. Flagellated bacteria are observed to swim

in circular trajectories near a surface (Lauga et al., 2006; Liu et al., 2014). The tail

and the head rotate in opposite directions in biological swimmers for torque-free

swimming and it results in a net hydrodynamic interaction force and torque that

push the swimmer to follow a circular trajectory (Lauga et al., 2006). On the other

hand, the misalignment of the tail relative to the body is argued to contribute to

helical trajectories as well (Hyon et al., 2012). Spagnolie & Lauga (2012) approx-
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imate swimming of the flagellated bacteria with a superposition of a force dipole,

quadrupole, source dipole and a rotlet dipole. As the term with the leading order,

the force dipole is preferred by many authors to represent swimming of the flag-

ellated bacteria, including Berke et al. (2008) who explain the attraction towards

surfaces with the dipole interactions. Organisms with longer flagella relative to the

cell body redirect the swimming towards the boundaries (Spagnolie & Lauga, 2012).

There exists a critical tail length for which the pitching angle changes its sign.

Swimmer stability inside channels is studied for spherical particles. Zöttl & Stark

(2012) model the hydrodynamic interactions with the boundaries by a dipole ap-

proximation to study the stability of a pointlike swimmer between two parallel plates

in a Poiseuille flow and they find that a pusher (which they identify with a positive

dipole strength) tends to follow a circular trajectory around the centerline of the

channel, close to the boundaries. The pullers are reported to follow a straight path

at the center of the channel (Zöttl & Stark, 2012). The pushers are generally charac-

terized with an outward flow with respect to the swimmer while the flow is inwards

in the puller-mode (Klindt & Friedrich, 2015). The flow rate determines whether

the pusher will cross through the centerline of the channel or oscillate around the

channel boundaries. de Graaf et al. (2016) distinguish between the pusher and

puller-mode swimming based on the relative placement of the force dipole on the

fluid with a fixed direction. If the dipole is in the front of the swimmer, with re-

spect to the swimming direction, the swimmer is a puller and it is a pusher if the

dipole is behind. The authors carry out lattice-Boltzmann simulations and far-field

calculations for a rod-shaped swimmer between two parallel plates and cylindrical

channels and observe helical trajectories for pushers and straight trajectories for

pullers. The distinctive trajectories are observable for plate separations up to ten

times the length of the swimmer. Dipole and octupole moments are reported to

create attraction (repulsion) for pushers (pullers) while quadrupole moments cause

pure oscillatory motion.

Low Reynolds locomotion of squirmers, which move in the fluid by the means of

surface deformation exhibit pusher and puller modes clearly. Zhu et al. (2013) de-

veloped a model for a spherical squirmer inside a circular channel using the boundary

element method. Authors report that pushers crash to the walls when the repulsive

force that stabilizes the pullers are reversed. Moreover, whether the pullers swim at

the center of the channel or closer to the wall is determined by the strength of the

force dipole generated by the squirmer (Zhu et al., 2013). Chacón (2013) studied the

motion of spherical swimmers in the Poiseuille flow and reported that small finite

periodic oscillations in the swimming velocity influence the trajectories depending

on the position and orientation of the swimmer in the channel and that efficient
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upstream (downstream) swimming takes place at (away from) the center. Ishimoto

& Gaffney (2013), on the other hand, add a rotlet dipole to a spherical squirmer

to approximate a flagellated bacteria. They find that a positively oriented rotlet

dipole results in a counter-clockwise circling when the swimmer is close to a no-slip

surface. Interestingly, swimmer orientation and distance from the surface remain

unaffected from the introduction of the rotlet.

Experiments on mm-sized artificial helical swimmers are reported in the literature

and the effects of confinement, tail length, magnetic field rotation rate and flowrate

on the trajectories of swimmers are studied (Acemoglu & Yesilyurt, 2015; Caldag

et al., 2017). One of the critical observations was that the pusher-mode swimmers

follow helical trajectories while the puller-mode swimmers follow straight trajectories

at the centerline of the channel most of the time with the exception of wobbling of the

tail at high frequencies before step-out. The results indicate that the hydrodynamic

interactions with the wall play an important role in the trajectories of confined

swimmers.

1.1.3 Controlled Navigation of Helical Microswimmers

Modes of unstable motion necessitate proper control of these swimmers which has

seen a recent interest in the research community. Earlier studies such as Ghosh

& Fischer (2009) and Tottori et al. (2012) show accurate in-plane control of helical

swimmers in bulk fluid but they depend on open-loop algorithms due to challenges in

visual feedback as stated in Xuan et al. (2014). Xuan et al. (2014) are among the first

to develop a closed loop control algorithm where they achieve planar path following

based on the orientation error. Following this study, Oulmas et al. (2018) realize

the closed-loop control by linearizing the swimmer dynamics through a chained for-

mulation for tracking any 3-dimensional path with sub-millimetric accuracy. The

control relies on the determination of the ideal swimmer orientation to steer the

swimmer towards the desired path. Tilting is achieved by utilizing three pairs of

Helmholtz coils which allows rotation of the swimmer towards any direction. The

authors demonstrate that the closed-loop control is robust enough to overcome dis-

turbances due to boundary effects down to 2.5 mm for a swimmer with a length

of 14 mm and diameter of 1 mm (Oulmas et al., 2018). A recent study by Leclerc

et al. (2019) demonstrates controlled navigation both inside and outside of a chan-

nel albeit with lower accuracy. Most of these studies rely on accurate information
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on swimmer position and orientation at the same time which are hard to obtain

especially considering potential in vivo applications.

1.1.4 Acoustic Radiation Force

Acoustic radiation force is a time-averaged force in an acoustic field. The evaluation

of the force is challenging for intricate structures but analytical results for simple

structures exist in the literature. The theoretical framework to evaluate acoustic

radiation force on a sphere is established by King (1934). The harmonic nature

of the acoustic wave implies zero force on an object in the field due to the time-

average of a sinusoidal wave being equal to zero. The radiation force arises from

the second-order pressure terms which have a non-zero time-average. Later, the for-

mulation is extended to account for the cases of compressible particles and viscous

media (Hasegawa & Yosioka, 1969; Settnes & Bruus, 2012). Hasegawa & Yosioka

(1969) solve the radiation force problem under single dimensional travelling waves

by expressing the incident and scattered velocity potentials as spherical Bessel and

Hankel functions. The scattering coefficient is evaluated from these functions the

force is integrated around the surface of the sphere by utilizing the coefficient. How-

ever, as the radiation force is time-averaged and the particle is oscillating during

that time period, there appears the problem of what surface to take for integra-

tion. The authors resolve it by integrating the force around a fixed spherical surface

(that is larger than the original spherical surface) and add a secondary momentum

flux correction term (Hasegawa & Yosioka, 1969). This approach is shown to work

for any spherical surface encompassing the particle. Another approach is the uti-

lization of net loss of steady state linear momentum into the surface of the object

(Maidanik & Westervelt, 1957). Both of these approaches are shown to give the

same results (Hasegawa, 1977). Similar calculations are carried out for spheres in

1-dimensional standing waves (Hasegawa, 1979) and cylinders in both travelling and

standing waves (Hasegawa et al., 1988; Haydock, 2005). The calculations show that

the particles migrate to either the velocity nodes or anti-nodes (Doinikov, 2003),

depending on their relative positions.

The models discussed above do not take viscous and thermal effects into account.

Thermal and viscous effects become significant if the particle size is smaller than

the viscous/thermal penetration depths. According to Settnes & Bruus (2012), the

inviscid fluid assumption remains valid if the particle size is larger than 3 µm for

a 1-MHz application in water. In the same study, the authors derive the radiation
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force formulae for spherical particles under standing or travelling waves. Wang &

Dual (2011) derive the force expressions for cylinders in viscous fluids and they

find out that viscous effects increase the acoustic radiation force. The increase in

radiation force is much more notable in plane travelling waves than in plane standing

waves. The viscosity mainly influences the force due to shear stresses rather than

compression.

While the analytical solutions discussed above are only applicable for simple shapes,

numerical solutions suitable for obtaining the acoustic force on arbitrary shapes can

be classified under two broad categories. In the first one, complete flow fields under

acoustic waves are solved by introducing the acoustic wave as a pressure wave in a

compressible fluid domain. Wang & Dual (2009)’s 2-D finite volume method-based

(FVM) model evaluates the acoustic radiation force for cylindrical objects through

the complete solution of Navier-Stokes equations. Their results match very well

with the analytical calculations for a wide range of geometric parameters. Since the

forces are evaluated from the complete solution of compressible Navier-Stokes equa-

tions, a simulation for a structure as simple as a cylinder takes hours to complete.

Muller et al. (2012) develop a multi-step finite-element model in which they solve

for particles suspended in a microfluidic device excited with acoustic waves. They

first solve for first-order acoustic fields which are then used to compute second order

fields from which acoustic radiation force is determined. The evaluated forces are

then exerted on the particles to compute their trajectories.

On the other hand, the use of Helmholtz equations (which is derived from a first-

order time-harmonic extension of Navier Stokes equations), coupled with the pertur-

bation approach, simplifies the solution process significantly, resulting in a dramatic

reduction in computational cost. Glynne-Jones et al. (2013) present a 2-D axisym-

metric finite element method (FEM) model in which the acoustic radiation force on

a spherical object can be calculated in several seconds with a good match in the

evaluated radiation forces with the theoretical results in a frequency domain study.

The authors derive a density and compressibility ratio map where one can deduce

whether a particle will move to a pressure node or antinode. Glynne-Jones et al.

(2013)’s approach is extended to 3 dimensions in Garbin et al. (2015) where the

acoustic radiation forces and torques are evaluated for spheroid structures and the

results are verified with experiments and theory. The authors model an infinite do-

main by applying perfectly matched layers (PMLs) at the outer boundaries. They

hint that acoustic fields can be used to align ellipsoidal shapes such as cells. Wijaya

& Lim (2015) study the forces and torques on spheroids and ellipsoids extensively.

The alignment of the spheroid is reported to affect the exerted radiation force up

to 26%. A prolate (oblate) spheroid will rotate in counterclockwise (clockwise) di-
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rection until the stable orientation angles of 0◦ (90◦ ) is achieved. When a spheroid

has an orientation angle of 55◦, the force is equal to that of a sphere with the same

volume. Baasch et al. (2017) simulate multiple spheres inside a microfluidic channel

with collision dynamics taken into account. They report that the cross-interactions

between the spheres are negligible if the acoustic contrast factor is low. Another

study by Collino et al. (2015) simulates the spacing between columns of microparti-

cles under acoustic actuation by approximating each rod as an array of spheres with

the same cross-sectional area as the rod.

1.1.5 Acoustically Actuated Swimmers

Acoustic manipulation of particles (acoustophoresis) is used for biomedical appli-

cations such as cell/particle sorting (Petersson et al., 2007). These applications

generally utilize acoustic streaming phenomenon. On the other hand, a more recent

biomedical application demonstrates the usage of acoustic radiation force to mea-

sure blood clot stiffness in vitro (Wang et al., 2015). The authors place a focused

ultrasonic transducer operating at 10 MHz next to a polystyrene box which con-

tains a mixture of blood plasma and polystyrene beads with a 15 µm diameter. The

transducer is reported to exert around 2 MPa pressure at maximum and attenuation

coefficient inside plasma is evaluated as 0.115 dB · cm
−1

·MHz
−1. With this setup,

the beads exhibit motion under acoustic waves and the speed of the beads are re-

lated to the Stokes drag from which the clot stiffness can be measured. In another

study, acoustic fields are used to trap Janus particles made of Platinum (Pt) and

polystyrene (PS) (Takatori et al., 2016). Normally, these Janus particles exhibit

Brownian motion. With the acoustic tweezer turned on, the particles are confined

within the borders of a well in which they can still exhibit Brownian motion but

they cannot get outside the boundaries of the well.

The usage of acoustic fields for micro-swimming applications is quite recent. Wang

et al. (2012) are among the first to use acoustics for autonomous swimming. They

manufactured metallic nanowires (made of Au and Ru) with a length of 1-3 µm and

diameter of 300 nm. Placing the rods in a cell with an acoustic transducer glued

from the bottom, the rods are observed to be lifted up from the bottom of the cell

once the transducer is turned on. Once levitated, the nanowires exhibit motion in

random directions. The seemingly random direction of motion is associated with

the imperfections on the surface. Swimmer velocity is found to be a function of

transducer voltage, frequency and position of the rods. At the resonance frequency
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of the setup, 3.776 MHz, the wires at the center of the setup move very fast while

the wires away from the center move slowly. Even a 1% change in the frequency

results in a sharp drop in the velocity of nanowires that are close to the center

but the change in frequency activates the wires in another region of the cell. This

enables selective actuation of the wires by only changing the frequency. Different

types of single metal wires and bimetallic wires are reported to behave similarly in

their respective group.

Wang et al. (2012)’s work was followed with similar studies detailing different aspects

of metallic nanowire swimmers. One study investigates the shape and material

effects where the authors find that the swimmer moves towards the concave end of

the wire due to acoustic streaming effects. (Ahmed et al., 2016). They deduce the

swimming is induced by streaming as the swimming speed decreases with length

which increases the resisting drag force. In another study, the researchers introduce

magnetic fields to Au-Ni-Ru nanowires in order to enable directed motion (Ahmed

et al., 2013). The wires are demonstrated to function inside living human cells,

allowing for use in biomedical applications (Wang et al., 2014). A disadvantage of

metallic swimmers is that they need to be actuated at high frequencies (MHz scale)

to observe resonance-based effects. High-frequency waves are known to attenuate

fast and this may pose a problem for biomedical applications where highly viscous

liquids may dampen the waves. Kaynak et al. (2017) introduce a swimmer made

of a polymer mixture in situ. The pointed needle shaped swimmers resonate at

frequencies as low as 4.6 kHz. The swimmers move by the microstreaming flow

generated at the needle-like end of the tail. These swimmers can move only in the

direction their tail points to but the authors also demonstrate swimmers with tails

perpendicular to the body which continously rotate in a single direction. With a

swimmer length of around 180 µm, the authors achieve velocities more than six

body lengths per second.

Another interesting demonstration of acoustic swimmers is bubble-based swimmers.

These swimmers are generally coated with hydrophobic material and have a hole

inside. When submerged in water, an air bubble forms inside and this bubble can

be vibrated with acoustics to enable propulsion. Ahmed et al. (2015) are among

the first to manufacture this kind of swimmer. These swimmers operate at acoustic

frequencies where the acoustic wavelength is much larger than the bubble diame-

ter, which is generally several µm in the studies reported here. While the swimmer

motion is still at low Reynolds number environment due to small scales, the dy-

namics of the bubble occur at high Re numbers (Ahmed et al., 2015). In fact, if

bubble dynamics remain at low Re number, it is shown that the flow fields are highly

time-reversible, resulting in no net propulsion (Feng et al., 2015). In water, swim-
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ming speeds up to 50 body lengths per second are obtained but in a 50% glycerol

mixture the swimming speed radically decreases to 1/100th of the values observed

in water. One advantage is that the swimming speed has a quadratic dependence

on voltage, so comparable swimming velocities can be achieved at higher voltages.

A more recent study reported swimming speeds of up to 17500 body lengths per

second for a swimmer with dimensions of 20x20x26 µm (Louf et al., 2018). Even

though the swimming is in a certain direction, the authors note that navigation

can be achieved by placing multiple transducers and actuating them separately. A

more recent example of a bubble-based swimmer is magnetically coated for directed

swimming based on the direction of the magnetic field applied (Ren et al., 2019).

Since the propulsion velocity changes with respect to the direction of magnetic field,

the authors say that it is possible to selectively propel certain swimmers in a swarm

by aligning the magnetic layers on the swimmers differently.

Work on acoustic swimmers with flagellum-like tails has been little. Ahmed et al.

(2016) report a swimmer with a Ni-Au head and a flexible tail made of polypyrrole.

The swimmer is 15-20 µm long and has a diameter of 0.3-0.6 µm. They use structural

resonance of the tail to form streaming under acoustic fields which enables propulsion

in both standing and travelling acoustic waves. They achieve velocities around 3-4

body lengths per second at 10 V. The authors also test whether the head by itself

moves under acoustic field, the velocity ends up less than 10 µm/s. The authors

explain this with the fact that the resonance frequency of the metallic head is way

higher at around MHz range. Li et al. (2015) report a magneto-acoustic hybrid

swimmer with a helical tail. This swimmer is made of Au with Ni coating for

allowing magnetic actuation. The acoustic and magnetic fields are used separately

for motion in opposite directions. Under acoustic field, the swimmer moves in its tail

direction (as in the puller-mode swimming) while magnetic field is used to propel the

swimmer in its head direction (as in the pusher-mode swimming). The authors also

test head-only and tail-only swimmers and find out that the acoustic propulsion is at

its highest at the original swimmer with a head and a tail. The swimmers are shown

to move effectively in viscous biomedical fluids such as serum and blood. Another

interesting aspect of these swimmers is that they are collected to acoustic nodes

when ultrasound is turned on in a short time (in 5 seconds). When the acoustics is

turned off and the magnetic field is turned on, the collected swimmers come loose

and get separated from each other. The process is said to be fully reversible and it

allows for easy collection of the swimmers in a single spot.
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1.2 Novelties of the Thesis

The stability of helical swimmers is not yet fully understood. Most of the numeri-

cal studies that investigate the topic are either independent from the experimental

observations or focus on biological swimmers. The kinematic simulation model for

helical swimmers in this study helps in understanding the phenomena observed in

the experiments with artificial swimmers in Caldag et al. (2017) as the helical swim-

mer geometry in the model is based on the real-life swimmer in that study. As the

inertial effects are negligible in the Stokes regime, the model solves for the snap-shot

Stokes equations via a computational fluid dynamics (CFD) model which are then

integrated via kinematic relations to obtain complete 3-dimensional swimmer tra-

jectories under confinement with a reasonable computational cost. The kinematic

model updates the position and the orientation of the swimmer by using the linear

and angular velocities from the CFD model at each instant. In addition to the

viscous force, the external magnetic torque, the gravity force and the normal con-

tact force on the swimmer are also considered in the CFD model. The phenomena

observed in the experiments are successfully replicated in the kinematic model and

some of the phenomena left unexplained in Caldag et al. (2017) are fully explained.

An improved resistance force theory formulation of helical swimmers is introduced

as well, which incorporates an additional swirling flow field to simulate in-channel

swimming of helices and reduce the computational cost even further for complete

trajectory simulations.

After the discussion on the stability of helical microswimmers, the dissertation

presents a feedback control algorithm to suppress the oscillatory trajectories for

controlled navigation which is crucial for biomedical applications. The algorithm

is based on magnetic steering of helical swimmers like the state-of-the art. The

novelty of this algorithm lies in the fact that it doesn’t rely on swimmer orientation

information to steer the swimmer towards the desired path whereas other methods

in the literature require orientation information. Swimmer position information is

shown to be sufficient for wobbling angles below 20
◦ (which, by itself, is a very large

value and indicates high degrees of wobbling). For in vivo use scenarios such as tar-

geted drug delivery, extracting proper position information is quite challenging and

extraction of swimmer orientation is nearly impossible. In that sense, the proposed

control algorithm is much better suited for practical use.

The dissertation also explores how acoustic fields can help in improving swimmer

stability as a way that does not require feedback from the system. Despite being one
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of the highly researched type of artificial swimmers in the literature, the interaction

of magnetized helical swimmers with acoustic fields is left unexplored. The com-

putational and experimental studies here aim to fill this gap. The computational

approach to evaluate the acoustic radiation force on slender helical structures, called

chain-of-spheres, is novel. Normally, the computational cost of calculating acous-

tic radiation force on 3-dimensional geometries require finite-element simulations

that are highly costly. Large computational cost is a barrier for quick modelling

of novel acoustic radiation-based devices. The approach presented here is expected

to improve the modelling capabilities of the researchers to build more sophisticated

radiation-based systems. The model in Collino et al. (2015) is similar to ours but

there are several key differences. First is that they don’t enforce a volume-matching

constraint to achieve accurate radiation force values. The authors are only interested

in the spacing between the rods, hence, they don’t need high accuracy. Secondly,

their model remains application-specific whereas the methodology proposed here

can be applied to other slender and complex geometries. Third, the authors only

work on standing wave fields while our work covers both the standing and travelling

waves and the significant results of the thesis are mostly obtained under travelling

waves.

Another major contribution of this dissertation is that it presents the trajectories

of magnetically actuated helical swimmers under both the magnetic and acoustic

fields for the first time. By coupling the computational model for the calculation

of acoustic radiation force with a resistive force theory-based model of magnetized

helical swimmers, it is possible to simulate the complete 3-dimensional trajectories.

This is a significant step in terms of simulating not only an instant but the whole

duration of swimming under acoustic fields as it had not been studied before for

intricate structures.

The experiments complement the numerical work by demonstrating the effects of

acoustic actuation on an actual magnetized helical swimmer. The novel position con-

trol algorithm is used to initialize the acousto-magnetic experiments from the same

initial position for improving repeatability of the experiments. The setup presented

here uses immersed acoustic transducers that require no acoustic matching. The

relationship of viscosity with the propulsion velocity of the swimmer is investigated

within the context of the results and a matching between experimental observations

and simulation results is achieved.

The findings of this dissertation have resulted in several publications with full cita-

tions given below:
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• Caldag H. & Yesilyurt S. (2018) Dynamics of artificial helical microswim-

mers under confinement. In: International Conference on Nanochannels, Mi-

crochannels, and Minichannels, ASME 2018 16th International Conference on

Nanochannels, Microchannels, and Minichannels, ASME.

• Caldag, H. O. & Yesilyurt, S. (2019). Trajectories of magnetically-actuated

helical swimmers in cylindrical channels at low Reynolds numbers. Journal of

Fluids and Structures, 90, 164–176.

• Caldag, H. O. & Yesilyurt, S. (in press). Steering Control of magnetic helical

swimmers in swirling flows due to confinement. In: International Conference

on Robotics and Automation (ICRA 2020), Paris, France.

• Caldag, H. O. & Yesilyurt, S. (in press). A Simple Numerical Tool for the Eval-

uation of Acoustic Radiation Force on Helices. In: International Ultrasonics

Symposium (IUS 2020), Las Vegas, Nevada

The following journal article based on the findings in this dissertation is submitted

and under review as of August 2020.

• Caldag, H. O. & Yesilyurt, S. Acoustic Radiation Forces on Magnetically Ac-

tuated Helical Swimmers.
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2. Stability of Magnetically Actuated Helical Swimmers

Helical swimmers exhibit several modes of instability such as wobbling and step-

out (Caldag et al., 2017; Man & Lauga, 2013; Zhang et al., 2009). These modes

of instability are well-studied in the literature. However, there is another mode of

instability, distinct from these two, that is observed in confined environments, called

the pusher-mode instability (Caldag et al., 2017). Confined swimming is practically

relevant considering in vivo environments such as arteries. Understanding this mode

of instability is crucial for enabling controlled navigation in such environments. This

chapter characterizes the pusher-mode instability with the help of a kinematic model

that resorts to snap-shot solutions of Stokes equations. Pusher-mode instability

is characterized with respect to key parameters of the system and the distinctive

features of the pusher-mode instability are elaborated.

2.1 The Kinematic Model

The geometric setup is shown in Fig. 2.1 where the swimmer with a left-handed

helical tail and a cylindrical head with curved edges is placed inside the cylindrical

channel of diameter Dch. Length of the swimmer’s tail is denoted by L, wavelength

by λh, amplitude by Ah and the diameter by d. The cylindrical head has a length

of Lhead and a diameter of Dhead. The radius of curvature of the edges is rc. The

channel length is set to a very low but acceptable value, which is almost twice

as long as the length of the swimmer, and helps to reduce the computation time

while the end effects on the swimmer remain negligible. The swimmer geometry

is representative of the swimmers used in our experiments (Acemoglu & Yesilyurt,

2015; Caldag et al., 2017), and it is also similar to many others used in the literature

(Ghosh & Fischer, 2009; Tottori et al., 2012). Swimmers are identified with the

letter “L” followed by a number that represents the number of waves on the tail.
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Pusher and puller swimming modes, which are defined based on the position of

the head with respect to the tail and the swimming direction, are also depicted in

Fig. 2.1. For a left-handed helical tail, the pusher-mode swimming occurs when

the swimmer rotates in the counter-clockwise direction and the puller-mode in the

clockwise direction. Gravity g acts in the negative y− direction.

Figure 2.1 Geometric parameters of the swimmer and the channel, representations
of rotating magnetic field B, gravity vector g and channel inlet flow with a parabolic
profile and average velocity, vf . Forward (head direction, pusher-mode) and back-
ward (tail direction, puller-mode) motion of the swimmer.

Fluid motion is governed by the steady Stokes equations at low Reynolds numbers as

the time-dependent effects such as the history and added mass forces are negligible

as long as the magnetic rotation frequency, fm, is not very high (Wang & Ardekani,

2012):

(2.1) ∇2u−∇p= 0, ∇·u= 0

Here, u and p are the non-dimensional fluid velocity field and the pressure, respec-

tively. The length scale is the wavelength of the tail, λh, while the time scale is f−1
m .

The pressure is non-dimensionalized with fmµ.

The swimmer’s linear and angular velocities, U and ω are calculated from the force

and torque balances:

(2.2) Fv+Fw+Fc = 0
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(2.3) τ v+τm+τw+τ c = 0

where superscript “v” stands for viscous, “m” for magnetic, “w” for gravity and “c”

for contact. These forces and torques depend on the radial position and orientation

of the swimmer and are updated at each time step in the simulation. Torques are

evaluated with respect to the center of mass of the swimmer, which is placed at the

center of the head; since the head is made of a heavy magnet whereas the tail is

made of plastic.

The viscous force is obtained from the integration of fluid stress on the swimmer:

(2.4) F v
j =

�

S
σijnidS

where σij are the elements of the stress tensor for i= 1,2,3 and j = 1,2,3, ni denotes

the ith component of the surface normal, S is the swimmer surface, and summation

over repeated indices is implied. The viscous torque exerted by the fluid with respect

to the center of mass of the swimmer is:

(2.5) τvj =
�

S
(xs−x)×σijnidS

The magnetic field rotates around the x- axis (Fig. 2.1), which is also the centerline

of the channel, and exerts a magnetic torque on the swimmer:

(2.6) τm =m×B

where m is the magnetization vector of the swimmer with a magnitude of m0.

The rotating field is achieved by out-of-phase sinusoidal fields and given by:

(2.7) B=B0

�
0 cos(ωmt) sin(ωmt)

�
�

17



where B0 is the amplitude of the magnetic field, ωm = 2πfm is the rotation rate and

its sign implies the rotation direction of the left-handed helical tail that pushes the

swimmer when ωm > 0 and pulls it when ωm < 0.

Contact conditions are satisfied if any point on the swimmer is closer to the wall

than a clearance δw. Normal contact force is set to the negative value of the net

radial force, if the radial force is outwards, otherwise, it is 0. The local effect of

the contact force is represented by an effective normal contact force per area on the

swimmer where the local contact conditions are met:

(2.8) fwall =






−F
r�

{rs∈S|Rch−rs<δw}
dS

if Fr =−
�
S f

rdS > 0 and Rch− rs < δw

0 otherwise

where Rch =Dch/2 and rs is the radial position of a point on the swimmer surface,

S. The fraction represents the average contact force per area in regions on the

swimmer where the contact condition is satisfied. Fr is the net radial force on the

swimmer, where the radial force per unit area fr is composed of stress components

in y and z directions:

(2.9) f r = (σiyni cos(θ)+σizni sin(θ)) êr

where θ = atan2(zs,ys), zs and ys denote z− and y− components of xs,Or ni for

i = 1,2,3 are the surface normals; and êr is the unit vector in the radial direction.

Non-dimensional δw is set to d/2= 0.1 which does not impose a significant restriction

on the range of motion of the swimmer even for the narrowest channel tested here,

as normalized clearance is δw/Dch = 0.0625.

The channel wall and the surface of the swimmer have no-slip boundary conditions.

The swimmer moves with a velocity U and rotates with an angular velocity ω =�
ωx ωy ωz

�
�

. Thus, the velocity of a point on the swimmer surface is given by:

(2.10) Us =U+ω× (xs−x)

One end of the channel is the inlet without any inlet velocity, and the other end of

the channel is defined as the outlet where the pressure is set to 0.
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Trajectories of the swimmer are obtained from the kinematic relations:

(2.11)
dx

dt
=U(x,ei)

(2.12)
dei
dt

= ω (x,ei)×ei

ei for i = 1,2,3 represent the unit vectors of the local coordinate system placed at

the center of mass of the swimmer, as shown in Fig. 2.1, and form the columns

of the rotation matrix, which are used to calculate the Euler angles to fully define

the swimmer orientation in the global channel coordinates. Since the inertial effects

are neg-ligible, acceleration of the swimmer is not considered. Linear and angular

velocities are ob-tained from the solutions of the steady Stokes equation by the CFD

model at each position and rotation, hence the velocities only depend on the position

and the rotation of the swimmer represented by the unit vectors, ei.

Eqs. 2.11 and 2.12 can be used to obtain complete swimmer trajectories in Matlab.

The position and orientation of the swimmer for the next time step are used as

inputs in the next CFD simulation for the calculation of U and ω at that time step.

Adams-Bashforth integration is used for the integration in Eq. 2.11. For initial time

steps, forward Euler and two-step Adams-Bashforth formulations are employed. For

Eq. 2.12, Crank-Nicholson formulation is utilized for the integration of the unit

vectors of the body coordinates:

(2.13) ek+1
i =

�

I−
∆t

2
Wk

�
−1�

∆t

2
Wk

�

eki

Here, superscript k denotes the current (resolved) time index, ∆t is the time step,

I is the identity matrix and W is the skew-symmetric matrix that represents the

cross-product in Eq. 2.12. The proper selection of ∆t is important as large ∆t

results in numerical instabilities. Small ∆t, on the other hand, results in excessive

computation times. For the simulations discussed in this paper, non-dimensional ∆t

ranges from 1/200 to 1/40. Depending on the channel size, convergence to a stable

trajectory takes between 20 and 90 full rotations of the swimmer, corresponding to

a few seconds of swimming in dimensional terms.
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Commercial finite-element software Comsol Multiphysics is used to solve the Stokes

equations numerically to obtain U and ω under the forces and torques given in Eqs.

2.2 and 2.3. Comsol is called within Matlab where the kinematic calculations are

carried out, as outlined in Algorithm 1. The swimmer surface is meshed with free

triangular elements, while a free tetrahedral mesh is preferred for the fluid domain

and a single boundary layer is placed on the channel and swimmer surfaces. P1+P1

type elements with a total of 70000 degrees-of-freedom are used in the simulations

with reasonable accuracy and computational time on a workstation with dual 6-core

Intel Xeon CPUs clocked at 3.333 GHz and 94 GB of RAM. The results of the mesh

convergence test are shown in Table 2.1 for the initial conditions in the base scenario

(in pusher-mode), and parameters that are listed in Table 2.2 in bold typeface.

Algorithm 1 Psuedoc-code of the kinematic model

1: procedure Initialize

2: x0 and e0i : Initial position and orientation of the swimmer
3: m0: Initial direction of the magnetization vector of the swimmer, which is

set to e02
4: k← 0: Loop counter
5: while t < tfinal do

6:

�
Uk+1, ωk+1

�
= CFD Model

�
xk,eki ,B0,ωm,mk, t,geometry values

�

7: Integrate U and ω to evaluate xk+1 and ek+1
i

8: k← k+1
9: t← t+∆t

1: procedure CFD Model(xk,eki ,B0,ωm,mk, t,geometric parameters)
2: Build geometry for given geometric parameters, position, xk, and orientation
3: Define physical parameters, boundary conditions
4: Build the mesh
5: Check contact
6: Solve Eqs. 2.2 and 2.3, obtain and return U and ω

Table 2.1 Convergence test for the CFD model. The line in bold represents the
meshing density used for the simulations.

Number of
elements

Number of
DOF

CPU
Time [s]

Error in
Usw [%]

Error in
Vsw [%]

Error in
Wsw [%]

45830 44996 8 -4.14 -5.2 -13.7
75090 69784 11 -0.07 0.6 -2

172749 147584 21 -0.02 0.1 -0.3
306077 247213 43 -0.02 0.2 -0.1
520218 404733 97 -* -* -*

*Error is defined with respect to the results from the densest meshing.
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Table 2.2 Values of the geometric parameters tested. The values in bold typeface
refer to base values, which are also used for the validation studies.

Parameter Value(s)
Channel diameter, Dch 1.6, 3, 5, 20
Length of the tail, L 2, 4, 8

Wavelength of the tail, λh 1
Wavelength of the tail along the helix centerline, Λ 2.71

Amplitude of the helical wave, Ah 0.4
Diameter of the tail, d 0.15, 0.2, 0.25

Length of the head, Lhead 1.5
Diameter of the cylindrical head, Dhead 0.7, 0.8, 0.9
Radius of curvature of curved edges, rc 0.1

Contact condition parameter, δw 0.1

2.2 Verification of the CFD Model

The current CFD model was previously validated with experimental results in Ace-

moglu & Yesilyurt (2015) for a swimmer placed along the axis of the channel at

various radial positions. Here, the model is used to calculate the linear and angu-

lar velocities of the swimmer subject to forces and torques for each radial position

and rotation at each time step in the kinematic model. The axial position of the

swimmer is calculated in the kinematic model but not updated in the CFD model

assuming that the computational domain follows the swimmer in the axial direction.

Dimensionless geometric parameters are listed in Table 2.2 with the values in bold

representing the parameters used for the validation studies.

Trajectories from the kinematic model are compared with experimental results from

Caldag et al. (2017) based on the non-dimensional radial position β, which is defined

as:

(2.14) β =
r

Rch−Rhead
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where r is the radial position of the center of mass of the swimmer and Rhead =

Dhead/2. The angle between the axes of the swimmer and the channel is used as

the pitching angle:

(2.15) θax = cos−1 (e1 · x̂)

where x̂ is the unit vector in the x -direction, which also coincides with the axis of

the channel and the rotation direction of the magnetic field, and e1 is the direction

of the helical axis in the body coordinates of the swimmer. Normalized values of

the pitching angle, θax, are obtained by dividing the observed values of θax to the

maximum possible θax for given L, Dhead and Dch in order to account for geometric

restrictions:

(2.16) θax =
θax

θax,max (Dch,Dhead,L)

Heading velocity is used to compare swimmer velocities in the puller and pusher

modes and in the case of channel flow against the swimmer:

(2.17) Ûsw = sgn(−ωm)Usw

Ûsw is positive if the swimmer is moving in its desired swimming direction and it is

negative when the swimmer is not able to swim in its desired swimming direction,

e.g. if a strong flow in the channel drags the swimmer.

Figs. 2.2a and 2.2e show the trajectories in pusher and puller modes for swimmer

L4 in the channel with Dhead/Dch = 0.5 from experiments and simulations at 15 Hz

rotation rate. Trajectories from experiments and simulations are in good agreement

for both modes of swimming: The pusher follows a helical trajectory close to the

channel wall with a circular projection on the y-z plane (Fig. 2.2a), whereas the

puller swims along the centerline of the channel (Fig. 2.2e). While there is a

good agreement between the trajectories, average values of θax and Ûsw are higher

in the simulations than the experiments. Small differences between the geometric

parameters as shown in Figs. 2.2i-j and irregularities in the shape of experimental

swimmers may contribute to those differences. 3D-printed swimmers used in the
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experiments have deviations from the idealized geometry due to the resolution of

the 3D printing process. The sensitivity of results with respect to slight changes in

Dhead and d values are shown in Table 2.3. A thorough investigation of geometric

parameters on swimming velocities is carried out in Acemoglu & Yesilyurt (2014).

Figure 2.2 Comparison of simulation and experimental results for the pusher-mode
((a)-(d)) and the puller-mode ((e)-(h)) trajectories. (a) and (e) show the trajectories
on the radial plane, (b) and (f) show average β with their variations, (c) and (g)
show average θax with their variations and (d) and (h) show average Ûsw with their
variations. (i) shows the swimmer used in experiments and (j) is the idealization of
this swimmer used in the simulations.

Table 2.3 The sensitivity of the results to variations in Dhead and d for swimmer L4
with Dch = 1.6 (pusher-mode). Values in bold correspond to the simulation whose
results are shown at Fig. 2.2 (a)-(d).

Dhead β θax [◦] Ûsw d β θax [◦] Ûsw
0.7 0.67 4.77 0.11 0.15 0.70 4.53 0.13
0.8 0.64 4.24 0.12 0.2 0.64 4.24 0.12

0.9 0.61 3.65 0.12 0.25 0.58 3.79 0.10

2.3 Pusher-mode Instability

This section investigates how the pusher-mode instability occurs in the channel and

the instability is characterized with respect to several key system parameters. So-

lution of the steady Stokes equations yields exactly symmetric linear and angular

velocities with respect to the direction of the magnetic torque, τm, determined

by the sign of the magnetic field, B, i.e. u(ξ,χi;ωm > 0) = −u(ξ,χi;ωm < 0)

and ω (ξ,χi;ωm > 0) = −ω (ξ,χi;ωm < 0) for a given position, x = ξ, and orien-

tation, ei = χi for (i= 1,2,3) of the swimmer in the absence of gravity and contact
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forces that break the symmetry. Despite the symmetry of the velocities, their time-

integration in opposite directions leads to different trajectories in the puller (ωm < 0)

and pusher (ωm > 0) modes. To illustrate the irreversible nature of the trajectories,

the pusher and puller-mode velocities obtained from the simulations with the same

initial conditions are plotted in Figs. 2.3a-d where the velocities in the pusher-mode

are multiplied with a (-) sign to compare them with the velocities of the puller-

mode swimming. The insets in Figs. 2.3a-d show a zoomed-in view of the first few

instances of the simulations. Gravity is excluded in these simulations and contact

conditions are not met either, since the swimmer does not get too close to the wall.

First few values of all velocities, shown in the insets, are very close (reversible),

however, after a few steps, the swimmer velocities begin to diverge. Figs. 2.3a and

2.3c show that the simulations, the velocities in the y- direction, Vsw and ωy, for the

pusher (reverted) and the puller are very close magnitude-wise for a while before

they diverge completely as the puller converges towards a stable trajectory along

the center-line of the channel. On the other hand, velocities in the z- direction, Wsw

and ωz, have the opposite trends in Figs. 2.3b and 2.3d, however since the pusher

is reverted their actual values are following each other closely before they diverge

following the trajectories. Normalized radial positions of the trajectories are shown

in Fig. 2.3e, whereas the projections of the trajectories on the yz-plane are shown in

Figs. 2.3f and 2.3g. Since the pusher trajectory is reverted, the growing separation

between the trajectories are clearly noticeable in the figures.

Man & Lauga (2013) investigated the wobbling angle of slender helices, the same as

the pitching angle θax in (2.15), using the resistance coefficients of the helix in bulk

fluids, and found that θax decreases with increasing Mason number (Ma), defined

as:

(2.18) Ma=
µΛ3

hωm
|m|B0

where µ is the fluid viscosity and Λ is the wavelength along the helix centerline

(Λ = λh/cos(θh) and θh = tan−1 (πD/λh)). The authors report that rigid slender

helices wobble in bulk fluids at low Mason numbers which are realized by low rotation

frequencies or strong magnetic fields.

In order to distinguish the pusher-mode instability from the wobbling of helices,

simulations are conducted for near-bulk swimming conditions by setting the channel

diameter 25 times as much as the diameter of the head, i.e. Dhead/Dch=0.04. In this

case, the pusher-mode swimmer still follows a helical trajectory but with a very small
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Figure 2.3 Comparisons of the trajectories for the pusher and puller-mode swim-
ming with the same initial conditions. (a) and (b) show the linear velocities in y-
and z- directions, respectively and (c) and (d) show the angular velocities in these
directions. (e) shows the change of β in both modes. The insets in (a)-(e) show
the initial part of the simulations to demonstrate the breakdown of the symmetry.
(f) shows the radial trajectories of the pusher and puller-mode swimmers where the
pusher-mode trajectory is mirrored in the y- direction to better show the separation
of the trajectories. (g) shows a zoomed-in version of the first few instances of (f).

pitching angle, θax, which converges to 0.55◦. For the swimmer without the head,

θax increases slightly to 1.9
◦, indicating that the head improves the alignment of the

swimmer with the direction of rotation of the magnetic field. The wobbling angle of

the tail-only swimmer is calculated as 0.97◦ from the model that uses the resistance

coefficients developed by Man & Lauga (2013), indicating that the hydrodynamic

interactions between the helical turns of the tail increase the wobbling. Moreover,

when the confinement ratio is set to Dhead/Dch = 0.26, θax increases up to 8.38◦ for

the complete swimmer (values are listed in Table 2.4 for comparison). In principle,

Ma increases with in-creasing viscous resistance in narrower channels, therefore the

wobbling angle of helices is expected to decrease according to the model developed

by Man & Lauga (2013), however, the trajectories from the simulations show that

the pitching angle, θax, the angle between the helical axis of the swimmer and the

rotation direction of the magnetic field, increases instead. Since the simulations are
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based on full numerical solutions of the Stokes equations, hydrodynamic interactions

are taken into account completely. Therefore, this is a significant result that shows

the hydrodynamic interactions between the helical swimmer and the channel wall

does not reduce but increase the pitching or the wobbling angle.

Table 2.4 θax values for several different swimmers and swimming conditions.

Simulation Case, Ma= 0.7 θax [◦]
Tail Only (near bulk, 2Ah/Dch = 0.04) 1.9

Full Swimmer (near bulk, Dhead/Dch = 0.04) 0.55
Full Swimmer (confined, Dhead/Dch = 0.26) 8.38
Slender Tail (bulk) (Man & Lauga 2013) 0.97

In order to improve the understanding of helical swimming in confined environments,

the effects of the Ma number are investigated further. First, Ma in Eq. 2.18,

which is defined for bulk-swimming conditions, is replaced with a confinement Mason

number, Mac, to in-clude increasing viscous effects due to confinement:

(2.19) Mac = κMa

where κ is a scaling factor that addresses increased viscous resistance due to the

confinement and calculated from the ratio of average viscous torques (during one

complete rotation) in confined and bulk swimming conditions:

(2.20) κ=
τv,confined

τv,bulk

τv,confined is the average viscous torque for a confined swimmer at a given radial

position β and τv,bulk is the viscous torque evaluated from near-bulk swimming

conditions (Dhead/Dch = 0.04). τv,confined is evaluated at the converged β values of

the swimmer trajectories. Overall κ ranges from 1 to 1.4 for swimmer L4.

Fig. 2.4 shows the average trajectory parameters β, θax θax and Ûsw with respect

to Mac ranging between about 0.1 and 1 in channels with different diameters for

swimmer L4 in the pusher and puller modes. It is difficult to reduce the Mac further

(i.e., Mac < 0.01) as increasing the magnetic torque or decreasing the viscous torque

requires very small time-steps, ∆t≈ 10−3, in simulations so that one of them needs

to run more than a week on a high-end workstation. The swimmers are placed

sufficiently away from the channel wall and aligned with the centerline initially. θax
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values for pullers are not provided as they are very low and do not contribute to the

discussion.

Figure 2.4 The effects of the Mac on the stable time-averaged trajectory parameters
for (a)-(d) the pusher-mode and (e)-(g) the puller mode.

For pushers, high Mac leads to a slight decrease in β and considerable slowdown

in the heading velocity, Ûsw (Figs. 2.4a and 2.4d). As the pitching angle of the

swimmer increases with increasing Mac, Ûsw tends to decrease as well. The dramatic

decrease in Ûsw for Dhead/Dch = 0.26 with respect to Mac is noticeable in Fig. 2.4d.

The decrease in β, which corresponds to a higher absolute change in r, and the

increase in θax are responsible for the decrease in Ûsw. It is understable that the

swimming velocity decreases as the alignment of the swimmer with the channel axis

is impaired.
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For pushers, θax is very small at low Mac and comparable to the values observed in

the puller-mode as shown in Fig. 2.4b. Low θax values are expected at low Mac as

the increasing magnetic torque overcomes the viscous torque in all directions and

aligns the swimmer with the channel’s axis. When the magnetic field is turned on in

the experiments, the swimmer is aligned with the axis of the channel immediately,

indicating that the magnetic torque helps the alignment of the swimmer. However,

as the strength of the magnetic field is increased further, the wobbling is observed

at very low Ma numbers (10−4− 10−3) according to Man & Lauga (2013). In this

study, Mac values are larger than 0.01 due to limitations in computational time.

Thus, θax is expected to increase again at much lower Mac values for both the puller

and pusher modes, due to the wobbling of the helix at lower frequencies or higher

magnetic torques, as evidenced by the slight increase of θax values at low Mac in the

puller-mode swimming. This trend is visible in the puller-mode only as they are close

to the center of the channel where the interactions with the boundaries are minimal

and θax values are already low. The trend implies that there is an optimal Mac

number for each configuration that minimizes θax. In accordance with θax values

in the puller-mode, β values follow similar trends. The effect of confinement on θax

is not monotonic as shown in Fig. 2.4b, but when normalized by its geometrically

possible maximum value, θax, which is given by 2.16, increasing the confinement is

seen to deteriorate the alignment.

Figure 2.5 Wobbling of a puller at high Mac inside a channel with Dhead/Dch = 0.26.
a) Positions of the head and tail tip in the experiment from Caldag et al. (2017), b)
positions of the head and tail tip in simulations for Mac=0.74 and c) for Mac=1.77.
θax values at (a)-(c) are the averages for given parts of the trajectories. d) Change
of β in extended simulations for Mac = 0.74 and Mac = 1.77, showing that the
swimmer converges towards a stable trajectory but at a longer time compared to
the experiments. Note that the trajectories at b) and c) are representative of a few
rotations of the swimmer and do not show the complete trajectories at (d).

Lastly, there is a sharp increase in θax in the puller-mode swimming Dhead/Dch =

0.26 as shown in Fig. 2.5f. When the Mac is increased further to 1.77 for this case,

the swimmer exhibits wobbling behavior where the tip of the tail makes a wider circle

than the center of mass which is located in the head as shown in Fig. 2.5c, with a θax

value of 7.57◦. This behavior is consistent with experiments reported in our previous

work where we observed θax going up to 14.02◦, with the trajectory shown at Fig.
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2.5a. (Caldag et al., 2017). According to simulation results for the full trajectory,

this case corresponds to near step-out condition; even though the swimmer’s angular

velocity is very close to the angular velocity of the rotating magnetic field, it has

the largest oscillations compared to other cases, indicating that the magnetic torque

barely overcomes the viscous torque. Moreover, the convergence of the trajectory

was not clear in the experiments; the trajectory indeed converges to a small β range

although it takes very long according to simulations (Fig. 2.5d).

The findings in this chapter give an insight about the oscillatory trajectories of

helical trajectories under confinement. Based on the problem characterized in this

chapter, the following chapter will present a feedback control law that successfully

suppresses the pusher-mode instability and enable controlled navigation.

29



3. Magnetic Manipulation of Magnetized Helical Swimmers

Pusher-mode instability may pose certain risks in biomedical applications where ac-

curate navigation is crucial. Suppressing the oscillatory trajectories is a critical step

in enabling controlled navigation of these swimmers. The oscillatory trajectories can

be suppressed by utilizing a magnetic steering algorithm. The novelty of the algo-

rithm presented here is that it does not require swimmer orientation to be known.

Considering the biomedical application scenarios, obtaining proper swimmer orien-

tation is not feasible at all. Thus, the approach proposed here has more practical

relevance than the state-of-the art while still providing comparable performance.

3.1 Swimmer Kinematics and Control Law

The swimmer is taken inside a circular channel filled with a viscous fluid. The

swimmer has a cylindrical head with a length of Lhead and diameter Dhead. The

pitch of the helical tail is λh, total tail length is L, the major diameter of the tail is

D, the number of rotations is Nh, filament thickness is d and the channel diameter

is Dch.

Control of helical microswimmers is approached as a path following problem as

opposed to a trajectory following problem since the swimming velocity is limited

by phenomena such as step-out at high rotation frequencies and wobbling at low

rotation frequencies. The problem will be treated as a radial path following problem

as the axial position will be adjusted by rotating the swimmer fast or slowly. The
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Figure 3.1 (a) The geometric setup, showing the channel, the swimmer, rotating
magnetic field, field normal and propulsion direction. (b) Steering of the swimmer
through tilting the normal of the magnetic field. (c) Representation of angles θxy

and θxz.

rotating magnetic field actuates the swimmer by imposing a magnetic torque on the

swimmer:

(3.1) τ
m
loc =m×QlB

where Ql is the rotation matrix from the lab frame (shown at Figure 1a) to body

frame of the swimmer and B is the total magnetic field in the lab frame. The

subscript loc indicates that the term is expressed in the local coordinate frame

whose origin is placed at the center-of-mass of the swimmer. The driving magnetic

field for propulsion, Bdrive, is generally provided by a pair of orthogonal Helmholtz

coils and expressed as in Eq. 5.6. According to the resistive force theory (RFT)
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(Man & Lauga, 2013), viscous forces and torques (Fv and τ v) on the swimmer are

proportional to linear and angular velocities (U and ω) at low Reynolds number:

(3.2)



F
v

τ
v



=



RL RC

R�
C RR







U

ω





where RL, RR and RC are called the translation, rotation and coupling matrices.

The elements of the matrices depend only on the swimmer geometry in bulk swim-

ming conditions and can be evaluated analytically for slender filaments. In the case

of hydrodynamic interactions, such as near-wall swimming, the elements of the re-

sistance matrix depend on the relative position and orientation of the swimmer with

respect to solid boundaries.

The objective of the control problem is to minimize the distance between the swim-

mer position x =
�
x y z

��
and a reference path pref =

�
x yref zref

��
, meaning

that no control in x- direction is applied. The reference path is taken constant, i.e.

yref = zref = 0, to prove the stability of the algorithm.

The state vector is defined as q =
�
ey ez

��
where ey = y− yref and ez = z− zref ,

and its time derivatives as:

(3.3) q̇=



ẏ− ẏref

ż− żref



=



ẏ

ż





These velocities depend on the orientation of the swimmer, represented by the angles

θxy and θxz (refer to Figure 3.1c). The steering directly adjusts these angles and

thus changes the propulsion direction. Orientation angles can be manipulated by

the magnetic field B. The unit normal of the rotation plane of the magnetic field,

êB , points in -x direction without steering, as shown at Figure 3.1a. In the ideal

case, the swimmer aligns its orientation in the propulsion direction, ê1, along êB

and propels in this direction only such that the swimming velocity can be written as

U= |U|ê1. However, helical swimmers wobble both in free and confined swimming

conditions (Caldag et al., 2017; Man & Lauga, 2013). The behavior is inherent to

the swimmer geometry and it is characterized with the Mason number (Ma), which

is the ratio of hydrodynamic to magnetic torques. Due to the periodic nature of
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wobbling, it can be said that ê1 remains along êB in average. Thus, we can rewrite

Eq. 3.3 in the following form to include the control inputs:

(3.4) q̇ =



ẏ

ż



=



U tan(θxy)

U tan(θxz)





where U is the velocity in the x- direction in the lab frame. Apparently, tan(.)

brings non-linearity to the system, but the term can be approximated as θ with

error in approximation as low as 5% up to 20◦. It was shown in Caldag et al. (2017)

that the orientation angles barely reach around 20◦ when Dch = 3 mm, λh = 1 mm

and Nh = 4 so this approximation is valid for in-channel experiments reported here.

This linearization brings:

(3.5) q̇ =



ẏ

ż



=



Uθxy

Uθxz





To drive the error to zero, error dynamics must satisfy:

(3.6) q̇+
�
Ky Kz

�
q = 0

for positive gains, K{y,z} > 0. Then according to Eq. 3.5, we have:

(3.7) Uθx{y,z}+K{y,z}+ e{y,z}

Thus, the control inputs are:

(3.8) θx{y,z} =
−K{y,z}+ e{y,z}

U
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Steering is realized through an additional magnetic field, Bcontrol. Defining B(ωt) =

Bdrive +Bcontrol, the control input is as following:

(3.9) Bcontrol =B0

�
ac cos(ωmt)+ bc sin(ωmt) 0 0

��

with coefficients ac and bc. êB for the tilted magnetic field can be evaluated from

the cross product of a pair of orthogonal magnetic field vectors:

(3.10) êB =
B(0)×B(π/2)

||B(0)×B(π/2)||
=

�
1 −bc −ac

�

�
1+a2c + b2c

If bc=0 and ac �= = 0, êB is tilted in z- direction only, as demonstrated at Figure

3.1b. For a non-zero ac, êB will be tilted in the y- direction as well. The magnitudes

of the coefficients will adjust the scaling. This mechanism can be combined with a

simple feedback controller to move the swimmer towards pref :

(3.11) Bcontrol =Kp(x−pref )

where K is a 3x3 matrix that contains the proportional gains and time-dependent

parts of the magnetic field. In this configuration, matrix Kp will have the following

form:

(3.12) Kp =





0 Kp,y cos(ωmt) Kp,z sin(ωmt)

0 0 0

0 0 0





Therefore, the coefficients ac and bc in Eq. 3.9 can be expressed in terms of the

position error and the gains, Kp,y and Kp,z as follows:

(3.13) ac =Kp,yey bc =−Kp,zez
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Figure 3.2 Block diagram of the swimmer kinematics and control.

The relation between tilting and the control input is:

(3.14) θxy = arctan(−bc) θxz = arctan(−ac)

Rewriting (12), we obtain:

(3.15) θxy = arctan(−Kp,yey) =
Kyey

U

Based on the tan(θ)≈ θ assumption, the relation between Kp{y,z} and K{y,z} come

out as:

(3.16) Kp,y =
Ky

U
Kp,z =

Kz

U

Overall dynamics of the swimmer and control mechanism are drawn as a block di-

agram in Figure 3.2. The swimmer is continually tilted towards the reference path

with no knowledge of swimmer orientation. This is advantageous especially con-

sidering the potential in vivo applications where even obtaining accurate swimmer

position information is challenging.

For stability analysis, we define a Lyapunov function, V , as:

(3.17) V =
1

2

�
e2y + e2z

�
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It is obvious that V = 0 for {ey, ez}= {0,0} and V > 0 for all {ey, ez}−{0,0}. If we

take the time derivative, assuming that yref and zref are constant in time:

(3.18) V̇ = eyẏ+ ez ż

Here, the velocities ẏ and ż are the control inputs set via Bcontrol. In order to satisfy

V̇ < 0 for all {ey, ez}−{0,0}, ẏ and ż should have opposite signs with ey and ez,

respectively. In other words, the swimmer should be tilted upward when it is below

the reference path and vice versa. The definitions of ac and bc in Eq. 3.13 alongside

their effects on ê1 show tha this is always the case. Since all Lyapunov stability

conditions are satisfied, {ey, ez} = {0,0} is a stable equilibrium point. This control

approach is used to bring the swimmer to the center of the channel centerline. With

further feedback from horizontal position information, the swimmer can be steered

back or forth to exactly reach the desired Cartesian coordinates.

Even though the proportional control is sufficient in most of the cases tested, (refer

to Section 3.4), integral and derivative control are incorporated in the experimental

setup to see whether there would be any improvement in the performance. Addi-

tional terms are introduced to Eq. 3.11 as the following:

(3.19) Bcontrol =Kp

�
x−pref

�
+Ki

� t

0

�
x−pref

�
dt+Kd

d
�
x−pref

�

dt

Integral evaluation is carried out by trapezoidal method while the derivative of the

error is approximated with a Savitzky-Golay filter that uses 10 previous datapoints.

Matrices Ki and Kd have a form similar to Kp in Eq. 3.12 with the gains Ki{y,z}

and Kd{y,z}.

3.2 Resistive Force Theory-Based Modelling of Helical Swimming

Magnetized helical swimmers swim in a low Reynolds number environment, meaning

that the forces and torques acting on the swimmer act instantaneously as the inertial

effects are negligible. For this model, we assume the swimmer as a helical tail only,
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without the head, as shown at Fig. 4.1. The swimming is governed by Eq. (2.8),

with the resistance matrix relating the velocities to forces and torques exerted to

the swimmer. Within the context of magnetically actuated helical swimmers, Eq.

3.2 boils down to:

(3.20)



 0

τ
m



=



RL RC

R�
C RR







U

Ω





where τm is as defined in Eq. 3.1. The resistance matrix of a helix is calculated

by Man & Lauga (2013) in non-dimensional terms. Here, an equivalent but simpler

form of the matrix is used. First, we define several parameters:

(3.21) kh =
2π

λh

, C =
ctNh�
1+k2hD

2

A1 =−
C

λh

, A2 = 3π2D2, A3 = A2+λ2h

A4 = k2hD
4+

2

3
A2N

2

h−
1

4
D2+

2

3
λ2hN

2

h

A5 = k2hD
4+

2

3
A2N

2

h−
5

4
D2+

2

3
λ2h +N2

h

(3.22)

where ct, the tangential resistive coefficient is given by:

(3.23) ct =
2πµ

log(2λh
d
)−0.5

Note that the normal component, cn =2ct. The components of the resistance matrix

come out as following:

(3.24) RL = A1





2A3 0 0

0 2A3 0

0 0 8

3
A2+λ2h




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(3.25) RC = A1





λhA2

2π
NhλhA3 0

−NhλhA3
λhA2

6π
0

0 −λ2hD −2πλhD
2





(3.26) RR = A1λ
2

h





A4
NhA2

6
0

NhA2

6
A5

D
πλh

(2
3
A2+λ2h)

0 D
πλ2

h

(2
3
A2+λ2h)

2D
λh

(2
3
A2+λ2h)





The model as is simulates swimming in bulk fluid. When a helical swimmer swims

in confined environment, it generates a swirling flow. A forced vortex through a

swirl flow with angular velocity Γ can be introduced to mimic the swimming inside

a circular channel. The tangential velocity is decomposed into:

(3.27) Uf,y =−Γz

(3.28) Uf,z = Γy

Drag forces due to these additional velocities are added in 3.2. Note that these

velocities are in the lab frame, thus the additional drag forces should be evaluated

locally and summed up. In order to do that, the velocities have to be expressed

in the local coordinate frame. Defining s as the curvilinear coordinate index that

represents the tail, Uf in the body frame at position s is:

(3.29) Ub
f =QlWg

�
Q�lxl +x

�

where xl represents the coordinates of a local position on the helical tail in body

coordinates as a function of s and Wg represents the multiplications in Eqs. 3.27

and 3.28 with Wg(2,3) = −Γ, Wg(3,2) = Γ and the rest are zeroes. The normal
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and tangential components of the differential force due to swirl are then evaluated

as:

(3.30) dFsw,t = ct

�
Ub

f · t̂
�
t̂

(3.31) dFsw,n = cn

�
Ub

f −Ub
f · t̂

�
t̂

where t̂ is the unit vector in tangential direction on the helical tail, the superscript

"b" indicates the body frame of the swimmer. The swirling flow model is used in the

RFT model at Section 3.4.

Trajectory of the swimmer is obtained from the kinematic relations:

(3.32)
dx

dt
=U

(3.33)
dei

dt
= ω×ei

for i = 1,2,3. The ei represent the local coordinate axes and form the columns of

the rotation matrix, which are used to calculate the Euler angles to fully define

the swimmer orientation in the global channel frame. Linear and angular velocities

obtained from Eq. 3.20 are incorporated into Eqs. 3.32 and 3.33 to compute the

complete trajectory of the swimmer. Adams-Bashforth integration is used for the

integration of Eq. 3.32. The integration of unit vectors in Eq. 3.33 are carried out

by the Crank-Nicholson formulation.
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Figure 3.3 Experimental setup showing the Helmholtz coils, digital camera and
computer. An image captured from experiment recordings; coordinate axes and
angles θxy and θxz are shown at the right-hand side.

3.3 Experiment Setup

The experiment setup consists of 3 pairs of orthogonally placed Helmholtz coils, as

shown in Fig. 3.3. The magnetic field magnitude B0 for a coil with Nc number of

windings at I Amperes of current is given by:

(3.34) B0 = 0.81.5µ0NcI

Rhe

where µ0 is the permeability of the vacuum and Rhe is the radius of the Helmholtz

coil, which should be equal to the half of the distance between the coil pairs. The

coils are driven by Maxon ADS E50/5 drivers which are controlled from a computer

via National Instruments SCB-68 data acquisition device. Matlab’s Data Acquisiton

Toolbox is used to send the desired current to the coils.

The helical microswimmer is produced with 3D printing and it is magnetized by

attaching a radially magnetized cylindrical magnet to its head. The swimmer is

placed inside a glycerol-filled cylindrical channel for low Reynolds number swimming.

Geometric properties of the swimmer are listed in Table 3.1. Swimmer position is

extracted from the images recorded in real-time with a digital camera placed above
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Table 3.1 Geometric parameters of the 3D-printed swimmer used in the experiments.

Geometric Parameter Value
Dhead [mm] 0.8
Lhead [mm] 1.5
L [mm] 4
λh [mm] 1
d [mm] 0.2

the setup. A mirror is placed next to the channel with 45-degree inclination and

allows the extraction of 3D position in-formation using Matlab’s Image Processing

Toolbox (see Fig. 3). Further details of the experiment setup can be found in Caldag

et al. (2017).

3.4 Verification of Steering Control Algorithm

Stabilizing the pusher-mode swimming in channels is a challenging and important

task as the swimmers follow helical trajectories and crash into the walls occasion-

ally. Steering control is verified by suppressing helical trajectories in the pusher-

mode swimming. The algorithm is first tested in the RFT-based model presented

in Section 3.2. The swimmer geometry is as defined in Man & Lauga (2013) with

n = 3 according to their notation. Initial position is set to x0 = [0 1 1]� and

pref = [x 0 0]�. In accordance with the calculations from our previous simulations

for a confined swimmer, the Mason number, Ma, is set to 1 (Caldag & Yesilyurt,

2019); the Mason number is defined as in Eq. 2.18. Swirling flow is the main cause

of the helical trajectory of the swimmer. The strength of the forced vortex, Γ, is

taken as π/10 such that it is significantly lower than the non-dimensional rotation

rate of the magnetic field, 2π, similar to the observed swirl rate in experiments.

Trajectories under different control gains are displayed in Fig. 3.4. Control algo-

rithm significantly suppresses the helical path as the radius of the trajectory falls

from around 5 mm to 0.27 mm and to 0.05 mm for the highest gain value tested.

Note that this improvement increases propulsion velocity as well, from 0.08 mm/s

without control to 0.35 mm/s and to 0.36 mm/s with the control in the loop. The

control algorithm performs well in the kinematic model too where the complete

Stokes equations are solved. Here, Dch = 3 mm and control gains are set to unity.

Fig. 3.5a shows that the trajectory radius decreases from around 0.71 mm to 0.05

mm, which is the threshold value for the algorithm to stop steering. As the change

41



Figure 3.4 Swimmer trajectories in the numerical model with and without control.
(a) shows the 3D trajectories while (b) shows y vs. x and (c) shows z vs. x.

in the trajectory radius is much lower compared to the unbounded swimmer in the

numerical model, the improvement in the propulsion velocity is negligible here. It

is also possible to make the swimmer follow time-varying paths with this algorithm

as shown at Figs. 3.5b-c where pref = [x 0 0.2sin(1.5t)]�. This would hint at

potential 3D path following in complex environments.

Next, we test the control algorithm experimentally. pref = [x 0 0]� for all cases

with an error threshold of ± 0.1 mm (this is larger compared to the simulations in

order to account for the error in position estimation of the swimmer) and Kp,y =

Kp,z = 1 again. This value is concluded by testing different gain values (not shown).

fm is set to 10 Hz, B0 ∼ 5 mT and |m| ∼ 6×10−4A.m2. This configuration prevents

step-out (Zhang et al., 2009) while providing a strong propulsion to the swimmer.

Note that gravitational effects are negligible at these rotation rates as the swirling

flow lifts the swimmer, hence, there is no additional compensation for gravity. Figs.

3.6a-c show the non-dimensional radial position (β), defined as in Eq. 2.14. While

the helical path is suppressed significantly in both cases, the swimmer reaches to
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Figure 3.5 (a) 3D swimmer trajectories in the pusher-mode from the kinematic model
with and without control. (b) y- coordinates and (c) z- coordinates of the swimmer
for pref = [x 0 0.2sin(1.5t)]�.

the reference path within the threshold for Dch = 3 mm but fails in the 5.6-mm

channel within the duration of the experiment. The length of the experiment setup

alongside the channel axis is too short to show fully converged trajectories inside

the wider channel but there is a significant decrease in β compared to the case

without control. Noting that the same control gains are applied in both cases, it is

natural that the algorithm performs worse for a wider channel where Ma and swirl

rates are lower. While the swirling flow causes helical trajectories, it is beneficial in

achieving quicker convergence to the reference path. The control input could not

be increased further due to hardware limitations. There is also the issue of delayed

response due to hardware and image processing. Here, the control input is updated

at each rotation of the swimmer, corresponding to a response time of 0.1 s. The
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Figure 3.6 Non-dimensional trajectory radii with and without control in the channels
where (a) Dch = 3 mm, (b) Dch = 5.6 mm. (c) shows the performance of different
control strategies under Dch = 3 mm. Note that Ki,{y,z} for PID control are the
same as in PI control.

algorithm should perform better if these problems are resolved, as the numerical

results indicate.

We conduct additional experiments for Dch = 3 mm. P, PD, PI and PID control

are tested as defined in Eq. 3.19. The change of β under these scenarios are shown

in Fig. 3.6c (the trajectory with PD control is omitted as it is very similar to the

trajectory with PID control). PI control increases the oscillations in the system

while P, PD and PID control result in similar paths under optimal gain values. The

reason for similar performance can be attributed to the limitations in suppression

of the helical paths. P control appears to be sufficient in suppression to a degree

while these additional inputs cannot contribute any further. Wobbling cannot be

suppressed completely either, as shown in the simulation results in Figs. 3.4 and 3.5.

As Ma number is finite, some wobbling will remain even if Ma is very high. Higher

integral or derivative gains quickly destabilize the system because of the oscillatory

nature of the trajectories. Higher P-gain could improve the control performance

but the increase in magnetic torque may trigger more wobbling, so it cannot be

increased indefinitely.
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The control algorithm presented here assumes that there is some information on

swimmer position. However, as stated in Martel (2013), this information may not

be highly accurate, delayed or not available at all. The following chapters will

investigate acoustic fields as another way of stabilizing oscillatory trajectories and

improving swimming performance without any need for accurate swimmer position

information.
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4. Modelling Acoustic Radiation Force on Helices

Magnetic manipulation of helical swimmers is possible through a feedback control

algorithm which may not be reliable at all times as maintaining visual contact in

in vivo applications or obtaining proper swimmer position information despite the

availability of visual contact is not possible at all times. Realizing a passive way

of manipulating the swimmers would be a more robust solution to the oscillatory

swimming problem. This dissertation proposes acoustic fields as a way of improving

controlled navigation and improving swimming performance. Acoustic fields’ bio-

compatible nature and penetration into human body make them ideal complements

to the magnetic actuation. Acoustic radiation force is one of the two major ways one

can manipulate objects in an acoustic field. The calculation of the force for intricate

mm-scale objects at MHz-scale acoustic frequencies is only possible through finite-

element models which are computationally very expensive. This chapter presents a

very efficient approach, called chain-of-spheres, to evaluate the radiation force acting

on helices. The comparisons with FEM results show a satisfactory level of accuracy.

4.1 Acoustic Radiation Force

The acoustic radiation force on an object is calculated from the pressure field on the

object surface. Helmholtz equations are resolved to evaluate the pressure field. For

a 1-dimensional wave, the equation is:

(4.1)
∂2p

∂z2
−

1

c20

∂2p

∂t2
= 0
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where p is the acoustic pressure, z is the Cartesian coordinate component, c0 is the

speed of sound in the medium and t is time. The solution to this equation comes

out as:

(4.2) p = pa sin(ωat±kz)

where pa is the amplitude of the pressure wave, ωa = 2πfa is the angular frequency

and k = 2π/(c0/fa) is the wave number. Placing a tiny object in this acoustic

field will disturb it and the total pressure will have a background and scattered

component:

(4.3) p = pb+psc

In calculation of the acoustic radiation force, the perturbation approach is preferred

by many authors (Garbin et al., 2015; Glynne-Jones et al., 2013; Settnes & Bruus,

2012; Wang & Dual, 2009). In this approach, pressure and density are decomposed

into two components: The component without any acoustic contribution (identified

with subscript 0) and the variation component due to acoustic wave (first and second

order terms, identified with subscripts 1 and 2, respectively):

p = p0+p1+p2

ρ = ρ0+ρ1+ρ2
(4.4)

Note that the first order pressure term is p1 = c20ρ1. For an inviscid fluid, Navier-

Stokes equations will only have the convective terms:

∂ρ1
∂t

=−ρ0∇·v1

ρ0
∂v1
∂t

=−c20∇ρ1

(4.5)
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Assuming time-harmonic fields due to the nature of the acoustic wave:

ρ1 = ρ1(r)e
−iωat

p1 = p1(r)e
−iωat

v1 = v1(r)e
−iωat

(4.6)

Here r is the spherical coordinate component. The reason spherical coordinates

are used in the literature is related to most of the calculations being specific to

spherical particles. The velocity potential φ1 has the following relationships with

velocity, pressure and density:

v1(r) =∇φ1(r)

p1(r) = iρ0ωaφ1(r)

ρ1(r) = i
ρ0ωa

c20
φ1(r)

(4.7)

The potential satisfies the wave equation given as:

(4.8) ∇2φ1 =
1

c20

∂2φ1

∂t2
=−

ω2
a

c20
φ1

The acoustic radiation force appears over a full period of the acoustic wave through

the second order term as the first order terms are harmonic and their time-average

results in zero. The time-averaged second order pressure term is shown in Bruus

(2012) to be:

(4.9) �p2�=
1

2ρ0c20

�
p21
�
−

1

2
ρ0
�
v21
�

For a fixed particle, the acoustic radiation force on an object is evaluated from:

(4.10) −F rad
fixed =

��

S
p2ndS

�
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where S is the object surface and n is the surface normal. If the object is free

to move, this integration has to be taken over a time varying surface S(t) as the

particle exhibits small oscillations as the wave passes through. This integration is

challenging to compute in a frequency-domain study. Yosioka and Kawasima (1969)

propose computing the integral over an equilibrium position surface S0 and adding

a convective correction term:

(4.11) −F rad
free =

��

S(t)
p2ndS

�

=
��

S0
p2ndS

�
+
��

S0
ρ0(n ·u1)u1dS

�

Note that this S0 is taken at a boundary outside the object in order to calculate

the momentum flux term. Even though this formulation assumes the body is free to

move, applying the formulation to an already moving object such as the magnetized

helix causes an ambiguity over the surface of integration and the momentum flux

correction. It is assumed that the oscillations on the helix surface (which leads to the

addition of the momentum correction term) is negligible compared to the swimming

velocity of the helix.

In the presence of an object, the pressure term can be decomposed into incident and

scattered terms:

(4.12) p2 = p2i +2pipsc+p2sc

For small objects, p2sc term will be negligible and the analytical calculations for

spheres mostly neglect this term (Bruus, 2012; Hasegawa, 1977; Hasegawa & Yosioka,

1969).
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4.2 Analytical Modeling and Chain-of-Spheres Approach

Acoustic radiation force on the helical swimmer is calculated by approximating

the swimmer as an array of spheres placed along the centerline of the helix. The

centerline is as given as:

(4.13) ph =





Ah cos(khzh)

Ah sin(khzh)

zh





where zh is the z- coordinate and kh is the wave number of the helix. Sphere radius

a is first set equal to d/2 and the spheres are placed along the centerline of the

helix with equal distance between each other. As the acoustic radiation force is a

volumetric force, a is adjusted to match the volume of the sphere array and the

helix. As a result of this volume matching, the spheres end up intersecting with

each other as shown at Fig. 4.1. However, as each sphere is treated separately,

there is no intersection or cross-interaction in the physical sense. The sensitivity

of the chain-of-spheres approach with respect to the number of spheres used in the

representation will be discussed at Section 4.4.

Figure 4.1 (a) Placement of a single turn helix with respect to global coordinates.
(b) Close-up view of the helix and its geometric parameters. (c) Representation of
the helix as a chain of spheres. The spheres are placed along the centerline of the
helix, shown with blue dashes.

The acoustic radiation force on a rigid sphere was first evaluated analytically by

King (1934). This study was followed by Hasegawa & Yosioka (1969) where com-
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pressible spheres were studied. These studies evaluated the acoustic radiation force

by including second order pressure terms in the calculations. The resultant expres-

sions are in the form of sum of Bessel functions. On the other hand, there is a second

approach which was first devised by Maidanik & Westervelt (1957) where the au-

thors calculate the acoustic radiation force through the net loss of linear momentum.

This approach is used in the FEM models (Garbin et al., 2015; Glynne-Jones et al.,

2013). This section describes the analytical models developed by Hasegawa (1977).

The incident velocity potential due to a plane traveling wave can be represented as:

(4.14) φi,tr = A
∞�

n=0

(2n+1)(−i)njn(kr)Pn(cos(θ))e
iωat

where A is the complex amplitude of the incident velocity potential, n is the Bessel

function order and jn is the spherical Bessel function of order n. r and θ are

the components of the spherical coordinate frame and Pn(cos(θ)) is the Legendre

polynomial. There is also a scattered component if one places a spherical object in

the field. The scattered field is expressed as:

(4.15) φs,tr = A
∞�

n=0

(2n+1)(−i)ncnah2
n(kr)Pn(cos(θ))e

iωat

where cna is the scattering coefficient and h2
n is the Hankel function of second kind.

The scattering coefficient is determined by appropriate boundary conditions. In this

scenario, there are three boundary conditions to apply (Hasegawa & Yosioka, 1969):

1.1 Sum of the pressure in the fluid and the normal component of the stress on

the sphere is zero.

1.2 The normal component of the displacement of the fluid is equal to the solid’s.

1.3 The tangential components of the shear stress are zero.

Hasegawa & Yosioka (1969) calculate cna = αn+ iβn based on these conditions. The

reader is referred to the cited work for the complete form of cna. The authors define
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a radiation force function, Yp as a measure of the radiation force in non-dimensional

form. Hasegawa simplifies the expression at Hasegawa & Yosioka (1969) to:

(4.16) Yp =−
4

x2

∞�

n=0

(n+1)(αn+αn+1+2αnαn+1+2βnβn+1)

in his 1977 study (Hasegawa, 1977). Here x = ka. The model is built in Matlab and

the values come out exactly the same as in Hasegawa (1977) for n = 20.

Hasegawa (1979) also derives the radiation force function in a similar fashion for a

stationary wave:

(4.17) Yst =
8

x2

∞�

n=0

(n+1)(−1)n+1(βn(1+2αn+1)−βn+1(1+2αn))

Note that the expression does not contain the extra x2 term in the sum (the term

exists in the original manuscript) as this is a typographical error pointed out by

Mitri (2005).

Acoustic radiation forces in the propagation direction of the waves are given as

functions of the force function terms in Eqs. 4.16 and 4.17:

(4.18) F r
tr = πa2EYp

(4.19) F r
st = πa2EYst sin(2kh)

where E = 0.5ρ0k
2|A|2 is the acoustic energy density and h is the distance of sphere

to a velocity node. For stationary waves, the spatial variation is reflected through h

in Eq. 4.19. For travelling waves, there is no need for such a distinction as the time

scale of the wave (fa = 1 MHz) and the helix (fm = 20 Hz) and also the velocity of

the wave (c0 = 1480 m/s for water) and the helix (several cm/s at most when the

acoustic field is applied) are vastly different, meaning that the force can be assumed

to have constant amplitude in average. Using the chain-of-spheres representation
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of the helix (in Fig. 4.1), the total acoustic radiation force on a slender helix is

obtained by the summation of the acoustic radiation force on each sphere:

(4.20) F rad
{tr,st} =

Nsph�

j=1

F r
j,{tr,st}

In this notation, j =1,2...Nsph corresponds to the sphere number in the sphere array

that represents the helix. Nsph is the total number of spheres in this array.

In the current study, the plane waves are in the z- direction. Hence, the acoustic

radiation force vector will have the form:

(4.21) Frad =
�
0 0 F rad

{tr,st}

��

where � sign indicates the transpose. For a swimmer with its center-of-mass placed

at the coordinates p, the acoustic radiation torque is evaluated from:

(4.22) τ
rad =

Nsph�

j=1

(cj−x)×F
rad
j

where cj for j = 1,2, ...Nsph corresponds to the center-of-mass of the sphere j. The

coordinates of the array of spheres range from zh,min=−Nhλh/2 to zh,max=Nhλh/2

such that the center-of-mass of the swimmer is at x =
�
0 0 0

��
. The verification

of the model is provided in Section 4.4.

4.3 Finite Element Modelling

Finite-element models are built based on the models in the literature. One of the

models is the one by Glynne-Jones et al. (2013) which is an axisymmetric model

for the evaluation of acoustic radiation force on a sphere. As shown at Fig. 4.2, a

half-circle is placed at the symmetry axis of the cylindrical fluid domain. The sides
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Figure 4.2 Geometric setup of the model in Glynne-Jones et al. (2013).

of the cylindrical domain have cylindrical wave radiation condition, meaning that

the incident wave does not reflect back into the domain. A background pressure

field (standing wave in z− direction) is applied to the whole fluid domain:

(4.23) pb = pa cos(kz)

The object is treated as a solid with its own solid mechanics physics. The solid

mechanics physics and pressure acoustics are coupled with force and acceleration

boundary conditions: The solid object boundary receives the force from the pressure

acoustics model while the pressure acoustics model receives the acceleration of the

surface through the solid mechanics physics.

This model can only account for 3-dimensional axisymmetric structures whereas a

helix is a 3-dimensional structure that cannot be represented in such a model. Garbin

et al. (2015) present a 3-dimensional pressure acoustics model for the evaluation of

acoustic radiation force on spheroid and ellipsoid objects. The domain simulated is

cubic and the sides are covered with perfectly matched layers (PMLs). This model

is taken as the basis to build the reference model to evaluate the acoustic radiation

force on helical structures. In order to reduce the computational load, PMLs are

replaced with plane wave radiation conditions. The domain size, originally, 60x60x60

µm is increased to 5x5x5 mm to account for larger structures (Refer to Fig. 4.1a).

Since there is no way to validate the acoustic radiation force on helices, the model

is verified with the results for spherical particles in Glynne-Jones et al. (2013). The

results are given at Table 4.1.
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Material\Study
Glynne-Jones

et al. (2013) [N]

Yosioka & Kawasima

(1969, Analytical) [N]

3D FEM

Model [N]

Glass 1.31E-10 1.33E-10 1.32E-10

Nylon 5.93E-11 6.67E-11 3.67E-11

Polystyrene 4.27E-11 5.57E-11 3.96E-11

Steel 1.8E-10 1.81E-10 1.79E-10

Aluminum 1.43E-10 1.44E-10 1.43E-10

Table 4.1 Comparison of 3-dimensional FEM model results with those from the
literature for spheres made of several different materials.

The helical geometry simulated in the FEM model is as given in Eq. 4.13. The sim-

ulation setup and the helix geometry are shown at Figs. 4.1a and 4.1b, respectively.

Properties of the materials used in the thesis is provided at Table 4.2. Initial tests

with the model for a nickel helix exhibited non-converging results despite the refine-

ments such that the solver requires more then 300 GB RAM. Further investigation

revealed that the meshing on the object and the domain should be significantly dif-

ferent: The model is insensitive to meshing in the fluid domain beyond the element

size of λ/3 but the elements on the object should be as small as several microns for

an acoustic frequency of 1 MHz, giving an element size to λ ratio close to 1/200.

The convergence plot provided at Fig. 4.3 shows that the convergence is achieved at

around 2-3 million degrees-of-freedom (DOF) for the geometry with the parameters

given at 4.3.

Property\Material
Water

(Liquid)

Nickel

(Swimmer)

Nylon

(Swimmer)

Density [kg/m3] 1000 8900 1110

Compressibility [Pa−1] 4.54E-10 5.55E-12 3.33E-10

Viscosity [Pa·s] 1E-3 - -

Speed of sound [m/s] 1480 - -

Longitudinal-wave speed [m/s] - 5639 2620

Shear-wave speed [m/s] - 2970 1070

Table 4.2 Properties of the materials used in the simulations.
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Geometric parameter Value

λh[µm] 1000

D[µm] 800

d[µm] 40

Nh 1

Table 4.3 Geometric parameters of the helix used for the convergence studies of the
3D FEM model for simulating the acoustic radiation force on helices.

Figure 4.3 Mesh convergence plot of the FEM model.

4.4 Chain-of-Spheres Simulations: Verification

The chain-of-spheres approach is validated through geometric and physical paramet-

ric sweeps. A helical tail made of nickel and another one made of nylon (properties

given at Table 4.2), with the base dimensions given at Table 4.4 are simulated in

the FEM model. The geometric scale of the swimmer used for the validation is

smaller than the ones used in trajectory simulations and mesh convergence studies

for computational efficiency. A typical FEM simulation for this geometry requires

about 23 GB of RAM and 114 seconds of CPU time on a high end workstation.

Also note that zh,min =−Nhλh and zh,max = 0 for the studies reported in this sub-

section. For pa = 100 kPa, fa = 1 MHz, the radiation force on the helix made of

nickel in water (properties listed at Table 4.2) is computed as -78.09 pN. Using the

chain-of-spheres approach, with Nsph =21 and a =11.508 µm, the force comes out as
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Geometric parameter Value
λh[µm] 100

Nh 1
d[µm] 10
D[µm] 60

Table 4.4 Geometric parameters of the helix used in the validation studies.

-72.94 pN, corresponding to an error of -6.58%. For the nylon helix, the FEM result

is -23.78 pN while the chain-of-spheres approach (with the same Nsph and a used

for the nickel helix) gives -23.77 pN, corresponding to an error rate of -0.04%. The

chain-of-spheres approach evaluates the radiation force in 9 seconds and the code

requires negligible computer memory. Different pa (from 1 kPa to 1 MPa) and fa

(from 0.1 to 5 MHz) values are tested and error rates remain the same (not shown).

The approach fares much better with nylon than nickel, as evidenced further by the

geometric parameter sweeps whose results are plotted at Fig. 4.4. The highest max-

imum absolute error is 12% for the nickel helix whereas the absolute error remains

below 2% for the nylon helix. This is due to the difference in the acoustophoretic

contrast factors of nickel and nylon. The factor, denoted with Φ, is defined as:

(4.24) Φ =
1

3

�
1−

κs
κ0

�
+

1

2




2
�
ρs
ρ0
−1
�

2
�
ρs
ρ0

�
+1





where κs is the compressibility of the solid, κ0 is the compressibility of the liquid

and ρs is the solid density (Bruus, 2012). Based on the data from Table 4.2, Φ comes

out as 0.7495 for nickel and 0.1231 for nylon. The lower contrast factor for nylon

results in lower scattered field magnitude. The unique scattered field of the helix

cannot be replicated with the chain-of-spheres approach as each sphere is treated

separately, resulting in a different scattered field. That is why the lower contrast

factor, which reduces the scattered field effects, helps in evaluating a closer radiation

force value. In this study we focus on the nickel one in accordance with the aim of

simulating acousto-magnetic helical swimmers, for which the error is still reasonable

for practical applications such as design and control.

In addition to the helix material, the chain-of-spheres model is validated with a

sensitivity analysis with respect to the following geometric parameters: the number

of helical turns, Nh, minor, d, and major, D, diameters of the helix and λh, in Fig.

4.4. In the sensitivity of the model against Nh, a lower λh value (50 µm) is used

rather than the reference value in Table 4.4, i.e. 100 µm to efficiently simulate cases
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Figure 4.4 Validation of the chain-of-spheres approach with respect to different geo-
metric parameters. (a) to (h) show the results for nickel, (i) to (p) show the results
for nylon. (a) and (b) ((i) and (j) for nylon) show the radiation forces and relative
error with respect to Nh, (c) and (d) ((k) and (l) for nylon) show the forces and
relative errors with respect to d, (e) and (f) ((m) and (n) for nylon) show the forces
and relative errors with respect to D and (g) and (h) ((o) and (p)) show the forces
and relative errors with respect to λh.

with larger Nh, because of large computational cost and memory requirement of

simulating helices with a large number of turns with the finite-element method for

validation. Both the FEM and chain-of-spheres models show that the magnitude of

the acoustic force increases with Nh non-linearly for both nickel and nylon helices

with an order of magnitude higher value for the nickel than the nylon helix (Figs.

4.4a and 4.4i). The absolute error between the two models remains almost constant

for the nickel helix, 10%, (Fig. 4.4b), indicating that the chain-of-spheres model

results are fairly insensitive to the number of helical turns in this parameter range

for a typical helical microswimmer made of nickel, thus a single turn helix is used

throughout the simulations for other parameters. Whereas for nylon, the absolute

error between FEM results and chain-of-spheres approximation is less than 0.15%.

For both materials, the magnitude of the acoustic radiation force increases with the

minor diameter almost quadratically (Figs. 4.4c and 4.4k), with curve fitting for

the nickel helix values resulting in the equation F rad
st = −2.915d2 where F rad

st is in
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pN and d is in µm. For the nickel helix, the magnitude of the error varies between

5% and 7% (Figs. 4.4c and 4.4d), whereas for the nylon helix the maximum error

is about 2% for the smallest d. This quadratic increase with the minor diameter of

the of the helix because the acoustic radiation force increases with the volume as

long as the span of the helix remains fixed with respect to the acoustic wave.

The acoustic radiation force, F rad
st , increases almost linearly with the major diameter

for both helices in Figs. 4.4e and 4.4m (Curve fitting for the nickel helix values gives

the equation F rad
st = −2.046D− 11.66 where F rad

st is in pN and D is in µm). This

linear increase with D is the indicative of the volumetric effect of the radiation force:

since the volume of the helix increases linearly with D and the span of the helix

remains the same with respect to the incident pressure wave. The maximum error

between the FEM and chain-of-spheres models is about 12% for the largest D for

nickel helices, and about 0.2% for nylon helices.

The sensitivity over λh is demonstrated at Figs. 4.4g-h. The acoustic force increases

linearly with the wavelength of the helix (The force values for the nickel helix are fit

to the equation F rad
st =−0.82λh+4.984 where F rad

st is in pN and λh is in µm). The

linear dependence of F rad
st on λh vs. the quadratic dependence on Nh is demonstrated

in Fig. 4, which shows the scattered fields for two helices with a total length of 150

µm but one has Nh = 3 (meaning λh = 50µm) whereas the other one has Nh = 1.

The maxima of the scattered field are the same at both cases (as they span the same

region along the acoustic wave) but the helix at Nh = 3 has a significantly larger

scattered field distribution overall. Furthermore, both the volume and the side area

of the helix (the area directly exposed to the acoustic wave) are larger when Nh = 3,

thereby the radiation force grows faster as Nh increases.

Figure 4.5 The distribution of scattered pressure field for helices with (a) λh = 50
µm and Nh = 3 and (b) λh = 150 µm and Nh = 1. Other parameters are as given in
Table 4.4
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The chain-of-spheres approach underestimates the radiation force at lower λh and

the error decreases steadily as λh increases. As λh increases further, the chain-of-

spheres approach starts to overestimate the force on the helix. One can infer that

the overestimation occurs due to the increase in Nsph for large λh. As the results

in Fig. 4.6 will show, however, the radiation force for a fixed geometry converges

to a steady value at large Nsph values as long as the volume matching is realized.

F rad
st is overestimated here as the helix geometry extends towards the regions with

high background pressure while the force is underestimated when the helix geometry

spans the regions with low background pressure.

Next, a parametric sweep over Nsph is carried out to observe the sensitivity of the

approach on Nsph. Both the radiation forces and torques are investigated as the

acoustic torques have relevance in RFT simulations discussed in Section 5.2 and

5.3. In order to keep the results relevant to the helical geometry in Section 5.3,

the geometric parameters at Table 4.5 are used in this study. Furthermore, the

swimmer is rotated around x- axis by 20◦ and rotated around z- axis by 100◦ to

obtain larger torques in multiple directions. The spheres are still placed according

to the placement rule described in Section 4.2, with larger or smaller distances

between each sphere depending on Nsph. Fig. 4.6 shows the force and torque

values with respect to Nsph, alongside with the values calculated from the FEM

model. The radiation force estimation is very accurate down to Nsph = 6. However,

acoustic torque calculation converges to steady values only when Nsph > 20. A

further increase in Nsph does not contribute to a better estimation of the forces.

The results show that it is always better to use a large number of spheres for a

better estimation of the forces and torques.

The torque values at Fig. 4.6b exhibit a discrepancy in comparison to the FEM

results. We investigate the torque estimation further by evaluating the torques

during a complete rotation of the swimmer around the z- axis. (The rotation angle

is denoted with φ). The swimmer remains rotated around x- axis by 20◦ in this study

as well. Torque in the z- direction is kept out of discussion as it is much lower in

magnitude and negligible with respect to the magnetic torque in the same direction.

Geometric Parameter Value
λh [µm] 370

Nh 3
d [µm] 80
D [µm] 500

Table 4.5 Base geometric dimensions of the swimmer used for the trajectory simu-
lations.
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Figure 4.6 (a) Convergence of F rad
st with respect to Nsph. (b) Convergence of radi-

ation torques with respect to Nsph. Dashed lines indicate the values obtained from
the FEM simulation.

Fig. 4.7 shows the torque values obtained from the FEM simulations and the chain-

of-spheres approach from φ = 0 to φ = 340◦. The torques evaluated from FEM

simulations are decomposed into its components based on the Cartesian forces that

exert the torques. The values for τx (noting that this is the direction the swimmer is

tilted) show that the chain-of-spheres approach generally overestimates the total τx

from the FEM model while it approximates τx component from F rad
st closely around

φ= 150◦. While τx’s component due to radiation force in the y- direction (denoted

with F rad
st,y ) remains lower in amplitude during the rotation of the helical swimmer,

averaging over the rotation (values tabulated at Table 4.6) imparts that y- direction

forces end up more dominant. τy values at Fig. 4.7b show that the chain-of-spheres

approach follows the trend in the FEM results but the estimated torque remains

lower in magnitude. Averaging over swimmer rotation again, (results at Table 4.6)

it is found that τy is 10
3 times lower than τx, indicating a very low value. The

chain-of-spheres approach evaluates an even smaller average that is practically zero.

While the chain-of-spheres approach can approximate the torques to some degree of

accuracy, replacing the spheres with spheroids there is room for improvement. Silva

& Drinkwater (2018)’s work that deals with the radiation forces for spheroids placed

arbitrarily with respect to the wavefront can be utilized for improved accuracy in

torque estimation.
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Figure 4.7 (a) Components of τx in FEM simulations and τx evaluated from the
chain-of-spheres approach during a complete rotation of the swimmer. (b) Compo-
nents of τy in FEM simulations and τy evaluated from the chain-of-spheres approach
during a complete rotation of the swimmer.

Evaluated Term τx [N · m] τy [N · m]
FEM, total torque -1.03E-12 -8.55E-15

FEM, F rad
st component 0.58E-12 -2.65E-13

FEM, lateral force component -1.62E-12 2.74E-13
Chain-of-spheres 1.38E-12 2.24E-28

Table 4.6 Rotation-averaged torques acting on the tilted helical swimmer.

Now that the formulation for acoustic radiation for helices is established, the ap-

proach will be combined with a resistive force theory-based model of helical swim-

ming and effects on the trajectories and propulsion in the forthcoming chapter. The

simulation results will be compared with the results from experiments as well.
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5. Acoustic Manipulation of Magnetically Actuated Helices

This chapter investigates helical swimmers under acousto-magnetic actuation both

numerically and experimentally. In numerical studies, chain-of-spheres approach,

described and validated in Chapter 4, will be coupled into the resistive-force-theory

based model of helical swimming presented in Chapter 3 to evaluate helical swimmer

trajectories under acoustic and magnetic fields. Effects of geometric and physical

parameters on trajectories and propulsion velocity are demonstrated. In experi-

mental section, the setup for acousto-magnetic actuation is described and effects of

acoustic fields on propulsion velocity are reported.

5.1 Modelling

Acoustic radiation will bring both a force and torque component to Eq. 3.20:

(5.1)
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where the subscript loc indicates "local", referring to the local coordinate frame

attached to center-of-mass of the helix. Given that Ql is the rotation matrix from

the global to local frame, the radiation force and torque in the local coordinate frame

is evaluated by:

(5.2)
Frad
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rad

τ
rad
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rad
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Alternative representation of Eq. 5.1 can be given by the mobility matrix,M, which

gives linear and angular velocities of the swimmer due to external forces and torques:

(5.3)
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5.2 Acousto-Magnetic Propulsion

Acoustic radiation results in a direct improvement in swimmer propulsion under

travelling waves. The model described in Section 5.1 is utilized to compute magne-

tized helical swimmer trajectories under magnetic and acoustic fields. Acoustic field

is turned on after steady swimming is achieved. An initial magnetic-only swimming

period of tm = 6 s is simulated first to ensure steady swimming. The results show

that the acoustic field affects the swimmer almost instantaneously and the effects

remain steady, so the simulation duration with magnetic and acoustic fields turned

on is set to ta = 0.1 s. Geometric parameters for the basic swimmer design are as

given at Table 4.5. Note that the system is solved in non-dimensional terms to

prevent numerical instabilities. Man & Lauga (2013)’s approach is followed where

the mass scale is µ, the viscosity of the fluid, the time scale is ωm = 2πfm and the

length scale is Λ. For further details on RFT modelling, the reader is referred to

Man & Lauga (2013). As a side note, this reference design is simulated in the FEM

model and the relative error in force with the chain-of-spheres approach comes out

as -9.23%.

The initial case tested has pa = 200 kPa, fa = 1 MHz and dz = 0. Under this

configuration, acoustic wavelength is λa = 1480µm. λh is first set to 1/4th of λa,

370 µm. It is observed that the swimming velocity increases by more than 6 times

compared to swimming velocity without acoustics (denoted as Wac/Wno,ac). Note

that Wno,ac is around several mm/s at most of the cases reported here. Keeping the

swimmer geometry the same, we test a parametric sweep over pa and fa. As shown

at Fig. 5.1a, Wac/Wno,ac has a nearly quadratic relationship with pa. Wac/Wno,ac

increases with increasing fa (shown at Fig. 5.1b) and settles after around fa = 2

MHz. There is a peculiar dip at fa = 4.25 MHz after which Wac/Wno,ac once again

increases to values at lower fa.
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Figure 5.1 Change of the velocity gain, Wac/Wno,ac, due to the acoustic field with
respect to (a) pa, (b) fa, (c) λh/λa and (d) d.

As the acoustic radiation force depends on the volume of the object, it is important

to investigate the sensitivity of the acoustic propulsion to geometric parameters.

The parametric sweep over λh (characterized with λh/λa at Fig. 5.1c) reveals that

Wac/Wno,ac is lower when λh = λa despite the larger Wno,ac than the swimmers with

smaller λh. For λh > λa, we see the gain increasing again. Different d values are

tested as well, with the results shown at Fig. 5.1d. Wac/Wno,ac reaches beyond 10

for d = 160 µm. However, it should be noted that this case represents a very thick

helix for which the resistive force theory could be inaccurate. The acoustic field has

nearly no effect on the swimmer for d < 40 µm. This example clearly demonstrates

the volume-dependence of the radiation force. This result implies that swimmers

with large d in a swarm can be selectively actuated with acoustic fields. The final

parameter tested is D where the propulsion gain remains nearly stationary (not

shown). This may be due to swimmer geometry not changing along the propagation

direction of the acoustic wave.
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Figure 5.2 Change in Wsw with respect to µ.

Another important parameter to investigate in this system is the viscosity of the

fluid, µ. The pressure wave attenuates in the fluid that depends on multiple physical

parameters:

(5.4) αt =
2µω2

a

3ρ0c30

The attenuation modifies the pressure amplitude as following:

(5.5) pb(z) = pae
−αtz

Fig. 5.2 shows the change of Wsw for a helix that is assumed to be stationary (i.e.,

without magnetic actuation). The viscosity affects both the pressure amplitude and

modifies the resistance matrix, leading to a non-linear decrease inWsw as µ increases.

The rate of decrease is even faster for µ> 0.1 Pa·s as the velocity decreases 104 times

for a 10-fold increase in the viscosity.
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5.3 Trajectories of Magnetized Helical Swimmers Under Acoustic Fields

The acoustic field is observed to improve swimming trajectories as well. Wobbling

is characterized with Mason number (Ma), defined in Eq. 2.18. In order to demon-

strate the effects of acoustic field on wobbling, we test the same acoustic field with

different Ma numbers for which the trajectory parameters are plotted at Figs. 5.3a-

b. At all cases, the acoustic field reduces wobbling significantly, with wobbling angle

θax larger than 20
◦ reducing down to 5◦ and helical trajectory radius rt decreasing

from 0.2 mm to 0.05 mm. Wac/Wno,ac ratio (not shown) is expected to remain

the same as neither the swimmer geometry nor the acoustic field are changed but

low Ma number swimmers appear to have a slightly larger gain as the decrease in

wobbling improves directed swimming.

The trajectories of the swimmers for the geometric parameter sweeps in Section

5.2 is reported here. The sweep over λh reveals that rt values exhibit similar trends

overall while θax is already very low at large λh without acoustics so the contribution

of the field is not much (Refer to Figs. 5.3c-d). We see stronger wobbling at small

d values and acoustic field is not able to compensate for it, as shown at Figs. 5.3e-f.

At large d values, however, the wobbling is significantly reduced with acoustic field.

Larger D values result in larger rt and θax without acoustics but the acoustic field

is once again able to compensate for wobbling (Figs. 5.3g-h).

Swimming under standing acoustic fields is tested as well. When acoustics is turned

on, time stepping is reduced to ∆ta = 1/(10fa) for a refined solution of propagation

under acoustic field. For fa = 1 MHz, this corresponds to ∆ta = 10
−7 s. Standing

wave fields are useful for positioning small particles in the nodes or anti-nodes in the

field. Here, for a helical swimmer, it is observed that the swimmer reaches a unique

position depending on its geometry. A number of swimmers with different λh are

initiated motion from the same position and the converged positions are displayed

at Fig. 5.4. Note that the converged axial positions (Fig. 5.4b) are vastly different

from each other. The swimmers are still able to rotate at the converged positions,

but they do not move forward or backward due to the acoustic trapping. This may

be useful for micro-mixing applications where the swimmer as the mixing agent can

be held stationary at a certain position as it rotates in a microfluidic channel with

the rotating magnetic field.
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Figure 5.3 Trajectory parameters of magnetized helical swimmers under travelling
acoustic field. (a)-(b) show the parameters for differentMa, (c)-(d) show for different
λh, (e)-(f) show for different d and (g)-(h) show for different D. (a), (c), (e) and
(g) show trajectory radii rt. (b), (d), (f) and (h) show the wobbling angle θax. The
acoustic field is turned on at t= 6 s and magnetic swimming is initiated at t= 0 s.

5.4 Acousto-magnetic Experiment Setup

The microswimmers used in the experiments are made out of AWG 40 NiCr wires

(corresponding to wire diameter of 56 µm, respectively). The wire is first wound

on a drill tip with 0.5 mm diameter and then a 0.4 mm-diameter neodymium-iron-

boron (NdFeB) magnet is attached at one end. Then a small layer of glue is applied

to stick the magnet to the swimmer. After the glue dries out, the swimmer is pulled

from its other end to form the helical tail. Several images of swimmers manufactured

this way are shown at Fig. 5.5 and the geometric dimensions of the swimmers used
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Figure 5.4 (a) Initial (p= [0 0 0]�) and the final positions of helices with different
wavelengths in 3-dimensional space under standing acoustic field. (b) Initial (t = 0
s) and final (t = 0.1 s) z- coordinates of the same conditions. (c) Initial (0,0) and
final radial coordinates of the same swimmers on x-y plane.

in experiments are given at Table 5.1. Note that this way of manufacturing causes

variations in tail wavelength and other geometric dimensions but the variation is

found to be around 10% at most.

The experiment setup is shown at Fig. 5.6a alongside with a schematic at Fig. 5.6b.

The setup can be divided into three major parts: The first part is the magnetic

actuation setup which consists of three orthogonally placed Helmholtz coils. The

setup is described in detail in Section 3.3 and Caldag et al. (2017). For acoustom-

agnetic experiments, the driving field should be rotating around x- axis (Refer to

Fig. 5.7 for axes placement.). The rotating field is expressed as:
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Figure 5.5 Two of the swimmers used in the experiments. Refer to Table 5.1 for
geometric dimensions.

Property\Swimmer (a) (b)
Total length [mm] 5.73 5.94

Number of rotations (Nh) 4 3
Average wavelength [mm] 0.86 1.36

Average wave amplitude [mm] 0.55 0.5

Table 5.1 The geometric parameters of the swimmers in Fig. 5.5

(5.6) Bdrive =B0

�
0 sin(ωmt) cos(ωmt)

�
�

The second major part of the setup is for acoustic actuation. The acoustic actua-

tion setup consists of a signal generator (Agilent 33220a), a power amplifier (ENI

A-150) and acoustic transducer (Olympus-branded, multiple models tested). The

signal generator is connected to the computer and it is controlled from Matlab with

Instrument Control Toolbox to send desired signal and turn on/off the output. The

power amplifier is necessary as these transducers are generally driven at high volt-

ages. The main mode of operation for these transducers is burst mode operation

(where the signal is sent several times during a fixed period). There are certain lim-

itations on excitation voltages and pulse duration to prevent transducer burnout.

According to the manufacturer (Olympus, 2015), the power consumption should not

exceed 125 mW. The maximum voltage that can be applied across the terminals is

300 V for a 10 MHz transducer. In order to calculate the necessary duty cycle, root

mean square voltage is calculated from:

(5.7) Vrms = (0.5)(0.707)Vpp
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Figure 5.6 (a) A capture from the experiment setup. (b) Schematic of the setup.

where Vpp is the peak-to-peak voltage. Assuming a phase angle of 0 degrees (that

all impedance is ohmic, which happens to be the worst case scenario in terms of

power consumption), the duty cycle Dc is evaluated from:

(5.8) Dc =
ZPtot

V 2
rms

where Z is the impedance and Ptot = 125 mW as recommended by the manufacturer.

Assuming a 50 Ω impedance, for 300 V excitation, the duty cycle comes out as 0.005

seconds. In burst mode, we should find the number of cycles (N) during a period.

For a burst repetition rate of frep = 5 kHz N is found as:

(5.9) N = faDcfrep

Here, fa is the acoustic transducer operation frequency. The values of N for several

different transducers used in the experiments are listed in Table 5.2. One also needs

to determine the proper input voltage to the power amplifier to achieve the desired

voltage. ENI A-150 amplifies the input signal by 55 dB, which corresponds to a 500-

fold increase in voltage. According to the guidelines in Olympus (2015), the max-

imum applicable voltages and corresponding input voltages to the signal generator
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Figure 5.7 A capture from the experiment recordings. Camera directly captures
(a) x-y plane image while a mirror placed with a 45-degree inclination captures (b)

x-z plane image. Gravity is acting in -x direction.

Parameter\Transducer V384-N-SU A327-SU
Operating Frequency (fa) [Hz] 3.5 10
Peak-to-peak Voltage (Vpp) [V] 200 300

Duty Cycle (Dc) [s] 0.005 0.005
Number of Cycles (N) [] 5 3

Table 5.2 Operation parameters of the transducers.

are provided at Table 5.2. Two types of transducers are tested throughout the thesis

research. The first transducer is a 3.5 MHz, Videoscan type unfocused transducer

(Model V384-N-SU). Videoscan type transducers have highly damped response at

a wide range of frequencies (Olympus, 2015). Wide-range frequency response was

thought to be advantageous for testing the transducer at multiple frequencies but

the results (shared at Section 5.5) show that the acoustic pressure remains low. In

order to improve the applied pressure, the next transducer is selected as a 10-MHz

Accuscan transducer with a cylindrical focus at 1-inch (2.54 cm) distance (Model

A327-SU). Accuscan transducers give high response at its center frequency (Olym-

pus, 2015). Higher frequency value and cylindrical focus are anticipated to result in

higher acoustic forces.

The transducers are inserted from the bottom of a transparent tank made of plex-

iglass, as shown at Fig. 5.6. A cylindrical channel is inserted from the top that

contains the transducer at the bottom. A mirror with a 45-degree inclination is

placed next to the cylindrical channel in order to track position in 3 dimensions
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(Refer to Fig. 5.7 for a capture from the recordings). The tank is placed vertically

inside the setup such that the swimmer can be kept in a fixed (vertical) position

relative to the transducer by balancing the swimmer thrust force (that propels the

swimmer upwards) and gravitational force (that pulls the swimmer downwards).

This setup also allows us to manipulate the setup much more easily, as the vertical

setup has an opening along the tube’s and the transducer’s main axis. One disad-

vantage of this vertical setup is the linear dependence of swimming velocity with

respect to position. As the swimmer gets out of the central region of Helmholtz

coil setup, it slows down (discussed further below), albeit at a fixed rate. This will

become much less of a problem considering that the experiments are carried out at

narrow regions.

The third major component of the setup is the camera setup for recording the ex-

periments. Initially, an off-brand USB camera was used to record the experiments.

Later it is decided to improve the recording quality for reducing noise in data ex-

traction. Basler ac-244075um camera is used in later experiments. The use of this

camera brings multiple benefits: The camera can record at frame rates larger than

100 fps (compared to 30 fps of the previous camera). This camera can be con-

trolled via Matlab as well, which allows for complete control of the experiments

from a single interface. Refer to Section 5.4.1 for details on the custom interface

and post-processing of experiment recordings.

5.4.1 Visual Interface and Image Processing

The experiment routine is carried out with a custom Matlab graphical user interface

(GUI) for improving the repeatability of experiments and data processing. The GUI

has the following features:

• Helmholtz Coil Control: The user can enter desired current amplitudes

and profile of currents (sine or cosine waves) to the system. The signal can be

amplified or shifted if necessary. The user needs to define frequencies in which

the swimmer propels upwards, falls down and remains stationary (Required for

position initialization process). The coils are controlled via Data Acquisition

Toolbox of Matlab. Coil control is carried out before running the program or

during START mode of the program (details below).

• Position Initialization: The position of the swimmer needs to be initialized

properly in order to produce repeatable results in the experiments. Swim-
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mer control through steering in Chapter 3 is incorporated here to move the

swimmer to any initial position. The process from the user side is as follow-

ing: The user inputs the desired 3D position into the interface and presses

the INITIALIZE button on the GUI shown at Fig. 5.8. The algorithm then

captures images subsequently with the camera used for recording the experi-

ments and calculates the position error. According to the position error, the

swimmer is tilted and/or sped up/slowed down to reach the desired position.

When the swimmer reaches the desired position within a certain threshold,

the algorithm waits for 5 iterations to check whether the swimmer remains

stationary. If so, the INITIALIZE mode is halted and the software transitions

into START mode in which the swimmer is rotated at a rate such that it is

nearly stationary, ready for the experiment. Recording starts as soon as INI-

TIALIZE mode is completed. After START mode is enabled, the user can

activate ACOUSTIC mode from the interface.

Figure 5.8 Graphical user interface developed in Matlab. The coils, the camera and
the signal generator are all controlled from this interface. The caption was taken
during INITIALIZE mode in which the swimmer is moved to reference position
automatically. Refer to Fig. 5.7 for an example image from experiment recordings.

• Position Estimation: The position estimation through image processing

relied on dark points on the image. The method was mostly satisfactory but it
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was also susceptible to high noise from the surrounding objects and shadows.

To improve image quality, the background of the recording environment is

covered with a white plexiglass plate. The image processing is improved by

introducing edge detection algorithms. Canny detection algorithm built in

Matlab is used for edge detection. The resultant image is further processed

by vertical and horizontal dilatations, bridging unconnected pixels, removing

spur pixels (to reduce noisy pixels). The algorithm then filters out connected

components based on major and minor axis lengths and total occupied area

(the values are determined manually for each swimmer). The centroid of the

rectangle that encapsulates the swimmer region is taken as the position of the

swimmer at that instant. Several steps in image processing are demonstrated

in Fig. 5.9 and the code for processing is given in the Appendix A.

Figure 5.9 A caption from image processing. (a) The original image. (b) Image after
edge detection and smoothing operations are applied. (c) Detected swimmer region
(red rectangle) and its centroid (red circle).

• Transducer Control: The Agilent 33220a signal generator is connected to

PC and controlled from the custom Matlab GUI via Instrument Control Tool-

box. As shown at Fig. 5.8, the user can define the acoustic wave frequency,

amplitude (to be multiplied by 50 at the power amplifier), whether the signal

is a burst signal or not and the properties of the burst signal. By pressing
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AC ON button, the transducer will start operating instantaneously. Control

of each element on Matlab allows us to track the time of every change to the

experiment setup (details are in the next item).

• Experiment Recording: Video recording is incorporated into Matlab as

well through Image Acquisition Toolbox. This toolbox enables to preview and

also record images from the camera. Furthermore, this setup allows us to save

the instant the important events (such as acoustics turning on) occur with

respect to the exact frame number of the video during recording. This log file

is saved automatically after each experiment is concluded.

5.5 Acoustic Radiation Experiments

5.5.1 Experiments With the Unfocused Transducer

This subsection presents some of the experiment results with the unfocused trans-

ducer. A frame from the recorded images is shown at Fig. 5.7. The results here

either show dimensional axial position (in x- direction) or non-dimensional axial

position (in x- direction) (non-dimensionalized with the acoustic wavelength, λa)

and velocity in the axial direction, u. Note that the origin is located at the tip of

the transducer, so the axial position values imply the distances from the transducer

tip. Note that the gravity is acting in -x direction in this configuration. Swimmer

position is extracted with the image processing algorithm discussed in Section 5.4.1.

First, the repeatability of the results will be discussed. Fig. 5.10 shows the swimmer

trajectory for a fixed fm = 10 Hz without ultrasonic actuation. The experiments

shown are carried out with 30-minute intervals in between each other. The results

show that the swimmer is slowing down over time. The main contributor to this

discrepancy is the variation in glycerol viscosity. There are two major factors that

affects the viscosity, one being the temperature and the other being the humidity.

According to Cheng (2008), a temperature change from 23 ◦C to 24 ◦C results

in a 8.2% decrease in viscosity. Furthermore, when glycerine has 5% water in it,

the viscosity drops more than 45% compared to a 100% glycerine fluid. Normally,

the decrease in viscosity should not slow down the swimmer but the swimming
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Figure 5.10 Swimmer trajectory without acoustic field and at a fixed fm =10 Hz at
different times. (a) shows the axial position, (b) shows the velocity.

is not force-free due to gravity that’s acting against the propulsion direction. As

the gravitational force is a body force that does not depend on fluid viscosity, the

decrease in viscosity increases the relative impact of the gravitational force, thus

the swimmer experiences a slowdown. The FEM model in Chapter 2 is utilized

with gravity added in the direction of propulsion to see the effect of viscosity on

propulsion velocity for a swimmer similar to the one in experiments and the results

are shown at Fig. 5.11. The decrease in swimming velocity with decreasing viscosity

is apparent. Also note the decrease in velocity in Fig. 5.10 at all cases over time

as the swimmer moves further away from the transducer. This occurs due to the

decreasing magnetic field strength as the swimmer moves away from the center of

the Helmholtz setup. Another key issue in the repeatability of the experiments is the

initial swimmer position. While steering control is applied to start the swimmer from

the same initial position, the swimmer in pusher-mode follows helical trajectories,

so it was not possible to carry out experiments in the pusher-mode with repeatable

results.

Fig. 5.12 shows the position of the swimmer in the puller mode under different

acoustic actuation modes. The experiments are recorded one after another, so the

change in viscosity is a non-issue. The operation frequency of the acoustic wave is
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Figure 5.11 The change in u with respect to µ without acoustic field. Results are
obtained from the FEM model in Chapter 2 with the gravity acting against the
propulsion direction as in experiment setup (Corresponding to +x direction in Fig.
2.1 and -x direction in Fig. 5.7).

fa =3.5 MHz, the frequency with the maximum response. fm is set to 18 Hz such

that the swimmer is nearly stationary despite the fact that it is rotating when there

is no acoustic actuation. When the swimmer is excited with a burst wave with an

amplitude of 200 V, the swimmer starts falling down. On the other hand, when

continuous acoustic waves with amplitudes of 20 and 40 V are applied, the swimmer

is able to propel against the gravity, albeit at very low velocities. This test shows

that the acoustic contribution to propulsion from the unfocused transducer is quite

low.

This experiment configuration is tested with the simulation model described in Sec-

tion 5.1 to understand why there is so little contribution. The hydrophone measure-

ments reveal a pa value of 130 kPa. 20 and 40 V of continuous acoustic actuation is

assumed to result in a travelling field even though the actual field would not be a

perfect travelling wave due to scattering and reflections inside the tank and the tube.

Simulations are carried out at multiple µ values over a wide range of pa values, with

the results displayed at Fig. 5.13. The viscosity of 90% pure glycerine falls down

as low as 0.2 Pa·s at 25 ◦C (Cheng, 2008), so the µ values selected here represent

slightly humid glycerine. The values from the simulations come in close proximity

of the experiment results and verify the experimental observations. Taken together

with the results in Chapter 4, it appears that the viscosity significantly dampens
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Figure 5.12 Swimmer (a) position and (b) velocity at fm =18 Hz under different
modes of acoustic actuation.

the pressure wave and prevents us to see any notable improvement in propulsion

velocity.

The main mode of operation for the transducer is burst mode, so further experiments

are carried out with this waveform. Fig. 5.14 shows the swimmer trajectories and

velocities under different acoustic wave frequencies, ranging from 2 MHz to 5 MHz

at 50 V and 200 V of transducer voltages, corresponding to pa =162.5 and 650

kPa. The propulsion is hindered at all frequency values at both 50 and 200 V. The

velocity values when the voltage is 50 V are quite close to each other. When the

voltage is 200 V, the rates of slowdown at different fa remain distinct. The slowdown

when the voltage is 200 V is the lowest at fa = 3.5 MHz. These results are in stark

contrast with the observations in the simulations where the travelling waves always

contribute to the propulsion velocity, so the results here remain inconclusive.
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Figure 5.13 Comparison of experiment results in Fig. 5.12 with the simulation results
obtained with the model in Section 5.1. The error bars represent the variation in
the results in Fig. 5.12.

5.5.2 Experiments with the Focused Transducer

A focused transducer helps in focusing a significant amount of acoustic pressure to

a narrow region, thereby helping to observe the effects of acoustic radiation much

more clearly. The focus of the transducer is 2.54 cm away from the surface. This

focal distance is represented with a black line in the following velocity plot.

One of the initial tests consists of rotating the swimmer slowly such that it is not

able to overcome the gravity and fall down. The test is repeated with acoustic field

on and off. fa = 10 MHz and the voltage amplitude is 300 V. Fig. 5.15 shows

that the swimmer in both cases start out with similar velocities. However, as the

swimmer under acoustic field gets closer to the focal region, it starts slowing down.

This plot also shows the extent of the region that the transducer is effective, around

1.5 times the focal distance.

Several other experiments are carried out with the focused transducer with no sig-

nificant results observed in the propulsion velocity. It is understood that both the

high operating frequency and the viscosity of the liquid lead to very low radiation

force that is basically not observable when the propulsion velocity is significantly

large.
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Figure 5.14 u of the swimmer with respect to axial position at (a) 50 V and (b) 200
V.

Figure 5.15 Swimmer velocity during falldown at fm = 3 Hz with and without acous-
tic excitation. The transducer is the focused one and operates at its maximum
response frequency, fa = 10 MHz.
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6. Conclusion

Artificial helical microswimmers are hugely prospective agents for the manipulation

in fluid environments at small scales. Most of the potential application areas are

within a biomedical context where accurate swimmer control and navigation are crit-

ical. This dissertation takes magnetized helical swimmers, one of the most commonly

used type in the literature, in its focus and attempts to characterize and resolve the

oscillatory nature of swimming trajectories. The dissertation first presents an exten-

sive discussion on oscillatory trajectories of magnetized helical swimmers in confined

environments. Pusher-mode instability, which is different from other modes of insta-

bility such as wobbling and step-out, is reported and characterized in detail with the

help of a novel simulation methodology in which snap-shot FEM solutions of Stokes

equations are integrated using kinematic equations to obtain complete 3-dimensional

trajectories. Distinctive pusher-mode and puller-mode trajectories, observed previ-

ously in experiments, are replicated with high accuracy in the simulations. Despite

the time-reversible nature of any instant of the pusher-mode and the puller-mode

swimming for a certain position and orientation, as the swimmers move in opposite

directions, the trajectories change. As the Mason number increases, the pitching

angle of the pushers increases whereas the wobbling angle of helical swimmer de-

creases in bulk swimming. This result indicates that the hydrodynamic interactions

with the wall play an important role in the trajectories of confined swimmers at

high Mason numbers. Moreover, a further increase in the Mason number leads to

a gradual transition to step-out as the pitching angle increases further, especially

for pullers, as the tip of the tail makes a wider circle than the head, which remains

close to the center-line. The effects of the confinement can be characterized by the

ratio of diameters of the head and the channel.

Helical pusher-mode trajectories prevent controlled navigation of the swimmers. A

novel proportional control algorithm based on magnetic steering is utilized to sup-

press oscillatory trajectories. State-of-the art methods rely on both swimmer posi-

tion and orientation to successfully steer the swimmer to the desired path. However,

considering the medical applications in which no visual contact with the swimmer is
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possible, even obtaining accurate swimmer position information is challenging, thus,

these approaches are not feasible in future use cases. A feedback control algorithm

that is solely based on swimmer position is introduced here and Lyapanov stability

is demonstrated for a constant reference path for low wobbling angles. The con-

trol law is demonstrated both experimentally and with the kinematic model used

for investigating the pusher-mode instability. In addition to these, the resistance

matrix for helical swimming in bulk fluid available in the literature is simplified

and a swirling flow representation is added on top to simulate in-channel swimming.

In all studies, oscillatory pusher-mode trajectories are suppressed significantly. In

simulations, it is shown that the algorithm is capable of making the swimmer follow

a time-varying path as well. As the confinement increases the viscous effects, the

proposed method is particularly useful in highly viscous environments. The exten-

sion of the framework to 3D path following and reduction in the response time of

the control algorithm in experiments constitute the future work. This approach is

expected to be adoptable for practical applications.

Suppressing the oscillatory trajectories is also possible by introducing passive mech-

anisms to the system without a need for any kind of feedback. The dissertation

proposes acoustic fields on top of magnetic actuation for improving swimmer stabil-

ity as acoustic fields are biocompatible and widely adopted in medical applications.

A novel and computationally efficient way of calculating the radiation force on he-

lices, called chain-of-spheres approach, is verified with a finite-element model that is

computationally very expensive. A slender helical tail is treated as a chain of spheres

for which analytical expressions for the acoustic radiation force are well-known. By

summing up the forces on each sphere, the total radiation force and torque on the

helix can be found with reasonable accuracy in comparison to finite-element results.

The method achieves very high accuracy if the acoustophoretic contrast factor re-

mains low. The chain-of-spheres approach dramatically reduces the computational

cost compared to the FEM model, especially for swimmers with dimensions on the

order of an acoustic wavelength.

The chain-of-spheres approach is incorporated in the resistive force theory-based

model to evaluate the trajectories of magnetically actuated helical swimmers in

acoustic fields. First, it is shown that swimmer wobbling is reduced under travel-

ling acoustic waves with a significant increase in the propulsion velocity. Secondly,

standing fields are found to stabilize the swimmers in unique fixed positions based

on their geometric parameters. This can be utilized for keeping the swimmer sta-

tionary in micro-mixing applications. The relation between the swimmer geometry

and acoustic field is investigated with several parametric studies. An experiment

setup for acousto-magnetic propulsion of magnetized helical swimmers is realized
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with a magnetic coil setup and multiple acoustic transducers. The acoustic contri-

bution to swimmer propulsion remains low and the simulations show that this is due

to high viscosity of the glycerine. It appears that one has to go to slightly smaller

scales (in terms of swimmer geometry) and significantly less viscous fluids to fully

benefit from the acoustic radiation. Overall, the findings of this thesis are expected

to improve the understanding on the oscillatory trajectories of magnetized helical

swimmers and help in suppressing the oscillatory trajectories to enable controlled

navigation in biomedical applications.

6.1 Future Work

Characterizing the pusher-mode instability requires further studies. A more rigorous

analysis on the flow fields caused by the pusher-mode and the puller-mode swimmer

would enlighten why the trajectories evolve differently over time. Based on the

studies in the literature, the key point to demonstrate in explaining the pusher-

mode instability lies in the motion of the fluid that surrounds the swimmer. It was

found in this dissertation that the solutions for a certain position and orientation of

the swimmer are exactly reversible in the pusher and the puller-mode swimming but

the flow fields over time should be followed to demonstrate how the pusher-mode

instability occurs. Additionally, it is very important to distinguish the wobbling

dynamics from the pusher-mode instability, as discussed in the dissertation. At this

point, straight trajectories in the puller-mode swimming imply that the wobbling

should be minimal. Here, one should identify the role of the head carefully. The

head is the source of the oscillatory trajectories in the pusher-mode while it is

demonstrated here that it slightly suppresses the oscillations due to wobbling in

bulk swimming conditions. In other words, the head suppresses the wobbling that

is solely caused by the helical geometry of the tail in bulk swimming conditions

but it also leads to the pusher-mode instability in confinement. Characterization

of the trajectories both in terms of the wobbling and the pusher-mode instability

is critical to be able to understand and distinguish the underlying reasons behind

each mode of instability. This may require additional experiments and simulations

with swimmers without a head and in bulk swimming conditions. The experiments

used in verifying the simulation results lack some details about the setup such as

the Mason number. The knowledge of these details would allow a direct comparison

between the experiments and the simulations.
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The scope of the experiments and the simulations for the pusher-mode instability

can be expanded with additional tests such as testing multiple swimmers, swimming

in immiscible fluids and non-Newtonian fluids. The interactions of the swirling

flow fields generated by a swarm of the swimmers can lead to swimmers not only

oscillating around their major rotation axis due to the wobbling, but also lead them

to trace a larger oscillatory path at the same time. Immiscible fluids with different

material properties will directly affect the Ma and that will lead to trajectories

with varying amplitudes. The effect of changing density will manifest itself in the

buoyancy force acting on the swimmer, this will be particularly important at low

rotation rates of the swimmer where the gravity becomes non-negligible. Swimming

in non-Newtonian fluids is another complicated problem in which the swimming

dynamics will change based on the rotation frequency of the swimmer. For shear-

thickening fluids, the trajectories may start out very oscillatory at low rotation rates

and then become very stable at large rotation rates whereas for shear-thinning fluids

it will be vice versa. For shear-thinning fluids, the Mason number will decrease as

the rotation rate increases, implying that the trajectories will be oscillatory at larger

rotation rates. On the other hand, low rotation rates is another source of instability

for the swimmers so the swimmer trajectories may be oscillatory for all rotation

rates of the swimmer.

Magnetic steering control can be tested experimentally in more advanced scenarios.

The swimmer could be navigated in complex 3-dimensional environments such as a

phantom vascular network. Furthermore, the methodology is open to incorporate

navigation in 3-dimensional space where the coils that drive the swimmer could be

altered altogether to enable motion in any direction. The effects of large propor-

tional control gains on the swimmer trajectories are not studied experimentally, this

should be investigated further as well. Controlling a swarm of the swimmers is also

an important and practically relevant task that can be tested with the approach

proposed in the model. The additional studies mentioned above for investigating

the pusher-mode instability constitute additional case studies for the control law.

It would be quite significant to achieve controlled navigation in non-Newtonian flu-

ids with this methodology as non-Newtonian fluids bring physical instability to the

system.

The numerical models on helical swimmers presented here, both the resistive force

theory model and the kinematic model, can be utilized in developing a predictive tool

for the swimmer trajectories. Running simulations over a wide range of geometric

and physical parameters can be fed to a machine learning algorithm that may help in

predicting the exact swimmer position and orientation at a certain time. That would

enable realizing an offline control algorithm that can predict the swimmer position
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and provide the necessary input to suppress the oscillatory trajectories or steer the

swimmer to the desired path. Considering that the image processing duration is one

of the biggest restrictions in supplying timely control input to the system, such a

predictive model could demonstrate the true performance of the control law.

The chain-of-spheres approach to predict the radiation force can be improved fur-

ther. One aspect is verifying the algorithm in terms of the travelling waves, as the

verification in the dissertation only covers standing wave results. One big omission

in comparison to the experiments is that the approach doesn’t take a head structure

into the account that exists in the swimmers used in the experiments. Considering

that the head size is very large, it is going to affect the distribution of the force

acting on the swimmer significantly. Looking from a volumetric perspective, the

existence of the head should increase the radiation force acting on the swimmer.

However, the head, purely due to its size, will significantly affect the scattered field

distribution. The scattered field magnitude may become so high that the chain-of-

spheres approach may not be valid any more. Different effects may arise depending

on whether the tail is shadowed by the head or not. While the helix is a symmetric

structure, the addition of the head brings asymmetry. Furthermore, the addition

of the head results in the head being the dominant structure that determines the

radiation force acting on the swimmer. That may lead to a simplification in the

modelling by only accounting for the head in the calculation of the radiation force.

The usage of acoustic fields by itself bring about some other possible problems. The

first issue to consider is the practical possibility of realizing travelling or standing

waves in in vivo environments. Living organisms consist of layers of tissues, arteries

and organs, each with a different acoustic impedance. That would significantly affect

the wave profile and cause a significant amount of scattering. Usage of other kinds

of acoustic fields may be required to successfully achieve acoustic manipulation.

Another issue to consider is the heating due to the acoustic waves. The acoustic

waves are known to cause heat dissipation and the change in the temperature of

the system can change a majority of the physical parameters of the medium such

as the viscosity and speed of sound. Lastly, studying the acoustic waves under

non-Newtonian fluids is practically relevant as some of the body tissues exhibit

non-Newtonian behavior. The viscosity affects the acoustic manipulation in two

ways. One is the attenuation of the wave amplitude while the other one is on-body

due to viscous boundary layer formation. Non-Newtonian fluids would cause an

irregular pressure profile and dynamic viscous boundary layer thickness that need

specialized modelling tools to observe how the dynamic nature of the system affects

the swimming trajectories under acousto-magnetic actuation.
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The dissertation covers the acoustic radiation force effects on helical swimmers. The

results show that the radiation force effects are negligibly low as the swimmer scale

goes in µm range. That means different means of acoustic manipulation may be

necessary at lower scales. Examples include focused beams, surface acoustic waves

and bulk acoustic waves. It is noted in the literature that the viscous boundary layer

thicknesses are quite low for the range of parameters tested in the dissertation, but

going to the lower scales mean that the viscous boundary layer becomes significant.

These different ways of acoustic manipulation may be practically more relevant in

medical scenarios.
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APPENDIX A

Matlab Code for Image Processing

The code below shows the image processing routine on x-y plane image of an exper-

iment video. For image processing in x-z plane, it is sufficient to change line 34 in

the code to "rect=rectxz;".

1 clearvars;close all;clc;

2

3 rectxy=[1 1 575 284]+[0 0 0 0]; %Image region for data ...

extraction in x-y plane

4 rectxz=[1 476 575 264]+[0 0 0 0]; %Image region for data ...

extraction in x-z plane

5

6 orlimitxy=0.4; %Canny edge detection threshold parameter, x-y plane

7 orlimitxz=0.4; %Canny edge detection threshold parameter, x-z plane

8 upl=0.0317; %Unit pixel length, determined manually from the images

9

10 minorax_min=15;

11 minorax_max=50;

12 majorax_min=150;

13 majorax_max=250; %The range of side lengths of the rectangle ...

that encompasses the swimmer

14 refarea=7200; %Reference value for the rectangle area

15

16 gd=dir('C:\Users\hakancaldag\Desktop\Image Processing\Videos\'); ...

%Obtain names of the video files in the directory

17

18 for ii=1:length(gd)

19 fn=gd(ii).name %Obtain the name

20 videonames{ii}=fn; %Attach the name to a cell array

21 end

22 address='C:\Users\hakancaldag\Desktop\Image Processing\Videos\'; ...

%The address the video file is stored in

23

24 for ii=1:length(videonames) %Processing all the videos in the loop

25

26 videoname=videonames{ii};

27

28 swimmerObj = VideoReader(strcat([address videoname])); % ...

Video name
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29 frames = read(swimmerObj); %Read video and save the frames ...

in variable "frames"

30 k1 = 1; % Starting frame

31 a=size(frames);

32 k2 = a(4); %Ending frame

33

34 rect = rectxy; % The channel boundaries

35 H = rect(4); % Height of the channel in pixels

36

37 WRITE = 1; %Boolean to write extracted position and ...

orientation data as .dat file

38

39 clear cent cent2 theta dir xsw ysw

40 xsw = 0; % Space allocation for x-, y- (or z-) position and ...

orientation data

41 posy = 0;

42

43 j = 0; % Loop counter

44 [width, height, rgb, nof]=size(frames); %Obtain frame ...

information

45

46 for k=k1:k2 %Processing loop for one video

47 j=j+1; %Increase counter

48 a = frames(:,:,:,k); %Take the next frame

49 a = imcrop(a,rect); % Crop the image down to channel ...

boundaries

50

51 b1 = rgb2gray(a); % Obtain grayscale image

52 c2=edge(b1,'canny',orlimitxy); %Run edge detection.

53 se90 = strel('line',3,90);

54 se0 = strel('line',3,0); %Morphological structuring ...

elements perpendicular to each other

55 c2 = imdilate(c2,[se90 se0]); %Apply dilatation

56 c2=imfill(c2,'holes'); %Fill the holes in the extracted ...

edges

57 c2=imclearborder(c2); %Clear the borders

58 c2=bwpropfilt(c2,'MinorAxisLength',[minorax_min ...

minorax_max]);

59 c2=bwpropfilt(c2,'MajorAxisLength',[majorax_min ...

majorax_max]); %Find the region(s) with properties ...

close to the swimmer image

60 stats = [regionprops(c2); regionprops(not(c2))]; %Obtain ...

properties of all extracted regions

61

62 for ii=1:length(stats)

63 areas(ii)=stats(ii).Area; %Collect area information ...

for each rectangle
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64 end

65

66 [~,s_ind]=min(abs(areas-refarea)); %Find the rectangle ...

with the area closest to that of the swimmer

67 cent(:) = stats(s_ind).Centroid; %Obtain the centroid of ...

that rectangle

68

69 xswp(j)=cent(:,1);yswp(j)=cent(:,2); %Extracted positions

70 xsw(j) = cent(:,1)*upl;

71 posy(j) = (cent(:,2)-(H+1)/2)*upl; % y- axis is along ...

the center of the bounding box, define Cartesian ...

coordinates accordingly

72

73 clear cent s_ind areas

74 end

75 tmp=[xsw; posy];

76 save(strcat([videoname '.dat']),'tmp','-ascii');

77 end
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