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Abstract: In this study, we methodologically compare and review the accuracy and performance
of C0-continuous flat and curved inverse-shell elements (i.e., iMIN3, iQS4, and iCS8) for inverse
finite element method (iFEM) in terms of shape, strain, and stress monitoring, and damage detection
on various plane and curved geometries subjected to different loading and constraint conditions.
For this purpose, four different benchmark problems are proposed, namely, a tapered plate, a quarter
of a cylindrical shell, a stiffened curved plate, and a curved plate with a degraded material region in
stiffness, representing a damage. The complexity of these test cases is increased systematically to
reveal the advantages and shortcomings of the elements under different sensor density deployments.
The reference displacement solutions and strain-sensor data used in the benchmark problems are
established numerically, utilizing direct finite element analysis. After performing shape-, strain-, and
stress-sensing analyses, the reference solutions are compared to the reconstructed solutions of iMIN3,
iQS4, and iCS8 models. For plane geometries with sparse sensor configurations, these three elements
provide rather close reconstructed-displacement fields with slightly more accurate stress sensing using
iCS8 than when using iMIN3/iQS4. It is demonstrated on the curved geometry that the cross-diagonal
meshing of a quadrilateral element pattern (e.g., leading to four iMIN3 elements) improves the
accuracy of the displacement reconstruction as compared to a single-diagonal meshing strategy
(e.g., two iMIN3 elements in a quad-shape element) utilizing iMIN3 element. Nevertheless, regardless
of any geometry, sensor density, and meshing strategy, iQS4 has better shape and stress-sensing than
iMIN3. As the complexity of the problem is elevated, the predictive capabilities of iCS8 element become
obviously superior to that of flat inverse-shell elements (e.g., iMIN3 and iQS4) in terms of both shape
sensing and damage detection. Comprehensively speaking, we envisage that the set of scrupulously
selected test cases proposed herein can be reliable benchmarks for testing/validating/comparing for
the features of newly developed inverse elements.

Keywords: structural health monitoring; shape sensing; stress sensing; inverse finite element method;
shell elements; strain sensor; damage detection

1. Introduction

Thin shell structures with monolithic/stiffened curved and flat geometries are commonly utilized
in diverse engineering applications including ships and marine platforms, aerospace vehicles, and civil
structures, among others. These structures should be strong enough to bear not only their own weights
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but also extreme environmental loads such as high wind pressure, catastrophic ocean waves and
rainstorms without losing their structural integrity. These loads may result in material degradations due
to the formation of cracks, voids, and stress intensification locations. In addition to the load-induced
damages, the corrosive environmental conditions encourage the occurrence of additional failure modes
including stress-corrosion cracking, fretting cracks, and thickness reductions due to the material erosion.
Structures operating under these conditions eventually experience sudden failures and ruptures in
their primary components, and therefore are rendered useless. Besides, sudden damages lead to
economic loss, environmental pollution, and even may cause human casualties. To prevent such events
and predict these undesirable damages in real time, a structural health monitoring (SHM) system
with a reliable and robust displacement and stress-monitoring capabilities should be installed in the
structures aboard [1–3].

SHM is a multidisciplinary technology that can provide a real-time estimation of strain and
stress fields, overall structural deformations and damage positions through utilizing an ensemble
of sensors discretely located on/in the structure acquiring physical/mechanical information such as
strain, temperatures, acceleration and pressure. In recent decades, significant progress has been made
in different forms of SHM technologies for various material and structural systems [4,5]. The SHM
of simple and complex structural topologies (e.g., shell models with surface cracks [6,7]) made of
isotropic materials (e.g., steel/aluminum structures [2,3,8]) or orthotropic materials (e.g., multilayered
composite and sandwich structures [9,10]) are studied under static and dynamic loading conditions.
Particularly, damage, delamination, and fatigue in laminated composite and foam-core sandwich
structures were identified using embedded fiber optic sensors [11–13].

Apart from the conventional SHM approaches, a significant amount of attention has been paid
to the real-time reconstruction of the structurally deformed shapes via strain sensors, i.e., a key
technology for SHM systems, commonly referred to as “displacement monitoring” or “shape sensing”.
Mathematically speaking, shape sensing is an inverse problem. For the solution of this inverse problem,
various mathematical formulations and algorithms have been proposed and investigated experimentally
and/or numerically for beam/plate/shell structures. In general, these algorithms can be classified into the
following two main categories: (1) modal/analytical/curve-fitting approaches [14–19], and (2) inverse
finite element method (iFEM) [20,21]. Davis et al. [14] used analytical trial functions for shape and
vibration mode sensing in order to regenerate static-beam response using fiber Bragg grating (FBG)
sensor data. The main drawback of their approach is the requirement of excessive numbers of strain
sensors and trial functions to model complex modal shapes. Kang et al. and Bogert et al. [15,16]
evaluated the dynamic response of a beam- or plate-like structure through computing modal
coordinates using the strain–displacement relationship and discrete strain measurements obtained from
surface-mounted FBG sensors. However, since the numbers of estimated mode shapes are restricted to
the numbers of strain sensors, the accuracy of this approach may diminish for shape-sensing under
dynamically complex loading conditions, thus limiting the generality of this approach. Kim and
Cho [17] analytically approximated the deflection of a beam using a high-order polynomial function
whose weights were found through curve-fitted experimental strains. Ko et al. [18] generalized Kim and
Cho’s approach further and demonstrated its implantation to the shape-sensing of a wing-shaped beam
model with airfoil cross-section subjected to bending deformations. However, the approaches [17,18]
are unable to predict accurate torsional deformations due to the simplifications made in the kinematic
relations utilized in the model. Chierichetti [19] introduced a non-linear numerical method called a load
confluence algorithm (LCA) which requires the numerical estimation of force before reconstructing
the dynamic response of a beam. Nevertheless, since the LCA approach first reconstructs the loads,
the statistical complexity of the loading condition may lead to undesirable errors in the prediction
of displacement field. Overall, the above-stated shape-sensing methods encounter difficulties in
dealing with structures with complex geometries and boundary conditions, and hence cannot be easily
generalized for shape sensing of any structures.
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Among these inverse-methods, the iFEM methodology has been demonstrated to be the
most general shape-sensing algorithm because of its mathematical attributes, i.e., the utilization
of a least-squares variational principle based on experimental and numerical strain–displacement
relationships [20,21]. In other words, this variational principle relies on the minimization of the squared
norm errors between experimentally measured and numerically evaluated section strains. For a given
structure, the experimental section strains can be calculated by using tri-axial surface strains obtained
from strain rosettes that can be in the form of FBGs or conventional strain gauges. The numerical
counterparts of such section strains can also be readily established for an infinitesimally small domain,
i.e., an inverse finite element. The minimization of the iFEM least-squares functional with respect
to the unknown displacements enables one to cast the final set of equations in a matrix-vector form,
which can be solved through imposing problem-specific constraint boundary conditions into the final
equations. Such a solution first reveals the full-field structural displacements, leading to shape-sensing
in three-dimensional space. In the post-processing stage, the solution of the displacement field can be
transformed into the strains via strain–displacement relations. Finally, the constitutive relationships of
a given material can be used to evaluate the individual stress components, leading to stress monitoring
in the framework of iFEM methodology. To recapitulate, the potential advantages of an iFEM algorithm
can be stated concisely as: (1) the independence from the external loads; (2) the suitability for modelling
the complex structural geometries with intricate constraints; (3) the utilization of only discrete strain
measurements without needing material information; (4) the applicability to real-time analysis [2,3].

The iFEM methodology was first introduced for plate structures based on the kinematic
relationships of the first-order shear-deformation theory (FSDT) [21]. Then, its original variational
principle was adapted to the Timoshenko beam theory for the shape-sensing of beam structures [22],
which is validated against experimental studies [23–25]. Subsequently, the FSDT-based iFEM
formulation was extended to the utilization of the zigzag kinematics of refined zigzag theory (RZT) [26]
for the shape-sensing of composite structures [27–29]. Since the iFEM formulation requires the
discretization of the structural domain with inverse elements, various inverse beam-, plate- and
shell elements were developed. The FSDT-based iFEM elements available in the literature include
a three-node triangular inverse-shell element (iMIN3) [30], a four-node quadrilateral inverse-shell
element (iQS4) [31], and an eight-node curved quadrilateral inverse-shell element (iCS8) [32]. All these
elements possess the C0-continious shape functions. In particular, both iMIN3 and iQS4 utilize
the first-order anisoparametric shape functions developed for triangle [33] and quadrilateral [34]
finite elements, respectively. Such anisoparametric functions were obtained through imposing
Tessler-Dong [35] constant shear-edge conditions along the element boundaries. On the other hand,
the iCS8 element employs the Lagrangian serendipity (isoparametric) shape functions of an eight-node
quadrilateral element [36]. To date, the iMIN3 element was extensively scrutinized for the numerical and
experimental shape-sensing applications of plate structures with and without large deformations [37,38].
Besides this, the iQS4 was numerically demonstrated to be a practical element in modelling and
obtaining accurate sensor configurations for the displacement monitoring of complex marine structures
such as bulk carriers, chemical tankers, and offshore structures, among others [39–42]. As for the iCS8
element, its potential benefit for the shape-sensing of curved geometries with a low number of sensor
measurements was demonstrated on curved marine structures [43]. Although iQS4 was demonstrated
to be applicable accurately for the shape-sensing of slender composite structures [44], it is prudent to
state that there are other iFEM elements mainly implemented for thick sandwich structures, such as
RZT-based inverse-plate/shell elements [27,28,45].

To the best of the author’s knowledge, none of the previous research on the iFEM includes an
extensive comparison of the C0-continuous inverse-shell elements (i.e., iMIN3, iQS4, iCS8) in terms of
their efficiency and accuracy for the shape-sensing of various geometries with sparse and/or dense sensor
deployments. Moreover, earlier studies on these inverse-shell elements [30–32] do not include any
systematic investigation into the validation of these elements through analyzing benchmark geometries
ranging from simple to complex features with/without any material degradation. In this study,
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the aforementioned issues in the literature are addressed through performing various shape-sensing
analyses of plane, curved, monolithic, and stiffened engineering geometries with these three iFEM shell
elements. Therefore, the original contribution of this study to the existing state-of-the-art includes not
only the comparison of three inverse-shell elements but also the provision benchmark solutions, which
can be used for the development of application-specific new inverse-element types. Furthermore, the
present study reviews and emphasizes the significance of selecting the proper inverse-shell element
type for a problem-specific application through considering the complexity of geometrical features.

Since the fundamental kinematic relations of these three inverse elements are implemented based
on FSDT, the iFEM weighted-least-squares functional of each element contains the contributions of
the membrane, bending, and transverse-shear section strains, thereby allowing for a quantitative
comparison of these three elements. To do so, the same geometry is discretized, using the same number
of elements, and the same path of sensor lines is followed with the same number of sensor measurements.
In addition, different sparse sensor placement strategies are examined with the aim of achieving the
most practical and economical number of sensors in the discretization domain. Overall, four different
plane/curved geometries, e.g., flat, curved, stiffened curved and curved with material degradation,
with different loading and constraint conditions, are analyzed, as in the benchmark cases. For the last
benchmark, an eye-shaped domain in the center of the curved plate is modelled as a material with
degenerated (damaged) mechanical properties. With this problem, the damage detection capabilities
of the C0-continuous inverse-shell elements are also explored, based on the same damage-detection
criterion [46,47], thus providing benchmark guidance for the selection of iFEM shell elements as a part
of SHM.

2. The iFEM Formulation Based on FSDT

The iMIN3, iQS4, and iCS8 inverse-shell elements are the three main iFEM discretization units
used in the literature to perform shape-sensing of plate-like structural components in engineering
applications. The displacement definitions of all these elements are based on the kinematic relations of
the FSDT. The iMIN3 is the first inverse-shell element introduced in the literature [30] and possesses
a flat triangular geometry containing three-nodes with six degrees of freedom (DOF) per each node,
as shown in Figure 1. Although this inverse element has shown to be a good candidate for model
structures with arbitrary shapes, the discretization of a complex geometry may require a higher number
of elements as compared to quad-shaped inverse-elements, hence requiring the utilization of more
strain sensors.
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Aa an alternative to the iMIN3 element, one may prefer to use a four-node quadrilateral
inverse-shell element (iQS4) [31] for the discretization of a complex geometry with a lower number
of elements. Similar to the iMIN3 element, the iQS4 also has a flat geometry and each node contains
six DOF, i.e., the positive translational and rotational directions depicted in Figure 1. For modelling
complex geometries, the main advantage of using both iMIN3 and iQS4 is associated with the inclusion
of the drilling rotation, which prevents the singularity issues when discretizing a built-up structural
geometry and enables a better shape-sensing capability for membrane deformations.

Apart from these elements, an eight-node inverse curved-shell element, iCS8, was introduced to
tackle the shape-sensing of curved structural members [32]. Unlike iMIN3 and iQS4 elements, the
in-plane geometry of this new element is constructed using curvilinear coordinates of ξ and η, as shown
in Figure 1b, whereas the thickness coordinate, ζ, is rectangular to the in-plane coordinates along the
thickness of the element. Each node of the iCS8 contains three translational DOFs, defined according
to a global rectangular Cartesian coordinate system. Moreover, there are two local rotational DOFs
employed to construct the kinematics relationships suitable for FSDT. Furthermore, an artificial drilling
rotation is included in the displacement relations to avoid singular solutions when modelling stiffened
curved geometries. The main advantage of iCS8 can be attributed to its geometrically conforming nature
to structures with a lower mesh density. Overall, the iMIN3 and iQS4 elements utilize second-order
anisoparametric shape functions to interpolate the translational kinematic variables, whereas the iCS8
element uses second-order (Lagrangian serendipity) isoparametric shape functions to approximate the
displacement components. The detailed mathematical definitions corresponding to shape functions,
displacement approximations, and displacement–strain relationships about the inverse elements
studied herein can be found in [30–32].

Once the displacement field of each individual element is determined, the strain components at
any point of the plate/shell domain can be analytically calculated in terms of the nodal displacement
vector, ue, of an element as[

ε γ
]
≡

[
ε(ue) γ(ue)

]
=

[
Bεue Bγue

]
(1a)

ue =
[

ue
1 ue

2 · · · ue
n

]T
(1b)

where the ε and γ vectors represent the in-plane and transverse-shear strains, respectively.
In Equation (1b), the subscript n denotes the number of nodes of an individual element, e.g., iMIN3, iQS4,
and iCS8. Moreover, the Bε and Bγ matrices contain the derivative of the shape functions associated
with the displacements corresponding to membrane-bending and transverse-shear deformations,
respectively. Note that, for flat inverse-elements, coupled membrane-bending responses can easily be
described as the sum of the membrane and bending section strains as

ε(ue) = e(ue) + zκ(ue) = (Bm + zBb)ue = Bεue (2)

where the vectors e(ue) and κ(ue) represent the membrane strains and bending curvatures in a given
order. The strain–displacement relationship matrices, Bm and Bb, corresponding to these individual
section strains, were explicitly provided for flat iMIN3 and iQS4 elements in [30,31]. Such a decoupled
form of strain definition (i.e., Equation (2)) may require cumbrous mathematical partitions for the iCS8.
The explicit form of Bε matrix for the curved iCS8 element can be found in reference [32].

The main input of the iFEM methodology is the experimental strain measurements collected from
the on-board strain sensors located at discrete positions of a given plate/shell-like structure, as shown
in Figure 2. Consider that the ε+i and ε−i experimental surface strains are collected from the top
(z = +h) and bottom (z = −h) thickness coordinates of different in-plane positions, xi (i = 1, 2, . . . , ns).
Herein, the ‘+’ and ‘−’ superscripts are used to denote top and bottom surfaces, respectively, and the
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ns indicates the number of strain rosettes available on either bounding surface. Using these in situ
surface strains, the experimental counterparts of the numerical strain data can be calculated as[

eεi κεi

]
≡

[
1
2 (ε

+
i + ε−i )

1
2h (ε

+
i − ε

−

i )
]

(i = 1, 2, . . . , ns) (3)

where the eεi and κεi vectors represent the experimental counterparts of the membrane, e(ue),
and bending, κ(ue), section strains given in Equation (2), respectively. Such experimental strains can
be combined together to obtain a coupled membrane-bending section strain experimentally as

εεi = eεi + zκεi ≡ eεi + ζhκεi (i = 1, 2, . . . , ns) (4)

where theεεi vector represents the experimental counterpart of theε(ue) strains measured at the positions
of xi, i.e., continuously along the thickness coordinates, ζ ∈ [−1, 1], z ∈ [−h, h]. Experimental transverse
shear strains, γε, cannot directly be obtained from the ε+i and ε−i measurements. Nevertheless, when
performing shape-sensing for slender structures, the contributions of transverse-shear strains to
bending deformations can be safely omitted.
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Based on experimentally measured and the numerically calculated section strains, the weighted
least-squares functional of iFEM methodology can be defined for shape-sensing simulations by using
iMIN3, iQS4, and iCS8 elements as

Φ(ue) =
1
V

∫
V

(
wε‖ε(ue) − εε‖2 + wγ‖γ(ue) − γε‖2

)
dV (5)

where the V parameter represents the volume of an individual inverse-shell element, wε and wγ are the
weighting coefficients associated with the in-plane and transverse-shear strains. These coefficients can
be set to unity, wε = wγ = 1, if both experimental measurements, εε and γε, exist within a given inverse
element. Otherwise, they should be set to a small number compared to unity, such as wε = wγ = 10−4,
in case of missing experimental section strains in the element domain. More details on the weighting
coefficient strategies can be found in [2]. Minimizing the Φ(ue) functional with respect to the unknown
ue displacements of an inverse element, the compact form of the final equation set can be obtained as

∂Φ(ue)

∂ue = keue
− fe = 0⇒ keue = fe (6)

where the ke and fe are local analytical shape matrix and local experimental shape vector in the given
order. The explicit forms of these quantities for iMIN3, iQS4, and iCS8 elements were provided
in [30–32]. These local equation given in Equation (6) can be transformed into a global Coordinate
system by using an appropriate transformation matrix, Te, and then can be assembled for a given
discretization composed of Nel number of inverse element as

KU = F (7a)

K =
Nel
∪

e=1

[
(Te)TkeTe

]
, F =

Nel
∪

e=1

[
(Te)Tfe

]
, U =

Nel
∪

e=1

[
(Te)Tue

]
(7b)
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where the ∪ operator represents the classical finite element assembly process, and the K, U, and F
denote the global shape matrix, displacement vector and experimental shape vector, respectively.
The solution of the Equation (7a) is suitable for real-time monitoring process since the F vector is the
only parameter that requires an update during each strain-data-acquisition in real time. At the final
step, the problem-specific displacement constraints can be imposed on the Equation (7a), thus obtaining
a reduced form of global equations that can be solved through an inversion/factorization process as

KRUR = FR ⇒ UR = KR
−1FR (8)

Hence, the overall deformed shape, i.e., the unknowns of the shape-sensing problem, can be easily
reconstructed by combining the constraints conditions with the reduced displacement vector. After that,
equivalent structural states constituting total displacement, UT, and von Mises strain and stress, εvm

and σvm, can be readily calculated as

UT =
√

UX2 + UY2 + UZ2 (9a)

εvm =

√
2

3

√
(ε1 − ε2)

2 + (ε2 − ε3)
2 + (ε1 − ε3)

2 (9b)

σvm =
1
√

2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2 (9c)

where the UX, UY, UZ symbols represent the displacements along global axes, and the ε1, ε2, ε3

and σ1, σ2, σ3 symbols indicate the principal strains and stresses, respectively. The accuracy of the
individual iFEM elements studied herein is assessed by calculating the percent difference between the
reconstructed structural responses and their reference solutions (i.e., obtained from high-fidelity FEM
analysis) as

PercentDi f f erence(%) =

∣∣∣∣∣δiFEM − δFEM

δFEM

∣∣∣∣∣× 100 (10)

where the δ parameter can correspond to either total displacement or von Mises strain/stress.

3. Numerical Examples

In this study, we have solved four scrupulously selected benchmark cases that enable one to
reveal the advantages and disadvantageous of the three inverse-shell elements under the same sensor
configurations. The complexity of the benchmark cases is increased gradually from the plate-like
to the curved stiffened shell structures, and finally covering a curved-shell with a damaged region.
These geometrical features cover a wide range of practical engineering applications such as monolithic
and stiffened flat/curved plate-/shell-like structural components. The cases studied herein include
a tapered (wing-shape) plate, a curved shell, a stiffened curved structure and a curved shell with
an imperfection (damage), in the given order. In addition, the boundary conditions in each test case
are set in a prudent way to experience various types of deformations including in-plane stretching,
bending, torsion, and their coupled responses. Since the order or complexity increases from the first to
the last test case, these problems constitute a reliable set of benchmark cases for assessments of new
inverse elements.

3.1. A Tapered Plate

A tapered plate with the dimensions, discretization, and sensor configurations shown in Figure 3
is analyzed based on three different iFEM elements. The plate has a thickness of 10 mm and is made
of steel with the elastic modulus of 210 GPa and Poisson’s ratio of 0.3. The left edge of the plate is
fully clamped against translational and rotational displacements and a body force of 63.765 kN/m3

is applied on the plate domain. As depicted in Figure 3a, the edges of the domain of interest are
composed of nine subdivisions, leading to 81 quad-shaped (iQS4/iCS8) elements. To construct the
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tria-shaped (iMIN3) subdomains, the 81 quadrilateral elements were divided into two triangular
elements with a single diagonal (Figure 3b). Given that the plate is made of an isotropic material,
and its geometry is symmetrical with respect to the reference mid-plane, the strains at the top/bottom
surface of the same in-plane positions will possess the same absolute values when subjected to the
pure bending/torsional loads. Therefore, the sensor can be located at the top surface of the plate only.
Here, the sensors are placed along the edgewise iFEM elements of the domain, resulting in 32 elements
being instrumented with sensors (Figure 3). Since the expected deformations of the plate are bending
dominated, the normal strain along the x-axis would vary significantly from the clamped region to
the tip. Moreover, due to the tapered shape of the plate, there is an expected torsional deformation,
which may cause different strain values and variations along the top and bottom edges of the plate.
Furthermore, this torsional deformation also causes variations of the normal strain along the y-axis
and the maximum values of such strain distribution are likely to be observed at the boundaries of
the domain (i.e., the clamped and tip region). As depicted in Figure 3, we distribute the sensors at
the boundaries along both longitudinal and transverse coordinates of the domain. In other words,
the sensor placement model conforms to the perimeter of the domain of the interest, thereby enabling
one to perform coupled bending-torsional deformation monitoring.
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Suitable weighting coefficients (i.e., wε and wγ) should be defined to ensure the strain-interpolation
continuity over the iFEM discretization. In the case of a strainless element (experimental strains,
either εε or γε, are missing), the weighting coefficients of the element can be set to a small value
compared to unity, which can be defined in the range of 10−3 – 10−5. In this test case, the variation of
the maximum iFEM-reconstructed displacement converges to a stable value as the small weighting
coefficient decreases down to 10−3, and any further decrease in weight will not affect the convergence
of displacement results. Considering these strategies, for the elements attached with the sensors,
the weighting coefficients associated with the membrane and bending sections strains are assigned
to unity. Since the span-to-thickness ratio of the present plate is large enough, the transverse-shear
section strains will be negligibly small (γε ≈ 0), as in the case of a thin plate model. Therefore, the
weighting coefficients for the transverse-shear sections strains are set to 10−3 and no experimental
transverse-shear strains is used in the iFEM analysis. In addition, for the elements without any sensors,
their weighting coefficients of the membrane-bending strains are assigned to a small value (i.e.,10−3) as
well, in order to preserve the strain–interpolation connectivity between iFEM elements with sensors.
First, a direct FEM analysis with a fine mesh consisting of 729 elements is performed to obtain accurate
displacement results that can be used as a reference solution for the iFEM analysis. Moreover, the strain
values obtained from the high-fidelity FEM analyses are used to simulate the experimental in situ
strain measurements at the center of the iFEM elements. Subsequently, three different iFEM analyses
are performed by using the iCS8, iQS4, and iMIN3 elements.
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The iFEM results are compared in terms of displacements and stresses with respect to the direct
FEM analysis, as given in Figures 4 and 5. Here, one can clearly observe from Figure 4 that all iFEM
elements generate nearly the identical displacement contours indistinguishable from those of FEM
throughout the plate domain. However, the percent differences between iMIN3, iQS4, iCS8 and
reference solutions for the maximum total displacements are approximately 5.42%, 0.21%, 0.53%,
respectively, therefore the maximum displacements obtained from iQS4 and iCS8 are closer to the
maximum reference displacements than the iMIN3. This observation can be attributed to two important
physical/mathematical aspects: (1) the total number of sensors per total number of edgewise iFEM
elements, and (2) shape function construction. As for the iMIN3 sensor placement model, fifty percent
of the edgewise elements are populated with sensors, while all edgewise elements in the iQS4 and
iCS8 models possess one-to-one sensor placement. Referring to the shape function construction,
anisoparametric shape functions of the iMIN3 element use the area-parametric coordinates of a triangle,
whereas the iQS4 element’s anisoparametric shape functions utilize the bilinear isoparametric mapping
functions. Since the area-parametric coordinates have a less accurate interpolation capability than the
Lagrangian mapping functions, the displacement approximation achieved by iQS4 and iCS8 elements
is superior to that of iMIN3. To recapitulate, although iQS4 and iCS8 have inherently different shape
functions, they perform in the same manner in terms of displacement reconstruction on a flat plate.
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To compare the performance of these three iFEM elements further, we perform a posteriori
calculation and obtain the von Mises stress distributions across the plate domain as shown in Figure 5.
Although all three elements produce similar variations in stress contours along the length of the tapered
plate, the iCS8 element renders a better reconstruction of the von Mises stresses in the vicinity of the
clamped region as compared to the flat elements. The percent differences between reference solutions
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and iFEM elements (iMIN3, iQS4, and iCS8) for the maximum von Mises stress are about 17.87%,
15.33%, and 11.66% in the given order. This quantitative assessment bespeaks the higher order accuracy
of the iCS8 elements for stress sensing, which is associated with the fact that strain distribution in the
iCS8 element is not uniform along spatial coordinates and possesses a high-order polynomial with
respect to the flat elements. This is further supported by the non-oscillatory and smooth stress contours
obtained by the iCS8 element, which are almost identical to those of FEM analysis.

3.2. A Curved Plate

To compare the advantages and shortcomings of the three inverse elements for the displacement
reconstruction of complex geometries, we considered a simply supported, cylindrical-thin shell structure
(herein referred to as “curved plate”). The curved plate has a radius, length, and thickness of 100, 120,
and 2 mm, respectively. The material properties of the curved plate are as same as the previous example.
As illustrated in Figure 6a, four edges of the plate are simply supported. Moreover, the top surface of
the plate is subjected to a sinusoidal pressure of the form, q(z,θ) = q0 sin(θ) cos(πz/L), with pressure
magnitude of q0 = 5 [MPa], where the z and θ coordinates are bounded by z ∈ [−L/2, L/2], θ ∈ [0,π].
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Due to the symmetrical nature of the computational domain (i.e., geometry, material, loading,
and constraints), only one-fourth of the curved plate can be prudently analyzed using appropriate
symmetry boundary conditions, as depicted in Figure 6b. To compare the convergence performance
of the iFEM elements in terms of the mesh/sensor density, three different mesh resolutions
(i.e., 3 × 1, 5 × 2, and 15 × 5 elements) ranging from coarse to fine mesh/sensor densities are constructed
using iMIN3, iQS4, and iCS8 elements. For the sake of clarity, examples of coarse mesh resolutions
(3 × 1) are illustrated in Figure 7. Being particular to the iMIN3 models, two different discretization
schemes are proposed, namely single and cross-diagonal patterns (i.e., iMIN3s and iMIN3c), as shown
in Figure 7. Here, tria-shape elements (i.e., offspring element) are generated by diagonally dividing the
quadrilateral elements (i.e., parent element), thereby forming either two or four offspring.

To provide strain data as an input to the iFEM models as well as establish a reference solution for
the curved plate, a direct FEM analysis was performed utilizing a sufficiently fine mesh composed of
105× 45 quadrilateral elements with 29,256 DOF. The simulated data (i.e., representing the experimental
data) is assigned to the geometric center of the each relevant iFEM element. For iMIN3s and iMIN3c
models, the experimental strain value at the centroid of each specific parent inverse-element (iQS4/iCS8)
is equally assigned to all offspring (iMIN3) elements. In this manner, the number of sensors for each tria-
or quad-mesh becomes identical, so that there is no strainless element in the triangular configurations.
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Figure 7. Mesh resolution of 3 × 1 for the curved plate using four different discretization strategies.

In this benchmark, the weighting constants associated with the membrane-bending and
transverse-shear section strains are set to wε = 1 and wγ = 10−3 for all iFEM discretization, respectively.
Afterward, the iFEM analysis for each mesh resolution of a given element type is performed and the
results are presented and compared with respect to each other and the reference solution in terms of
contours of total displacements in Figures 8–10. One can see from Figure 8 that, at low mesh resolution,
the iCS8 element generates displacement contours much more consistent with reference contours
than those produced by iMIN3s/c and iQS4 models. Additionally, for moderate mesh resolution, the
better shape-sensing capability of the curved elements in terms of accurate total displacement contours
prevailed over the flat elements, as shown in Figure 9. Furthermore, as the mesh density increases
(refer to Figures 9 and 10), the difference between the results of all elements disappears and their
displacement contours become almost indistinguishable from the reference solution.
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FEM analyses for the curved plate.
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analyses for the curved plate.

To provide a quantitative comparison for all elements, the maximum values of the total
displacements of each iFEM analysis are normalized with respect to that of FEM analysis, and these
results are plotted versus the increasing mesh resolution in Figure 11. One can conclude that, for the
modelling of a curved geometry, the curved element produces the lowest displacement errors with
respect to the reference solution, even using the coarse discretization in the iFEM analysis. As elaborated
on previously, the preeminent performance of iCS8 over all the other elements is associated with
the high-order (serendipity) Lagrangian shape functions and the inclusion of a greater number of
nodes, which enables a better physical representation of the geometry even in the case of low-mesh
resolutions. It would be also interesting to compare the performance of the single and cross-diagonal
mesh models of iMIN3 element. Accordingly, in Figure 11, the iMIN3s predicts maximum normalized
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displacements approximately 1.5 times more erroneous than the results of iMIN3c. Hence, even the
same number of sensors is used in iMIN3s/c models; the iMIN3c entails a higher precision because of
the central-node included in the parent quadrilateral elements, thereby enabling a better interpolation
of the structural deformations in the parent domain. When the performance of the iQS4 and iMIN3c are
compared in terms of displacement reconstruction, the iQS4 estimates displacements more accurately
over the curved geometry, hence yielding the highest precision among the family of flat elements.
Therefore, in the rest of the study, we only compare the performance of curved (iCS8) and more accurate
flat (iQS4) elements.
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3.3. A Stiffened Curved Plate

Previous numerical examples have proven that the iMIN3s/c meshing strategies are not as accurate
as other meshing methods using flat/curved inverse elements (namely, iCS8 and iQS4) in terms of
reconstructing structural deformations. Therefore, we eliminate the comparative assessments of iMIN3
element in the remaining test cases and herein continue with the implementation of iCS8 and iQS4 on
a more complicated geometry, i.e., a stiffened curved plate with dimensions depicted in Figure 12a.
It is expected that the strain/stress distribution should include severe and non-smooth variations due
to the presence of stiffeners as well as the curvilinear geometry of the plate. Therefore, this benchmark
problem lends itself to revealing the capabilities of two high-performance iFEM elements (iQS4 and
iCS8) comparatively in terms of both shape and stress-sensing. Specifically, the curved plate has
a length, radius, and uniform thickness of 2000, 1000, and 30 mm, respectively. The plate has equally
spaced transverse stiffeners with a height and thickness of 200 and 30 mm. The plate and stiffeners are
made of an isotropic (steel) material with an elastic modulus, Poisson’s ratio, and density of 200 GPa,
0.3, and 7800 kg/m3, in the given order. All edges of the plate are simply supported, allowing for
rotational DOF and constraining translational DOF only. Here, the stiffened curved plate is subjected
to the gravity of 9.81 m/s2, thus resulting in the body force of 7800 × 9.81 N/m3.
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Figure 12. (a) Dimensions of the stiffened curved plate; (b) sparse and (c) very sparse sensor
placement models.

As in the case of previous test cases, the forward structural analysis is first performed using
a high-fidelity FEM model composed of 1026 elements to generate a reference solution as well as
strain-sensor data, i.e., the input of the iFEM analysis. The present iFEM analyses are performed using
a discretization composed of uniformly distributed 114 quad-shape inverse-elements, namely either an
iCS8 or iQS4 element. For this test case, three types of sensor placement models, namely ‘full’, ‘sparse’,
and ‘very sparse’ with the labels f, s, vs, are used on the same iFEM mesh resolution.

In the full model, all elements include strain sensors with 114 × 2 total number of strain rosettes.
As for the sparse sensor placement model, only inverse elements on the surface of the plate are
assigned to the input strain data, thus requiring the usage of 60 × 2 strain rosettes. For the last sensor
configuration (vs model), the total number of strain rosettes was reduced to 28 × 2, since only inverse
elements along the edges of the curved plate are instrumented with sensors. For clarity, representative
sensor-placement configurations (s and vs models) are illustrated in Figure 12b,c. All weighting
constants for strainless elements (without experimental strain data) are set to 10−4, while they are
defined as wε = 1 and wγ = 10−4 for all elements with strain rosettes in the different iFEM models.

In Figure 13, the total displacements contours of iQS4 and iCS8 models with different sensor
density are compared to each other and with respect to the reference solution. As can be seen from the
figure, the iQS4 produce a more localized maximum total displacement field along the centerline of
the plate than those of iCS8 and the reference solution for all three sensor-placement configurations.
This clearly indicates that the iCS8 element reconstructs total displacement field much better than
iQS4 element for the given curved (complex) stiffened geometry. Quantitatively speaking, the percent
differences for the maximum total displacements between iFEM and FEM analyses are calculated as
(1.43%, 2.59%, 8.37%) and (0.43%, 0.73%, 7.35%) for the iQS4 and iCS8 (f, s, vs) models, respectively.
At a higher sensor density, the iCS8 element predicts total displacement that have at least three
times lower error than the iQS4 element, while this error reduces down to 1.15 at very sparse sensor
deployment. Despite the closer error level between flat/curved elements for the vs model, it can be
understood from the percent errors that as the sensor density increases, the predictive capability of the
iCS8 becomes much better than the iQS4 element. Nonetheless, for any sensor density, iCS8 yields
a superior shape-sensing than iQS4, which can be ascribed to the conforming nature of the quad-shape
curved element.
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A similar comparison is also provided for the von Mises stress fields, as shown in Figure 14.
Likewise, the percent differences for von Mises stress between iFEM and FEM analyses are
13.30%, 15.50%, and 20.50%, respectively, for iQS4 models with f, s, and vs sensor deployments.
Correspondingly, they are 4.20%, 6.54%, and 14.94% for the iCS8 models. An important observation is
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that, although there are no sensors on the stiffeners in the s and vs sensor deployments, both the flat
and curved elements of iFEM can predict accurate stress variations across stiffeners to an adequate
degree. Overall, it is shown that the iCS8 element surpasses the predictive capability of the iQS4 in
terms of not only the displacement field, but also the equivalent stress field.
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All the benchmark cases were assessed again by the standard deviation measurement principle to
further compare the accuracy and performance of iMIN3, iQS4, and iCS8 elements in terms of shape
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and stress sensing. The root–mean–square difference (RMSD) between iFEM and FEM results can be
computed as

RMSD =

√√√√√√ Nn∑
i=1

(δiFEM
i − δFEM

i )
2

Nn
(11)

where the Nn term represents the total number of nodes in the global iFEM discretization and the
δ parameter corresponds to either total displacement, UT or von Mises stress, σvm. As is inferred from
Equation (11), the stability of the results obtained using different iFEM elements does not depend
on a single node having the maximum displacement/stress value, since all nodes contribute to the
increasing stability of the results in the standard deviation calculation.

The RMSD values computed for various test cases are listed in Table 1. These results clearly confirm
the enhanced shape- and stress-sensing capability of iCS8 element against flat elements. Expectedly, the
iQS4 element produces smaller RMSD values than iMIN3s or iMIN3c meshing strategies. For all
cases (1–3), the displacement and stress results estimated using the iCS8 element have the lowest average
deviation from reference FEM results, thereby proving its superiority against flat iFEM elements.

Table 1. Root–mean–square difference (RMSD) results for UT displacement and σvm stress of various
test cases.

Structural Response
Case1 Case2 (Moderate) Case3 (Sparse)

iMin3s iQS4 iCS8 iMin3s iMIN3c iQS4 iCS8 iQS4 iCS8

UT 0.116 0.014 0.009 0.0228 0.0221 0.0220 0.0219 0.530 0.411
σvm 0.508 0.116 0.067 - - - - 3.620 2.772

3.4. A Curved Plate with a Damaged Region

In many engineering structures, there are internal features in the form of holes, slots or cutouts
due to the topological design or assembly requirement. These regions experience drastic strain/stress
variation that needs to be closely monitored to ensure the structural integrity of the component under
operational conditions. Such internal features can be modelled as a material region with degraded elastic
constants or without any stiffness. Since these domains can be considered as pre-damaged locations,
it will be very important and critical to accurately reconstruct the displacement and stress variation
from the discrete sensor information collected at the far-field region of these pre-damaged positions.
To this end, it is crucial to select effective iFEM elements for geometry-specific problems. Therefore, in
this study, we have extended our benchmark cases further, such that the performances of two main
iFEM elements are scrutinized comparatively in terms of their predictive capabilities for full-field
shape and strain sensing of pre-damaged structure. Specifically, this test case focuses on a curved
plate with an eye-shaped cutout, representing either an internal feature or a pre-damaged section of
a structural component. The present investigation on the curved plate can also entail the performance
evaluation of curved/flat elements for their usage in damage localization and detection sensitivity.

The dimensions of the curved plate are provided in Figure 15a, where the eye-shaped region
is symmetrically located with respect to the center of the curved plate with an angle of α = π/16.
Two edges of this region are created by passing arcs from points of 1, 2, 3 and 1, 4, 3, in the given
order. As depicted in Figure 15a, the top edge of the plate is fully clamped, with no rotational
and translation DOF, and a line-distributed force of 750 N/m is applied at the bottom edge of the
plate. Initially, the curved plate is considered to be free of any damage, representing the undamaged
condition. Under the operating conditions, the plate is assumed to develop a defective eye-shaped
region. Here, this region is particularly chosen to intensify the strain variation near the damaged
region, thereby setting up a more challenging test case. To represent the intact and damaged (degraded)
regions of the curved plate, two different elastic moduli are used, namely 210 GPa and 21 MPa for
intact and defective regions, respectively, having the same Poisson’s ratio of 0.3. Similar to the previous
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test cases, a direct FEM analysis is used for simulating experimental sensor data and establishing
reference solutions for both undamaged and damaged conditions of the plate. After FEM analyses,
two iFEM analyses are performed using the discrete strain data collected from the undamaged and
damaged conditions of the curved plate. As shown in Figure 15b, the iFEM model is composed of
88 quad-shape elements (representing either iCS8 or iQS4) and the edgewise elements accommodate
the strain sensors, thereby resulting in 30 sensors in the model. During the iFEM analysis of the present
geometry, the weighting constants are set to the values of the previous case study (corresponding to the
sparse sensor configurations, namely either s or vs model). Once the displacements are reconstructed
using iCS8 and iQS4 models, the von Mises strains are calculated for each node i = 1, 2, . . . , Nn in the
iFEM models. Then, to localize the damage, the damage indication factor, Ωi, is computed as [46,47]

Ωi =
∣∣∣εD

i − ε
U
i

∣∣∣/εD
max (12)

where the εD
i and εU

i parameters represent the iFEM-based reconstructed or reference FEM von Mises
strains at the nodes for the damaged and undamaged conditions of the curved plate, respectively,
and the εD

max denotes the maximum value of the reconstructed von Mises strains for the damaged case.
Finally, Equation (12) is used to estimate and compare the damage detection capability of iQS4 and
iCS8 elements for the present test case.
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Figure 15. (a) Dimensions of the curved plate with a damaged region at the center; (b) sensor placement
model for iCS8/iQS4 discretization.

Figure 16 compares the reconstructed displacement of flat and curved elements with respect to the
reference solution for the damaged configuration. As is evident from the comparison, the displacement
contours do not imply the possible location of the damaged region. Nevertheless, according to the
maximum displacement produced by iCS8 and iQS4, the result of the curved element is in a better
agreement with the reference solution than the flat element. In numbers, the percent difference between
iCS8 and reference solution for the maximum displacement is 0.15%, whereas it is 6.03% for the iQS4
element, thus confirming the higher precision of curved element for shape sensing of cylindrical
geometry even using sparse sensor configuration. To reveal the damage localization capabilities of
these elements, in Figure 17 the contours of damage indication factor are provided and plotted over
the curved geometry. These damage factors are calculated using iFEM (iQS4 and iCS8 models) and
FEM analysis. According to the comparison between iFEM and FEM damage predictions, it can
be clearly seen from the damage contours in Figure 17 that the iCS8 element localizes the damage
and detects its eye-shape better than the flat element. Hence, it can be concluded that iCS8 element
offers a better shape sensing and structural health monitoring features for real-time monitoring of
complex geometries.
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4. Conclusions

The shape-, strain-, and stress-sensing performance of iMIN3, iQS4, iCS8 elements are investigated
and compared for various plate and shell structures by gradually increasing their geometrical complexity.
These geometries include flat, curved, stiffened-curved, and a curved plate with a damaged region.
For all iFEM elements, the weighted-least-squares functional is constructed according to the FSDT
displacement kinematics. When the geometry of the structure is blade-like, as intuitively expected,
there is no distinctive difference among all the iFEM-reconstructed displacement results with respect to
the reference solution. A slightly better stress-sensing accuracy is observed for iCS8 element over the
other elements for the flat geometry. This improved in the stress prediction of iCS8, which is attributed
to its high-order serendipity shape functions allowing for an extra mid-node in the stress prediction.
As the complexity of the geometry of the test cases increases (i.e., curved and stiffened-curved),
it was proven that the predictive capability of iCS8 element becomes obviously superior to the
flat elements for shape-sensing with a lower number of sensors and coarser mesh configuration.
This is because the second-order isoparametric mapping functions of iCS8 allow for a smoother
approximation of the curved geometries by using a lower number of elements. When the flat elements
are compared to each other, it is observed that iQS4 yields a better displacement reconstruction than
iMIN3 meshing strategies. These meshing configurations consist of single- and cross-diagonal divisions
of a quad-element into tria-elements. Remarkably, the shape-sensing ability of iMIN3 can be enhanced
if the cross-diagonal meshing strategy is utilized. Finally, the damage detection feature of the elements
is explored on a curved plate with a geometrically complex damage region. Accordingly, the damage
detection sensitivity of the curved element is observed to be much better than that of the flat element.
Overall, all the test cases presented herein can serve as “benchmark problems” for the newly developed
iFEM shell/plate elements. The optimization of sensor positions in an iFEM shape-sensing model
(i.e., generated using C0-continious inverse plate/shell elements) can be considered as an extension of
the current study in the future.
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