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ABSTRACT 

 

A SYSTEMIC COMPARISON OF DIFFERENT CHIMERIC ANTIGEN RECEPTOR 
(CAR) DESIGNS FOR RETARGETING OF NK-92 CELLS AGAINST  

TUMOR ANTIGENS 

 

Elif Çelik 

Biological Sciences and Bioengineering, M.Sc. Thesis, 2019 

Thesis Supervisor: Tolga Sütlü 

 

Keywords: natural killer cells, immunotherapy, chimeric antigen receptor 

Cancer immunotherapies focus on the power of the immune system to attack 

tumor cells. Recently, Chimeric Antigen Receptors expressing T cells (CAR-T cells) have 

received clinical approval for antigen-specific adoptive immunotherapy against CD19 in 

B cell malignancies. CAR vector designs have dramatically developed since their initial 

discovery and now include first-generation CARs (CD3ζ-based CAR), second-generation 

CARs with additional costimulatory domains such as CD28 or CD137 and third 

generation CARs (CD3ζ with two costimulatory domains) and recently fourth generation 

CAR with a transgene for cytokine stimulation.  

Natural Killer (NK) cells have ability recognize the tumor cells by their native 

receptors and have grown to be promising candidates for adoptive immunotherapy of 

cancer. CAR expression in NK cells is also clinically tested and carries the potential to 

translate into clinical application but the majority of literature on CAR vector design relies 

on observations from T cells. 

This thesis aims to use NK-92 cells for evaluation of different designs in order to 

optimize a CAR vector that could be efficiently used to retarget NK cells against tumor 

antigens. CAR transgenes comprising identical antigen binding domains that target 

CD19, combined with different intracellular signaling domains (CD3ζ , CD28 and 

CD137) are transferred to NK-92 cells via the use of lentiviral vectors. Cytotoxic activity 

and antigen-specificity of CAR-NK-92 cells are evaluated against the CD19- classical 

NK cell target K562 cell line and the CD19+ cell line Daudi and Namalwa by analysis of 
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degranulation and cytokine secretion.  Our results provide valuable data for optimal CAR 

vector design in NK cells.  
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ÖZET 

 

NK-92 HÜCRELERİNİN TÜMÖR ANTİJENLERİNE YÖNLENDİRİLMİŞ FARKLI 

KİMERİK ANİTJEN RESEPTÖR TASARIMLARININ SİSTEMİK 

KARŞILAŞTIRILMASI 

Elif Çelik 

Biyoloji Bilimleri ve Biyomühendislik, Yüksek Lisans Tezi, 2019 

Tez Danışmanı: Tolga Sütlü 

 

Anahtar kelimeler: doğal öldürücü hücreler, immünoterapi, kimerik antijen reseptör 

Kanser immünoterapileri, bağışıklık sistemindeki hücrelerin tümörlere karşı olan 

saldırma gücüne odaklanır. Yakın geçmişte, B hücresi malignitelerinde bulunan CD19’a 

karşı Kimerik Antijen Reseptörleri ile modifiye T hücreleri (CAR-T hücreleri), klinik 

immünoterapi uygulamaları için onay almıştır. CAR vektör tasarımları, ilk keşiflerinden 

bu yana çarpıcı biçimde gelişmektedir. Birinci nesil CAR'ları (CD3ζ tabanlı), CD28 veya 

CD137 gibi ek sinyal bölgelerinden birini içeren ikinci nesil CAR'lar ve CD3ζ’nın 

yanında iki sinyal bölgesi daha içeren üçüncü nesil CAR’lar takip etmiş, ayrıca bunların 

yanına sitokin stimülasyonu için bir genin eklenmesiyle elde edilen dördüncü nesil CAR 

vektörleri de geliştirilmektedir.  

Doğal Öldürücü (NK) hücreler, kendi doğal reseptörleri tarafından tümör 

hücrelerini tanıyabilmektedir ve bu sebeple adoptif immünoterapi için umut vadeden yeni 

adaylar olarak öne çıkmaktadır. CAR ifade eden NK hücreleri de klinik olarak test 

edilmekte ve klinik uygulamaya çevrilme potansiyelini taşımaktadır fakat CAR vektör 

tasarımlarına dair literatürün büyük çoğunluğunu T hücreleri üzerinden yapılan gözlemler 

oluşturmaktadır. 

Bu tezde NK hücrelerinin tümör antijenlerine yönlendirilmesi için 

kullanılabilecek bir CAR vektörü tasarımının optimizasyonu için NK-92 hücrelerinin 

kullanılması amaçlanmıştır. CD19 antijenine karşı aynı antijen bağlanma bölgesine sahip 

fakat farklı hücre içi sinyal bölgelerinin (CD3ζ, CD28 ve CD137) kullanıldığı CAR 

genleri lentiviral vektörler aracılığıyla NK-92 hücrelerine aktarılmıştır. CD19+ hücre 

hatları Namalwa ve Daudi’nin yanı sıra CD19- hücre hattı K562 kullanılarak CAR-NK-
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92 hücrelerinin degranülasyon ve sitokin salımı aktiviteleri ile antijen özgüllükleri 

değerlendirilmiştir. Sonuçlar NK hücrelerine özel CAR vektörü tasarımları için önemli 

veriler sağlamaktadır. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



VIII 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

To my mother, grandmother, and grandfather… 
 

Canım anneme, anneanneme ve büyükbabama…  



IX 
 

 

 

 

ACKNOWLEDGEMENTS 

 

I would first like to start by showing my thankfulness to my thesis advisor Dr. 

Tolga Sütlü for his infinite support, the patience he showed me and his guidance since 

2016.  I cannot tell how lucky I am to work in his lab. I always feel his support in my 

personal life and my academic life. His office was always open whenever I had a question 

or a trouble for my life or my master thesis. He strives for me to gain good ethical 

perception and to be a good scientist. Thank you for everything especially for introducing 

me to immunotherapy!   

I would also like to thank Prof. Dr. Batu Erman. I feel very fortunate and 

privileged to able to attend scientific discussions with him and to take his classes. It was 

a great pleasure to work with him and his lab. I am forever grateful for his knowledge and 

guidance.  

I would like to express my gratitude to Asst. Prof. Dr. Emre Deniz for accepting 

to be on my thesis committee and giving time and advice about my thesis.  

I am indebted to Dr. Winfried S. Wels, he gifted us the CAR plasmids. Based on 

these plasmids we gathered a lot of data and experience.  

I am thankful to Prof. Dr. İhsan Gürsel for the target cells, Sera Kadıgil Sütlü and 

Eren Atik for transportation of cells. If they had not helped, I wouldn't be able to complete 

this thesis or get any results to make a conclusion.  

I would like to thank Dr. Ahsen Morva Yılmaz, İsmail Yılmaz and Sercan Keskin 

for cell sorting. Their hospitality at TUBİTAK-MAM was a great help.  

I would like to thank our collaborator Duru Lab. I first met Dr. Adil Doğanay 

Duru at a Skype interview and after which he introduced me to Dr. Tolga Sütlü and shaped 

my academic career without knowing.  One of my special thanks for Dr. Ece Canan 



X 
 

Sayitoğlu, she was a good teacher during my internship after that she was always 

supportive of me.  

I would like to also thank the past and present members of Erman Lab.: Hakan 

Taşkıran, Liyne Noğay, Melike Gezen, Nazife Tolay, Ronay Çetin, Sanem Sarıyar, Sarah 

Barakat, Sinem Usluer, Sofia Piepoli. It was amazing to work at Erman Lab with you 

guys!  

When I was an undergraduate student, I came to Sütlü Lab and met the great 

family! I will always be proud of this family. I would like to thank the past and present 

members of Sütlü Lab for giving me great memories: Alp Ertunga Eyüpoğlu, Ayhan 

Parlar, Aydan Saraç Derdiyok, Dr. Başak Özata, Cevriye Pamukcu, Didem Özkazanç 

Ünsal, Lolai Ikromazada, Mertkaya Aras, Pegah Zahedimaram, Seden Bedir. I would 

especially like to show my appreciation to Didem and Ayhan for teaching me everything 

since my first day as an intern to now and future. Didem is my sister whom I can call 

whenever I have trouble. Last one month was challenging for me, Didem, Başak, and 

Cevriye spent many hours trying to help me finish this thesis. You are the BEST!  All of 

Sütlü Lab. members are always a part of my family. Thank you for everything!  

I would like to thank my best friends Görkem Gençer and Pelin Karaturhan who 

have been my friends for 10 years. They have been always with me in my worst and most 

depressive times and of course most beautiful memories. Thank you for enduring me! 

Finally, my biggest Thanks to My Family! I want to start with my grandmother 

Ayhan Özarabacı and my grandfather İbrahim Özarabacı, I always wish I had my 

grandfather with me, but I'm sure he's proud of me. I thank you both for your support and 

unconditional love. I hope, I have become a worthy grandchild for you. My dearest 

mother, Nuran Özarabacı. She always dreamed of her children getting a master’s degree. 

I hope you will be happy when you read these lines. Thank you for raising us like this. 

The biggest chances of my life are my big brother Onur Çelik and My twin sister Deniz 

Çelik. My brother has always been unconditional support and he is the dream brother for 

the little sisters. Thank you for being such a great brother. I would also like to thank 

Simge İplikçi for providing me with a home environment in Istanbul. My dear twin sister 

Deniz, I do not know how to thank you. You have always been with me for 24 years. You 

made me feel special and strong. I could not graduate without you. You are the best twin 

sister in the world. I love you!  



XI 
 

 

 

 

 

 

 

TABLE OF CONTENTS 

 

1. INTRODUCTION……………………………………………………………….......1 

1.1. Natural Killer Cells of The Immune System…………………………………….1  

1.1.1. Description and origin…………………………………………………... 1 

1.1.2. Subtypes………………………………………………………………….2  

1.1.3. Effector mechanisms……………………………………………………. 3 

1.2. NK-92 Cell Line and its clinical applications ………………………………….6 

1.3. Immunotherapy…………………………………………………………………7 

1.3.1. Cellular Immunotherapy…………………………………………………8 

1.3.1.1. Antigen-Specific Immunotherapy………………………………..8 

1.3.1.2. Chimeric Antigen Receptors…………………………………….11 

1.4. Chimeric Antigen Receptor-Natural Killer Cells………………………………17 

2. AIM OF THE STUDY……………………………………………………………...24 

3. MATERIALS AND METHODS…………………………………………………...25  

3.1. Materials…………………………………………………………………….....25 

3.1.1. Chemicals…………………………………………………………….....25   

3.1.2. Equipment……………………………………………………………....25 

3.1.3. Buffers and solutions……………………………………………………25   

3.1.4. Growth media…………………………………………………………...26  

3.1.5. Commercial kits used in this study……………………………………...26 

3.1.6. Enzymes………………………………………………………………...27 

3.1.7. Antibodies………………………………………………………………28 

3.1.8. Bacterial strains………………………………………………………....29 

3.1.9. Mammalian cell lines…………………………………………………...29  

3.1.10. Plasmids and oligonucleotides………………………………………….30  



XII 
 

3.1.11. DNA ladder……………………………………………………………..32  

3.1.12. DNA sequencing………………………………………………………..32 

3.1.13. Softwares and websites……………………………………..…………..33  

3.2. Methods……………………………………………………………………......33 

3.2.1. Bacterial cell culture…………………………………………………….33  

3.2.2. Mammalian cell culture…………………………………………………34 

3.2.3. Design and cloning of a new Chimeric Antigen Receptor Vector ……..35 

3.2.4. Production of lentiviral vectors…………………………………………44 

3.2.5. Lentiviral transduction of NK-92 cells………………………………….44 

3.2.6. Flow cytometry…………………………………………………………45 

3.2.7. Analysis of NK-92 Cell degranulation……………………………….…47 

3.2.8. Intracellular TNF-α and IFN- γ staining………………………………...47 

3.2.9. Statistical analysis……………………………………………………....48 

4. RESULTS…………………………………………………………………………..49  

4.1. Cloning of the new Chimeric Antigen Receptor Vectors……………………...49 

4.2. Production of lentiviral vectors………………………………………………..51 

4.3. Genetic Modification of NK-92 cells…………………………………………..54 

4.4. Functional Analysis of Genetically Modified NK-92 Cells………….………..59 

4.4.1. Degranulation of CAR-expressing NK-92 Cells………………………..59 

4.4.2. TNF-α and IFN- γ  Secretion of CAR-expressing NK-92 Cells…………62 

5. DISCUSSION & CONCLUSION………………………………………………….65 

REFERENCES……………………………………………………………………..68   

APPENDIX A: Chemicals Used in This Study……………………………………..81 

APPENDIX B: Equipment Used in This Study……………………………………..82 

APPENDIX C: DNA Ladder Used in This Study………………………………….83 

APPENDIX D: Plasmid Maps……………………………………………………...84  

APPENDIX E: Sequencing Results………………………………………………...90  

APPENDIX F: Amino acid Letter ………………………………………………….96 

 

 

 

 

 



XIII 
 

 

 

LIST OF FIGURES 
 

Figure 1.1. Hematopoiesis and branching of the immune system…………………….....2 

Figure 1.2. Phenotypic and functional comparison of CD56bright and CD56dim NK 
cells………………………………………………………………………………………3 

Figure 1.3. NK cell effector mechanisms…………………………………………..........4 

Figure 1.4. The integration of activating and inhibitory signals in NK cells....................5 

Figure 1.5. Activation of the T cell…………………………………………….…..........9 

Figure 1.6. Antigen-specific immunotherapy…………………………………………..10 

Figure 1.7. Antibody and signal chain variable fragment (scFv) structure…………….11 

Figure 1.8. Generations of Chimeric Antigen Receptors………………………………13 

Figure 1.9. The use of CAR-T cells. ……………………………………………….......14 

Figure 1.10. CAR NK cells…………………………………………………………….17 

Figure 3.1. Example view of Silent Mutator website…………………………………..36 

Figure 3.2. Development of novel CAR expression vectors…………………………...38 

Figure 3.3. Schematic representation of cloning with scFv which have already signal 
peptide and LeGO.iG2puro.CAR3.137………………………………………………...41 

Figure 4.1. Gel image of Double Digestions  of  backbone LeGO.iG2puro and insert 
CAR1373………………………………………………………………………..……...49 

Figure 4.2. Gel image of Double Digestion of PCR product and LeGO.iG2puro……..50 

Figure 4.3. Examples of the control digestion of LeGO.iG2puro.CAR and 
LeGO.iG2puro………………………………………………………………………….51 

Figure 4.4. Lentiviral constructs. ……………………………………………..………..52 

Figure 4.5. Genetic modification process of NK-92 with lentiviral vectors and sorted with 
puromycin selection or FACS…………………………………………………………..54 

Figure 4.6. Confirmation of c-Myc expression on CAR NK-92 cell surface…………..56 

Figure 4.7. Confirmation of signaling domain expression on CAR NK-92 cell……….57  



XIV 
 

Figure 4.8. Examples data of the Phenotyping Analysis for NK92.28.CD3ζ cells…….58 

Figure 4.9. Mean fluorescence intensity (MFI) stained vs MFI iso……………………58 

Figure 4.10. CD19 expression of Target Cells…………………………………………59 

Figure 4.11. Degranulation examples of NK-92 cells………………………………….59 

Figure 4.12. Degranulation results of 1st Batch CAR modified NK-92 Cells…………60 

Figure 4.13. Degranulation results of 3rd Batch CAR modified NK-92 Cells………...60 

Figure 4.14. Degranulation results of 2nd Batch CAR modified NK-92 Cells………...61  

Figure 4.15. CD19 blocking Degranulation Results……………………………………62 

Figure 4.16. Examples of TNF-α Secretion of CAR-expressing NK-92 Cells………...62 

Figure 4.17. TNF-α Secretion of CAR-expressing NK-92 Cells………………………63 

Figure 4.18. Examples IFN- γ of Secretion of CAR-expressing NK-92 Cells…………63 

Figure 4.19. IFN- γ  of Secretion of CAR-expressing NK-92 Cells…………………...64 

Figure C1. DNA ladder used in this study………………………………………….......83 

Figure D1. The vector map of LeGO-iG2puro.CAR3.137-19…………………………84 

Figure D2. The vector map of LeGO-iG2puro.CAR3.137……………………………..84 

Figure D3. The vector map of pS-63.z-IEW…………………………………………...85 

Figure D4. The vector map of pS-63.137.z-IEW………………………………………85 

Figure D5. The vector map of pS-63.28.z-IEW………………………………………..86 

Figure D6. The vector map of PUC57.CAR.3.137…………………………………….86 

Figure D7. The vector map of LeGO-iG2puro…………………………………………87 

Figure D8. The vector map of LeGO-G2………………………………………………87 

Figure D9. The vector map of pMDLg/pRRE………………………………………….88 

Figure D10. The vector map of pRSV-REV…………………………………………...88 

Figure D11. The vector map of pCMV-VSV-g………………………………………...89 

Figure E1. pS-63.137.z-IEW forward sequencing results……………………………...90 

Figure E2. pS-63.137.z-IEW reverse sequencing results………………………………91 

Figure E3. pS-63.28.z-IEW forward sequencing results……………………………….92 



XV 
 

Figure E4. pS-63.28.z-IEW reverse sequencing results………………………………..93 

Figure E5. pS-63.z-IEW forward sequencing results…………………………………..94 

Figure E6. pS-63.z-IEW reverse sequencing results…………………………………...95 

Figure F1. List of amino acids…………………………………………………………96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XVI 
 

 

 

 

 

 

LIST OF TABLES 

 

Table 1.1. CAR’s domains that used in NK/T cells……………………………………..15 

Table 1.2. List of Pre-Clinical Studies of NK cells……………………………………...19 

Table 1.3. Clinical Trials of CAR-NK…………………………………………………..22 

Table 3.1. List of Commercial Kits …………………………………….……………...26 

Table 3.2. List of Enzymes……………………………………………………………...27 

Table 3.3. List of Antibodies……………………………………………………………28  

Table 3.4. List of Plasmids……………………………………………………………...30 

Table 3.5. List of Oligonucleotides……………………………………………………..31 

Table 3.6. List of Software and Websites……………………………………………….33 

Table 3.7. Chimeric Antigen Receptors Domains and Sequences………………………39 

Table 3.8. List of Antibodies that used for phenotyping analysis……………………...46 

Table 4.1. Titration of Lentiviruses……………………………………………………..53 

Table 4.2. Results of +GFP the transduction and selection/sorting……………………...55 

Table 5.1. Comparison of different chimeric antigen receptors…………………………67 

Table A1. List of Chemicals……………………………………………………………81 

Table B1. List of Equipment………...…………………………………………...…..…82 

 

 

 

 



XVII 
 

 

 

 

 

 

LIST OF SYMBOLS AND ABBREVIATIONS 

 
D   Alpha 
E   Beta 
J   Gamma 
N   Kappa 
µ   Micro 
µL   Microliter 
µM                              Micromolar 
ADCC   Antibody-dependent cellular cytotoxicity 
AKT   Activating Receptor tyrosine kinase 
ALL   Acute Lymphocytic Leukemia 
APC                            Allophycocyanin 
BCMA   B-cell maturation antigen 
bp Base pair 
BV Brilliant Violet 
CAR                           Chimeric Antigen Receptor 
CIAP   Calf Intestine Alkaline Phosphatase 
CD   Cell differentiation 
CTLA-4  cytotoxic T-lymphocyte associated protein 4 
CO2                            Carbon dioxide 
CSR   Cytokine release syndrome  
DC   Dendritic Cell 
ddH2O                       Distilled water 
DLBCL  Diffuse large B-cell Lymphoma 
DMEM  Dulbecco’s Modified Eagle Medium 
DMSO   Dimethylsulfoxade 
DNA                           Deoxyribonucleic acid 
DPBS                         Dulbecco's phosphate-buffered saline 
E.coli   Escherichia coli 
EDTA   Ethylenediaminetetraacetic acid 
EGFR   Epidermal growth factor receptor 
ER                              Endoplasmic reticulum 
EPCAM  Epithelial cell adhesion molecule 
FACS   Fluorescence Activated Cell Sorting 
FBS   Fetal Bovine Serum 
FDA   Food and Drug Administration 
GM-CSF  Granulocyte-Macrophage Colony-Stimulating Factor 
GFP   Green Fluorescent Protein 
Gly   Glycine 



XVIII 
 

GvHD                         Graft versus host disease 
HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
HER2   Human epidermal growth factor 2 
HLA   Human Leukocyte Antigen 
HPV   Human Papillomavirus 
HVEM   Herpesvirus entry mediator 
ICOS   Inducible T-cell co-stimulator 
IFN   Interferon 
IL   Interleukin 
IgG                             Immunoglobulin G 
IRES   Internal Ribosome entry site 
ITAM   Immunoreceptor tyrosine-based activation motif 
ITIM   Immunoreceptor tyrosine-based inhibition motif 
JNK   C-Jun N-terminal kinase  
Kd   kilodalton 
KIR   Killer-cell Immunoglobulin-like Receptor 
LAK   Lymphokine-activated killer cell 
LB   Luria Broth 
mAb                           Monoclonal antibody 
MEM                         Minimum Essential Media 
MHC                          Major Histocompatibility Complex 
MOI   Multiplicity of Infection 
NCR   Natural cytotoxicity receptors 
NEAA   Non-essential Amino Acid 
OXO   (5Z)-7-Oxozeaenol 
PBMC   Peripheral Blood Mononuclear Cell 
PBS   Phosphate Buffered Saline 
PCR   Polymerase Chain Reaction 
PD-1   Programmed cell death protein 1 
PI   Propidium Iodide 
PI3K-AKT  Phosphoinositide-3-kinase-protein 
PIPES   piperazine-N,N′-bis (2-ethanesulfonic acid) 
PSMA   Prostate-specific membrane antigen 
Puro   Puromycin 
RPMI   Roswell Park Memorial Institute 
Rpm                           Round per minute 
RT   Room Temperature 
SEM   Standard Error of Mean 
Ser   Serine 
SFFV   Spleen Focus Forming Virus 
SLAM   Signaling lymphocytic activation molecule 
Syk   Spleen tyrosine kinase 
TAA   Tumor-associated antigen 
TCR   T-cell Receptor 
TNF   Tumor Necrosis Factor 
TRAIL   TNFα-Related Apoptosis-Inducing Ligand 
VSV-G                       Vesicular stomatitis virus G 
WT   Wild Type 
Zap-70   zeta-associated of 70 Kd tyrosine kinase 



1 
 

 
 
 
 
 
 

1. INTRODUCTION  

 

 

 

1.1. Natural Killer Cells of The Immune System  

 

1.1.1. Description and origin  

 

The immune system consists of different cell types and soluble factors that are responsible 

for defending against intrinsic or extrinsic threats. The immune system is mainly 

separated into two branches as innate and adaptive immunity (Figure 1.1). Innate 

immunity is the first barrier in the body to show response to non-self-invaders and danger-

associated molecular patterns (Medzhitov and Janeway 2000). Adaptive immunity 

responses come secondary to innate immunity and are responsible for recognizing and 

distinguishing specific molecules on pathogens (Alberts et al. 2002).  

Natural killer (NK) cells are members of innate immunity but come from the lymphoid 

lineage and they are first described as a type of lymphocyte in mice simultaneously by 

two groups in 1975 (Herberman et al., 1975; Kiessling et al., 1975). They are derived 

from CD34+  hematopoietic progenitor cells (Raulet and Vance 2006).  One of the 

milestones of NK cells is the recognition of the ‘missing-self’ that seems to act as a safety 

switch for attempts of escape from T cell-mediated immunity by means of MHC 

downregulation (Ljunggren & Kärre, 1990). 
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Figure 1.1. Hematopoiesis and branching of the immune system. 
Hematopoietic Stem Cells (HSCs) are found in the bone marrow and 
generate the two major cell types, myeloid and lymphoid progenitors. 
Common myeloid progenitors differentiate into red blood cells, 
platelets, monocytes and granulocytes (eosinophils, basophils and 
neutrophils) which are members of the innate immune system. NK 
cells are classified as members of the innate immune system but they 
are derived from the common lymphoid progenitor which also gives 
rise to the development of adaptive immunity members T and B cells.  

 

1.1.2. Subtypes 

 

Human NK cells are identified as CD3- CD56+ lymphocytes that developed in the bone 

marrow and are found in the blood, skin, lungs, liver, spleen, and lymph nodes (Grégoire 

et al. 2007).  Human peripheral blood contains 5-10% NK cells. In general, there are two 

types of pf NK cells with specific roles (Figure 1.2.).  

The majority of NK cells in human peripheral blood (about 90%) have low levels of CD56 

(CD56dim) and a small number (about 10%) has high CD56 (CD56bright) expression 

(Vivier et al. 2008). CD56dim cells express high levels of  CD16 (FcRIII) but not the high-

affinity IL-2 receptor alpha chain (CD25) (Chan et al. 2007). The upregulation of CD25 

under IL-2 stimulation helps NK cells provide lymphokine-activated killer (LAK) activity 

resulting in higher cytotoxic activity (Muralikrishna, Varalakshmi, and Khar 1997). 

CD56dimCD16brightCD25neg cells have effector functions such as natural cytotoxicity or 
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antibody-dependent cellular cytotoxicity (ADCC). They have higher cytosolic activity 

and show high expression of inhibitory killer cell immunoglobulin-like receptor (KIRs) 

whereas CD56bright NK cells have important regulatory roles (Lanier 2004).  

Figure 1.2. Phenotypic and functional comparison of CD56bright and CD56dim NK 
cells. CD56bright NK cells express high levels of the IL-2 receptor, lack CD16 
expression and produce high-level immunoregulatory cytokines. CD56dim NK 
cells have KIR expression and high levels of cytotoxic activity, mainly responsible 
for natural cytotoxicity. 

 

CD56bright cells do not show any cytotoxic activity act as more regulatory cells (Ferlazzo 

et al. 2004). They have CD94 / NKG2A but lack expression of KIR, however secrete 

various cytokines such as Interferon-gamma (IFN-γ), Tumor Necrosis Factor-alpha 

(TNF-α), IL-10, IL-13, and Granulocyte Macrophage Colony Stimulating Factor (GM-

CSF) there make a link between innate and adaptive immune response (De Maria et al. 

2011). If CD56brightCD16dim/neg cells interact with fibroblasts, they may differentiate into 

CD56dimCD16dim/neg cells with high cytolytic activity and express the CD25 (Chan et al. 

2007). 

1.1.3. Effector mechanisms  

The combination of activating and inhibitory receptors is responsible for the mechanism 

of action of the NK cell. NK cells distinguish the fate of the target cell according to the 

interactions of these receptors with their cognate ligands on the target cell (Figure 1.3.). 

Since the ligands for inhibitory receptors are generally MHC-I molecules, this makes NK 

cells able to recognize when MHC-I expression is lost on the target cell. This phenomenon 

is called “missing-self recognition” and it is the reigning model of NK cell activation, 

stating that NK cells mediate lysis of cells that do not express normal levels of self MHC 

ligands (Ljunggren and Kärre 1990). The activating signals and the inhibitory signals can 
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be considered as on a balance. As a results of viral infections or cellular stress; the cells 

can lose MHC-I expression on the cell surface  and cause unbalance  and NK cell 

activation occurs (Sentman, Olsson, and Kärre 1995).  

 

 

 

 

 

 

 

Figure 1.3. NK cell effector mechanisms. When NK cell faces with a 
target and if the only inhibitory ligand (mostly self-MHC molecules) 
engagement to inhibitory receptors, the target is protected from lysis, 
it is called NK Cell inhibition. If there is a low level of MHC 
molecules on the surface, and NK cells recognizing MHC low/absent 
cells is known as ‘the missing-self recognition’. In NK cell Activation 
the inhibitory signal is missing, or target cells have a non-self MHC 
molecule so there is an activating signal, the target cell is killed with 
cytolytic granule. When both signals are present, the fate of the target 
cell is determined by the dominant signal (right-most). 

 

The signals from these two groups of receptors are integrated intracellularly and the 

net result of this signaling dictates the NK cell to kill or spare the target cell. 
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Figure 1.4. The integration of activating and inhibitory signals in NK cells. Figure 

adapted from (Vivier, Nunès, and Vély 2004).  

 

Activating receptors such as CD16, the natural cytotoxicity receptors (NKp30, 

NKp44, NKp46), NKp80, and CD160 associate with (ITAM)-bearing molecules 

DAP12 and CD3ζ through their intracellular domains. Other ones such as NKG2D, 

2B4, CD2 and DNAM-1 signal through non-ITAM-bearing DAP10 (Pegram et al. 

2011). Upon the activation, ZAP70/SYK or PI3K pathways are turned on to lead the 

activation of the NK cell (Smyth et al. 2005). On the contrary, Inhibitory receptors 

have cytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIM) in their 

cytoplasmic tails (Krzewski and Strominger 2008) (Figure 1.4.). The binding of 

inhibitory receptors to classical MHC I ligands (HLA-A, -B, -C) induces signals via 

SHP-1 and SHP-2 (Yusa, Catina, and Campbell 2002) that dephosphorylate the same 

intermediates as the activating signals are trying to phosphorylate. The net result of 

these phosphorylation/dephosphorylation events helps to quantify the extent of 
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inhibitory and activating signals received by the cell. If the activating signals are 

more dominant the perforin and granzyme containing granules begin to polarize 

towards the target cell and get secreted at the immunological synapse, causing 

apoptosis of the targeted cell (Bryceson et al. 2006).  

NK cells also kill by death receptors Fas-ligands (FasL)  and TNFα-related apoptosis-

inducing ligand (TRAIL) which both induce apoptosis in target cells (Medvedev et 

al. 1997).  

 

1.2. NK-92 Cell Line and its clinical applications 

 

Currently, 10 different NK cells lines are known. NK3.3., YT cells (Yodoi et al. n.d.), 

NKL Cells (Robertson et al. n.d.), HANK1 cells (Kagami et al. 1998), NK-YS Cells 

(Tsuchiyama et al., n.d.), KHYG-1 Cells (Yagita et al. 2000), SNK-6 and SNT Cells 

(Nagata et al. 2001), IMC-1 Cells (I. M. Chen et al. 2004)  and NK-92 cells (Gong, Maki, 

and Klingemann 1994).  The first described cell line is NK3.3. which a normal NK-

derived cell line obtained by Kornbluth in 1982 (Kornbluth 1982). Among these cell lines, 

however, NK-92 stands out with its high cytotoxic activity and wide clinical applicability.  

NK-92 is an immortal natural killer cell line which is isolated from 50 years old male 

non-Hodgkin’s lymphoma patient in 1992 (Gong, Maki, and Klingemann 1994). NK-92 

cells are negative for CD3, CD4, CD8, and CD16, therefore, cannot mediate ADCC (HG 

Klingemann and Miyagawa 1996). The cell line is bound to IL-2 to survive however NK-

92MI and NK-92 CI cells that are derived from NK-92 cells and have similar biological 

properties, but they are IL-2 independent (Tam et al. 1999). In the event of deprivation of 

IL-2 in the culture/medium, NK-92 cells lose the ability to form colonies and start to die 

(Gong, Maki, and Klingemann 1994). NK-92 cells express CD2 and CD56 but lack the 

inhibitory KIR receptor family members (except for low levels of KIR2DL4) and 

therefore are not subject to MHC-mediated inhibition of cytotoxic activity (Suck et al. 

2016). NK-92 cells express high levels of Perforin and Granzyme B and are highly 

cytotoxic against tumor cells with low MHC expression such as human chronic myeloid 

leukemia cell line K562 (Boyiadzis et al. 2017). NK-92 express a relatively large number 
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of activation receptors such as NKp30, NKp46, 2B4 (also inhibitory), NK2GD, NKG2E 

and a few inhibitory receptors NKG2A and NKG2B (Maki et al. 2001).  

Efficient isolation and expansion of primary NK cells from peripheral blood mononuclear 

cells (PBMCs) still poses problems and it is even more problematic to genetically modify 

them. Nevertheless, immunotherapy approaches involving primary NK cells continue to 

show high promise (Sutlu et al. 2012; Miller and Lanier 2019). NK-92 cells appear to be 

an alternative way for clinical application.  There are phase 1 and 2 studies that use NK-

92 cells in cancer immunotherapy (Tonn et al. 2013; Boyiadzis et al. 2017). NK-92 cells 

have been shown to exert cytotoxic activity against multiple myeloma cells (Swift et al. 

2012). NK-92 infusions were applied in lung, kidney cancer, and melanoma patients and 

successful results were obtained (Arai et al. 2008; Tonn et al. 2013). However, NK-92 

cells are IL-2 dependent and this may cause unexpected effects due to the IL-2 infusions 

that must accompany NK-92 infusions. In order to use NK-92 cells without IL-2 

infusions, NK-92 -IL-2ER cells which express an endoplasmic reticulum-retained version 

of IL-2 were generated and shown to have high cytotoxicity as wild type NK-92 cells 

(Konstantinidis et al. 2005). More recently, NK-92 cells modified to express a functional 

TCR (Parlar et al. 2019; Mensali et al. 2019) and Chimeric Antigen Receptor modified 

NK-92 (Hans Klingemann, Boissel, and Toneguzzo 2016) cells show promising 

outcomes.  

 

1.3. Immunotherapy 

 

Traditional treatments like surgical excision is used in solid tumors for patients only in 

early stages of cancer and it rapidly loses its effect once the malignancy becomes 

metastatic. Chemotherapeutic agents and radiation provide great survival benefit for 

patients but can damage healthy tissue due to toxicities (Pabla and Dong 2012). 

Immunotherapy, on the other hand, has been a great hope for many of the cancer patients 

(Pardoll 2013) due to its promise of high efficiency coupled with tumor specificity. 

Cancer immunotherapy can basically be explained as the use of a patients’ own immune 

system attack to selectively destroy tumor cells. 
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Cancer immunotherapy strategies can be categorized into different approaches. Molecular 

therapy (cytokine infusions and anti-immune checkpoint molecules; anti-CTLA-4, anti-

PD-1), cellular therapy (e.g. CAR-T cells, TCR-T Cells) and vaccination therapy (e.g. 

Human papillomavirus (HPV)) (M. Liu and Guo 2018).  

1.3.1. Cellular Immunotherapy 

Cellular immunotherapy (also called adoptive immunotherapy) consists of transferring 

autologous or allogeneic immune cells for therapeutic purposes. Generally, the 

transferred cells are genetically modified or at least ex vivo expanded. Adoptive T cell 

therapy has shown a potentially powerful approach to cancer treatment (Yee et al. 2002) 

and seems to be among the most effective methods in cancer immunotherapy today 

(Hinrichs and Rosenberg 2014). NK cells play an important role in immunity against 

tumor cells thanks to their potent cytotoxicity function (Evren Alici et al. 2007).  Novel 

NK-cell based therapeutic strategies in cellular immunotherapy provide a new set of tools 

that could be used to complement or replace many T cell based treatments (E. Alici and 

Sutlu 2009). Allogeneic NK cell products have been used in the treatment of a range of 

malignancies such as; leukemia, renal cell carcinoma, leukemia, colorectal cancer, 

hepatocellular cancer, lymphoma and melanoma (Geller and Miller 2011; Rizzieri et al. 

2010) 

1.3.1.1. Antigen-Specific Immunotherapy 

Adaptive immunity is essential to produce antigen-specific B and T cells by random 

recombination of genomic loci (Pardoll 2013).  Specific responses shown by B and T 

cells have the capacity to differentiate between self and non-self-antigens.  

T cells require 3 distinct signals to get activated; i) antigen-specific interaction of its T 

cell receptor (TCR) with MHC-I, ii) co-stimulatory signaling through receptor such as 

CD28 and CD40L and iii) instructive cytokines secreted by the antigen presenting cell 

(Figure 1.5.) (Pross 2007).   

In cytotoxic T cells, The TCR is a heterodimer consisting of two chains (TCR α and 

TCRβ) that can recognize antigenic peptides presented on MHC.  TCR heterodimers 

combine with the CD3 complex: CD3δ, CD3γ, CD3ε, and CD3ζ which contains ITAMs 

(Samelson 2011). This complex is responsible for intracellular signal transduction events 

leading to T cell activation. As mentioned above, CD3ζ is also expressed in NK cells and 
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works as a signaling adaptor for activating receptors. Co-receptors such as CD4 and CD8 

facilitate the TCR signaling (Lin and Weiss 2001). 

 

 

Figure 1.5. Activation of the T cell. T cells require 3 distinct signals 
for their activation. Signal 1 is the T cell Receptor (TCR) engagement 
of the peptide-MHC complex, Signal 2 is the engagement co-
stimulatory receptors (CD28, CD40, etc.) and integrin molecules that 
contribute to signal transduction by modulating the response 
threshold. Signal 3 is the inflammatory cytokines including IL-12 or 
Type 1 IFN. All the above components along with accessory proteins 
essential for MHC are a part of the immunological synapse that 
initiates T-cell activation. 

 

Costimulatory molecules like CD28 and cytotoxic T-lymphocyte associated protein 4 

(CTLA-4) provide the second signal to enhance TCR signaling in the cytoplasm. The 

phenomenon of co-stimulation and the two signal  model was initially discovered through 

CD28 signaling in 1987 (June et al. 1987). Since then, various co-stimulatory receptors 

(ICOS, CD27, OX-40, 4-1BB, HVEM, CD40, CD30, PD-1) have been identified (L. 

Chen and Flies 2013), and efficiently used to modify T cell activity especially in the field 

of immunotherapy (such as immune checkpoint inhibition therapies with anti-CTLA-4 or 
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anti-PD1 specific antibody). Signaling domains on co-stimulatory molecules are 

responsible for T cell growth, migration, differentiation and survival. 

A third signal is still required for optimum T cell response and memory which is mostly 

shaped by the cytokine milieu during antigen presentation especially interleukin-2 (IL-

2), IL-1 and IL-15 which are essential for proliferation of T cells  (Raeber et al. 2018).   

Antigen-specific immunotherapy aims to direct the immune response against specific 

molecules that could distinguish tumor cells from healthy cells (Hoffmann and Schuler 

2013).  These antigens are traditionally classified into two: tumor specific antigens (TSA) 

whose expression is restricted to the tumors, and the more commonly found tumor-

associated antigens (TAA) which may also be expressed in some healthy tissues but to a 

much lower extent compared to the tumor. Genetic modification of T cells or NK cells 

for targeting these antigens rely on the transfer of either TCR genes or chimeric antigen 

receptor (CAR) genes. For antigen-specific immunotherapy, genetically modified NK or 

T cells are given to a patient to help the fight cancer (Figure 1.6.). (Rosenberg and Restifo 

2015).  

 

 

Figure 1.6. Antigen-specific immunotherapy. Antigen-specific 
immunotherapy is used for cancer treatment. CAR-T/NK cells and 
TCR-T/NK cells are engineered to produce special receptors on their 
surface. They are expanded in the laboratory and returned to the 
patient.  
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1.3.1.2.Chimeric Antigen Receptors  

 

Chimeric antigen receptors (CAR) are also known as chimeric immunoreceptors and they 

can be designed to recognize specific antigens by the use of a single chain variable 

fragment (scFv) sequence derived from a specific antibody (Srivastava and Riddell 2015) 

(Figure 1.7.). scFv sequences are derived by fusion of the heavy and light chain variable 

fragments (VH-VL) of an antibody with a specific linker (Figure1.6.)(Haber et al. 2006). 

scFv designs were initially described in 1988, and the most commonly used linker 

sequences since have been the pentapeptide GGGGS (Gly4Ser) such as (G4S)3, (G4S)4 

(Huston et al. 1988; Benhar and Reiter 2004; Andris-Widhopf et al. 2001). Other 

extracellular domains have been based on NK receptors such as CD16, DNAM1, or 

NKG2D that are used to target their cognate ligands (T. Zhang, Barber, and Sentman 

2006; Wu et al. 2015; Lehner et al. 2012; Clémenceau et al. 2006). 

 

Figure 1.7. Antibody and single chain variable fragment (scFv) 
structure. Antibody consists of two heavy chains and two light 
chains. scFV is a fusion protein of variable regions of the heavy 
(VH) and light chains (VL) of antibody that combine with 10-25 
amino acids short linker peptide. The left picture is an antibody, 
right pictures are possible scFv chains.  
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CAR-cells (NK or T cells) can target antigens on the tumor cell surface independent of 

MHC presentation. Intracellular domains of CAR designs are based on T-cell activation 

principles which are critical for initiation and regulation of the immune response. The 

binding of CAR to its ligand on the target cell through the scFv sequences initiates signal 

transduction in the intracellular domains and activates the T or NK cell to induce 

cytotoxic activity, proliferate and secrete cytokines.  

Besides the extracellular binding domain that is generally an scFv sequence, CARs 

comprise a hinge domain that connects the scFv to a transmembrane domain and 

intracellular signaling domains  (Gacerez, Arellano, and Sentman 2016).   

Hinge is the non-antigen binding part of the extracellular domain. The most commonly 

preferred sequences is the CD8α hinge domain that provides both flexibility and stability 

to the designed receptor and can  improve the capacity of the intracellular signaling 

domain (Lipowska-Bhalla et al. 2012).   

The intracellular domains provide signaling which can be used to classify the different 

generations of CAR design. The first generation CARs have only signal 1 (CD3zeta 

signaling), second-generation CARs combine signal 1 and signal 2 (co-stimulatory 

domain) , third generation CARs combine signal 1 and two different signal 2, fourth 

generation CARs are combine signal 1,2 and 3 (Petersen and Krenciute 2019) (Figure 

1.8.) .  

First Generation CARs used only CD3ζ which is primary for T cell activation due to its 

ITAM signaling. In CAR-NK cells, first-generation CARs can also use DAP10 or DAP12 

(Li et al. 2018). Second generation CARs use a co-stimulatory domain which provides 

the co-stimulatory signal to allow proliferation, memory and changes the 

cytokine/chemokine secretion profile of the modified cell. Most commonly used in T cells 

are CD28, 4-1BB (CD137) and OX-40. CD28 results in cytokine secretion such as IL-2, 

IL-10, IFN-γ (M Chmielewski, Hombach, and Abken 2011);  4-1BB  induces IL-4 and 

resistance to activation-induced cell death (AICD) (Myers and Vella 2005); OX-40 does 

not induce IFN-γ but induces a similar amount of proliferation with 4-1BB (Hombach et 

al. 2012). Third generation CARs contain two different signaling domains that can drives 

the cells to specific differentiation or proliferation and provides more co-stimulatory 

signaling. This provides a more reliable and more lasting treatment when evaluated over 
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a long period of time (Enblad et al. 2015). Fourth Generation CARs (also referred to as 

“TRUCK”) (Markus Chmielewski and Abken 2015) is the next and last generation CARs 

that include another transgene expression besides the CAR and possibly multi-antigen 

targeting. In this approach, extra transgenes for T or NK cell stimulation can be added to 

the second or third generation CARs and optimized for autocrine cytokine secretion  such 

as IL-12 and IL-15 (Petersen and Krenciute 2019). The CAR domains used in the 

literature are listed in Table 1 by type and task (Weinkove et al. 2019; Kuhn et al. 2019; 

McNerney, Lee, and Kumar 2005; Xianghong Chen et al. 2009; Vinay and Kwon 2014; 

Fedorov, Themeli, and Sadelain 2013).  

 

Figure 1.8. Generations of Chimeric Antigen Receptors. 1st 
generation CAR describes as a fusion of an extracellular single 
variable chain fragment with the CD3ζ intracellular signaling domain 
from TCR. If 1st Generation CAR includes co-stimulatory intracellular 
domains such as CD28/4-1BB, named 2nd Generation CAR. 3rd 
Generation CAR consists of two co-stimulatory intracellular domains. 
Recently, 4th Generation CAR was described, that combines 2nd 
generation CAR with cytokine or co-stimulatory ligands transgene.   

 

Recent years have witnessed the introduction of CAR-T cells into clinical practice. 

The U.S. Food and Drug Administration (FDA) has approved KYMRIAH ™ 

(tisangenlecleucel) for Adult Refractory diffuse large B-cell Lymphoma (DLBCL) 

and young adult acute lymphoblastic leukemia (ALL) as well as YESCARTA™ 
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(axicabtangene ciloleucel) for a certain type of B-cell lymphoma. UPMC Hillman 

Cancer Center is the creator of both (“First-Ever CAR T-Cell Therapy Approved in 

U.S.” 2017; “FDA Approves Second CAR T-Cell Therapy” 2018).  They are 

genetically modified autologous T-cells modified with CD19 specific CAR.  In this 

treatment (Figure 1.9), peripheral blood T cells are collected from the patient, then 

genetically modified in the laboratory and expanded for about 2-3 weeks.  In the 

meantime, patients receive chemotherapy. CAR-T cells are infused back to the 

patient and patients are monitored for side effects 2-3 months because treatment has 

the potential to cause severe side effects such as cytokine release syndrome (CRS), 

neurological events, infections, decreased oxygen level  and %5-20 of patients are 

faced with acute Graft versus host disease (GVHD) (Brudno and Kochenderfer 2016; 

Jacoby et al. 2014).  

 

 

Figure 1.9. The use of CAR-T cells. CAR genes can be transferred to CD8 
or CD4 T cells. If the CAR gene transfer to CD8 cytotoxic T cells enables 
them to recognize specific antigens on the target cell surface. This triggers 
the direct killing of antigen-positive target cells. The same approach can 
also be used in CD4 T cells in order to trigger the lease of cytokines and 
recruitment of other immune cells. Since antigen-specific cytotoxic 
activity is generally preferred in these treatments, most of CAR-T cell 
research is carried on CD8 T cells.  
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Table 1.1. CAR domains that used in NK/T cells  

CAR Domain Parts of the CAR Family /Source Ligands/Binding Part Cell Expression Functional Characteristic 

CD28 
Transmembrane 
and Intracellular 
Signaling Domain Ig Family 

CD80/86 Resting and activated 
T cells 

IL-2 production,  CD4+ T cell 
expansion 

CD278 (ICOS) Intracellular 
Signaling Domain CD275 (ICOS-L) 

Activated T cells, 
especially Tfh and 

Th17 cells 
Th1 and Th17 polarisation 

CD137 (4-1BB) 
Transmembrane 
and Intracellular 
Signaling Domain 

Tumor necrosis factor 
receptor superfamily 

- Memory CD8+ T cells, 
only the activation 
period of CD4+ T cells 

co-stimulatory immune 
checkpoint molecule 

OX40 (CD134) Intracellular 
Signaling Domain OX40L (CD252) 

Activated T cells 

Suppresses Treg development 

CD27 Intracellular 
Signaling Domain CD70 Increase proliferation and 

secretion of cytokines 

CD40 Intracellular 
Signaling Domain CD40L (CD154) Increase proliferation and 

secretion of cytokines 

CD244 (2B4) Intracellular 
Signaling Domain 

Signaling 
Lymphocyte 

Activation Molecule 
Family 

CD48 Memory CD8+ T cells 
and NK cells 

Activation and inhibitory 
function for NK cells 

DAP10 Intracellular 
Signaling Domain 

Hematopoietic cell 
signal - CD8+ T cells and NK 

cells 
Intracellular signaling functions 

for receptors 
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DAP12 Intracellular 
Signaling Domain 

transducer/DNAX-
activating proteins - protein tyrosine kinase binding 

protein for receptors  

CD3ζ 
Transmembrane 
and Intracellular 
Signaling Domain 

 immunoglobulin 
superfamily 

containing a single 
extracellular 

immunoglobulin 
domain 

- Chains associate with 
T-cell receptor and 
some NK cells 
receptors 

generate activation signal in T 
cells 

CD8α Transmembrane 
Domain 

T cell Membrane 
Glycoprotein MHC-I CD8+ T cells Recognize MHC-I class 

KIR2DS2 
Transmembrane 
and a cytoplasmic 
domain 

Killer cell 
immunoglobulin-like 

receptor CD158 
antigen-like family 

member 

 β2-Microglobulin–
Independent Ligand NK Cells Receptor on natural killer (NK) 

cells for HLA-C alleles 

CTLA4 Intracellular 
Signaling Domain 

Immunoinhibitory 
receptors B7 Activated T cells Regulation of immune activation 

and immune checkpoints 

PD-1 Intracellular 
Signaling Domain 

Immunoinhibitory 
receptors PDL-1 Activated T cells Regulation of immune activation 

and immune checkpoints 
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1.4. Chimeric Antigen Receptor-Natural Killer Cells 

 
Figure 1.10. CAR-NK cells. CAR NK cells also have the capacity to recognize and kill 
tumor cells through their native activating and inhibitory receptors, making the escape 
of tumor cells through downregulation of the CAR target antigen less likely. 

 

CAR-NK cell binding to specific antigen on target cells activates the signaling pathways 

to release cytotoxic granules containing perforin and granzyme B as well as secretion of 

cytokines (Oberschmidt, Kloess, and Koehl 2017) (Figure 1.10.). As stated above, natural 

cytotoxicity receptors (NCRs) in NK cells signal through CD3ζ that has ITAM domains. 

First generation of CAR vectors also rely on CD3ζ so it has been possible to use these 

vectors to activate (Eshhar et al. 1993) NK cells through the regular  Syk-Zap70 pathway 

(Moretta et al. 2002). Second generation CARs also have co-stimulatory domains 

alongside CD3ζ. Depending on which co-stimulatory domain is used, different signaling 

pathways such as JNK or PI3K are activated in NK cells (Watzl and Long 2010). CD28 

co-stimulatory domain in CAR-NK cells results in PI3K activation leading to IL-2 
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production (Kowolik et al. 2006). 4-1 BB improves NK cell cytotoxicity due to IFN-γ 

production but second generation 4-1BB- CD3ζ  was found to be less effective compared 

to CD28-CD3ζ in NK-92 cells (Tonn et al. 2016). In NK cells, instead of CD3ζ, DAP12 

or DAP10 was also tested as intracellular signaling domains. DAP12 increased the IFN γ 

release in CAR-NK cells compared to CD3ζ (Töpfer et al. 2015). These results suggest 

that vectors optimized in T cells may not always be directly applicable in NK cells and 

NK cell-oriented CAR designs can help to increase the efficiency of CAR-NK cells. 

Current pre-clinical trials of different designs in CAR-NK cells are listed in Table 1.2 

with all domains, genetic modification methods and cell lines tested.  

Comparison of the clinical and pre-clinical studies of CAR-NK and CAR-T cells reveals 

certain advantages of using NK cells for CAR therapy. These advantages are particularly 

due to the natural killing mechanism of NK cells and have drawn attention to CAR-NK 

clinical trials. Human NK cells used for CAR treatments can be derived from different 

origins, such as the NK cell line NK-92, primary cord blood and peripheral blood, all of 

which have recently been used effectively in clinical trials (Table 1.3.). Primary NK cells 

are easily isolated from patients and have relatively short life span  (Koehl et al. 2016). 

Therefore, the risk of overexpansion and exhaustion of the cells is high. If NK-92 cells 

are used, they can be cultured long-term in vitro with a uniform phenotype and can reduce 

the cost (Glienke et al. 2015).  More importantly,  cytokine secretion profile of NK cells 

seems more safe than CAR-T cells  in terms of   IFN-γ and GM-CSF (Hans Klingemann 

2014). This profile renders NK cell treatments less susceptible to adverse effects such as 

CRS and GvHD (Domogala, Madrigal, and Saudemont 2015). 

Last and most important is the presence of the natural killing mechanism of NK cells. 

CAR-NK cells trigger the death of target cells in both CAR-dependent and CAR-

independent ways because they have native activating receptors on the cell surface. If the 

target antigen  is lost, NK cells can continue to be  kill via their activation receptors  

(Mehta and Rezvani 2018). As clinal trials continue (Table 1.3.), CAR-NK based 

immunotherapies continue to deliver the are promise of better cancer treatment. 
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Table 1.2. List of Pre-Clinical Studies of NK cells 

Disease Target Hinge TM Intracellular Signal 
Domain 

Genetic Modification 
Method NK Cell Source References 

Multiple myeloma CD138 CD8 CD3ζ CD3ζ Lentiviral Vector NK-92 (IL-2 
independent) (Jiang et al. 2014) 

B-cell malignancies CD19 CD8 Unknown CD3ζ Retroviral Vector NK-92 (Romanski et al. 
2016) 

B-cell malignancies CD19 CD8 

CD28 CD3ζ 

Lentiviral Vector NK-92 (Tonn et al. 2016) 
CD28        CD137 CD28-CD3ζ     

CD137-CD3ζ 

Chronic lymphocytic 
leukemia CD19 CD8 CD3ζ CD3ζ Electroporation NK-92 (Boissel et al. 2009) 

Acute/Chronic 
lymphocytic leukemia CD19/CD20 Unknown Unknown CD3ζ Lentiviral Vector NK-92 (Boissel et al. 2013) 

B-cell malignancies CD20 CD8 CD3ζ CD3ζ Retroviral Vector NK-92 (Müller et al. 2008) 

Prostate cancer EpCAM CD8 CD3ζ CD3ζ Retroviral Vector NK-92 (Daldrup-Link et al. 
2009) 

Prostate cancer EpCAM CD8 CD3ζ CD3ζ Retroviral Vector NK-92 (Meier et al. 2011) 

Colorectal cancer EpCAM CD9 CD3ζ CD137-CD3ζ Lentiviral Vector NK-92 (Nowakowska et al. 
2018) 

Breast Cancer EpCAM CD8 CD28 CD28-CD3ζ  Lentiviral Vector NK-92 (Sahm, Schönfeld, 
and Wels 2012) 
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Neuroblastoma GD2 CD8 CD3ζ CD3ζ Retroviral Vector NK-92 (Seidel et al. 2015; 
Esser et al. 2012) 

Melanoma GPA7 Unknown HLA-A2 CD3ζ Electroporation NK-92 (IL-2 
independent) (G. Zhang et al. n.d.) 

Brain Metastasis HER2 CD8 CD3ζ CD3ζ Retroviral Vector NK-92 (Alkins et al. 2013, 
2016) 

Breast Cancer HER2 CD8 CD3ζ CD3ζ Retroviral Vector NK-92 
(Daldrup-Link et al. 
2005; Meier et al. 
2008) 

Breast / ovarian cancer HER2 CD8 CD3ζ CD3ζ Retroviral Vector NK-92 (Uherek et al. 2002) 

Breast / ovarian cancer, 
Melanoma, Renal cell 
carcinoma 

HER2 CD8 
CD3ζ CD3ζ 

Lentiviral Vector NK-92 (Schönfeld et al. 
2015) 

CD28        CD137 CD28-CD3ζ     
CD137-CD3ζ 

Glioblastoma HER2 CD8 CD28 CD28-CD3ζ  Lentiviral Vector NK-92 (C. Zhang et al. 
2016) 

Breast Cancer HER2 CD8 CD28 CD28-CD3ζ  Electroporation NK-92 (H. Liu et al. 2015) 

Multiple myeloma CS1 Unknown Unknown CD28-CD3ζ  Lentiviral Vector NK-92 (Killer et al. 2014) 

EBV+ EBNA3C Unknown Unknown CD137-CD3ζ Retroviral Vector NK-92 (IL-2 
independent) 

(Tassev, Cheng, and 
Cheung 2012) 

Glioblastoma EGFR/EGFRvIII CD8 CD28 CD28-CD3ζ  Lentiviral Vector NK-92 (Han et al. 2015; 
Genßler et al. 2016) 
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Brain Metastasis EGFR Unknown Unknown CD28-CD3ζ  Lentiviral Vector NK-92 (Xilin Chen et al. 
2016) 

Mesothelin-expressing 
tumors Mesothelin CD8 

NKG2D CD3ζ 

Transposon plasmids iPSC-NK  (Li et al. 2018) 

CD16 2B4-CD3ζ  

NKp44 
DAP10-CD3ζ  

2B4-CD3ζ  

NKG2D 

2B4-CD3ζ  

CD137-CD3ζ 

2B4-DAP12-CD3ζ  

2B4-DAP10-CD3ζ  

CD137-2B4-CD3ζ 

CD28 CD28-CD137-CD3ζ  

Agressive T cell 
malignancies 

CD3 

CD8 CD8 CD28-CD137-CD3ζ  Lentiviral Vector NK-92 

(Kevin H. Chen et al. 
2016) 

CD5 (K H Chen et al. 
2017) 
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Table 1.3. Clinical Trials of CAR-NK ( https://clinicaltrials.gov/ , update date: 1.07.2019) 

NCT Number Target  Disease/Conditions NK Cell Source Phase Status Location 

NCT03056339 CD19 

B-Lymphoid 
Malignancies, 
Lymphoma and 
Leukemia 

Umbilical Cord Blood Phase 1 and 2 Recruiting Houston, Texas, United 
States, 

NCT02892695 CD19 B cell Lymphoma and 
Leukemia NK-92 Phase 1 and 2 Recruiting Suzhou, Jiangsu, China 

NCT01974479 CD19 
B-cell Acute 
Lymphoblastic 
Leukemia 

Haploidentical donor NK 
cells  Phase 1 Suspended Singapore, Singapore 

NCT00995137 CD19 
B-cell Acute 
Lymphoblastic 
Leukemia 

Haploidentical donor NK 
cells  Phase 1 Completed Memphis, Tennessee, 

United States 

NCT03579927 CD19 B cell Lymphoma Umbilical Cord Blood Phase 1 and 2 Not yet recruiting Houston, Texas, United 
States 

NCT03690310 CD19 Refractory B cell 
lymphoma Not specify  Early Phase 1 Not yet recruiting Allife Medical Science and 

Technology Co., Ltd. 

NCT03824964 CD19/CD22 Refractory B cell 
lymphoma Not specify  Early Phase 1 Not yet recruiting Allife Medical Science and 

Technology Co., Ltd. 

NCT03692767 CD22 Refractory B cell 
lymphoma Not specify  Early Phase 1 Not yet recruiting Allife Medical Science and 

Technology Co., Ltd. 

https://clinicaltrials.gov/
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NCT02742727 CD7 Lymphoma and 
Leukemia NK-92 Phase 1 and 2 Unknown Suzhou, Jiangsu, China 

NCT02944162 CD33 Acute Myeloid 
Leukemia NK-92 Phase 1 and 2 Unknown Suzhou, Jiangsu, China 

NCT02839954 MUC1 Carcinoma Not specify  Phase 1 and 2 Unknown Suzhou, Jiangsu, China 

NCT03383978 HER2 Glioblastoma NK-92 Phase 1 Recruiting Frankfurt, Germany 

NCT03415100 NKG2D Solid Tumor Autologous or allogeneic 
NK cells Phase 1 Recruiting Guangzhou, Guangdong, 

China 

NCT03656705 - Non-small Cell Lung 
Cancer 

Costimulatory Converting 
Receptor (CCCR)-
Modified NK92 Cells  

Phase 1 Recruiting Xinxiang, Henan, China 

NCT03692637 Mesothelin Epithelial Ovarian 
Cancer peripheral blood Early Phase 1 Not yet recruiting Allife Medical Science and 

Technology Co., Ltd. 

NCT03692663 PSMA Castration-resistant 
Prostate Cancer Not specify  Early Phase 1 Not yet recruiting Allife Medical Science and 

Technology Co., Ltd. 

NCT03940820 ROBO1 Solid Tumor Not specify  Phase 1 and 2 Recruiting Suzhou, Jiangsu, China 

NCT03941457 ROBO1 Pancreatic Cancer Not specify  Phase 1 and 2 Recruiting Shanghai, China 

NCT03931720 ROBO1 Malignant Tumor Not specify  Phase 1 and 2 Recruiting Suzhou, Jiangsu, China 

NCT03940833 BCMA Multiple Myeloma NK-92 Phase 1 and 2 Recruiting Wuxi, Jiangsu, China 
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2. AIM OF THE STUDY 

 

 

CAR mediated targeting of tumor antigens is a promising approach for adoptive 

immunotherapy of cancer. Moreover, CAR-T cells have recently received clinical 

approval for antigen-specific adoptive immunotherapy against CD19 in B cell 

malignancies. CAR expression in NK cells is also clinically tested and carries the 

potential to translate into clinical application. CAR-NK cells trigger the death of target 

cells in both CAR-dependent and CAR-independent ways due to their natural killing 

mechanisms. Comparison of the pre-clinical studies of CAR-NK and CAR-T shows using 

NK cells for CAR therapy may be preferable due to safety and efficiency concerns.  

This thesis investigates NK-92 cells as the effectors and  evaluates CAR vectors 

that could be efficiently used to retarget NK cells, primarily focusing on different 

generations of CAR vectors for retargeting NK-92 cells towards B cell malignancies., 

CAR transgenes comprising identical antigen binding domains that target CD19, 

combined with different intracellular signaling domains (CD3ζ , CD28 and CD137) are 

transferred to NK-92 cells via the use of lentiviral vectors and the efficiency of CAR-NK-

92 cells is tested in vitro.  

Thus, this study aims: 

I. To setup and optimize production of CAR NK-92 cells with anti-CD19 scFv  

II. To evaluate the effect of different intracellular signaling domains in 

retargeting NK-92 cell mediated cytotoxicity 

III. To develop novel and practical CAR vector designs optimized for NK cells 
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3. MATERIALS AND METHODS 

 

3.1. Materials 

3.1.1. Chemicals  

All the chemicals used in this thesis are listed in Appendix A. 

 

3.1.2. Equipment  

All the equipment used in this thesis are listed in Appendix B. 

 

3.1.3. Buffers and solutions 

Calcium Chloride (CaCl2) Solution: 60mM CaCl2 (diluted from 1M stock), 15% 

Glycerol, 10mM PIPES (pH 7.00) were mixed and sterilized by autoclaving at 121oC for 

15 minutes and stored at 4oC.  

Agarose Gel: For 100 ml 1% w/v gel, 1 g of agarose powder was dissolved in 100 ml 

0.5X TBE buffer by heating. 0.01% (v/v) ethidium bromide was added to the solution. 

Tris-Borate-EDTA (TBE) Buffer: For 1 L 5X stock solution, 54 g Tris-base, 27.5 g boric 

acid, and 20 ml 0.5M EDTA (pH 8.00) were dissolved in 1 L of ddH2O. The solution is 

stored at room temperature (RT) and diluted 1 to 10 with ddH2O for working solution of 

0.5X TBE.  

HBS solution (2X): 280 mM NaCl, 50mM HEPES, and 1.5 Mm Na2HPO4 adjust pH to 

7.1 with 10 M NaOH, sterilize by passing through with 0.22 µm filter. Store at -20oC. 
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3.1.4. Growth media  

 

Luria Broth (LB): For 1 L 1X LB media, 20 g LB powder was dissolved in 1 L ddH2O 

and then autoclaved at 121°C for 15 minutes. For puromycin selection, at a final 

concentration of 100 μg/ml ampicillin was added to liquid medium just before use. 

LB-Agar: For 1X agar medium in 400 ml in 1 L glass bottle, add 8 g LB powder and 6 g 

bacterial agar powder were dissolved in 400 ml ddH2O and then autoclaved at 121°C for 

15 minutes. Then, autoclaved LB agar is mixed with antibiotic of interest at a desired 

ratio onto sterile Petri dishes. Sterile agar plates were kept at 4°C. 

Complete DMEM: HEK 293FT cells were maintained in culture in DMEM supplemented 

with 10% heat-inactivated fetal bovine serum, 2mM L-Glutamine, 1mM Sodium 

Pyruvate, 0.1mM MEM Non-essential amino acid solution, and 25mM HEPES solution.  

Complete RPMI 1640: NK-92 cell line is maintained in culture in RPMI1640 

supplemented with 20% heat-inactivated fetal bovine serum, 1000 U/ml Interleukin-2 is 

culture every 2 daysç 25mM HEPES, 2mM L-Glutamine, 1X MEM vitamins, 0.1mM 

MEM Non-essential amino acid solution, 1mM Sodium Pyruvate, and 0.1 mM 2-

mercaptoethanol.  

K562, DAUDI, NAMALWA cells are maintained in culture in RPMI1640 supplemented 

with 10% heat-inactivated fetal bovine serum, 25mM HEPES, 2mM L-Glutamine, 1X 

MEM vitamins, 0.1mM MEM Non-essential amino acid solution.  

Freezing medium: All the cell lines were frozen in heat-inactivated fetal bovine serum 

containing 6% DMSO (v/v). 

 

3.1.5. Commercial kits used in this study  

 

Table 3.1. List of Commercial Kits 

Commercial Kit Company 

PureLink™ Genomic DNA Mini Kit Thermo Fisher, USA 
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Nucleo Spin® Gel and PCR Clean-up Kit Macherey-Nagel, USA 

Nucleo Spin® Plasmid Midiprep Kit Macherey-Nagel, USA 

Nucleo Spin® Plasmid Miniprep Kit Macherey-Nagel, USA 

RNA isolation kit  Zymo Research, USA 

RvertAid First Strand cDNA Synthesis Kit  Thermo Fisher, USA 

 

 

3.1.6. Enzymes  

 

Table 3.2. List of Enzymes  

Enzyme Company 

ApaI New England Biolabs, USA 

BamHI-HF New England Biolabs, USA 

BglII New England Biolabs, USA 

BstEII New England Biolabs, USA 

CIAP 
Fermentas, USA 

New England Biolabs, USA 

EcoRI-HF New England Biolabs, USA 

EcoRV-HF New England Biolabs, USA 

HindIII-HF New England Biolabs, USA 

NcoI New England Biolabs, USA 

NotI New England Biolabs, USA 

PvuII-HF New England Biolabs, USA 

Q5 Polymerase-
HF New England Biolabs, USA 

SacII New England Biolabs, USA 
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SalI New England Biolabs, USA 

SfiI Fermentas, USA 

SphI New England Biolabs, USA 

T4 Ligase New England Biolabs, USA 

XbaI New England Biolabs, USA 

XhoI New England Biolabs, USA 

 

3.1.7. Antibodies 

 

Table 3.3. List of Antibodies 

Antibody Company 

Anti-human CD56 (BV421 conjugated, clone:NCAM 16.2) Biolegend,USA 

Anti-human CD56 (APC conjugated, clone:NCAM 16.2) Biolegend,USA 

Anti-human CD107a (PE/Cy7 conjugated, clone:H4A3) Biolegend,USA 

Anti-human CD19 (Purified, clone: SJ25C1) Biolegend,USA 

Anti-human CD19 (Brillant Violet 510™, clone: SJ25C1) Biolegend,USA 

Anti-c-Myc ( Alexa Fluor ®594 conjugated, human and 
fusion protein, clone: 9E10) Biolegend, USA 

Anti-human  TNF-α (APC conjugated, clone: MAb11) Biolegend, USA 

Anti-human IFN-γ (APC/Cyanine 7, clone: B27) Biolegend, USA 

Anti-human NKG2D (Brilliant Violet 510™ clone:1D11) Biolegend, USA 

Anti-human CD2 (APC/Cy7, clone: RPA-2.10) Biolegend,USA 

Anti-human CD244 (2B4) (PE, clone: C1.7) Biolegend,USA 

Anti-human CD335 (NKp46) (BV510, clone: 9E.2) Biolegend,USA 

Anti-human CD336 (NKp44) (PE/Cy7, clone: p44-8) Biolegend,USA 

Anti-human CD160 (APC, clone: BY55) Biolegend,USA 
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Anti-human CD337 ( NKp,30) (APC, clone:  P30-15) Biolegend,USA 

Anti-human NKp80 (PE, clone: 5D12) Biolegend,USA 

 

3.1.8. Bacterial strains 

 

Escherichia coli (E.coli) Top10  strain is used for general plasmid amplifications and 

lentiviral construct amplifications.  

 

3.1.9. Mammalian cell lines  

 

HEK293FT: Human embryonic kidney 293 (HEK293) cell line derivative that stably 

expresses the large T antigen of SV40 virus and has fast-growing specificity (Invitrogen 

R70007). 

NK-92: Human natural killer cell line isolated in the year 1992 from a non-Hodgkin’s 

lymphoma patient (ATCC® CRL 2407™).  

DAUDI: The Daudi cell line is isolated from 16-year old Black male Burkitt’s lymphoma 

patients in the year 1967 (ATCC® CCL-213™).  

NAMALWA:  The Namalwa cell line was derived from 3 years old female Burkitt’s 

lymphoma patients (ATCC® CRL-1432™). 

K562: K562 is the first established human immortalized myelogenous leukemia line from 

a 53 years old female chronic myelogenous leukemia patient in blast crisis (ATCC® CCL- 

243™). 
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3.1.10. Plasmids and oligonucleotides 

 

Table 3.4. List of Plasmids 

Plasmids Purpose Source 

PUC57.CAR.3.137 
Expression of 3rd generation 
CAR (CD28, CD137, and CD3ζ) Genscript (NJ, USA) 

LeGO-G2 

Lentiviral construct for GFP 
expression and Puromycin 
resistance gene 

A kind gift from Prof. 
Boris Fehse of University 
Medical Center Hamburg-
Eppendorf, Hamburg, 
Germany 

LeGO-iG2puro 
Lentiviral construct for GFP 
expression with IRES 

A kind gift from Prof. 
Boris Fehse of University 
Medical Center Hamburg-
Eppendorf, Hamburg, 
Germany 

LeGO-
iG2puro.CAR3.137 

Lentiviral construct for 
expression of 3rd generation 
CAR (CD28, CD137, and CD3ζ) 
with GFP, IRES and Puromycin 
resistance genes Lab construct 

LeGO-
iG2puro.CAR3.137-
19 

Lentiviral construct for 
expression of 3rd generation 
CAR (CD28, CD137, and CD3ζ 
with an scFv 
fragment of CD19-specific 
antibody FMC63) with GFP, 
IRES and Puromycin resistance 
genes Lab construct 

pMDLg/pRRE 
Virus production/packaging 
plasmid (Gag/Pol) Addgene (#12251) 

pRSV-REV 
Virus production/packaging 
plasmid (Rev) Addgene (#12253) 

pCMV-VSV-g 
Virus production/packaging 
plasmid (Env) Addgene (#8454) 
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pS-63.z-IEW 

Expression of 1st Generation 
CAR (only CD3 ζ) with an scFv 
fragment of CD19-specific 
antibody FMC63 and inserted 
into lentiviral transfer plasmid 
pHR’SIN-cPPT-SIEW (pSIEW) 
upstream of IRES and EGFP 
sequences 

A kind gift from Dr. 
Winfried S.Wels from 
Georg-Speyer-Haus, 
Institute for Tumor 
Biology and Experimental 
Therapy, Frankfurt, 
Germany  

pS-63.28.z-IEW 

Expression of 2nd Generation 
CAR (CD28 and CD3 ζ) with an 
scFv fragment of CD19-specific 
antibody FMC63 and inserted 
into lentiviral transfer plasmid 
pHR’SIN-cPPT-SIEW (pSIEW) 
upstream of IRES and EGFP 
sequences 

A kind gift from Dr. 
Winfried S.Wels from 
Georg-Speyer-Haus, 
Institute for Tumor 
Biology and Experimental 
Therapy, Frankfurt, 
Germany  

pS-63.137.z-IEW 

Expression of 2nd Generation 
CAR (CD137 and CD3 ζ) with an 
scFv fragment of CD19-specific 
antibody FMC63 and inserted 
into lentiviral transfer plasmid 
pHR’SIN-cPPT-SIEW (pSIEW) 
upstream of IRES and EGFP 
sequences 

A kind gift from Dr. 
Winfried S.Wels from 
Georg-Speyer-Haus, 
Institute for Tumor 
Biology and Experimental 
Therapy, Frankfurt, 
Germany  

 

Table 3.5. List of Oligonucleotides 

Oligo Name SEQUENCE (5'to 3') Purpose of Use 

19EcoRI_Foward 
TGCCGAATTCGCCACCATGGATTGGAT
CT 

PCR for isolation 
of scFv fragment 
of CD19-specific 
antibody FMC63 
with forward 
EcoRI cut site  
from pS-63.z-IEW 

19SalI_Reverse TTCGGTCGACACGGTCACGGTGGT 

PCR for isolation 
of scFv fragment 
of CD19-specific 
antibody FMC63 
with reverse SalI 
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cut site  from pS-
63.z-IEW  

SFFV_Foward TGCTTCTCGCTTCTGTTC Sequencing of 3rd 
Generation CAR 

IRES_Reverse GCCCTCACATTGCCAAAA Sequencing of 3rd 
Generation CAR 

Signal 
Peptide_Forward ATGGATTGGATCTGGCGGAT 

Confirmation of 
NK-92 CAR cells 

CD137_Reverse 

CAGTTCACAGCCGCCTTC 

Confirmation of 
NK-92 
CAR_CD137_CD
3ζ cells 

CD28_Reverse 

CCTTGGGGTCATGTTCATGT 

Confirmation of 
NK-92 
CAR_CD28_CD3ζ 
cell line 

CD3IC_Reverse 
TTCATGCCGATCTCGCTGTA 

Confirmation of 
NK-92 CAR cells  

 

 

3.1.11. DNA ladder 

 the DNA ladder used in this thesis is showed in Appendix C. 

 

3.1.12. DNA sequencing 

Sequencing service was commercially provided by McLab (http://www.mclab.com/), 

CA, USA. 

 

 

http://www.mclab.com/
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3.1.13. Software, computer-based programs, and websites  

Table 3.6. List of Software and Websites  

Software/Websites Purpose of Use 

CLC Bio 
Constructing vector maps, restriction 
analysis, DNA sequencing analysis, 
DNA alignments, etc 

Tree Star Inc. Flow Jo Analyzing flow cytometer data 
http://www.ensembl.org/index.html Human genome sequence information 
https://www.addgene.org/ Plasmid map and sequence information 
GraphPad Software, Inc., San Diego, CA, 
USA Data analysis, statistical analysis 

https://primer3plus.com/ Designing oligonucleotides 

http://cool.syncti.org/ 

Designing sequences for improved 
expression of the protein within a 
human  

http://www.molbiotools.com/silentmutator.ht
ml 

Choosing unique restriction enzyme to 
design vectors 

https://www.uniprot.org/ 

Human genome sequence information 
 

 

3.2. Methods  

 

3.2.1. Bacterial cell culture  

 

Bacterial culture growth:  Top10 E.coli cells were cultured in LB media with Ampicillin 

and cultured at 37oC, 16 hours and 220 rpm shaking. Cells were spread on Ampicillin 

Petri dishes by the use of glass beads and incubated for 16 hours at 37oC . At the end of 

the incubation, single colonie were picked from the plates.  For glycerol stocks of bacteria, 

a single colony was grown at 3 ml LB media at 37oC with 220 rpm shaking overnight 

with 220 rpm shaking, end of the incubation culture was diluted 1:3 and culture at 37oC, 

3 hours with 220 rpm shaking. Bacteria were taken at the log phase of growth and mixed 

with glycerol in 1ml at final 10% (w/v) and preserved in cryotubes at -80oC.  

http://www.ensembl.org/index.html
https://www.addgene.org/
https://primer3plus.com/
http://cool.syncti.org/
http://www.molbiotools.com/silentmutator.html
http://www.molbiotools.com/silentmutator.html
https://www.uniprot.org/
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Preparation of competent bacteria: One tip from glycerol stocked of competent Top10 

E.coli cells were incubated in  3 ml LB without any antibiotics at 37oC, with 220 rpm 

shaking. After 4 hours of culture, they were transferred into a 250ml-flask with 50 ml LB 

and grown overnight at 37oC with 220 rpm shaking. The following day, 4 ml of overnight-

grown culture was added into 400 ml of LB without any antibiotics in a 2L-flask and 

incubated at 37oC with 220 rpm shaking until OD590 is around 0.375. The culture is 

aliquoted into eight 50ml-tubes and incubated on ice for 10 minutes. Cells were kept on 

ice and centrifuged at 1600g for 10 minutes at 4oC. The supernatant was discarded, and 

each pellet was resuspended in 10 ml of ice-cold CaCl2 solution and centrifuged at 1100g 

for 5 minutes again at 4oC. The supernatant was discarded, and each pellet was 

resuspended in 2 ml of ice-cold CaCl2 solution. Cells were kept on ice for 30 minutes and 

combined in one tube and distributed into 200 µl aliquots that were snap-frozen in liquid 

nitrogen and stored at -80oC.  

Transformation of competent bacteria: Competent Top10 E.coli cells were kept in 200 µl 

aliquots at -80oC. For each transformation, plasmid DNA and competent E.coli cells were 

thaw on ice. Plasmid DNA was added to competent E.coli cells, cells were incubated on 

ice for 30 minutes. The cells were taken to heat block at 42oC and immediately heat 

shocked for 90 seconds on ice. 800 µl of LB was added to each tube and competent cells 

were incubated at 37oC water bath for 45 minutes. The cells were centrifuged at 13000 

rpm for 1 minute and the pellet was resuspended in 100 µl LB to be spread on Petri dishes. 

Glass beads were placed on ampicillin-LB agar Petri dishes. Plates were incubated at 

37oC without shaking overnight.  

Plasmid DNA isolation: Macherey-Nagel Mini-Midiprep Kits were applied according to 

manufacturer’s protocols. The final DNA concentration and purity were measured by a 

NanoDrop spectrophotometer. 

 

3.2.2. Mammalian cell culture 

 

Maintenance of cell lines: HEK293FT cells were maintained in complete DMEM 

medium in sterile tissue culture flasks with filtered caps at an incubator set 37oC with 5% 

CO2. Cells were split when confluency was reached maximum %90. Cells were washed 
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with PBS and trypsin-EDTA (0.25%) was added to cell culture flasks and incubated at 

37oC with 5% CO2 for maximum 5 minutes. Then the cells were resuspended in complete 

DMEM and split at a 1:5  ratio and split every two days. NK-92 cells were maintained in 

complete RPMI1640 with 1000 U/ml human Interleukin-2 (IL-2) in sterile tissue culture 

flasks with filtered caps at an incubator set to 37oC with 5% CO2.  NK-92 cells were 

seeded in a density minimum 300,000 cells/ml with fresh IL-2 was added every 2 days. 

Target cells (K562, Daudi, Namalwa) were maintained in a different complete RPMI1640 

medium and cells were kept density minimum 300,000 cells/ml to maximum 1,000,000 

cells/ml in their complete RPMI1640in sterile tissue culture flasks with filtered caps at 

an incubator set to 37oC with 5% CO2.  

Cell freezing: Regardless of cell type, before one day cells were split to a concentration 

of 500,000 cells/ml for suspension cells and to a confluence of 30-40% for adherent cells. 

The next day, cells were counted and at least 3x106 cells/ vial were frozen. Each vial has 

1 ml volume, cells were centrifuged at 300g for 5 minutes where supernatant was 

discarded, and the pellet was resuspended in 0.5ml FBS and incubated on ice for 20 

minutes. In the meantime, 0.5 ml FBS with 12% DMSO was prepared and incubated on 

ice. When the incubation was over, 0.5 ml cell suspension was mixed with 0.5 ml freezing 

medium to reach final concentration of 6% DMSO in 1 ml. Cells were stored in cryotubes 

first in -80oC for short term storage, and after that they were placed to liquid nitrogen for 

long term storage. 

Cell thawing: Cells were preserved in cryotubes at the liquid nitrogen. 15 ml tubes were 

filled with 5 ml FBS for every vial. When the cell suspension was at RT, 1 ml frozen 

sample was pipetted very slowly into FBS then centrifuged at 300g for 5 minutes and the 

supernatant was discarded. Regardless of cell type, the cell pellet was resuspended with 

complete media. 

 

3.2.3. Design and cloning of a new Chimeric Antigen Receptor Vector  

 

Throughout this study, two types of cloning strategies were used: CAR3.137 was 

synthesized by Genscript, USA into PUC57 construct which is cloned into 

LeGO.iG2puro vector for GFP expression and puromycin (puro) antibiotic selection 
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marker and end of the first cloning we generated construct of LeGO-iG2puro.CAR3.137. 

Second cloning strategy was an scFv fragment of CD19-specific antibody from pS-63.z-

IEW into LeGO-iG2puro.CAR3.137  for expression of CD19 specific 3rd generation CAR 

by lentiviral transduction method. 

 

3rd Generation CAR design and codon optimization: CAR design was carried out using 

human genome sequences for required genes retrieved from various references (Table 

3.1.) Required CAR domains (Table 3.1) sequences were uploaded on Silent mutator 

website (Figure 3.1.) for analysis and chosen from unique restriction enzyme which has 

not cut site on LeGO-iG2puro for each domain. For improved expression of the proteins 

within human, genes and possible restriction enzyme cut sites are codon-optimized by 

using cool.syncti.org.  

 

 

 

 

 

 

 

 

Figure 3.1.  Example view of Silent Mutator website. Use to show all enzyme that 

we can use cut the Signal Peptide part of the Car Domain. 

AAAAGATCTGAATTCGCCACC sequence for BglII and EcoRI sites and Kozak 

sequence, the part of starting MDWI is the signal peptide part.  

 

Digestion of LeGO.iG2puro vectors and CAR137-3 and ligation reactions: 

LeGO.iG2puro plasmids were used for production of lentivirus by CaPO4 transfection 

methods on HEK293 FT cells.  Backbone and insert CAR3.137 from PUC57 were 

digested and used in ligation reaction using the following digestion and ligation steps 

 

Digestion of Backbone at 37oC, 1,5 hour 

LeGO.iG2puro plasmid 5 µg 
NEB BamHI-HF (10,000 U/ml) 1 µl 
NEB NotI-HF (10,000 U/ml) 1 µl 
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NEB Cut Smart Buffer 3 µl 
ddH2O Up to 30 µl 
Total volume 30 µl 

 

1st Digestion of insert at 37oC, 45 minutes 

 PUC57.CAR.3.137 plasmid 5 µg 
NEB  Bgl II (5,000 U/ml) 1,5 µl 
NEB 3.1 Buffer 2 µl 
ddH2O Up to 20 µl 
Total volume 20 µl 
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Figure 3.2. Development of novel CAR expression vectors. A) Cassette CAR Design.  

Design of our 3rd Generation CAR vector and restriction enzymes with the possibility 

of changing, the vector can be used for cloning full scFv sequence with (option 1) or 

without (option 2) the signal sequence directly before c-myc tag and can be used for 

making 3 different versions of the CAR vector B) constructed original design 

(CAR3.137), CD28-OX40-CD3ζ (CAR3.40)  and 2nd generation CAR with CD28-

CD3 ζ (CAR2). 

A 

B 
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Table 3.7. Chimeric Antigen Receptors Domains and Sequences 

CAR Domains Full Name Protein Sequences of Domains Reference 

Signal Peptide 
Human Immunoglobulin Heavy Chain Signal 
Peptide N-Terminal Signal Peptide VH 71-
5’CL 

MDWIWRILFLVGAATGAHS 

(“Sequences of 
Proteins of 
Immunological 
Interest” 1984) 

c-Myc tag - S-EQKLISEEDL (Killer et al. 2014) 

CD8α (Hinge) 
T-cell surface glycoprotein CD8 alpha chain    
 Residues: 117-178  (Extracellular), 
UniProtKB - P01732 (CD8A_HUMAN) 

ALSNSIMYFSHFVPVFLPAKPTTTPAPRPPTPAPTIASQPLSLRPEAS
RPAAGGAVHTRGL (Tonn et al. 2016) 

CD28 

T-cell-specific surface glycoprotein CD28     
Residues: 151-220 (Extracellular-Helical-
Cytoplasmic), UniProtKB - 
P10747 (CD28_HUMAN) 

KPFWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNM
TPRRPGPTRKHYQPYAPPRDFAAYRS (Tonn et al. 2016) 

CD137 (4-1BB) 

Tumor necrosis factor receptor superfamily 
member 9 
Residues: 187-255 (Helical-Cytoplasmic), 
UniProtKB - Q07011 (TNR9_HUMAN) 

IISFFLALTSTALLFLLFFLTLRFSVVKRGRKKLLYIFKQPFMRPVQ
TTQEEDGCSCRFPEEEE GGCEL  (Tonn et al. 2016) 

OX-40 
A chimeric T cell antigen receptor that 
augments cytokine release and supports the 
clonal expansion of primary human T cells 

RDQRLPPDAHKPPGGGSFRTPIQEEQADAHSTLAKI (Pulè et al. 2005) 

CD3ζ 
T-cell surface glycoprotein CD3 zeta chain 
UniProtKB - P20963 (CD3Z_HUMAN) 
Residues: 52-163 (Cytoplasmic) 

RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDP
EMGGKPQRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKG
HDGLYQGLSTATKDTYDALHMQALPPR* 

(Tonn et al. 2016) 



40 
 

 

For preparing 2nd digestion of the insert, Nucleo Spin® Gel and PCR Clean-up Kit were 

used according to manufacturer’s protocol, Resultant elution concentration containing the 

plasmid was measured by a NanoDrop spectrophotometer. 

 

2nd Digestion of vector at 37oC, 45 minutes 

1st Digestion PUC57.CAR.3.137 
plasmid 

Apx. 2 µg 

NEB  NotI-HF (10,000 U/ml) 1 µl 
NEB Cut Smart Buffer 2 µl 
ddH2O Up to 20 µl 
Total volume 20 µl 

 

 

After digestion reaction, the insert and backbone were loaded on %1 agarose gel which 

was prepared with 0.5 TBE for at 90 min, 100 V. Resultant elution concentration 

containing the plasmid was measured by a NanoDrop spectrophotometer. 

 

CIP treatment of the backbone, 37oC, 30 minutes 

All LeGO.iG2puro plasmid gel extraction 
product (except 200 ng which were used for 
ligation control)   

30 µl 

NEB CIP (10,000 U/ml Depends ON the 
molarity of the 
DNA ends 

NEB 10X Cut Smart Buffer 4 µl 

ddH2O Up to 40 µl 

Total volume 40 µl 

  

To discard the CIP treatment, PCR Clean up (Nucleo Spin® Gel and PCR Clean-up Kit) 

was used. Ligation reaction of PCR-Clean up extracted backbone and Gel extract was 

carried out for 15 minutes at Room Temperature and 1 hour at 16 oC  as follows: 

CAR.3.137 gel extract 37,3 ng 

PCR-Clean up product of CIP- 
LeGO.iG2puro plasmid 

100 ng 

NEB T4 DNA ligase 1,5 µl 
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NEB 10X T4 DNA ligase buffer 2 µl 

ddH2O Up to 20 µl 

Total volume 20 µl 

 

Transformation and confirmation of positive colonies: For ligation samples, 10 µl of the 

above-described ligation reaction was used to transform 200 µl TOP10 competent E.coli 

cells.  Next day, three colonies were picked from each transformation and miniprep 

cultures were started. Minipreps for plasmid DNA were carried out the following day 

with Macherey-Nagel commercial kit according to manufacturer’s protocol. Completed 

minipreps were digested with a unique enzyme which is shown in Figure 1 A part.  

 

 

 
Figure 3.3. Schematic representation of cloning with scFv which have already signal 

peptide and LeGO.iG2puro.CAR3.137. 

 
Polymerase Chain Reaction (PCR) of anti CD19 scFv from pS-63.z-IEW and  Digestion 
of LeGO.iG2puro.CAR3.137 backbone and scFV insert and ligation reactions:  

 

Our anti CD19 scFv were coming from pS-63.z-IEW (Oelsner, 2017) and the last codon 

of the scFv insert ends with G so we used SalI-EcoRI cloning.  
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PCR for anti CD19 scFv 

pS-63.z-IEW  100 pg 
10 mM NTPs 1 µl 
NEB 5X Q5 Reaction Buffer 10 µl 
10 µM  19EcoRI_Foward Primer 2.5 µl 
10 µM  19SalI_Reverse Primer 2.5 µl 
NEB Q5 High-Fidelity DNA 
Polymerase 

0.5 µl 

ddH2O Up to 50 µl 
Total volume 50 µl 

 
Condition of PCR 

STEP TEMPERATURE TIME 
Initial Denaturation 98 oC 30 seconds 
30 Cycle 98 oC 

66 oC 
72 oC 

10 seconds 
30 seconds 
20 seconds 

Final Extension 72 oC 2 minutes 
Hold 4   oC  

 

After PCR, the insert was tun on %1 agarose gel which was prepared with 0.5 TBE  at 90 

V, 1 hour. Gel Clean Up ws done using Nucleo Spin® Gel and PCR Clean-up Kit. 

Resultant elution concentration containing the plasmid was measured by a NanoDrop 

spectrophotometer. 

Digestion of anti CD19 scFv insert at 37oC, 1,5 hour 

PCR product of scFV 2000 ng 
NEB EcoRI-HF (10,000 U/ml) 1 µl 
NEB SalI (10,000 U/ml) 1 µl 
NEB Cut Smart Buffer 3 µl 
ddH2O Up to 30 µl 
Total volume 30 µl 

 

For preparing ligation of the insert, PCR-Clean up with using according to manufacturer’s 

protocol Nucleo Spin® Gel and PCR Clean-up Kit, Resultant elution concentration 

containing the plasmid was measured by a NanoDrop spectrophotometer. 

 

Digestion of LeGO.iG2puro.CAR3.137 backbone at at 37oC, 1,5 hour 

LeGO.iG2puro.CAR3.137 5000 ng 
NEB EcoRI-HF (10,000 U/ml) 1 µl 
NEB XhoI (10,000 U/ml) 1 µl 
NEB Cut Smart Buffer 3 µl 
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ddH2O Up to 30 µl 
Total volume 30 µl 

 

After digestion, run the backbone on %1 agarose gel which was prepared with 0.5 TBE.  

at 90 V, 1 hour. Gel Clean Up was done using Nucleo Spin® Gel and PCR Clean-up Kit. 

Resultant elution concentration containing the plasmid was measured by a NanoDrop 

spectrophotometer. 

 

CIP treatment of the backbone, 37oC, 30 minutes 

All LeGO.iG2puro.CAR3.137 plasmid gel 
extraction product (except 200 ng which were 
used for ligation control)   

30 µl 

NEB CIP (10,000 U/ml Depends on the 
molarity of the 
DNA ends 

NEB 10X Cut Smart Buffer 4 µl 

ddH2O Up to 40 µl 

Total volume 40 µl 

 

To discard the CIP treatment PCR Clean up using Nucleo Spin® Gel and PCR Clean-up 

Kit was used 

Ligation reaction of PCR-Clean up extracted backbone and Gel extracted insert  was 

carried out for 16 hours at 16oC as follows: 

Anti CD19 scFVgel extract 21,24 ng 

PCR-Clean up product of CIP- 
LeGO.iG2puro.CAR3.137  plasmid 

50 ng 

NEB T4 DNA ligase 1,5 µl 

NEB 10X T4 DNA ligase buffer 2 µl 

ddH2O Up to 20 µl 

Total volume 20 µl 

 

 Transformation and confirmation of positive colonies: For ligation samples, 10 µl of the 

above-described ligation reaction was used to transform 200 µl TopTen competent E.coli 

cells.  Next day, three colonies were picked from each transformation and miniprep 
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cultures were started. Minipreps for plasmid DNA were carried out the following day 

with Macherey-Nagel commercial kit according to manufacturer’s protocol. 

 

3.2.4. Production of lentiviral vectors 

 

For the production of VSV-G pseudotyped lentiviral vectors; first, 100 mm dishes were 

coated with 1ml Poly-L-Lysine solution (0.1% (w/v) in H2O and incubated for 15 

minutes, washed 2 times with 5 ml sterile dd H2O and left with the lids open until dry. 

5x106 HEK293FT cells were seeded into poly-L-lysine coated 100 mm dishes.  Next day, 

cells were transfected with 7.5 μg of vector plasmid (LeGO or pS-IEW vector), 3.75 μg 

of pMDLg/pRRE, 2.25 μg of pRSV-REV and 1.5 μg of phCMV-VSV-G using calcium 

phosphate transfection method. Plasmids were filled up to 450 μl dd H2O and 2.5 M CaCl2 

was added. 500 μl 2X HBS and plasmid mix were mixed by bubbling and incubated 15 

minutes. In the meantime, the media of the transfection plates were changed with fresh 

DMEM-Glutamax containing 25 μM Chloroquine. After 10 hours the medium was 

changed with DMEM Glutamax and thereafter virus-containing supernatant was 

collected at 24 hours and 36 hours, filtered with 0.45 µm filters and stored in -80°C until 

further use. A small aliquot from each production was used to determine viral titers by 

transduction of HEK293FT cells with serially diluted amounts of virus supernatant. 

 

3.2.5. Lentiviral transduction of NK-92 cells 

 

For each lentiviral transduction, 1 x106 / ml NK-92 cells were seeded in duplicates into 

T25 sterile tissue culture flasks with filtered caps and mixed with 5 ml virus-containing 

supernatant in the presence of 8 μg/ml of protamine sulfate and 1.5 μM (5Z)-7-

Oxozeaenol in a final volume of 6 ml. The flasks were incubated at 37°C, 5% CO2 for 

overnight. At the end of the incubation, virus transduced cells were collected and spun 

down at 300xg for 5 minutes at room temperature after which the virus containing 

supernatant was removed and replaced with fresh medium. The cells were maintained in 

this medium for at least 3 days before the acquisition of gene expression was carried out. 
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For controlling of CAR expression, RT-PCR was carried out. GM NK-92 Cells were split 

24 hours before to 5x105/ml in 6 ml. Zymo Research RNA isolation Kits were applied 

according to manufacturer’s protocols. The final RNA concentration and purity were 

measured by a NanoDrop spectrophotometer. RNA templates were used for the synthesis 

of cDNA which was used for PCR to control the expression different CAR signaling 

domains. RevertAid First Strand cDNA Synthesis Kit was applied according to 

manufacturer’s protocols. 

PCR:  
 

cDNAs of CAR modified NK-92 cells  1:10 dilution 
10 mM NTPs 0.5 µl 
NEB 5X Q5 Reaction Buffer 5 µl 
Signal Peptide Forward 1.25 µl 
CD137 or CD28 or CD3IC Reverse 
Primer 

1.25 µl 

NEB Q5 High-Fidelity DNA 
Polymerase 

0.25 µl 

ddH2O Up to 25 µl 
Total volume 25 µl 

 
Condition of PCR 

STEP TEMPERATURE TIME 
Initial Denaturation 98 oC 30 seconds 
30 Cycle 98 oC 

63 oC 
72 oC 

10 seconds 
30 seconds 
20 seconds 

Final Extension 72 oC 2 minutes 
Hold 4   oC  

 

3.2.6. Flow cytometry 

 

All antibody staining for flow cytometry was done according to the following protocol: 

For surface staining, the cells were washed once with PBS and incubated with appropriate 

amounts of antibody on ice for 30 min. Cells were washed PBS and carried on to analysis. 

The antibodies used for NK-92 cells were CD56 (clone: NCAM16.2), gating strategy was 

the first on single cells then to CD56high GFP+ cell percentage was shown in results. For 

determination of possible target cells, CD19 (SJ25C1) was used. For checking chimeric 

antigen receptor expression, anti-c-Myc Antibody (clone: 9E10) was used.   
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GFP positive NK-92 Cells were sorted in 3x106 cells/ml, %1.5 BSA PBS. Then incubated 

in RPMI 20%FBS with %1 Penicillin-Streptomycin. 

For flow cytometer-based phenotyping of NK cell surface receptors, 2.5x105 cells/tube 

were counted and incubated on ice for 30 minutes with MIXI or MIX II antibody mixture 

(Table 3.8.). In the meantime, 2.5x105 cells/tube incubated with appropriate amounts of 

all fluorochrome isotype control. FACS tubes were washed with PBS and proceeded to 

acquisition in the flow cytometer. 

Cells were acquired at LSR Fortessa, sorted at FACSAria Fusion and analyzed with 

FlowJo software.  

Table 3.8. List of Antibodies that used for phenotyping analysis  

Antibody Isotype Volume MIX TUBE 

Anti-human CD335 
(NKp46) (BV510, clone: 
9E.2) 

BV510 Conjugated 
Mouse IgG1 ĸ 

3 µl MIX I 

Anti-human CD336 
(NKp44) (PE/Cy7, clone: 
p44-8) 

PE/Cy7 Conjugated 
Mouse IgG1 ĸ 

2 µl MIX I 

Anti-human CD337 
(NKp,30) (APC, clone:  
P30-15) 

(APC Conjugated 
Mouse IgG1 ĸ 

3 µl MIX I 

Anti-human NKp80 (PE, 
clone: 5D12) 

PE Conjugated Mouse 
IgG1 ĸ 

3 µl MIX I 

Anti-human CD56 
(BV421, clone: NCAM 
16.2) 

BV421 Conjugated 
Mouse IgG1 ĸ 

1 µl MIX I and MIX II 

Anti-human CD160 (APC, 
clone: BY55) 

APC Conjugated 
Mouse IgM ĸ 

5 µl MIX II 

Anti-human CD244 (2B4) 
(PE, clone: C1.7) 

PE Conjugated Mouse 
IgG1 ĸ 

3 µl MIX II 

Anti-human NKG2D 
(Brilliant Violet 510™ 
clone:1D11) 

BV510 Conjugated 
Mouse IgG1 ĸ 

5 µl MIX II 
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Anti-human CD2 
(APC/Cy7, clone: RPA-
2.10) 

APC-Cy7 Conjugated 
Mouse IgG1 ĸ 

2 µl MIX II 

 

3.2.7. Analysis of NK-92 cell degranulation 

 

Effectors (GM NK-92 and WT NK-92) and Targets cells were seeded at 5x105 cells/ml 

at 24 hours before the experiment. Cells were counted again at the experiment day and 

concentration was adjusted to 2.5x105 cells/100 μl for each well of v-bottomed 96-well 

plates.  Then, NK-92 cells were co-incubated with target cells at a ratio of 1:1 in a final 

volume of 200 μl in wells at 37°C and 5% CO2 for 1 hour. To block the CD19 on Target 

cells, purified anti CD19 antibody was used before the co-incubation. PE/Cy7-conjugated 

anti-CD107a mAb was added at the initiation of the assay and add Ionomycin (final 

concentration 0.25 µg/ml) and Phorbol 12-myristate 13-acetate (PMA)(Final 

concentration 1.25 µg/ml) for positive control wells.  After 1 hour of coincubation, 

Monensin was added at a 1:100 dilution and the plates were incubated at 37°C and 5% 

CO2 for a further 3 hours. When incubation was finished, plates were taken out and 

centrifuged at 400g for 5 minutes at 4°C. Supernatant was discarded and stained with 

1:50 dilution of APC-conjugated anti-CD56 mAb in PBS, resuspended and incubated on 

ice for 30 minured in dark. At the end of staining, cells were centrifuged and the 

supernatant discarded.,  Finally, they were resuspended in PBS and proceeded to 

acquisition in the flow cytometer 

 

3.2.8. Intracellular TNF-α and IFN- γ staining 

 

TNF-α and IFN-γ secretion was analyzed with the same protocol as degranulation except 

the addition of the anti-CD107a mAb at the initiation of the experiment. When incubation 

was finished, the plate were taken oyr and centrifuged at 400g for 5 minutes at 4°C. The 

supernatant was discarded and cells were stained with 1:50 dilution Fluorochrome-

conjugated anti-CD56 mAb in PBS. For intracellular staining, cells were fixed and 

permeabilized in a solution containing 1% PFA containing 0.01% w/v Saponin in DPBS 
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and incubated on ice for 15 minutes, washed two times with Permeabilization Wash 

Buffer and incubated with appropriate amounts of antibody on ice for 30 min. The stained 

cells were then washed with Permeabilization Wash Buffer and data acquisition was 

carried out in flow cytometer. 

 

3.2.9. Statistical analysis 

 

For the preparation of graphs and statistical analysis, GraphPad Prism (GraphPad 

Software Inc. La Jolla, CA, USA) was used.  
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4. RESULTS 

 

4.1.Cloning of the new Chimeric Antigen Receptors Vectors 

For first ligation reaction, backbone LeGO.iG2puro (8445 bp) was digested by BamHI-

HF and NotI-HF enzyme (Figure 4.1.A) and Insert CAR3.137 (1050 bp) was digested 

from PUC57 with NotI-HF and BglII enzyme (Figure 4.1.B).  

 

 

Figure 4.1. Gel image of Double Digestions  of  backbone LeGO.iG2puro 

and insert CAR1373. A ) Digestion of LeGO.iG2puro  with BamHI and 

NotI B) Digestion of  insert CAR137.3  with BglII and NotI  

 

After setting up the ligation as described in Materials and Methods, samples were used to 

transform E. coli cells. Next day, three colonies were picked from each transformation 

and miniprep cultures were started and controled with digestion.  

 

For second ligation reaction, confirmed backbone LeGO.iG2puro.CAR (9431 bp) was 

digested by EcoRI-HF and XhoI enzyme (Figure 4.2) and insert scFV-antiCD19 (778 bp) 

A B 
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was generated with PCR from pS-63.z-IEW followed by digestion with EcoRI-HF and 

SalI enzyme (Figure 4.3.).   

 

 

Figure 4.2. Gel image of Double Digestion of PCR product and 

LeGO.iG2puro.CAR A. PCR product (anti CD19 scFv with Signal peptide from 

pS-63.z-IEW plasmids ), B.LeGO. iG2 puro 

 

After setting up the ligation as described in Materials and Methods, samples were used to 

transform E. coli cells. Next day, three colonies were picked from each transformation 

and miniprep cultures were started and controled with digestion. Confirmed 

LeGO.iG2puro.CAR and LeGO.iG2puro.CAR-19 colonies were used for lentiviral 

vectors production (Figure 4.3.).   

 

A                                     B 
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Figure 4.3. Examples of the control digestion of LeGO.iG2puro.CAR and 

LeGO.iG2puro. S is the single digestion with HindIII and DD is the double 

digestion with HindIII and HpaI. Left side is the expected band size. Right side is 

the gel image. We repeated cloning two times and did control digestion both of 

them (1st and 2nd LeGO.iG2puro.CAR)  

 

4.2.Production of lentiviral Vectors 

For comparison of different signaling domains on NK-92 cells, we used five different 

lentiviral constructs (Figure 4.4.). Codon optimized sequences of 3rd Generation CAR 

was cloned into LeGO backbone with eGFP. 1st and 2nd Generation CAR vectors are 

developed by Tonn et al. . For the production of VSV-G pseudotyped lentiviral vectors, 

we used HEK293FT cells and also determine viral titers by transduction of HEK293FT 

cells with serially diluted amounts of virus supernatant (Table 4.1.). 
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Figure 4.4. Lentiviral constructs. Lentiviral constructs were used for lentivirus. 
SFFV: Spleen focus-forming virus promoter, IRES: Internal ribosome entry site, 
SP: An immunoglobulin heavy chain signal peptide, M: Myc-tag, TM : 
Transmembrane, scFv: single chain variable fragment, EGFP: enhanced green 
fluorescent protein.  
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Table 4.1. Titration of Lentiviruses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Number 
of Batch 

Name of the Lentiviral Vector Collection Time

B1 LeGO-G2 24 Hour
B2 LeGO-G2 36 Hour
B3 LeGO-G2 36 Hour
B1 LeGO-iG2puro 24 Hour
B1 LeGO-iG2puro.CAR3.137 24 Hour
B1 LeGO-iG2puro.CAR3.137-19 24 Hour
B1 pS-63.z-IEW 24 Hour
B2 pS-63.z-IEW 36 Hour
B3 pS-63.z-IEW 24 Hour
B1 pS-63.28.z-IEW 24 Hour
B2 pS-63.28.z-IEW 36 Hour
B3 pS-63.28.z-IEW 24 Hour
B1 pS-63.137.z-IEW 24 Hour
B2 pS-63.137.z-IEW 36 Hour
B3 pS-63.137.z-IEW 24 Hour

0,35
0,172

0,9
0,37

0,61

0,52

0,47
0,54
0,77
0,23

Average number of infectionus 
particles x 106/ml

3,82

2,1
0,52

1,65

Titration Table

1,31
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4.3.Genetic Modification of NK-92 cells 

Genetic Modification of NK-92 cells: 

 

 

 
 

Figure 4.5. Genetic modification process of NK-92 with lentiviral vectors and 

sorted with puromycin selection or FACS.  

In a standard transduction experiment, cells were incubated with lentiviral vector-

containing supernatant for overnight and green fluorescence protein-positive (GFP+) 

population was analyzed 3 days after transduction by flow cytometry (Figure 4.6). For 

flow cytometric analysis of NK-92 transductions, cells were stained with anti-CD56 

antibody. After 3 days, we started selection with puromycin (Figure 4.6.) or cells were 

sorted by FACS. We used all produced viruses for NK-92 transduction and obtained 

different transduction results (Table 4.2.). When GFP expressing cells surpass 90%, we 

accepted CAR transduced cells are selected. Further experiments were used to confirm 
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CAR expression on cell surface and signaling domain expression. Transduction 

experiments were repeated 3 times (B1, B2 and B3) for controlled study. 

 

Table 4.2. Results of +GFP the transduction and selection/sorting 

Batch 
Number Name of the Cells 

MOI 
Transduction 

Results 
(GFP+%) 

After 
Selection or 

Sorting 
(GFP + %)  

B1 

NK-92 iG2puro 2,5 25,4 99,7 Puromycin 
Selection 

NK-92 iG2puro.CAR3.137 2,5 18,7 98,1 Puromycin 
Selection 

NK-92 iG2puro.CAR3.137.19-1 2,5 22,5 98,5 Puromycin 
Selection 

NK-92 iG2puro.CAR3.137.19-2 2,5 20,7 98 Puromycin 
Selection 

NK-92 CAR_CD3ζ 3,5 9,2 94,6 FACS 
NK-92 CAR_CD28_CD3ζ 1,75 6,1 95,2 FACS 
NK-92 CAR_CD137_CD3ζ 4,5 10 93,4 FACS 

B2 

NK-92 G2 5 18 93,2 FACS 
NK-92 CAR_CD3ζ 1,1 1,8 93,7 FACS 
NK-92 CAR_CD28_CD3ζ 1 1,5 91,2 FACS 
NK-92 CAR_CD137_CD3ζ 1,8 1,5 94,5 FACS 

B3 

NK-92 G2 10 66 92 FACS 
NK-92 CAR_CD3ζ 3 8 90,7 FACS 
NK-92 CAR_CD28_CD3ζ 2,5 5 91,2 FACS 
NK-92 CAR_CD137_CD3ζ 6,5 18 91,8 FACS 

 

 

Genetic modification of NK-92 cells with CAR vectors was efficient and enrichment of 

cells was feasible both by FACS and puromycin selection. 

 

 

 

 

 

 

 



 
56 

 

Confirmation of CAR Modified NK-92 Cells: 

 

For detection of CAR expression on NK-92 cell surface, transduced NK-92 cells and wild 

type NK-92 cells were stained with anti-c-myc antibody then analyzed with flow 

cytometer (Figure 4.7.). Unfortunately, we observed that NK-92iG2puro.CAR3.137 and 

NK-92 iG2puro.CAR3.137.19 did not express c-myc tag on the cell surface. The plasmids 

were sent for sequencing.  

 

Figure 4.6. Confirmation of c-Myc expression on CAR NK-92 cell surface.  

 

Three batches of transduced cells were prepared and analyzed by RT-PCR to confirm the 

proper expression of signaling domains (Figure 4.8.).  The results showed that B1 and B3 

cells show signs of cross-contamination while B2 cells were confirmed.  
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Figure 4.7. Confirmation of signaling domain expression on CAR NK-92 cells.  

 

 

Flow cytometer-based Phenotyping Analysis: 

 

Transduced NK-92 Cells were stained with different NK receptor specific antibodies 

(Figure 4.9.). The phenotyping results show that the use of different signaling domains in 

the vector influence the NK cell phenotype. We compared the results of receptor 

expression with isotype controls and observed significant change in the phenotype of 

CAR modified NK-92 cells (Figure 4.10.).  For example, NKp30 and NKp80 receptors 

were shown to be downregulated in CD28-containing CAR while they were upregulated 

in CD137-containing CAR when compared to WT NK-92.  

B1 

B3 

B2 
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Figure 4.8. Examples data of the Phenotyping Analysis for NK92.28.CD3ζ cells 

 

 

 
Figure 4.9. Mean fluorescence intensity (MFI) stained vs MFI isotype control 
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4.4.Functional Analysis of Genetically Modified NK-92 Cells 

4.4.1. Degranulation of CAR-expressing NK-92 Cells 

Figure 4.10. CD19 expression of Target Cells. Red line shows unstained and blue 

line shows CD19 expression levels. 

To investigate the functionality of the CAR-modified NK-92 cells. We used CD19- K562 

cell line and CD19+ Daudi and Namalwa cell lines (Figure 4.10) Recognition of CD19 is 

required for specific CAR cytotoxicity.  

In flow cytometer-based degranulation assays (Figure 4.11) we used anti CD107a 

antibody to determine percentage of degranulation. Effectors and target cells ratio (E/T) 

is 1:1. 

Figure 4.11. Degranulation examples of NK-92 cells  
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Figure 4.12. Degranulation results of 1st Batch CAR modified NK-92 Cells 

 

We see a strong response against CD19+ cell lines Daudi and Namalwa by both the 1st 

gen vector as well as the CD28ζ vector while the CD137ζ vector fails to trigger any 

degranulation in this setting where Batch 1 CAR modified cells which showed signs of 

cross contamination were used (Figure 4.11).   

In Batch 3 cells (also cross contamination) we see the strongest response against CD19+ 

cell lines Daudi and Namalwa 1st generation vector  and  second highest response in 

CD28ζ vector while the CD137ζ vector  also trigger degranulation in this setting (Figure 

4.13).  

 
Figure 4.13. Degranulation results of 3rd Batch CAR modified NK-92 Cells 
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Figure 4.14. Degranulation results of 2nd Batch CAR modified NK-92 Cells. Top 

graphic is the first degranulation experiment, bottom graphic is the second 

degranulation experiments.  

In Batch 2 cells, which are non-contaminated, we see a strong response against CD19+ 

cell line Namalwa by both the 1st gen vector as well as the CD28ζ vector and also to some 

extent by the CD137 vector (Figure 4.14). In Daudi cell lines, we observed that they lost 

CD19 expression during culture so they failed to trigger CAR-mediated responses.  
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Figure 4.15. CD19 blocking Degranulation Results 

 

To show CAR modified NK-92 specific activity against CD19, we did blocking 

degranulation experiments with Namalwa cell line and NK-92_CAR_CD28_CD3ζ.  

The anti-CD19 antibody blocks CAR-NK-92 degranulation against CD19+ targets only 

to a certain extent (Figure 4.15). This could be due to the wrong choice of antibody clone 

for blocking experiments. 

 

4.4.2. TNF-α and IFN- γ  Secretion of CAR-expressing NK-92 Cells 

Figure 4.16. Examples of TNF-α Secretion of CAR-expressing NK-92 Cells 

 

In flow cytometer-based cytokine secretion assays (Figure 4.16) we used anti TNF α 

antibody to determine percentage of TNF α secretion with intracellular stanning.  

Effectors and target cells ratio (E/T) are 1:1. 
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Figure 4.17. TNF-α Secretion of CAR-expressing NK-92 Cells 

CAR vector containing CD137 intracellular domain fails to trigger TNFα secretion and 

CD28 does not increase the TNF α response compared to CD3ζ only (same as 1st batch’s 

degranulation) (Figure 4.17.) 

 

 

Figure 4.18. Examples IFN- γ of Secretion of CAR-expressing NK-92 Cells 

 

In flow cytometer-based cytokine secretion assays (Figure 4.18) we used anti IFN- γ 

antibody to determine percentage of IFN- γ  secretion with intracellular stanning.  

Effectors and target cells ratio (E/T) are 1:1. 
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Figure 4.19. IFN-γ of Secretion of CAR-expressing NK-92 Cells 

CAR vector containing CD137 intracellular domain fails to trigger IFN-γ secretion same 

as TNFα secretion (Figure 4.19). CD28 increases the IFN -γ response compared to CD3ζ 

only. 
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5. DISCUSSION & CONCLUSION 

 

Cellular immunotherapy frequently relies on the transfer of autologous or allogeneic 

immune effector cells for therapeutic purposes. While these cells can simply be isolated 

and infused, efficient immunotherapy protocols also include certain steps where the 

effector cells are expanded ex vivo and/or genetically modified to increase their activity 

of specificity. Among the effectors used for cancer immunotherapy NK cells stand out 

with their high anti-tumor activity. While preclinical and clinical research on primary NK 

cells continues to deliver promising results, another source for NK cell-based 

immunotherapy stands out in the form of the NK-92 cell line that has many advantages 

compared to primary cells (Maki et al. 2001).   

In this study, we used NK-92 cells engineered with different CARs targeting the same B-

cell differentiation antigen (CD19) which is shown to be a clinically relevant target in B 

cell malignancies.  CD19 is a tumor associated antigen which is already used for clinical 

CAR-T cell treatments and serves as a model in our research to optimize intracellular 

design of CAR vectors tailored for use in NK cells. 

To investigate CAR-NK92 cells, CAR vector is consisted of CD19 specific scFv and 

CD8α hinge region either linked to CD3ζ or additionally CD28 or CD137 co-stimulatory 

domains. A survey of existing literature shows that CD28 and CD137 are frequently used 

in CAR designs. CAR-modified NK-92 cells are obtained with lentiviral transduction 

followed by puromycin selection or FACS sorting. We displayed stable CAR expression 

on cell surface following this procedure. To investigate the functionality of CAR 

modified NK-92 cells we used CD19 expressing B cell lymphoma cell lines and measured 

functionality with degranulation and cytokine secretion experiments.  
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Based on our findings, NK-92_CAR_CD137_CD3ζ cells were less effective than NK-

92_CAR_CD3ζ and NK-92_CAR_CD28_CD3ζ in degranulation as well as TNFα and 

IFN-γ secretion. NK-92_CAR_CD3ζ cells showed slightly higher degranulation profile. 

This may be the result of differences in the CAR signaling depending on the internal 

design of the transgene. NK-92_CAR_CD3ζ has the intracellular signaling domain of 

CD3ζ which was shown to cause formation of disulfide links between CAR homodimers 

and heterodimers (Uherek et al. 2002; Schönfeld et al. 2015).  

CAR_CD137_CD3ζ, CD28_CD3ζ, and only CD3ζ contain same anti CD19 scFv and 

same CD8α hinge region which plays a critical role in flexibility of the antigen binding 

domain that determines possible scFv-dependent effects. Also, target antigen plays a big 

role in activation of CAR (Hombach et al. 2007).  Thus, the CAR vectors with different 

targets should be evaluated among themselves and direct comparison of internal vector 

designs can only be achieved by using the same antigen binding domain. Furthermore, it 

is possible that the antigen binding domain affects the intracellular design which means 

that the most effective intracellular design can be different for different antigens. For 

example,  ErbB2-targeted CD28-CD3ζ and CD137-CD3ζ CARs displayed more certain 

cytotoxicity (Schönfeld et al. 2015).  

 

Among the CAR-expressing NK cells obtained in this study, the first-generation vector 

seems to increase unspecific activity against CD19- K562 cells. The other vectors do not 

have this effect. We see a similar loss of specific activity when we overexpress CD3ζ in 

NK-92 cells for TCR expression (Parlar et al. 2019). Since CD3ζ is coupled to some NK 

cell activating receptors, we observe that its overexpression increases general activation 

of NK cells by affecting the cell surface levels of CD3ζ-coupled NK cell receptors. We 

suspect that we are seeing a similar effect here in the first-generation vector where the 

CD3ζ sequence utilized in the design is longer and includes the transmembrane domain 

that it uses to couple to NK receptor. In contrast, the other two vectors do not utilize CD3ζ 

transmembrane domains, hence are less likely to couple to NK cell receptors and affect 

their surface expression levels. For clinical use of these cells, strict characterization of 

these phenotypic effects on NK cells must be carried out for each vector. 
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Table 5.1. Comparison of different chimeric antigen receptors  

 

When the data collected from different CAR designs are summarized, we can clearly see 

that the CD28ζ vector works better in NK-92 cells (Table 5.1). The first-generation vector 

seems to increase nonspecific activity in terms of both the degranulation and TNF 

secretion. The CD137ζ vector on the other hand does not seem to trigger high levels of 

antigen specific activation in NK-92 cells.  

In Tonn et al. 2016,  similar results were obtained also with primary NK cells and the 

authors reported that the 1st generation vector may be activated more rapidly in lower 

antigen densities than the others due to formation of disulfide bonds.  

On the other hand, the newly designed CAR vectors failed to express c-myc-tag on the 

cell surface and degranulation is also failed. Our initial assessment reveals cloning steps 

during the preparation of the new vector may be a problem. Further studies to functionally 

clone the new vectors and use them for CAR expression in NK-92 cells are warranted. 

In future works, we have in view to find and solve the problem of lab made constructs of 

3rd Generation CAR vectors and also further characterize for effector functions especially 

by flow-cytometry based cytotoxicity assays. We plan to repeat TNF-α and IFN-γ 

secretion experiments with new methods and anti CD19 blocking experiments with a new 

antibody clone. Regarding further applications, other studies in our group will use the 

CAR vectors generated in this research to engineer new CAR NK-92 cells against various 

tumor antigens.  
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APPENDIX A: Chemicals Used in This Study 

Table A1. Chemicals used in this study. 

Chemicals and Media Components 
Company 

Agar Sigma, Germany 
Agarose Sigma, Germany 
Ampicillin  GellGro, USA 
Boric Acid Sigma, Germany 
Bovine Serum Albumin (BSA) Sigma, Germany 
Chloroquine Sigma, Germany 
Distilled Water Merck Milipore, USA 
DMEM GIBCO, USA 
DMSO Sigma, Germany 
DNA Gel Loading Dye, 6X NEB, USA 
DPBS Sigma, Germany 
EDTA Applichem, Germany 
Ethanol Sigma, Germany 
Ethidium Bromide Sigma, Germany 
Fetal Bovine Serum GIBCO, USA 
HEPES Solution, 1 M Sigma, Germany 
Interleukin-2 Proleukin, Novartis 
Ionomycin from Streptomyces conglobatus Sigma, Germany 
Isopropanol  Sigma, Germany 
LB Broth Sigma, Germany 
L-glutamine, 200 Mm Sigma, Germany 
MEM Vitamin Solution, 100X GIBCO, USA 
MEM Non-essential Amino Acid Solution GIBCO, USA 
2-Mercaptoethanol Sigma, Germany 
Methanol Sigma, Germany 
Monensin Biolegend, USA 
NaCl Sigma, Germany 
(5Z)-7-Oxozeaenol Sigma, Germany 
Penicillin-Streptomycin Sigma, Germany 
PFA Biolegend, USA 
Phorbol 12-myristate 13-acetate (PMA) Sigma, Germany 
PIPES Sigma, Germany 
Poly-L-Lysine Sigma, Germany 
Protamine Sulfate GIBCO, USA 
RPMI-1640 GIBCO, USA 
Saponin Sigma, Germany 
Trizma Sigma, Germany 
Trypsin EDTA GIBCO, USA 



 
82 

 

APPENDIX B: Equipment Used in This Study 

Table BI. Equipment used in this study 

Equipment Company 

Autoclave Hirayama, HiClave HV-110, Japan 
Balance ISOLAB, 302.31.002, Germany 

Centrifuge 

Eppendorf, 5415D, Germany 
Eppendorf, 5702, Germany 
VWR, MegaStar 3.0R, USA 
Beckman Coulter, Allegra X-15R, USA 

CO2 Incubator 
Thermo Fisher, Heracell Vios 160i, USA 
Binger, Germany 

Automated Cell Counter Thermo Fisher, Countess II FL, USA 

Deep freezer 
-80oC, Forma,Thermo ElectronCorp.,USA 
-20oC, Bosch, Turkey 

Electrophoresis Apparatus Biorad Inc., USA 
Filters (0.22 mm and 0.45mm) Merck Millipore, USA 
Fluorescence-activated cell sorting BD Aria Phusion, USA 
Flow cytometer BD LSR Fortessa, USA 
Gel Documentation Biorad, UV-Transilluminator 2000, USA 
Heater Thermomixer Comfort Eppendorf, Germany 
Hemocytometer ISOLAB, Neubauer, 075.03.001, Germany 
Ice Machine Scotsman Inc., AF20, USA 
Incubator Memmert Modell 300, Germany 

Laminar Flow 
Heraeus, HeraSafe HS 12, Germany 
Heraeus, HeraSafe KS, Germany 

LightCycler® 480 Roche, Switzerland 
Liquid Nitrogen Tank Taylor-Wharton, 300RS, USA 
Magnetic Stirrer VELP Scientifica, Italy 

Microliter Pipettes 
Gilson, Pipetman, France 
Thermo Fisher Scientific, USA 

Microscope 
Zeiss, Primo Vert, Germany 
Zeiss Observer Z1, Germany 

Microwave Oven Bosch, Turkey 
pH Meter Mettler Toledo, USA 
Refrigerator Bosch, Turkey 
Shaker Incubator New Brunswick Sci., Innova 4330, USA 

Spectrophotometer 
New Brunswick Sci.,  USA 
NanoDrop 2000, Thermo Fischer Scientific, 
USA 

Thermocycler Eppendorf, Mastercycler, Germany 
Vortex VELP Scientifica, Italy 
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APPENDIX C: DNA Ladder Used in This Study 

 

 

Figure C1. DNA ladder used in this study 
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APPENDIX D: Plasmid Maps  

Figure D1. The vector map of LeGO-iG2puro.CAR3.137-19 

 

 

Figure D2. The vector map of LeGO-iG2puro.CAR3.137 
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Figure D3. The vector map of pS-63.z-IEW 

 

Figure D4. The vector map of pS-63.137.z-IEW 
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Figure D5. The vector map of pS-63.28.z-IEW 

 

 

Figure D6. The vector map of PUC57.CAR.3.137 
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Figure D7. The vector map of LeGO-iG2puro 

 

 
Figure D8. The vector map of LeGO-G2 
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Figure D9. The vector map of pMDLg/pRRE 
 

 
 
Figure D10. The vector map of pRSV-REV 
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Figure D11. The vector map of pCMV-VSV-g 
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APPENDIX E: Sequencing Results  

Figure E1. pS-63.137.z-IEW forward sequencing results 
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Figure E2. pS-63.137.z-IEW reverse sequencing results 
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Figure E3. pS-63.28.z-IEW forward sequencing results 
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Figure E4. pS-63.28.z-IEW reverse sequencing results 
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Figure E5. pS-63.z-IEW forward sequencing results 
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Figure E6. pS-63.z-IEW reverse sequencing results 
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APPENDIX F: Amino acids Letters 

 

 

Figure F1. List of amino acids 
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