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Abstract— Vulnerability assessment is the process of 
identifying and prioritizing the vulnerabilities in a system. 
Vulnerability scanners can, for example, scan a website for 
known vulnerabilities by running a repository of security tests, 
each of which is designed to reveal a known vulnerability. As the 
security tests need to be executed on each and every web page 
encountered, it may take quite a while for these scanners to 
report vulnerabilities. In this work, we present an approach for 
revealing the vulnerabilities faster by prioritizing the executions 
of the security tests on a per web page basis. The approach is 
based on a simple conjecture that “similar” web pages may 
possess “similar” vulnerabilities and that identifying these 
similarities can help prioritize the security tests. The results of 
the experiments we carried out by using 2927 distinct web pages 
(collected from 80 web sites), support our basic hypothesis; the 
percentages of the times the actual vulnerabilities appear in the 
top 8 and 15 predicted vulnerabilities were 86.9% and 98.4%, 
respectively. 
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I. INTRODUCTION  
Vulnerability detection and analysis [1] is a process of 
crawling a system under test with a goal of revealing the 
security vulnerabilities that the system may have. When it 
comes to ensuring the security of websites [2], which is the 
main focus of this paper, one way to carry out this process is 
to use automated tools, such as Netsparker [3]. In the 
remainder of the paper, these tools will be referred to as 
vulnerability scanners.  

Vulnerability scanners typically implement a repository of 
test cases, each of which is developed for testing a website 
against a known vulnerability. Given a website, a 
vulnerability scanner crawls the website and runs all the 
applicable test cases in the repository often in an arbitrary 
order on each and every web page encountered. The potential 
vulnerabilities of the website are then reported for end-users, 
so that appropriate countermeasures can be taken in time. 
Consequently, the faster the vulnerabilities are reported, the 
better it is.  

Considering, however, that websites may have a large number 
of web pages and that vulnerability scanners may have 
hundreds (if not thousands) of test cases in their repositories, 
it may take quite a while for these tools to finish scanning a 
website for vulnerabilities.  When this factor is coupled with 
the fact that websites should ideally be scanned after every 
update in their codebases, speeding up the process of 

revealing vulnerabilities becomes a matter of great practical 
importance. 

In this work, we propose an approach, which aims at 
prioritizing [4] the test cases on a per web page basis to reveal 
vulnerabilities faster. The roots of the proposed approach 
stem from a simple observation we have been consistently 
making with security experts: Given a web page, security 
experts typically have an idea about what may go wrong with 
it by simply glancing through the certain properties of the 
page, such as the URL, the content, and the look and feel of 
the page. We, therefore, conjecture that “similar” web pages 
are likely to possess “similar” vulnerabilities and that 
exploiting these similarities can help reveal vulnerabilities 
faster by prioritizing the security tests, such that the tests that 
are capable of revealing the suspected vulnerabilities can be 
executed before the other tests. Note that although our focus 
in this work is on web applications, the same idea can be 
applied to other domains, such as to mobile testing where 
similar screens in mobile applications may suffer from similar 
vulnerabilities.  

The remainder of the paper is organized as follows: Section 
II introduces the proposed approach; Section III describes the 
experiments we carried to evaluate the proposed approach; 
and Section IV concludes with some future work ideas. 

II. APPROACH 
We cast the problem of prioritizing security tests to a multi-
class classification problem, where each class corresponds to 
a vulnerability. Since a web page may have multiple 
vulnerabilities, instead of making only one prediction for a 
given page (e.g., assigning a single class to the page), we 
make multiple predictions by ordering all the classes 
according to their likelihood (from the most probable one to 
the least probable one). We then report the top N predictions 
(for this work,  N ∈ {1, 3, 5, 8, 15}) as the most 
probable vulnerabilities that may be 
possessed by the web page. Once these 
vulnerabilities are identified, the security 
tests developed to reveal them can be given 
priority. 

To this end, given a web page, we extract  a number of 
features (for this work, 50 features) from the page, regarding 
the URL, the HTTP request/response contents, the server 
headers, and the authentication methods employed by the 
server. Each feature is represented as a binary attribute 



representing whether the respective feature is present in the 
web page or not.  In our model, the features that are extracted 
from reports would create the feature vector for training in the 
light of our assumption. All of these features are binary, 
representing whether the feature exists in the page (=1) or not 
(=0).  

III. EXPERIMENTS 
To evaluate the proposed approach, we carried out a series of 
experiments.  

A. Operational Framework 
In these experiments, we scanned 80 websites for 
vulnerabilities by using Netsparker. Netsparker generated us 
a total of 2927 reports, each of which was for a distinct web 
page. The report of a web page contained a list of CWE 
(Common Weakness Enumeration) indices [5], representing 
the vulnerabilities that the page possessed. We use these 
CWE indices as the classes to be predicted.  

For a web page, we first extracted 50 binary features from the 
page (Section II) and created a separate record for each 
vulnerability possessed by the page. That is, each record had 
the 50 features extracted from the web page as the attributes 
and a distinct vulnerability possessed by the page as the class. 
All told, we had a total of 3291 records as many of the web 
pages had more than one reported vulnerabilities. We then 
randomly splitted this data set into non-overlapping  training 
(80%) and test sets (20%). 

To train the prediction models, we used Keras MultiClass 
Classifier [6], which is a neural network-based classifier. In 
particular, we used three-layered neural networks[7] and 
experimented with two different activation functions, namely 
softmax and sigmoid. The models were trained by using the 
training set and evaluated by using the test set.  

B. Evaluation Framework 
Given a record obtained from a web page, the output of the 
prediction model was a ranked list of probable classes (from 
the most probable to the least probable) that the page may 
belong to, i.e., a ranked list of vulnerabilities that the page 
may have. We then reported the top N ∈ {1, 3, 5, 8, 15} 
predictions. 

To evaluate the quality of the predictions, we computed 
accuracy as the percentage of the times the classes associated 
with the records appear in the top N  predictions. The higher 
the accuracy, the better the approach is. 

C. Data and Results 
Table I summarizes the results we obtained. In this table, the 
columns indicate the activation function used and the 
accuracies obtained when N = 1, 3, 5, 8, and 15, respectively. 
 The softmax model, compared to the sigmoid activation 
function, led to better accuracies when N = 1 and  N = 15. For 
the remaining values of N, however, the sigmoid model 
function performed better.   For example, when    N = 8 the 
sigmoid model provided an accuracy of 86.9%. And, when  N 
= 15 the softmax model provided an accuracy of and 98.4%.  
Compared to the no information case, if top 15 predictions are 
taken into consideration, this corresponds to 0.01856 of all 
possible weakness types, hence the time and resource gained 
is dramatically high. There is also a top 25 list [8] published 

in 2019, if we were to take that list into consideration, top 15 
predictions correspond to 60% of the time and resources, and 
we should not forget that some of the vulnerabilities that our 
classifier predicts might not even be on the list and would be 
missed if the software were only tested for weaknesses in 
Top25 list [8]. 
Given that there are typically dozens of vulnerabilities to be 
checked against a web page, the results of our experiments, 
suggest that the proposed approach can help prioritize  
security tests, such that vulnerabilities can be revealed faster.  
 

 
Table I. Accuracy of Keras Multiclass Classifier 

IV.  CONCLUDING REMARKS 
We believe that this line of research is promising and of great 
practical importance. Therefore, we continue working on 
developing new approaches for prioritizing security tests. 
One possible avenue for future research is to evaluate  
different classification models for predictions. Another 
avenue is to increase both the number and the diversity of the  
features we extract from web pages and leverage them 
together with various feature selection algorithms. Last but 
not least, the proposed approach needs to be evaluated with 
more websites and its ability in revealing security 
vulnerabilities faster than the existing approaches, should be 
demonstrated. 
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