
Towards Prioritizing Vulnerability Testing
Halit Alptekin*, Simge Demir, Şevval Şimşek, and Cemal Yilmaz

 Faculty of Engineering and Natural Sciences
Sabancı University

Istanbul, Turkey
Email : {simgedemir,sevvalboylu,cyilmaz}@sabanciuniv.edu, *info@halitalptekin.edu }

Abstract— Vulnerability assessment is the process of
identifying and prioritizing the vulnerabilities in a system.
Vulnerability scanners can, for example, scan a website for
known vulnerabilities by running a repository of security tests,
each of which is designed to reveal a known vulnerability. As the
security tests need to be executed on each and every web page
encountered, it may take quite a while for these scanners to
report vulnerabilities. In this work, we present an approach for
revealing the vulnerabilities faster by prioritizing the executions
of the security tests on a per web page basis. The approach is
based on a simple conjecture that “similar” web pages may
possess “similar” vulnerabilities and that identifying these
similarities can help prioritize the security tests. The results of
the experiments we carried out by using 2927 distinct web pages
(collected from 80 web sites), support our basic hypothesis; the
percentages of the times the actual vulnerabilities appear in the
top 8 and 15 predicted vulnerabilities were 86.9% and 98.4%,
respectively.

 Keywords—vulnerability analysis, vulnerability prioritization,
automated testing, test prioritization

I. INTRODUCTION
Vulnerability detection and analysis [1] is a process of
crawling a system under test with a goal of revealing the
security vulnerabilities that the system may have. When it
comes to ensuring the security of websites [2], which is the
main focus of this paper, one way to carry out this process is
to use automated tools, such as Netsparker [3]. In the
remainder of the paper, these tools will be referred to as
vulnerability scanners.

Vulnerability scanners typically implement a repository of
test cases, each of which is developed for testing a website
against a known vulnerability. Given a website, a
vulnerability scanner crawls the website and runs all the
applicable test cases in the repository often in an arbitrary
order on each and every web page encountered. The potential
vulnerabilities of the website are then reported for end-users,
so that appropriate countermeasures can be taken in time.
Consequently, the faster the vulnerabilities are reported, the
better it is.

Considering, however, that websites may have a large number
of web pages and that vulnerability scanners may have
hundreds (if not thousands) of test cases in their repositories,
it may take quite a while for these tools to finish scanning a
website for vulnerabilities. When this factor is coupled with
the fact that websites should ideally be scanned after every
update in their codebases, speeding up the process of

revealing vulnerabilities becomes a matter of great practical
importance.

In this work, we propose an approach, which aims at
prioritizing [4] the test cases on a per web page basis to reveal
vulnerabilities faster. The roots of the proposed approach
stem from a simple observation we have been consistently
making with security experts: Given a web page, security
experts typically have an idea about what may go wrong with
it by simply glancing through the certain properties of the
page, such as the URL, the content, and the look and feel of
the page. We, therefore, conjecture that “similar” web pages
are likely to possess “similar” vulnerabilities and that
exploiting these similarities can help reveal vulnerabilities
faster by prioritizing the security tests, such that the tests that
are capable of revealing the suspected vulnerabilities can be
executed before the other tests. Note that although our focus
in this work is on web applications, the same idea can be
applied to other domains, such as to mobile testing where
similar screens in mobile applications may suffer from similar
vulnerabilities.

The remainder of the paper is organized as follows: Section
II introduces the proposed approach; Section III describes the
experiments we carried to evaluate the proposed approach;
and Section IV concludes with some future work ideas.

II. APPROACH
We cast the problem of prioritizing security tests to a multi-
class classification problem, where each class corresponds to
a vulnerability. Since a web page may have multiple
vulnerabilities, instead of making only one prediction for a
given page (e.g., assigning a single class to the page), we
make multiple predictions by ordering all the classes
according to their likelihood (from the most probable one to
the least probable one). We then report the top N predictions
(for this work, N ∈ {1, 3, 5, 8, 15}) as the most
probable vulnerabilities that may be
possessed by the web page. Once these
vulnerabilities are identified, the security
tests developed to reveal them can be given
priority.

To this end, given a web page, we extract a number of
features (for this work, 50 features) from the page, regarding
the URL, the HTTP request/response contents, the server
headers, and the authentication methods employed by the
server. Each feature is represented as a binary attribute

representing whether the respective feature is present in the
web page or not. In our model, the features that are extracted
from reports would create the feature vector for training in the
light of our assumption. All of these features are binary,
representing whether the feature exists in the page (=1) or not
(=0).

III. EXPERIMENTS
To evaluate the proposed approach, we carried out a series of
experiments.

A. Operational Framework
In these experiments, we scanned 80 websites for
vulnerabilities by using Netsparker. Netsparker generated us
a total of 2927 reports, each of which was for a distinct web
page. The report of a web page contained a list of CWE
(Common Weakness Enumeration) indices [5], representing
the vulnerabilities that the page possessed. We use these
CWE indices as the classes to be predicted.

For a web page, we first extracted 50 binary features from the
page (Section II) and created a separate record for each
vulnerability possessed by the page. That is, each record had
the 50 features extracted from the web page as the attributes
and a distinct vulnerability possessed by the page as the class.
All told, we had a total of 3291 records as many of the web
pages had more than one reported vulnerabilities. We then
randomly splitted this data set into non-overlapping training
(80%) and test sets (20%).

To train the prediction models, we used Keras MultiClass
Classifier [6], which is a neural network-based classifier. In
particular, we used three-layered neural networks[7] and
experimented with two different activation functions, namely
softmax and sigmoid. The models were trained by using the
training set and evaluated by using the test set.

B. Evaluation Framework
Given a record obtained from a web page, the output of the
prediction model was a ranked list of probable classes (from
the most probable to the least probable) that the page may
belong to, i.e., a ranked list of vulnerabilities that the page
may have. We then reported the top N ∈ {1, 3, 5, 8, 15}
predictions.

To evaluate the quality of the predictions, we computed
accuracy as the percentage of the times the classes associated
with the records appear in the top N predictions. The higher
the accuracy, the better the approach is.

C. Data and Results
Table I summarizes the results we obtained. In this table, the
columns indicate the activation function used and the
accuracies obtained when N = 1, 3, 5, 8, and 15, respectively.
 The softmax model, compared to the sigmoid activation
function, led to better accuracies when N = 1 and N = 15. For
the remaining values of N, however, the sigmoid model
function performed better. For example, when N = 8 the
sigmoid model provided an accuracy of 86.9%. And, when N
= 15 the softmax model provided an accuracy of and 98.4%.
Compared to the no information case, if top 15 predictions are
taken into consideration, this corresponds to 0.01856 of all
possible weakness types, hence the time and resource gained
is dramatically high. There is also a top 25 list [8] published

in 2019, if we were to take that list into consideration, top 15
predictions correspond to 60% of the time and resources, and
we should not forget that some of the vulnerabilities that our
classifier predicts might not even be on the list and would be
missed if the software were only tested for weaknesses in
Top25 list [8].
Given that there are typically dozens of vulnerabilities to be
checked against a web page, the results of our experiments,
suggest that the proposed approach can help prioritize
security tests, such that vulnerabilities can be revealed faster.

Table I. Accuracy of Keras Multiclass Classifier

IV. CONCLUDING REMARKS
We believe that this line of research is promising and of great
practical importance. Therefore, we continue working on
developing new approaches for prioritizing security tests.
One possible avenue for future research is to evaluate
different classification models for predictions. Another
avenue is to increase both the number and the diversity of the
features we extract from web pages and leverage them
together with various feature selection algorithms. Last but
not least, the proposed approach needs to be evaluated with
more websites and its ability in revealing security
vulnerabilities faster than the existing approaches, should be
demonstrated.

REFERENCES
[1] Cohen et al., “Method to consolidate and prioritize web application

vulnerabilities” U.S. Publication 2007/0094735 A1, April 26,2007
[2] Hurst et al., “Webcrawl internet security analysis and process” U.S.

Patent 7.444,680 B2, Oct. 28, 2008
[3] Netsparker, Netsparker Ltd. Netsparker Ltd. Accessed: Mar 18, 2020.

Available: https://www.netsparker.com/
[4] M.G. Dondo, “A Vulnerability Prioritization System Using A Fuzzy

Risk Analysis Approach”, Proceedings of The Ifip Tc 11 23rd Intern.
Info. Security Conf. 2008 – The International Federation for
Information Processing, vol 278. Springer, Boston, MA, 2008, pp.
525-539

[5] “Common Weakness Enumeration, A Community-Developed List of
Common Software and Hardware Weakness Types”, Accessed: Mar
18, 2020. Available: https://cwe.mitre.org/index.html

[6] Chollet, F., & others. (2015). Keras. https://keras.io.
[7] “ Neural network models”, Accessed: Mar 18, 2020. Available:

https://scikit-
learn.org/stable/modules/neural_networks_supervised.html

[8] Cwe.mitre.org. (2020). CWE - 2019 CWE Top 25 Most Dangerous
Software Errors. [online] Available at:
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html

