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Abstract

This paper considers the Nash implementation problem in which the planner

does not know individuals’ state-contingent choices that may involve violations

of rationality. In economic environments with at least three individuals, we

show that the planner may Nash implement a social choice correspondence while

extracting information about individuals’ state-contingent choices from the soci-

ety whenever one of the individuals, whose identity is not necessarily known to

the planner and the other individuals, is a weak sympathizer. Such an agent is

weakly inclined toward truthful revelation of individuals’ state-contingent choices

but not the “true” state. Then, in every Nash equilibrium of the mechanism we

design, all individuals except one truthfully reveal the same information about

individuals’ choices.
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1 Introduction

The analysis of the design of mechanisms the equilibria of which coincide with

a given social goal is essential to economic theory. The seminal works of Maskin

(1999, circulated in 1977), Moore and Repullo (1990), and Dutta and Sen (1991) deal

with this question under complete information: the situation when payoff-relevant

characteristics is commonly known within the society but not to the planner.1 de

Clippel (2014) extends this analysis to cases in which individuals’ behavior does not

necessarily satisfy the weak axiom of revealed preferences (WARP), generally regarded

as representing rationality.

The condition at the heart of the desired characterization turns out to be consis-

tency, a notion that implies the well-known Maskin monotonicity when individuals’

behavior satisfies the WARP.2 The opportunity sets sustained by the mechanism that

implements a given social goal, subsets of alternatives that an individual can obtain

by changing his messages while others’ remain the same, form a profile of sets con-

sistent with this social goal. Moreover, the existence of a consistent profile of choice

sets allows us to modify the canonical mechanism (by using this profile as opportunity

sets) to obtain a sufficiency result.3 Checking whether or not a given profile of sets is

consistent with a social choice rule requires that the planner know the choices of each

individual at each state from the corresponding member of that profile. The planner

is then able to elicit the information concerning the state from the society via the

canonical mechanism.

What if the planner does not know individuals’ state-contingent choices? Can he

1For more on implementation under complete information, see Maskin and Sjöström (2002), Palfrey
(2002), and Serrano (2004). On the other hand, Postlewaite and Schmeidler (1986), Palfrey and
Srivastava (1987), and Jackson (1991) analyze the case of incomplete information.

2Given individuals’ choice behavior, a profile of subsets of alternatives where each subset is indexed
for an individual and a state and a socially optimal alternative at that state, is said to be consistent
with a social choice correspondence if (i) for every individual and every state and every socially
optimal alternative in that state, this alternative is chosen at that state by that individual from the
corresponding choice set, and (ii) an alternative being socially optimal in the first state, but not in
the second, implies that there exists an individual who does not choose that alternative at the second
state from the choice set indexed for that individual and that alternative and the first state.

3See Maskin (1999) and de Clippel (2014).
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learn individuals’ choices as he attempts to elicit information about the state?

The current paper considers full implementation under complete information al-

lowing, but not insisting on, violations of rationality with the additional feature that

the planner does not know individuals’ state-contingent choices. Our main result is

that in economic environments with at least three individuals, the planner may Nash

implement a social choice correspondence (SCC) possessing a consistent profile of sets

by also eliciting the information concerning consistency from the society whenever one

of the individuals (whose identity is not necessarily known to the planner and the other

individuals) is a weak sympathizer. In every Nash equilibrium, all individuals save one

announce the same consistent profile of sets. Thus, the planner no longer needs to

know the societal choice topography, the state-contingent choice behavior of individ-

uals from every possible subset of alternatives, to identify a profile of sets consistent

with the given SCC. He can simply ask the individuals, knowing that all but one will

truthfully announce the same profile of sets consistent with the social goal. We provide

a tangible display of these by presenting a motivating example in which the hypothesis

of our main result holds.

We attain the notion of sympathy by modifying partial honesty of Dutta and Sen

(2012) so that it involves only announcements of profiles of sets and not the states of

the world. Restricting our attention to mechanisms that involve the announcement of

a profile of sets enables us to introduce a weak sympathizer : an individual who strictly

prefers the truthful revelation of a consistent profile of sets coupled with some messages

whenever none of his lies (announcements of inconsistent profiles of sets) makes him

strictly better off while he keeps on using the same remaining parts of his messages.

Indeed, a weak sympathizer is not a snitch or an informer in the sense that he does

not feel any obligation and/or inclination to reveal the state of the economy; instead,

he serves the planner as a guide without asking for compensation of any sort.

The economic environment assumption requires that individuals’ choices are not

perfectly aligned: for any alternative and for any state, there exist two individuals who

do not choose that alternative in that state from the set of all alternatives. Therefore,
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it demands that there is some weak form of disagreement in the society at every state.4

We provide comprehensive robustness checks for our main result and attain two

additional sufficiency results.

The first involves replacing the economic environment assumption with other condi-

tions such as the no-veto property while continuing to work with three or more individ-

uals. What we obtain is a choice version of condition µ of Moore and Repullo (1990),

in line with condition λ of Korpela (2012), and the strong consistency of de Clippel

(2014). This enables us to provide another sufficiency result similar to those in these

papers with the additional feature that the information about consistency is extracted

from the society when the environment features societal non-satiation and contains at

least two sympathizers the identities of whom are privately known to themselves, but

not the planner.

Societal non-satiation demands that for every alternative and every state, there

exists an individual who does not choose that alternative at that state from the set of

all alternatives. This restriction is weaker than the economic environment assumption

and allows for more Nash equilibria in the mechanism we employ. But, with more

Nash equilibria to handle comes the need for more power: instead of a single weak

sympathizer, now we need at least two sympathizers. A sympathizer is an individual

who strictly prefers a message profile consisting of the announcement of a consistent

profile of sets and the rest of his messages whenever none of his deviations, consisting

of lies (announcements of inconsistent profiles) coupled with some other messages, can

make him strictly better off. Therefore, every sympathizer is a weak sympathizer.

The second robustness check involves the case of two individuals. Because “the two-

agent model is the leading case for applications to contracting or bargaining” (Moore &

Repullo, 1990), this particular robustness check also has an intrinsic stand-alone value.

Our two-individual sufficiency result requires that both of the individuals are sympa-

thizers, and a slightly stronger version of the two-individual necessity condition (in

line with condition µ2 of Moore and Repullo (1990) and condition β of Dutta and Sen

4Our economic environment assumption is in line with the one in Kartik and Tercieux (2012), and
weaker than that in Jackson (1991) and Bergemann and Morris (2008).
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(1991)) holds. Vaguely put, the novel requirement in our sufficiency condition demands

that the requirements that appear in the two-individual necessity condition hold across

any pair of profiles of sets each satisfying the two-individual necessity condition. To

exhibit the practicality of our two-individual sufficiency result, we present an example

concerning a social goal that seeks compromise; we show that the hypothesis of this

result is satisfied.

In the standard approach to the implementation problem, there is a one-to-one

correspondence between the set of states and the payoff-relevant characteristics of the

environment. Thus, the planner knows individuals’ choices contingent on any given

state. But he does not know the realized state. In our setup, the critical difference is

that the planner does not know individuals’ state-contingent choices. Hence, as far as

the planner’s knowledge is concerned, the set of states is not necessarily in one-to-one

correspondence with the payoff-relevant characteristics.

To exhibit our contributions within the framework of the standard approach, we

offer the following interpretation: As in the standard setting, the set of feasible states is

in one-to-one correspondence with the possible payoff-relevant characteristics. Indeed,

one can easily construct the set of all possible choice/preference profiles using the set of

alternatives. On the other hand, not all feasible states can emerge in our environment.

The states that can emerge form the set of prevailing states. In other words, the

support of the distribution determining whether or not a state can emerge equals the

set of prevailing states. Meanwhile, the SCC maps the states of the economy into

non-empty subsets of alternatives. The set of feasible states and how it corresponds

to payoff-relevant characteristics, the set of states of the economy, and the SCC are

common knowledge among the individuals and the planner. But, how the states of the

economy correspond to payoff-relevant characteristics is not known to the planner, yet

it is common knowledge among the agents.

As a result, the planner seeks to implement a social goal contingent on the states

of the economy even though he does not know individuals’ preferences/choices corre-

sponding to those states. That is why, the planner can be viewed as an outsider who
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is delegated the responsibility of implementing the social goal at hand.5

The states of the economy may also arise due to categorization: The feasible states

are clustered into classes based on some criteria, and the social goal and the planner

adopt these classes. For example, in a society with n individuals where n ≥ 3 and

n is odd, each agent’s state is either 0 or 1 (where 0 stands for the bad state and 1

for the good state) resulting in the set of feasible states {0, 1}n. The social goal and

the planner adopt the categorization saying that the aggregate state of the economy

is ‘good’ if more than half of the individuals’ states are 1 and otherwise it is ‘bad’.

The planner seeks to implement a social goal contingent on the aggregate state of

the economy, ‘good’ or ‘bad’, while he does not know individuals’ preferences/choices

corresponding to these states.

This example also shows that our construction cannot be interpreted as a domain

restriction. To see this, consider the states of the economy specified above. Then, the

union of the feasible states corresponding to the ‘good’ aggregate state of the economy

and those corresponding to the ‘bad’ equals the set of all feasible states.

Identification of a mechanism that implements a social goal on the set of all feasible

states ensures that the revelation of the realized state is equivalent to the revelation

of individuals’ preferences/choices at that state. Moreover, the same mechanism im-

plements any restriction of that social goal on a smaller set of states, and hence, this

equivalence continues to hold on this set of states as well. Therefore, our results

are most useful when the social goal is not implementable on the set of all feasible

states. When the social goal is implementable on the set of all feasible states by a

‘grand’ mechanism, our results display that we can replace this mechanism (possibly

on grounds of complexity) and use ours defined solely on a smaller set of states of the

economy with the novel feature of asking the society the information concerning their

preferences/choices.

Our paper is closely related to the literature on implementation with partial honesty,

5For example, the planner could be an implementation consulting agency (e.g., McKinsey Imple-
mentation (McKinsey, 2018)) responsible to elicit information about the financial and operational
state of a client firm to implement a given policy contingent on this information that results in a
strategic interaction among subdivisions within the firm. Or the planner could be a court-appointed
trustee authorized to run a company during its bankruptcy proceedings.
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pioneered by Dutta and Sen (2012).6, 7 Their construction assumes that at least one of

the individuals has a preference for honesty. To formulate this, individuals’ preferences

on alternatives are extended to messages when dealing with mechanisms that involve

the announcement of a state. A partially honest individual is assumed to strictly prefer

a message involving the announcement of the ‘true’ state of the world when none of

his deviations make him strictly better off. Then, that study shows that all SCCs

satisfying the no-veto property can be implemented in Nash equilibrium whenever

the society contains at least three individuals one of whom, whose identity is privately

known only by himself, is partially honest. This sufficiency result does not need Maskin

monotonicity.

Sympathy involves an inclination toward the revelation of consistent profiles of

choice sets and not truthful announcements of the states. That is why, unlike the

majority of papers on implementation with partial honesty, we need a Maskin mono-

tonicity type of requirement to extract information about the states of the world.

Our analysis allows for individuals’ choices to violate the WARP and hence is related

to behavioral implementation literature. The two papers in line with ours are Korpela

(2012) and de Clippel (2014).8 These papers provide necessary as well as sufficient

conditions for (behavioral) Nash implementation when individuals display systematic

deviations from rationality.

The rest of the paper is organized as follows. We present a motivating example in

Section 2, the notations and definitions and some preliminary results in Section 3. Our

main result and its first robustness check are in Section 4. Section C of the Appendix

6An incomplete list of papers in this literature consists of Matsushima (2008a), Matsushima
(2008b), Kartik and Tercieux (2012), Kartik, Tercieux, and Holden (2014), Korpela (2014), Saporiti
(2014), Ortner (2015), Doğan (2017), Kimya (2017), Lombardi and Yoshihara (2017), Mukherjee,
Muto, and Ramaekers (2017), Lombardi and Yoshihara (2018), Savva (2018), and Lombardi and
Yoshihara (2019). See also Dutta (2019) for a survey of recent results in this literature.

7Another strand of related papers in the rational domain analyzes the characterization of jurors’
preferences on rankings of contestants when jurors are not necessarily impartial and have incentives
to misreport the true ranking of contestants. See Amorós (2009) and Amorós (2013). Yadav (2016)
considers the effects of partial honesty in the model of Amorós (2013).

8Hurwicz (1986), Eliaz (2002), Barlo and Dalkiran (2009), Saran (2011), Saran (2016), Koray and
Yildiz (2018), and Barlo and Dalkiran (2019) are among the papers presenting an analysis when the
society is not necessarily composed of individuals whose choice behavior satisfies the WARP.
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deals with the case of two individuals. All the proofs are in the Appendix.

2 A motivating example

Suppose that there are three individuals, denoted by N = {1, 2, 3}. The set of

alternatives pertinent to implementation is X = {a, b, c}.

We assume it is common knowledge among the individuals and the planner that

individuals’ choices can be represented by strict preferences (asymmetric and negatively

transitive binary relations).9 Therefore, we face 63 contingencies, each corresponding to

a possible preference profile. If all of them were to be seen as possible, the set of feasible

states would be Ω = {(P1, P2, P3) : Pi ∈ {abc, acb, bac, bca, cab, cba}, i = 1, 2, 3}, with

xyz denoting the strict preference order where x is strictly preferred to y and y to z

with x, y, z ∈ {a, b, c} and x 6= y and x 6= z and y 6= z.

If it were to be common knowledge about this environment that, in addition to the

above, the best alternative of each individual is distinct and there is strong conflict of

interest between individuals 1 and 3 (meaning that individual 1’s top-ranked alternative

must be individual 3’s bottom-ranked and vice versa) then the set of admissible states

would be

Ω∗ = {(abc, bac, cba), (abc, bca, cba), (acb, cab, bca), (acb, cba, bca), (bac, abc, cab),

(bac, acb, cab), (bca, cba, acb), (bca, cab, acb), (cab, acb, bac), (cab, abc, bac),

(cba, bca, abc), (cba, bac, abc)} ⊂ Ω. (1)

In our example, we suppose that the planner knows that only two of the admissible

states may prevail. But, he does not know which two. We model this by letting the

states of the economy be denoted by Θ = {θ, θ′}. Then, the individuals (but not the

planner) know that θ corresponds to (abc, bac, cba) and θ′ to (bac, acb, cab); we refer to

{(abc, bac, cba), (bac, acb, cab)} as the set of prevailing states. This can be sustained by

requiring that before the realization of the true state of the world, it becomes common

knowledge among the individuals that individual 1’s best alternative is not c, and

9A binary relation P ⊆ X×X is asymmetric if xPy implies not yPx; and, P is negatively transitive
if xPy implies either zPx or yPz for all z 6= x and z 6= y.
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individual 2’s preferences are either acb or bac; this piece of information is not known

to the planner.

We wish to note that the set of feasible states is in one-to-one correspondence with

all the possible preference profiles as in most of the implementation papers. However,

in many applications, as in this example, the set of states of the economy is not in

one-to-one correspondence with all the possible preference profiles.

The social choice goal to be implemented, f : Θ→ X, is given exogenously to the

planner and is as follows: f(θ) = b and f(θ′) = c. We wish to note that the planner

does not know the preference profile associated with the states of the economy, but

still has to implement this social choice function.

The following summarizes the knowledge and information requirements needed in

our example: It is common knowledge

(i) among the individuals and the planner that the set of individuals is {1, 2, 3}; the

set of feasible states is Ω = {(P1, P2, P3) : Pi ∈ {abc, acb, bac, bca, cab, cba}, i =

1, 2, 3}; the set of admissible states is Ω∗ as defined in equation (1); the set of

states of the economy is Θ = {θ, θ′}; the social choice function f : Θ → X such

that f(θ) = b and f(θ′) = c; and that each individual observes the realized state

of the economy θ̃ ∈ Θ; and

(ii) among the individuals that the set of individuals is {1, 2, 3}; the set of feasible

states is Ω = {(P1, P2, P3) : Pi ∈ {abc, acb, bac, bca, cab, cba}, i = 1, 2, 3}; the

set of admissible states is Ω∗ as defined in equation (1); the set of states of the

economy is Θ = {θ, θ′}; θ and θ′ correspond to the prevailing states (abc, bac, cba)

and (bac, acb, cab), respectively; the social choice function f : Θ → X such that

f(θ) = b and f(θ′) = c; and that each individual observes the realized state of

the economy θ̃ ∈ Θ; and

(iii) the planner knows that ‘the prevailing states corresponding to the states of the

economy θ and θ′ are common knowledge among the individuals.’

de Clippel (2014) establishes a necessary condition for Nash implementation when

individuals are not necessarily rational. This condition, consistency, is a notion that
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extends the well-known Maskin monotonicity to the domain when the individuals’

choices do not satisfy the WARP. In the current setting, consistency requires that

there are choice sets for every individual i = 1, 2, 3, at states θ and θ′, for alternative

b, which is f -optimal at θ, and for alternative c, f -optimal at θ′, such that there exists

an agent j ∈ {1, 2, 3} who does not choose b at θ′ from his choice set corresponding to

θ and b, and there is an individual k ∈ {1, 2, 3} not choosing c at θ from his choice set

associated with θ′ and c. That is, there is a profile of sets S = (Si(b, θ), Si(c, θ
′))i=1,2,3

such that b ∈ Cθ
i (Si(b, θ)) and c ∈ Cθ′

i (Si(c, θ
′)) for all i = 1, 2, 3, while b /∈ Cθ′

j (Sj(b, θ))

and c /∈ Cθ
k(Sk(c, θ

′)) for some j, k = 1, 2, 3.

Let us start the identification of the consistent profile of choice sets of our example:

S1(b, θ): abc implies two possibilities for S1(b, θ): {b, c} and {b}.

S2(b, θ): bac implies four possibilities for S2(b, θ): {a, b, c}, {a, b}, {b, c}, and {b}.

S3(b, θ): cba results in two possibilities for S3(b, θ): {a, b} and {b}.

S1(c, θ′): bac implies the requirement that S1(c, θ′) equals {c}.

S2(c, θ′): acb implies two possibilities for S2(c, θ′): {b, c} and {c}.

S3(c, θ′): cab results in four possibilities for S3(c, θ′): {a, b, c}, {a, c}, {b, c}, and {c}.

In addition to the above, b /∈ Cθ′
2 ({b, c}) and c /∈ Cθ

2({b, c}). Therefore, the profile

of sets S = (Si(b, θ), Si(c, θ
′))i=1,2,3 specified as follows is one of the profiles of sets

consistent with the social choice function f :

S1(b, θ) = {b, c} S1(c, θ′) = {c}

S2(b, θ) = {b, c} S2(c, θ′) = {b, c}

S3(b, θ) = {a, b} S3(c, θ′) = {a, b, c}.

The planner does not know individuals’ preferences in states θ and θ′, and hence,

cannot identify a profile of sets consistent with f in order to construct a mechanism

that implements f in Nash equilibrium.

What if the planner were to ask the individuals to reveal a profile of sets consistent

with f as a part of the mechanism?

In that regard, we consider mechanisms that require the announcement of a profile

of alleged choice sets along with some other actions. Indeed, the truthful revelation
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of a profile of choice sets consistent with the given SCC can be achieved when there

is a weak sympathizer in the society: an individual who strictly prefers to announce

a consistent profile and choose some messages whenever none of his lies (inconsistent

profiles of sets) makes him strictly better off while he keeps on using the same remaining

parts of his messages. A weak sympathizer is not a snitch or an informer, and does not

feel any obligation and/or inclination to reveal the state of the economy truthfully.

When it is commonly known among the individuals and the planner that the society

contains a weak sympathizer (the identity of whom is privately known only by himself)

our main result, Theorem 1, shows the following: in economic environments with at

least three individuals, the implementation of a social goal can be achieved while almost

unanimously eliciting information about a consistent profile of choice sets from the

society provided that there is such a profile.

The economic environment condition requires that, at any state, any one of the

alternatives should not be chosen from the set of all alternatives by at least two indi-

viduals. In our example, this condition holds because individuals’ choices from {a, b, c}

are such that at θ, alternative a is not chosen by individuals 2 and 3, b by 1 and 3, and

c by 1 and 2; while at θ′, alternative a is not chosen by individuals 1 and 3, b by 2 and

3, and c by 1 and 2.

Therefore, Theorem 1 applies, and it implies that the social choice function of our

example can be implemented while eliciting the relevant information pertaining to

individuals’ state-contingent choices.

3 Notations, definitions, and preliminaries

Let X be a set of alternatives, and X the set of all nonempty subsets of X. N =

{1, ..., n} denotes a society with a finite set of individuals where n ≥ 2.

Ω denotes the finite set of all feasible states of the world and it is assumed to be in

one-to-one correspondence with all the payoff-relevant characteristics of the environ-

ment. Indeed, one may derive this set of states using the set of alternatives X. The

distribution on Ω determining the realized state is denoted by φ where for any ω ∈ Ω,

φ(ω) ∈ [0, 1] identifies the probability that ω occurs. In many economic applications
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of interest, one may consider an interim set of states, a set of admissible states of the

world which we denote by Ω∗. Naturally, Ω∗ ⊆ Ω. The set of prevailing states is given

by ΩP := supp(φ) = {ω ∈ Ω : φ(ω) 6= 0}. We assume that ΩP ⊂ Ω∗.10

To model the information/knowledge formalities, we adopt the following: Let Θ be

the set of states of the economy defined with the requirement that #Θ = #ΩP . The

bijection π : Θ → ΩP is called the identification function where π(θ) ∈ Ω∗ identifies

the particulars of the payoff-relevant characteristics associated with the state of the

economy θ ∈ Θ.11 As π : Θ → ΩP is a bijection, we refer to a state of the economy θ

also as a prevailing state and to the set of the states of the economy Θ as the set of

prevailing states. When the meaning is clear, we refer to a prevailing state as a state.

An alternative interpretation involves the categorization/aggregation of admissible

states: Using a surjective categorization/aggregation function κ : Ω∗ → Θ where for

any admissible state ω ∈ Ω∗, κ(ω) is the category/aggregate state of ω in the set

categories/aggregate states, Θ (previously specified as the set of states of the econ-

omy). The identification function with categories/aggregation is an injective map-

ping υ : Θ → Ω∗ associating a given category/aggregate state θ ∈ Θ with the ‘true’

payoff-relevant characteristics υ(θ) ∈ Ω∗ with the requirement that for any ω ∈ Ω∗,

υ(κ(ω)) = ω. In what follows, we work with a given set of states of the economy Θ and

injective identification function π : Θ→ Ω∗. Notwithstanding, by replacing the identi-

fication function π with the identification function with categories/aggregation υ (while

selecting an appropriate categorization/aggregation function κ), one can interpret our

findings using the categorization/aggregation approach.

The (individual) choice of agent i ∈ N at a feasible state ω ∈ Ω is captured by

the choice correspondence Cω
i : X → X with the feasibility requirement that for any

S ∈ X , Cω
i (S) ⊂ S. Given alternative x ∈ X, individual i ∈ N , and feasible state

ω ∈ Ω, we refer to a set S ∈ X with x ∈ Cω
i (S) as a choice set of individual i at

10Situations in which X and Ω are not finite and φ is a measurable distribution can be handled by
constructing a σ-algebra on Ω and insisting on some standard measurability requirements. To refrain
from technicalities, we restrict our attention to finite sets in this paper.

11A function ψ : X → Y is injective if it maps distinct elements of its domain, X, to distinct
elements in its range, Y ; it is surjective if for every element in its range, y ∈ Y , there is an element in
its domain, x ∈ X, with ψ(x) = y. A function ψ : X → Y is a bijection if it is injective and surjective.
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state ω for alternative x. The societal choice topography on Ω is given by the profile of

individual choice correspondences C(Ω) := (Cω
i (S))i∈N, ω∈Ω, S∈X .

Under rationality, every individual’s choice correspondence satisfies the WARP at

every state of the world. So, for any given i ∈ N and ω ∈ Ω, there exists a reflexive,

complete, and transitive binary preference relation Rω
i ⊆ X × X such that for any

x, y ∈ X, x Rω
i y if and only if x ∈ Cω

i ({x, y}).12 Therefore, for any given i ∈ N and

ω ∈ Ω and S ∈ X , we have that Cω
i (S) = {x∗ ∈ S : x∗ Rω

i y,∀y ∈ S}. See Sen (1971)

for the formal treatment. In what follows, we allow for violations of WARP.

A social choice correspondence (SCC) defined on the states of the economy is f :

Θ → X , a non-empty valued correspondence mapping Θ into X (i.e., f(θ) ∈ X for

every θ ∈ Θ). Given θ ∈ Θ, the set of alternatives f(θ) denotes the alternatives that

the planner desires to sustain at θ and are referred to as f -optimal alternatives at θ.

We restrict our attention to complete information. The information and knowledge

requirements of our model are as follows:

(i) N , X, Ω, Ω∗, C(Ω), Θ, f : Θ → X , and that ‘every individual observes the

realized state of the economy’ are common knowledge among the individuals and

the planner; and

(ii) N , X, Ω, Ω∗, C(Ω), Θ, the injection π : Θ → Ω∗, f : Θ → X , and the realized

state of the economy θ ∈ Θ are common knowledge among the individuals; and

(iii) the planner knows that ‘the injective identification function π : Θ→ Ω∗ is com-

mon knowledge among the individuals’.

The essence of the asymmetry of information/knowledge between the planner and the

individuals involves the identification function π and the realized state of the economy

θ. Recall that π : Θ → ΩP is a bijection and ΩP ⊂ Ω∗. Thus, π : Θ → Ω∗ is an

injection.

The following is the notion of consistency (de Clippel, 2014):

12A binary relation R ⊆ X ×X is reflexive if for all x ∈ X, xRx; complete if for all x, y ∈ X either
xRy or yRx or both; and transitive if for all x, y, z ∈ X with xRy and yRz implies xRz.
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Definition 1. Given an SCC f : Θ→ X , a profile of sets S := (Si(x, θ))i∈N, θ∈Θ, x∈f(θ)

is consistent with f : Θ→ X if

(i) x ∈ Cπ(θ)
i (Si(x, θ)), for all i ∈ N and θ ∈ Θ and x ∈ f(θ); and

(ii) x ∈ f(θ) and x /∈ f(θ′) for some θ, θ′ ∈ Θ implies there is j ∈ N such that

x 6∈ Cπ(θ′)
j (Sj(x, θ)).

S(f) denotes the set of all profiles of sets that are consistent with f .

In words, a profile of sets S is consistent with a given SCC f : Θ → X , if (i) the

set Si(x, θ) is a choice set of alternative x by individual i at state π(θ), for every i ∈ N

and θ ∈ Θ and x ∈ f(θ); and (ii) if alternative x is f -optimal at state θ but not at

state θ′ for some θ, θ′ ∈ Θ, then there exists an individual j ∈ N such that x is not

chosen from Sj(x, θ) by j at π(θ′).

A mechanism µ = (A, g) assigns each individual i ∈ N a non-empty message space

Ai and specifies an outcome function g : A → X where A = ×j∈NAj. M denotes the

set of all mechanisms.

Given a mechanism µ ∈ M and a−i ∈ A−i := ×j 6=iAj, the opportunity set of

individual i pertaining to others’ message profile a−i in mechanism µ is Oµ
i (a−i) :=

g(Ai, a−i) where g(Ai, a−i) = {g(ai, a−i) : ai ∈ Ai}.

In our setup, a sympathizer of the social goal is assumed to be inclined toward

the truthful revelation of the societal choice topography to the planner. As mentioned

before, a sympathizer is not a snitch or an informer in the sense that he does not feel

any obligation and/or inclination to reveal the state of the economy, but serves the

planner as a guide (without asking for compensation of any sort). Our results show

that the revelation of the whole choice topography is not needed, and announcements

of profiles of sets consistent with the SCC f are sufficient for implementation. In other

words, we do not need all the information pertaining to individuals’ state-contingent

choice behavior in order to implement the SCC f . That is why, in what follows, we

restrict our attention to the truthful revelation of consistency.

As a result, one can assume the sympathizer is inclined toward truthful revelation

of consistency. To define this, we consider mechanisms in which one of the components
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of each individual’s message space involves the announcement of a profile of choice sets

indexed for i ∈ N , θ ∈ Θ, and x ∈ f(θ). We refer to such game forms as mechanisms

involving the announcement of a profile of choice sets and denote the set of such

mechanisms byM∗ ⊂M. To that regard, we let S denote the set of all profile of sets

of alternatives S = (Si(x, θ))i∈N, θ∈Θ, x∈f(θ) with the property that x ∈ Si(x, θ) for all

i ∈ N , θ ∈ Θ, x ∈ f(θ). Naturally, S(f) ⊂ S. As a result, the mechanism µ ∈ M∗ is

such that Ai := S ×Mi for each i ∈ N for some non-empty Mi and M := ×i∈NMi and

a generic message (alternatively, action) ai ∈ Ai is denoted by ai = (S(i),mi).

In what follows, we extend individuals’ choices on alternatives to choices on mes-

sages concerning mechanisms µ ∈M∗.

For any given µ ∈ M∗ and state ω ∈ Ω, the correspondence BRω
i : A−i � Ai

identifies the individual choices of agent i on his message space Ai (i.e., BRω
i (a−i) ⊂ Ai

identifies i’s chosen messages at ω when others’ message profile is given by a−i). In

particular, if individual i is a standard economic agent who is not weakly inclined

toward consistency (i.e., not a weak sympathizer) at ω ∈ Ω, then for all a−i ∈ A−i,

ai ∈ BRω
i (a−i) if and only if g(ai, a−i) ∈ Cω

i (Oµ
i (a−i)).

Otherwise, the following must hold:

Definition 2. Given a mechanism µ ∈M∗, we say that individual i ∈ N is

1. weakly inclined toward consistency at a state ω ∈ Ω if for all a−i ∈ A−i,

(i) g((S(i),mi), a−i), g((S̃(i),mi), a−i) ∈ Cω
i (Oµ

i (a−i)) with S(i) ∈ S(f), S̃(i) ∈

S \ S(f), and mi ∈ Mi implies (S(i),mi) ∈ BRω
i (a−i) and (S̃(i),mi) /∈

BRω
i (a−i); and

(ii) in all other cases, ai ∈ BRω
i (a−i) if and only if g(ai, a−i) ∈ Cω

i (Oµ
i (a−i)).

2. inclined toward consistency at a state ω ∈ Ω if for all a−i ∈ A−i,

(i) g((S(i),mi), a−i), g((S̃(i), m̃i), a−i) ∈ Cω
i (Oµ

i (a−i)) with S(i) ∈ S(f), S̃(i) ∈

S \ S(f), and mi, m̃i ∈ Mi implies (S(i),mi) ∈ BRω
i (a−i) and (S̃(i), m̃i) /∈

BRω
i (a−i); and
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(ii) in all other cases, ai ∈ BRω
i (a−i) if and only if g(ai, a−i) ∈ Cω

i (Oµ
i (a−i)).

We call an individual weakly inclined toward consistency at a state ω ∈ Ω a weak

sympathizer at ω, and one who is inclined toward consistency at ω ∈ Ω a sympathizer

at ω.

The first part of Definition 2 says the following: Given mechanism µ, any one

of others’ actions a−i, and any state ω ∈ Ω, a weak sympathizer i at ω chooses to

announce a consistent profile of sets S(i) as well as a message profile mi; he does not

choose to announce an inconsistent profile S̃(i) and to select the same message profile

mi whenever both action profiles, (S(i),mi) and (S̃(i),mi), lead to alternatives which are

among those chosen by individual i at state ω from his opportunity set corresponding

to others’ behavior a−i (namely, Oµ
i (a−i)). On the other hand, the second part of

Definition 2 demands the following: Given mechanism µ, any of others’ actions a−i,

and state ω ∈ Ω, a sympathizer i at ω chooses to announce a consistent profile of sets

S(i) while selecting a message profile mi; he does not choose to announce an inconsistent

profile S̃(i) coupled with selecting some other message profile m̃i whenever both action

profiles, (S(i),mi) and (S̃(i), m̃i), result in alternatives that are among the chosen by i

at ω from Oµ
i (a−i).

As a consequence, every individual inclined toward consistency at a state ω is

also weakly inclined toward consistency at ω. That is, every sympathizer is a weak

sympathizer. We employ the following sympathy properties in our results:

Definition 3. We say that the environment satisfies the weak-sympathizer property

if, for every admissible state ω ∈ Ω∗, there exits at least one weak sympathizer at ω.

Moreover, the sympathizer property holds if, for every admissible state ω ∈ Ω∗, there

are at least two sympathizers at ω. The identity of each (weak) sympathizer associated

with a given admissible state is privately known only by himself.

Given a mechanism µ ∈M , a∗ ∈ A constitutes a Nash equilibrium of µ at a state

θ ∈ Θ if a∗i ∈ C
π(θ)
i (Oµ

i (a∗−i)) for all i ∈ N . When attention is restricted to µ ∈ M∗,

we say that a∗ ∈ A is a Nash∗ equilibrium of µ at a state θ ∈ Θ if a∗i ∈ BR
π(θ)
i (a∗−i)
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for all i ∈ N . We note that when there are no sympathizers, the two notions coincide.

Otherwise, the set of Nash∗ equilibrium of a mechanism might be a proper subset of

the set of Nash equilibrium of the same mechanism.

Nash implementability is defined as follows: an SCC f : Θ → X is (fully) imple-

mentable by a mechanism µ ∈M in Nash equilibrium if (i) for any θ ∈ Θ and x ∈ f(θ),

there exists ax ∈ A such that g(ax) = x and x ∈ Cπ(θ)
i (Oµ

i (ax−i)) for all i ∈ N ; and (ii)

for any θ ∈ Θ, a∗ ∈ A with g(a∗) ∈ Cπ(θ)
i (Oµ

i (a∗−i)) for all i ∈ N implies g(a∗) ∈ f(θ).

If an SCC f : Θ → X is implementable by a mechanism µ ∈ M in Nash equilib-

rium, we define the profile of sets sustained by µ as follows: Sµ := (Sµi (x, θ))i∈N, θ∈Θ, x∈f(θ)

with Sµi (x, θ) := Oµ
i (ax−i) for any i ∈ N , θ ∈ Θ, and x ∈ f(θ) while ax ∈ A is such that

g(ax) = x and g(ax) ∈ Cπ(θ)
i (Oµ

i (ax−i)) for all i ∈ N .

The necessity result of de Clippel (2014) tells us that if an SCC f is Nash im-

plementable by a mechanism µ ∈ M, then Sµ ∈ S(f). That is, the profile of sets

sustained by µ is consistent with f .

On the other hand, the notion of Nash∗ implementation is the following:

Definition 4. We say that an SCC f : Θ→ X is (fully) implementable by a mecha-

nism µ ∈M in Nash∗ equilibrium, if

(i) for any θ ∈ Θ and x ∈ f(θ), there exists ax ∈ A such that g(ax) = x and

axi ∈ BR
π(θ)
i (ax−i) for all i ∈ N ; and

(ii) for any θ ∈ Θ, a∗ ∈ A with a∗i ∈ BR
π(θ)
i (a∗−i) for all i ∈ N implies g(a∗) ∈ f(θ).

When the mechanism µ in this definition is in M \M∗, Nash∗ implementation

coincides with Nash implementation; being a (weak) sympathizer does not put any

additional restrictions on individuals’ choices.

In Appendix A, we present a necessity result with Nash∗ implementation.13 The

necessary condition we attain is not independent of the mechanism µ, and hence, it

is not helpful in constructing mechanisms that will be employed in the sufficiency

direction.
13This result shows that the necessary condition we obtain differs from consistency whenever the

mechanism Nash∗ implementing a given SCC, µ, is in M∗ and a (weak) sympathizer announces an
inconsistent profile of sets in a Nash∗ equilibrium.
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Some of our results adopt the following assumptions:

Definition 5. We say that the environment features societal non-satiation whenever,

for any admissible state ω ∈ Ω∗ and any alternative x ∈ X, there is an individual i ∈ N

such that x /∈ Cω
i (X). Moreover, we say that the economic environment assumption

holds whenever, for any admissible state ω ∈ Ω∗ and any alternative x ∈ X, there are

two individuals i, j ∈ N with i 6= j such that x /∈ Cω
i (X) ∪ Cω

j (X).

The economic environment assumption implies societal non-satiation. The latter

requires that for any given admissible state, all individuals do not choose the same

alternative from the set of all alternatives at that state. The former demands that for

every admissible state and alternative, there are two individuals not choosing that al-

ternative from the set of all alternatives at that given state. The economic environment

assumption involves a weak form of disagreement among the society when selecting an

alternative from the set of all alternatives.

Next, we define the no-veto property:

Definition 6. We say that an SCC f : Θ → X satisfies the no-veto property if for

any θ ∈ Θ, x ∈ Cπ(θ)
i (X) for all i ∈ N \ {j} for some j ∈ N implies x ∈ f(θ).

This property demands that if an alternative is chosen from the set of all alternatives

at a state by every individual but one, then that alternative has to be f -optimal at

that state. Evidently, the welfare of the individual who does not agree with the rest

of the society is ignored in this notion.14 Moreover, we wish to note that the no-veto

property never applies in economic environments.

4 Three or more individuals

The following is the first of our sufficiency results for three or more individuals.

It utilizes a mechanism involving the announcement of a profile of choice sets and

extracting the desired information about consistency from the society.

14Benoit and Ok (2006) and Barlo and Dalkiran (2009) obtain full implementation results employing
a property called limited-veto-power, a weaker condition than the no-veto property.

17



Theorem 1. Suppose n ≥ 3. Consider an economic environment satisfying the weak-

sympathizer property, and assume that the SCC f : Θ → X is such that S(f) 6= ∅.

Then, f is Nash∗ implementable by a mechanism µ ∈M∗. Furthermore, for any θ ∈ Θ,

in every Nash∗ equilibrium ā = (S̄(i), m̄i)i∈N ∈ A of mechanism µ at θ, S̄(i) = S for

some S ∈ S(f) for all i ∈ N \ {j} for some j ∈ N .

Theorem 1 provides a clear and useful message in economic environments satis-

fying the weak-sympathizer property: The relevant information about societal choice

topography can be elicited from individuals almost unanimously whenever there exists

a profile of sets consistent with that social goal. The identity of the weak sympathizer

associated with a given prevailing state is not known to the planner and the other

individuals.

The following is an implication of this theorem: If the set of prevailing states is

not in one-to-one correspondence with all the admissible payoff-relevant characteristics

of this environment (i.e., ΩP is a strict subset of Ω∗), the planner needs to ‘know’

individuals’ state-contingent choices to identify a consistent profile of choice sets. What

Theorem 1 implies is that the designer can learn the realized state, as well as the

relevant information about the societal choice topography from the individuals, using

the same mechanism whenever there is a profile of choice sets consistent with that social

goal. Thus, the economic environment assumption and the weak-sympathizer property

empower us to dispose of the planner’s need to know individuals’ state-contingent

choices whenever the social goal has a consistent profile of sets.

The existence of a profile of choice sets consistent with the given SCC f is akin to

a feasibility requirement: the necessity result tells us that S(f) = ∅ implies that f is

not Nash implementable. That is, Nash implementability of the SCC f is unattainable.

Thus, insisting on the existence of a consistent profile of sets in our theorem is natural.

On the other hand, if one was to restrict attention to the sufficiency direction, the

following concern may arise: How would the planner know if there is a profile of choice

sets consistent with the SCC he wishes to implement? This is a relevant question, as

the designer does not know individuals’ state-contingent choices. An auxiliary result

helps us deal with this issue: the planner infers that there is a profile of sets consistent
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with the SCC f whenever he knows that there is a larger set of states and an extension

of f onto that set such that this extension has a consistent profile of choice sets.

We can obtain a tangible display of this by considering the efficiency notion intro-

duced and analyzed by de Clippel (2014): The de Clippel efficient SCC is f eff : Ω→ X

and it is defined for any feasible state ω ∈ Ω by f eff(ω) := {x ∈ X | ∃Y :=

(Yi)i∈N with Yi ∈ X and x ∈ Cω
i (Yi),∀i ∈ N, and ∪i∈N Yi = X}. It turns out that

f eff is Nash implementable on all domains Ω′ ⊂ Ω (de Clippel, 2014, Proposition 3).

Therefore, for any set of states of the economy Θ and injective identification function

π : Θ → Ω∗, the planner, without knowing π, infers that S(f eff |π(Θ)) 6= ∅ where

S(f eff |π(Θ)) = {S ∈ S : S = (Si(x, ω))i∈N, ω∈Ω, x∈feff(ω) such that π−1(ω) ∈ Θ}. That

is, the designer deduces that, for any Θ and injective π : Θ → Ω∗, the restriction of

f eff on π(Θ) has a consistent profile of choice sets.

In fact, our auxiliary result establishes that existence of a profile of sets consistent

with an SCC f follows whenever there is a profile of sets consistent with an extension

of the SCC f onto the set of admissible states.

We need the following for our auxiliary result: given an SCC f : Θ → X and an

identification function π : Θ→ Ω∗, an extension of f onto Ω∗ is an SCC fΩ∗ : Ω∗ → X

such that fΩ∗(π(θ)) = f(θ) for all θ ∈ Θ.

Lemma 1. Suppose there exists an extension of the SCC f : Θ → X onto the set of

admissible states Ω∗, fΩ∗ : Ω∗ → X , such that fΩ∗ possesses a consistent profile of sets.

Then, S(f) 6= ∅.

Combining the necessity of Nash implementation and this lemma implies the fol-

lowing: S(f) 6= ∅ whenever there exists an extension of the SCC f : Θ → X onto Ω∗,

fΩ∗ : Ω∗ → X , such that fΩ∗ is Nash implementable on the domain Ω∗. It is useful to

point out that the hypothesis of Lemma 1 does not involve the Nash implementability

of an extension of the given SCC on the domain of admissible states, but rather the

existence of a profile of sets consistent with an extension of the given SCC onto the

domain of admissible states. Indeed, the extension of f onto Ω∗, fΩ∗ , that may be used

in the lemma, may violate some needed properties (such as no-veto property and/or
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unanimity) at states ω ∈ Ω∗ \ ΩP ; consequently, the sufficiency result of de Clippel

(2014) may not apply to fΩ∗ .

As a result, using Lemma 1 we can restate our main result in the following corollary

presented without a proof:

Corollary 1. Suppose n ≥ 3. Consider an economic environment satisfying the weak-

sympathizer property, and assume that there exists an extension of the SCC f : Θ→ X

onto Ω∗, fΩ∗ : Ω∗ → X , which possesses a consistent profile of choice sets. Then,

f is Nash∗ implementable by a mechanism µ ∈ M∗. Moreover, for any θ ∈ Θ, in

every Nash∗ equilibrium ā = (S̄(i), m̄i)i∈N ∈ A of mechanism µ at θ, S̄(i) = S for some

S ∈ S(f) for all i ∈ N \ {j} for some j ∈ N .

Next, we analyze how to weaken the economic environment assumption specified

in Definition 5. To that regard, we need to discuss the construction of the mechanism

employed in the proof of Theorem 1. Our mechanism asks each individual i to choose

a feasible profile of choice sets S(i) ∈ S; a state of the economy θ(i) ∈ Θ; an alternative

x(i) ∈ X; a natural number k(i). Rule 1 decrees that if all but one individual announce

the same feasible profile of choice sets, S, while the remaining choices of all individuals

involve θ and x with x ∈ f(θ), then the outcome function equals x. On the other

hand, Rule 2 demands that the outcome equals x whenever all but one individual i′

announce the same feasible profile of choice sets, S, and the choices of all but one

individual j involve θ and x with x ∈ f(θ) while j chooses x′ and θ′ provided that x′

is not in the choice set Sj(x, θ) listed in the profile S. If x′ were to be in the choice set

Sj(x, θ) listed in the profile S in the contingency discussed in the previous sentence,

then Rule 2 decrees that the outcome is x′. Rule 3 encompasses all the other situations

and involves the integer game: the outcome equals the alternative chosen by the agent

with the lowest index among those who choose the highest natural number.

The economic environment assumption dispenses with the Nash∗ equilibria that

may arise under Rules 2 and 3 as well as that under Rule 1. Equilibria that arise under

Rule 3 are not desirable because of the following: in an equilibrium under Rule 3, all

individuals apart from the sympathizers do not need to choose a consistent profile of
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sets. As a result, the relevant information about the societal choice topography cannot

be extracted in equilibrium from these individuals. Fortunately, societal non-satiation

is sufficiently strong to rule out such equilibria.

If we adopt societal non-satiation along with the no-veto property, then we allow for

some additional equilibria under Rules 1 and 2. Then, for any prevailing state, we need

at least two sympathizers. This is because our mechanism is such that when we deal with

an equilibrium at a prevailing state under Rules 1 or 2 in which all but one individual

announce the same profile of sets while the odd man out is announcing a different

profile, by changing his announcement concerning the profile, each agent different from

the odd man out can trigger Rule 3, and hence, obtain any alternative he desires by

also changing his integer choice. Because we need the equilibrium announcement of

the profile of sets by all but the odd man out to be consistent with the social goal, we

have to make sure that there is a sympathizer (at this state) among those announcing

the same profile; weak sympathy does not suffice as this agent also needs to change his

integer choice.15

In what follows, we provide the formal presentation and execution of the above-

discussed result by replacing the no-veto property with a weaker condition that is

inspired by condition µ of Moore and Repullo (1990) (alternatively, condition λ of

Korpela (2012)) and delivers a similar requirement as in de Clippel (2014). It says

that for any profile of choice sets consistent with the social goal the following must

hold: (i) an alternative x must be f -optimal at θ whenever it is chosen by all but one

individual at π(θ) from the set of all alternatives while the odd man out chooses x

at some other state π(θ′) from the choice set (associated with the consistent profile)

15The need to have an additional sympathizer is a novel point that does not appear in Dutta and
Sen (2012) and it is one of the reasons why they can conduct their analysis with only one partially
honest individual. They work in the rational domain where states are in one-to-one correspondence
with the payoff-relevant aspects and assume that a partially honest individual strictly prefers to reveal
the state truthfully when he is indifferent. To see why they do not need an additional partially honest
individual, consider the canonical mechanism without the announcement of a profile of choice sets
and a Nash equilibrium in which the rule that implies the opportunity sets of all but one individual,
i∗, equals X. Then, they do not need to guarantee that one of those individuals i 6= i∗ (different
from the odd man out i∗) is partially honest as the no-veto property delivers the desired conclusion.
However, in our case, we need to worry about “sympathy” to ensure that one of those individuals
i 6= i∗ is inclined toward the truthful revelation of a consistent profile of sets.
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corresponding to θ′ and some f -optimal alternative x′ in θ′; and (ii) the social goal has

to respect unanimity, meaning that if an alternative x is chosen by every individual at

a state π(θ) from the set of all alternatives, then x has to be f -optimal at θ. The no-

veto property implies this condition. On the other hand, in an environment featuring

societal non-satiation, unanimity holds vacuously; thus, it can be dispensed with.

Now, we state our second sufficiency result. Indeed, this theorem can be regarded

as a robustness check for Theorem 1.

Theorem 2. Suppose n ≥ 3. Consider an environment satisfying the sympathizer

property, and assume that the SCC f : Θ→ X is such that S(f) 6= ∅ and the following

hold: For any θ ∈ Θ,

(i) for any S ∈ S(f), x ∈ C
π(θ)
j (Sj(x

′, θ′)) where j ∈ N , θ′ ∈ Θ, x′ ∈ f(θ′),

Sj(x
′, θ′) = S|j,x′,θ′, and x ∈ Cπ(θ)

i (X) for all i ∈ N \ {j} implies x ∈ f(θ); and

(ii) x ∈ Cπ(θ)
i (X) for all i ∈ N implies x ∈ f(θ).

Then, f is Nash∗ implementable by a mechanism µ ∈ M∗. Moreover, if the environ-

ment features societal non-satiation, then (ii) above can be dispensed with and for any

θ ∈ Θ, in every Nash∗ equilibrium â = (Ŝ(i), m̂i)i∈N ∈ A of µ at θ, Ŝ(i) = S for some

S ∈ S(f) for all i ∈ N \ {j} for some j ∈ N .

It is straightforward to see that the no-veto property implies (i) and (ii) of the

hypothesis of Theorem 2. Therefore, we obtain the following immediate corollary:

Corollary 2. Suppose n ≥ 3. Consider an environment featuring societal non-satiation

and the sympathizer property, and assume that the SCC f : Θ → X is such that

S(f) 6= ∅ and satisfies the no-veto property. Then, f is Nash∗ implementable by a

mechanism µ ∈M∗ such that in every Nash∗ equilibrium â = (Ŝ(i), m̂i)i∈N ∈ A of µ at

θ, Ŝ(i) = S for some S ∈ S(f) for all i ∈ N \ {j} for some j ∈ N .

Theorem 2 demands that there exists a profile of sets consistent with the SCC f

with some requirements that cannot be verified by the planner, who does not know in-
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dividuals’ state-contingent choices.16 However, using the arguments leading to Lemma

1 we can modify Corollary 2 (which uses the no-veto property instead of the hypothesis

of Theorem 2) to attain the conclusion that the planner infers S(f) 6= ∅ whenever he

knows that f has an extension that possesses a consistent profile of sets:17

Corollary 3. Suppose n ≥ 3. Consider an environment featuring societal non-satiation

and the sympathizer property, and assume that the SCC f : Θ→ X satisfies the no-veto

property and possesses an extension onto Ω∗, fΩ∗ : Ω∗ → X , which has a consistent

profile of sets. Then, f is Nash∗ implementable by a mechanism µ ∈ M∗ such that in

every Nash∗ equilibrium â = (Ŝ(i), m̂i)i∈N ∈ A of µ at θ, Ŝ(i) = S for some S ∈ S(f)

for all i ∈ N \ {j} for some j ∈ N .

16Taking steps similar to those discussed following Theorem 1 does not suffice to ease the extent of
the information requirement of our hypothesis. Even with societal non-satiation, we cannot modify
Theorem 2 with a condition that demands that the planner knows that there exists an extension of
f onto the set of admissible states Ω∗, fΩ∗ : Ω∗ → X , such that for any profile of sets consistent
with fΩ∗ , denoted by SΩ∗ = (S∗i (x, ω))i∈N, ω∈Ω∗, x∈fΩ∗ (ω), it must be that x ∈ Cωj (S∗j (x′, ω′)) with
j ∈ N , ω′ ∈ Ω∗, x′ ∈ fΩ∗(ω

′), and x ∈ Cωi (X) for all i ∈ N with i 6= j implies x ∈ fΩ∗(ω). However,
this is not sufficient as it does not empower us to ‘extend’ a profile of sets consistent with f , SΘ :=
(Si(x, θ))i∈N, θ∈Θ, x∈f(θ), to a profile of sets consistent with fΩ∗ , S̄Ω∗ = (S̄∗i (x, ω))i∈N, ω∈Ω∗, x∈fΩ∗ (ω),
such that Si(x, θ) = S̄∗i (x, π(θ)) for all θ ∈ Θ and x ∈ f(θ). As a result, what the planner needs to know
in addition to the above is: for all profiles of sets consistent with f , SΘ := (Si(x, θ))i∈N, θ∈Θ, x∈f(θ),
there exists a profile of sets consistent with fΩ∗ , S̄Ω∗ = (S̄∗i (x, ω))i∈N, ω∈Ω∗, x∈fΩ∗ (ω), such that
Si(x, θ) = S̄∗i (x, π(θ)) for all θ ∈ Θ and x ∈ f(θ). So, the addition of this condition does not help ease
the need for the designer to know individuals’ state-contingent choices.

17If the extension of f onto the set of admissible states, Ω∗, satisfies the no-veto property, then the
planner infers that f satisfies the no-veto property on the set of states of the economy, Θ, as well.
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Appendix

A A necessity result with Nash∗ implementation

Using Definition 2 delivers the following necessity result for Nash∗ implementation

under weak sympathy. This result also applies to the case under sympathy because

every sympathizer is a weak sympathizer. However, the necessity condition we obtain

is not independent of the mechanism that Nash∗ implements the SCC at hand.

Proposition 1. Suppose an SCC f : Θ→ X is Nash∗ implementable by a mechanism

µ ∈ M. If µ ∈ M \M∗, then there exists a consistent profile of sets with f . On the

other hand, if µ ∈M∗, then there exists a profile of sets Sµ := (Sµi (x, θ))i∈N, θ∈Θ, x∈f(θ)

such that

(i) x ∈ Cπ(θ)
i (Sµi (x, θ)) for all i ∈ N , θ ∈ Θ, and x ∈ f(θ); and

(ii) x ∈ f(θ) and x /∈ f(θ′) for some θ, θ′ ∈ Θ implies there is j ∈ N such that

(ii.1) either j is not a weak sympathizer at state π(θ′) and x /∈ Cπ(θ′)
j (Sµj (x, θ));

(ii.2) or j is a weak sympathizer at state π(θ′) with x ∈ Cπ(θ′)
j (Sµj (x, θ)) and

(ii.2.a) there exists S̄ ∈ S(f) such that g((S̄,mx
j ), a

x
−j) ∈ C

π(θ′)
j (Sµj (x, θ)) and

(ii.2.b) for all S̃ ∈ S(f), we have that g((S̃,mx
j ), a

x
−j) /∈ C

π(θ)
j (Sµj (x, θ)) when-

ever j is a weak sympathizer at π(θ)

where ax = (S(i),x,mx
i )i∈N ∈ A is such that g(ax) = x and axi ∈ BR

π(θ)
i (ax−i).

Proof. The existence of a consistent profile of sets follows from de Clippel (2014)

when µ ∈ M \M∗. Now, suppose µ ∈ M∗. Let Sµ := (Sµi (x, θ))i∈N, θ∈Θ, x∈f(θ) with

Sµi (x, θ) := Oµ
i (ax−i) for any i ∈ N , θ ∈ Θ, and x ∈ f(θ), where ax = (S(i),x,mx

i )i∈N ∈ A

is such that g(ax) = x and axi ∈ BR
π(θ)
i (ax−i), i.e., ax is a Nash∗ equilibrium associated

with alternative x ∈ f(θ).

Then, (i) of the proposition follows from (i) of Nash∗ implementation.

For (ii), suppose that x ∈ f(θ) and x /∈ f(θ′) for some θ, θ′ ∈ Θ. Then, we need to

have j ∈ N such that axj /∈ BRπ(θ′)
j (ax−j) because otherwise ax would be Nash∗ at θ′,

and hence, x ∈ f(θ′) by (ii) of Nash∗ implementation; a contradiction.
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If j is not a weak sympathizer at π(θ′), then (ii.1) of the proposition follows.

If j is a weak sympathizer at π(θ′) with x ∈ C
π(θ′)
j (Sµj (x, θ)), then this coupled

with axj /∈ BR
π(θ′)
j (ax−j) implies that S(j),x /∈ S(f) and there exists S̄ ∈ S(f) such that

g((S̄,mx
j ), a

x
−j) ∈ C

π(θ′)
j (Sµj (x, θ)), because otherwise we would obtain a contradiction

to j being a weak sympathizer at π(θ′).18 Also, if j were to be a weak sympathizer at

π(θ), x ∈ f(θ) and ax being Nash∗ at θ requires that g((S̃,mx
j ), a

x
−j) /∈ C

π(θ)
j (Sµj (x, θ))

for all S̃ ∈ S(f) since S(j),x /∈ S(f) and x ∈ Cπ(θ)
j (Sµj (x, θ)).

B Proofs

B.1 The proof of Theorem 1

The construction featured in the proof utilizes the following mechanism µ ∈ M∗

with µ = (A, g) defined as follows: Ai := S × Θ × X × N where a generic member

ai = (S(i), θ(i), x(i), k(i)) ∈ Ai with S(i) ∈ S, θ(i) ∈ Θ, x(i) ∈ X, and k(i) ∈ N with the

convention that mi = (θ(i), x(i), k(i)) and Mi := Θ ×X × N. The outcome function is

defined via the Rules specified in Table 1.

The proof is presented via two claims. The first establishes (i) of Nash∗ implemen-

tation holds, while the second delivers (ii) of Nash∗ implementation.

Claim 1. For all θ ∈ Θ and for all x ∈ f(θ), define ax ∈ A by axi = (S, θ, x, 1) with

S ∈ S(f). Then, axi ∈ BR
π(θ)
i (ax−i) for all i ∈ N and g(ax) = x.

Proof. Rule 1 applies and g(ax) = x. As S(i) = S for all i ∈ N , the individual

deviations can only result in Rules 1 and 2. Hence, Oµ
i (ax−i) = Si(x, θ). Thus, if i is not

a weak sympathizer at state π(θ), then (i) of consistency saying that x ∈ Cπ(θ)
i (Si(x, θ))

is equivalent to axi ∈ BR
π(θ)
i (ax−i). If i is a weak sympathizer at π(θ), then S ∈ S(f)

and x ∈ Cπ(θ)
i (Si(x, θ)) (due to (i) of consistency) imply axi ∈ BR

π(θ)
i (ax−i).

18Here, individual j announces an inconsistent profile of sets, S(j),x, in the Nash∗ equilibrium
sustaining alternative x at state θ in mechanism µ ∈ M∗ even though he is a weak sympathizer at
state π(θ). This displays that information extraction concerning the choice topography and the state
demands the construction of the right mechanism because a weak sympathizer is not obliged to reveal
the realized state and/or refrain from manipulating the outcome via inconsistent announcements.
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Rule 1 : g(a) = x

if S(i) = S for all i ∈ N \ {i′}
for some i′ ∈ N, and
mj = (θ, x, ·) for all j ∈ N
with x ∈ f(θ),

Rule 2 : g(a) =


x′

if x′ ∈ Sj(x, θ)
and Sj(x, θ) = S |j,x,θ,

x otherwise.

if S(i) = S for all i ∈ N \ {i′}
for some i′ ∈ N, and
mi = (θ, x, ·) for all i ∈ N \ {j}
with x ∈ f(θ), and
mj = (θ′, x′, ·) 6= (θ, x, ·),

Rule 3 : g(a) = x(i∗) where otherwise.
i∗ = min{j ∈ N : k(j) ≥ maxi′∈N k

(i′)}

Table 1: The outcome function of the mechanism with three or more individuals.

Claim 2. If a∗ ∈ A is a Nash∗ equilibrium of µ ∈M∗ at some θ ∈ Θ, then g(a∗) ∈ f(θ).

That is, a∗ ∈ A such that a∗i ∈ BR
π(θ)
i (a∗−i) for all i ∈ N for some θ ∈ Θ implies

g(a∗) ∈ f(θ).

Proof. Consider a Nash∗ equilibrium a∗ at θ under Rule 1 such that a∗i = (S′, θ′, x′, k′)

with x′ ∈ f(θ′), and a∗i ∈ BR
π(θ)
i (a∗−i) for all i ∈ N . Then, as Rule 1 holds g(a∗) = x′

and Oµ
i (a∗−i) = Si(x

′, θ′) for all i ∈ N due to Rule 1 and Rule 2.

Notice that S′ ∈ S(f). Because, otherwise, S′ /∈ S(f) and letting i be the weak sym-

pathizer associated with the state π(θ) and i deviating to a′i = (S′′,m∗i , a
∗
−i) with S′′ ∈

S(f) and m∗i = (θ′, x′, k′) implies g(S′′,m∗i , a
∗
−i) = g(a∗) = x′ ∈ Cπ(θ)

i (Si(x
′, θ′)) (due

to a∗i ∈ BR
π(θ)
i (a∗−i) implying x′ = g(a∗) ∈ C

π(θ)
i (Oµ

i (a∗−i)) and Oµ
i (a∗−i) = Si(x

′, θ′))

while (S′′,m∗i ) ∈ BR
π(θ)
i (a∗−i) and (S′,m∗i ) /∈ BR

π(θ)
i (a∗−i), a contradiction to a∗ being

a Nash∗ equilibrium at θ.

Assume that x′ /∈ f(θ) or else the proof concludes. Because that x′ ∈ f(θ′) and

x′ /∈ f(θ) and S′ ∈ S(f), by (ii) of consistency, there exists j ∈ N such that x′ /∈

C
π(θ)
j (Sj(x

′, θ′)). Recall that Oµ
j (a∗−j) = Sj(x

′, θ′). The desired contradiction is achieved

because then x′ /∈ Cπ(θ)
j (Sj(x

′, θ′)) implies a∗j /∈ BR
π(θ)
j (a∗−j).

Another type of Nash∗ equilibrium a∗ at θ under Rule 1 is one where there exists an
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individual i′ such that a∗i′ = (S′′, θ′, x′, k′) whereas a∗i = (S′, θ′, x′, k′) for all i ∈ N \ {i′}

with S′ 6= S′′. Then, by Rule 1 and Rule 3, Oµ
i (a∗−i) = X for all i ∈ N \ {i′} as any one

of i 6= i′ could deviate to ai = (S, θ′, y, k) with S 6= S′, y ∈ X and k > k′. Since a∗ is a

Nash∗ equilibrium at θ, we observe that g(a∗) ∈ Cπ(θ)
i (X) for all i 6= i′, a contradiction

to the economic environment assumption.

Next, we establish that there cannot be a Nash∗ equilibrium under Rule 2 or 3.

Consider any Nash∗ equilibrium ā ∈ A under either Rule 2 or 3 in order to obtain

a contradiction. In both of the cases, Oµ
j (ā−j) = X for at least n − 1 individuals j

and āi ∈ BR
π(θ)
i (ā−i) for all i ∈ N implies for at least n − 1 individuals j we have

g(ā) ∈ Cπ(θ)
j (X). This is not possible due to the economic environment assumption.

B.2 The proof of Lemma 1

By hypothesis, we have that π(Θ) ⊂ Ω∗; fΩ∗ : Ω∗ → X is such that fΩ∗(π(θ)) = f(θ)

for all θ ∈ Θ. Let SΩ∗ := (S∗i (x, ω))i∈N, ω∈Ω∗, x∈fΩ∗ (ω) be a profile of sets consistent with

fΩ∗ : (i) it must be that x ∈ Cω
i (S∗i (x, ω)) for all i ∈ N and ω ∈ Ω∗ and x ∈ fΩ∗(ω); and

(ii) having x ∈ fΩ∗(ω) and x /∈ fΩ∗(ω
′) with ω, ω′ ∈ Ω∗ implies there is j ∈ N such that

x /∈ Cω′
j (S∗j (x, ω)). Define SΘ := (Si(x, θ))i∈N, θ∈Θ, x∈f(θ) with Si(x, θ) := S∗i (x, π(θ))

for all i ∈ N and θ ∈ Θ and x ∈ f(θ).

Then, as f(θ) = fΩ∗(π(θ)) and π(Θ) ⊂ Ω∗, x /∈ Cπ(θ′)
j (Sj(x

′, θ′)) for some j ∈ N

and θ′ ∈ Θ and x′ ∈ f(θ′) implies x /∈ Cπ(θ′)
j (S∗j (x

′, π(θ′))) for j ∈ N and π(θ′) ∈ Ω∗

and x′ ∈ fΩ∗(π(θ′)). Thus, SΘ satisfies (i) of consistency.

For (ii) of consistency suppose that x ∈ f(θ) and x /∈ f(θ′) for some θ, θ′ ∈ Θ.

Then, as π : Θ → Ω∗ we have that π(θ), π(θ′) ∈ Ω∗ and due to fΩ∗(π(θ̃)) = f(θ̃)

for all θ̃ ∈ Θ we have that x ∈ fΩ∗(π(θ)) and x /∈ fΩ∗(π(θ′)). As SΩ∗ is consistent

with fΩ∗ , by (ii) of consistency, there is j ∈ N such that x /∈ Cπ(θ′)
j (S∗j (x, π(θ))). By

construction, Sj(x, θ) = S∗j (x, π(θ)). Thus, x /∈ C
π(θ′)
j (Sj(x, θ)). Hence, SΘ satisfies

(ii) of consistency.

B.3 The proof of Theorem 2

The proof employs mechanism µ used in the proof of Theorem 1 (involving rules

specified in Table 1). Moreover, every sympathizer at π(θ) is a weak sympathizer at
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π(θ). Thus, the proof of Claim 1 can be used without any modifications to prove that

for all θ ∈ Θ and for all x ∈ f(θ), ax ∈ A defined by axi = (S, θ, x, 1) with S ∈ S(f) is

such that axi ∈ BR
π(θ)
i (ax−i) for all i ∈ N and g(ax) = x. What remains to be shown is:

Claim 3. If a∗ ∈ A is a Nash∗ equilibrium of µ ∈ M∗ at some θ ∈ Θ, then g(a∗) ∈

f(θ). I.e., a∗ ∈ A such that a∗i ∈ BR
π(θ)
i (a∗−i) for all i ∈ N for some θ ∈ Θ implies

g(a∗) ∈ f(θ).

Proof. The proof of the claim involves the analysis of three cases.

Case 1. Let a∗ ∈ A be a Nash∗ equilibrium at θ ∈ Θ such that Rule 1 holds. That

is, a∗i = (S(i), θ′, x′, k′) for all i ∈ N with S(i′) = S for all i′ 6= j for some j ∈ N and

x′ ∈ f(θ′). Then, g(a∗) = x′ ∈ f(θ).

Proof of Case 1. First, we prove that S ∈ S(f). Therefore, in such Nash∗ equilibria,

all but one player announce the same profile of sets that must be among the consistent

profiles of sets with the SCC f .

If S(j) = S, then without loss of generality letting the first player be one of the

sympathizers at π(θ), we observe the following: If S /∈ S(f), then deviating to ā1 =

(S̄, θ′, x′, k′) with S̄ ∈ S(f) results in g(S̄,m∗1, a
∗
−1) = g(S,m∗1, a

∗
−1) = x′ (due to Rule

1) and x′ ∈ C
π(θ)
i (Oµ

i (a∗−i)) for all i ∈ N (since a∗ is a Nash∗ equilibrium) where

m∗1 = (θ′, x′, k′). Thus, a∗1 /∈ BR
π(θ)
1 (a∗−1), a contradiction to a∗ being Nash∗ at θ.

However, if S(j) 6= S and j is not a sympathizer at π(θ), then we let without

loss of generality one of the sympathizers at π(θ) be the first player and assume that

S /∈ S(f). Then, agent 1 playing ā1 = (S̄, θ′, x′, k̄) with S̄ ∈ S(f) and k̄ > k′ results in

g(S̄, m̄1, a
∗
−1) = g(S,m∗1, a

∗
−1) = x′ (due to Rules 1 and 3) and x′ ∈ Cπ(θ)

i (Oµ
i (a∗−i)) for

all i ∈ N (since a∗ is a Nash∗ equilibrium) where m∗1 = (θ′, x′, k′) and m̄1 = (θ′, x′, k̄).

Ergo, a∗1 /∈ BR
π(θ)
1 (a∗−1), a contradiction to a∗ being a Nash∗ equilibrium at θ.19

If S(j) 6= S but j is a sympathizer at π(θ), then we need another sympathizer i∗ 6= j

at π(θ): Without loss of generality, let that individual be player 1 and assume S /∈ S(f).

19This is why we have to strengthen weak sympathy to sympathy, as the deviating individual has
to change his integer choice as well.
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Then, the same arguments of the previous paragraph delivers a contradiction.20

Suppose that g(a∗) = x′ /∈ f(θ) because otherwise the proof of Case 1 concludes.

Then, x′ ∈ f(θ′) and x /∈ f(θ) and S ∈ S(f) with θ, θ′ ∈ Θ implies (due to (ii) of

consistency) there exists i∗ ∈ N such that x′ /∈ Cπ(θ)
i∗ (Si∗(x

′, θ′)). There appears two

subcases we need to check. The first is one where a∗ is such that S(i) = S for all

i ∈ N . Then, Oµ
i (a∗−i) = Si(x

′, θ′) (by Rules 1 and 2) and as a∗ is Nash∗ it must be

that x′ ∈ Cπ(θ)
i (Oµ

i (a∗−i)) for all i ∈ N . Ergo, the desired contradiction is obtained as

x′ ∈ Cπ(θ)
i∗ (Si∗(x

′, θ′)). The second subcase that we need to consider is one where a∗ is

such that S(i) = S for all i ∈ N \ {j} for some j ∈ N and S(j) 6= S. Then, by Rules 1

and 2 and 3, Oµ
i (a∗−i) = X for all i 6= j and Oµ

j (a∗−j) = Sj(x
′, θ′) where Sj(x

′, θ′) ∈ S

and S ∈ S(f) as was shown above. Because that a∗ is a Nash∗ equilibrium at θ, we

observe that x′ ∈ Cπ(θ)
i (X) for all i 6= j while x′ ∈ Cπ(θ)

j (Sj(x
′, θ′)) and x′ ∈ f(θ′). But

then (i) of Theorem 2 implies x ∈ f(θ), a contradiction with x /∈ f(θ).

Case 2. Consider a Nash∗ equilibrium a∗ at θ in which Rule 2 applies. That is, let

a∗i = (S(i),m∗i ) with S(i) = S for all i ∈ N \ {i′} for some i′ ∈ N and m∗j = (θ′, x′, k′)

for all j ∈ N \{`} for some ` ∈ N with θ′ ∈ Θ and x′ ∈ f(θ′) while m∗` = (θ′′, x′′, k′′) 6=

(θ′, x′, k′). Then, g(a∗) ∈ f(θ).

Proof of Case 2. The first step is to prove that S ∈ S(f). It should be pointed

out that this establishes the observation that in all Nash∗ equilibria in which Rule 2

applies, all but one individual announce the same profile of sets which has to be one

of the profiles of sets consistent with the SCC f .

Suppose that S /∈ S(f) and notice that there exists a sympathizer at π(θ) individual

i∗ 6= i′ with S(i∗) = S as there are at least two sympathizers at π(θ). Without loss of

generality, let i∗ = 1. If S(i′) 6= S, player 1 deviating to ā1 = (S̄, m̄1) where S̄ ∈ S(f)

and m̄1 = (θ̃, g(a∗), k̄) with θ̃ ∈ Θ and k̄ > k′, k′′ implies that Rule 3 applies and

as a result g(S̄, m̄1, a
∗
−1) = g(S,m∗1, a

∗
−1) = g(a∗) which is in C

π(θ)
1 (Oµ

1 (a∗−1)) due to

20The need for an additional sympathizer arises due to this case. To see this, suppose that there is
only one sympathizer at π(θ) and consider the situation when S(j) 6= S and j is the only sympathizer
at π(θ). Then, S /∈ S(f) does not necessarily result in a contradiction as there is no other sympathizer
at π(θ) among those who are announcing an inconsistent profile of sets S. Hence, one of the agents
whose opportunity set equals X must be inclined toward truthful revelation of consistency at π(θ).
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a∗ being a Nash∗ equilibrium at θ. But then, as player 1 is a sympathizer at π(θ),

a∗1 /∈ BR
π(θ)
1 (a∗−1), a contradiction to a∗ being Nash∗. If S(i′) = S, then all players

are announcing S; and hence, player 1 deviating to ā1 = (S̄,m∗1) where S̄ ∈ S(f)

implies that Rule 1 applies and as a result g(S̄,m∗1, a
∗
−1) = g(S,m∗1, a

∗
−1) = g(a∗) ∈

C
π(θ)
1 (Oµ

1 (a∗−1)) as a∗ is Nash∗ at θ. However, player 1 being a sympathizer at π(θ)

implies a∗1 /∈ BR
π(θ)
1 (a∗−1), contradicting to a∗ being a Nash∗ equilibrium at θ.

Having established S ∈ S(f), we note the following:

If S(i′) 6= S, then Oµ
i (a∗−i) = X for all i 6= i′ (by any one of such i 6= i′ deviating

to S(i) 6= S and choosing the highest integer and any alternative) while Oµ
i′(a
∗
−i′) =

Si′(x
′, θ′) if i′ = ` and Oµ

i′(a
∗
−i′) = X if i 6= ` (by i′ deviating to m′i′ 6= (θ′, x′, k′) and

making Rule 3 apply). Thus, if i′ = `, S ∈ S(f) and a∗ being Nash∗ at θ implying

g(a∗) ∈ Cπ(θ)
i (X) for all i 6= i′ and g(a∗) ∈ Cπ(θ)

i′ (Si′(x
′, θ′)) with x′ ∈ f(θ′) enable us to

employ condition (i) of the hypothesis of Theorem 2 and conclude that g(a∗) ∈ f(θ).

But if i′ 6= `, then S ∈ S(f) and a∗ being Nash∗ at θ implying g(a∗) ∈ Cπ(θ)
i (X) for

all i ∈ N results in g(a∗) ∈ f(θ) due to condition (ii) of the hypothesis of Theorem

2. Observe that when the environment features societal non-satiation and (ii) of the

hypothesis of Theorem 2 is dispensed with, we cannot have a Nash∗ equilibrium a∗ at θ

in which Rule 2 applies and S(i′) 6= S and i′ 6= `. Because otherwise, g(a∗) ∈ Cπ(θ)
i (X)

for all i ∈ N , a contradiction to societal non-satiation.

If S(i′) = S, then Oµ
j (a∗−j) = X for all j 6= ` (by any one of such j 6= ` deviating

to m′j 6= m∗j) while Oµ
` (a∗−`) = S`(x

′, θ′) (by Rule 2). Hence, S ∈ S(f) and a∗ being

Nash∗ at θ implying g(a∗) ∈ Cπ(θ)
j (X) for all j 6= ` and g(a∗) ∈ Cπ(θ)

` (S`(x
′, θ′)) with

x′ ∈ f(θ′) and condition (i) of Theorem 2 conduce to g(a∗) ∈ f(θ).

Case 3. Let a∗ be Nash∗ at θ under Rule 3. Then, g(a∗) ∈ f(θ).

Proof of Case 3. Clearly, Oµ
i (a∗−i) = X for all i ∈ N and g(a∗) ∈ Cπ(θ)

i (X) for all

i ∈ N (on account of a∗ being Nash∗ at θ) leads to the conclusion that g(a∗) ∈ f(θ)

thanks to condition (ii) of the hypothesis of the current theorem.

Insisting on societal non-satiation eliminates such Nash∗ equilibria: Oµ
i (a∗−i) = X

for all i ∈ N and g(a∗) ∈ Cπ(θ)
i (X) for all i ∈ N result in a contradiction to societal
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non-satiation which requires that there is j ∈ N such that g(a∗) /∈ Cπ(θ)
j (X).

These conclude the proof of the Claim 3, and hence, the proof of Theorem 2.

C Two individuals

For reasons of completeness, we present the notion of two-individual consistency, a

necessary condition for Nash implementation with two individuals:

Definition 7. Let n = 2. Given an SCC f : Θ → X , a profile of choice sets

S := (Si(x, θ))i∈{1,2}, θ∈Θ, x∈f(θ) is two-individual consistent with f : Θ→ X if

(i) x ∈ Cπ(θ)
i (Si(x, θ)), for all i ∈ {1, 2} and θ ∈ Θ and x ∈ f(θ); and

(ii) x ∈ f(θ) and x /∈ f(θ′) for some θ, θ′ ∈ Θ implies that either x 6∈ Cπ(θ′)
i (Si(x, θ))

or x /∈ Cπ(θ′)
j (Sj(x, θ)) for i, j ∈ {1, 2}, i 6= j; and

(iii) there exists a function e : X × Θ × X × Θ → X such that for any θ, θ′ ∈ Θ,

x ∈ f(θ), and x′ ∈ f(θ′)

(iii.1) e(x, θ, x′, θ′) ∈ S1(x, θ) ∩ S2(x′, θ′); and

(iii.2) e(x, θ, x′, θ′) ∈ f(θ∗) if e(x, θ, x′, θ′) ∈ Cπ(θ∗)
1 (S1(x, θ)) ∩ Cπ(θ∗)

2 (S2(x′, θ′)).

SII(f) denotes the set of profiles of sets S that are two-individual consistent with f .

In words, a profile S := (Si(x, θ))i=1,2, θ∈Θ, x∈f(θ) is two-individual consistent with

an SCC f : Θ→ X if (i) and (ii) of consistency (Definition 1) along with the following

hold: (iii) for any pair of states and f -optimal alternatives for the corresponding states

(x, θ) and (x′, θ′), we have that (iii.1) there exists a function e mapping this pair into

the intersection of the corresponding choice sets, S1(x, θ) ∩ S2(x′, θ′), such that (iii.2)

the resulting alternative e(x, θ, x′, θ′) is f -optimal at state θ∗ whenever it is chosen at

π(θ∗) by individuals 1 and 2 from S1(x, θ) and S2(x′, θ′)), respectively. Item (iii) is

novel to the case with two individuals.

Now, for reasons of completeness, we state and prove the corresponding necessity

result discussed in de Clippel (2014).

31



Theorem 3. Let n = 2. If an SCC f : Θ→ X is Nash implementable by a mechanism

µ ∈ M, then SII(f) 6= ∅. That is, the existence of a two-individual consistent profile

is necessary for Nash Implementation.

Proof of Theorem 3. Suppose that SCC f : Θ → X is Nash implementable by

a mechanism µ = (g, A) ∈ M. Thus, for any θ ∈ Θ and x ∈ f(θ), (by (i) of Nash

implementation) there exists ax ∈ A such that g(ax) = x and x ∈ Cπ(θ)
i (Oµ

i (ax−i)) for i =

1, 2. For any i = 1, 2 and θ ∈ Θ and x ∈ f(θ), define Sµ := (Sµi (x, θ))i={1,2}, θ∈Θ, x∈f(θ)

by Sµ(x, θ) := Oµ
i (ax−i) where ax ∈ A is such that g(ax) = x and x ∈ Cπ(θ)

i (Oµ
i (ax−i)).

First, we show that Sµ satisfies (i) and (ii) of Definition 7: notice that for any

i ∈ {1, 2} and θ ∈ Θ and x ∈ f(θ) it must be that x ∈ Cπ(θ)
i (Sµi (x, θ)) as g(ax) = x and

x ∈ Cπ(θ)
i (Oµ

i (ax−i)) and Sµi (x, θ) = Oµ
i (ax−i) for all i ∈ {1, 2}. Moreover, for any θ, θ′ ∈

Θ with x ∈ f(θ) but x /∈ f(θ′), there exists j ∈ {1, 2} such that g(ax) /∈ Cπ(θ′)
j (Oµ

j (ax−j))

(because otherwise ax would be Nash at θ′ and by (ii) of Nash implementation x must

be in f(θ′)). Hence, x /∈ Cπ(θ′)
j (Sµj (x, θ)).

Let e : X × Θ×X × Θ→ X be such that e(x, θ, x′, θ′) := g(ax1 , a
x′
2 ) where ax ∈ A

is such that g(ax) = x and x ∈ Cπ(θ)
i (Oµ

i (ax−i)) for i = 1, 2, and ax
′ ∈ A is such that

g(ax
′
) = x′ and x′ ∈ Cπ(θ)

j (Oµ
j (ax

′
−j)) for j = 1, 2. Then g(ax1 , a

x′
2 ) ∈ Oµ

1 (ax
′

2 ) ∩Oµ
2 (ax1) =

Sµ1 (x, θ) ∩ Sµ2 (x′, θ′), implying (iii.1) of Definition 7. Moreover, if e(x, θ, x′, θ′) ∈

C
π(θ∗)
1 (Sµ1 (x, θ)) ∩Cπ(θ∗)

2 (Sµ2 (x′, θ′)), then g(ax1 , a
x′
2 ) ∈ Cπ(θ∗)

1 (Oµ
1 (ax

′
2 )) ∩Cπ(θ∗)

2 (Oµ
2 (ax1)).

This means that (ax1 , a
x′
2 ) is a Nash equilibrium of µ at θ∗. Hence, by (ii) of Nash

implementation, we must have g(ax1 , a
x′
2 ) ∈ f(θ∗), implying (iii.2) of Definition 7.

The following is a sufficiency result with two individuals using a mechanism that

elicits the relevant information about the societal choice topography from the two

individuals. It can be also regarded as a two-individual robustness check for Theorem 1.

Unsurprisingly, with two individuals the sufficiency conditions become more stringent

as in Moore and Repullo (1990), Dutta and Sen (1991), and Dutta and Sen (2012).

Theorem 4. Suppose n = 2, both of the individuals are sympathizers at every π(θ)

with θ ∈ Θ, the SCC f : Θ→ X is such that SII(f) 6= ∅, and the following hold:

(i) for any S ∈ SII(f), x ∈ C
π(θ)
i (Si(x

′, θ′)) with θ′ ∈ Θ, x′ ∈ f(θ′), Si(x
′, θ′) =
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S |i,x′,θ′, and x ∈ Cπ(θ)
j (X) with i, j = 1, 2 and j 6= i implies x ∈ f(θ); and

(ii) x ∈ Cπ(θ)
1 (X) ∩ Cπ(θ)

2 (X) implies x ∈ f(θ); and

(iii) for any S, S̃ ∈ SII(f), S1(x, θ)∩S̃2(x′, θ′) 6= ∅ with θ, θ′ ∈ Θ, x ∈ f(θ), x′ ∈ f(θ′),

S1(x, θ) = S|1,x,θ, and S̃2(x′, θ′) = S̃|2,x′,θ′; and

(iv) for any S, S̃ ∈ SII(f), x∗ ∈ Cπ(θ∗)
1 (S1(x, θ))∩Cπ(θ∗)

2 (S̃2(x′, θ′)) with θ, θ′ ∈ Θ, x ∈

f(θ), x′ ∈ f(θ′), S1(x, θ) = S|1,x,θ, and S̃2(x′, θ′) = S̃|2,x′,θ′ implies x∗ ∈ f(θ∗).

Then, f is Nash∗ implementable by a mechanism µ ∈ M∗, and for each θ ∈ Θ, in

every Nash∗ equilibrium of µ at θ, each agent announces a profile of sets two-individual

consistent with f .

We show that the hypothesis of this theorem is satisfied in the two-individual ex-

ample we present in Section C.1.

Theorem 4 keeps the hypothesis of Theorem 2: the existence of a profile of sets

two-individual consistent with f and (i) and (ii) along with the need of having at

least two sympathizers at every prevailing state. Even then, the planner has to make

sure that the mechanism elicits the information about the choice topography and the

state; this is no easy task as being a sympathizer does not imply that the agent is

compelled to reveal the realized state and/or refrain from manipulating the outcome

(via announcements of inconsistent profiles) when the mechanism is not designed right.

The rest of the hypothesis of Theorem 4 is specific to the case of two individuals.

An interesting and useful observation concerning the case with two individuals is

about the relation between an individual’s actions and the other’s opportunity sets.

Given mechanism µ = (A, g), any ai ∈ Ai corresponds to Oµ
j (ai), i, j = 1, 2 and i 6= j.

Therefore, individual i choosing action ai can be thought of as offering agent j the

opportunity set Oµ
j (ai), i, j = 1, 2 and i 6= j.

In the mechanism that we employ to prove Theorem 4, each individual announces

a profile of choice sets. Sympathy ensures that, in equilibrium, each agent announces

a two-individual consistent profile of sets, but not necessarily the same. Consequently,

we obtain hypothesis (iii) of Theorem 4, ensuring that the two-individual mechanism is
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well-defined (under Rule 3 specified in Table 2): because a choice set listed in individual

1’s announcement corresponds to an opportunity set of agent 2 and vice versa, each of

the choice sets of individual 1 listed in any one of the two-individual consistent profile

of sets for agent 1 must have a non-empty intersection with each of the choice sets of

individual 2 listed in any one of the two-individual consistent profile of sets for agent 2.

In other words, hypothesis (iii) of Theorem 4 compels the non-emptiness requirement

of two-individual consistency, specified by (iii.1) of Definition 7, to hold across any

pair of profiles of sets, both two-individual consistent with f .

Item (iii.1) of two-individual consistency implies that there is a selection (function)

identifying the alternative corresponding to the intersection of the actions where the

action of individual i corresponds to the choice set of j listed in i’s announcement,

i, j = 1, 2 and i 6= j. On the other hand, item (iii.2) ensures that if each of such

alternatives is chosen by both individuals at a state π(θ∗) from the corresponding

choice sets, then it must be f -optimal at θ∗. Hypothesis (iv) of Theorem 4 strengthens

this requirement by demanding the following: it holds for any alternatives—and not

just for the ones identified by the function specified in item (iii.1)—that are chosen at

some state π(θ∗) by both individuals from the choice set of individual 1 listed in any

one of the two-individual consistent profile of sets for agent 1 and from agent 2’s choice

set listed in any one of the two-individual consistent profile of sets for individual 2.

Hypothesis (iv) implies that (iii.2) of two-individual consistency holds across any pair

of profiles of sets, both of which are two-individual consistent with f . We may weaken

this requirement a bit further by employing an identification function as is done in

two-individual consistency. This is precisely what is done in Footnote 21. However,

we think the current form of the hypothesis with items (iii) and (iv) of Theorem 4 is

more user friendly.

Items (iii) and (iv) demand the associated requirements hold across any pair of

two-individual consistent profiles of sets. Therefore, they involve slightly stronger

requirements when compared with those implied by the necessary condition, the two-

individual consistency. On the other hand, when there is a unique profile of choice sets

two-individual consistent with the SCC, the alternative hypothesis in Footnote 21 is
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equivalent to two-individual consistency.

Proof of Theorem 4. We employ the following mechanism µ ∈M∗ with µ = (A, g)

defined as follows: Ai equals{
(S(i), θ(i), c(i), x(i), y(i), k(i)) ∈ S∗ ×Θ× {F,NF} ×X ×X × N : x(i) ∈ f(θ(i))

}
(2)

where a generic member is ai = (S(i), θ(i), c(i), x(i), y(i), k(i)) with S(i) ∈ S∗ which is

to be defined in the following paragraph, θ(i) ∈ Θ, c(i) ∈ {F,NF} and x(i) ∈ f(θ(i)),

y(i) ∈ X, and k(i) ∈ N with the convention that mi = (θ(i), c(i), x(i), y(i), k(i)) and

Mi := Θ× {F,NF} ×X2 × N.

S∗ consists of profiles of sets in S such that for any θ, θ′ ∈ Θ and x ∈ f(θ) and x′ ∈

f(θ′), it must be that S1(x, θ) ∩ S2(x′, θ′) 6= ∅ for any S,S′ such that S1(x, θ) = S|1,x,θ
and S2(x′, θ′) = S′|2,x′,θ′ . Observe that (iii) of the hypothesis of Theorem 4 entails the

implication that SII(f) ⊂ S∗. This coupled with SII(f) 6= ∅ implies that S∗ 6= ∅.

The outcome function g : A→ X is specified via the rules presented in Table 2.21

The proof of Theorem 4 follows from the following: Claims 4 and 5 establish (i)

and (ii) of Nash∗ implementation, respectively (see Definition 4).

Claim 4. Let θ ∈ Θ and x ∈ f(θ) and define ax ∈ A by axi = (S, θ, NF, x, x, 1) with S ∈

S(f) and i = 1, 2. Then, ax is a Nash∗ equilibrium of µ at θ, i.e., axi ∈ BR
π(θ)
i (axj ) for

i, j = 1, 2 and i 6= j, and g(ax) = x.

Proof. Rule 1 applies. Thus, g(ax) = x. Due to Rules 1, 2.1, 2.2, and 3, Oµ
i (axj ) =

Si(x, θ) with Si(x, θ) = S|i,x,θ and S ∈ SII(f) for i, j = 1, 2 and i 6= j. As i is a

21Hypothesis (iii) and (iv) of Theorem 4 can be replaced with the following slightly weaker condition,
which coincides with (iii) of two-individual consistency whenever there is a unique two-individual
consistent profile of sets, i.e., #SII(f) = 1 (in that case, SII(f) ∈ S∗ follows by definition of two-
individual consistency):

(iii) Suppose that SII(f) ⊂ S∗ and there exists a function e : S∗ ×S∗ ×X ×Θ×X ×Θ→ X such
that for any (S,S′, x, θ, x′, θ′) with S,S′ ∈ S∗ and θ, θ′ ∈ Θ and x ∈ f(θ) and x′ ∈ f(θ′)

(iii.1) e(S,S′, x, θ, x′, θ′) ∈ S′1(x′, θ′)∩S2(x, θ) where S′1(x′, θ′) = S′|1,x′,θ′ and S2(x, θ) = S|2,x,θ;
and

(iii.2) e(S,S′, x, θ, x′, θ′) ∈ C
π(θ∗)
1 (S′1(x′, θ′)) ∩ Cπ(θ∗)

2 (S2(x, θ)) with θ∗ ∈ Θ and S′1(x′, θ′) =
S′|1,x′,θ′ and S2(x, θ) = S|2,x,θ implies e(S,S′, x, θ, x′, θ′) ∈ f(θ∗).

Then, modifying the outcome function by requiring g(a) = e(S(1),S(2), x(1), θ(1), x(2), θ(2)) in Rule 3
ensures that the same proof goes through.
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Rule 1 : g(a) = x′ if a1 = a2 = (S′, θ′, NF, x′, y′, k′).

Rule 2.1 : g(a) =


y(1) if y(1) ∈ S1(x(2), θ(2))

and S1(x(2), θ(2)) = S(2)|1,x(2),θ(2) ,

x(2) otherwise.

if a1 = (S(1), θ(1), F, x(1), y(1), k(1))

and a2 = (S(2), θ(2), NF, x(2), y(2), k(2)).

Rule 2.2 : g(a) =


y(2) if y(2) ∈ S2(x(1), θ(1))

and S2(x(1), θ(1)) = S(1)|2,x(1),θ(1) ,

x(1) otherwise.

if a1 = (S(1), θ(1), NF, x(1), y(1), k(1))

and a2 = (S(2), θ(2), F, x(2), y(2), k(2)).

Rule 3 :

g(a) ∈ S1(x(2), θ(2)) ∩ S2(x(1), θ(1))

with S1(x(2), θ(2)) = S(2)|1,x(2),θ(2)

and S2(x(1), θ(1)) = S(1)|2,x(1),θ(1) .

if a1 = (S(1), θ(1), NF, x(1), y(1), k(1))

and a2 = (S(2), θ(2), NF, x(2), y(2), k(2)).

and a1 6= a2.

Rule 4 : g(a) =

{
x(1) if k(1) ≥ k(2),
x(2) otherwise.

otherwise.

Table 2: The outcome function of the mechanism with two individuals.

sympathizer and S ∈ SII(f), x ∈ Cπ(θ)
i (Si(x, θ)) (following from (i) of two-individual

consistency) implies axi ∈ BR
π(θ)
i (axj ), with i, j = 1, 2 and i 6= j.

Claim 5. If a∗ ∈ A is a Nash∗ equilibrium of µ ∈M∗ at some θ ∈ Θ, then g(a∗) ∈ f(θ).

That is, a∗ ∈ A such that a∗i ∈ BR
π(θ)
i (a∗j) for all i, j = 1, 2 with i 6= j for some θ ∈ Θ

implies g(a∗) ∈ f(θ).

Proof. In what follows, we go over four possible cases:

Case 1. Let a∗ ∈ A be a Nash∗ equilibrium at θ ∈ Θ such that Rule 1 holds. That is,

a∗1 = a∗2 = (S′, θ′, NF, x′, y′, k′). Then, g(a∗) ∈ f(θ).

Proof of Case 1. We first establish that S′ ∈ SII(f). Therefore, in every Nash∗

equilibrium under Rule 1, both of the individuals announce the same profile of sets

that must be two-individual consistent with f .

Suppose S′ /∈ SII(f), and consider a′1 = (S̄,m′1) where S̄ ∈ SII(f) and m′1 =

(θ′, F, x′, x′, 1). Because x′ ∈ f(θ′) by the defining property of A1 given in (2), Rule
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2.1 applies, and using x′ as y(1) with the property that x′ ∈ S1(x′, θ′) with S1(x′, θ′) =

S′|1,x′,θ′ (recall that S′ ∈ S∗ ⊂ S and the defining property of S requires x′ ∈ S1(x′, θ′)

regardless whether or not S′ is consistent) implies g(S̄,m′1, a
∗
2) = g(S′,m∗1, a

∗
2) = x′ ∈

C
π(θ)
1 (Oµ

1 (a∗2)) (due to a∗ being a Nash∗ equilibrium) where m∗1 = (θ′, NF, x′, y′, k′).

This coupled with S̄ ∈ SII(f) and S′ /∈ SII(f) results in a∗1 /∈ BR
π(θ)
1 (a∗2) (as individual

1 is a sympathizer), contradicting to a∗ being Nash∗ at θ.

If g(a∗) = x′ ∈ f(θ), the proof concludes. Hence, assume that x′ /∈ f(θ). Notice

that Oµ
i (a∗j) = Si(x

′, θ′) due to Rules 1 and 2.i and 3 with i, j = 1, 2 and i 6= j. Then,

S′ ∈ SII(f) and (by (ii) of two-individual consistency) x′ ∈ f(θ′) and x′ /∈ f(θ) imply

that there exists i = 1, 2 such that x′ /∈ C
π(θ)
i (Si(x

′, θ′)); this is equivalent to there

being i = 1, 2 such that x′ /∈ C
π(θ)
i (Oµ

i (a∗j)) with j 6= i. But this is in contradiction

with a∗ being a Nash∗ equilibrium at θ.

Case 2. Let a∗ ∈ A be Nash∗ at θ ∈ Θ such that Rule 2.1 holds. That is, a∗1 =

(S(1), θ(1), F, x(1), y(1), k(1)) and a∗2 = (S(2), θ(2), NF, x(2), y(2), k(2)). Then, g(a∗) ∈ f(θ).

Proof of Case 2. Observe that by (2), a∗i ∈ Ai implies x(i) ∈ f(θ(i)) for i = 1, 2. Our

first step is to prove that S(2) ∈ SII(f). Suppose not. Consider a′2 = (S̄, m̄2) where

S̄ ∈ SII(f) and m̄2 = (θ(2), F, g(a∗), y(2), k̄) with k̄ > k(1). Then, Rule 4 applies and

g(S̄, m̄2, a
∗
1) = g(S(2),m∗2, a

∗
1) = g(a∗), which must be in C

π(θ)
2 (Oµ

2 (a∗1)) as a∗ is a Nash∗

equilibrium where m∗2 = (θ(2), NF, x(2), y(2), k(2)). But as S(2) /∈ SII(f) and individual

2 is a sympathizer, a∗2 /∈ BR
π(θ)
2 (a∗1); contradicting to a∗ being Nash∗ at θ.

Before showing g(a∗) must be in f(θ), we wish to prove that S(1) ∈ SII(f) as

well. This establishes that both individuals announce a two-individual consistent

profile of sets, yet not necessarily the same, in every Nash∗ equilibrium under Rule

2.1. Suppose S(1) /∈ SII(f) and consider a′1 = (S̄,m∗1) where S̄ ∈ SII(f) and m∗1 =

(θ(1), F, x(1), y(1), k(1)). So, Rule 2.1 still applies at (a′1, a
∗
2), and we have g(S̄,m∗1, a

∗
2) =

g(S(1),m∗1, a
∗
2) = g(a∗), which must be in C

π(θ)
1 (Oµ

1 (a∗2)) as a∗ is a Nash∗ equilibrium.

Because S(1) /∈ SII(f) and agent 1 is a sympathizer, a∗1 /∈ BR
π(θ)
1 (a∗2); a contradiction.

Notice that due to Rules 1, 2.1, and 3 we have that Oµ
1 (a∗2) = S1(x′, θ′) with

x′ ∈ f(θ′) and S1(x′, θ′) = S(2)|1,x′,θ′ while S(2) is consistent with f , i.e., S(2) ∈ SII(f).

Note that g(a∗) ∈ C
π(θ)
1 (S1(x′, θ′)) follows from Oµ

1 (a∗2) = S1(x′, θ′) and a∗ being a
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Nash∗ equilibrium at θ. Moreover, Oµ
2 (a∗1) = X, which follows from Rules 2.1 and 4.

Thus, g(a∗) ∈ Cπ(θ)
2 (X) is due to a∗ being Nash∗ at θ. Therefore, (i) of the hypothesis

of Theorem 4 applies, and we conclude g(a∗) ∈ f(θ).

We omit the proof of the case of Nash∗ equilibria under Rule 2.2 due to symmetry.

Case 3. Let a∗ ∈ A be a Nash∗ equilibrium at θ ∈ Θ such that Rule 3 holds. That is,

a∗1 = (S(1), θ(1), NF, x(1), y(1), k(1)) and a∗2 = (S(2), θ(2), NF, x(2), y(2), k(2)) where a∗1 6=

a∗2. Then, g(a∗) ∈ f(θ).

Proof of Case 3. Notice that by (2), a∗i ∈ Ai implies x(i) ∈ f(θ(i)) for i = 1, 2. Let

g(a∗) be an arbitrary member of S1(x(2), θ(2)) ∩ S2(x(1), θ(1)) 6= ∅ with S1(x(2), θ(2)) =

S(2)|1,x(2),θ(2) and S2(x(1), θ(1)) = S(1)|2,x(1),θ(1) where S(1),S(2) ∈ S∗. As we intend to

make use of (iv) of the hypothesis of Theorem 4, we first have to prove that S(1),S(2) ∈

SII(f). Thus, both individuals announce a two-individual consistent profile of sets

(but not necessarily the same) in every Nash∗ equilibrium under Rule 3.

Suppose that S(1) /∈ SII(f) and consider a′1 = (S̄, m̄1) where S̄ ∈ SII(f) and m̄1 =

(θ(1), F, x(1), g(a∗), k(1)). Note that then Rule 2.1 applies and as g(a∗) ∈ S1(x(2), θ(2))

(due to g(a∗) ∈ S1(x(2), θ(2))∩S2(x(1), θ(1))) we have that g(S̄, m̄1, a
∗
2) = g(S(1),m∗1, a

∗
2) =

g(a∗), which is in C
π(θ)
1 (Oµ

1 (a∗2)) as a∗ is Nash∗ at θ with m∗1 = (θ(1), NF, x(1), y(1), k(1)).

Since S(1) /∈ SII(f) and agent 1 is a sympathizer, a∗1 /∈ BR
π(θ)
1 (a∗2); contradicting to a∗

being Nash∗ at θ. Showing S(2) ∈ SII(f) involves replicating the arguments presented

in this paragraph for individual 2.

Rules 1, 2.1, and 3 imply Oµ
i (a∗j) = Si(x

(j), θ(j)) with x(j) ∈ f(θ(j)) (due to (2))

and Si(x
(j), θ(j)) = S(j)|i,x(j),θ(j) while S(j) ∈ SII(f), i, j = 1, 2 and i 6= j. Note that

g(a∗) ∈ Cπ(θ)
i (Si(x

(j), θ(j))) follows from Oµ
i (a∗j) = Si(x

(j), θ(j)), and a∗ being Nash∗ at

θ, for both i, j = 1, 2 and i 6= j. Therefore, (iv) of the hypothesis of Theorem 4 applies,

and we conclude g(a∗) ∈ f(θ).

Case 4. Let a∗ be Nash∗ at θ under Rule 4. Then, g(a∗) ∈ f(θ).

Proof of Case 4. It is clear that Oµ
i (a∗j) = X for all i, j = 1, 2 and i 6= j.

g(a∗) ∈ C
π(θ)
i (X) for all i = 1, 2 thanks to a∗ being Nash∗ at θ, which leads to the

conclusion that g(a∗) ∈ f(θ) due to condition (ii) of the hypothesis of the theorem.
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Next, we display that in every Nash∗ equilibrium a∗ under Rule 4 at θ, it must

be that a∗i = (S(i),m∗i ) with S(i) ∈ SII(f), i = 1, 2. Suppose S(i) /∈ SII(f). Then,

a′i = (S̄,m′i) with S̄ ∈ SII(f) and m′i involves individual i winning the integer game

(i.e., k′ > k(j) with i, j = 1, 2 and i 6= j) while the prize individual i goes for is g(a∗).

In particular, m′i = (θ(i), c(i), g(a∗), y(i), k′) with k′ > k(j), and i, j = 1, 2 and i 6= j.

Then, g(S̄,m′i, a
∗
j) = g(S(i),m∗i , a

∗
j) = g(a∗) while g(a∗) ∈ C

π(θ)
i (X) for all i, j = 1, 2

with i 6= j thanks to a∗ being Nash∗ at θ. As individual i is a sympathizer, we obtain

the desired contradiction because a∗i /∈ BR
π(θ)
i (a∗j), i, j = 1, 2 and i 6= j.

C.1 An example with two individuals

In what follows, we present an example with two rational individuals and a social

goal that seeks compromise; we show that the hypothesis of Theorem 4, as well as the

alternative one presented in Footnote 21, hold. Also, this example exhibits a tangible

setting in which our contributions in terms of information extraction are on display.

Let X = {a, b, c} be the set of alternatives. The set of states of the economy is

equal to Θ = {θ, θ′}. The society is composed of Ann and Bob, who are rational;

their state-contingent individual choices at state θ ∈ Θ are captured by the choice

correspondences, C
π(θ)
A : X → X and C

π(θ)
B : X → X , which are specified in Table

3. Let the set of admissible states, Ω∗, be given by all possible strict ranking profiles

S C
π(θ)
A C

π(θ)
B C

π(θ′)
A C

π(θ′)
B

{a, b, c} {b} {c} {a} {c}
{a, b} {b} {a} {a} {b}
{a, c} {a} {c} {a} {c}
{b, c} {b} {c} {b} {c}

Table 3: Individual choices of Ann and Bob.

on {a, b, c}, and π : Θ → Ω∗ be such that bP
π(θ)
A aP

π(θ)
A c and cP

π(θ)
B aP

π(θ)
B b at θ and

aP
π(θ′)
A bP

π(θ′)
A c and cP

π(θ′)
B bP

π(θ′)
B a at θ′.

The SCC f : Θ→ X the planner seeks to implement without knowing individuals’

state-contingent preferences is defined by f(θ) = {a} and f(θ′) = {b}.22

22This social choice function corresponds to the Rawlsian welfare criterion: the desired alternative
at a state of the economy is one that maximizes the welfare of the worst treated individual at that
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Let us start with condition (i) of Definition 7, i.e., x ∈ Cπ(θ)
i (Si(x, θ)), for all i ∈ N

and θ ∈ Θ and x ∈ f(θ):

SA(a, θ): bP
π(θ)
A aP

π(θ)
A c and a ∈ Cπ(θ)

A (SA(a, θ)) imply two possibilities: {a, c} and {a}.

SA(b, θ′): aP
π(θ′)
A bP

π(θ′)
A c and b ∈ Cπ(θ′)

A (SA(b, θ′)) imply two candidates: {b, c} and {b}.

SB(a, θ): cP
π(θ)
B aP

π(θ)
B b and a ∈ Cπ(θ)

B (SB(a, θ)) result in two cases: {a, b} and {a}.

SB(b, θ′): cP
π(θ′)
B bP

π(θ′)
B a and b ∈ Cπ(θ′)

B (SB(b, θ′)) imply two candidates: {a, b} and {b}.

Next, we check whether or not the above sets satisfy condition (ii) of Definition

7, i.e., x ∈ f(θ) and x /∈ f(θ′) for some θ, θ′ ∈ Θ implies there is j ∈ N such that

x 6∈ Cπ(θ′)
j (Sj(x, θ)):

a ∈ f(θ) and a /∈ f(θ′): Hence, either a /∈ Cπ(θ′)
A (SA(a, θ)) or a /∈ Cπ(θ′)

B (SB(a, θ)). This

implies that we cannot have SA(a, θ) = SB(a, θ) = {a} simultaneously. All other

combinations of the listed candidate sets satisfy condition (ii) of Definition 7.

b ∈ f(θ′) and b /∈ f(θ): Thus, either b /∈ C
π(θ)
A (SA(b, θ′)) or b /∈ C

π(θ)
B (SB(b, θ′)). So,

it cannot be SA(b, θ′) = SB(b, θ′) = {b} simultaneously. Similar to the above, all the

other combinations of the candidates satisfy condition (ii) of Definition 7.

Now, we consider the following implication of condition (iii) of Definition 7: We

must have SA(a, θ) ∩ SB(b, θ′) 6= ∅ and SA(b, θ′) ∩ SB(a, θ) 6= ∅ for a function e :

X ×Θ×X ×Θ→ X to satisfy (iii.1) of two-individual consistency:

SA(a, θ) is either {a, c} or {a}: For SA(a, θ) ∩ SB(b, θ′) 6= ∅, SB(b, θ′) cannot be {b}.

Hence, it must be SB(b, θ′) = {a, b}.

SA(b, θ′) is either {b, c} or {b}: For SA(b, θ′) ∩ SB(a, θ) 6= ∅, SB(a, θ) cannot be {a}.

Therefore, we must have SA(b, θ′) = {a, b}.

That is, we must have SB(b, θ′) = {a, b} whereas SA(a, θ) is either {a, c} or {a}. This

implies SA(a, θ) ∩ SB(b, θ′) = {a}. On the other hand, SB(a, θ) = {a, b} whereas

SA(b, θ′) is either {b, c} or {b}. Hence, SA(b, θ′) ∩ SB(a, θ) = {b}. This further implies

that for any function e : X×Θ×X×Θ→ X which satisfies condition (iii) of Definition

7, we must have e(a, θ, b, θ′) = a and e(b, θ′, a, θ) = b. It is straigthforward to show

that such a function will always satisfy condition (iv) of Definition 7.

state. In our example, there is strong disagreement between the individuals: at any prevailing state,
every alternative that is top-ranked by one of the individual is ranked at the bottom by the other.
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Therefore, there are four profiles of sets, denoted by S, S′, S̃, and Ŝ, that satisfy the

two-individual consistency (Definition 7) with our SCC f , i.e., SII(f) = {S,S′, S̃, Ŝ},

and they are specified in Table 4.

S: SA(a, θ) = {a, c} SA(b, θ′) = {b, c} SB(a, θ) = {a, b} SB(b, θ′) = {a, b}
S′: S ′A(a, θ) = {a} S ′A(b, θ′) = {b, c} S ′B(a, θ) = {a, b} S ′B(b, θ′) = {a, b}
S̃: S̃A(a, θ) = {a, c} S̃A(b, θ′) = {b} S̃B(a, θ) = {a, b} S̃B(b, θ′) = {a, b}
Ŝ: ŜA(a, θ) = {a} ŜA(b, θ′) = {b} ŜB(a, θ) = {a, b} ŜB(b, θ′) = {a, b}

Table 4: The two-individual consistent profiles of sets: SII(f) = {S,S′, S̃, Ŝ}.

It is easy to check that the hypothesis of Theorem 4, conditions (i), (ii), (iii), and

(iv) (along with the alternative hypothesis of Theorem 4 defined in Footnote 21), are

satisfied for f with SII(f) = {S,S′, S̃, Ŝ}. Thus, the mechanism described in Table 2

Nash∗ implements the SCC f when both of the individuals are sympathizers at π(θ)

and π(θ′).
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