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One of the most promising ways to make cement and concrete more sustainable is to blend 

them with the proper supplementary cementitious materials (SCM). This study evaluates 

several schist type materials as partial replacement for ordinary Portland cement (OPC). 

Materials received from several mines in ground powder form were studied by X-ray 

diffraction, thermogravimetry (TGA), and scanning electron microscopy (SEM). According 

to the TGA results, the activation procedures for the candidate SCMs were determined. This 

dissertation includes two main phases. For the first step that is named as calcined clay cement 

(C3), the virgin powders were heat treated in three different decomposition regimes (30%, 



50% and 80% of the total weight losses during thermal decomposition). These regimes 

correspond to the activation level of the potential SCMs due to the de-hydroxylation of the 

clayey minerals within them. Pozzolanic reactivity (pozzolanicity) of untreated as well as 

treated powders were estimated via electrical conductivity measurements in calcium 

hydroxide solution. Blended cement pastes with 30 wt% of OPC substitution with calcined 

overburden clayey materials have developed mechanical properties equal to pure cement 

(100wt% OPC) paste after 28 days of setting time. Two blended cement pastes prepared with 

candidate SCMs were compared to 100% OPC (C) and OPC composite paste with Meta-

Kaolinite (MK) which is regarded as literature standard. For the second phase of project is 

named as limestone calcined clay and carbonate cement (LC4), the same scenario by 

considering the best activation temperature is carried out. The results represent the possibility 

of reactivation of any kind of clay class for the ordinary Portland cement partial substitution 

and obtaining the compressive strength as well as OPC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ÖZET 
 

 

 

İNŞAAT İÇİN YENİ DÜŞÜK MALİYET VE YEŞİL KOMPOZİT BİNDER 
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Çimento ve betonu daha sürdürülebilir hale getirmenin en umut vaad eden      yollarından 

biri, bunları uygun ek çimento materyalleri (SCM) karıştırmaktır. Bu çalışma sıradan 

Portland çimentosu (OPC) için kısmi ikame olarak çeşitli şist tipi malzemeleri 

değerlendirmektedir. Öğütülmüş toz formundaki birkaç mayından alınan malzemeler, X-ışını 

difraksiyonu, termogravimetri (TGA) ve taramalı elektron mikroskobu (SEM) ile 

incelenmiştir. TGA sonuçlarına göre, aday SCM'lerin aktivasyon prosedürleri belirlendi. Bu 

tez iki ana aşamadan oluşmaktadır. Kalsine killi çimento (C3) olarak adlandırılan ilk adım 

için, ham tozları üç farklı ayrışma rejiminde (ısıl ayrışma sırasında toplam ağırlık 

kayıplarının% 30, % 50 ve % 80'i) ısıl işlem görmüştür. Bu rejimler, içlerindeki      killi 



minerallerin hidroksilasyonundan dolayı potansiyel SCM'lerin aktivasyon seviyesine karşılık 

gelir. İşlem görmemiş tozların yanı sıra işlenmemiş tozların puzolanik reaktivitesi 

(puzolanisite), kalsiyum hidroksit çözeltisindeki elektriksel iletkenlik ölçümleri ile tahmin 

edilmiştir. % 30 oranında OPC ikamesi ile kalsine edilmiş aşırı killi killi malzemelerle 

harmanlanmış harmanlanmış çimento pastaları, 28 gün ayar süresinin ardından saf çimento 

(% 100 ağırlıkça OPC) macununa eşit mekanik özellikler geliştirmiştir. Aday SCM'lerle 

hazırlanan iki harçlı çimento macunu, % 100 OPC (C) ve literatür standardı olarak kabul 

edilen Meta-Kaolinit (MK) ile OPC kompozit macun ile karşılaştırıldı. Projenin ikinci 

aşaması ise      kireçtaşı kalsine kil ve karbonat çimentosu (LC4) olarak adlandırılır, aynı 

senaryo en iyi aktivasyon sıcaklığı dikkate alınarak gerçekleştirilir. Sonuçlar, sıradan 

Portland çimentosunun kısmi ikamesi için herhangi bir kil sınıfının yeniden aktifleştirilmesi 

ve OPC'nin yanı sıra basınç dayanımının elde edilme olasılığını temsil eder. 
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CHAPTER 1 
 

 

INTRODUCTION 
 

 

 

1.1 General 
 

Cement is the binder in concrete. Its quality is important for concrete’s strength and 

durability. The strength development is affected by the chemistry and phase distribution in 

cement. According to the World Business Council for Sustainable Development (WBCSD), 

concrete is the most widely used material on earth after water, with nearly 3 tons of annual 

consumption for any man, woman and child [1]. However, this industrial activity comes with 

a heavy environmental burden. More than 5% of world carbon dioxide emission is coming 

from cements industry alone. The manufacture of cement produces about 0.9 pounds of CO2 

for every pound of cement. A major raw material of cement, limestone (CaCO3), is converted 

to lime (CaO) during high temperature reactions of clinker production. Another product of 

this calcination process is CO2 gas.  This greenhouse gas is also emitted during cement 

production by fossil fuel combustion [2, 5]. To mitigate the environmental impact of the 

cement manufacture, there are three major solutions that are proposed. First, considerable 

research has focused on the feasibility of using alternative fuels instead of fossil fuels. This 

method could reduce the overall carbon dioxide emission from cement industries by 18 to 



24% in about 50 years [3]. Another solution by Lothenbach et al. is to perform efficiency 

measurement to reduce the requirement for fossil fuel and consequent emission up to 40% 

[35]. The third proposed method is to replace OPC with alternative materials such as 

activated clay and limestone which can further reduce the carbon dioxide emission by up to 

50% [36].  Replacement of clinker by supplementary cementitious materials (SCMs) such as 

blast furnace slag, fly ash, silica fume, and natural pozzolans is already an industrial practice 

for composite cement blends. The coupled substitution of metakaolin and limestone in OPC 

is currently being investigated [4, 5]. Metakaolin is the heat activated form of kaolinite that 

is reactive in the high pH environment of hydration reactions of OPC. It is found that the 

metakaolin can be substituted in cement up to 35 wt%. This composite paste’s 28 days 

strength achieved 90% of the strength of pure OPC paste [35]. A major problem with current 

SCMs and metakaolin is the availability and price. The existing amounts and forecast 

production of these alternative SCMs cannot compensate the demand from the cement 

manufactures around the world [5,13]. On the other hand, natural pozzolan deposits like 

volcanic ashes or zeolitic tuffs are results of local geology and are available only in certain 

regions of the world [7, 11]. The even geographical distribution and their potential pozzolanic 

properties focused the highlight on calcined clay as an alternative SCM [36]. They need to 

be properly activated under certain conditions Through thermal activation of clay minerals 

in the temperature range of 550 - 950⁰C, it is possible to obtain alumina and silica rich phases 

with partially disordered structures that show pozzolanic reactivity [41]. In this alternative 

approach, energy savings and reduced CO2 emissions are possible due to lowered calcination 

temperatures that are 600-900 C lower than those required for clinkering reactions. In 

addition, there are no CO2 emissions associated with the decarbonation of the virgin materials 

[4]. The pozzolanicity or pozzolanic activity of a candidate substitute depends on amount and 

the type of clayey minerals in the raw material [6]. The activation of clayey minerals for 

hydration reaction is possible through high temperature or mechanical treatment. Most 

studies about calcined clay related the type of clay minerals (mainly Kaolinite, 

Montmorillonite, illite) and their activation temperature to their pozzolanic activity. Those 

studies have shown that kaolinite has the highest pozzolanic activity and lower activation 

temperature followed by montmorillonite and illite [5]. Although the existence of kaolinite 

is common on the earth crust in many places, at the same time, the applicable and 



commercially useable high-grade kaolin deposits are relatively few [10]. That puts a 

limitation on the availability of meta-kaolinite which is obtained by thermal decomposition 

of Kaolinite under controlled conditions in comparison to other SCMs. In general, clays 

rarely occur in nature as pure deposits but rather as mixtures of clays and non-clay minerals 

such as carbonates, feldspars and quartz. Therefore, a potential usage of multicomponent clay 

deposits as pozzolanic materials needs to be investigated. So far, low grade Kaolinitic clay 

deposits have been ignored as potential candidates for cement industries. Therefore, there are 

limited studies on thermal activation and pozzolanic reactivity of low grade kaolinitic clays 

[4, 11].  

The use of disordered aluminosilicates as binder in constructions was practiced in the ancient 

history [23]. Romans have realized that the pozzolans reacted with lime in the presence of 

moisture to form stable cementitious hydrates. Roman cement is a volcanic ash-lime mortar 

that has been regarded as the principal material constituent that provides long-term durability 

to ancient architectural concrete. The Roman wall concrete resist micro-cracking [20]. This 

was believed to be due to the calcium-aluminosilicate hydrate mineral (Stratlingite) that 

reinforced interfacial zones in the concrete matrix [8]. Stratlingite with the chemical formula 

of Ca2Al[(OH)6AlSiO2-3(OH)4-3]•2,5(H2O) is probably the product of reactions between (i) 

belite, aluminates gel, and calcium hydroxide and/or (ii) alite with aluminate gel; and/or (iii) 

CAH10 and C-S-H. Stratlingite is claimed to contribute to the early strength properties of 

Roman concrete [20]. Recent studies [35] revealed that Romans used free lime (CaO) in their 

mortars that was obtained by calcination of limestone at around 900⁰C. The hydration of this 

free lime forms calcium hydroxide with trigonal crystal structure. The core of the reactions 

that lead to Roman mortar is the attack of the strongly alkaline portlandite solution to the 

surface of the scoriaceous (highly vesicular and frothy texture) pozzolan that dissociates 

volcanic glass and silica mineral [36]. The alkali ions dissolved in the liquid phase together 

with calcium and dissolved silicate and aluminate ions formed cementitious hydrates on the 

scoria (vesicular) surface [35]. As such, roman concrete is a mixture of volcanic ash deposit, 

limestone, water and some rocks. However, since volcanic ash is not available all around the 

world there is a need to find alternative reactive silicate sources. Hence, the investigations on 

methods to generate active silicate/aluminosilicates in processes like transformation of 

kaolinite to meta-kaolinite by heat treatment are being conducted. During the heat-treatment, 



the mineral kaolinite (Al2O3⋅2SiO2⋅2H2O) decomposes and water vapor evaporates leaving 

the clay structure. Carefully conducted thermal processes produce a partly amorphous and 

highly reactive aluminosilicate by de-hydroxylation of kaolinite, the so-called meta-kaolinite 

with aluminum hydroxide layers wielding unsaturated bonds. This de-hydroxylation is an 

endothermic reaction which occurs in the temperature range of 450⁰-700⁰C [14, 15] with 

concurrent weight loss.  Similar reactions are expected to happen also in other types of clays. 

This research study evaluates the potential of locally accessible virgin schist materials which 

contain a concussion of different clay types for possible activation like the one of Kaolinite 

for ordinary Portland cement supplement 

 

1.2 Objectives of Study 
 

The aim of this study is to evaluate the schist type materials as a possible potential partial 

substitute for ordinary Portland cement. In order to use calcined schist type materials as 

pozzolana, and promote the new product to the market, it should be determined how and why 

the new mixture could change the cement industry and provide the new generation of green 

composite for constructions. Hence, the following questions can be asked.  

 What is the main factor that activate the calcined schist to form pozzolanic material 

that could react with CH? 

 How is the structural alteration during the calcination process of clay type materials?  

 What is the effect of heat treatment of microstructure of clay minerals?  

 Why the calcined schist material could have the efficiency of metakaolin? 

 How clays with more complex structures than kaolinite can be activated? 

 Why the calcined limestone addition could provide further advantages? 

This study includes the two phases of evaluation of the schist type material as SCMs: 

(i) Calcined Clay Cement (C3) 

(ii) Limestone Calcined Clay and Carbonate Cement (LC4) 

In the first phase, seven different schist type was evaluated for pozzolanic reactivity and 

compressive strength of blended cement that is prepared by calcined form of these powders. 



The second phase of study is associated to the four different sample with almost similar 

chemical composition and the influence of calcined carbonate on their reactivity.  

 

1.3  Materials and Methods 
 

1.3.1 Materials 
 

1.3.1.1 Schist-minerals as possible supplementary cementitious materials (SCMs) 
 

The OPC is the main known binder for concrete. But in order to make it more 

environmentally friendly and cost effective, people started using waste materials from 

different industries such as Limestone, fly ash, ground granulated blast furnace Slag, natural 

pozzolans and calcined clay. The most important common denominator among them is the 

active aluminosilicate sources. The main idea is inferred from the imperial roman concrete 

that is made up of burned limestone and natural lava (reactive aluminosilicate) which is 

mainly amorphous. Due to the limited geographical accessibility of lava, there is a need for 

active materials to compensate the lack of lava everywhere. Hence, in this study, I am 

considering schist-type materials as an alternative SCM source that contain large amounts of 

“activate-able” aluminosilicate phases.  

 

1.3.1.2 Schist-type materials Studied 
 

Schist is the medium grain size metamorphic material which mainly contains mica or talc 

(about 50%). It also includes some portion of clayey phases and quartz as well [3]. The 

metamorphism of schist rock originated from the type of initial source that are sedimentary, 

igneous or metamorphic. So, the schist resources could be classified according to the original 

rock that converted to schist type materials. For instance, the whole region occupied by 

intrusive junctions, chilled edges, contact alteration of porphyritic structure shows the 

originality of metamorphism gneiss from igneous rock. So, these type or resource could 

contain proper amount of aluminosilicate [4-8]. These deposits are commonly found in 



mining debris. In this study, the primary investigation was performed on the samples obtained 

from the different mine quarries to select the proper candidate that contains sufficient sources 

of aluminosilicates. The active mines are corrently being used to supplement the raw feeds 

for cement manufacture. 

To prepare the schist-type materials powder, they are ground with the standard grinding 

procedure for ordinary Portland cement up the average particle size of 25µm. These raw 

powder samples are going to be activated to be used as OPC substitute, perhaps modified by 

some addition.  

 

1.3.1.3 Reference Kaolinite and Carbonate Source 
 

In order to benchmark the applicability of different schist-type samples, Kaolinite was taken 

as a reference sample. The previous studies and literature proved that the activated form of 

Kaolinite (Metakaolin) was a proper supplementary material for OPC replacement. The 

benchmarking Kaolinite powder was provided from Sisecam manufacture as a standard 

sample. Moreover, calcium carbonate (calcite polymorph) is going to be partially used as an 

additive to our raw powders. So, the calcium carbonate was also collected from the Muratbey 

mine quarry that was the existing source of raw materials for cement manufacture.  

 

1.3.1.4 Used Ordinary Portland Cement  
 

The pure cement that was used in this study was the Ordinary Portland Cement (OPC) of 

ENS 197-1 CEM 42.5 R type which was provided by AkcanSA Cement Manufacturer.  

 

 

 

 

 



1.3.2 Methods 
 

1.3.2.1 Chemical phase composition analysis 
 

1.3.2.1.1 X-ray powder diffraction  
 

X-ray diffraction analyses were done on as-received (called “virgin”) and heat-treated 

powders using Bruker D8 Advance (Bruker AXS GmbH, Karlsruhe, Germany) 

diffractometer utilizing Cu-Kα (λ=1.54 Å) radiation. The divergence slit size is fixed and 

was 0.5°. Samples were scanned on a rotating stage between 5 to 90 [°2𝜃𝜃] using a step size 

of 0.02 °2𝜃𝜃 and time per step of 1s. The chemical phase analysis via x-ray diffractogram 

were carried out at initial step to reveal the phase composition of each schist type materials 

in term of existence of aluminosilicate or clayey minerals. Furthermore, it will give some 

information about degree of crystallinity and amorphous content of raw powders. At the 

subsequent stage of study, x-ray diffractograms show the magnitude of decomposition of 

materials in term of calcination by evaluating the decrease in the peak intensities that belong 

to the crystalline clays and carbonate. As the clays lost their crystallinity it was preliminary 

assumed that to they became reactive aluminosilicates (maybe similar to lava). XRD phase 

analyses could be the proper method to determine the amount of different types of clays and 

carbonate for predicting reactivity potential.    

 

1.3.2.1.2 Quantitative Phase Analysis by Rietveld Method  
 

Rietveld analysis was carried out on untreated and treated samples to identify the amount of 

potentially reactive and inert phases. After performing the phase analysis of each schist type 

material, the reference cards for each single chemical phase were taken from the ICSD ver.4.1 

software to obtain the crystallographic information files [14]. Then the TOPAS V.5 was 

utilized to carry out the Rietveld phase analysis [19,22]. To find out the most accurate number 

of chemical phases the crystal structure of them is theoretically modified to achieve the 

suitable goodness of fit (GOF). The range of the GOF for this study experiment was from 1.1 

to 1.3 [78].  



1.3.2.2 Microstructure Evaluation  
 

1.3.2.2.1 Imaging with secondary electrons in a scanning electron microscope (SEM) 
 

SEM analysis of the powder samples were done with the help of JEOL JSM 6010 LV Single-

Beam platform scanning electron microscope (JEOL, Akishima, Tokyo, Japan). Each sample 

in raw and calcined form were investigated in terms of average particle size, morphology, 

and distribution of the particles. The existence of clay sheets can be verified by SEM imaging. 

The de-hydroxylation reactions of clays through heat-treatment is assumed to modify/destroy 

the crystal morphology of clays, as they become amorphous. It could be like the grinding 

mechanism is to make the particle much smaller and finer. Hence, SEM analyses could 

confirm the crystal decomposition. 

 

1.3.2.2.2 Elemental Distribution maps with Energy Dispersive Spectroscopy (EDS) 
 

EDS elemental analysis was done by the EDS system attached to the above mentioned JEOL 

SEM (OXFORD X MAXN-20, High Wycombe, UK) . Virgin and heat-treated powders were 

coated with carbon prior to microscopy and elemental analysis. The EDS spectra illustrated 

the amounts of main elements in composition before and after heat treatment. There are three 

important parameters that can be evaluated by EDS analysis. First, it is possible to compare 

the elemental analysis with phase analysis to confirm the phase amounts in schist-type 

materials. Secondly, to correlate phase composition, minor element content, and Ca/Si ratios 

with morphological features. Moreover, it is applicable to evaluate changes in content, 

amorphization, and Ca/Si ratios after calcination. 

 

1.3.2.3 Thermal Analysis for Determining Activation Process Parameters 
 

Thermal analysis [TG/DTA] (NETZSCH STA 449 JUPITER, Selb, Germany) of the samples 

were done in a temperature range between 30⁰ and 1000⁰C under Nitrogen gas. N2 

atmosphere was chosen in order to eliminate the possibility of oxygen in air reacting with 



components of the samples (e.g. Sulfur). The heating rate was 10 K/min. For every run 50 

mg of virgin sample was used. The thermal decomposition behavior of hydroxyl groups in 

the clay structure were monitored with the help of thermogravimetric analysis (TGA). 

For the first phase of the study in chapter 3, the full temperature range of decomposition 

including the de-hydroxylation reactions of clayey components (400°C to 700°C) and 

decomposition of carbonate (if it existed) (700°C to 900°C) were divided into three regimes 

(Figure 1.1). The first range corresponded to 30% of the total weight loss due to de-

hydroxylation and or calcination. Second and third ranges corresponded to 50% and 80% of 

the total weight loss, respectively. For the decomposition temperature regimes, the range 

from RT to 300 C was purposefully avoided since that range usually contains a weight loss 

due to absorbed moisture. 

 

 

Figure 1.  1 Schematic of the method which used for finding the proper temperatures for 
heat treatment 

 

Based on this parameter the amount of activated clay can be adjusted in different levels. The 

hypothesis is that the success of the replacement of OPC with calcined clay depends on how 

well the clays are activated.  

 

TOTAL WEIGHT LOSS 

 

 

  



1.3.2.4. Activation of schist-type SCMs by heat-treatment  
 

1.3.2.4.1 Virgin and Carbonate-Modified SCM alternatives 
 

For nominal OPC substitution, the 600 g by same mass of virgin schists were heat treated in 

high alumina crucibles. In the second phase of project, the amount of carbonate in schist 

powders were increased to 15 wt% and then 600 g of the mixes were heat treated.  

 

1.3.2.5 Calcination Process  
 

The calcination was performed to the samples, by heating the powders in a box furnace in 

high alumina crucibles with constant heating rate 10 °C/min up to starting point of 

decomposition temperature. Then an isothermal hold was scheduled for them. After this 

pause, the samples were heated to the temperature where the intended activation (i.e. 30, 50, 

or 80 wt% loss occur) was expected. The powder samples remained at this temperature 

isothermally for two hours. Then the most important point was to air-quench the powders on 

the metal desk in order to stabilize the decomposed phases.  

 

1.3.2.6 Pozzolanicity Measurement  
 

The evaluation of the reactivity of candidate materials can be measured through the easy and 

fast method, called Pozzolanicity measurement. Based on this method the variation in 

electrical conductivity could clarify the reactivity of powders [3] Evaluation of the 

pozzolanic activity is based on the measurement of compensated conductivity of a saturated 

calcium hydroxide “Ca (OH)2 (CH) solution [22, 23]. Pozzolanic materials decrease the 

conductivity of the saturated calcium hydroxide solution as they react with the calcium and 

hydroxyl ions in the solution forming C-S-H and precipitating out of solution. The higher is 

the decrease in the conductivity, the stronger pozzolanicity does the material have. The 

experimental details of the method are described in the related literature [20]. Caution has 

been exercised with potential materials containing carbonates as they introduce additional 

complication in the interpretation of the pozzolanicity measurements. The details of these 



complications will be discussed in the discussion section. The results of the electrical 

conductivity measurements were interpreted according to the criteria described in Table 1.  

 

Table 1.  1 Classification of pozzolanicity of materials and var. in conductivity [20] 

 

 

Since the temperature difference of the solutions can influence the electrical conductivity, 

the solution as well as the candidate powders were kept at 40⁰C before mixing. It should be 

assured that the solution must be saturated to have proper amount of calcium and hydroxyl 

ions. It is saturated whenever no more calcium hydroxide can be solved in aqueous solution. 

By putting the active clay, the C-S-H gel will precipitate out and by measuring the pH and 

conductivity for every 20 seconds, the decrease in both parameters can be observed.  

 

1.3.2.7 Evaluation Compressive Strength of Cement Containing Schist-Type SCM 
Alternatives 
 

1.3.2.7.1 Paste Preparation 
 

The cement pastes and blended cement pastes specimens were prepared according to the ENS 

197-1 standard. Based on the determined procedure, to replace the OPC up to 30 wt%, a total 

1000 g of mixture was prepared by mixing 700 g OPC and 300 g SCM. The water to solid 

ratio was assigned to be 0.5, so the 500 ml of tap water is added to the mixture.  

 

Classification of Material

Non-Pozzolanic

Variable Pozzolanicity

Good Pozzolanicity

Evaluation of Pozzolanic Activity by Conductivity Measurement

Variation in Conductivity according to 
proposed method (mS/cm)

Less than 0,4

Between 0,4 and 1,2

Greater than 1,2



1.3.2.7.2 Test Specimen Preparation 
 

Compressive strength measurements were carried out on composite cement pastes samples 

in the shape of 40x40x40 mm cubes. The composite cement pastes were prepared with 30 

wt% cement substitution with calcined schist type materials that were mainly clay based. The 

paste mixture is placed in cube molds for 24 hours and then removed to cure in full moisture 

condition. The compressive strengths were measured on samples hydrated and cured for 2, 

7, 28, 50 and 90 days in water bath at 23⁰C. The specimens were immersed in water bath to 

ensure complete hydration until strength testing. There volume of water must exceed 10 times 

more than total specimen volume. For each hydration duration a set of samples consisting of 

3 prisms of 40 mm x 40 mm x 40mm was used according to the ENS-197-1 standard. 

  

1.3.2.7.3 Compressive Strength Test 
 

The compressive strength measurement is carried out by MATEST C104-04 (Console 

housing the servo-plus evolution, Treviolo, Italy). The three-standard specimen with 4 x 4 x 

4 cm3 dimensions were tested for each setting time to optimize the variation due to the 

possible errors.  

 

1.3.2.7.4 Measure Strength Data Analysis  
 

To minimize the unexpected source of error for compressive strength test, the average 

strength between three specimens was considered as valid results. The error is calculated by 

dividing the standard deviation by the square root of number of measurements (N=3). The 

results were compared to the pure cement paste specimen. Moreover, the results were 

classified according to the calcination temperature and the obtained strength amounts were 

compared with the amount of activation. Since Kaolinite is chosen as reference sample, the 

composite cement pastes from metakaolin blended paste were also prepared to take a role as 

a benchmark. Besides, 70% of pure OPC paste strength was defined as minimum criteria for 

controlling reactivity of replaced SCM. 



 

 

 

 

 

CHAPTER 2 
 

 

LITERATURE REVIEW 
 

 

 

2.1 Cement manufacture CO2 emission  
            

Concrete is widely useable construction material in whole world. The ever-increasing 

demand for concrete caused the increment for cement production and transportation. The 

more production means more energy consumption and green-house gases emission. Cement 

industry as a single manufacture produce approximately 7% of carbon dioxide emission [1]. 

The main carbon dioxide generator to the atmosphere are (i) fossil fuel consumption, (ii) 

deforestation and land usages, and (iii) decomposition of carbonates [2]. The carbon dioxide 

emission from cement production coming from the decomposition of limestone that is the 

main component of clinker. After World War II, the cement production increased by rapidly. 

This amount was about half ton per person [3]. The global cement production is increased by 

3-fold after 1950 and 4-fold after 1990 and simultaneously the fuel consumption [4]. Cement 

industry CO2 emission is based on the two main source. Firstly, the decomposition of main 

clinker component, Limestone, which provide 5% of emission and secondly fuel combustion 

for providing energy and heat that could add a further 60% on top of the process [6]. So, the 



carbon dioxide emission in cement manufacture is coming from direct and indirect sources. 

Direct source is related to the fuel burning in a cement kiln and decomposition of carbonate 

to produce clinker. Clinker consists of heat-treated mixture of limestone, chalk and clay. It is 

scorched at temperature range of 1450 to 1500⁰C. Therefore, environmental sullying and 

earth-wide temperature growing up and natural resources and characteristic energy assets 

will be shrunken every day. Clinker production in kiln divided to three parts: pre-heating, 

furnace and cooler. The produced clinker will be ground and added by gypsum to be packed 

for market [7]. The total delivery of cement is about 25 billion tons yearly worldwide and 

global production is 2.282 billion ton each year [8].  Indirect source of pollution is caused 

due to the usage of energies like electricity for raw material preparation, grinding, and other 

instruments [9]. These days, several studies are seeking for a new method to diminish the 

clinker production and consequently mitigation of carbon dioxide emission. Using alternative 

fuels which are more environmentally friendly and replacing the recycled energy sources for 

cement production are widely investigated in all over the world. Clinker substitution is one 

of the most affordable and applicable approach to reduce the energy and clinker production. 

Supplementary Cementitious Materials (SCMs) give off the role as a cement substitution 

include fly-ash, blast furnace slag, silica fume and other types of natural and manufactured 

pozzolanic materials. Before going more through the SCMs, it would be beneficial to find 

out more about history of binders and ordinary Portland cement in term of constituents and 

hydration process.   

 

2.2 Brief History of Binders 
 

During the early civilization, the construction was built by using heavy rocks and another, 

which friction among the stones keep them firmly beside each other. By passing the time by 

new binders found and utilized [10]. Egyptian have used dried clay bricks while not burned 

and attached with Nile slim. This construction materials are only applicable in dry and warm 

environment since there is no moisture durability with them. Moreover, the blocks in Sakkara 

(2000 years BC) were linker with clay [11, 181-183]. Plaster is also found it ancient Egypt 

as binder. They used the plaster to bind the limestones (calcite) since 3400 BC. Egyptians 



were received the lime mortars innovation almost at 300 BC. Romans and Greeks were 

figured out the application of this mortar perhaps before Egyptians while had no idea about 

gypsum due to more efficiency in humid climate of European countries [10,11]. The lime 

was adopted by Greeks and Romans as a mix of lime and sand. The carefully mixed and 

compacted mortar has high density with no preservation of calcium hydroxide. After then, 

they encounter to the volcanic deposits and their reactivity while mixed with finely ground 

lime and sand. This time the mortar encompasses the higher strength with more durability 

[11]. Greeks brought their volcanic materials from the city of Santorin and Romans tuffs 

were provided from a district of Neapolitan gulf. Due to some experiences, it is found that 

the best materials were coming from Pozzuoli and it is called Pozzolana. It is believed that 

the pozzolana is a kind of sand which include extraordinary properties in natural state. 

Pozzolana were blended with lime and broken fist size rocks to build the constructions [11]. 

Romans are substituted natural pozzolana by porcelain, bricks and ground roofing tiles. Lea 

claims that the name “cement” is initially coming from the same mixture that is known as 

artificial pozzolans [10]. Romans also created the name “hydraulic cement” for the binders 

which incorporated in hydration reaction beneath the water [12]. There are some assumptions 

that claim, the application of artificial pozzolans were found before natural pozzolans. 

According to the investigations for some buildings in Cyprus, usage of hydraulic lime is 

begun since 1200 BC [11]. After Romans the quality of binder is decreased, and they did not 

contain crushed ceramic materials. Binders changed in their quality after fifteenth century. 

There are proofs which show the usage of pozzolanas in England, so the name “mortar” took 

a part in construction industries from the year 1290 [10]. There were some developments in 

mortars modification until 1845 that several experiments established the combination of heat-

treated clay and limestone. Eventually, the Portland Cement is produced in 1872 [10]. 

Ordinary Portland Cement (OPC) is the main binder which is using in concrete. Concrete 

itself is also of great history. Lea classifies the concrete as an artificial conglomerate of gravel 

or broken stone with sand and lime or cement. Hence, it is possible to link the concrete with 

lime binder, not aggregate bind with clay [10]. The most antique concrete which is explored 

is based on lime and found in Israel. Research about this concrete which is used for floor 

surface shows the compressive strength range from 15 to 40 MPa and in one case was even 

60 MPa [13]. Another old concrete was found in Serbia which dated back to 5600-year BC 



and covered the floors in fishermen cabins [14]. Roman times is the epoch of vast concrete 

construction due to the lime mortar production technology including hydraulic lime. But still 

it seems that perhaps the Greeks were the prior consumer of hydraulic binder. They figured 

out that it would be more beneficial to use crushed tiles instead of stone pieces. Romans 

adopted this knowledge and used pozzolan tuff in production of hydraulic lime to build 

Colosseum (at 82 BC), and Pantheon (at 123 BC) [10]. After Romans, the production of good 

lime is happened in middle ages while the OPC entered in construction industry. Many 

scientists worked on cement structure during the later years to find out more about it and 

modify it. But in recent decades the production of clinker is become a significant problem 

due to the ecological footprint and greenhouse gases. Hence, reviving the Romans hydraulic 

binders became a drastic question these days. By considering this fact the durability of the 

construction which is made with Romans binder is more than the modern mortars and 

prepared in lower temperature than today’s ordinary Portland cement.  

 

2.3 Ordinary Portland Cement (OPC) 
 

Cement is a hydraulic powder which forms plastic pasty mass whenever mixes with water. 

In European standards (EN 197-1), the quantity and type of mineral that is used for cement 

preparation adopted as cement classification. The basis of this classification is the (i) The 

strength of paste or mortar after 28 days of setting time, (ii) The rate of strength development, 

after 2 days for all types except 32.5 N cement which 7 days should be considered, and (iii) 

setting time [15]. There are rare differences in term of setting for various standards. Initial 

setting time is in 40 to 90 time slot and final is in 6, 8, 10 or 12 hours [16]. The main properties 

of cement are heat of hydration and resistance to aggressive environment. By normalizing 

the C3A, it is possible to strengthening the cement in front of sulfate attack. Generally, the 

cement should be controlled for three main criterions. First, the volume change must be based 

on Le Chatelier standard. Secondly, the content of MgO may not exceed 5% and thirdly, the 

sulfate content should be in the range of 3.5 to 4% [16]. The MgO limitation is due to the 

expansion which can be caused by periclase. To know more about the cement, there should 

be a review about clinker phases and its production. The raw material that is used for clinker 



production is already mentioned. Figure 2.1 shows the flow diagram of typical cement 

production.  

 

 

 

 

 

 

 

Figure 2.  1 Typical dry process of cement [16] 
 

However, calcination of finely grounded limestone, low degree marl, clay or shale at 1450⁰C 

in rotary kiln prepare the clinker. Clinker is cooling rapidly and mixes with calcium sulfate 

(Gypsum) while grounding to fine powder. The composition of cement in term of average 

oxide constituents is CaO (60-70%), Al2O3 (4-6%), SiO2 (18-22%), and Fe2O3 (2-4%). The 

clinker mainly consists of these phases (almost 95%) and the other 5% includes MgO, Na2O, 

SO3, Mn2O3, K2O, and TiO2 [10]. The four main phases of clinker are [17]: 

• Alite                                        3 CaO. SiO2                (C3S)                              55-65%    

• Belite                                      2 CaO.SiO2                 (C2S)                              15-25% 

• Aluminate (Celite)                  3 CaO.Al2O3               (C3A)                               8-14% 

• Ferrite (Brownmillerite)         4 CaO.Al2O3.Fe2O3     (C4AF)                             8-12% 

When cement powder mixes with water undergoes and changes to stiff binder. The four 

reactive phases of clinker enter to hydration process and provide complex compositions. Each 

of the phases react with water to produce different hydration product. Alite is a silicate phase 

which formerly enter to reaction and play the main role in paste strength during the early 

days (before 28 days). This reaction will produce calcium silicate hydrate (C-S-H) and 

calcium hydroxide (CH) [17]. 



 

𝐶𝐶3𝑆𝑆 + 5.3𝐻𝐻 → 𝐶𝐶1.7𝑆𝑆𝐻𝐻4 + 1.3𝐶𝐶𝐻𝐻                                                                                         (2.1) 

 

Belite is the second silicate in cement composition which reacts with water. Belite is 

responsible for late strength development (after 28 days).  

 

𝐶𝐶2𝑆𝑆 + 4.3𝐻𝐻 →  𝐶𝐶1.7𝑆𝑆𝐻𝐻4 + 0.3𝐶𝐶𝐻𝐻                                                                                        (2.2) 

 

C-S-H is the principal strength provider in Portland cement. The stoichiometry of C-S-H is 

variable due to the different water bounding. The amount of water in C-S-H can be measured 

with H NMR [18]. Aluminate phase in combination with gypsum reacts with water to form 

Ettringite. After gypsum depletion the produced ettringite enter to the reaction with 

remaining aluminate to form mono-sulfoaluminate (MS) as below: 

 

𝐶𝐶3𝐴𝐴 + 3𝐶𝐶$ + 32𝐻𝐻 → 𝐶𝐶3𝐴𝐴. 3𝐶𝐶$. 32𝐻𝐻                                                                                   (2.3) 

2𝐶𝐶3𝐴𝐴 + 𝐶𝐶3𝐴𝐴. 3𝐶𝐶$. 32𝐻𝐻 + 4𝐻𝐻 → 3𝐶𝐶3𝐴𝐴.𝐶𝐶$. 12𝐻𝐻                                                                 (2.4) 

 

Hydration process of ferrite is resembling aluminate. The aluminum source in ettringite and 

mono-sulfoaluminate can be partially substitute by iron [17]. The pure ettringite and mono-

sulfoaluminate provide phases which Al by Fe, and SO4
2- by other ions replaced and will be 

named as AFm and Aft (alumina-ferric oxide, monosulfate & alumina-ferric oxide trisulfate 

respectively) [18]. Clinker contains alkalis that are easily soluble and together with CH phase 

results in high pH pore solution in hydrated paste. Considering the clinker component and 

cement hydration reaction, the classification of cement is shown in Figure 2.2 [19]. 

 



         

Figure 2.2 Classification of cement based on phase composition 
 

Based on the classification diagram, it is possible to select the suitable method to define any 

individual component of required cement. The chemical determination of cement powder is 

associated to insoluble residue and loss of ignition. This relation is applied to classify the 

types of cement as it is shown in Table 2.1 [19]. This classification is linked to the additions. 

The total quantity of additive according to the EN 197-1 standard is around 1% by mass in 

cement composition (except for pigments), and this ratio shall not pass the 0.5% for organic 

additives. It should be noticed that, these additives may not cause any corrosion of 

reinforcement or impair the cement components [20].  



Table 2.  1 Cement chemical composition classification (content of Cr cannot exceed 2 
mg/kg)

 
As it is shown in Table 2.1, according to the global standards, there are five different types 

of cement. The general types are (i) Portland Cement, (ii) Portland-composite Cement, (iii) 

Blastfurnace Cement, (iv) Pozzolanic Cement, and (v) Composite cement [20]. There is also 

another theoretical method to calculate the cement constituent that is called as Bogue 

formulation [21, 22]. 

 

𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑂𝑂2 − 𝑆𝑆𝑆𝑆𝑂𝑂2 (insoluble) when MG < 0.64                                                                          (2.5) 

𝐶𝐶 = 𝐶𝐶𝐶𝐶𝑂𝑂 − 𝐶𝐶𝐶𝐶𝑂𝑂 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) − 0.7 𝑆𝑆𝑂𝑂3 𝐶𝐶3𝑆𝑆 = 4.07𝐶𝐶 − 7.6𝑆𝑆 − 4.48𝐴𝐴 − 2.86𝐹𝐹  

𝐶𝐶3𝑆𝑆 = 4.07𝐶𝐶 − 7.6𝑆𝑆 − 1.43𝐹𝐹 − 6.72𝐴𝐴 𝐶𝐶2𝑆𝑆 = 2.87𝑆𝑆 − 0.75𝐶𝐶3𝑆𝑆  

𝐶𝐶2𝑆𝑆 = 287𝑆𝑆 = 0.75𝐶𝐶3𝑆𝑆 𝐶𝐶4𝐴𝐴𝐹𝐹 = 4.77𝐴𝐴  

𝐶𝐶3𝐴𝐴 = 2.65𝐴𝐴 − 1.69𝐹𝐹 𝐶𝐶2𝐹𝐹 = 1.7𝐹𝐹 − 2.6𝐴𝐴  

𝐶𝐶4𝐴𝐴𝐹𝐹 = 3.04𝐹𝐹  

𝐶𝐶𝐶𝐶𝑆𝑆𝑂𝑂4 = 1.7𝑆𝑆𝑂𝑂3  



The sensitivity of the Bogue method is enough good to make it possible to trace the wrong 

sets may causes by quantity of hemihydrate gypsum. Bonin investigated the stiffness of 

cement paste and concrete and effective reasons [22]. He mentioned the false set about alkali 

carbonation that react with calcium hydroxide and calcium carbonate precipitate. In this 

condition the in existence of moisture the ettringite formation will be changed [22].  

By going beyond the cement constituent, the hydration process of cement is an important 

topic for many studies to find out more. As it is mentioned, when the cement powder 

encounter to the water, virtually all the alkali sulfate from clinker dissolves rapidly. Calcium 

sulfate dissolve until saturation of solution. Among the main clinker phases aluminate is the 

most reactive which this reactivity followed by alite, belite and ferrite. Ferrite is generally 

reactive phase but in hydration process it shows slow reaction [23]. Observing the heat 

evolution in hydration process could be the good indicator to understand cement. Hydration 

is an exothermic reaction and the heat rate evolves is different for first three days and so on. 

Figure 2.3 represent the general shape of heat evolution plot to reveals more fact about 

cement hydration [23].  

 

 

Figure 2. 3 Heat evolution of cement hydration 
 

The graph shows the rapid exothermic reaction at the first stage when water was added to the 

system. The initial stage lasts few minutes and following by induction period as second stage. 



Nucleation of C-S-H begins in this stage and the gel form C-S-H covers the clinker grains. 

The heat of hydration inclines again in third stage while the C-S-H starts to grow, and strength 

develops. Generally, the main characteristics of the heat evolution plot can be described as 

[25]: 

• The initial increment in graph is due to the aluminate and alite hydration and 

hydration of hemi-hydrate gypsum that transfers to dihydrate form (Phase 1).  

• After first stage, the hydration slows down and decreases in few minutes to deposit 

the hydration products on cement grains surface. During induction period, the paste 

is going to sets from the plastic and freely flowing condition (Phase 2). 

• Third stage is the time for gradual rate up of aluminate and alite hydration and belite 

also begins to hydrate (Phase 3). 

• During the declaration period, the total heat of evolution is going to decrease and if 

there is any small subsequent increase, it would be due to the ettringite formation and 

ferrite hydration (Phase 4).   

After few days, the heat evolution rate tails off and the un-hydrated cement components 

become scarcer and block with hydration product. More than heat evolution of cement 

hydration, knowing more about the hydration products could be helpful. First, it should be 

noticed that the concepts of “setting” and “hardening” are different. Setting is a transition 

form of cement from fluid to solid state. So, the terms “initial” and “final” sets are commonly 

used for conventional definition of early and later set. Vicut is the usual test to describe the 

setting stage of cement paste and concrete. Hardening is associated to the strength of pastes. 

The rate of hardening is related to the increment of strength and independent from the setting 

rate [26]. The setting in cement paste happens whenever solid particles in the mixture 

connects by hydration products, mainly ettringite and C-S-H. By passing the time the 

connection between clinker components, hydration products and aggregates are intensified. 

These physical transformations can be more understandable to know more about hydration 

products. It is already talked about the C-S-H is the main product of cement hydration. It 

plays the main role in cement paste and consequently concrete strength. C-S-H or calcium 

silicate hydrate is a gel form or amorphous phase that is prepared from alite and belite 

hydration. In cement powder, the ratio of calcium to silicon is somehow variable but 



commonly 2:1 [17]. The ratio of calcium to silicate is the indicator to control the cement 

quality in term of hydration. This ratio for belite is around 2:1 and 3:1 for alite. The excessive 

amount of Ca causes more production of C-S-H and calcium hydroxide. Calcium hydroxide 

is produced from alite and free lime hydration. It forms a hexagonal platy crystal, 1µm-20µm 

across. Ettringite crystals usually form a cover over the surface of aluminate phases to make 

a barrier for further hydration. This assumption is still controversial among the cement 

experts but well enough to justify the retardation of hydration products [26]. Ettringite is like 

acicular crystal – thin rods a micron or so in length. These crystals normally increase in size 

in the range of 5µm to 10µm in existence of enough water. These needle shaped hydration 

particles play an important role in setting of cement but not enough strong to affect on 

compressive strength of hydrate cement paste. Figure 2.4 shows the hydrated cement paste 

fracture and the products [24]. 

 

                           

Figure 2. 4 Hydrated cement paste fracture (after 2 days), needle shaped Ettringite (e); 
hexagonal plates of calcium hydroxide; calcium silicate hydrate (C-S-H); Left side of 
image includes porosity and numerous capillary pores (up to 5µm); hydration cement 

particles 
 

More than these products, monosulfate forms typically after 1-3 days. Monosulfate is like 

ettringite but structurally different. The ratio of C3A:CaSO4 is about 1:1 whereas in ettringite 



1:3 [27-28]. Further consideration about cement hydration goes through the water 

specification. The most important factor in cement hydration is the water to cement ratios. 

Amount of water that is mixing with water can affect the porosity and permeability and 

consequently compressive strength. Most of the cement paste and concrete has w/c ratio 

between 03 to 0.7 [29]. By increasing the water to cement ratio the porosity of paste fraction 

will increase as well and tend to two main consequents [30].  

• Weakening the paste due to the more porosity 

• Interconnection of pores which makes the paste more permeable 

Figure 2.5 shows the effect of changing in water to cement ratio that alters microstructure of 

the pastes [27].  

 

                

Figure 2. 5 Polished section of hydrated cement paste (after 2 years) for various w/c 
 

In Figure 2.5 the brighter features represent the un-hydrated phases. The darker parts 

illustrate the capillary pores that is for instance almost less than 2-3 µm in 0.33 sample. By 

comparing the lower and higher water to cement ratio (w/c=0.33 vs. 0.6), two features are 



rapidly emerged: higher w/c causes larger capillary pores (up to 10 µm) and so numerous and 

less un-hydrated particles and most of them are ferrite phase. Calcium hydroxide fills part of 

pores and occupied vast areas. Several regions of calcium hydroxide include 50 µm length 

and about 5 µm width. Based on this comparison, for middle cases the porosity and 

proportion of residual un-hydrated cement are intermediate. Imaging of hydrated cement 

paste could represent the altering of features but not enough to have any idea about the 

compressive strength properties. But since there is an assumption about the relation among 

porosity and strength, the compressive strength of 0.33 would be more than the others. 

Moreover, more porous sample means more permeable and less resistance to deleterious 

processes such as frost damage, chloride ingress or sulfate attack [31]. In summary by 

increasing the water to cement ratio some changing would occur as: (i) increasing the porosity 

of cement paste, (ii) increasing the permeability of cement paste, (iii) decrease in compressive 

strength, and (iv) decrease in proportion of un-hydrated cement components [32]. The 

testimonial facts show that the water to cement ratio has the drastic role in cement 

microstructure and phase distribution. By considering the whole information that is found 

until now, it is possible to have general description for cement hydration. Supposing there is 

cement paste prepared by mixing the ordinary Portland cement and water. The hydration as 

a function of time could be define as [33]:  

• T=0: Instant of mixing, water and un-hydrated particles start to react 

• T=a few mins or a few hours: High initial reaction of aluminate and alite. Sulfates 

from gypsum and clinker begin to dissolve and amorphous gel containing alumina, 

lime, sulfate and silicate start to forms. Ettringite needle shape crystals also growing 

up while this set followed by dormant period. This initial setting commonly takes 2 

hours to happen.  

• T=6 to 12 hours: C-S-H forms from the alite hydration and calcium hydroxide with 

large hexagonal crystal reveals. Aluminate hydration will be continued to prepare 

more ettringite. C-S-H dense gel coat the clinker component and delicate sheet 

structure bridging the water-filled gaps between the cement grains. Paste is set but 

still no tangible strength.  

• T=1 to 3 days: almost after one day the whole sulfate phase is used while the 

aluminate hydration is still ongoing and that’s why the change in ratio of sulfate to 



aluminate happens. Hence, the altering from ettringite to mono-sulfate is taking a part 

in hydration process. After few days, the Al to $ ratio is going to change from 2:3 to 

2:1 and the platy crystal of mono-sulfate will form. Ettringite is going to decompose 

and substitute by mono-sulfate while the C-S-H and CH form in water-filled regions 

in the gap of cement grains [34]. This trend became slower through the time that 

means the slower formation of C-S-H. Moreover, alite phase reduces and belite begin 

to participate more in strength development. The Si/Ca ration in C-S-H is almost 0.5 

to 0.6. After four weeks, the hydration follows ever-slowing rate and almost most of 

the hydration products already formed.      

 

2.4. Supplementary Cementing Materials (SCMs) 
 

By combination of ordinary Portland cement and another hydraulic or pozzolanic materials, 

composite cement will be formed. Most of these additives play a tangible role in hydration 

products but some admixtures such as CaCl2 only influence on this process [35]. In general, 

composite cements are the blended cements including ordinary Portland cement and some 

other inorganic and reactive materials that could participate in forming of hydration products 

[36]. These materials are usually considered as extender or mineral additions which are 

known as supplementary cementitious materials (SCMs). They blend with the OPC during 

the production or on construction site. The most common SCMs are [36]: 

• Blast Furnace Slag (or, granulated blast-furnace slag, pelletized slag, gbs) 

• Fly Ash (Pulverized fuel ash, pfa) 

• Limestone 

The additional inorganic minerals commonly incorporate in cement blends for two main 

reasons. First, the economical saving and secondly the tangible improvement of concrete 

mechanical performance like strength and durability [37]. For blended cement or composite 

cement, to avoid the confusion, usually water to solid (w/s) is going to be used instead if 

water to cement (w/c) ratio which means the ratio of water to total cementing materials [38]. 

The application of SCMs is become profoundly significant due to the environmental benefits. 

Some of them like fly ash and slag are byproducts from industrial processes and give the 



technical benefits to composite cement while there are some difficulties to use them [39]. 

These mineral additions are rarely “latently hydraulic” in some cases that means slightly 

reactive in water and could be more in existence of alkaline phases such as lime and cement. 

Slag is main representative of these kind of materials [40]. Other types of SCMs are 

commonly pozzolanic and would not enter to the reaction with water but react with water 

and lime or cement. In existence of proper amount of lime, pozzolanic material enter to the 

pozzolanic reaction and form calcium silicate hydrate [41]. The famous pozzolanic materials 

are fly ash, silica fume, metakaolin (activated Kaolinite or china clay) and volcanic glass 

[42]. The application of bricks and tiles that are crushed fired clay, and volcanic glass are 

discovered in Roman times to be used in Roman mortars. Volcanic glass (e.g. EN196-1) is 

the first pozzolanic material in history and then activated clay came to the construction 

industry [43]. SCMs could boost the concrete strength due to the consumption of calcium 

hydroxide and forming more C-S-H. Also, they intensify the durability of the cement and 

concrete by forming the C-A-S-H. The Si/Ca ratio in slag and low-lime fly ash are higher 

than the OPC. Silica fume and metakaolin contain almost no calcium [35,43]. Inclusion of 

any kind of SCM will provide the excessive source of silica and results in more formation of 

C-S-H comparing to the OPC. In term of porosity and permeability, literally the porosity of 

the blended cement is more than OPC specifically in early days, but permeability of the OPC 

paste is higher than the blended cement [44]. It is still somehow ambiguous that how the 

composite cements have more porosity and lower permeability. The feasible reason is the 

interconnection degree of pores in this paste. Besides, the morphology of C-S-H changes as 

the Si/Ca ratio increases, with the formation of isolated voids [45]. Moreover, fly ash and 

slag contain more aluminum than OPC. This will cause more hydrated products that 

containing aluminum like AFm [46]. AFm phase has contribution in strength but decrease 

the porosity as well. Same as pores, Afm also effects on engrossing dissolved anions, 

specially chloride and will cause reduction in rebar corrosion in concrete [47,48]. Generally, 

mineral addition provides Si/Al more than 1. The glassy fraction is usually among 2:1 and 

3:1. The same ratio in low-lime fly ash is about 1.5:1 but this include alumina bound in 

unreactive crystals such as mullite [49].  

The benefits of mineral addition can be summarized in some sentences [50]. (i) Improvement 

in concrete strength performance, (ii) Using the waste industrial material that causes cost 



reduction, (iii) Volume reduction in materials that ease the transportation, (iv) Reduction in 

depletion rate of raw materials in OPC, (v) SCM production per unit volume in term of energy 

requirement, and (vi) carbon dioxide emission mitigation per unit volume of concrete [45,49]. 

Hence, on of the main concerns in cement industry is to reduce the carbon dioxide emission. 

The CO2 emission is almost between 800-1000 kg ton but there are some efforts to lower it 

[25].  

Beside the benefits of using mineral additions, some potential problems should be noted. 

Using of some additives may mitigate the strength development rate comparing to the OPC. 

Only silica fume and metakaolin could be enough reactive to partially compensate this 

slowing down [51].  Concrete is usually specified for 28 days compressive strength and in 

most cases the composite cement strength is comparing with the OPC paste in this setting 

time [52]. On the other hand, samples are curing in full saturated and ambient temperature 

(typically 20C) that represent the strength in large pours [34, 50]. Moreover, SCMs are going 

to use the calcium hydroxide that is produced during the hydration reaction of cement to 

provide more C-S-H. This will lower the alkalinity of pore fluid as well [53].  

 

2.4.1 Blast Furnace Slag  
 

Blast furnace slag is by-product of iron smelting [46]. The impurities such as silica will be 

gathered by limestone flux and the pure iron ore is the product. By cooling the liquid which 

tapping off and producing latently hydraulic glass, slag will form [47]. This slag is using for 

concrete in large scale and will produce calcium aluminosilicate glass and some other 

crystalline phases like gehlenite (C2AS) and merwinite (CMS2). These crystalline phases are 

usually unreactive and if the cooling of slag occur in slower rate this fraction will be increased 

[47]. There are two main method for rapid cooling:  

The first method for producing the slag is pouring liquid in large volume of water. The 

resulted cooled slag contains 90-98% of glass. Figure 2.6 shows the water manger for rapid 

cool down of slag.    

 



 

Figure 2.  6 Slag production: fast-moving stream of water (left), and molten slag flow into 
the water stream and quenched (right) [54]. 

 

By pouring the liquid slag into the water-cooling rotating drum, the amorphous slag will be 

produced. Figure 2.7 shows the procedure that slag pellets is propelled through the air in a 

chamber of water spray. Pelletized slag contains less glassy phases than granulated slag that 

is approximately 70-90% [54]. 

 

 

Figure 2. 7 Pelletized slag production procedure schematic [54]. 



 

The usual substitution of slag as SCM is in the range of 20-70 wt%, but in some specific 

applications this portion could be higher. There are several benefits of using slag as SCM 

that should be categorized in some main topic [54]: 

• Using slag reduces raw material consumption for OPC production 

• Using slag causes energy reduction for production of SCM  

• Using slag reduce the total carbon dioxide emission   

Focusing on application of slag in more detail, it develops the late strength more than pure 

OPC but reduction in early strength. It also reduces the permeability, improved durability by 

mitigation of alkali-silica reaction and chloride penetration. Moreover, slag will lower the 

heat of hydration and consequently risk of thermally-induced cracking [55]. Replacing the 

OPC with slag will reduce the early strength and boost the late strength. In most mature 

concrete, after a year almost 50-75% of slag is already entered the reaction. This amount is 

associated with w/s, intrinsic reactivity of slag and its fineness. The hydration product of the 

blended cement paste by partial slag substitution resembles OPC while the CH is going to be 

consumed and more C-S-H will form. This C-S-H has higher Si/Ca ratio. Besides, more 

accessible alumina from slag hydration, more sulfate will enter to the AFm phase causes less 

ettringite in system [49-55].   

 

2.4.2. Fly Ash 
 

Fly ash is mainly produced in powerplants (see Figure2.8) by burning pulverized coal and 

accordingly the chemical composition of it is related to the coal minerals.  



 

Figure 2. 8 Powerplant station, source of fly ash [35] 

 

According to the European standard, the fly ash composition is mainly containing high 

proportion of alumina and silica and glass. Table 2.2 represents the typical chemical 

composition of fly ash [56].  

 

Table 2. 2 Low-lime fly ash chemical composition [57] 

 

 

The glassy content of fly ash is almost 70-90% and the rest is allocating to crystalline phases 

like quartz (SiO2) and mullite (aluminosilicate, Al6Si2O13 or Al6Si3O15) with the particle sizes 

ranging from 1µm to 50µm and in some cases up to 100µm [57]. Most of the particles in fly 

ash microstructure are slightly different impure aluminosilicate. Figure 2.9 shows the 

micrograph of the commonly known fly ash.  

 



 

Figure 2. 9 SEM image of fly ash particles [47] 

 

The aluminosilicate particles in fly ash are of broadly resembles each other while some are 

iron-rich and some other silica rich. Also, minor portion of them is rich from oxides like 

titanium dioxide [58].  

The common substitution of OPC with fly ash is 30 wt% of the total cementitious material. 

The technical advantages of fly ash in blended cement is like slag [59]. Fly ash can give 

proper late strength in ambient temperature with less water for workability. Moreover, the 

intrinsic permeability decreases, perhaps due to the increment in Si/Ca of C-S-H [58]. The 

amount of carbon that is accommodated in fly ash can define the water demand of the 

mixture, so the lower carbon content can reduce the water demand. The strength development 

of fly ash in lower than the slag and related to the pore size, it could be somehow less than 

OPC [60]. The unique privilege of the fly ash is efflorescence effect of it that cause the 

reaching of the soluble salts to the surface (especially CH) [59].  

During the hydration, the released silica from fly ash will form C-S-H while the released 

alumina contributes to formation of hydrogarnet (C3AH6) and Stratlingite (C2ASH8) [60]. 

Quartz and mullite are the inert phases of the fly ash that occasionally can be seen in SEM 

micrographs [61-62]. Figure 2.10 compare the composite cement paste by replacing the 

cement with slag and fly ash.  

 



   “  

Figure 2. 10 Left: Concrete particle polished section using 70 wt% OPC and 30 wt% fly ash 

(c: hydrated cement particles, s: silica sand, arrows: fly ash particles). The difference 

among fly ash particles color is associated to their chemical composition in term of iron 

content / Right: Concrete particle polished section using 30 wt% OPC and 70 wt% slag 

(circles: hydrated cement particles, s: sand mainly silica and feldspar, arrow: slag particles); 

the slag particle color is almost same [62]. 

 

 

2.4.3. Silica Fume 
 

Silica fume of micro-silica is by-product of silicon production that is amorphous silicon 

dioxide. The spheres particles with 0.1µm across introduce highly pozzolanic reactivity [63]. 

The surface area of silica fume is higher than the other SCMs that causes higher water 

demand and limits the amount of replacement [64]. The reactivity of silica fume is relatively 

higher than other SCMs and prepare large amount of C-S-H that reduce the porosity of 

concrete. Silica fume is often used for high strength mortars and high surface area mitigate 

the bleeding of concrete [65].  Silica fume is accessible in densified, un-densifies and slurry 

forms and to it is important to disperse it adequately [66]. For binder replacement, densified 

micro-silica is more applicable [67]. The densified silica fume decreases the permeability to 

water and lead to better durability and chloride or sulfate resistance [68]. Furthermore, using 

silica fume will reduce the ASR due to the decrease in pH because of CH consumption to 

form C-S-H [69]. 

 



2.4.4. Limestone  
 

Limestone is the main raw material to produce OPC. But it is also using as a mineral addition 

to cement while it is not pozzolanic or latently hydraulic [70]. Generally, small addition of 

limestone (almost 5%) is using for the cement but as a mineral additive this portion is much 

higher. According to the ENS 197-1, CEM II /A-LL and CEM II/B-LL contains 6-20% and 

21-35% limestone respectively [70-72]. These types of cement are commonly called as 

Portland Limestone Cement (PLC) [72]. The application of PLC has begun in Europe and 

became more widespread during the last decade and take the quarter of cement market in 

north Europe [73]. The main advantages of PLC are (i) Cost of production and consumption, 

(ii) control of shrinkage, (iii) reduction in concrete bleeding and (iv) Mitigation of carbon 

dioxide emission [70]. This specific type of cement may produce by inter-grinding of 

limestone with clinker of mixing it in the mixer. Each of these methods will result on 

limestone particle size and will lead to different characteristic of cement [73]. The co-

grinding of clinker and limestone is typically preferable since limestone is softer than clinker 

and will ensure more finer cement particles [71-73]. Finer limestone has the better filler effect 

that fill the clinker particles gaps and is more reactive in the hydration process. For the 

constant w/c the 28 days strength of PLC is less than OPC, but its durability is more than 

cement [74]. The hydration rate of alite in PLC is increasing and giving more early strength. 

Besides, hemi-carbonate and mono-carbonate will be formed due to the reaction of aluminate 

phase with limestone. Mono and hemi carboaluminate fill the pore spaces and reduce the 

permeability and consequently increase the durability [75]. They may also have some 

contribution in paste strength [72].  

Based on the lower production of slag and fly ash, undesirable transportation problems and 

availability of limestone PLC is highly demanded composite cement. It is also affect on 

lowering the clinker production.    

 

 

 



2.5. Calcined Clay as SCM 
 

2.5.1 Clay Minerals 
 

There is no uniform description for clayey materials due to the different disciplines that study 

about clays. But as a general statement, clay is product of alteration of silicate minerals in 

different deposits [76]. However, there are some definition about the clay but in 1995, 

Association Internationale pour l’Etude des Argiles (AIPEA) and Clay Minerals Society 

(CMS) stated the proper definition about clayey materials. “Clay is a naturally occurring 

material composed primarily of fine-grained minerals, which is generally plastic at 

appropriate water contents and will harden with dried or fired.” [77].  To have more sight 

on this definition, plasticity is the material mechanical characteristic that can shape it in any 

form and fineness considers the particle size less than 2 µm [78]. Nevertheless, the particle 

size is not uniform for any kind of clayey material. Another definition for clays is “Clay 

minerals are phyllosilicates and minerals that impart plasticity to the clay, and which harden 

upon drying or firing.” [77]. This definition represents two different clayey material 

including naturals and synthetic phyllosilicates. Hence, wide range of minerals like quartz, 

calcite, dolomite, feldspars, iron and aluminum oxides, ilmenite, barite, zircon, rutile, iron or 

silica hydroxide gels may associate to clay [76,81,82]. The formation process of the clay is 

the trituration of the rocks due the weathering, transportation and sedimentation in an 

aqueous medium. By erosion of silicon and aluminum rich rock the clayey minerals form 

[83]. The structural difference among the clays depends on the climatic conditions, for 

instance illite and chlorite type clays are typically form in cold or polar condition while 

smectites are more observable in Mediterranean and tropical regions. Kaolinite that contains 

Al-Fe oxides and hydroxide mostly forms in wet tropical and equatorial zones [84]. Some 

other places that clayey material can be found are volcanic deposits, marine sediments, 

geothermal fields and low-grade metamorphic [85]. Most of the clay minerals forms by 

unstable silicates, but the precipitation from solution and lead to new form of clayey minerals 

which are different in composition [84,86]. Moreover, the acidity of the water may exchange 

of protons for cations. For example, Muscovite will change to illite or biotite and chlorite 

will transform to smectite, felspars could destabilized and convert to Kaolinite [84].  



 

4𝐾𝐾[𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆3𝑂𝑂8] + 4𝐻𝐻+  + 2 𝐻𝐻2𝑂𝑂 → 𝐴𝐴𝐴𝐴4[(𝑂𝑂𝐻𝐻)8 − 𝑆𝑆𝑆𝑆4𝑂𝑂10] + 8 𝑆𝑆𝑆𝑆𝑂𝑂2 + 4 𝐾𝐾+                  (2.6) 

(K-Feldspar)                                    (Kaolinite) 

 

Clay minerals on the other hand can form due to the hydrothermal activity which as to relation 

to sedimentation [85-88]. Figure 2.11 illustrates the schematic of primary rocks weathering 

and erosion that will lead to clay formation.  

 

 

Figure 2. 11 Transportation of sediments and erosion of rocks schematic [89] 

 

Clays can be formed due to the residual deposit of soil that will be called as primary clays or 

from secondary sediment source after erosion and transportation from genuine situation. The 

main resource of clay is the places that sedimentary rocks exist, and the erosion could transfer 

the rock to clay. Since water is the primary transporter of the clay, the particle distribution 

and mineral setting is related to the transportation procedure [88]. By continuously altering 

in clay, the diagenesis of unstable clay the new minerals like smectite mixed layered zeolites 

will be formed. Illite/Smectite mixed layer minerals represent the diagenetic evolution of 

sedimentary clay basin [90]. After the diagenesis (cementation) the temperature and pressure 



will be launched as transformation or metamorphizing step. Clay minerals is divided to 

general classification including three main group [85,90]:  

• Kaolin Class including Kaolinite, Dickite, Nacrite, … 

• Smectite Class including Montmorrilonite, Nontronite, Beidellite, …  

• Illite Class including Illite, Glauconite, …        

 

 The foundation of the all classes are similar but they are so different structurally and 

composition. The original units that define the atomic structure of all clayey type materials 

are the tetrahedral sheet of silica and octahedral sheet of alumina [90]. The overall clay crystal 

structure is composed of tetrahedras connected by sharing three corners while the not-

connected corners are in same direction. The tetrahedras include Si-Al cation coordinated by 

four oxygen and hydroxyls [82,90]. The formation of octahedral sheet is closed-packed 

lattice of hexagonal oxygen and hydroxyl that are ordered around aluminum ion. The 

octahedras that re connecting as neighbor are sharing their edge as a pseudo-hexagonal 

symmetry. These layers orientation is along the a, b crystallographic directions [85]. The 

corners of octahedras that are not shared will be occupied by mainly hydroxyl anions or in 

some occasions F- and Cl-. These anions are located close to the pseudo-hexagonal rings 

center that are already formed by the tetrahedras. As it can be seen in figure 2.12 the 

combination of one or two tetrahedral sheet with one octahedral sheet 1:1 or 2:1 clay mineral 

will be formed [78,81-82,90-91].  

 

 



 

Figure 2. 12 The clay mineral tetrahedral and octahedral sheets. Ob and Oa represent basal 
and apical oxygen atoms, OOCT is octahedral anionic position [90] 

 

To be clearer, all clayey type materials are introduced as layered micro structured minerals. 

The sandwich type crystal structure of clay consists of one layer of octahedral alumina and 

tetrahedral silica for simple structure clays like Kaolinite and repetitive layered for more 

complex structure clay like illite and smectite [92-94]. Figure 2.13 simplified the categories 

of clay minerals.  

 

 

Figure 2. 13 Clay mineral structural patterns [87] 



Each of the mentioned three main class of clay have their own specifications. Table 2.3 

represents the different classes mineral characterization.  

 

Table 2. 3 Clay classes mineral characterization [95] 

 

 

As it can be inferred from the given information, kaolinite is a part of 1:1-layer group and 

illite belongs to 2:1-layer group. On the other hand, isomorphous replacement are usual in 

these sheets and in some cases, cations like Mg2+, Fe2+, Fe3+ and Mn2+ can replace the Al3+ 

in layered structure and provide the clay diversity [95].  

Considering the clay as a SCM is promoted in whole world recently. But reactivity of the 

clay is the main issues of several studies. Calcination of clay or in the better word activation 

of clay due to the heat-treatment is the main concern of the investigations about the proper 

activation temperature. Most of the recent studies focused on Kaolinite and the activated form 

of kaolinite that is so-called meta-kaolinite. Kaolinite is the simplest clay structure that could 

release its hydroxyl bonds through the heat-treatment. Hence, it is easy to change the kaolinite 

to meta form and use it as an admixture for cement substitute. However, knowing more detail 

about the kaolinite and destabilized form of it could lead us for further studies about 

activation of various class of clays.  

 



2.5.2 Kaolinite and Meta-Kaolinite  
 

As it is stated, Kaolinite is a 1:1 di-octahedral clay with the formula Al2Si2O5(OH)4. 

Typically, 1:1 building is electrically neutral, the week bonds among the units or Van der 

Waals bonds causes the significant cleavage for Kaolinite [96]. The space group of the 

crystals is P1-triclinic system and rare cases rhombic and trigonal structures can be seen. 

Kaolinite mainly forms from eroded magmatic and metamorphic rocks that contains high 

portion of aluminosilicates like feldspars [97].  

Meta-kaolinite is the product of heat-treatment of kaolinite in temperature range of 700-

900⁰C but usually less than 800⁰C. Moreover, the heating time should be aligned by the 

temperature regime, type of kiln and fineness of particles. More temperature (around 1000⁰C) 

can prepare “flash calcining” [96]. Based on the different experiments the best 

dihydroxylation temperature is around 550⁰C [97]. The kaolinite structure usually includes 

silicate layer connected to the gibbsite layer in a form that one oxygen atom from silica 

tetrahedron shared with gibbsite AlO (OH)2 tetrahedron. During the hydroxylation the 

alumina transforms to tetrahedral coordination [98]. This transformation can be used as proof 

for dihydroxylation of kaolinite. Metakaolin that is the product of partial or totally break 

down of crystal structure is significantly reactive in alkaline solution [99]. Hence, it can be 

used as a partial substitute for OPC [100]. The wide application of the composite that is made 

by metakaolin is for high temperature resistant concretes and hazardous wastes deposits 

construction [101]. Metakaolin is a great pozzolanic reactive mineral and reacts with calcium 

hydroxide to prepare C4AH13 and hydrated gehlenite [102]. The trace of the hydrated phases 

from pozzolanic reaction could be detected by XRD after 3 days [103]. The more advantages 

of metakaolin is related to the consumption of CH and increasing the concrete resistance in 

front of aggressive media as well as sulphate corrosion [104]. Metakaolin is also decrease the 

permeability, chloride ion diffusion and protect the steel bars in term of corrosion [105]. Due 

to the high surface area of the metakaolin (10 to 25 m2/kg), it could modify the rheological 

properties of cement and workability of concrete. Furthermore, the bleeding will be reduced, 

and the surface would be smoother but higher amount of metakaolin may need 

superplasticizer [106]. Hobbs [107] claims that the metakaolin intensify the flexural strength 

of concrete as well as the compressive strength after 28 days. Some studies believe that the 



increment in concrete strength whenever metakaolin is used as SCM could be due to the 

microstructural modification in interfacial transition zone which is the cement and 

metakaolin zone bonding force [109, 110]. 

 

2.6 Clay Reactivity  
 

2.6.1 Calcination of Clay  
 

Some studies estimated the activation temperature of clayey materials and evaluated the 

calcined clay reactivity whenever mixed with lime and cement. Among the clayey material 

the class I has the highest reactivity followed by second class (e.g Ca-montmorillonite) [111]. 

Other calcined clays could be considered as lower pozzolanic materials even if they are 

activated in proper temperature [117]. Sabir [118], Siddique [119] and Fernandez [95] 

confirmed that the kaolin has the highest pozzolanic potential among the other clayey type 

materials. The other investigations showed that the optimum activation temperature is in the 

range of 650 – 850 ⁰C [112-116]. This temperature range is directly associated to the impurity 

of clay and companion minerals [119]. According to formula 2.7, degree of dihydroxylation 

(α) is explained as the remaining kaolinite fraction over the primary amount of kaolinite that 

is measure by TGA or DTA that shows the optimum calcination [120]. 

 

α (degree of dehydroxylation) =  Remaining clay minerals fraction 
Initial amount of clays

                                  (2.7)           

 

Bich [120] investigate the reactivity of calcined clay and lime that are heat treated in nine 

different conditions. It is reported that the best degree of dihydroxylation is almost more than 

95%. Less than this degree the results are influenced by clay crystallinity [121]. The similar 

studies tried various methods to observe the paste behavior in blended cement mortars when 

the cement is substituted by 30 wt.% and it is found that the metakaolin is the best option 

[122]. Besides, the NMR, TGA and X-ray diffraction results confirmed that the consumption 



of CH has the higher rate when metakaolin used [123]. The other studies that are concentrated 

on calcined clay cement are mainly use the clayey materials with high amount of kaolinite 

and in most cases the metakaolin is the main reactive clay and in rare experiments the amount 

of kaolinite is quite low or no kaolinite in composition [122-126]. Fernandez [45] claimed 

that the cement pastes with 30 wt.% of calcined clay with more than 40 wt.% kaolinite 

showed the similar compressive strength to ordinary Portland cement in 7 and 28 days of 

setting time. There are two main methods for calcination that are called static and flash. 

Salvador [126] reported the flash calcination effect on pozzolanic reactivity that revealed that 

the soak calcination decreases the reactivity. Flash calcination of the sample will provide the 

slightly better pozzolanic reactivity of clayey type materials [127, 184-186]. The thermal 

reactivation and methodology will be discussed in next section.   

 

2.6.2 Calcination through Thermal Activation  
 

Calcination process is the main concern in thermal activation of clayey material. The proper 

heating rate and calcination temperature would help to obtain more reactive materials. In 

mots investigations, kaolinite is the case study but still the exact procedure during the phase 

transformation is a question mark among the scientists.  

According to the different studies, there are two known method for calcination of raw 

powders, called static and flash calcination [128]. By considering the kaolinite as a proper 

example, it is possible to compare the heat treatments methods. Static calcination is the 

method to heat treat the material by the constant heating rate (usually 10⁰C/min) up to the 

determined temperature in a formal furnace. Flash calcination is different in term of heating 

rate that is much higher [129-130].  

 In static heat treatment method, the powder will be placed half-filled in high alumina 

crucibles and put it in a batch furnace. The sample will be heated up to the assigned 

temperature and cooled on a metal tray. The temperature is monitoring through the internal 

sensor and in this method the typical variation is about ± 5 ⁰C [129-131].  



In flash calcination method, the temperature control is done in a flash calcination device with 

a single burner when the clayey material particles flow within the tube [132]. The most 

important parameters are the temperature profile including the heating rate, maximum 

temperature and cooling procedure. Flash calcination based on its intrinsic could be 

beneficial or detrimental. If the calcination temperature and rate of flowing could not be 

controllable, the imperfect de-hydroxylation or overburnt may occur [129, 132].  Overheating 

the clays will cause overburnt and sintering of them and phase transformation. For instance, 

the overheating of the kaolinite (more than 900⁰C) transforms the kaolinite to mullite. The 

mullitization of kaolinite is normally starts from 900⁰C and end around 1200⁰C [133]. The 

optimum calcination condition that causes the de-hydroxylation of clay is directly related to 

the type of clay and its mineralogy as well as the existence of impurities. More over the 

particle size and humidity of the powder could affect on its decomposition. Table 2.4 is an 

experimental data for calcined kaolinite (metakaolin) to evaluate the amount of de-

hydroxylated kaolin according to the flash calcination in various temperature.  

 

Table 2. 4 The amount of metakaolin content in different kaolinite sample varied in flash 
calcination temperature (TGA results) [128]. 

 

 

Besides, the x-ray diffraction analysis that is shown in figure 2.14 confirmed the TGA results 

about the de-hydroxylation of kaolinite. This data could not reflect the specification of the 

sintered clay in term of emerging the mullite.  



 

Figure 2. 14 X-ray diffractogram of calcined clay due to flash calcination in different 
temperature. Grey spectrum is a virgin material [128]. 

 

By comparing the static and flash calcination method which is applied in some experiments 

and their results, it can be inferred that the static calcination could be more applicable for 

most of the experimental and specifically industrial scales. The results of the two methods 

are shown in table 2.5. These outcomes include the flash calcination in various temperature 

for kaolinite de-hydroxylation in 2 batch of clay to normalize the obtained results. The 

percentage of the metakaolin is the indicator.  

 

Table 2. 5 Metakaolin content of the calcined kaolinite via different calcination method 
(Flash calcination is done for various temperature) [128] 

 

 

The illustrated results of metakaolin content is obtained from the TGA and checked twice for 

static calcination method. However, based on the other studies [127-133] that tried both 

method of calcination, there is no drastic different among the flash and static calcination 

while the static calcination method is more affordable for lab experiments and industrial 

application as well.   



2.6.2 Thermal Activation 
 

De-hydroxylation of clays in a proper temperature occur due to the structural water removal 

[139]. The well-known de-hydroxylated or calcinated clay is metakaolin which the 

decomposed form of kaolinite. Figure 2.15 shows the dihydroxylation steps of the kaolinite 

due to the releasing of hydroxyl bonds.  

 

 

Figure 2. 15 Kaolinite de-hydroxylation schematic that causes disorder in alumina layer 
[140] 

 

To quantify the atomic coordination in octahedral alumina and tetrahedral silica sheets of 

clay, MAS NMR test should be performed. Figure 2.16 illustrate the Al NMR spectra of 

kaolinite, illite and montmorillonite.  

 



 

Figure 2. 16 The Al-NMR spectra associated to the Kaolinite, Illite and Montmorillonite, 
heat treated in RT, 300 and 800 ⁰C [95] 

 

The NMR spectra for Kaolinite shows Al [VI] while montmorillonite and illite include both 

Al [IV] and [VI] as well. This indicates that in kaolinite there is octahedral position for Al but 

in two others more than octahedral position, a substituting tetrahedral Si is also existing. 

Based on the related studies that utilized NMR test for characterize the calcined clay, four 

coordinated Al (Al [IV] and [V]) are expensing Al [VI] after de-hydroxylation [113,141,142]. 

Montmorillonite is mainly resembling the other type of clays but Al [IV] is vastly dominate 

after heat treatment while there is no tangible trace of Al [V], although it should be inferred 

that the broadness of the Al [IV] peak at the 800⁰C could be representative of this 

coordination [143]. Similarly, illite represents the gradual shift from Al [VI] to Al [IV] and 

clearly OH groups bound to aluminum due to de-hydroxylation. It could beneficial to know 

that montmorillonite and illite are swelling clays and during the de-hydroxylation, they 

typically lose this specification. Hence, it is possible to consider them as a potential substitute 

for concrete binder [144]. 

Recently, some studies [143-144] by using the density functional theory and pair distribution 

function analysis found that the metakaolin structure will be remained in 1:1 layering like 

kaolinite while the alumina sheet locally buckled. This founding is coincide to the Al NMR 



test results but in 4, 5 and 7 coordinated Al, there is small percentage of three-coordinated 

aluminum [144, 145]. 

 

2.7 Limestone Calcined Clay Cement (LC3) 
 

2.7.1 Calcined Clay and Limestone Effect on Hydration 

The de-hydroxylated kaolinite, so called metakaolin and limestone have physical effect on 

cement hydration due to the providing new nucleation sites for permitting hydrate formation 

[35]. Besides, their substitution effects on water to cement ratio that provide more space for 

hydrated product. Due to the presence of the fine SCMs, shearing between the particles 

increases and will cause the boost in hydration. The shearing increment is mainly associated 

with the distance among the particles that consequently enhance the clinker hydration [28, 

146]. More than physical effect, these two additives could chemically modify the hydration. 

It is already discussed that metakaolin as a de-hydroxylated form of kaolinite could enter to 

the pozzolanic reaction and consume the portlandite to form C-A-S-H and Stratlingite 

C2ASH8 [147-149, 189]. This reaction could briefly show as:  

  

𝐴𝐴𝑆𝑆2 + 𝐶𝐶𝐻𝐻 + 6𝐻𝐻 → 𝐶𝐶 − 𝐴𝐴 − 𝑆𝑆 − 𝐻𝐻 + 𝐶𝐶2𝐴𝐴𝑆𝑆𝐻𝐻8                                                                   (2.8) 

 

Limestone additives will help to produce aluminate phase during the hydration. In OPC 

without limestone additive, Ettringite (AFt) is a product of C3A and C$H2 reaction and after 

termination of gypsum, the portion of ettringite will react with remaining C3A to form 

Monosulfoaluminate or Ms [17, 192-195]. By addition of limestone to cement, it will react 

with C3A and will produce carboaluminate hydrates in form of hemi- and mono- phases (Hc 

and Mc) [150, 151]. In addition, ettringite cannot find C3A to convert to Ms anymore [152, 

153]. The chemical reactions in term of limestone presence are as below [152, 154]: 

 



𝐶𝐶3𝐴𝐴 + 0.5 𝐶𝐶𝐶𝐶̅ + 0.5 𝐶𝐶𝐻𝐻 + 11.5 𝐻𝐻 →  𝐶𝐶4𝐴𝐴𝐶𝐶0̅.5𝐻𝐻12                                                                      (2.9) 

 𝐶𝐶3𝐴𝐴 + 𝐶𝐶𝐶𝐶̅ + 11𝐻𝐻 →  𝐶𝐶4𝐴𝐴𝐶𝐶̅𝐻𝐻11                                                                                              (2.10) 

 

During the hydration reactions according to the different investigations [155, 156], only 2 to 

5 % of calcium carbonate enter to the reaction. The aluminate from the Celite is the 

determinative factor and the amount of Hc and Mc is directly related to the C3A content [157] 

and primary Al/$ ratio [151].  

More detail investigations about the metakaolin and limestone addition revealed more 

privileges of them. Using metakaolin as SCM, could reduce the porosity and water absorption 

but most of them offer 10 to 20 wt% of substitution [117, 118]. Even though using calcined 

clay enhances the durability of blended cement, it would boost the sulfate resistant based on 

ASTM C1012-89 [158]. This mitigation in sulfate attack will lower the compressive strength 

loss [159]. Another sulfate attack involving CaCO3 causes Thausmasite (CaSO4-CaCO3-

15H2O) formation. This would be detrimental in temperatures below the 15⁰C and in some 

occasion above 20⁰C [160]. Some experiences [161, 162] tried metakaolin to reduce the 

damage if thausmasite and found the significant effect compare to slag and natural pozzolans 

while the limestone cement shows mass loss and decay in compressive strength after two 

years which is due to the deterioration of C-S-H matrix. It is found that the thaumasite 

resistance is related to change in C-S-H composition (Al enrichment, and lofty C-S-H chain). 

Bellmann and Strack stated that the lower Ca/Si (1.1) ratios for C(-A)-S-H gel is more 

thaumasite resistant than the gels with Ca/Si = 1.7 [162]. 

Another claim [163] is going through the effect of CH in formation of thaumasite and 

stabilization of Ca/Si for C(-A)-S-H [164]. Hence, the metakaolin as SCM could be enough 

beneficial to increase thausmasite resistance [165, 196-197]. Although the metakaolin can 

make the limestone as a positive effect additive but still there is more need to know limestone. 

Figure 2.17 illustrates the thermodynamic modeling of carbonate effect on phase formation 

by assuming the excessive calcium.  

 



 

Figure 2. 17 Computed phase assemblages for C3A-CH system with different SO3 and CO2 
amount [155] 

 

As it is stated before, the carbonate phase reacts with mono-sulfate to prepare Hc and then 

Mc while the sulphate is bound AFt. The requirement of this reaction is existence of enough 

source of Al and Ca and in case of supplying the Ca it would depends on ratios between 

Al2O3, CO2 and SO3. Comparing to sulfate and hydroxide AFm, the carbonate AFm is more 

desirable that is strongly stable and prevent ettringite decomposition after sulfate 

consumption and provide higher compressive strength [61]. Generally, the amount of 

limestone in OPC should coincide to the proper amount of Al that could overcome to carbon 

dioxide to form hemi-carbonate and mono-carbonate, So the excessive source of Al is 

needed. Besides the thermodynamic simulation to determine the proportion of limestone in 

mixture, kinetic and transport constraints of the real system must be evaluated. Limestone 

dissolution proceed more slowly than that of the clinker phases and high pH can further retard 

it [167, 168]. High sulfate content at the initial stage due to the fast dissolution of sulfates 

can be considered as retarder [169]. When the hydration process begins, some factors like 

low water accessibility for dissolution and more available space for ion transportation the 

real amount of required limestone may decrease than calculated one [72-75, 170].    



 

2.7.2 Limestone and Metakaolin in Blended Cement   
 

The most recent technology about blended metakaolin and limestone cement is called 

“Limestone Calcined Clay Cement (LC3)”. As it can be inferred from the name, the 

technology is a combination of calcined kaolinite as a clay and limestone in order to reduce 

the clinker production. Antoni claims that, more than the mentioned previous reactions, 

metakaolin is a proper source of excessive aluminate to reacts with limestone to provide 

carbo-aluminate hydrates based on equation below [171]: 

 

𝐴𝐴 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐴𝐴𝑆𝑆2) + 𝐶𝐶𝐶𝐶̅ + 3 𝐶𝐶𝐻𝐻 + 8 𝐻𝐻 →  𝐶𝐶4𝐴𝐴𝐶𝐶̅𝐻𝐻11                                                                     (2.11) 

 

As it is experienced the best compressive strength for the blended cement is for the calcined 

clay to limestone ratio of 2:1 [172]. According to this assumption, the mix design is defined 

as 45 wt% of clinker replaced by 30 wt% of metakaolin and 15 wt% of limestone. The 5 wt% 

of the mixture is associated to the gypsum and the rest 50 wt% refers to clinker. Figure 2.18 

shows the compressive strength of the blended cement designed mix (LC3-50) comparing the 

ordinary Portland cement.  

 

Figure 2.  18 Comparison of compressive strength among LC3-50 and PC 

 



As it can be seen, from 7 days of setting time onward the composite cement shows the better 

compressive strength than PC and confirm the advantages of substitution of clinker with 

metakaolin and limestone. The porosity of the PC and LC3-50 is measured by Mercury 

Intrusion Porosimetry (MIP) that showed the higher total porosity for the composite cement 

as well as significant refinement of pore connectivity. The common pure metakaolin that is 

the calcined form of kaolinite is three times more expensive than PC [173]. Hence, it is more 

reliable to obtain the results from lower grade calcined kaolinitic clay that could be affordable 

substitute for cement [133, 147, 172, 95]. However, there is no systematic and credential 

study about the effect of calcined clay grade on composite cement strength yet. In next section 

it is tried to launch a new discussion about the lower grade clays in different classes.  

 

2.8 Using More Complex Clay Structure as SCM  
 

Application of low-grade clayey material for cement substitution have not been investigated 

in much studies. Herfort et al. [174] investigated the limestone calcined clay Portland cement 

by focusing on kaolinite class clays and calcite or dolomite as a carbonate source. Moreover, 

this study did not consider the heat treatment temperature as an important factor for 

reactivation of clay. Besides, like Bullerjhan [177] study, the magnesium content of dolomite 

has not been taken into the account. Hebert et al. [175, 176] studies are one of the rare works 

on different types of clayey materials. They evaluated four different clay type powders 

received from Lafarge cement company, with various chemical phase composition as a 

partial substitution of cement and in best case they reached to the 95% of cement strength. 

Two of the samples are with carbonate and the others without carbonate in their composition. 

The clayey materials include Kaolinite, illite, montmorillonite, palygorskite in combination 

with feldspar and mica. The calcination is performed for five hours in a temperature range of 

20 to 900⁰C. This study confirms that more than kaolinite other class of clays could be 

thermally activated to replace the Portland cement. Dupuis [178] claimed the calcining a 

mineral load containing carbonate in order to produce a hydraulic binder. This study is 

concentrated on a new method of calcination setup and did not investigate the significant clay 

type materials. The similar patent work by Meynardi [179] is carried out to find more optimal 



process for hydraulic binder production containing limestone and clay (silica, aluminium and 

iron oxide). The calcination temperature is in a range of 700 to 900⁰C. Another studies [176, 

180] are concentrated on specific type of clay like palygorskite to characterize them for 

possible potential of reactivity [188-191].  

This dissertation is going through the mine overburden schist type materials to evaluate them 

as a possible cement substitution. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

CHAPTER 3 
 

 

CALCINED CLAY CEMENT (C3) 
 

 

 

 

 

3.1. General  
 

In this section, the six different schist type powder with the average particle size of 40 µm 

are evaluated. The raw materials seem to contain proper portion of clayey phases companion 

with some other chemical compound. In following part, the characterization of the sample 

was investigated, and these initial experiments will be pursued by controlling the pozzolanic 

reaction of the treated powders. Furthermore, the results of compressive strength behavior of 

the blended cement paste are represented.  

 

3.2 Evaluation of Raw Materials (Virgin Powders) 
 

In this section the results of the raw material characterization are clarified. The main aim of 

this study is to evaluate the raw schist type powders as a possible pozzolanic reactivity and 

proper candidate for using as a SCM for partial cement substitution. Hence, each of the 



characterization method results are shown in different parts for all the received samples to be 

more comparable.  

  

3.2.1 Chemical Phase Analysis (X-ray Diffraction and Rietveld)  
 

As it is stated before the X-ray diffraction experiments were performed by “Bruker D8 

Advance” device and associated TOPAS software is used for Rietveld refinement analysis. 

It should be mentioned that for avoiding the texture direction dependency the samples were 

rotated at 15 rpm to reduce this source of error during measurements. 

3.2.1.1 Bozalan Schist 
 

The first powder is schist type material that is called Bozalan according to the region the 

mine located. Figure 3.1 is the received powder color.  

 

 

Figure 3. 1 Bozalan Schist Sample (Virgin Powder) 
 

Figure 3.2 shows the x-ray diffractogram of the Bozalan sample. The first glance is taking 

the attention to the biggest peak that is associated to the quartz. In addition, based on the 

phase analysis, calcium aluminosilicate “anorthite” (NaAl3Si3O11) and sodium 

aluminosilicate (NaAl3Si3O11) with base-centered monoclinic structure.  



 

 

Figure 3. 2 Bozalan Virgin Powder X-ray Diffractogram 
 

The proportions of the phases present in the sample are given in the table 3.1. These ratios 

were calculated from the XRD results so that the sum of the crystal phases is 100%. 

 

Table 3.  1 Phase ratios and amorphousness estimation for Bozalan virgin powder 

 

 

As it can be seen in the table, quartz ratio (quartz / noise), quartz particle size, and amorphous 

/ noise (electronic noise) ratios in the sample were also calculated in order to better predict 

whether the sample is stable in high pH cement hydration reactions or not. Amorphous silica 

and aluminate ratios, which do not emerge especially in XRD measurements, may be 

important for the reactivity of the raw material. Table 3.1 also shows these ratios for Bozalan 

Sample Chemical Phase Phase Ratio (wt%) Quartz / Noise Amorphous / Noise

Quartz 52 57.5 1.25

Clay 40 _ _

Carbonate 8 _ _

Others _ _ _

Bozalan



sample. A high amorphous / noise level ratio can be considered as an indication of the 

presence of unstable amorphous silicate in the sample. However, this assumption must also 

be confirmed by the results of thermogravimetric analysis (TGA). The results of this 

experiment are discussed in the section where the results are evaluated together. The 

broadness or thinness of the quartz peak contains information about the crystal size of the 

quartz phase and hence the possible stability in the cement reactions. Typically, particles in 

nanoscale become more reactive and consequently the sample with lower particle size is more 

reactive. It has been claimed in the literature that quartz reacts with other phases of cement, 

albeit slowly, over time. The crystal size of the quartz phase was calculated with the Scherrer 

formula ( 0.97 𝜆𝜆
𝛽𝛽1/2𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

). In this formula, the length λ is the angular half width full maximum level 

of the β1 / 2 peak, and from the 2θ peak angular value of θ can be defined. The quartz crystal 

size calculated by this method is 134 nm for the Bozalan sample. These calculations do not 

give a reliable result for crystal sizes greater than 150 nm due to the mechanical tolerances 

of the devices used in this study. Furthermore, the large quartz / noise ratio indicates that the 

size of these crystals may be even greater. The Scherrer formula is not applicable for over 

150 nm particles and XRD device loses its accuracy. The values above 150 nm should be 

regarded as macroscopic (mass) values. Thus, quartz mineral with large amounts of coarse 

grains may indicate that this sample is not the ideal sample for pozzolanic reactions. 

Moreover, the amorphous / noise ratio is relatively high in the Bozalan sample. This value is 

suspected of having a reactive amorphous matrix, for example volcanic pozzolans. Therefore, 

it will not be reliable for some samples to determine whether the raw materials are suitable 

for pozzolan reactions by just looking at the XRD results. These results should be examined 

together with TGA results.  

So, table 3.1 shows the distribution of the crystal phases in this sample. The table represent 

only the crystal phases. Possible amorphous phases are not present in this sum.  

 

3.2.1.2 Camlica Schist 
 

The second schist type material is called Camlica received from the west of Turkey. Figure 

3.3 illustrate the virgin powder color.  



 

 

Figure 3.  3 Camlica Schist Sample (Virgin Powder) 

 

XRD measurements is carried out in 2θ range from 10 ° to 90 ° for schist samples taken from 

Camlica is given in Figure 3.4. As can be seen, the most dominant phase still is the quartz 

phase. Besides quartz, calcite (CaCO3), non-clay orthorhombic aluminum silicate (Al2 (SiO4) 

O; probably Silimanite), monoclinic sodium-alumino sulfide (Na6Al2S6) and small amount 

of orthorhombic copper-magnesium oxide (Cu2MgO3) phase have been identified.  

 

 

Figure 3. 4 Camlica Virgin Powder X-ray Diffractogram 



The distances of the atomic planes of the clay-based phases, especially in the c-crystal 

direction, are large and these large distances occur at low 2θ values in XRD measurements. 

Therefore, 5 ° - 90 ° 2θ measurements of each sample were also made. Figure 3.5 is the XRD 

spectrum in this range for the Camlica sample. As it can be seen, a peak of typical potassium 

illite clay is present below 10 ° 2θ. 

 

 

Figure 3. 5 The whole 2θ range x-ray diffractogram of Camlica sample 

 

Although there is still a very high portion of quartz in Camlica schist, quartz / noise ratio is 

lower than Bozalan. In addition, there is illite type clay containing silica / alumina at a ratio 

of 2: 1 in Camlica. Since the hydroxide ratios of illitic clays are low, they do not swell a lot. 

Based on the phase distribution in the XRD results, their activation seems to have limited 

capacity. Table 3.2 represent the phase distribution ratios and estimation of amorphousness. 

Table 3.  2 Phase ratios and amorphousness estimation for Camlica virgin powder 

 

Sample Chemical Phase Phase Ratio (wt%) Quartz / Noise Amorphous / Noise

Quartz 40 48.3 1

Clay 15 _ _

Carbonate 14 _ _

Others 31 _ _

Camlica



Since quartz / noise ratio is low, and according to Scherrer’s formula, quartz crystals are 

smaller in this sample (110 nm). It is a more reactive quartz than the previous sample. 

However, the amorphous matrix ratio in this sample is quite low. The calcite ratio in Camlica 

sample is determined as 14 wt%. The crystal cell structure of illite type clay is given in Figure 

3.6. 

 

 

Figure 3. 6 representative picture of illite type potassium clay crystal structure with general 
formula of (K, H3O) (Al, Mg, Fe)2(Si, Al)4 O10[(OH)2, (H2O)] 

 

The two layers of silica seem to be filled with alumino ferrite layer and these three layers are 

filled with potassium ions. 

 

3.2.1.3 Tastepe Schist 
 

Tastepe mine is located within the borders of western part of Turkey. Tastepe sample was 

described as clayey schist that is shown in Figure 3.7. 

 



 

Figure 3.  7 Tastepe Schist Sample (Virgin Powder) 

 

The XRD diffractogram of the Tastepe sample is given in Figure 3.8 below. 

 

 

Figure 3.  8 Tastepe Virgin Powder X-ray Diffractogram 

 

In Tastepe schist, two main phases are significant peaks among other peaks in diffractogram. 

These two are quartz and calcite. Quartz content is as high as 60 wt%. The quartz / noise ratio 

is very high, indicating that the quartz phase is coarse grained. The calculated quartz crystal 

size is 152 nm and is macroscopic. These quartz grains are not believed to be reactive. 

Furthermore, the amorphous matrix ratio in these powders is very low. At first glance, 



Tastepe does not appear to be a suitable sample in term of reactivation. Calcium 

aluminosilicate (anorthite) crystal phase is present in small amounts. Table 3.3 represents the 

chemical phase distribution and amorphousness of Tastepe powder.  

 

Table 3. 3 Phase ratios and amorphousness estimation for Tastepe virgin powder 

 

 

At first glance, due to the lack of clayey type materials it does not look like a sample that can 

be activated. Confirmation of the results with TGA results is required.  

 

3.2.1.4 Kovukdere Schist 
 

Kovukdere schist mine is within the boundaries of Istanbul and is named as a high schist clay 

content. Figure 3.9 shows the color of the virgin schist powder.  

 

Figure 3. 9 Kovukdere Schist Sample (Virgin Powder) 

 

Sample Chemical Phase Phase Ratio (wt%) Quartz / Noise Amorphous / Noise

Quartz 60 65 1

Clay _ _ _

Carbonate 32 _ _

Others 8 _ _

Tastepe



As it can be seen in Figure 3.5, Kovukdere clay contains quartz and calcite, as well as 

kaolinitic class clays (e.g. nacrite), osumilite, rutile and orthosilicates. It is rare to have such 

a high amount of osumilite as in this sample. The spectrum of Kovukdere dust from 5 ° to 90 

° 2θ is shown in Figure 3.10. 

 

 

Figure 3. 10 Kovukdere Virgin Powder X-ray Diffractogram 

 

Considering the x-ray diffraction of Kovukdere schist in range of 5° to 10° 2θ in Figure 3.11, 

there are peaks besides kaolinite like muscovite and clinochlore type clayey structures are 

present.  

 



 

Figure 3.  11 X-ray diffraction of Kovukdere by focusing on 5° to 10° 2θ 

 

Among the samples, Kovukdere seems to be the most proper sample for activation. In the 

schist sample, the phases with or without the potential for pozzolanic reactions such as quartz 

(33%), calcite (33%), kaolinite, muscovite, mica, phlogophite, and osumilite were uniformly 

distributed. Among these, osmilite with hexagonal structure (KMg2Al3 (Si10Al2) O30) does 

not seem to be activated easily. Similarly, the calcium alumino silicate (Ca3Al6Si2O16) phase 

with hexagonal structure may not be activated since it is an orthosilicate. The hydrated state 

of this phase is montmorillonite type clay, but the montmorillonite 2: 1 type is relatively 

difficult to activate. Rutile crystals are another minor phase in Kovukdere schist. Especially 

in microscopic examinations, thin rutile needles are immediately noticeable. 

Table 3.4 represents the phase distribution ratios and estimation about the amorphousness of 

Kovukdere sample.  

 

 

 

 

 



Table 3.  4 Phase ratios and amorphousness estimation for Kovukdere virgin powder 

 

 

The size of quartz crystals in Kovukdere schist is below 100 nm and they have potential to 

be reactive. In addition, the amorphous / noise ratio is the highest schist sample. That is, the 

amorphous matrix of schist can also be reactive in a natural lava-like behavior.  

 

3.2.1.5 Muratbey Schist 
 

The Muratbey schist is a powder extracted from a region close to Kovukdere mine, but from 

a different layer. Looking at the color in Figure 3.12, it can be said that there is a tangible 

amount of iron minerals in this material.  

 

 

Figure 3. 12 Muratbey Schist Sample (Virgin Powder) 

 

Sample Chemical Phase Phase Ratio (wt%) Quartz / Noise Amorphous / Noise

Quartz 26 24 1.5

Clay 54 _ _

Carbonate 16 _ _

Others 4 _ _

Kovukdere



The XRD spectrum of the Muratbey schist sample is given in Figure 3.13. Muratbey schist 

is like Kovukdere sample as phase distribution. Since it contains the phases with higher 

sodium content, it is possible to come from a slightly higher position than Kovukdere.  

 

 

Figure 3. 13 Muratbey Virgin Powder X-ray Diffractogram 

 

As it can be seen from the XRD spectrum in Figure 3.14 that focused on 5° to 10° 2θ, 

Muratbey contains kaolinite and phlogophite (potassium magnesium mica) clay as well as 

sodium bentonite (montmorillonite class).  

 

 

Figure 3.  14 X-ray diffraction of Muratbey by focusing on 5° to 10° 2θ 



 

It should be noticed that Alumino silicates ((Al2 (SiO4) O), Andalusite) are also present in 

small amounts. The crystal structure of Andalusite is shown in Figure 3.15 below. 

 

 

Figure 3. 15 Crystal structure of Andalusite Phase 

 

In addition, osumillite (KMg2Al3 (Si10Al2) O30), sodium-alumino silicate (Na6Al6Si10O32) are 

water-insoluble minerals with cubic structure. Hexagonal (K2Mg5Si12O30) combines with 

water to form phlogophite and thus becomes clayey material. The (Na4Si4S10) phase may 

indicate a rapid cooling process. Looking at the amorphous / noise ratios in the table 3.5, it 

is concluded that the matrix may be amorphous. 

 

Table 3.  5 Phase ratios and amorphousness estimation for Muratbey virgin powder 

 

Sample Chemical Phase Phase Ratio (wt%) Quartz / Noise Amorphous / Noise

Quartz 51 43.3 1.6

Clay 42 _ _

Carbonate _ _ _

Others 7 _ _

Muratbey



 

Quartz crystals are around 100 nm and can have high reactivity with amorphous phase. There 

is also a large amount of clay in the Muratbey sample.  

 

3.2.1.6 Ladik Schist 
 

Our powder sample from north-east of Turkey is the mine extracted schist type material from 

Ladik region. The sample provider claimed Ladik as clayey schist. Figure 3.16 shows the 

virgin Ladik powder appearance.   

 

 

Figure 3. 16 Ladik Schist Sample (Virgin Powder) 

 

Figure 3.17 illustrate the X-ray diffraction of the Ladik virgin powder to identify the phase 

distribution.  

 



 

Figure 3. 17 Ladik Virgin Powder X-ray Diffractogram 

 

The first striking point is the amorphous elevation near the quartz peak. The amount of 

amorphous matrix appears to be low. However, it is a sample with the possibility of glassy 

phase. The main phases are quartz, alumina and andalusite. Based on table 3.6, a low quartz 

/ noise ratio versus a high quartz ratio indicates that quartz crystals may be thin in size (around 

110 nm). Table 3.6 shows the phase distribution and amorphousness of Ladik schist.  

 

Table 3. 6 Phase ratios and amorphousness estimation for Ladik virgin powder 

 

 

 

Sample Chemical Phase Phase Ratio (wt%) Quartz / Noise Amorphous / Noise

Quartz 52 22.9 1.1

Clay 26 _ _

Carbonate _ _ _

Others 22 _ _

Ladik



3.2.1.7 Pure Kaolinite (Benchmark Sample) 
 

The raw material samples containing 6 schist type powder are received from mine quarries 

inside the Turkey and the kaolinite powder obtained from “Siscam Maden” were evaluated 

for phase distributions, microstructures and similar behaviors to hydraulic cement without 

any treatment. It is known that the powder sample sent by Sisecam contains only kaolinite 

type clay and quartz as its chemical composition. Kaolinite is a benchmark sample in this 

study. According to the literatures, it is known that kaolinite is used as supplementary 

cementitious materials (SCM) after some heat treatments and thus provide the advantages of 

pozzolanic reactions to cement blends. Figure 3.18 shows the kaolinite powder that is 

received as standard kaolinite from Sisecam. 

 

 

Figure 3.  18 Kaolinite Powder Sample (Virgin Powder) 

 

The x-ray diffractogram of the kaolinite powder sent by Şişecam and used as control samples 

are shown in Figure 3.19. As it can be seen, it consists of kaolinite phase and quartz. 

 



 

Figure 3.  19 Kaolinite Virgin Powder X-ray Diffractogram 

 

More than quartz and kaolinite, a small amount of sodium alumino-silicate phase 

(Carnegieite) may also be present. The phase distribution and amorphous ratio represented 

in Table 3.7. 

 

Table 3. 7 Phase ratios and amorphousness estimation for Kaolinite virgin powder 

 

 

Phase distribution measurements of all schist samples based on the x-ray results are given in 

Table 3.8. Again, looking only at this data, the Kovukdere, Camlica and Muratbey schists 

seem to be more promising. However, these results should be supported by TGA and 

conductivity measurements. 

Sample Chemical Phase Phase Ratio (wt%) Quartz / Noise Amorphous / Noise

Quartz 44 _ _

Clay 56 _ _

Carbonate _ _ _

Others _ _ _

Kaolinite 



 

Table 3. 8 Phase distribution of all samples 

 

 

The chemical compositions measured by XRF (X-ray Fluorescence) for the six samples are 

given in Table 3.9. As it can be seen from the table, the samples are schist type materials. 

Especially in Kovukdere, Tastepe and Camlica samples, there is a large amount of calcium. 

This is a preliminary notification that the powders will certainly contain calcium-containing 

minerals as well as clay. Since the expected silica / aluminum ratio in clay minerals is 1-2.2, 

the amount of silica above it may also indicate quartz. In this way, only Kovukdere stands 

out. However, other analyzes will be useful to reveal the potential in other samples. 

 

 

Schist (Clay) Sample Name Chemical Phase Distribution 

Kaolinite
Quartz (SiO2)                                                                                         
Kaolinite (Al2Si2O5(OH)4)                                                                                      
Sodium Alumino-silicate (Carnegieite) (NaAlSiO4)

Bozalan
Quartz (SiO2)                                                                                                
Anorthite (CaAl2Si2O8)                                                                                        
Sodium Alumino-silicate 

Camlica 

Quartz (SiO2)                                                                              
Calcite (CaCO3)                                                                          
Alumino-Silicate (Silimanite)(Al2(SiO)4O)                                                
Sodium Alumino-Sulfide (Na6Al2S6)                                                         
K-Al-Mg Silicate Hydroxide [K (Mg, Al)2.04 (Si3.34Al0.66)O10(OH)2]

Kovukdere

Quartz (SiO2)                                                                              
Calcite (CaCO3)                                                                            
Kaolinite (Al2Si2O5(OH)4)                                                                
Nacrite (Al2Si2O5(OH)4)                                                                   
Rutile (TiO2)                                                                                  
Phlogopite [K Mg3 (Si3Al) O10 (OH)2]                                                              
Al-Mg Silicate Hydrate [(Si2.86Al1.14) (Al2.98Mg1.95) O10 (OH)8]    
Muscovite [KAl3Si3O10(OH)2] 

Muratbey

Quartz (SiO2)                                                                                         
Kaolinite (Al2Si2O5(OH)4)                                                       
Alumino-Silicate (Silimanite)(Al2(SiO)4O)                                  
Phlogopite [KMg3(Si3Al) O10 (OH)2]                                    
Osumilite [KMg2Al3(Si10Al2)O30]                                                     
Na-Al-Silicate Hydrate [Na6Al6Si10O3 (OH)2]

Tastepe 
Quartz (SiO2)                                                                              
Calcite (CaCO3)  

Ladik
Quartz (SiO2)                                                                                   
Aluminium Silicate (Al2SiO5)                                                               
Aluminum Oxide (Al2O3)



Table 3. 9 XRF analysis results for all schist samples 

 

 

A series of further tests have been planned to determine the suitability of the raw material 

samples for pozzolanic reactions. The first of these is the mass loss due to heating. According 

to XRD results, the phases to be lost in the samples are clay origin and carbonate origin 

phases. The phases of clay origin lose hydroxyl groups and water on them. Carbonates 

decompose and lose carbon dioxide. Calcite-derived carbonates start to decompose above 

about 700-800 ° C. Clays lose hydroxyl ions by decomposition between 450 ° C and 800 ° 

C. Thermogravimetric measurements and mass losses below 800 ° C will give us preliminary 

information about the activation potential in our soil samples. Analysis of the carbonate 

phases decomposed at higher temperatures will also make the information already available 

for further work on the study.  

The second planned test is to measure the resistivity of schist type materials in saturated 

calcium hydroxide solution. Materials reacting with calcium hydroxide reduce the 

conductivity of the saturated calcium hydroxide solution. 

 

3.2.2 Thermogravimetric Analysis (TGA)  
 

DTA / TG thermal analyzes of raw material powders were carried out by heating samples up 

to 1000 ° C under nitrogen gas at 10 ° C / min. According to the reviews in the literature, 

kaolinite will change to metakaolin under a suitable heat treatment. Activated kaolinite also 

Sample Name SiO2 (%) Al2O3 (%) Fe2O3 (%) CaO (%) MgO (%) SO3 (%) Cl (%) Na2O (%) K2O (%) AZ (975C) Total (%)

Muratbey 52.77 14.5 6.68 6.67 2.49 1.44 0.0409 0.69 2.66 11.13 99.34

Kovukdere 34.65 12.8 10.58 15.41 3.53 0.62 0.0301 1.85 1.03 18.43 98.93

Tastepe 56.7 7.08 4.43 14.34 1.93 0.86 0.0177 0.54 0.98 13.11 99.99

Bozalan 64.1 11.13 4.37 6.83 1.79 0.21 0.0285 1 2.36 8.16 99.98

Camlica 56.2 9.93 4.36 13.12 0.56 0.34 0.0285 0.6 1.83 12.13 99.1

Ladik 6.94 15.72 7.13 1.41 3.05 0.79 0.319 1.6 2.18 6.83 99.86



reacts as pozzolanic material during cement hydration and triggers the formation of CSH and 

CASH. The conversion of kaolinite to metakaolin takes place by the separation of hydroxyl 

ions in the crystal structure. In the meantime, the Al-O bonds are loosened, causing the 

metakaolin to react more easily. 

While leaving the crystal structure, hydroxyl ions should not be exposed to excess heat. 

Therefore, the heat treatment temperatures and times are critical. Hence, mass losses between 

450 ° - 850 ° C contain important clues. It was tested with the help of six samples and control 

samples in this study. Approximately 50-60 mg of each sample was subjected to 

thermogravimetric analysis. 

Below are the results of these experiments. The results were then used to determine the 

temperature ranges at which activation procedure will be done. In the case of mass losses, 

the evaporation of the adsorbed water at the first 200ºC was not considered. 

 

3.2.2.1 Bozalan Schist 
 

The thermal analysis spectrum of Bozalan schist in term of decomposition temperature range 

and mass loss is given in Figure 3.20. 

 

Figure 3. 20 Thermogravimetric Analysis of Bozalan schist (Virgin Powder) 
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Decomposition in the Bozalan schist starts at 400⁰C and ends at around 775⁰C. A total mass 

loss of 5.33% was observed in this temperature range. When looking at the XRD spectrum, 

there is no decomposition phase at low temperatures in the Bozalan sample. The Bozalan 

sample does not give the impression of a very promising sample. 

 

3.2.2.2 Camlica Schist 
 

The thermogravimetric measurement result of 50 mg Camlica sample is given in Figure 3.21. 

The total mass loss in the temperature range 600 ° C - 820 ° C is about 10.2%. This sample 

shows more signs of decomposition at lower temperatures than the Bozalan sample. 

 

 

Figure 3. 21 Thermogravimetric Analysis of Camlica schist (Virgin Powder) 

 

XRD results showed that there was some clayey phase (e.g. K-illite / muscovite) in Camlica 

schist. Since the decomposition temperature starts around 600⁰C, Camlica could be a 

potential powder in term of reactivity. Alumino silicate phases in Camlica schist may also be 

useful for pozzolanic reactions. The actual results will be confirmed by the compressive 

strengths of blended cement paste. 
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3.2.2.3 Tastep Schist 
 

Thermal analysis results of Tastepe sample are given in Figure 3.22. There is a mass loss 

starting at 450⁰C and ending at around 875⁰C. Camlica-like mass loss rate is about 11.25%. 

According to XRD results, there is no crystallized clayey phase in Tastepe sample which 

causes 10% mass loss at such low temperatures. 

 

 

Figure 3.  22 Thermogravimetric Analysis of Tastepe schist (Virgin Powder) 

 

The only phase to be decomposed in the Tastepe sample is calcite. Calcite loses 44% of its 

mass to CO2 with thermal decomposition. The original Tastepe powder contains about 30% 

calcite. In this case, a mass loss of approximately 12% can be expected during decomposition. 

Decay in this phase is expected above 840 ° C. Calcite's decomposability at such low 

temperatures is also an important finding. 

 

3.2.2.4 Kovukdere Schist 
 

Thermal analysis results of Kovukdere powder, the most promising powder sample, are given 

in Figure 3.23. 
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Figure 3. 23 Thermogravimetric Analysis of Kovukdere schist (Virgin Powder) 

 

Kovukdere schist is decomposed between 450⁰C and 870⁰C. Looking at the results of 

Tastepe, it can be assumed that some of this decomposition is due to calcite. Total mass loss 

is around 16.25%. XRD and TGA results still suggest that Kovukdere is the most promising 

sample. 

 

3.2.2.5 Muratbey Schist 
 

TGA results of Muratbey sample are given in Figure 3.24. 

 

 

Figure 3.  24 Thermogravimetric Analysis of Muratbey schist (Virgin Powder) 
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Muratbey schist, which is structurally like the Kovukdere in term of phase distribution, starts 

to decompose earlier than Kovukdere sample. Decomposition temperature range is between 

450⁰C- 800-C. The difference of Muratbey powder was the presence of sodium-based clay 

structures according to XRD results. Muratbey shows a mass loss of approximately 9.43%. 

All this mass loss can be assumed to come from clay-based materials. XRD results for 

Muratbey schist did not detect calcite phase. However, a small amount of calcium-rich phase 

is present in the SEM results.  

 

3.2.2.6 Ladik Schist 
 

One of the samples with the least mass loss is Ladik. TGA results of Ladik powder are given 

in Figure 3.25. As it can be seen, the total mass loss is only 2.63%. This mass loss occurs in 

the temperature range of 400⁰C to 700⁰C. Ladik stands out at first glance as a difficult to 

activate sample. 

 

 

Figure 3.  25 Thermogravimetric Analysis of Ladik schist (Virgin Powder) 

 

3.2.2.7 Kaolinite 
 

The mass loss curve of our control sample kaolin is shown in Figure 3.26. 
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Figure 3. 26 Thermogravimetric Analysis of Kaolinite (Virgin Powder) 

 

In this sample, only the kaolinite and quartz phases are present in high amounts and it can be 

assumed that the mass loss belongs to the hydroxyl ions released during the de-hydroxylation 

of the kaolinite. The total mass loss is 7.55% and is between 400⁰C and 700⁰C. 

The mass loss measurements obtained from all samples are summarized in Table 3.10. By 

observing the results, it could be inferred that the most promising sample seems to be 

Kovukdere schist.  

 

Table 3. 10 TGA results of all samples according to their mass loss (ML) 
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Sample Name MS Starting Temperature (⁰C) MS Ending Temperature (⁰C) Mass Loss (%)

Bozalan 400 775 5.33

Camlica 600 820 10.2

Tastepe 450 875 11.25

Kovukdere 450 870 16.25

Muratbey 450 800 9.43

Ladik 400 700 2.63

Kaolinite 400 710 7.55



In general, Kovukdere, Camlica, Muratbey and Tastepe samples showed significant mass 

losses. Among these samples, the mass loss of Tastepe is thought to be of calcite origin. In 

the sections where the results are evaluated, more detailed information about this mass loss 

will be given. 

 

3.2.3 Electrical Conductivity Measurement (Pozzolanicity) 
 

The desire to incorporate activated silica sources into cement hydration reactions has graced 

the dreams of engineers working on this issue since the Romans [190-195]. In pozzolanic 

reaction, silicic acid reacts with calcium hydroxide to form the calcium silicate hydrate (CSH) 

phase, the main strength provider hydrated phase of cement.  

 

𝐶𝐶𝐶𝐶(𝑂𝑂𝐻𝐻)2  + 𝐻𝐻4𝑆𝑆𝑆𝑆𝑂𝑂4  →  𝐶𝐶𝐶𝐶𝐻𝐻2𝑆𝑆𝑆𝑆𝑂𝑂4. 2𝐻𝐻2𝑂𝑂                                                                               (3.1) 

 

Thus, a quick way to measure the pozzolanic reactivity of the silica phase is to measure the 

electrical conductivity in the saturated calcium hydroxide solution. Since pozzolanic 

reactions bind dissolved calcium hydroxide Ca (OH) 2 ions, the conductivity of the solution 

decreases with the reaction time [142]. Thus, by measuring the electrical conductivity of the 

solution, it is possible to obtain information about the reactivity of the silica source thrown 

into the solution. 

The method is as follows in the literature [191]: 

The following are needed with Ca (OH) 2 saturated solution. 

• 300- or 400-mL Polyethylene bottle 

• Multi-meter 

• 200 mL of saturated Ca (OH) 2 solution at 40 ± 1⁰C 

• 5.00 gr dry sample (oven-dried at 105 ± 1⁰C). 



• pH meter 

• Heater 

• 2 gold electrodes 

Saturated calcium hydroxide solution preparation has been described in the literature [191]. 

To prepare 200 mL Ca (OH) 2 saturated solution (Lime-Water Solution): 

• Place 0.35 g of calcium hydroxide in a clean 300 ml beaker (“Limewater is a saturated 

solution. This means there will be some insoluble extra chemical (eg Ca (OH) 2). If the 

teaspoon, gallon jar or a smaller container is used, it will result in a fully saturated solution.”) 

• Fill the beaker with DI water. 

• Shake well for 1-2 minutes, and then leave in a quiet place to settle for 24 hours. 

• strain the clear liquid from the beaker without rinsing with filter paper or coffee filter. 

• repeat the filtration process until you obtain a clear liquid and store it in a cool place. 

The beaker lid should be closed. If carbon dioxide is dissolved in lime, calcium carbonate 

forms as a white fine precipitate and blurs the liquid. Then this solution is useless. Figure 

3.27 schematically describes conductivity and pH measurements. 



 

Figure 3. 27 schematic of conductivity measuring device (Pozzolanicity) 

 

In this method, the change in conductivity is proportional to the reactivity of the material. 

The lower the conductivity, the more reactive the material. Luxan [191] used the following 

table 3.11 as a key for pozzolanic activity criteria. That is, if the conductivity variation is less 

than 0.4 mS / cm in the first 120 seconds after mixing the product with saturated calcium 

hydroxide solution, the product is not pozzolanic. If it is in the range of 0.4 to 1.2 mS / cm, 

then classified as variable pozzolanic. If the conductivity variation be more than 1.2 mS / cm, 

the product is a material that undergoes strong pozzolanic reactions in the first 120 seconds.  

Table 3.  11 Pozzolanicity (conductivity variation) criteria classification [191]. 

 

Classification of Material
Variation in Conductivity according to 

proposed method (mS/cm)

Non Pozzolanic Less than 0.4

Variable Pozzolanicity Between 0.4 and 1.2

Good Pozzolanicity Greater than 1.2



Based on the method described above, seven samples were first tested without any treatment 

in virgin form. The powder samples were heated in the oven at 40 ° C before being added to 

the saturated calcium hydroxide solution and then added to the solution at 40 ° C. In this way, 

variation in conductivity that may result from temperature changes are minimized. The 

experimental design in our laboratory is as shown in Figure 3.28. The temperature of the 

solution was checked regularly and kept at 40ºC. 

 

 

Figure 3. 28 Pozzolanicity measurement setup 

 

In order to calculate the errors caused by the change of the temperature of the calcium 

hydroxide solution, it is examined that how the temperature change from room temperature 

to 40 ° C affects the conductivity of the calcium hydroxide solution. These measurements 

were repeated six times, and the results are shown in Table 3.12. Between 23⁰C and 40ºC, 

the conductivity variation increases by 0.58 mS / cm. Table 3.13 also shows the pH and 

conductivity variations. As it can be seen, keeping the temperature under control is important 

for the accuracy of the measurements. 

 



Table 3. 12 PH and conductivity variation of calcium hydroxide solution in the range of 
(23-40⁰C) 

 

 

 

 

 

Time (min) pH Temp (⁰C) Conductivity (mS/cm)
0 12.36 23 4.47
5 12.23 25 4.74

10 12.19 28 4.81
15 12.12 30 4.89
20 11.91 33 4.92
25 11.73 35 4.97
30 11.31 38 4.98 Variation (M1)
35 11.14 40 4.99 0,52 mS/cm

Time (min) pH Temp (⁰C) Conductivity (mS/cm)
0 12.22 23 4.4
5 12.06 25 4.64

10 11.76 28 4.69
15 11.57 30 4.85
20 11.41 33 4.91
25 11.28 35 4.96
30 11.14 38 4.98 Variation (M2)
35 11.06 40 5.01 0,61 mS/cm

Time (min) pH Temp (⁰C) Conductivity (mS/cm)
0 12.3 23 4.51
5 12.04 25 4.63

10 11.94 28 4.79
15 11.73 30 4.85
20 11.31 33 4.9
25 11.22 35 4.93
30 11.19 38 4.99 Variation (M3)
35 11.16 40 5.04 0,53 mS/cm

Time (min) pH Temp (⁰C) Conductivity (mS/cm)
0 12.21 23 4.39
5 12.15 25 4.48

10 11.98 28 4.54
15 11.85 30 4.68
20 11.61 33 4.76
25 11.46 35 4.89
30 11.22 38 4.96 Variation (M4)
35 11.12 40 4.99 0,6 mS/cm

Time (min) pH Temp (⁰C) Conductivity (mS/cm)
0 12.31 23 4.52
5 12.18 25 4.59

10 11.89 28 4.67
15 11.76 30 4.73
20 11.53 33 4.81
25 11.41 35 4.89
30 11.34 38 4.92 Variation (M5)
35 11.17 40 5.08 0,56 mS/cm

Time (min) pH Temp (⁰C) Conductivity (mS/cm)
0 12.26 23 4.42
5 12.1 25 4.51

10 11.81 28 4.6
15 11.62 30 4.67
20 11.47 33 4.76
25 11.31 35 4.85
30 11.1 38 4.91 Variation (M6)
35 10.93 40 4.96 0,54 mS/cm

M1

M2

M3

M4

M5

M6



Table 3. 13 pH / Conductivity variability of saturated calcium hydroxide solution (23-40⁰C) 

 

 

These values are plotted in Figure 3.29 to evaluate the medium amount of solution 

conductivity.  

 

 

Figure 3. 29 Calcium hydroxide saturated solution conductivity variation through different 
measurements 

 

The following results represent the conductivity measurements of seven different samples to 

measure their reactivity before any thermal treatment. 

 

 

Measurment Var in Conductivity (mS/cm) Var in pH

M1 0.52 1.22
M2 0.61 1.16
M3 0.53 1.14
M4 0.6 1.09
M5 0.56 1.14
M6 0.54 1.33

y = 0.0006x + 0.558
R² = 0.0008
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3.2.3.1 Bozalan Schist 
 

The following are the conductivity variation values of the solution in 120 seconds by addition 

of 5 g of powder into the saturated calcium hydroxide solution after heating in an oven at 

40⁰C. At this time the solution was maintained at 40⁰C and stirred continuously. 

Measurements were taken twice. Table 3.14 shows the variation in conductivity and the mass 

losses obtained from TGA. As it can be seen, the conductivity variation remained at 0.56 mS 

/ cm for Bozalan sample. This result is proportional to the limited (3.5%) mass loss of the 

Bozalan sample and shows low pozzolanic reactivity. These samples have not yet been 

activated. Therefore, the reasons for the change in conductivity should be sought in other 

sources, not in the activation of clays. These values are important as a basis. 

 

Table 3. 14 Virgin Bozalan schist conductivity measurements (Pozzolanic Reactivity) 

 

 

Figure 3.30 illustrate the conductivity variation for Bozalan due to the two measurements for 

more accuracy.  

 

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.83 108.53 5.11

20 40 11.71 112.46 4.94
40 40 11.63 115.02 4.83
60 40 11.59 116.95 4.75
80 40 11.53 118.46 4.69

100 40 11.47 120.29 4.62
120 40 11.42 121.83 4.56 VAR:      0.55

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.9 108.94 5.09

20 40 11.78 112.23 4.95
40 40 11.64 116.46 4.77
60 40 11.57 119.99 4.63
80 40 11.51 121.03 4.59

100 40 11.49 122.21 4.54
120 40 11.45 123.18 4.51 VAR:      0.58  

Material Temp. Range (⁰C) WL Start Point Temp. (⁰C) WL End Point Temp. (⁰C) WL (%)
BOZALAN 25 to 1000 600.23 800.84 3.42

BOZALAN



 

Figure 3. 30 Virgin Bozalan pozzolanicity measurements (two measurements are carried 
out for more accuracy) 

 

3.2.3.2 Camlica Schist 
 

Measurements and mass loss for the Camlica sample are shown in Table 3.15.  

 

Table 3. 15 Virgin Camlica schist conductivity measurements (Pozzolanic Reactivity) 
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Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.87 108.46 5.12

20 40 11.45 121.03 4.59
40 40 11.19 127.12 4.37
60 40 11.01 132.9 4.18
80 40 10.88 138.19 4.02

100 40 10.71 140.64 3.95
120 40 10.68 142.81 3.89 VAR:    1.23

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.9 108.73 5.11

20 40 11.54 119.21 4.66
40 40 11.26 126.26 4.4
60 40 11.05 131.96 4.21
80 40 10.93 134.84 4.12

100 40 10.81 135.83 4.09
120 40 10.69 136.83 4.06 VAR:     1.05

Material Temp. Range (⁰C) WL Start Point Temp. (⁰C) WL End Point Temp. (⁰C) WL (%)
Camlica 25 to 1000 599.75 749.33 9.85

CAMLICA



The results of TGA showed good potential for activation with a total weight loss of 10% for 

the Camlica sample. Now, by considering the variation in conductivity, it shows moderate to 

high pozzolanic reactivity with an average value of 1.14. However, this sample shows better 

pozzolanicity than Bozalan and maybe the other samples. These powders have not been 

activated yet and the reasons for these conductivity variations should be sought elsewhere. 

Figure 3.31 shows the diagrams for two measurements for Camlica pozzolanicity.  

 

 

Figure 3.  31 Virgin Camlica pozzolanicity measurements (two measurements are carried 
out for more accuracy) 

 

3.2.3.3 Tastepe Schist 
 

The results of Tastepe are given in Table 3.16 and Figure 3.32. The conductivity variation is 

at the mid-upper level with 1.05 mS / cm. However, in the Tastepe sample, only quartz and 

calcite were found in XRD. It is interpreted that it is of calcite origin, albeit with very high 

mass loss. At this stage two idea come to mind: calcite also affects the same activated clay-

like conductivity; or amorphous or very small crystalline clay-like materials that XRD cannot 

detect are present in this schist sample. No literature information has been found on the effect 

of calcite on conductivity without any treatment. 
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Table 3. 16 Virgin Tastepe schist conductivity measurements (Pozzolanic Reactivity) 

 

 

 

 

Figure 3. 32 Virgin Tastepe pozzolanicity measurements (two measurements are carried out 
for more accuracy) 

 

 

 

 

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.88 108.78 5.11

20 40 11.59 117.21 4.74
40 40 11.38 121.03 4.59
60 40 11.26 124.56 4.46
80 40 11.09 129.48 4.29

100 40 10.98 132.92 4.18
120 40 10.93 134.84 4.12 VAR:      0,99

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.64 108.52 5.12

20 40 11.48 116.71 4.76
40 40 11.29 120.25 4.62
60 40 11.12 127.67 4.35
80 40 10.97 132.84 4.19

100 40 10.85 135.17 4.11
120 40 10.76 138.54 4.01 VAR:       1,11

Material Temp. Range (⁰C) WL Start Point Temp. (⁰C) WL End Point Temp. (⁰C) WL (%)
TASTEPE 25 to 1000 599.26 799.8 9.54
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3.2.3.4 Kovukdere Schist 
 

Measured values of the most promising sample of Kovukdere schist are given in Table 3.17 

and Figure 3.33. Kovukdere is still the most important candidate in terms of both conductivity 

change (1.53 mS / cm) and mass loss (16.7%). 

 

Table 3. 17 Virgin Kovukdere schist conductivity measurements (Pozzolanic Reactivity) 

 

 

 

Figure 3. 33 Virgin Kovukdere pozzolanicity measurements (two measurements are carried 
out for more accuracy) 

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.92 109.12 5.09

20 40 11.08 134.84 4.12
40 40 10.94 141.36 3.93
60 40 10.63 146.19 3.8
80 40 10.47 150.96 3.68

100 40 10.28 150.55 3.59
120 40 10.12 158.27 3.51 VAR:    1,58

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.81 108.95 5.08

20 40 11.29 130.71 4.25
40 40 11.11 138.54 4.01
60 40 10.9 142.26 3.94
80 40 10.78 143.55 3.87

100 40 10.62 148.14 3.75
120 40 10.52 153.89 3.61 VAR:     1,48

Material Temp. Range (⁰C) WL Start Point Temp. (⁰C) WL End Point Temp. (⁰C) WL (%)
Kovukdere 25 to 1000 501.22 801.17 16.68

KOVUKDERE
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The obtained values for Kovukdere shows the high reactivity of this schist material. It would 

be the reliable sign of amorphous portion existence.  

 

3.2.3.5 Muratbey Schist 
 

Table 3.18 and Figure 3.34 represent the Muratbey schist pozzolanicity measurements. 

Muratbey has already identified as similar schist to Kovukdere but without any calcite phase. 

Table 3. 18 Virgin Muratbey schist conductivity measurements (Pozzolanic Reactivity) 

 

 

Figure 3. 34 Virgin Muratbey pozzolanicity measurements (two measurements are carried 
out for more accuracy) 

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.92 109.45 5.07

20 40 11.64 121.59 4.58
40 40 11.35 131.33 4.23
60 40 11.11 135.5 4.1
80 40 10.91 138.54 4.01

100 40 10.78 140.63 3.95
120 40 10.64 143.18 3.88 VAR:     1,19

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.88 109.13 5.09

20 40 11.35 122.1 4.55
40 40 11.21 128.89 4.31
60 40 11.03 133.86 4.15
80 40 10.9 137.17 4.05

100 40 10.78 140.29 3.96
120 40 10.64 144.67 3.84 VAR:       1,25

Material Temp. Range (⁰C) WL Start Point Temp. (⁰C) WL End Point Temp. (⁰C) WL (%)
Muratbey 25 to 1000 399.62 799.79 9.64
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It already showed good pozzolanic reactivity with a very strong (1.22 mS / cm) conductivity 

variation. No calcite phase was found in Muratbey sample. Therefore, the change in 

conductivity cannot be explained by the calcite effect. This powder contains very abundant 

clay-based phases in its content. Hence, it is one of the samples with high hope of activation. 

 

3.2.3.6 Ladik Schist 
 

Ladik schist is the most desperate sample but the variation in conductivity measurements was 

still better than the Bozalan sample. There is no calcite in Ladik. However, as it can be seen, 

it has a reactive phase that can affect conductivity. This result may indicate the importance 

of undetectable (perhaps amorphous) phases in the XRD. Table 3.19 shows the variation in 

conductivity for this sample and Figure 3.35 also illustrates the conductivity drop.  

 

Table 3. 19 Virgin Ladik schist conductivity measurements (Pozzolanic Reactivity) 

 

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.85 108.28 5.13

20 40 11.72 115.98 4.79
40 40 11.59 119.21 4.66
60 40 11.46 121.59 4.57
80 40 11.37 123.45 4.5

100 40 11.32 124.77 4.46
120 40 11.29 126.52 4.39 VAR:       0,74

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.97 109.01 5.09

20 40 11.78 115.52 4.81
40 40 11.63 118.46 4.69
60 40 11.46 120.73 4.6
80 40 11.41 122.1 4.55

100 40 11.38 123.09 4.52
120 40 11.3 123.73 4.49 VAR:       0,6

Material Temp. Range (⁰C) WL Start Point Temp. (⁰C) WL End Point Temp. (⁰C) WL (%)
Ladik 25 to 1000 401.6 700.5 2.47

LADIK



 

Figure 3. 35 Virgin Ladik pozzolanicity measurements (two measurements are carried out 
for more accuracy) 

 

3.2.3.7 Kaolinite 
 

The pozzolanicity of benchmark sample, Kaolinite is measured and represented in Table 3.20 

and Figure 3.36.  

 

Table 3. 20 Virgin Kaolinite conductivity measurements (Pozzolanic Reactivity) 
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Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.84 108.25 5.13

20 40 11.45 121.03 4.59
40 40 11.23 125.97 4.41
60 40 11.14 128.01 4.34
80 40 11.09 130.71 4.25

100 40 10.96 134.84 4.12
120 40 10.86 139.58 3.98 VAR:      1,15

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.97 108.84 5.1

20 40 11.39 124.01 4.48
40 40 11.2 129.19 4.3
60 40 11.13 130.71 4.25
80 40 11.01 133.22 4.17

100 40 10.95 136.83 4.06
120 40 10.82 139.23 3.99 VAR:       1,11

Material Temp. Range (⁰C) WL Start Point Temp. (⁰C) WL End Point Temp. (⁰C) WL (%)
KAOLINITE 25 to 1000 399.46 698.22 7.4

KAOLINITE



 

Figure 3. 36 Virgin Kaolinite pozzolanicity measurements (two measurements are carried 
out for more accuracy) 

 

Kaolinite also showed the highest conductivity variation with Kovukdere and Muratbey 

samples. Kaolinite is known to be activatable and has been shown to be used as cement 

substitution up to 30%. So far, Kovukdere and Muratbey samples can be monitored as 

possible potential. 

In general, the comparison results from the pozzolanicity measurements is given in Table 

3.21. The most promising example is Kovukdere. The following table shows the activation 

potential by top-down color code. 

Table 3. 21 Pozzolanicity measurements of all samples 
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This ranking is shown in Figure 3.37 to compare the conductivity variation among the all 

samples.  

 

 

Figure 3. 37 Comparison graph of conductivity variation of all samples up to 120 seconds 

 

XRD measurements showed calcite in many of raw materials. In order to determine the effect 

of calcite on calcium hydroxide solution, 5 g calcite powder was thrown into the same 

calcium hydroxide solution at 40ºC. Table 3.22 and Figure 3.38 show the variation in 

conductivity caused by calcite. Accordingly, some of the conductivity variation in calcite-

containing samples come from the reaction of calcite with calcium hydroxide solution. 
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Table 3. 22 Variation of conductivity due to calcium carbonate 

 

 

 

Figure 3. 38 Variation of conductivity in solution due to calcium carbonate 

 

The electrical conductivity of as it is called “pozzolanicity” is a shortcut method to evaluation 

the pozzolanic reactivity of materials. Even though this method is not proper for the powders 

with carbonate content, it is applicable for the clayey type materials to estimate the 

pozzolanic behavior and portion of amorphous alumino silicates.  

 

 

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.21 95.31 5.83

20 40 11.16 100.31 5.53
40 40 11.14 102.68 5.41
60 40 11.08 104.01 5.34
80 40 11.05 105.18 5.28

100 40 11.01 106.25 5.22
120 40 10.98 107.56 5.16 VAR:       0,67

Time (s) Temperature (⁰C) pH Resistence (Ω) Conductivity (mS/cm)
0 40 11.28 96.45 5.76

20 40 11.22 103.67 5.35
40 40 11.17 105.06 5.28
60 40 11.13 106.82 5.2
80 40 11.1 108.11 5.14

100 40 11.09 108.95 5.09
120 40 11.06 109.35 5.07 VAR:       0,69
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3.2.4 Microstructure and Composition Analysis (SEM-EDS) 
 

The received raw powders were evaluated by SEM (scanning electron microscope) for 

microstructure and mineral distribution for possible cement substitution. The aim is to predict 

whether the phases that will be prominent in the microstructure are activated or could be 

reactivated for pozzolanic reactions or not. According to the literatures [193-197], kaolinite 

type clays can be activated. Activated form of this clay, called metakaolin, reacts with 

calcium and water in high pH cement paste environments due to the degradation of the bonds 

in its structure and shows cement-like binder. In this section, the original microstructures of 

the samples are displayed in powder samples. The morphologies of the same powder samples 

after heat treatment are shown in the following sections. The morphology of the phases that 

can be activated and whether they have changed or not, express the indications of their 

suitability for pozzolanic reactions. Figure 3.39 shows the BSE-SEM (back-scattered 

electrons mode) images of the six raw materials. The samples appear to have different 

microstructures. In the Kovukdere, Muratbey and Camlica samples, the crystalline phases 

appear more prominent. Tastepe and Bozalan samples also show some portion of amorphous 

structure. These amorphous structures may explain why these samples give a change in 

conductivity indicating high pozzolanic activity, although there are no crystalline clay 

samples in the XRD results. Clay layers are visible in Kovukdere sample and leaf-shaped 

bentonite-like crystals are found in Muratbey sample. Although crystallized layers appear in 

the Bozalan sample, the amorphous phase is more dominant in Tastepe sample. In the 

Camlica sample, both leaf crystals and amorphous structure can be seen. The Ladik specimen 

has a completely different structure and the clay type structure is observed.  

 



 

Figure 3. 39 BSE-SEM (scanning electron microscopy-backscattered electrons mode) 
images of six raw materials received from mine quarries 

 

In order to evaluate the chemical and phase structure of mineral samples, EDS (Energy 

dispersive spectroscopy) chemical analysis was employed. Figure 3.40 shows the (a) 

microstructure and (b) elemental ratios and (c) EDS analysis of the kaolinite mineral. This 

sample is considered as a standard sample. As it is shown in Figure 3.40b, Si and Al are 

dominant elements in the sample. The Si / Al ratio is about 2.5, and since the formula of the 

kaolinite is Al2Si2O5 (OH) 4, the excess Si can show the amount of quartz. Figure 3.40c shows 

the EDS elemental maps. It is possible to see a layered map of Si, Al and two elements. The 

more prominent regions of Si are the quartz phase. The overlay map shows regular 

distribution of clay and quartz.  
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Figure 3. 40 Kaolinite microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al and layered map) 

 

In order to discuss the microstructure and chemical structure in more detail, the analysis was 

applied at higher magnifications. Figure. 3.37a shows the kaolinite microstructure at higher 

magnification. Arrows point to layered structure. Chemical analysis (Figure 3.41b) shows 

trace amounts of S, Ti and Fe in the sample. The Si dominant regions (red rings) appearing 

on the elemental map (Figure 3.41c) show the quartz phase. In the integrated image, the pink 

areas represent quartz. 
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Figure 3. 41 Kaolinite microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al and layered map) 

 

Figure 3.42 shows the microstructure and chemical analysis of Kovukdere mineral powder. 

Figure 3.42b shows that the Si / Al ratio is 1.8. Ca ratio is 16% and Fe ratio is 11%. There 

are also Mg, Na, K and trace amounts of Ti. In elemental maps, the Si and Al distributions 

generally overlap, but in some regions the Si or Al ratio appears to be higher. The overlapping 

portions represent kaolinite and K-ilite mica clays. The dominant portions Si and Al may 

indicate quartz and / or silimanite, respectively. 
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Figure 3. 42 Kovukdere schist microstructure and elemental analysis; (a) microstructure, 
(b) element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K and layered map) 

 

In Figure 3.43, a sample of the Kovukdere powder is shown at higher magnification. It is 

possible to see that the microstructure in the form of clay layers. The orange arrows show the 

layers in Figure 3.43a. Figure 3.43c shows the element maps. Al and Si (sometimes K and 

Na) overlapping parts represent clay, and red rings show quartz phase. In addition, the blue 

rings are Ca-dominant regions and show the calcite mineral. Green circles indicate areas 

where Ca and Mg overlap and other elements are absent and therefore Dolomite. The purple 

rings show the Iron oxide phase. Iron oxides and illites and smectites can also settle for 5-



8% Al and the overlapping parts may belong to these minerals. It is also possible to see the 

distribution of the different phases more clearly in the layered image.  
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        (c) 

 

Figure 3. 43 Kovukdere schist microstructure and elemental analysis; (a) microstructure, 
(b) element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K, Mg, Na and layered map) 



Figure 3.44 shows the microstructure and chemical analysis of the Muratbey schist. Si / Al 

ratio is around 2.5. In addition, K, Ca, Mg, Na and Ti elements are also available. Ca and Fe 

ratio is lower compared to Kovukdere sample. In the maps, Si, Al, K and Fe are scattered 

everywhere and Ca does not appear alone. 
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    (c) 

Figure 3. 44 Muratbey schist microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe and layered map) 

 



Figure 3.45 shows the Muratbey schist at higher magnification. A large proportion of the 

sample is composed of layers and leaf-shaped particles. The region indicated by the red arrow 

may belong to the quartz phase due to the crystalline angle. When we look at elemental maps, 

we see a higher Si ratio in that area (red rings). The orange rings on the maps indicate the 

areas where Al, Mg and Fe overlap and therefore probably belong to the smectite or illite 

type clay phase. The blue, green and purple rings show the calcite, dolomite and iron oxide 

phases, respectively. The K-aluminosilicate phases may be clay or feldspar. 

 

(a)                                                           (b) 

 

Figure 3. 45 Muratbey schist microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K, Mg and layered map) 



Figure 3.46 shows the microstructure and elemental analysis results of the sample of 

Tastepe region. Figure 3.42b shows that the Si / Al ratio is ~ 4. The chemical structure also 

contains high amounts of Ca (26%) and less Fe, Mg and K. Na is not available. In the 

element maps (Figure 3.46c), Ca, Fe and Mg are scattered all over. Where Ca, Al and Si 

overlap may belong to amorphous alumino-calcium-silicate phases. 
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Figure 3. 46 Tastepe clay microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe, Mg and layered map) 



Figure 3.47 shows the microstructure of the Tastepe sample at higher magnification. The 

microstructure and element distribution differ greatly from the previous samples. Calcium 

content in the sample is very high, indicating a high amount of calcite minerals. Si is more 

pronounced in some areas, but other elements seem to be scattered everywhere. Si ratio is 

very high and shows a high amorphous structure. 

 

(a)                                                      (b) 
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Figure 3. 47 Tastepe clay microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K, Mg and layered map) 



Figure 3.48 shows the microstructure and chemical analysis of the Bozalan mineral. Si / Al 

ratio is very high as in the case of Tastepe is approximately 4. In addition, Ca, Fe, K, Mg, Na 

and trace amounts of Ti are also present. Other elements except Si and Ca show an even 

distribution on all sides (Figure 3.48c). 

 

         

(a)                                                      (b) 

 

             (c) 

Figure 3. 48 Degrading clay microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K and layered map) 

 



Figure 3.49 shows the Bozalan sample at higher magnification and in more detail. Although 

the microstructure has layered crystals, heap-shaped crystals are also present and possibly 

belong to feldspar. By looking at element maps, the distribution of K, Al and Si overlaps in 

these regions that may belong to K-felsdpara. The red arrows on Si indicate the quartz. The 

blue and green rings show the calcite and dolomite minerals respectively. In the layered 

picture, the decomposition of calcite and aluminosilicates is clearly shown. 

 

(a)                                                   (b)                                 

 

 

 

 

 

 

 

 

 

 

 

 

 

      (c) 

Figure 3. 49 Bozalan clay microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, K, Mg and layered map) 

 



Figure 3.50 shows the microstructure and chemical analysis of the Camlica schist sample. 

The microstructure shows both layers and heap-shaped crystals. Figure 3.50b shows that the 

Si / Al ratio is 3 and there is a high amount of Ca. There are also Fe, K, Na and Mg structures. 

 

 

            (a)                                                (b) 

 

             (c) 

 

Figure 3. 50 Camlica schist microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K and layered map) 

 

Figure 3.51 shows the Camlica sample at higher magnification. Element maps are shown in 

Figure 3.51c. The red rings on the Si map belong to the quartz phase. Blue and purple rings 



show calcite and iron oxide respectively. The overlapping parts of K-Al-Si show the clay 

layers. Minerals are also clearly visible in the layered image. 

 

 

(a)                                                          (b) 

 

(c) 

Figure 3. 51 Camlica schist microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K and layered map) 

 

Figure 3.52 shows the microstructure and chemical analysis of the Ladik clay. In this sample, 

the Si / Al ratio is ~ 3. Fe, K, Mg and Na are also available. The Ca ratio is only ~ 2% and is 



very low compared to other samples (Figure 3.52b). Element maps show Si, Al, Mg, Fe and 

K maps. All elements are located at almost the same points. The same distribution can be 

seen in the layered image. 

 

 

(a)                                                    (b)                

 

           (c) 

Figure 3. 52 Ladik clay microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Mg, Fe, K and layered map) 

 

Figure 3.53 shows the Ladik sample at higher magnification. Although the microstructure 

shows layers at some points, the amorphous phase is also present. By evaluation of the 

elemental maps, it shows that the elements of Al and Si generally overlap, but Si stands alone 



in some regions. As it is understood from the Ca map, calcite is present in very small amounts. 

It is seen that the element distribution in the layered map is balanced.  

 

 

             (a)                                                   (b) 

 

         (c) 

Figure 3. 53 Ladik clay microstructure and elemental analysis; (a) microstructure, (b) 
element ratios and (c) EDS mapping (Si, Al, Ca, Fe, K, Mg and layered map) 

 



3.3. Evaluation of Calcined Schists (Heat-treated and activated 
Powders) 
 

In this section, thermal activation and the composite pozzolanic cement paste compressive 

strength and behavior were evaluated and the results were shared. In the following parts, 

microstructure and phase alteration of heat-treated samples were studied. The results of 

thermal and conductivity tests were also shared. In the composite cement paste samples, 

hydration and pozzolanic reactions prepare the strength providing product and the 

compressive strength was measured and reported.  

 

3.3.1 Microstructure and Composition Analysis (SEM-EDS) 
 

The clay and schist powders samples were subjected to heat treatment in order to activate. 

Considering the mass loss calculated from TGA analysis and based on the method that is 

described in chapter 1, 30%, 50% and 80% of total mass loss temperatures were found and 

heat treatment was applied at these associated temperatures. In this section, the 

microstructures of 80% heat treated powder samples are compared with untreated powder 

samples. In this way, the changes in the microstructure and level of activation were observed. 

In Figure 3.54 and Figure 3.55, the Kovukdere powder sample microstructure is shown in 

two different condition, (a) before heat treatment and (b) after heat treatment in various 

magnifications. By comparing the micrographs, changes resulting from heat treatment can 

be observed. The morphology of the samples resulted in changes in heating, resulting in 

rougher and lacy phases. Some of these structures are marked with yellow arrows in 

micrographs. The small size of the foliar clay particles in the background has been reduced 

in size in jagged form. The comparison of the shapes of the heat treated and untreated samples 

confirms the activation in the Kovukdere sample. 

 

 



(a)                                                                (b)  

 

Figure 3. 54 SEM image of Kovukdere powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (500X) 

 

(a)                                                               (b) 

 

Figure 3. 55 SEM image of Kovukdere powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (1000X) 

 

Figure 3.56 shows the chemical elemental mapping of 80% heat treated Kovukdere powder 

sample due to the EDS analysis. In the lower part, each of the different elements is shown 

separately, and in the upper right, the map of the elements is shown on top of each other 

(integrated map). The silicon-only regions show the quartz phase, the silicon and aluminum 

co-regions show the clay type phases, and the calcium parts mainly calcite phase. Compared 

to the elemental analysis of the virgin samples shown in the previous section, there was little 



change in the overall phase distribution. Decrease in the quantity and size of calcite particles 

is observed.  

 

 

Figure 3. 56 Heat-treated Kovukdere schist powder up 80% of total weight loss, EDS 
elemental mapping 

 

Figures 3.57 and 3.58 show the microstructure of Tastepe schist material (a) before heat 

treatment and (b) after 80% heat treatment. Although heat treatment causes decomposition, 

this change is not very significant. The large and solid particles have not undergone much 

modification as a result of heat treatment as it is appeared in microstructure. Small particles 

in the background give the impression of being decomposed.  

 



(a)                                                             (b) 

 

Figure 3. 57 SEM image of Tastepe powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (500X) 

        

(a)                                                              (b) 

 

Figure 3. 58 SEM image of Tastepe powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (1000X) 

 

Elemental analysis of Tastepe sample after heat treatment is shown in Figure 3.59 as EDS 

mapping. The analysis shows that the calcite phase is reduced due to the decomposition. 

However, the decomposed calcite particles are still present in the matrix and the orange 

elemental map of calcium shows this. The particle identified by the yellow arrow comprises 

silicon, aluminum and sodium and is the sodium aluminosilicate phase. Quartz particles are 

clearly visible on the map with a light purple color. 

 



 

Figure 3. 59 Heat-treated Tastepe schist powder up 80% of total weight loss, EDS 
elemental mapping 

 

The microstructure of ladik schist powder is illustrated in Figure 3.60 and Figure 3.61 (a) 

before and (b) after heat treatment. By looking at the 80% heat treated sample, it appears on 

the micrograph that the magnitude of decomposition is not too high. As it is shown in Figure 

3.62 (elemental analysis), the distribution of the silicon and aluminum element can be seen 

all over the microstructure, indicating that the aluminosilicate phases are present. Although 

quartz particles are present, they are smaller in size than other samples. The elemental map 

confirms that there is no calcite in this sample. Figure 3.60 illustrate some of the amorphous 

particles as indicated by yellow arrows. 

 

 



(a)                                                              (b) 

 

 

Figure 3. 60 SEM image of Ladik powder, (a) not heat treated (virgin) and (b) heat treated 
up to temperature associated to 80% of total weight loss (200X) 

 

(a)                                                               (b) 

 

Figure 3. 61 SEM image of Ladik powder, (a) not heat treated (virgin) and (b) heat treated 
up to temperature associated to 80% of total weight loss (500X) 



 

Figure 3. 62 Heat-treated Ladik schist powder up 80% of total weight loss, EDS elemental 
mapping 

 

Figures 3.63 and 3.64 show the microstructure of the Muratbey sample at two different 

magnifications (a) before and (b) after heat treatment. By comparing two pictures, the particle 

size decreases after heat treatment. This change indicates that activation was effective, and 

decomposition occurred. In addition, the “jagged shape edges” or “ruffled edged” of the 

particles indicate that the heat treatment decomposed proper portion of sample. 

 

 

 

 



(a)                                                             (b) 

 

Figure 3. 63 SEM image of Muratbey powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (200X) 

 

(a)                                                             (b)    

 

Figure 3. 64 SEM image of Muratbey powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (500X) 

 

Figure 3.65 shows the elemental maps of the Muratbey sample after heat treatment. It is 

possible to distinguish between quartz and aluminosilicate phases. The sample contains only 

trace amounts of calcium. The absence of calcite in the Muratbey sample contrasts with the 

Kovukdere sample. 

 



 

Figure 3. 65 Heat-treated Muratbey schist powder up 80% of total weight loss, EDS 
elemental mapping 

 

The Bozalan sample (a) before and (b) after heat treatment are visualized by SEM micrograph 

are shown in Figures 3.66 and 3.67. The microstructure of the heat-treated sample represents 

the effect on the particle size due to the heat treatment, causing smaller particles to form. 

Although this image indicates that Bozalan may be activatable by calcination, but there is no 

other evidence of decomposition in the sample. The absence of calcite in both Muratbey and 

Bozalan samples may cause them to be ineffective in cement hydration reactions. 

 

 

 



 

(a)                                                         (b) 

 

Figure 3. 66 SEM image of Bozalan powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (200X) 

 

(a)                                                          (b)        

 

Figure 3. 67 SEM image of Bozalan powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (1000X) 

 

Figure 3.68 shows the chemical EDS mapping of the Bozalan sample after heat treatment. 

As it appears in the maps, the microstructure is mostly composed of quartz and 

aluminosilicate (crystal and amorphous) phases and trace amounts of calcite are also present. 

 



 

Figure 3. 68 Heat-treated Bozalan schist powder up 80% of total weight loss, EDS 
elemental mapping 

 

Figure 3.69 compares the (a) untreated and (b) heat-treated microstructures of the Camlica 

powder sample. The particles began to decompose after heat treatment and show 

deformation. This difference is an indication that they have become more reactive. However, 

when compared with the microstructures of the other samples, the amount of decomposition 

in the Camlica sample seems to be less. 

 

 

 

 



(a)                                                         (b)  

 

Figure 3. 69 SEM image of Camlica powder, (a) not heat treated (virgin) and (b) heat 
treated up to temperature associated to 80% of total weight loss (1000X) 

EDS chemical maps are also shown in Figure 3.70 for Camlica sample. In addition to quartz 

and aluminosilicate particles, the amount of calcite (whether decomposed or not) appears to 

be high. Iron oxide is also present in trace amounts. 

 

Figure 3. 70 Heat-treated Camlica schist powder up 80% of total weight loss, EDS 
elemental mapping 



3.3.2 Pozzolanic Reactions and Heat Treatments 
 

Different experiments were conducted to evaluate the pozzolanic reactivity of the raw 

materials and the possible potential of cement substitution. To remind the pozzolanic 

behavior of reactive minerals, chemical reactions associated with it can be reviewed. For 

example, in the case of Kaolinite, the main reaction is the reactions of CH with water, which 

were introduced during hydration of cement with meta-kaolinite. These reactions result in 

the binding phases of the so-called CSH and CASH. 

 

In all schist-type raw materials, the primary evaluation of all samples reveals that some of 

them are reliable candidates for partial cement substitution. As it is mentioned before, 

specific method was used to activate the raw materials by heat treatment. Considering the 

decomposition temperature of each, these ranges are associated with mass loss and divided 

into 3 parts according to the percentage of mass loss. These temperature points are those 

where the mass loss is 30%, 50% and 80% of the total mass loss between 350-850ºC. After 

defining the calcination temperature, the raw materials taken in equal amounts are heated up 

to these temperatures. The aim of this method is to compare the activation rate and the results 

of the effect of partial degradation of calcined clay behavior. Therefore, the same 

characterization methods have been used to evaluate the heat-treated materials. Table 3.23 

shows raw material decomposition range and calculated temperatures for heat treatment of 

clays. 



Table 3. 23 Decomposition temperatures range and mass loss amounts of 30%, 50% and 
80% for all samples 

 

 

3.3.3 Phase Analysis, Conductivity Measurements and TGA 
 

This section includes X-ray diffraction (XRD), thermogravimetric analysis (TGA) and 

conductivity measurements of the activated materials. The aim of the study is to compare the 

compressive strength of composite cement paste specimens prepared by replacing 30% of 

cement with calcined schist material after 28 days of hydration time with specimens prepared 

with 100% cement. The blended cement paste compressive strength is acceptable with the 

maximum strength drop up to 10% of pure cement strength. Thus, cube samples are prepared 

for the compression test will demonstrate the strength of the composition. These samples 

were prepared with a water to solid ratio of 0.5. The blends contained 70% Cement (700 g) 

and 30% activated schist material (300 g). Furthermore, a 100% pure cement sample was 

prepared to be the basis for comparison with composite clay cement blend samples. The 

mechanical strength of all samples was tested after 2, 7, 28, 50 and 90 days of hydration. The 

substitute calcined schist was heat treated to the temperature associated to (1) 30%, (2) 50% 

and (3) 80% of total weight loss. 

Before going through the results, two important parts should be considered. The first part is 

the method used for heat treatment of the samples. The appropriate amount of powder sample 

should be placed in the crucible and placed in the oven and heated to the specified 

Sample %30 WLT Temp. (⁰C) %50 WLT Temp. (⁰C) %80 WLT Temp. (⁰C) Start Temp. (⁰C) End Temp.(⁰C) WLT (%)

BOZALAN 620 710 750 400 775 5.33

CAMLICA 745 770 795 600 820 10.2

TASTEPE 765 810 845 450 875 11.25

KOVUKDERE 725 785 830 450 870 16.25

MURATBEY 575 710 760 450 800 9.43

LADIK 480 520 600 400 700 2.63

KAOLINITE 530 560 620 400 710 7.55



temperature. The furnace temperature should then remain constant for two hours to ensure 

that heat is transferred to all parts of the sample. The sample must then be removed from the 

furnace and allowed to cool in air. It should be noted that prolonged heating may cause dead-

burnt of the powder. The purpose of allowing the sample to quench in air is to maintain the 

dissociated structures formed during calcination. Excessive heat treatment may result in 

sintering reactions between activated bonds and aluminosilicate layers. The second important 

point concerns the conductivity measurements in the clay samples taken, which is not a good 

indicator for most of the received samples. According to the X-ray diffraction analysis, most 

of the clay samples contain calcium carbonate which may affect conductivity measurements. 

The decrease in conductivity showed reactivity due to pozzolanic reaction, whereas the 

behavior in calcined calcium carbonates was reversed, as follows: 

 

 

 

Considering all these facts, the results were discussed separately, considering all the mineral 

phases in the samples.  

 

3.3.3.1 Kaolinite  
 

Kaolinite is a simple structure clay and de-hydroxylation of kaolinite forms a transition phase 

called meta-kaolin, which is formed by the breakdown or partial breakdown of the crystal 

lattice structure. Meta-kaolin is a semi-stable phase and, as it is already used in many studies, 



is the benchmark of this study. Conductivity measurement results for untreated and heat 

treated or activated kaolinite powder are as follows: 

 

Table 3. 24 Pozzolanicity of virgin and heat-treated (to temperature associated to 30, 50 and 
80% of total weight loss) Kaolinite powder (conductivity variation) 

 

 

Heat treatment influenced kaolinite reactivity. Further decomposition of the kaolinite and 

increasing efficiency for the pozzolanic reaction by increasing the processing temperature is 

also shown in Table 3.24. In order to get an idea of the extent of decomposition of the phases, 

the weight percentages of the quartz phase (inert), clay and carbonate (QCC) phases were 

calculated by the Rietveld method. The results are shown in Table 3.25: 

 

Table 3. 25 QCC amounts (% by weight) of kaolinite (virgin and heat-treated) 

 

 

Table 3.25 shows the amount of clay that decreases with increasing temperature. It is evident 

and noted here that the amount of quartz as an inert phase will not change with the increase 

of temperature and must remain constant. However, the TOPAS software used in this study 

calculates the total phase from 100%, and since there are only two phases in this powder, the 

other non-decomposable crystal phase appears to be increasing since the decomposition / 

Sample Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Kaolinite 1,11 & 1,15 1,32 & 1,41 1,63 & 1,7 1,94 & 1,98

Pozzolanicity  (Conductivity Variation)

Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Quartz 44 70 89 92

Clay 56 30 11 8

Carbonate _ _ _ _

Others _ _ _ _

QCC                                                                                                                                                                                                                                               
(QUARTZ , CLAY, CARBONATE)

Kaolinite

Phase Amount (wt%)
Sample Chemical Phase



degradation fraction will fall from the calculations. In the case of kaolinite, the decomposition 

of the clay material is determined by the results of the x-ray diffraction analysis shown in 

Figure 3.71.  

 

 

Figure 3. 71 Kaolinite x-ray diffractogram for (I) Virgin, (II) heat-treated up to 30% of 
WLT, (III) heat-treated up to 50% of WLT and (IV) heat-treated up to 80% of WLT 

 

XRD analysis results show the de-hydroxylation of Kaolinite, Al2Si2O5 (OH) 4, and Dickite, 

Al2Si2O5 (OH) 4 (another polymorph of Kaolinite). In addition, K0.27MnO2 (H2O) 0.54 (K-Mn-

O-Hydrate), another clay-type material, was investigated in partial decomposition with heat 

increase in each step of treatment. The TGA results include the comparison of heat-treated 

and untreated kaolinite powder at different temperatures according to the amount of weight 

loss. This TGA spectrum can be seen in Figure 3.72. 
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Figure 3. 72 Thermogravimetric analysis of virgin and heat-treated Kaolinite (heat-treated 
up to temperature associated to 30, 50, and 80% of total weight loss) 

 

3.3.3.2 Bozalan Schist 
 

Characterization of the decomposed material that is subjected to heat treatment and untreated, 

was carried out. By considering the conductivity values of Bozalan virgin schist, Bozalan's 

strength behavior does not meet the expectation of pozzolanic behavior estimated by 

electrical conductivity measurements. In this sample, the misleading effect of calcium 

carbonate on electrical conductivity measurements appears. Table 3.26 shows the 

conductivity variation due to heat treatment.  

 

Table 3. 26 Pozzolanicity of virgin and heat-treated (to temperature associated to 30, 50 and 
80% of total weight loss) Bozalan powder (conductivity variation) 

 

 

This table shows the pozzolanity of Bozalan. The values of Bozalan sample are lower than 

those of some other samples. Although the increase in temperature increases the 

pozzolanicity of Bozalan, this feature does not show up in the measurements of electrical 
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Sample Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Bozalan 0,55 & 0,58 0,69 & 0,73 0,84 & 0,87 1,02 & 1,08
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conductivity due to the carbonate phase and its polymorph. However, by observing the 

compressive strength of the blended cement paste sample, it is revealed that Bozalan schist 

is a reactive sample. The QCC amounts in this sample is also shown in Table 3.27. These 

ratios are calculated by the Rietveld method.  

 

Table 3. 27 QCC amounts (% by weight) of Bozalan (virgin and heat-treated) 

 

 

Based on Figure 3.72, XRD analysis shows that sodium-zeolite component was present in 

Bozalan powder. This phase may decompose and forms the Anorthite phase. This reaction 

also increased the amount of glassy material. It should also be noted again that the amount 

of quartz must be constant. In addition, it was observed that the carbonate phase decomposes 

with the same tendency as the increase in temperature. Figure 3.73 shows the change in the 

results of XRD analysis of the de-hydroxylated clay-type materials and carbonates subjected 

to different heat treatments based on angle-intensity size.  

 

Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Quartz 52 37 33 39

Clay 
40                                 

(Zeolite)
3 _ _

Carbonate 8 5 4 1

Others _                                              
(Anorthite)

55 63 60

QCC                                                                                                                                                                                                                                               
(QUARTZ , CLAY, CARBONATE)

Phase Amount (wt%)

Bozalan

Sample Chemical Phase



 

Figure 3. 73 Bozalan x-ray diffractogram for (I) Virgin, (II) heat-treated up to 30% of WLT, 
(III) heat-treated up to 50% of WLT and (IV) heat-treated up to 80% of WLT 

 

The Bozalan schist powders were composed of quartz, sodium-zeolite (NaAlSi2O6-H2O) and 

calcite (CaCO3). Zeolite and calcium carbonate have a chance to react with each other as they 

decompose to form anorthite. The reduction in the clay type phase can be observed in the 

spectrum. This dissociation is supported by the TGA results shown in Figure 3.74. 

 

 

Figure 3. 74 Thermogravimetric analysis of virgin and heat-treated Bozalan (heat-treated up 
to temperature associated to 30, 50, and 80% of total weight loss) 
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3.3.3.3 Tastepe Schist 
 

The conductivity values of Tastepe virgin powder did not show the potential of this powder 

sufficiently well for pozzolanic reactivity. Although, these values are much better than Ladik 

and Bozalan, but worse than Muratbey and Camlica. Only when looking at the pozzolanicity 

of the treated powders, this schist was not considered as a proper candidate. However, again 

in the case of Tastepe, the decrease in conductivity values (pozzolinicity) for the sample heat-

treated up to 80% of mass loss shown in Table 3.28 results in the misleading effect of the 

carbonate phase on the conductivity measurements. 

 

Table 3. 28 Pozzolanicity of virgin and heat-treated (to temperature associated to 30, 50 and 
80% of total weight loss) Tastepe powder (conductivity variation) 

 

 

According to the table above, pozzolanicity is reduced when heat treatment is carried out at 

higher temperature (80%). This is thought to be due to the decomposition of the carbonate 

phases because the amount of carbonate phase is known to affect pozzolinicity. The amount 

of QCC phases is shown in Table 3.29. 

Table 3. 29  QCC amounts (% by weight) of Tastepe (virgin and heat-treated) 

 

Sample Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Tastepe 0,99 & 1,11 1,06 & 1,08 1,1 & 1,12 0,89 & 0,97

Pozzolanicity  (Conductivity Variation)

Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Quartz 60 57 58 72

Clay _ _ _ _

Carbonate 32 25 22 3

Others
8                                   

(Anorthite)
18 20 25

QCC                                                                                                                                                                                                                                               
(QUARTZ , CLAY, CARBONATE)

Tastepe

Phase Amount (%)
Sample Chemical Phase



According to XRD results, there was almost no clay in this sample, or the amount was too 

small to be significant. The main phases of this sample are quartz, carbonate and anorthite, 

which is a glassy material as indicated. In this case, the high strength of Tastepe may be 

directly related to the anorthite and carbonate phases. In addition, Tastepe calcination occur 

in higher temperature ranges due to the carbonate phase decomposition. The XRD spectrum 

shown in Figure 3.75 is intended to prove this idea. 

 

 

Figure 3. 75 Tastepe x-ray diffractogram for (I) Virgin, (II) heat-treated up to 30% of WLT, 
(III) heat-treated up to 50% of WLT and (IV) heat-treated up to 80% of WLT 

 

This spectrum shows the effect of increasing the heat treatment temperature on the carbonate 

phase. As it can be seen, the carbonate phase is lost when the temperature is increased. 

Tastepe contains calcite as carbonate phase. Another measurement in the TGA, represented 

the amount of decomposition of the phases in comparison with the virgin powder that is 

shown in Figure 3.76. 
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Figure 3. 76 Thermogravimetric analysis of virgin and heat-treated Tastepe (heat-treated up 
to temperature associated to 30, 50, and 80% of total weight loss) 

 

3.3.3.4 Camlica Schist 
 

Conductivity measurement results of Camlica as virgin and heat-treated material may show 

this material as one of the good pozzolans, but mechanical behavior of this sample did not 

confirm its pozzolanicity. The pozzolanicity of the raw and processed Camlica powder is 

shown in Table 3.30. 

 

Table 3.  30 Pozzolanicity of virgin and heat-treated (to temperature associated to 30, 50 
and 80% of total weight loss) Camlica powder (conductivity variation) 

 

 

As it can be seen in Table 3.31, the virgin and heat-treated Camlica powder is thought to be 

in the variable pozzolanicity range. Moreover, a significant amount of carbonate phases 

resulted in conductivity reduction at higher temperatures. The amounts of QCC phases are 

also shown in Table 3.29. 
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Table 3. 31 QCC amounts (% by weight) of Camlica (virgin and heat-treated) 

 

 

The QCC table shows the reduction in clay phase and carbonate. Camlica powder contains 

several different phases as indicated in the XRD results in Figure 3.77. Besides, according to 

Table 3.31, an important portion of Camlica consists of kyanite (Al2SiO5).  

 

 

Figure 3. 77 Tastepe x-ray diffractogram for (I) Virgin, (II) heat-treated up to 30% of WLT, 
(III) heat-treated up to 50% of WLT and (IV) heat-treated up to 80% of WLT 

 

As it can be seen in Figure 3.77, the clay-type phases Phlogopite, KMg3 (Si3Al) O10 (OH) 2, 

and Muscovite, KAl2 (Si3Al) O10 (OH, F) 2, are present in the structure. Carbonates are in 
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calcite and vaterite polymorphs. Moreover, Kyanite, Al2SiO5, a widely avaibale alumino-

silicate, forms portion of this powder. Camlica powder may seem remarkable in terms of 

reactivity, but compressive strength tests show less strength beahvoir than expected. This 

may be due to the low amount of clay and carbonate compared to the inert phases. For 

example, kyanite decomposition occurs at elevated temperature (1150ºC). The TGA results 

show the decomposition of reactive phases as it can be seen in Figure 3.78.  

 

 

Figure 3. 78 Thermogravimetric analysis of virgin and heat-treated Camlica (heat-treated 
up to temperature associated to 30, 50, and 80% of total weight loss) 

 

3.3.3.5 Kovukdere Schist 
 

According to primary characterization tests and conductivity measurements, virgin 

Kovukdere is considered as the best candidate when it is looked at its reactivity. This is also 

evidenced by the results obtained from the treated powder. Table 3.32 shows the conductivity 

of Kovukdere virgin powder compared to heat-treated one. 
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Table 3. 32 Pozzolanicity of virgin and heat-treated (to temperature associated to 30, 50 and 
80% of total weight loss) Kovukdere powder (conductivity variation) 

 

 

As it is told, Kovukdere virgin powder can be considered as good pozzolan and this 

pozzolanicity increases as the processing temperature is increased. However, when the 

temperature is high enough to decompose almost all carbonates, it reduces the electrical 

conductivity by adverse effect. Table 3.33 shows the amount of QCC phases. 

 

Table 3. 33 QCC amounts (% by weight) of Kovukdere (virgin and heat-treated) 

 

 

According to QCC phase quantities that are shown in Table 3.33, the reduction in clay and 

carbonate phases is remarkable. The inert quartz phase in the composition is much lower than 

other samples, while the clay portion is higher than the other samples. XRD analysis of this 

schist is shown in Figure 3.79. The (IV) spectrum contains a significant proportion of 

carbonates decomposed by increasing heat treatment. 

 

Sample Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Kovukdere 1,48 & 1,58 1,49 & 1,53 1,66 & 1,72 1,34 & 1,41

Pozzolanicity  (Conductivity Variation)

Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Quartz 26 36 58 65

Clay 54 27 11 5

Carbonate 16 21 4 1

Others
4                                    

(Anorthite + Rutile)
16 27 29

QCC                                                                                                                                                                                                                                               
(QUARTZ , CLAY, CARBONATE)

Kovukdere

Phase Amount (%)
Sample Chemical Phase



 

Figure 3. 79 Kovukdere x-ray diffractogram for (I) Virgin, (II) heat-treated up to 30% of 
WLT, (III) heat-treated up to 50% of WLT and (IV) heat-treated up to 80% of WLT 

 

Kovukdere schist content various phases such as Quartz, Calcite, Kaolinite, Nacrite (another 

Kaolinite polymorph Al2Si2O5(OH)4), Osumillite (KMg2Al3SiAl2O), Muscovite, Phlogopite, 

Rutile and Anorthite. Detailed information about these phases has been given previously. 

However, the XRD spectrum shows that these phases are decomposed at high temperature 

by considering the residual clay and carbonates. Besides, TGA graphs support these results 

as it is shown in Figure 3.80. 

 

Figure 3. 80 Thermogravimetric analysis of virgin and heat-treated Kovukdere (heat-treated 
up to temperature associated to 30, 50, and 80% of total weight loss) 
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3.3.3.6 Muratbey Schist 
 

Conductivity measurements and other characterization analysis of Muratbey virgin powder 

suggest that this material is one of the potential candidates for cement. The pozzolanicity of 

untreated and heat-treated Muratbey is shown in Table 3.34. 

 

Table 3. 34 Pozzolanicity of virgin and heat-treated (to temperature associated to 30, 50 and 
80% of total weight loss) Muratbey powder (conductivity variation) 

 

 

By increment in heat treatment temperature, the conductivity values of Muratbey have not 

changed significantly. Although Muratbey virgin and heat-treated powder is in the good 

pozzolanicity range, it is seen that heat treatment may not activate all reactive phases. 

Regardless of the heat treatment of the clay phases in this sample, it could be observed that 

the amount of inert quartz phase is quite high, while the kyanite is excess between the other 

phases and the decomposition temperature of this phase is higher than the treatment 

temperature range. The QCC phase quantity of Muratbey is shown in Table 3.35. 

 

Table 3. 35 QCC amounts (% by weight) of Muratbey (virgin and heat-treated) 

 

Sample Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Muratbey 1,19 & 1,25 1,22 & 1,24 1,29 & 1,35 1,42 & 1,44

Pozzolanicity  (Conductivity Variation)

Virgin Powder %30 of WLT %50 of WLT %80 of WLT

Quartz 51 43 36 33

Clay 42 19 8 2

Carbonate _ _ _ _

Others
7                                  

(Kyanite)
38                                  

(Kyanite + Anorthite)
56 65

QCC                                                                                                                                                                                                                                               
(QUARTZ , CLAY, CARBONATE)

Muratbey

Phase Amount (%)
Sample Chemical Phase



The amount of clay phases decreases by the increasing the temperature, while the amount of 

quartz is constant. The phases in the material are indicated in Figure 3.81 in the XRD analysis 

results. 

 

 

Figure 3.  81 Muratbey x-ray diffractogram for (I) Virgin, (II) heat-treated up to 30% of 
WLT, (III) heat-treated up to 50% of WLT and (IV) heat-treated up to 80% of WLT 

 

Based on XRD results, the primary phases of this sample are the Kaolinite species Dickite, 

Phlogopite, Kyanit and Zeolite. The need for high temperatures to decompose Kyanit was 

mentioned earlier. Besides, the zeolite is a solid and hard mineral that can affect the behavior 

of the material. TGA results compare the decomposition of virgin mineral and heat-treated 

Muratbey powder. This can be observed in Figure 3.82. 
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Figure 3. 82 Thermogravimetric analysis of virgin and heat-treated Muratbey (heat-treated 
up to temperature associated to 30, 50, and 80% of total weight loss) 

 

3.3.3.7 Ladik Schist 
 

Ladik virgin powder did not perform well in terms of conductivity measurements. The 

pozzolanicity values of the virgin and heat-treated powders are given in Table 3.36. 

 

Table 3. 36 Pozzolanicity of virgin and heat-treated (to temperature associated to 30, 50 and 
80% of total weight loss) Ladik powder (conductivity variation) 

 

 

The conductivity measurement of Ladik schist powder is ranked as variable pozzolanicity for 

virgin and even heat-treated mineral. Table 3.37 shows the amount of QCC phases in Ladik 

schist. 
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Table 3. 37 QCC amounts (% by weight) of Ladik (virgin and heat-treated) 

 

 

Despite the decomposition of some of the clay in the Ladik sample, it contains almost too 

much quartz. Among the other phases anorthite is the main one. There is also no or almost 

no carbonate phase. According to XRD analysis and phase distribution results, the principal 

clay “halloysite” in Ladik schist is a member of the kaolin-serpentine group with crystal 

structure of monoclinic. On the other hand, the interlayer distance in the crystal structure of 

halloysite are smaller than in other kaolinite groups, thus making this structure less reactive. 

The XRD spectrum can be viewed in Figure 3.83. 

 

 

Figure 3.  83 Ladik x-ray diffractogram for (I) Virgin, (II) heat-treated up to 30% of WLT, 
(III) heat-treated up to 50% of WLT and (IV) heat-treated up to 80% of WLT 
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As it can be inferred from XRD analysis, the amounts of the reactive phases are not enough 

to consider this powder as a proper potential substitute and the heat treatment has no 

significant effect on its reactivity. Based on this test, it is understood that quartz is the main 

phase forming the composition of Ladik mineral. Figure 3.84 shows the TGA measurements 

of this schist type mineral to understand the separation of phases: 

 

 

Figure 3. 84 Thermogravimetric analysis of virgin and heat-treated Ladik (heat-treated up 
to temperature associated to 30, 50, and 80% of total weight loss) 

 

3.3.4 Compressive Strength Test  
 

The aim of this study is to find a suitable schist material for cement substitution which can 

be activated due to the calcination procedure. Among the characterization measurements, 

compressive strength tests are one of the most important tests to demonstrate the success of 

this substitution. Among the physical properties of cement, compressive strength is the most 

important one. The experimental procedure is as 30 wt% of the cement content was replaced 

with different activated schist samples to prepare cube samples. sampling procedure was 

carried out by mixing 700 g cement, 300 g calcined clay in each mixture by water / solid ratio 

of 0.5. Samples were prepared. These samples were subjected to hydration for 2, 7, 28, 50 
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and 90 days. Composite cements containing calcined clay are thought to be much more 

durable in terms of long hydration time.  

In this part, the compressive strength test results of the cubic blended cement paste sample is 

evaluated. The samples were prepared by the partial substitution of calcined clay that is heat-

treated up to 30%, 50% and 80% of total mass loss. This replacement is 30% by weight of 

cement. Afterwards, the mechanical strength performance of each sample will be analyzed, 

considering the magnitude of heat treatment of different samples. For each sample, the 

compressive strength of the samples prepared with composite cement was compared with 

100% pure cement and as a criterion for applicability of replacement, 70% of the compressive 

strength of pure cement. It is also representing the effect of inert filler in mixture. 

This section firstly contains the compressive strength results to evaluate the clay samples 

activated by different heat treatments; that is, the results will be based on replaced clayey 

material heated up to 30%, 50% and 80% of total mass loss. This will determine the 

appropriate criterion for comparing the mechanical strength behavior of the samples in 

response to treatment at different temperatures applied to the raw materials. It will also 

provide important information on the activation rates of the reactive phases in the schist 

composition. Then, graphs will be shown to investigate the effect of the amount of quartz 

and carbonates on the mechanical strength measurements. In addition, two evaluations will 

be made on the charts to compare pozzolanicity and strength results and to show the 

suitability of the results. Column graphs were prepared to reveal the relationship between 

strength and pozzolanicity of composite samples. The final part will be based on the 

evaluation of the material strength for all samples according to all raw materials treated at 

different temperatures. As a result, the graph of each sample will be compared with the pure 

cement strength and the 70% of the pure cement strength.  Based on the initial 

characterization, it could be claimed that some of the activated raw materials may meet the 

expectations of this study. The relationship between conductivity measurements and strength 

is mentioned. The results obtained from the kaolinite used cement samples were always 

shown and compared together with the candidate clay mineral samples. 

 



3.3.4.1 Calcined Clay Cement (C3) by heat-treated material up to 30% of WLT 
 

This mixture contains 70% cement and 30% calcined clay. Clayey mineral was subjected to 

heat treatment by increasing their temperature until they 30% of total mass loss. The water / 

solid ratio (w / s) is 0.5. The compressive strength test results obtained for all samples are 

shown in Figure 3.85. 

 

 

Figure 3. 85 The compressive strength test results of all blended cement paste (calcination 
of clay up to temperature associated to the 30% of total mass loss) 

 

According to the strength graphs, Tastepe, Kovukdere and Bozalan performed better than 

other samples. Table 3.38 shows the mechanical strength values. 

 

Table 3. 38 Compressive strength test results of samples with different hydration times 
(MPa) (heat treated clay up to 30% WLT) 

 

 

Day Bozalan Tastepe Ladik Kovukdere Muratbey Camlica Kaolin Cement
2 22.7 17.2 17.5 18.8 16.3 14.7 18.5 25.2
7 36.6 35.2 30 33.9 30.3 30.5 30.8 38

28 50.5 53.9 44.5 51.1 39.5 40.6 40.5 62.6
50 47.9 55.9 44.4 61.23 43.1 44.1 46.3 69.6
90 51.2 52.3 43.9 63.2 45.1 47.9 44.8 77



Compressive strength is the most informative data about the effect of calcined clay. Among 

the 30% activated raw materials, there is no numerically supportive sample of the study 

objective, which is intended to reduce the strength of the pure cement not more than 10% of 

the pure cement strength. However, by comparing these amounts to 70% of cement strength, 

the above-mentioned three samples can be considered eligible candidates. It is possible to 

suppose that by increasing heat treatment temperature, the decomposition of the reactive 

phases may increase and become more reactive. It is also interesting to note that the 

compressive strength of some samples is higher than that of kaolinite used composite cement. 

However, one of the most important issues observed during all experiments is that the raw 

material samples are not very homogeneous. 

 

3.3.4.2 Calcined Clay Cement (C3) by heat-treated material up to 50% of WLT 
 

The mixture ratio is same is previous part, contains 70% cement and 30% clay mineral 

resource. Clays were heat-treated at a temperature corresponding to 50% of total weight loss. 

The water / solid ratio (w / s) is specified as 0.5. The compressive strength test results for all 

samples are shown in Figure 3.86. 

 

Figure 3. 86 The compressive strength test results of all blended cement paste (calcination 
of clay up to temperature associated to the 50% of total mass loss) 
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For the 50% blended cement paste, compressive strength tests were performed for all samples 

at specified hydration times and results were evaluated. According to the compressive 

strength measurement results, the strength development of 50% samples is significantly 

resembles the behavior of the previous part (30%). Kovukdere and Tastepe again gave better 

results than the others. It should be noted that the compressive strength behavior of Tastepe 

and Bozalan will be similar if hydration is exposed for a long time. These samples still 

perform better than Kaolinite. The compressive strength values for all samples are shown in 

Table 3.39. 

 

Table 3. 39 Compressive strength test results of samples with different hydration times 
(MPa) (heat treated clay up to 50% WLT) 

 

 

 

According to the table, the compressive strength of the calcined clay cement sample was 

slightly affected by increment in thermal treatment. This is based on 28-day measurement 

results, but longer-term measurement values are more acceptable. The performance of 

Tastepe, Kovukere and Bozalan seem to be better by further treatment. In the next part, the 

results are given when more heat treatment is applied to the clay. 

 

3.3.4.3 Calcined Clay Cement (C3) by heat-treated material up to 80% of WLT 
 

This mixture contains 70% cement and 30% clay mineral resource. Clayey minerals were 

heat treated at a temperature corresponding to 80% of total mass loss. The water / solid ratio 

(w / s) is 0.5. The compressive strength test results of all samples are presented in Figure 

3.87. 

Day Bozalan Tastepe Ladik Kovukdere Muratbey Camlica Kaolin Cement
2 16.9 13.5 14.4 18 13.8 14.6 16.3 25.2
7 25.6 27 24.5 32.6 26.3 24.6 29 38

28 45.6 44.6 42.5 51.6 38.3 38.6 42 62.6
50 49.6 48.6 44.3 57.3 42.7 42.5 46.3 69.6
90 56.4 54.5 50.8 62.11 47.1 47.6 49.6 77



 

 

Figure 3. 87 The compressive strength test results of all blended cement paste (calcination 
of clay up to temperature associated to the 80% of total mass loss) 

 

The results in Figure 3.84 differ greatly from previous ones. The performance of Tastepe is 

remarkable in the first days and the same behavior is observed for Kovukdere after 28 days 

of hydration. Kaolinite results show higher values of strength than Bozalan. Similarly, 

Kovukdere shows higher values than the compressive strength of pure cement sample. The 

compressive strength values are shown in Table 3.40. 

 

Table 3. 40 Compressive strength test results of samples with different hydration times 
(MPa) (heat treated clay up to 80% WLT) 

 

 

According to these values, Kovukdere, Tastepe and Kaolinite have passed the criterion and 

can be accepted as proper substitutes. By activation of Kovukdere raw material, the 
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Day Bozalan Tastepe Ladik Kovukdere Muratbey Camlica Kaolin Cement
2 24.26 17.2 17.5 18.9 16.3 17.4 18.5 25.2
7 36.6 38.4 30.5 33.9 30.2 30.5 30.8 38

28 50.1 58.4 40.1 65.6 43.3 42.3 58.5 62.6
50 56.6 59.6 43.7 68.3 44.4 47.5 64.4 69.6
90 61.3 59.9 46.2 73.5 48.1 50.5 65.8 77



composite cement paste performance made from it seems to be better than pure cement. In 

addition, strength measurements in early hydration times are much better than previous 

samples prepared by 30 and 50% heat-treated clay. For instance, Bozalan's early strength 

values captured the early strength values of pure cement. Proper activation of the raw 

materials perhaps affects the performance of the reactive samples. Kovukdere and Tastepe 

samples contain carbonate phases more specifically calcite. According to recent studies on 

limestone and calcined clay cement, it is reported that the decomposition of carbonate phase 

plays a significant role in these materials [195-197]. The quartz phase is considered as inert 

in cement mortar. All raw materials contain quartz phase. In order to interpret the activated 

clay effect, some calculations were made assuming what would have been the results if the 

clay had been replaced by quartz. These calculations can also be used to calculate the effect 

of the amount of clay phase when new raw material resources are available. It is assumed 

that quartz and carbonates have an adverse effect on the performance of the material. While 

quartz is an inert filler, carbonate is assumed as reactive material. Therefore, it is important 

to compare the compressive strength graphs with respect to quartz and carbonate quantities. 

The effect of quartz and carbonates on the sample strength for the 30% sample is presented 

in Figure 3.88. 

 

  

Figure 3. 88 Effect of quartz and carbonate on composite cement paste samples [30% WLT] 
(Left Quartz / Right quartz and carbonate effect) 

 

 



The plots if Figure 3.85 is provided by using two basic formula.  

 

𝜎𝜎2 = 𝜎𝜎1
(1−(𝑄𝑄×0.3))

    (for quartz content)                                                                                         (3.1) 

𝜎𝜎2 = 𝜎𝜎1
(1−((𝑄𝑄−𝐶𝐶)×0.3))

   (for quartz and carbonate content)                                                             (3.2) 

These calculations were used to understand the role of inert quartz and reactive carbonates 

on compressive strength. In this case, 𝜎𝜎1 is corrected by the amounts of quartz and carbonate 

in the samples, 𝜎𝜎2 is obtained and thus can be applied to evaluate the effectiveness of quartz 

and carbonate. In both cases, the results overlap with the expectation that a lower amount of 

quartz and a higher amount of reactive carbonate may affect the strength of the sample. As a 

result, these formulas could be a suitable technique to control the results of 50% and 80% as 

well. Figure 3.89 and 3.90 shows the results of this calculation with 50 and 80% sample.   

 

 

Figure 3. 89 Effect of quartz and carbonate on composite cement paste samples [50% WLT] 
(Left Quartz / Right quartz and carbonate effect) 

 



  

Figure 3. 90 Effect of quartz and carbonate on composite cement paste samples [80% WLT] 
(Left Quartz / Right quartz and carbonate effect) 

 

By applying the formulas to all samples, the Kaolinite values increase as expected. This is 

due to presence of quartz as single co-exist phase with clay in Kaolinite. Compensation of 

filling effect of quartz reveals the effect of pure Kaolinite. By removing the quartz effect 

from Kovukdere, it reached up to high values again. The amount of clay in these two samples 

was much more than quartz. On the other hand, Kovukdere contains significant amount of 

carbonate phase compared to other samples. Another premise of pozzolanic activity may be 

the reduction of clay and carbonate amounts as a result of heat treatment. More information 

is needed to understand the durability of the mixed samples and the relationship between the 

decomposition of reactive phases (clay and carbonate phases). The decomposition of both 

clay and carbonates is important because these two phases are reactive phases in the 

composite cement composition. The pozzolanicity of calcined powder depends on the degree 

of decomposition of these phases. Figure 3.91 shows graphs of time-dependent strength and 

reduction in clay-carbonate quantities as a result of heat treatment (e.g. decomposition rates) 

for the 30% activated sample. By reading these graphs together, it gives information about 

the effectiveness of clay and carbonates on decomposition rates and compressive strength. 



        

Figure 3. 91 Variation of the reduction in the amount of clay and carbonate by heat 
treatment considering the compressive strength of blended cement paste (heat treated clay 

up to 30% WLT) 

 

In general, carbonate decomposition in carbonate-containing samples started at the 

temperature correspond to 80% mass loss rates. Proper substitutes such as Kovukdere, 

Kaolen and Tastepe can be an important indicator of the role of carbonates between 50% and 

80% associated temperature range. On the other hand, this situation is not the same for 

Camlica or Muratbey samples. It is important to note that the carbonates are decomposed at 

elevated temperatures. Based on the phase ratios calculated by Rietveld method, since the 

carbonate phase has not yet decomposed at low temperatures, the carbonate phase may appear 

to increase relatively when the clay phase de-hydroxylated (e.g. Kovukdere example). 

However, this should not be perceived as an increase in the amount of carbonate phase. 

Figure 3.92 contains the strength plot of the heat-treated samples of 50% compare the 

reduction rates. It is already known that 30% and 50% activated samples are similar. This 

similarity is due to the constant decomposition of the reactive phases. The strength values of 

heat-treated powders at high temperatures vary and should be associated with carbonate 

decomposition. 



 

Figure 3. 92 Variation of the reduction in the amount of clay and carbonate by heat 
treatment considering the compressive strength of blended cement paste (heat treated clay 

up to 50% WLT) 

 

The relationship between the compressive strength of the 50% sample and the reduction in 

the amount of clay and carbonate crystal phases (e.g. the rate of decomposition) shows a 

behavior like that of the 30% sample. This result indicates that 30% and 50% calcined 

samples are similar, and the basis is due to the decomposition of certain phases in the clay 

structure. Figure 3.93 shows the data of 80% samples. 

 



 

Figure 3. 93  Variation of the reduction in the amount of clay and carbonate by heat 
treatment considering the compressive strength of blended cement paste (heat treated clay 

up to 80% WLT) 

 

By considering these two plots at the same time, it is possible to interpret the relationship 

between decomposition and compressive strength of different heat-treated materials. It is 

seen that the samples with high strength values start to decompose in clay and carbonates at 

a low temperature but the decomposition with a steep slope at high temperature is observed. 

Other samples were found to exhibit an inverse behavior, i.e., decomposition at low rate and 

low reactivity. It should be noted that the amount of clay and carbonates is an important factor 

in this interpretation. The carbonate phase is not present in the kaolinite. Therefore, the mass 

loss due to all decomposition comes from clay materials. Therefore, the effect of the increase 

in strength directly comes from the de-hydroxylated clay. This shows the maximum strength 

gain that can be obtained from the active material calculated by the available data. 

At this stage, it would be useful to check the pozzolanicity measurements and their level of 

reliability by comparing them with the strength values obtained from the same samples. 



Figure 3.94 shows the pozzolanicity of virgin and heat-treated materials having calcined clay 

cement strengths with treating temperatures up to 30% of total mass loss. 

 

 

Figure 3. 94 Relation of pozzolanicity with compressive strength (for 30% heat treated 
sample) 

 

The pozzolanic property (determined by conductivity measurements) was increased for all 

samples from virgin (untreated) powder to 30% heat treated powders. However, some 

samples such as Kovukdere, Kaolinite, Muratbey and Camlica have higher pozzolanicities. 

Through the temperature range up to 30%, some clays are partially de-hydroxylated 

(activated) and the trend is normal. Figure 3.95 shows the pozzolanicity and compressive 

strength behavior of the sample of 50%. 

 

 

Figure 3. 95 Relation of pozzolanicity with compressive strength (for 50% heat treated 
sample) 



From 30% to 50% the trend of the samples in term of pozzolanicity (i.e. the activation 

indicator obtained from the electrical conductivity) proceeds as expected. However, only the 

smaples mentioned above are in the good pozzolinicity range, while others are in the variable 

or low pozzolanicity range. By increasing the treatment temperature to 700 ° C and above, it 

was found that the results did not fully coincide with the strength measurements. According 

to conductivity measurements, Kovukdere, Kaolinite, Camlica and Muratbey were expected 

to be more reactive and effective. However, as it can be seen in the graph on the right in 

Figure 3.93, Kovukdere, Kaolinite and Tastepe were found to have optimum properties. 

Consequently, it was confirmed that the carbonates had an adverse effect on the pozzolanic 

properties. In most cases, since the decomposition temperature of the carbonates is more than 

650 ° - 700 ° C, 80% heat treatment may help to better understand the situation. Figure 3.96 

is given to compare pozzolanicity measurements and strengths of samples prepared with heat 

treated clay to mass loss of 80%. 

 

        

Figure 3. 96 Relation of pozzolanicity with compressive strength (for 80% heat treated 
sample) 

 

Regardless of Kaolinite, comparison of plots shows that the expectations from pozzolanicity 

measurement and compressive strength are not adjusted correctly. For example, Kovukdere's 

pozzolanicity is further reduced than the original virgin powder. This occurs in high 

temperature heat treatment due to the decomposition of carbonates based on the reaction 

indicated. It can be considered to have an adverse effect on electrical conductivity. Thus, in 

the case of carbonate-containing materials, it is possible to consider the role of carbonates 

and the inefficiency of the electrical conductivity measurement results. However, it is 



necessary to evaluate the pozzolanicity and strength of the samples in terms of meeting this 

study expectations. The following graphs are provided as a step in obtaining these results 

appropriately. Figure 3.97 is a comparison of the pozzolanicity of the 30% sample (after 28 

days) with the reference amount of 1.2 and the ratio of the calcined clay cement sample to 

the pure cement strength (0.7 as a reference). 

 

 

Figure 3. 97 Compressive strength and pozzolanicity of all samples according to the 
reference values (calcined sample up to temperature associated to 30% of WLT) 

 

At this temperature, the pozzolancity of Kovukdere, Kaolinite, Camlica and Muratbey, as 

well as the mechanical strengths of Kovukdere, Tastepe and Bozalan, were higher than the 

reference value. Even the Ladik sample appears to be at the border. Factors affecting 

pozzolanicity is mentioned, and the difference between the two experiments clearly 

demonstrates this. Figure 3.98 represents 50% heat treated samples and their comparison with 

the specified reference values. 

 



 

Figure 3. 98 Compressive strength and pozzolanicity of all samples according to the 
reference values (calcined sample up to temperature associated to 50% of WLT) 

 

For this temperature value, the pozzolanicity of Kovukdere, Camlica, Kaolinite and 

Muratbey is above the reference point like the 30% treated material. There are three 

candidates in strength tests, Kovukdere, Tastepe and Kaolinite have a higher value than 

reference. Figure 3.99 shows the column graph of 80% samples. 

 

Figure 3. 99 Compressive strength and pozzolanicity of all samples according to the 
reference values (calcined sample up to temperature associated to 80% of WLT) 



Up to this point, all experiments are interpreted, and important information is obtained. 

Kaolinite was chosen as a touchstone sample. Besides, it was found that their behavior was 

coincided with the expected behavior. Kovukdere and Tastepe clay materials also show the 

potential of cement substitution. To make the final evaluation of the samples, it is useful to 

consider each sample separately and compare the compressive strength of the each with pure 

cement. Figure 3.100 shows the values of compressive strength in different calcination 

temperatures in the Bozalan sample. 

 

 

Figure 3. 100 Comparison of compressive strength of Bozalan sample subjected to different 
calcination temperatures with cement and 70% of cement compressive strength 

 

For Bozalan sample, 30% and 80% samples have almost the same strength, while 50% of the 

sample is less than the others and is equivalent to 70% of cement strength. It is believed that 

there may be secondary reactions in the temperature range of 50% and these may alleviate 

the separation of phases. However, further heat treatment times need to be analyzed. 

Furthermore, these results can be indicative of how heterogeneous the powder samples can 

be.  

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Co
m

p.
 S

tr
es

s 
(M

Pa
)

Hydration Time (Days)

CALCINED CLAY CEMENT (BOZALAN)

30% WL

50% WL

80% WL

Cement

70% of Cement Strength

30% 50% 80% Cement 70% of Cement Strength
2 22.7 16.9 24.26 25.2 17.6
7 36.6 25.6 36.6 38 26.6

28 50.5 45.6 50.1 62.6 43.9
50 47.9 49.6 56.6 69.6 48.7
90 51.2 56.4 61.3 77 53.9

Comp. Stress (Mpa)
Hydration Time (Days)

Milestones



Figure 3.101 shows the difference in the compressive strength behavior of Tastepe sample 

and pure cement.  

 

 

Figure 3. 101 Comparison of compressive strength of Tastepe sample subjected to different 
calcination temperatures with cement and 70% of cement compressive strength 

 

It is seen that the same tendency is possible for Tastepe. 30% and 80% samples are similar, 

and 50% samples are lower than the others. In this case, the strength of 80% activation after 

50 days indicates that Tastepe will decrease its strength in the long run, which would result 

in lower durability. However, it is necessary to measure the strength values after prolonged 

hydration in order to have more precise information about the behavior of the material. In the 

case of Tastepe, the reason behind the strength of 30% sample to be more than 50% is that 

the amount of clay in the sample is lower than the other phases. It should be considered that 

the decomposition of carbonate in the strength of the sample causes an increase in strength. 

Figure 3.102 shows the difference in the compressive strength behavior of Ladik sample from 

pure cement. 
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Figure 3. 102 Comparison of compressive strength of Ladik sample subjected to different 
calcination temperatures with cement and 70% of cement compressive strength 

 

Ladik results are already known to have low values and as shown in the graph, the strength 

behavior of this sample during the different heat treatment periods was similar in the early 

days. However, after 28 days, the strength of the samples decreased, and these values were 

found to be lower than the 70% of cement strength. On the other hand, high heat treatment 

can adversely affect and reduce strength. It can be said that almost most of the reactive phases 

decompose before this temperature and a new stable structure is formed which alleviates the 

reactivity of calcined clay at higher temperature. It could be assumed that the main role of 

the obtained strength is due to the presence of Anorthite and Halloysite. 

Figure 3.103 shows the difference in the compressive strength behavior of Kovukdere sample 

from pure cement.  
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Figure 3. 103 Comparison of compressive strength of Kovukdere sample subjected to 
different calcination temperatures with cement and 70% of cement compressive strength 

 

Kovukdere samples at all heat treatment temperatures show good pozzolanicity and 

acceptable strength values. All of them had almost the same behavior in the first days but 

30% and 50% of samples had the same tendency, while the values of the 80% heat-treated 

sample had surprisingly increased. After 28 days the rise was reduced but still 50 days of 

pure cement amount is close to the value. The sudden change in 80% treated clay may be due 

to decomposition of the carbonates present in the powder composition. In addition, the more 

de-hydroxylation of the clay, the more reactive and better pozzolanicity of the material. 

Figure 3.104 shows the difference in the compressive strength behavior of the Muratbey 

sample from pure cement. 
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Figure 3. 104 Comparison of compressive strength of Muratbey sample subjected to 
different calcination temperatures with cement and 70% of cement compressive strength 

 

The Muratbey sample was the sample with the lowest strength values among all samples. 

The strength behavior of the treated sample according to the strength measurements did not 

meet the expectation. This may be due to a small amount of decomposing clay and quartz, 

but all the strength curves are below 70% of cement strength. Therefore, it is very difficult 

to consider this sample as a potential candidate. The sample also includes some non-reactive 

silicate phases. 

Figure 3.105 shows the difference in the compressive strength behavior of the Camlica 

sample from the pure cement. 
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Figure 3. 105 Comparison of compressive strength of Camlica sample subjected to different 
calcination temperatures with cement and 70% of cement compressive strength 

 

Although Camlica performs better than Muratbey, its values are not within the acceptable 

range. This smaple showed an upward trend in the early days, but the rise was not permanent. 

As it is noted earlier about Camlica sample, there are various chemical phases, including clay 

and carbonates, but the amount of these phases is very small compared to the inert phases. 

As a result, despite having good pozzolinicity values, the strength property is very poor and 

is therefore not an acceptable candidate. 

Figure 3.106 shows the difference in behavior of the Kaolinite sample in compressive 

strength from pure cement. 
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Figure 3. 106 Comparison of compressive strength of Kaolinite sample subjected to 
different calcination temperatures with cement and 70% of cement compressive strength 

 

Kaolinite was chosen as a reference sample and its pozzolanicity and strength behaviors were 

already studied and discussed. Kaolinite also showed the acceptable strength performance as 

calcined clay, but the strength test results show the tangible difference between calcination 

temperatures of 80% to 50% or 80% to 30%. If more temperature effects on the pozzolanicity 

of the sample, it can be substituted cement as proper meta-kaolin. These results confirm the 

studies in the literature. 
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3.5 Discussion 
 

To summarize, characterization of the samples and strength measurement were performed 

for all samples. For evaluation, six schist type powder received from mine quarries inside the 

Turkey. Studies on the transformation of Kaolinite into meta-kaolin by powder calcination 

have already been conducted. Therefore, Kaolinite was identified as a reference sample in 

this study. In the first stage, all raw powders were evaluated by pozzolanicity and some other 

characterization tests. The predefined heat-treatment was then applied to all samples in three 

steps. These steps were determined considering the temperature range for various mass loss 

of each sample. Then the accurate temperature corresponds to 30%, 50% and 80% of total 

weight loss was calculated for heat-treatment of samples. The heat treatment procedure was 

initiated by heating the samples to the specified temperatures, and after 120 minutes waiting, 

air-quenching was carried out to keep the decomposed phases stable. These measurements 

were also made for the treated materials considering the material properties and electrical 

conductivity, and finally the compressive strength measurements were considered as the most 

important criterion for the evaluation of the materials. Samples were prepared by substituting 

30% of cement with calcined clay. The setting time for all samples was 2, 7, 28, 50 and 90 

days. The compressive strength test confirmed some assumptions about samples with 

optimum values, but somewhat contradicted the pozzolanicity measurements. This 

contradiction was thought to come from the carbonate source of the materials. In addition, it 

results from the opposite reaction to increase the electrical conductivity. Carbonates 

regenerate ionized calcium and hydroxide and influence the reduction in electrical 

conductivity, while using calcium hydroxide causes a decrease in electrical conductivity. 

As a result, Kovukdere and Tastepe were the main candidates for partial cement substitution. 

Other powders, however, could not show the appropriate results. It may be necessary to add 

minerals for the correct assessment of other candidates. This point will be addressed in the 

next section of the study. Since reservoir of Kovukdere and Tastepe clay powders will not be 

available for long periods of time, the empowerment of other raw powders may be important 

for applicability of this study in industrial scale. According to the results, it is seen that 

carbonate phase can play an important role in the hydraulic reactivity of raw materials. 



Therefore, for non-reactive or semi-reactive materials, it may be necessary to assess the effect 

and application of the carbonate's additive.  

In this part, it is tried to make inferences. Active aluminosilicate (hydrate) minerals could 

exist in different forms (crystal or amorphous), but not all clay phases are reactive. In 

addition, some of the raw materials contain carbonate compounds. The different 

characterization techniques were used during the studies. The XRD technique can only gather 

information about the phases in the crystal structure. However, it does not give clear 

information about amorphous phases. All mass loss (amorphous and crystalline clay phases 

and carbonates) from the material can be found in thermogravimetry studies, but due to the 

phases losing mass at the same temperatures, it cannot give a clear answer in the 

quantification of the phases separately. In order to determine the amount of clay that can be 

activated in the raw materials, the theoretical mass loss obtained from the amount of clay 

crystals obtained from XRD measurements and the mass loss observed in the TGA results 

were compared. If the TGA mass loss is higher than the theoretical mass loss, it means that 

the raw materials have an amorphous content which cannot be determined by XRD 

technique. If the TGA mass loss is less than the theoretical mass loss, this means that not all 

the aluminosilicate hydrate phases detected in the XRD can be activated. For the theoretical 

calculation of mass loss, it was accepted as the first approach that the clay structure in all raw 

materials was in the kaolinite structure. A layer of silica and an aluminum hydroxide layer 

are present in the kaolinite. During de-hydroxylation, one water release from the two 

hydroxide ions and remains in the structure for the function of active interface in an oxygen 

aluminum layer. In the calculations presented in the meantime, clays in all raw materials were 

accepted in kaolinitic structure. This may cause the mass loss to be expected to be ~ 30-40% 

larger than it may actually be. However, amorphous clayey will give important information 

about the phases. In the previous sections, it is tried to estimate the amount of amorphous 

material in the raw materials from the large peak that appeared in the XRD curves. It is found 

that this wide amorphous peak was different in various raw materials. This amorphous 

structure may be different glassy phases and may also include non-activated phases. 

In the following tables, the focus is on decomposable phases especially the clay and carbonate 

that cause mass loss. In these tables, XRD and TGA results were re-shared. Table 3.38 shows 

these values for Kaolinite. No carbonate phase was detected in kaolinite. The amount of 



kaolinite calculated by XRD Rietveld analysis is about 56% by weight. The mass loss 

observed in the same sample TGA is 7.55% of the total weight. 

The theoretical mass loss from the activation of the clay phase in all samples was calculated 

based on the chemical formula of kaolinite (Al2Si2O5 (OH) 4). That is, the mass loss resulting 

from the evaporation of theoretical water was calculated by counting an aluminum hydroxide 

layer to a silica layer. However, other clays, except kaolinite and its polymorphs, have an 

aluminum hydroxide layer on two silica layers. Some other clays (montmorillite and illite 

type), both molecular weights and relative structural water losses due to displacement of 

silicon / aluminum, Fe / Al or Mg / Al are different. The calculations given here should be 

considered as an initial estimation. For this calculation, the molecular weight of kaolinite was 

taken as 258 (Al = 27, Si = 28, O = 16, OH = 16 + 1 = 17 so K = 258). Considering that two 

water molecules will release from the kaolinite during activation, this mass is 34/258. 

Therefore, if the mass loss observed in TGA is more than 34/258 x kaolinite XRD%, it means 

that there is activatable clay in the powder which XRD cannot detect. If this value is less than 

the theoretical one, it means that all kaolinite cannot be activated. The amount of clay that 

can be activated can be calculated from the TGA results. By employing this method, the 

amount of inactive clay in kaolinite powder is given in Table 3.41. Since there is no carbonate 

in this sample, it is assumed that all mass loss comes from clay. 

 

Table 3. 41 Crystalline and inert portion of clay in Kaolinite 

 

 

The amount of amorphous clay in kaolinite sample is about 1.5% by weight. The same 

calculations were carried out for Bozalan sample in Table 3.42. Calculations were done as if 

kaolinite was present as clay phase. 

Sample  XRD Phase Amount (wt%) TGA Mass Loss (wt%) Explanation

Kaolinite 56% Clay 7.55% Clay Amorphous Clay

Activatable Clay 57.5 Total Clay 1.50%



Table 3. 42 Crystalline and inert portion of clay in Bozalan 

 

 

It is assumed that only mass losses below 700 ⁰C are due to clay since there is a portion of 

carbonate in the Bozalan sample. Based on calculation, the amount of clay that can be 

activated in Bozalan is 11% and the amount of clay that cannot be activated is 29%. 

Nevertheless, Bozalan performed relatively well in term of strength tests. This performance 

could be related to the carbonate phase and its reactivity. According to XRD results, there 

are no crystalline clay minerals in Tastepe powder sample. However, there is still a mass loss 

of 1.1% when the mass loss from the carbonate decomposition is omitted. This probably 

comes from the amorphous clays. Accordingly, in this sample, up to 9% of amorphous clays 

are not visible in XRD that is shown in Table 3.43. 

 

Table 3. 43 Crystalline and inert portion of clay in Tastepe 

 

 

According to these results, the proper performance of Tastepe powders in strength tests can 

be related to the high amount of carbonate phase in this powder. However, this may 

negatively affect the long-term strength of the composite cement. Corrosion and cracks, 

especially due to sulfate, can be a problem.  

Sample  XRD Phase Amount (wt%) TGA Mass Loss (wt%) Explanation

Bozalan 40% Clay                            
8% Carbonate

1.48% Clay                 
3.55% Carbonate

Inactive Phase

Activatable Clay 11% 41-11=29%

Sample  XRD Phase Amount (wt%) TGA Mass Loss (wt%) Explanation

Tastepe       32% Carbonate
1.17% Clay                 

9.18% Carbonate
Amorphous Clay

Activatable Clay 11% 8.90%



The Camlica powder contains almost equal amounts of carbonate and clayey material. By 

calculation of mass loss, the amount of clay that can be activated in Camlica schist decreases 

to 7% while 8% of clayey material is inactive. These results are shown in Table 3.44. 

 

Table 3. 44 Crystalline and inert portion of clay in Camlica 

 

 

There is a small amount of active clay in Camlica. However, there is a considerable amount 

of carbonate in this powder. Camlica schist may be used as a source of carbonate for other 

schist samples.  

The amount of clay that cannot be activated in the Kovukdere sample is shown in Table 3.45. 

As it can be seen from the Kovukdere strength tests, it is the clay containing schist that can 

be activated at the highest rate.  

 

Table 3. 45 Crystalline and inert portion of clay in Kovukdere 

 

 

Moreover, Kovukdere schist carries its own carbonate. Therefore, it is not surprising that 

Kovukdere performs so well.  

Sample  XRD Phase Amount (wt%) TGA Mass Loss (wt%) Explanation

Camlica      15% Clay                     
14% Carbonate

6.58% Clay                 
3.82% Carbonate

Inactive Clay

Assumed 
Inactive Clay

15-7=8%

Sample  XRD Phase Amount (wt%) TGA Mass Loss (wt%) Explanation

Kovukdere      54% Clay                     
16% Carbonate

6.42% Clay                 
9.84% Carbonate

Inactive Clay

Assumed 
Inactive Clay

56-48=6%



Muratbey schist has similarities with Kovukdere and comes from the same region as mine 

location. The amount of clay that can be activated in Muratbey schist is high with 32%. 

However, the carbonate phase in Muratbey schist did not found by XRD. Despite the 

relatively high amount of clay, the strength values of Muratbey schist as a supplementary 

cementitious material were disappointing. Table 3.46 shows the inactive phase amount in this 

sample.  

 

Table 3. 46 Crystalline and inert portion of clay in Muratbey 

 

 

Muratbey schist does not contain carbonate. Due to the possible potential of this schist 

sample, it would beneficial to enrich it with the carbonate phase and re-evaluated. 

The amount of non-activatable clayey phase of ladik schist is shown in Table 3.47. Most 

Ladik clay can be activated, but it is not yet clear why this powder performs better than 

Muratbey. 

 

Table 3. 47 Crystalline and inert portion of clay in Ladik 

 

 

Perhaps more performance can be obtained by adding carbonate to Ladik clay with the 

addition of Camlica.  

Sample  XRD Phase Amount (wt%) TGA Mass Loss (wt%) Explanation

Muratbey      42% Clay                     9.43% Clay                 Inactive Clay

Assumed 
Inactive Clay

42-32=10%

Sample  XRD Phase Amount (wt%) TGA Mass Loss (wt%) Explanation

Ladik      42% Clay                     9.43% Clay                 Inactive Clay

Assumed 
Inactive Clay

42-32=10%



3.6 Conclusion 
 

So far, at least three of the six sample raw materials (Kovukdere, Tastepe and Bozalan) based 

on the results are proper substitute. Table 3.48 ranked the potential schist type raw materials. 

At the same time, it is possible to put theoretical calculations on better scenarios in order to 

better determine the potentials of schist samples. According to the obtained results, 

Kovukdere has outperformed expectations and study target. More than Kovukdere, Tastepe 

and Bozalan schists showed a performance close to the target of 28 days strength (at least 

90% of the strength of the paste prepared with pure cement). 

 

Table 3. 48 Sorting table of all sample in term of applicability of schist as possible potential 
for partial substitution of cement (Darker color = more potential) 

 

 

 

 

 

Ranking Sample

1st Kovukdere

2nd Tastepe

3rd Bozalan

4th Ladik

5th Camlica

6th Muratbey



 

 

 

 

 

CHAPTER 4 
 

 

LIMESTONE CALCINED CLAY and CARBONATE 
CEMENT (LC4) 

 

 

 

 

4.1 General 
 

As it is stated, this study intends to evaluate the potential of a local schist mine as ordinary 

Portland cement substitution. In previous chapter, six different samples from various parts of 

Turkey were studied for their potential as a proper SCM material. They were from 

Kovukdere, Muratbey, Camlica, Bozalan, Ladik and Tastepe stone quarries. All of them were 

calcined up to temperatures that would provide 30, 50 and 80% of total weight loss associated 

with the de-hydroxylation of clay minerals contained in the schists. Calcined clay cement 

paste was prepared by replacing the OPC with 30 wt% calcined clay. The compressive 

strength measurement showed that the Kovukdere and Tastepe were the possible candidates 

for SCMs. According to the X-ray diffraction, the main difference of these two samples was 



an increased amount of carbonate phases besides clayey minerals. In addition, the 

composition of Kovukdere and Muratbey resembled to each other strongly except for their 

carbonate contend. These results necessitated further studies with engineered mine 

compositions.  

Based on the availability and amount of the deposit, Muratbey was selected as the base schist 

whose composition will be tailored with carbonate additions. Four different samples were 

taken from different locations of the Muratbey mine quarry according to their appearance 

(colors). They were analyzed for their phase composition. The chemical and phase 

compositions of these four samples were similar while the amounts of carbonate were 

different. In addition, M4 contained graphite and pyrite on top of clayey type materials and 

carbonate. All samples were topped off up with carbonate (calcite from Muratbey mine) such 

that their carbonate contends became 15 wt% like the phase distribution of Kovukdere schist. 

Based on the results obtained in the first phase of project, all tailored samples were later 

calcined up to corresponding temperatures that would yield 80% of the total weight loss. The 

four new custom-designed samples were called M1 (Green), M2 (Brown), M3 (Pink) and M4 

(Black). Calcined unmodified samples were labelled as C3, and carbonate added, custom-

designed and calcined samples were labelled as LC4. 

The cube samples (4cm.4cm.4cm) were prepared for all calcined schist type powders. To 

ascertain the effect of carbonate, values of LC4 samples were compared to the values obtained 

from the same sets of C3 (Calcined Clay Cement). The results of the compressive strength 

measurement showed that the carbonate chemical phase could influence the strength of 

composite cement paste drastically. Among all four types of samples, calcined M4 schist type 

powder showed the highest potential to be a partial cement substitute. 

 

 

 

 



4.2 Experimental 
 

4.2.1 Materials 
 

The Muratbey mine is one of the mines that belong to AkcanSA cement manufacture in 

Istanbul near Catalca district. This mine includes around 2 km2 as area. Figure 4.1 shows the 

approximate location and area of the Muratbey mine. 

 

 

Figure 4. 1 Muratbey mine (Catalca District) – Google Earth 

 

It is obvious from the appearance of different sections of the quarry that there would be a 

variation in chemical composition of Muratbey mine sections, inferred from the color variety. 

Therefore, four different samples were taken from the mine quarry. Figure 4.2 illustrates the 

chunks of the four schist type samples which were obtained from four parts of mine quarry. 

 



 

Figure 4. 2 Four different samples from Muratbey mine quarry 

 

The four approximately 40 kg rock samples were taken to AkcanSA cement manufacture for 

grinding and storage. Figure 4.3 shows the ground schist type samples that are classified 

according to their colors. 

     

Figure 4. 3 Ground powder Muratbey schist type samples ready for calcination as (a) M1-
Green, (b) M2-Brown, (c) M3-Pink and (d) M4-Black 

a b 

c d 



The M1 and M2 were obtained from two neighboring locations in Muratbey mine that were 

only seven meters away from each other. The other two samples were from a short distance 

away from the green and brown labelled samples. It appeared that a sort of geological 

phenomena (faults) maybe the reason for the variations in the mine region. Regardless of 

topographical identification, chemical compositions, phase structure and potential of the all 

received virgin powders were evaluated with the help of the listed characterization methods. 

The Ordinary Portland Cement (OPC) is an ENS 197-1 CEM 42.5 R type which is provided 

by AkçanSA Cement Manufacturer. The limestone (𝐶𝐶𝐶𝐶����) with the particle size of ≤ 5 µm is 

also provided by AkçanSA. 

 

4.3 Sample Preparation 
 

4.3.1 Calcined Clay Cement (C3) Samples 
 

The decomposition behavior of virgin schist with and without carbonate additions was 

obtained from the thermogravimetric analyses (not shown here but given in result section). 

Also, the total weight losses due to de-hydroxylation were calculated. Based on the 

experiences gained in the first phase of the project, it was determined that the optimum and 

safe calcination temperature is associated with 80% of the total weight loss. This temperature 

was experienced to be enough for the decomposition and activation of most of the clayey 

minerals in our schist samples and for avoiding overheating which causes dead-burning of 

clay. Hence, the proper activation temperatures for each sample were calculated as it will be 

described in the next section. 

The accurate temperature associated to the 80% of total weight loss were calculated and all 

the powders were heat treated or in another term calcined up to this temperature with a 

heating rate of 10°C/min. The calcination method was determined to follow the stepped 

heating schedule. Powders (600 gr) were heat treated up to the starting point of the 

decomposition interval (300°C) in crucibles, followed by a dwell time of 1 hour and then 

heated up to temperature associated to 80% of total weight loss and keeping the temperature 



constant at this temperature for 2 hours. These isothermal steps of heat treatment were applied 

to samples to homogenize the heat distribution within the powders of 600 grams. Then, 

crucibles containing heat treated materials were cooled down to the room temperature by air 

quenching. 

 

4.3.2 Limestone Calcined Clay and Carbonate Cement (LC4) Sample 
 

All the four schist mine powders were topped up to 15 wt% calcium carbonates contend to 

obtain M1, M2, M3 and M4 with 15% . Indeed, these samples are obtained by adding a 

certain amount of calcium carbonate to virgin schist type material in a way that its total 

calcium carbonate content reaches to 15 wt%. After that, the same heat treatment and air 

quenching processes as C3 were performed on the LC4 samples. 

 

4.3.3 Cement Paste Sample Preparation 
 

After the calcination process and activation of the schist type materials with and without 

calcium carbonate, these activated samples were added to the Ordinary Portland Cement 

(OPC) such that 30 wt% of the solids (i.e composite cement mixture) is activated schist and 

70 wt% is OP cement. For the strength measurement a series of cement paste samples with 

the w/solid ratio of 0.5 were prepared by mixing 700 g of cement, 300 g of one of the calcined 

materials and 500 g (500 mL) water. The samples for the compression test were then prepared 

by casting all the composite cement paste samples described earlier in the molds with the 

dimension of 40×40×40 mm. These composite cement samples were designed as Mx or Mx 

with 15% CC. The x subscript indicates the number of the calcined schist type material. Also, 

in order to compare the strength of the C3 and LC4 samples with OPC, a standard bench 

marking cement paste sample was prepared by casting a mixture of 100% OP cement and 

water, with the same w/solid ratio in the same molds. After 24 h, the molded samples were 

separated from the molds, and put into circulating water with the temperature of 23°C and 



kept there until the compression test days which were specified as 2, 7, 28, 50 and 90 days 

of hydration. Details of the compression test will be given in the characterization part.  

 4.4 Tests and Methods   
 

4.4.1 Phase Analysis 
 

The best phase identification for materials with unknown phase contend is the x-ray 

diffraction analysis. Therefore, at the first step the x-ray spectrum from each virgin sample 

was analyzed. X-ray diffraction analyses are done using Bruker D8 Advance diffractometer 

utilizing Cu-Kα (λ=1.54 Å) radiation. The divergence slit size is fixed and was 0.5°. Sample 

were scanned on the rotating stage between 5 to 90  using step size of 0.02  and time 

per step of 1s. Rietveld analysis was carried out on samples to identify and quantify the 

amount of potentially pozzolanic and inert phases. Also, the amorphousness to crystallinity 

ratio of all virgin samples were determined by using the same software. The XRD 

diffractogram of all calcined powders were also analyzed and compared to the virgin powders 

to observe the effects of the calcination process. It should be mentioned that in case of LC4 

powders, the comparison was performed between schist with 15% carbonate and the same 

mixtures after calcination. To test the accuracy of the XRD device and the software about the 

phase distribution of the samples and the crystallinity and amorphousness values, another 

experiment was designed. In fact, in order to correct the amount of graphite in one of the 

samples (which contained graphite), an experiment was done on a composite sample 

containing graphite and calcite with known amounts of the two phases. The same x-ray 

procedure was applied to this composite to determine the correct amount of graphite from x-

ray analysis. In order to make a mixture with known amounts of graphite and calcite, 5 g of 

graphite powder was added to 95 g of calcite, and then the phase analysis were done on the 

mixture by using XRD. The results of the phase analysis and the proportion of two phases 

will determine the accuracy of the analysis. 

 

 



4.4.2 Thermal Analysis 
 

Thermal analysis [TG/DTA] (NETZSCH STA 449 JUPITER, Selb, Germany) of the samples 

were done in a temperature range between 30⁰C and 1000⁰C under Nitrogen gas. N2 

atmosphere was chosen in order to eliminate the possibility of oxygen in air reacting with 

some components of some samples (e.g. Sulfur and graphite). The heating rate was 10 K/min. 

For every run 50mg of as-received powder sample was used. This amount of specimen mass 

is a very small compared to the bulk powder samples which were calcined for preparing 

compressive test samples. Thermogravimetric analysis of each sample would extract an 

important data about the decomposition temperature range of virgin schist powder and the 

amount of weight loss that represent the potential reactivity of it. Based on the information 

extracted from the TGA graphs of the virgin samples, the proper temperatures for activating 

each of the schist type samples were determined. For each sample, the activation temperature 

is the temperature associated to 80% of total weight loss in the virgin sample’s TGA graph. 

Additionally, in order to control the accuracy of calcination process, the virgin and heat-

treated powders were also evaluated by thermogravimetric analysis. After calcination 

process, the total weight loss extracted from the TGA graph of the calcined sample should 

be 80% of the total weight loss of the virgin one. In order to define the reason for early 

decomposition of calcium carbonate when schist type material contains carbonate, another 

experiment was designed. Two TGA tests were done on 50 mg of calcium carbonate with 

two different heating rates of 1 K/min and 10 K/min. The comparison between these two 

TGA graphs will show the kinetic effect on the early decomposition of calcium carbonate. 

 

4.4.3 Microstructure Analysis 
 

In order to identify the differences between the virgin and calcined version of each sample, 

the microstructure of both virgin and calcined powders was characterized using a scanning 

electron microscopy coupled with energy dispersive X-ray microanalysis (SEM/EDS). 

 



4.4.4 Compression Test 
 

In order to evaluate the effect of activated samples on the early and late strength of cement, 

the compression test was done on all composite cement samples. The compressive strength 

measurement is the best indication to evaluate the potential candidates for cement 

substitution. This test was carried out on the 40×40×40 composite cement samples until 

failure using a MATEST E161N Servo-plus evolution compression test machine. For each 

composition and each hydration time, the given compressive strength values in the results 

section is the average of the strength of three samples. The compressive strength of the 

calcined clay cement (C3) and limestone calcined clay and carbonate cement (LC4) are then 

compared to indicate the effects of activated clay materials and also limestone on the early 

and late strength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.5 Results 
 

 

4.5.1 Virgin Materials (Before Activation) 
 

4.5.1.1 Phase Distribution 
 

4.5.1.1.1 M1 - Green   
 

The main purpose of this study is to find the best potentially pozzolanic candidate for cement 

partial substitution. So, the schist virgin powders which contain higher amounts of potentially 

reactive phases deserve closer consideration in this study. Figure 4.4 illustrates x-ray 

diffractogram of virgin M1-Green schist samples.  

 

 

Figure 4. 4 M1-Green schist type sample XRD spectrum and quantification 

 

XRD analyses indicated that the virgin M1 schist powder contains 36.2% crystalline and 63.8 

wt% amorphous amounts. Crystalline phases included quartz, calcite and different types of 
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clayey minerals. The total amount of inert quartz phase was estimated as ~ 22.5 wt% and the 

total clayey content portion was around 58.9 wt%. The dominant clayey phase is illite (24.5 

wt%). The amount of carbonate phase was calculated as 0.9 wt%. Other phases constituted 

17.7 wt%. Table 1 lists the quantitative phase composition of M1 sample. Their physical and 

chemical information (i.e. crystal structure and chemical formula) and weight percentages 

are also included.  

 

Table 4. 1 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M1-Green virgin powder 

 
 

In addition to inert quartz phase, M1 schist sample contained several clayey material phases 

(e.g. illite, Muscovite, Clinochlore and Dickite). During the calcination the amount of 

activation of these chemical phases could determine the reactivity of schist type sample. 

Besides the clays there are, phases like Albite and Anorthite which have compositions similar 

to natural glasses. The amount of carbonate phase was not significant.  

 

4.5.1.1.2 M2 – Brown 
 

The locations where the brown sample and the green sample were neighboring each other. 

Therefore, these two samples were expected to have similar chemical and phase composition. 

However, there was a significant difference in their clayey contents. Figure 4.5 illustrates x-

ray diffractogram of virgin M2-Brown schist samples. 

 

Chemical Phases wt% Crystal Structure Chemical Formula
Quartz 22,5 Hexagonal SiO2
Calcite 0,9 Rhombo CaCO3
illite 24,5 Monoclinic ( K , H3 O ) Al2 Si3 Al O10 ( O H )2

Muscovite 23,1 Monoclinic K Al2 Si3 Al O10 ( O H )2
Albite 3,8 Triclinic ( Na , Ca ) ( Si , Al )4 O8

Clinochlore 6,5 Monoclinic ( Mg2.96 Fe1.55 Fe.136 Al1.275 ) ( Si2.622 Al1.376 O10 ) ( O H )8
Dickite 4,8 Monoclinic Al2 Si2 O5 ( O H )4

Anorthite 12,1 Triclinic Na.25 Ca.71 ( Al2 Si2 O8 )
Titanium Oxide 1,8 Monoclinic Ti3 O5



 

Figure 4. 5 M2-Brown schist type sample XRD spectrum and quantification 

 

The XRD program in house estimated from the X-ray diffractogram of M2 sample 39% 

crystalline versus 61% amorphous content in this sample. Almost 35 wt% of this schist was 

quartz phase. The clayey portion of the schist was 51.3 wt%. A total of 3.8 wt% of it was 

carbonate phase. Other crystalline phases that have glass-like chemical compositions were 

around 9.9 wt%. Table 4.2 lists all existing chemical compounds of M2 schist, their crystal 

structures and amounts.  

 

Table 4. 2 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M2-Brown 
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Sample # Chemical Phases at% Crystal Structure Chemical Formula
1 Quartz 35 Hexagonal SiO2
2 Calcite 3,8 Rhombo CaCO3
4 Muscovite I 28,2 Monoclinic K Al2 ( Al Si3 O10 ) ( O H )2
4 Muscovite II 16,1 Hexagonal ( K , Na ) ( Al , Mg , Fe )2 ( Si3.1 Al0.9 ) O10 ( O H )2
9 Albite 4 Triclinic ( Na , Ca ) ( Si , Al )4 O8
5 Clinochlore 3,3 Monoclinic ( Mg5 Al ) ( Si , Al )4 O10 ( O H )8
3 Kaolinite 3,7 Triclinic Al2 ( Si2 O5 ) ( O H )4
7 Anorthite 5 Triclinic Ca ( Al2 Si2 O8 )
8 Titanium Oxide 0,9 Orthorhombic Ti3 O5



As a general statement, the chemical composition of M2 schist resembled M1, However, 

existing differences could vary their reactivity potential. The dominant crystalline clayey 

compound is Muscovite which is known as a complex clay crystal. The minor phases 

contained Albite, Anorthite and Titanium Oxide. Glassy content could take a part in 

reactivity. The carbonate phase amount is higher than the M1 but still not enough to have 

significant effect on hydration processes.  

 

4.5.1.1.3 M3 – Pink 
 

The Pink schist is another source of clayey materials in Muratbey mine region. Figure 4.6 

shows the XRD diffractogram of virgin M3 sample. 

 

 

 

Figure 4. 6 M3-Pink schist type sample XRD spectrum and quantification 

 

The Rietveld analysis claims 40.6 wt% crystallinity and 59.4 wt% amorphous content of this 

schist sample. The inert quartz phase is estimated around 34.9 wt% while it contained 52.5 

wt% of clayey structures. The calcite amount is almost 5 wt% that is still low for a strong 
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influence on hydration of pozzolans. Table 3 lists the phase composition of M3 sample and 

their crystal structure and weight percentages. 

 

 

Table 4. 3 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M3-Pink 

 
 

The clayey structures of M3 sample is like M2. According to the x-ray diffraction analysis 

results, the two mentioned samples projects a similar potential of reactivity.  

 

4.5.1.1.4 M4 – Black  
 

The M4 schist material appeared to be somehow different from the others. Based on visual 

inspection the color and appearance of this sample may put the reactivity of M4 in question. 

Figure 4.7 illustrates the xrd spectrum of virgin M4 schist sample.  

 

Sample # Chemical Phases at% Crystal Structure Chemical Formula
1 Quartz 34,9 Hexagonal SiO2
2 Calcite 5 Rhombo CaCO3
4 Muscovite I 28,4 Monoclinic K ( Al1.88 Fe0.12 ) ( Si3 Al ) O10 ( O H )2
4 Muscovite II 18,2 Hexagonal ( K , Na ) ( Al , Mg , Fe )2 ( Si3.1 Al0.9 ) O10 ( O H )2
9 Albite 5,8 Triclinic Na Al Si3 O8
3 Kaolinite 5,85 Triclinic Al2 ( Si2 O5 ) ( O H )4
8 Rutile 0,4 Tetragonal Ti O2



 

Figure 4. 7 M4-Black schist type sample XRD spectrum and quantification 

           

Table 4.4 lists the phases of M4 sample and their crystal structure and weight percentages. 

 

Table 4. 4 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M4-Black 

 

 

A surprising phase of this sample was Pyrite that was 0.9 wt% of schist. According to the x-

ray diffraction results for M4 sample, it seems that there would less hope in terms of its 

activation.  
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Based on the quantification routine of the existing XRD software, in M4 sample the amount 

of graphite exceeded 42.5 wt% of the powder. The peculiar property of graphite is the 

exaggerated peak intensity in x-ray diffractograms. In order to correct the exaggerated 

amount of the graphite, a known calibration experiment was conducted. The result of the 

experiment can be seen in Figure 4.8 that shows an unusually high intensity of graphite peak 

in a mixture of graphite and calcium carbonate with a mixing ratio of carbonate to graphite 

of 95 to 5 wt% respectively. The quantification routine of the XRD software showed 45% of 

graphite phase in the mixture that contained just 5% in reality. 

 

 

Figure 4. 8 Mixture of 95 wt% calcium carbonate and 5 wt% graphite XRD diffractogram 

 

4.5.1.2 Activation Process 
 

In order to determine the proper temperature for activation that should be applied to each 

sample, the TGA analysis were performed. The results threw light into the decomposition 

behavior of the samples. 
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4.5.1.2.1 M1-Green  
 
The M1 schist thermogravimetric graph analysis is shown in Figure 4.9. The TG of the M1 

illustrated the decomposition temperatures associated with different chemical phases. 

 

 

Figure 4. 9 TGA of M1-Green virgin powder 

 

Apparently, the low temperature weight loss was related to the non-structural water existing 

as moisture inside the powders. The total weight loss associated with clayey phases was 

around 5% that indicated a moderate reactivity of this schist. The main decomposition started 

around 350°C, and this decomposition reaction went up to 600°C. This early reaction was 

most likely related to the decomposition of one of the clayey materials which may be even 

in the amorphous portion of the powders. Since there are several clayey components in all 

schist samples, DTG showed a series of weight losses in the temperature range associated 

with the de-hydroxylation of clayey materials. Carbonate decomposition takes place in the 

650°C to 850°C temperature interval. Some portion of weight loss could be related to the 

decomposition reactions of the amorphous phases of various chemistries.   
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4.5.1.2.2 M2-Brown 
 
The virgin brown sample thermogravimetric analysis represents the early decomposition of 

some clayey type component. Figure 4.10 illustrate the TG of the M2-Brown schist.  

 

 

Figure 4. 10 TGA of M2-Brown virgin powder 

 

The decomposition started at around 250°C and the total weight loss was calculated as 5.29%. 

The clayey components de-hydroxylated in different temperature intervals up to 650°C. The 

carbonate decomposed between 650°C to 800°C. The total weight loss due to decomposition 

was not very different than M1.  

  

4.5.1.2.3 M3-Pink 
 

Figure 4.11 shows the TG graph of M3-Pink schist. The decomposition temperature range 

and behavior resembled the one from M2. The total weight loss that was around 6.43% 

confirmed this assumption that M2 and M3 are more similar to each other in their 

decomposable phase contend than the two others.  
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Figure 4. 11 TG of M3-Pink virgin powder 

 

The low temperature weight losses in TGA graph were related to the evaporation of non-

structural water. The de-hydroxylation of clayey phases started around 450°C and continued 

until at least to 650°C. At this temperature, decomposition of carbonate phase started and 

lasted to 800°C at this heating rate.  

 

4.5.1.2.4 M4-Black 
 
The thermogravimetric analysis of M4-Black schist is illustrated in Figure 4.12.  
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Figure 4. 12 TGA of M4-Black virgin powder 

 

The M4 schist contained similar clayey components like the other samples from the same 

mine. However, the de-hydroxylation of these phases started at 500°C. It seemed as if that 

the crystal structure of the clayey phases in this sample were more stable. As indicated in the 

XRD phase analysis and was obvious from the color of this sample, it contained graphite 

which decomposed around 730°C. There were two different carbonate phases in M4. Calcite 

and Ankerite decomposes in temperature range of 750°C to 830°C.  

 

Temperature ranges that would correspond to 30%, 50% and 80% of the total weight losses 

due to de-hydroxylation or decomposition reactions were calculated based on the TG 

analyses of the schist and schist + carbonate samples. These temperature ranges are listed in 

Table 4.5. 
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Table 4. 5 Decomposition temperature intervals and total weight loss for schist powders 
w/o carbonate additive 

 
 

As it can be seen in the table the accurate temperature associated to the 80% of total weight 

loss were calculated and all the powders were heat treated or in another term calcined up to 

this temperature. These temperatures are calculated based on the TGA analysis which 50 mg 

of each sample was used. In real experiments which the sample amount in the box furnace is 

at least 500 mg, the heat treatment of this massive amount may differ from the TGA analysis. 

 

4.5.1.3 Microstructure Analysis 
 

4.5.1.3.1 M1 – Green 
 

The electron micro-graphs helped to evaluate the M1 schist phase distribution according to 

their appearance. Figure 4.13 shows the microstructure of green schist in different 

magnifications.  

 

Sample Decomposition Starts @ (⁰C) Decomposition End @ (⁰C) 80% of range (⁰C) Total WL (mg) Total WL (wt%)

M1 (Green) 350 760 640 2.48 -4.75
M2 (Brown) 300 780 680 2.52 -5.29
M3 ( Pink ) 300 800 740 3.32 -6.43
M4 (Black) 500 825 770 7.83 -15.64

M1 w/t 15% CC 300 825 770 5.51 -10.89
M2 w/t 15% CC 300 830 768 4.9 -11.32
M3 w/t 15% CC 300 825 770 5.24 -10.95
M4 w/t 15% CC 500 850 810 9.93 -18.51



                           

Figure 4. 13 M1- Green schist type sample micrograph in different magnification 

 

As it can be seen the M1 micrograph, the main obvious components of this schist type 

material were quartz and clayey phases. The layered structure like non-symmetric sheets 

were interpreted to be clays. Also, the calculated average particle size for this sample was 

around 33 µm. For further identification of these various prismatic shapes, EDS analysis was 

carried out. Figure 4.14 represent the elemental distribution map in M1 schist obtained with 

EDS. 



                 

 



 

 

Figure 4. 14 EDS elemental analysis of M1- Green Schist 

 

The EDS analysis of M1 – Green schist shows the larger particles of quartz and clayey 

compounds and minor phases as well. The Al/Si ratio in this sample is 0.3. The most 

dominant elements are O, Si and Al which indicated the existence of clays. Red circles 

represent the inert quartz particles and green circles illustrate the clayey phases like Illite, 

Muscovite and Clinchlore. The amount of carbon in this microstructure was around 14% 

which is shown as blue circles that are related to carbonate phase which is mainly calcite. 

Also, some pebble shape particles are shown with brown circles which would be titanium 

oxide.   

 

 



4.5.1.3.2 M2 – Brown 
 

The microstructure of M2 – Brown schist taken at different magnifications are shown in 

Figure 4.15.  

 

 

            

Figure 4. 15 M2-Brown schist type sample micrograph in different magnification 

 

M2 microstructure resembles the one of M1. Dominant mineral phases are quartz and clayey 

materials. The average particle size (35 µm) seems somehow close to M1. Also, the layered 

structures in larger chunks appeared sturdier and thicker. Figure 4.16 illustrates the EDS 

elemental results.  

 



        

 



 

Figure 4. 16 EDS elemental analysis of M2- Brown Schist 

 

The microstructure of M2 schist mainly consisted of quartz and clayey components. The 

Ca/Si ratio is 0.08 and Al/Si ratio is about 0.48. The ratios are like M1 schist but the amount 

of quartz in this sample is higher while the total amount of clays is lower. Red circles show 

some particles of quartz and green circles represent clayey minerals. Other minor phases like 

carbonate illustrated by blue circle and titanium oxide with brown one.  

 

4.5.1.3.3 M3 – Pink 
 

Figure 4.17 shows the microstructure analysis of M3 schist sample. Based on the x-ray phase 

analysis, this sample was expected to show significant resemblance to M2 and M3 samples. 



 

  

  

 

 

 

 

 

 

 

 

 

 

Figure 4. 17 M3-Pink schist type sample micrograph in different magnification 

 

The microstructure of M3 schist also contains quartz particles and obvious layered structures 

that were interpreted as clayey minerals.  The particle sizes (30 µm) resembled M2 sample 

and close to M1.  

Figure 4.18 illustrates the EDS elemental analysis of M3 schist that would expose more 

detailed information.  

 



              

 



 

            

Figure 4. 18 EDS elemental analysis of M3- Pink Schist 

 

The elemental analysis of M3 material shows heterogeneous distribution of clay and quartz. 

The Al/Si ratio is almost 0.4. According to the colored map, the Si dominant regions mostly 

introduce silicon oxide or quartz. Combination of Al, Si and O may be accompanied by Fe, 

Na or Mg makes the region inscribed by clay components. Red circles declare the existence 

of quartz and green circle, clayey materials. As it is mentioned before the blue circle shows 

carbonate phase and brown one represents the titanium oxide.  

 

4.5.1.3.4 M4 – Black 
 

Figure 4.19 displays the micrographs containing the microstructure of M4–Black schist 

sample that. Based on the quantitative phase analysis with the help of XRD, this sample was 

expected to show some differences to other samples.  



 

 

Figure 4. 19 M4-Black schist type sample micrograph in different magnification 

 

The microstructure of M4 sample revealed a larger fraction of plate-like particles than the 

other three samples. The particle sizes seem somehow smaller than M1 in some parts, but the 

average particle size (35 µm) is close to other three samples. Figure 4.20 contains the 

elemental map analysis of the M4 schist for better interpretation of phase distribution.   
 



          

 

 



           

Figure 4. 20 EDS elemental analysis of M4- Black Schist 

 

The elemental analysis of M4 samples shows a variety of phases which distributed 

heterogeneously. Ca/Si ratio is about 0.3 and Al/Si ratio is almost 0.4. The proportions reveal 

this fact that the clayey content of this powder is somehow lower than the others but not 

significantly. 

 

4.5.2 Calcined Materials (C3 and LC4) 
 

Phase distribution of the investigated virgin schist samples indicated that all of the schist type 

materials could have the possibility to be activated to be used as potential cement substitute. 

Therefore, we decided to evaluate their potential based on the two different recipes. One aim 

was to assess potential of various schist materials as there were mined, that this was the first 

phase of project. The second phase of the project was launched to investigate the effect of 

activated calcia additions to activated schists on composite cement hydration, strength and 

durability. We will now compare the calcined clay cement (C3) which had no carbonate 

additions; and calcined clay/carbonate mixtures added to cement (LC4). Therefore, in C3 

phase, the samples included only virgin samples without carbonate addition. This means 

there is just the original carbonate content inside the schist composition. On the other hand, 

LC4 samples contained the virgin powders with the carbonate content topped off to 15 wt% 

of the total composition. 

 

 

 

 



 4.5.2.1 Phase Distribution and Evolution during activation process 
 
The X-ray diffractogram of all calcined powders were analyzed and compared quantitatively 

to the phase distributions of virgin powders to observe the effects of the calcination process. 

For the LC4 powders whose carbonate amount was topped off to 15 wt%, the comparison 

was performed between schist with 15% carbonate and the same mixtures after calcination. 

 

4.5.2.1.1 M1 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 
According to the x-ray analysis before calcination, the M1- Green schist powder contained 

about 0.9 wt% carbonate. This carbonate content was topped of to 15% and x-ray 

diffractograms of virgin and heat-treated powders were evaluated. Figure 4.21 shows both 

the virgin and calcined powders spectra on the same graph. Table 4.6 represents the chemical 

phase distribution and detailed information about their crystal structure. 

 

 

 

Figure 4. 21 X-ray spectrum of virgin vs. calcined M1- Green schist powder 
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Table 4. 6 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M1-Green virgin and calcined powder 

 
 

Based on the Rietveld analysis of virgin and calcined M1 schist (LC4), the crystalline phases 

amount changed from 36.2 to 34% while the amorphousness increased by 2.2%. The amount 

of quartz as inert phase must be constant before and after calcination. However, it appeared 

to have increased during heat treatment. This apparent contradiction was seen before a clear 

understanding of will be again given in the discussion section. It should be sufficient to say 

that it is a misinterpretation of data by the quantification software. The quantification 

software calculates the total weight percentage from 100% and it is expected to add the 

decomposed percentage of other phases to quartz. So, the increase in inert phase is not 

accurate and important at this point. After a calcination at 640°C for 2 hours, the clay content 

of M1 sample changed from 58.9 to 19.8 wt% and carbonate amount from 0.9 to 0.8 wt%. 

Some other phases decomposition took place and it was about 2.4 wt%. Based on this 

quantification, it can be argued that the clayey materials de-hydroxylate to 80% of their 

expected total weight loss. The percentage amount of decomposition by de-hydroxylation 

was about 67% of the possible total as estimated from XRD results.  

Figure 4.22 shows the x-ray spectra of M1 with up to 15% carbonate additions before (RT) 

and after heat treatment (HT). 

 

 

Sample # Chemical Phases at% Crystal Structure Chemical Formula
1 Quartz 22.5 Hexagonal SiO2
2 Calcite 0.9 Rhombo CaCO3
3 illite 24.5 Monoclinic ( K , H3 O ) Al2 Si3 Al O10 ( O H )2
4 Muscovite 23.1 Monoclinic K Al2 Si3 Al O10 ( O H )2
9 Albite 3.8 Triclinic ( Na , Ca ) ( Si , Al )4 O8
5 Clinochlore 6.5 Monoclinic ( Mg2.96 Fe1.55 Fe.136 Al1.275 ) ( Si2.622 Al1.376 O10 ) ( O H )8
6 Dickite 4.8 Monoclinic Al2 Si2 O5 ( O H )4
7 Anorthite 12.1 Triclinic Na.25 Ca.71 ( Al2 Si2 O8 )
8 Titanium Oxide 1.8 Monoclinic Ti3 O5



 

Figure 4. 22 X-ray spectrum of virgin vs. calcined M1- Green with 15% (CC) 

 

A similar interpretation can be made from the x-ray diffractograms of virgin and calcined M1 

with 15%.  The crystallinity of virgin powder was about 38.9% prior to calcination and 

decreased to 35.8% and simultaneously the amorphousness changed from 61.1 to 64.2%. The 

clay phase weight percentage changed from 48.4 to 5.3% which means that 95% of total clay 

amount has been decomposed. Almost 76% of carbonates decomposed and the proper 

amount of clayey chemical phases were also decomposed.    

 

4.5.2.1.2 M2 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 
The x-ray analysis of the virgin M2 – Brown powder illustrated that this schist type materials 

contained 3.8 wt% carbonate. To generate LC4 M2 sample, we added enough calcite to this 

powder to top off the carbonate amount to 15%. Figure 4.23 shows the both virgin and 

calcined powders spectra without carbonate additions. Detailed information represented in 

Table 4.7. 
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Figure 4. 23 X-ray spectrum of virgin vs. calcined M2- Brown schist powder 

 

Table 4. 7 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M2-Green virgin and calcined powder 

 

 

The crystallinity of powder decreased from 39 to 33.7% while the amorphousness increased 

from 61 to 66.3%. The 29.5 wt% of clayey materials de-hydroxylated (from 51.3 wt% to 21.8 

wt%) which means the achieved decomposition was around 60% of total weight loss. None 

of the carbonate phase decomposed. Lack of decomposition of carbonate phase also 

confirmed that we did not reach the intended activation levels.  

Figure 4.24 shows the x-ray spectra of virgin and calcined LC4 M2 with 15% 𝐶𝐶𝐶𝐶���� to compare 

the decomposition magnitude of clayey and carbonate phases.  
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Sample # Chemical Phases at% Crystal Structure Chemical Formula
1 Quartz 35 Hexagonal SiO2
2 Calcite 3.8 Rhombo CaCO3
4 Muscovite I 28.2 Monoclinic K Al2 ( Al Si3 O10 ) ( O H )2
4 Muscovite II 16.1 Hexagonal ( K , Na ) ( Al , Mg , Fe )2 ( Si3.1 Al0.9 ) O10 ( O H )2
9 Albite 4 Triclinic ( Na , Ca ) ( Si , Al )4 O8
5 Clinochlore 3.3 Monoclinic ( Mg5 Al ) ( Si , Al )4 O10 ( O H )8
3 Kaolinite 3.7 Triclinic Al2 ( Si2 O5 ) ( O H )4
7 Anorthite 5 Triclinic Ca ( Al2 Si2 O8 )
8 Titanium Oxide 0.9 Orthorhombic Ti3 O5



 

Figure 4. 24 X-ray spectrum of virgin vs. calcined M2 - Brown with 15% (CC) 

 

Clay components’ de-hydroxylation changed the initial amount of 49.7% to 11.3%. In 

addition, 80% of the carbonate content was decomposed. Crystallinity of virgin powder 

dropped down for 5.5% while the amorphousness increased by the same amount. Calcination 

of the M2 with 15% of carbonate phase is closer to the intended levels and produced higher 

amounts of reactive phases.  

 

4.5.2.1.3 M3 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 
Quantitative X-ray analysis of M3 – Pink schist powder with and without carbonate additions 

was carried out in order to monitor the changes in the phase composition of the sample due 

to activation heat treatment. Figure 4.25 illustrates the x-ray diffractometer spectra of virgin 

and calcined M3 without carbonate additions. Table 4.8 includes detail information about 

containing phases. The sample was heat treated to a temperature that would correspond to 

80% of the total weight loss due to de-hydroxylation reactions.  
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Figure 4. 25 X-ray spectrum of virgin vs. calcined M3- Pink schist powder 

 

Table 4. 8 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M3-Green virgin and calcined powder 

 
 

The de-hydroxylated clayey materials in M3 powder after calcination is about 62% of the 

total clayey contend of the sample. It was less than the intended 80% decomposition. The 

carbonate phases decomposed for 0.7% and other phases decomposed for 1.1%. The apparent 

crystallinity decreased from 40.6 to 36% while the amorphousness increased from 59.4 to 

64%. The magnitude of changes observed in the phase composition in this schist source due 

to activation was similar to M1 and M2. Figure 4.26 illustrates the virgin and calcined M3 

with 15% carbonate.  
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1 Quartz 34.9 Hexagonal SiO2
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Figure 4. 26 X-ray spectrum of virgin vs. calcined M3 - Pink with 15% (CC) 

 

A comparison of the spectra before and after the activation heat treatment shows the reduction 

in some peaks’ intensity indicating the decomposition of some some of the mineral phases. 

Due to the calcination, crystallinity decrease from 47.3 to 39.8% accordingly the 

amorphousness increased from 52.7 to 60.2%. The weight percentage of clayey phases 

changed from 47.5 to 4.3% and 82% of the carbonate content was decomposed. Therefore, 

the degree of reactivation coincides to expectation.   

 

4.5.2.1.4 M4 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

The X-ray diffraction analysis were carried out for the virgin and calcined M4 with and 

without carbonate additions. Figure 4.27 shows the diffractogram of virgin and calcined M4 

without any modification in its carbonate amount. Table 4.9 represents the detailed 

information about phases of this sample.  
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Figure 4. 27 X-ray spectrum of virgin vs. calcined M4- Black schist powder 

    

Table 4. 9 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M4-Green virgin and calcined powder 

 
 

The XRD quantitative phase analysis indicated that the decomposition process of clayey 

materials, reached to 80% of total weight loss as it was intended for M4 type schist. This is a 

marked difference in the decomposition behavior of this schist in comparison to the rest of 

the samples. The carbonate phase decomposed 0.9% and the other phases changed their 

crystalline amounts in the total composition by 19.1%. The calculated crystallinity of the 

sample decreased from 41.7 to 35.1%.  
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4 Muscovite I 19.7 Hexagonal ( K , Na ) ( Al , Mg , Fe )2 ( Si3.1 Al0.9 ) O10 ( O H )2
3 Ankerite 14.3 Rhombo Ca ( Mg0.67 Fe0.33 +2 ) ( C O3 )2
9 Albite 3.7 Triclinic Na Al Si3 O8
5 Clinochlore 3.7 Monoclinic ( Mg2.8 Fe1.7 Al1.2 ) ( Si2.8 Al1.2 ) O10 ( O H )8
7 Mg-Annite 8.77 Monoclinic K ( Mg , Al )2.04 ( Si3.34 Al0.66 ) O10 ( O H )2
6 Graphite 5 Hexagonal C
8 Titanium Oxide 1.32 Monoclinic Ti3 O5
10 Pyrite 0.9 Cubic Fe S2



Figure 4.28 illustrates the x-ray spectra of virgin and calcined M4 for which the original 

amount of carbonate phase in virgin powder which is about 4.7 wt% was increased to 15 wt% 

by adding calcite powders. 

 

 

Figure 4. 28 X-ray spectrum of virgin vs. calcined M4 - Black with 15% (CC) 

 

The quantitative x-ray diffraction analyses indicated that the crystallinity of M4 powder with 

modified carbonate decreased from 50.1 to 38.4%. More than 90% of clayey components and 

80% of carbonate phase decomposed.  

 

 4.5.2.2 Scaling up the Activation Process 
 

To control the accuracy of scaling up the calcination process to amount of powders that will 

be used in cement paste sample preparation, the virgin and powders heat-treated in industrial 

size furnaces were re-evaluated by thermogravimetric analysis. The graphs in this section 

include the TG diagrams illustrating the amounts of weight losses of virgin powders (as they 

are received) and weight losses indicating the remaining activation potential in calcined 

powders.  
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4.5.2.2.1 M1 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

The thermogravimetric analysis of as received M1 schist material revealed that the 

temperature that would ensure the 80% of weight loss was around 640⁰C. Figure 4.29 shows 

the TG diagrams of virgin and M1 powders calcined in a laboratory furnace at 640°C for 

comparison.  

 

 

Figure 4. 29 Thermogravimetic analysis of virgin and calcined M1 

 

As it can be seen in TGA plot, the total weight loss of the virgin M1 is about 6.25 wt% while 

this amount dropped down to 1.93 wt% after heat treatment. According to theoretical 

calculations the powders calcined for 80 wt% activation should show a remnant weight loss 

around 1.25 wt%. Therefore, the decomposition appeared to have happened insufficiently in 

the furnace when large amounts were calcined. Figure 4.30 illustrates the same mismatch in 

the targeted and realized weight losses for activated M1 with 15% carbonate additions.  
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Figure 4. 30 Thermogravimetic analysis of virgin and calcined M1 with 15% (CC) 

 

In case of M1 with 15%  𝐶𝐶𝐶𝐶����, the total weight loss is about 10.89 wt% while the calcined 

sample weight loss is around 0.58 wt%. Even though the theoretical amount would be 2.17 

wt%, the surplus amount reveals that the calcination temperature was high, or the carbonate 

distribution was not homogenous.  

 

4.5.2.2.2 M2 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

As it was stated before the calculated temperature for 80% activation of M2 sample was about 

670⁰C. This temperature was applied to the virgin schist for calcination for 2 hours. Figure 

4.31 shows the thermograms of as-received virgin M2 schist and heat treated (activated) M2 

schist powders. 
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Figure 4. 31 Thermogravimetic analysis of virgin and calcined M2 

 

According to the theoretical calculations for an 80% activated M2 schist, the remaining 

amount of weight loss should have been around 1.36 wt%, but the actual results showed that 

there was still 2.58 wt% possible in this heat-treated schist.  

Figure 4.32 shows the results from the virgin and calcined M2 with 15% 𝐶𝐶𝐶𝐶���� additions. 
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Figure 4. 32 Thermogravimetic analysis of virgin and calcined M2 with 15% (CC) 

 

The weight losses for virgin and activated M2 with 15% 𝐶𝐶𝐶𝐶���� additions were about 11.32 wt% 

and 1.64 wt%, respectively. The calcined schist should have had a remaining weight loss of 

about 2.26 wt%. It appears that this mixture was over-activated to almost 86% of its potential. 

The calcination temperature was 768⁰C. This temperature range includes the decomposition 

of clayey minerals and carbonate in the mixture as well.  

 

4.5.2.2.3 M3 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

Figure 4.33 shows the thermograms of as-received virgin M2 schist and heat treated (80% 

activated) M2 schist powders. According to x-ray analysis the M3 schist powder resembled 

M2 schist powders closely but their thermal responses were different during heat treatment.  
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Figure 4. 33 Thermogravimetic analysis of virgin and calcined M3 

 

The calculated difference between the weight losses of as-received M3 schist powder and 

activated powders should have been about 5.18 wt%. The TGA results showed that M3 schist 

powders could only be activated to 66% of their potential when calcined in a laboratory 

furnace at temperatures determined by TGA analysis. Such discrepancies are important for 

the scale-up processes.  

Figure 4.34 illustrates the TG curves for virgin and calcined M3 schist powders that were 

mixed with calcium carbonate powders such that the mixture would contain 15 wt% 𝐶𝐶𝐶𝐶����.  
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Figure 4. 34 Thermogravimetic analysis of virgin and calcined M3 with 15% (CC) 

 

The temperature that would achieve 80% activation for M3 schist powders with 15% 𝐶𝐶𝐶𝐶���� was 

estimated from TG analysis as around 770⁰C.  The associated remaining weight loss for 80% 

activated powders should have been about 2.19 wt%. The measured amount was again more 

than the expected weight loss for this sample indicating that the powders were nor activated 

properly.  

 

4.5.2.2.4 M4 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

Figure 4.35 compares the TG analysis results of as-received and 80% activated M4 schist 

powders. M4 – Black schist differed from the three other schist samples in terms of its 

chemical composition as it was detailed in earlier sections of this report. This sample had a 

significant amount of carbon (graphite~ 5 wt%) in its mineral blend. 
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Figure 4. 35 Thermogravimetic analysis of virgin and calcined M4 

 

The calculated theoretical weight loss should be around 3.2 wt% and the obtained 

experimental value is very close to it. 

 

Figure 4.36 illustrates the thermograms of M4 with 15% calcium carbonate in its composition 

before and after 80% thermal activation process.   
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Figure 4. 36 Thermogravimetic analysis of virgin and calcined M4 with 15% (CC) 

 

The 80% activated powders would have had 3.7 wt% remaining weight loss (potential for 

further activation). The TGA results showed 3 wt% which is very close to the expected value.  

 

 4.5.2.3 Microstructure Analysis  
 
The use of SEM to identify the changes incurring during calcination had two main purposes. 

The changes in microstructures of various minerals due to the calcination were observed. In 

addition, the changes, if any, in the chemistry of the phases which were caused by heat 

treatment were observed. The SEM micrographs illustrated the particle morphological 

changes and reduction in size in some parts and de-crystallization (the disappearance of 

prisms with ocular shapes was interpreted as such) in some others. A change in the visible 

color of the calcined powders in comparison to the virgin materials could be an indication of 

changes in phase composition in virgin powders. In the following section optical changes in 

the powders were presented before the results of SEM investigations are shown.  

Figure 4.37 shows the M1 – Green schist powder before and after calcination. Since, there 

would be no drastic changes in color on the macro scale by topping off the carbonate contend 
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to 15 wt%, the pictures presented here are valid for virgin and calcined schists with and 

without calcite additions.  

 

 

        

Figure 4.  37 M1 – Green schist powder (a) before and (b) after calcination 

 

Virgin M1 sample was originally called “green” sample, however, when calcined M1 powder 

changed its color to light brown. In most cases of the clayey materials the calcined powders 

turned to brownish red after treatment. Figure 4.38 includes the snapshot of virgin and 

calcined M2 – Brown.   

 

 

 

 

 

 

 
Figure 4. 38 M2 – Brown schist powder (a) before and (b) after calcination 
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M2 - brown schist changed to darker red-brown color after heat treatment. Figure 4.39 

illustrates the M3 – Pink schist powder before and after calcination.  

 

 

 

 

 

 

 

 
Figure 4. 39 M3 – Pink schist powder (a) before and (b) after calcination 

 
 

The pink color of the M3 schist powder changed to dark red-brown after calcination. For 

these three samples the color usually became darker and this would be due the oxidation of 

iron content in clays and other siliceous phases. This reddish-brown color is reminiscent to 

terra-cotta of bricks and roof tiles. 

Figure 4.40 shows the change in color of M4 – Black schist sample due to the calcination.  

 

 

 

 

 

 

 

 
Figure 4. 40 M4 – Black schist powder (a) before and (b) after calcination 
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For the M4 powder which is so called black sample, its color changed to lighter grey through 

the calcination process. Because of the graphite content in this virgin material the color of it 

was dark grey to black. The heat-treatment process caused burning (oxidation) of graphite; 

and the color became a lighter grey.  

 

4.5.2.3.1 M1 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

The micrographs of the virgin (left row) and calcined M1 (right row) are shown in Figure 

4.41 taken at two different magnifications. The SEM micrographs are only provided for 

virgin and calcined schist in their original composition without any additions of the carbonate 

phase. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. 41 M1- Green schist micrographs for Virgin (Left) and Calcined (Right) Powders 
at the same magnification 

 

The size and morphology of particles changed during calcination. Heat treatment caused a 

reduction in the average particle size from 33 to 10 µm. Morphology of the various particles 



also changed as a result of calcination. Calcined powder particles had ruffled edges of the 

plate clay particles. For the chemical identification of the particles, EDS analysis was very 

useful. Figure 4.42 shows EDS elemental color maps of calcined M1 powder sample 

alongside a micrograph where certain mineral phases are circled, The EDS spectrum below 

was collected from the whole exposed area of the imaged and gives a general idea about the 

overall composition of the powders. 

 
 

           

 



 

           

Figure 4. 42 EDS elemental analysis of calcined M1- Green Schist 

 

Based on the elemental analysis of calcined M1 schist, there is some trace of carbonates 

circled in blue and appeared as the large magenta particle on the left in Ca-map-image and 

the remaining quartz particles circled in red in the figure. The Ca/Si atomic ratio is about 

0.11 and Al/Si represent the ratio around 0.48.   

 

4.5.2.3.2 M2 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

Micrographs taken at two different magnifications from virgin and calcined M2 schist 

samples are shown in Figure 4.43 to identify the morphological changes that happened as a 

result of heat treatment (activation process). 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 43 M2- Brown schist micrographs for Virgin (Left) and Calcined (Right) Powder 

 

As it was the case with M1 schist sample, the calcination affected the microstructure of some 

platy particles. The decomposition of clay minerals with plate-like morphologies can be 

recognized by ruffled edges. Also, the average particle size is reduced from 35 to 13 µm 

during calcination process. The quartz and carbonate particles were easy to recognize with 

the help of the EDS elemental mapping. Figure 4.44 illustrates the EDS elemental analysis 

results of the calcined M2 powder. 

 



             

 

 



             

Figure 4. 44 EDS elemental analysis of calcined M2- Brown Schist 

 

The EDS elemental analysis shows that after calcination the Ca/Si ratio is about 0.1 and the 

ratio for Al/Si is 0.43. Therefore, there is partial dihydroxylation and destruction of clayey 

materials.  

 

4.5.2.3.3 M3 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

Figure 4.45 shows the micrographs of virgin (left two images) and calcined M3 (right two 

images) and the related changes that occurred through the heat treatment. 

 

                             

Figure 4. 45 M3- Pink schist micrographs for Virgin (Left) and Calcined (Right) Powder 



 

During the calcination, the particles of the M3 components were destroyed and the edges 

were ruffled. The particle size was reduced from 30 to 14 µm. Also, the relative companion 

of them was deformed. More information can be obtained from the elemental analysis that is 

shown in Figure 4.46. 
 

              

 



 

 

Figure 4. 46 EDS elemental analysis of calcined M3- Pink Schist 

 

The decomposition of M3 clay after calcination resembles M2 while the magnitude of 

dihydroxylation could be somehow more. The overall Ca/Si ratio in this sample is 0.15 and 

Al/Si ratio is around 0.4.  

 

4.5.2.3.4 M4 with and without 15% 𝐶𝐶𝐶𝐶���� Addition 
 

Figure 4.47 represents the micrographs of M4 – Black schist powder before and after the heat 

treatment.  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 47 M4- Black schist micrographs for Virgin (Left) and Calcined (Right) Powder 

 

The de-hydroxylated clayey particles be a ruffled edge particle in some parts of M4 

micrograph. The ruffled edged particles are more obvious in this sample after calcination. 

Moreover, during heat treatment process, the average particle size was reduced from 35 to 

11 µm. Figure 4.48 shows the EDS analysis of the calcined material.  
 



                   

 



 

 

Figure 4. 48 EDS elemental analysis of calcined M4- Black Schist 

 

The EDS analysis of the calcined M4 powder shows the Ca/Si ratio of 0.43 and Al/Si ratio of 

0.44. 

 



4.5.2 Compressive Strength Measurement  
 

The compressive strength measurement is the best indication to evaluate the potential 

candidates for cement substitution. In this section, the compressive strength of the calcined 

clay cement (C3) and limestone calcined clay and carbonate cement (LC4) were compared. 

This comparison work is done to discern the effect of limestone or carbonate addition either 

as calcined carbonate (i.e. CaO) or virgin limestone (CaCO3). The targeted strength criterium 

in this project was that the compressive strength of composite cement paste may not be less 

than 90% of the pure cement paste after 28 days of hydration. 

Figure 4.49 illustrates the M1 – Green schist compressive strength results when it is 

substituted 30 wt% of the cement as C3 or LC4.  

 

 

 

Figure 4. 49 M1- Green schist powder (calcined) compressive strength (C3 vs. LC4) 

 

Based on the compressive strength results, the C3 version of M1 sample could not reach to 

the 70% of pure OPC strength. However, as it can be seen in the graph, added amount of 

carbonate to schist had the drastic effect on composite cement paste hydration. Generally, it 

is assumed that the pozzolanic reactions in composite cement pastes are slow take part in 

cement hydration. They contribute mostly to late strength. Therefore, it is safe to assume that 

the early strength values for 2 and 7 days of setting time are mostly associated with the 



cement’s contribution to the strength. Table 4.10 listed the compressive strength values of 

M1 as C3 and LC4 to compare them to the ones of 100 wt% OP cement strength. The 

calculated strength values of 70 wt% cement (the rest assumed to be an inert filler) were 

given as a hypothetical inert substitution benchmark.   

 

Table 4. 10 Compressive strength of composite cement paste prepared with calcined M1 – 
Green as partial cement substitution (C3 vs. LC4) 

 

 

The 70 wt% of cement and 30 wt% hypothetical inert filler powder is chosen as benchmark 

to evaluate the role of calcined clay as cement substitution. The composite cement paste 

prepared with 70 wt% OPC and 30 wt% calcined M1 schist (C3) resulted in strength values 

that are much lower than the pure OP cement. Composite cement pastes prepared using M1 

as LC4 samples resulted in strength values slightly below the predetermined criteria of 90% 

strength of pure OPC. On the other hand, the strength values for 90 days of setting are more 

than 90% of the pure OPC strength.  

Figure 4.50 shows the compressive strength results for the composite cement pastes prepared 

with 30 wt% of either calcined M2 (C3) or calcined M2 with 15 wt% carbonate (i.e. total 

carbonate amount before calcination (4.5 wt% of the composite cement powders).  

 

Setting Time (Day) M1 M1 with 15% CC Cement 70% of Cement Strength

2 12.7 16.1 15.1 10.57

7 21.5 24.3 24.4 17.08

28 40.5 51.7 59.7 41.79

50 45.9 59.7 70.1 49.07

90 49.3 69.2 76.8 53.76



                    

Figure 4. 50 M2- Brown schist powder (calcined) compressive strength (C3 vs. LC4) 

 

The compressive strength test results for M2 sample either for C3 or LC4 did not satisfy the 

set goals. The obtained values are significantly lower than pure cement strength. Table 4.11 

listed the values for M2 composite cement paste sample in order to facilitate a comparison to 

the pure cement values.  

 

 

Table 4. 11 Compressive strength of composite cement paste prepared with calcined M2 – 
Brown as partial cement substitution (C3 vs. LC4) 

 
 

 

The achieved value for M2 without the carbonate addition is almost 70% of cement strength 

that means the effect of pozzolanic reaction on strength of cement is not significant. In case 

of composite cement paste sample prepared with calcined schist/carbonate mixture (with 15 

Setting Time (Day) M2 M2 with 15% CC Cement 70% of Cement Strength

2 12.9 14.7 15.1 10.57

7 21.3 23.2 24.4 17.08

28 41.4 47.1 59.7 41.79

50 47.5 55 70.1 49.07

90 50.1 60.1 76.8 53.76



wt% of carbonate) the strength was only 80% of the OP cement strength. Therefore, both 

SCMs could not satisfy the chosen strength criteria.  

Figure 4.51 shows the compressive strength results for composite cement paste mixture 

prepared with calcined M3 without and with carbonate additions.  

 

 

                   

Figure 4. 51 M3- Pink schist powder (calcined) compressive strength (C3 vs. LC4) 

 

According to the strength graphs there is no substantial different between the C3 and LC4 for 

M3 calcined schist. Both are considerably below the strength of 100 wt% OP cement paste. 

Table 4.12 represents the measured strength values for M3 (C3) and M3 (LC4) compressive 

strength tests.  
     

Table 4. 12 Compressive strength of composite cement paste prepared with calcined M3 – 
Pink as partial cement substitution (C3 vs. LC4) 

 

Setting Time (Day) M3 M3 with 15% CC Cement 70% of Cement Strength

2 11.9 14.4 15.1 10.57

7 21.9 22.3 24.4 17.08

28 45.3 48.9 59.7 41.79

50 53.6 57 70.1 49.07

90 60.8 61.4 76.8 53.76



 

 

The compressive strength of M3 schist as C3 and LC4 is lower than the determined threshold. 

For both cases the values are close to the 80% of the OP cement strength. This could be 

interpreted as that the pozzolan could not undertake the expected role in composite paste 

hydration and strength development.  

 

Figure 4.52 shows the compressive strength of composite cement paste that was prepared 

with 30 wt% calcined M4 with and without 15% carbonate additions.  

 

                

Figure 4. 52 M4- Black schist powder (calcined) compressive strength (C3 vs. LC4) 

 

The composite cement pastes which is made with calcined M4 without any modification 

could not surpass the acceptable threshold but the LC4 samples astonishingly satisfied the 

criteria. Table 4.13 listed the strength values for the C3 and LC4 which was prepared with M4 

schist in order to be able to compare them to the strength values of pure cement paste.  

 

 

 

 



Table 4. 13 Compressive strength of composite cement paste prepared with calcined M4 – 
Black as partial cement substitution (C3 vs. LC4) 

 
 

 

As it can be seen in this table the compressive strength of the M4 with 15% 𝐶𝐶𝐶𝐶���� was almost 

97% of the pure cement strength. The compressive strength for M4 sample without any 15% 

𝐶𝐶𝐶𝐶���� additive was not satisfactory. The strength difference of these two samples must have 

been related to the effect of calcined carbonate.   

Figure 4.53 illustrates the compressive strength values for all prepared composite cement 

paste samples comparing them to the pure OP cement. The most obvious interpretation about 

the results is to note the positive effect of carbonate additions to schists in compressive 

strength. For almost all schist samples except for M3, the addition of carbonate to the virgin 

schist before calcination improved the strength of composite cements. Therefore, the highest 

ranked potential candidates are calcined M1 and M4 schists whose carbonate content in the 

original mixture was topped off to 15 wt% of carbonates in the total SCM mixture (i.e. schist 

+ carbonate before calcination). 

  

Setting Time (Day) M4 M4 with 15% CC Cement 70% of Cement Strength

2 12.6 13.5 15.1 10.57

7 23.42 24.8 24.3 17.01

28 46.6 57.7 59.7 41.79

50 57.4 67.2 70.1 49.07

90 63.1 72.3 76.8 53.76



          

Figure 4. 53 The compressive strength test results for all samples (C3 vs. LC4 vs Cement) 

 

Although M1 and M4 were the best candidates for SCMs, there is still hope for developing 

the potential of M3 and M2 if one can tailor their calcination temperature. Table 4.53 lists the 

compressive strength values of all samples for an easy comparison.  

 

 

Table 4. 14 Compressive strength of composite cement paste prepared with calcined schists 
as partial cement substitution (C3 vs. LC4) 

 
   

 

 

 

 

 

Setting Time (Day) M1 M2 M3 M4 M1 with 15% CC M2 with 15% CC M3 with 15% CC M4 with 15% CC Cement

2 12.7 12.8 11.9 12.6 16.1 14.7 14.4 16.5 15.1

7 21.5 21.2 21.9 23.5 24.3 23.2 22.3 24.8 24.4

28 40.5 41.4 45.3 46.6 51.7 47.1 48.9 57.7 59.7

50 45.9 47.5 53.6 57.4 59.7 55 54.5 67.2 70.1

90 49.3 50.1 60.8 63.1 69.2 60.1 61.4 72.3 76.8



 4.6 Discussion 
 

The initial characterization of virgin schist materials was done to evaluate their clay contents 

and hence their potential for activation and cement substitution. According to XRD, SEM, 

EDS and TGA analysis, all 4 virgin materials have the proper phase compositions to be 

considered as viable cement substitution candidates. The chemical compositions of powders 

from first three mine overburden (M1, M2 and M3) were similar. Regardless of the amount of 

carbonate in their composition, the potentially reactive content of clayey phases was in 

acceptable weight percentage range. The quantitative XRD analysis of M4 sample showed its 

graphite amount as 45 wt% in phase distribution. However, as we did the calibration 

experiment with an internal graphite standard, rhe same software program estimated the 

graphite phase amount as 45 wt% although only 5 wt% of graphite was added to a graphite-

calcite mixture. Therefore, it is understood that the actual total amount of graphite in M4 

schist sample could be around 5 wt%. The rest 40 wt% of miscalculated graphite phase 

amount was distributed to other existing crystalline phases proportional to their original 

ratios. The corrected graphite phase amount in this sample is given in Figure 4.54 x-ray 

pattern and shown in Table 4.15 which lists the phase distribution. 

 



       

Figure 4. 54 M4-Black schist type sample XRD spectrum and quantification 

 

Table 4. 15 The Phase distribution and detailed information about crystal structure and 
weight percentage for each chemical compound in M4-Black 

 
 

 

After corrected graphite quantification, the amount of inert quartz amount changed to 38 

wt%. M4 sample contains 46% crystalline and 64% amorphous phases. These amounts before 

correction were 61.9 % crystalline and 38.1 % amorphous phases.  

Figure 4.55 shows the comparison spectra and quantification of all four virgin samples.  
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                                      Crys%    Amorph%
   M4 - Black (RT)            46          54      

Q:   Quartz 
C:   Clay 
CC: Carbonate

Sample # Chemical Phases at% Crystal Structure Chemical Formula
1 Quartz 38 Hexagonal SiO2
2 Calcite 4,7 Rhombo CaCO3
4 Muscovite I 19,7 Hexagonal ( K , Na ) ( Al , Mg , Fe )2 ( Si3.1 Al0.9 ) O10 ( O H )2
3 Ankerite 14,3 Rhombo Ca ( Mg0.67 Fe0.33 +2 ) ( C O3 )2
9 Albite 3,7 Triclinic Na Al Si3 O8
5 Clinochlore 3,7 Monoclinic ( Mg2.8 Fe1.7 Al1.2 ) ( Si2.8 Al1.2 ) O10 ( O H )8
7 Mg-Annite 8,77 Monoclinic K ( Mg , Al )2.04 ( Si3.34 Al0.66 ) O10 ( O H )2
6 Graphite 5 Hexagonal C
8 Titanium Oxide 1,32 Monoclinic Ti3 O5
10 Pyrite 0,9 Cubic Fe S2



 

Figure 4. 55 X-ray diffractogram of all four samples and quantification 

 

Table 4.16 provides the amounts of existing mineral phases in each schist sample for a proper 

comparison of all 4 candidate powders. Therefore, it also contains clues about which sample 

could be most appropriate one for activation. 

 

 

10 20 30 40 50 60 70 80 90

                                                 Crys%    Amorph%
   M1 - Green (RT)                     36.2         63.8
   M2 - Brown (RT)                     39            61 
   M3 - Pink (RT)                        40.6         59.4
   M4 - Black (RT)                      61.9         38.1

Q:   Quartz 
C:   Clay 
CC: Carbonate Q % = 38

C % = 46.5
CC%= 4.7
etc%= 10.8

Q % = 34.9
C % = 52.5
CC%= 5
etc%= 7.6

Q % = 35
C % = 51.3
CC%= 3.8
etc%= 9.9

Q % = 22.5
C % = 58.9
CC%= 0.9
etc%= 17.7

M4 - Black (RT)

M3 - Pink (RT)

M2 - Brown (RT)

M1 - Green (RT)

2-Theta (degree)



Table 4. 16 Phase distribution and quantifications for all 4 samples 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general expectation is that the higher amounts of proper clayey phases a sample has the 

higher potential as an SCM the sample would have. However, the compression strength test 

results do not confirm this simple assumption. Obviously, there is a further parameter that 

has not been considered yet in our analysis that causes the strength of the cement pastes 

prepared with M1, M2 and M3 samples to be lower than that of the composite cement prepared 

with M4 powders. The clayey phase proportion in M4 schist was lower than the others and 

consequently lower strength would be expected. 

The answer for this apparent contradiction came by reviewing the thermogravimetry analysis 

of virgin and calcined schist powder samples. Table 4.17 lists a comparison of theoretical 

and experimental weight losses in M1 after calcination.   

 

 

 

 

Chemical Phases wt%

Quartz 22.5
Calcite 0.9

Illite 24.5
Muscovite 23.1

Albite 3.8
Clinochlore 6.5

Dickite 4.8
Anorthite 12.1

Titanium Oxide 1.8

M1
Quartz: 22.5%            
Clay: 58.9%            
Carbonate: 0.9%                                     
etc: 17.7%                                                                                                                                   

Crys%: 36.2              
Amorph%: 63.8

Chemical Phases wt%

Quartz 35
Calcite 3.8

Muscovite Ⅰ 28.2
Muscovite Ⅱ 16.1

Albite 4
Clinochlore 3.3

Kaolinite 3.7
Anorthite 5

Titanium Oxide 0.9

M2
Quartz: 35%            
Clay: 51.3%            
Carbonate: 3.8%            
etc: 9.9% 

Crys%: 39              
Amorph%: 61

Chemical Phases wt%

Quartz 34.9
Calcite 5

Muscovite Ⅰ 28.4
Muscovite Ⅱ 18.2

Albite 5.8
Kaolinite 5.85

Rutile 0.4

M3
Quartz: 34.9%            
Clay: 52.5%            
Carbonate: 5%            
etc: 7.6% 

Crys%: 40.6              
Amorph%: 59.4

Chemical Phases wt%

Quartz 38
Calcite 4.7

Muscovite Ⅰ 19.7
Ankerite 14.3

Albite 3.7
Clinochlore 3.7
Mg-Annite 8.77
Graphite 5

Titanium Oxide 1.32

Pyrite 0.9

Quartz: 38%            
Clay: 46.5%            
Carbonate: 4.7%            
etc: 10.8% 

M4

Crys%: 61.9              
Amorph%: 38.1



Table 4. 17 Theoretical and Experimental weight loss amount of virgin M1 after calcination 

 
 

 

Our goal for calcination was that the calcination of schist type materials must be performed 

up to a temperature that would cause a decomposition that would correspond to 80% of the 

total weight loss that is possible in the schist (6.25 wt%). According to the calculated 

theoretical value the residual weight loss in M1 schist after such a calcination should have 

been about 1.25%. However, the experimental amount is 1.93 wt%. This residual value 

would correspond to 69% of the total weight loss. It appeared that the heat treatment inside 

a box furnace to a massive amount of schist powders did not give the expected 

decomposition, the reason for this could be that the applied heat to a large amount (600 gr) 

of virgin powders was not distributed uniformly and transferred to all over the powder inside 

the furnace as well as it would be in a thermal analysis equipment with an extremely small 

amount of sample (50 mg). 

A similar result was obtained for the same powder where the amount of carbonate in the 

schist was topped of to 15 wt% of the schist + carbonate mixture. Table 4.18 shows the 

calculated theoretical and experimental values for the M1 with 15% 𝐶𝐶𝐶𝐶����.  

 

Table 4. 18 Theoretical and Experimental weight loss amount of M1 with 15% CC after 
calcination 

 
 

M1 WLT% (Experimental) WLT% (Theoretical)

Virgin 6.25 -
Calcined up to 80% 

WLT
1.93 (31% WL) 1.25 (20% WL)

M1 with 15% CC WLT% (Experimental) WLT% (Theoretical)

Virgin 10.89 -

Calcined up to 80% WLT 2.72 (25%) 2.18 (20% WL)



As it can be seen, the residual decomposable materials were 25 wt% of the total 

decomposable material (clays’ hydroxyl ions and carbonates’ carbonate ions). The heat 

treatment resulted in a more successful activation in this powder mixture than the virgin M1 

schist powder. Probably the higher temperatures required for the decomposition of carbonate 

phase which was almost 100°C higher than the one of virgin powders helped the heat 

distribution within the bulky schist + carbonate powders. The better strength value of this 

material could have been influenced by the magnitude of properly calcined clayey phases 

and decomposed carbonate phase. Post mortem examination of the other schist samples 

yielded similar results and interpretations of strength development. Table 4.19 shows the 

comparison among the theoretical and experimental values for weight loss in term of M2 

with/without 15% 𝐶𝐶𝐶𝐶���� calcination.  

 

 

Table 4. 19 Theoretical and Experimental weight loss amount of M2 with/without 15% CC 
after calcination 

 

 
 

The difference between the magnitude of expected and actual weight losses of M2 with and 

without carbonate confirmed the above-mentioned facts. The amount of calcination for bulk 

virgin M2 powder was about 62 wt%. The actual weight loss was 70 wt% of the total weight 

loss for M2 with 15%𝐶𝐶𝐶𝐶����. The similar observations were made for the two other samples. M3 

M2 WLT% (Experimental) WLT% (Theoretical)

Virgin 6.82 -

Calcined up to 80% 
WLT

2.58 (38% WL) 1.36 (20% WL)

M2 with 15% CC WLT% (Experimental) WLT% (Theoretical)

Virgin 11.32 -

Calcined up to 80% WLT 3.39 (30%) 2.26 (20% WL)



sample phase distribution is like M2. Table 4.20 shows the comparison for bulk M3 powders 

with/without 15%𝐶𝐶𝐶𝐶����. 

 

Table 4. 20 Theoretical and Experimental weight loss amount of M3 with/without 15% CC 
after calcination 

 

 

The amount of calcination for bulk virgin M3 was about 65 wt% and 72 wt% of the total 

weight loss for M3 powder mixture with 15%𝐶𝐶𝐶𝐶����. 

Table 4.21 represents the expected and actual magnitude of weight losses due to 

decomposition reactions for M4 with and without 15% 𝐶𝐶𝐶𝐶����.  

 

Table 4. 21 Theoretical and Experimental weight loss amount of M4 with/without 15%(CC) 
after calcination 

 

 

M3 WLT% (Experimental) WLT% (Theoretical)

Virgin 7.94 -
Calcined up to 80% 

WLT
2.76 (35%) 1.59 (20% WL)

M3 with 15% CC WLT% (Experimental) WLT% (Theoretical)

Virgin 10.95 -

Calcined up to 80% WLT 3.05 (28%) 2.19 (20% WL)

M4 WLT% (Experimental) WLT% (Theoretical)

Virgin 15.74 -
Calcined up to 80% 

WLT
3.37 (21%) 3.15 (20% WL)

M4 with 15% CC WLT% (Experimental) WLT% (Theoretical)

Virgin 18.5 -

Calcined up to 80% WLT 3.51 (19%) 3.7 (20% WL)



M4 powders showed a different calcination behavior than the other schist samples. The heat 

treatment in a box furnace was more successful for bulk M4 schist powders than the other 

schist powders. M4 schist contained in its original composition graphite and pyrite which 

made it different from the others. The role of graphite among the other phases is somehow 

unusual. It was assumed that during the calcination, graphite could burn and provide more 

heat in addition to the furnace heat and cause further decomposition or de-hydroxylation. 

During the decomposition of graphite, the reaction with oxygen would cause further heat. 

Facilitating further decomposition of components. 

Therefore, M4 schist may have a better activation and more reactivity than the other schists. 

For other three samples, since the thermal conductivity of clay is very low and there is not 

any internal heat generator during calcination, the calcination process was not completed for 

the entire bulk samples. Again, in the M4 with 15% 𝐶𝐶𝐶𝐶���� addition, burning of graphite provided 

extra heat for more decomposition. Based on the TGA analysis for virgin M4 schist in 

previous section the graphite decomposition temperature range was lower than the carbonate 

decomposition temperature range. So, the excessive heat that was originated in graphite, 

mainly decomposed the carbonate component. In the elemental analysis of M4 sample, It is 

not that easy to track footprint of graphite. But according to the x-ray analysis, the ascertained 

amount of graphite is diffused in all over the powder. 

Pyrite will change to Pyrrhotite after 780°C that does not seem to have any drastic effect on 

reactivity. Also, the amount of these two components did not exceed 8 wt% of total 

composition which cannot make any other tangible effect.  

The mentioned interpretation represents the importance of temperature and magnitude of 

calcination in reactivity of schist type powders. Hence, it should be possible to have better 

strength results after calcination schedule was modified.  

Another topic that should be disscussed is the relationship between the change in the 

amorphous contend and the strength development and pozzalanicity. It is believed that high 

amorphous materials proportions in the original powders would help with the reactivity of 

the sample. Although it is likely that the non-crystalline aluminosilicate phases (reactive 

phases) could participate in pozzolanic reactions, it is not possible to be certain that the whole 

amorphous portion would be pozzalanically reactive material. It is possible to have non-

reactive phases in the amorphous content.   



The partial decomposition of carbonate phase provides an opportunity to take advantage of 

calcined or decomposed carbonate as a source of Ca2+ ion and the virgin carbonate may enter 

the reaction directly. As it is mentioned in the literature review section [5] that the excessive 

amount of carbonate in powder could react and/or provide filler effect, it is also claimed that 

it could influence the ettringite formation during the hydration process.[5] According to the 

theoretical calculations it seems that there is a possibility to increase the amount of carbonate 

portion more. The employed 15 wt% carbonate contend in the schist was originating from 

the first phase of project. In the first phase, Kovukdere schist sample contained 15 wt% of 

calcium carbonates in its composition and showed the best compressive strength performance 

among all the tested samples. Therefore, it was decided to top off the carbonate amount up 

to 15 wt% to control the strength performance of the Muratbey schist which was identical in 

its phase composition except for the missing carbonate amount. However, according to the 

chemical formula of the C-S-H (Ca5Si6O16(OH)2·4H2O) and C-A-S-H 

(Ca5Al2Si6O16(OH)2·4H2O) it is possible to top off the amount of carbonate up to 30wt% of 

total replacement. 

We are extending our activation studies into also determining the proper calcination 

procedures, times and temperatures for the M1, M2, and M3 schist samples with and without 

CC additions. We will also conduct experiments to highlight the dangers of over-doing the 

calcination process to kill all the activity in the clay type pozzolans. 

 

 

 

 

 

 

 

 

 

 

 



4.7 Conclusion 
 

As it was mentioned before the purpose of the second phase of project is to evaluate the effect 

of carbonate either as “calcined-into-CaO” or virgin limestone powder on compressive 

strength. The effect of limestone as a source of virgin carbonate is already being discussed 

in several studies. Filler effect and the promotion of hemi-carboaluminates are the main 

application of carbonate in composite cement pastes. But in this study the application of 

carbonate mainly calcium carbonate or calcite, is discussed as a source of additional reactive 

Ca2+ ions. The idea is based on the fact that the extra calcium (2+) ions were going to react 

with activated Al-Si-O-H to provide further C-S-H or C-A-S-H. Hence, the existence of 

carbonate as calcined carbonate in raw materials for composite cement paste is going to be 

more beneficial. Moreover, proposed pozzolanic minerals could help avoid the excessive 

amount of portlandite in cement or concrete structure which can cause inevitable damages 

and mitigation of durability due to the late age’s reactions. 

 In this study, four different mine minerals were evaluated for possible potential of partial 

cement substitution. The virgin powders as received from the mine were indexed as M1 – 

Green, M2 – Brown, M3 – Pink and M4 – Black. The microstructure of them resembled to 

each other while there were some differences in their compositions. M2 and M3 were much 

closer to each other and M1 was similar. But there were some differences between M4 and 

the others. M4 schist contained some small amounts of graphite and pyrite. The effect of 

graphite as a source of excessive heat during the calcination due to the burning was 

investigated. But there is no direct evidence about the influence of the iron sulfide or pyrite 

in this study.  

All the schist types mine powders were calcined, according to the determined and calculated 

temperatures to activate them. The heat treatment temperatures corresponding to partial 

activation of possible pozzolanic phases were chosen accurately to avoid dead-burning the 

clayey materials. Therefore, calcination temperature was the temperature associated to the 

80% of the total weight loss. These exact temperatures were determined for the virgin schist 

powders with the help of a thermal analysis equipment. The schist powders were investigated 

for their potential for activation in as-received form and as modified mixed-powders with 



their weight percentage of the carbonate was topped off to 15%. The calcined materials 

partially substituted the cement powder when preparing composite cement pastes.  

Three sets of cube samples (4cm x 4cm x 4cm) were prepared for each setting time which 

were 2, 7, 28, 50 and 90 days. The portion of cement replacement was 30 wt%. The cube 

samples were cured in full moisture condition and the uniaxial compressive strength 

measurement were applied to all of them.  

The strength measurement results revealed that the M4 with 15%  𝐶𝐶𝐶𝐶 ����� was the best potential 

candidate and M1 with 15% 𝐶𝐶𝐶𝐶 ����� took the second place. M4 with 15% 𝐶𝐶𝐶𝐶 ����� surpassed the 

determined criteria which was the compressive strength to be not less than 90% of the pure 

cement paste during the 28 days. The study also illustrated the importance of proper heat 

treatment to reach the targeted activation amount in the schist powder mixtures. It appeared 

to be possible to further increase the strength of hydrated composite cement pastes by 

properly adjusting the amount of Ca2+ ion in the SCM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 5 
 

 

CONCLUSION 
 

 

Several groups [171, 172] have previously claimed that calcined clay can be used as SCM 

and would ensure an improved durability of concrete made from the substituted cement. Most 

successful candidate among the clay minerals was Kaolinite which worked as a proper 

material for cement substitution when activated by heat to [meta-Kaolinite]. However, 

kaolinite is one of the least available clay minerals. Few other studies with other types of 

clays reported less successful results when compared meta-kaolinite. In this study, we 

illustrate successful activation of minerals containing various types of clays as SCMs when 

properly heat treated. These minerals were natural mines containing quartz, clays, carbonates, 

glassy structures and some minor phases. Previous studies with the Kaolinite powders 

indicated that activation of Kaolinite to meta-kaolinite happens through the de-hydroxylation 

which renders the clayey structure semi-amorphous and unstable. It is postulated [171] that 

the de-hydroxylated aluminum sites provide a point of attack during hydration reactions. 

Therefore, the more active sites of attack that we provide the more reactive is the clay 

mineral. There are two types of basic clay structures. Kaolinite is the simpler one with one 

tetrahedral sheet of silicate and one octahedral sheet of aluminate while in more complex 

layered structures (e.g. Illite and Smectite) aluminum hydroxide layer is sandwiched between 



two silicate layers. In our study, schist-derived virgin materials contain different types of 

clays which decompose at various temperatures. By releasing the hydroxyl bond through heat 

treatment, or de-hydroxylation, these various clay minerals are de-stabilized to various 

degrees. The strongly alkaline solution of cement hydration can attack these unstable 

structures to initiate pozzolanic reactions. Consequently, C-S-H and C-A-S-H will form 

gradually through the polymerization process of dissolved silicate and aluminate mers with 

calcium ions. Ordinary Portland cement would provide almost 5% free lime as a source of 

calcium ions. Based on this reaction scenario the effectiveness of a pozzolan is related to the 

amount of de-hydroxylated aluminum. To confirm this postulate, the received materials 

activated to 30%, 50% and 80% of the total de-hydroxylation (i.e. the total amount of weight 

loss due to de-hydroxylation) for the first phase of study. The applied activation temperature 

was kept on purpose at a value that would correspond to 80% of total weight loss in order to 

avoid dead burning of the clay minerals by overheating. The pozzolanic potential of our 

sources were evaluated through two common methods described in literature. The first 

method is the so-called pozzolanicity method which relates the change in electrical 

conductivity of a saturated calcium hydroxide solution to the pozzolanic activity of a sample. 

Electrical conductivity of the solution decreases as the active clay minerals react with calcium 

ions. The change in electrical conductivity is therefore correlated to the pozzolanic activity 

of the sample. The second method is the observation of strength development in blended 

cement pastes that are prepared with activated schist minerals treated for different curing 

time. Although levels of pozzolanic activity obtained from pozzolanicity and compressive 

strength measurements paralleled each other for meta-kaolinite and carbonate free schist 

minerals there was an open contradiction between the results of these two methods for schist 

type sample with some portion of carbonate. For Kaolinite and schist type samples without 

carbonate as the activation level was increased pozzolanicity as well as strength of the 

blended cements made from them increased. However, although pozzolanicity measurements 

indicated a decreasing pozzolanic effectiveness beyond 50% activation for sample with 

carbonate like Kovukdere schist, the blended cement prepared with this sample continued to 

increase in its strength for all curing times. Decomposition temperature range of clays usually 

starts around 400°C and ends around 800°C. The preceding weight losses correspond to non-

structural (maybe absorbed) water [111-115]. Best known example, Kaolinite decomposes 



through the de-hydroxylation in the temperature range of 450°C to 750°C. The temperature 

that corresponds to 80% of weight loss of schist type powder without carbonate phase is 

within this temperature range. However, for other investigated samples (e.g. Kovukdere) 

contained carbonate phases which decomposed in the temperature range of 710°C to 850°C. 

The temperature required for 80% weight loss of these sample corresponded to the upper end 

of this temperature range. Therefore, sample samples with calcite contained some amounts 

of decomposed calcium carbonate when treated up to 80% weight loss. This extra source of 

calcium ions in these schist type sample is the cause of error in pozzolanicity measurements. 

Temperature ranges that correspond up to 50% of weight loss are below the decomposition 

temperature of the carbonate phase. Therefore, for these samples pozzolanicity 

measurements were not tempered by calcium ions from them. Hence the pozzolanicity 

measurements and strength development gave parallel results for all samples up to 50% 

activation. As the samples with carbonate heat treatment impinged into decomposition 

temperatures of the existing carbonate the inconsistency between the two types of test 

emerged according to the reaction scheme described below: 

 

(R1)     𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂3  
∆𝐻𝐻>0
�⎯⎯�  𝐶𝐶𝐶𝐶𝑂𝑂 + 𝐶𝐶𝑂𝑂2 (𝑔𝑔)       (𝐹𝐹𝐹𝐹𝑓𝑓𝐹𝐹𝐶𝐶𝐹𝐹𝑓𝑓)                              (5.1) 

(R2)    𝐶𝐶𝐶𝐶𝑂𝑂 + 𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝐶𝐶(𝑂𝑂𝐻𝐻)2              (𝑆𝑆𝑓𝑓𝐴𝐴𝐹𝐹𝑙𝑙𝑆𝑆𝑓𝑓𝐹𝐹) 

(R3)    𝐶𝐶𝐻𝐻 + 𝐻𝐻2𝑂𝑂 →  𝐶𝐶𝐶𝐶2+ + (𝑂𝑂𝐻𝐻)−1  

 

Calcium carbonate decomposition during activation produces calcium oxide. As this sample 

was put in the aqueous solution, additional calcium and hydroxyl ions would form which in-

turn would increase the pH as well as the electrical conductivity of the solution negating the 

effect of activated clays. Therefore, pozzolanicity measurement by electrical conductivity 

may not be suitable for activated schist minerals containing carbonate phases. To clarify this 

contradiction, it would be beneficial to compare three samples. Kovukdere as a schist type 

material with some portion of carbonate, Muratbey as a schist without carbonate and 

Kaolinite clay as a benchmark.  



Compressive test results are the most trusted indicator of cement paste strength. Figure 5.1 

represents the compressive strength of the Kovukdere, Muratbey and Kaolinite samples after 

28 days of curing as function of their activation level. Pozzolanicity and strength 

development, paralleled each other for Muratbey type schist and Kaolinite. Both increased 

as activation level of the clay type materials increased. However, there is an apparent 

contradiction between the pozzolanicity and strength development of Kovukdere schist 

material at highest level of activation (80 wt%).  

 

 

Figure 5. 1 Compressive strength of Kovukdere, Muratbey and Kaolinite (28d) vs. 
magnitude of heat treatment (30, 50 and 80% of WLT) 

 

The measured pozzolanicity of the Kovukdere schist decreased after 50 wt% heat treatment 

although the compressive strength increased even for 80 wt% activation. As it was 

determined by the X-ray phase analysis, Kovukdere schist contained 16 wt% calcium 

carbonates in addition to the clay minerals and quartz. The temperature that corresponded to 

80 wt% weight loss for Kovukdere schist sample encompasses also the decomposition of 

calcite in to calcia. This calcium oxide converts to calcium hydroxide in aqueous solution 

obscuring the validity of the pozzolanicity test for the reactivity of the sample. Therefore, 

pozzolanicity measurement shall not be taken as an indicator of reactivity for samples 

containing carbonate phases. Figure 5.1 also reveals an important fact about the potential of 



natural clay resources as SCMs. Combination of quantitative X-ray and EDS elemental 

analysis of Kovukdere and Muratbey schist materials indicated that the Kovukdere contained 

a higher amount of amorphous aluminosilicate and calcium content. This difference in the 

phase composition of Kovukdere schist sample indicated itself also in strength development 

of the cement paste prepared with it. Despite the similar crystalline clay phases content of 

Kovukdere and Muratbey samples, Kovukdere-schist/cement composite paste gave a higher 

strength even for non-activated SCM additions. This is believed to be due to the extra active 

amorphous aluminosilicates in this sample participating in pozzolanic reactions.  

The comparison of the results obtained from these three samples revealed an important aspect 

of activated clay sources. Carbonate phases in such clay minerals when calcined provides an 

extra source of calcium ions for pozzolanic reactions. Such aluminosilicate based SCMs 

therefore resulted in higher compressive strength when incorporated in to composite cement 

pastes as seen in the case of Kovukdere schist material.  

Previous studies [171-175], claimed that the combination of limestone and calcined clay was 

an effective partial substitute for cement. In this study, we furthered the existing knowledge 

about clay based SCMs by showing that calcined carbonate phases alongside with activated 

clay is a better substitute for OPC. The positive influence of having additional active calcium 

ions in the composition of a pozzolanic SCM is motivated the launching of the second phase 

of study intensively of the sequel on activated clays by addition or topping up the amount of 

carbonate to the pre-determined portion. According to the obtained results for the second 

phase of study, it could be claimed that any natural resources containing clay minerals are 

possible to activate as pozzolanic SCM for OPC substitution. The amount of pozzolanic 

activity is directly related to the level of de-hydroxylation of clay minerals as manifested by 

the weight losses in the temperature range from 400 to 800⁰C. The de-hydroxylation reaction 

leaves behind an amorphous and active aluminosilicate structure that will react with the 

available calcium ions in an aqueous solution. Clay minerals containing calcium carbonate 

phases resulted in higher strength composite cement pastes for all curing times when the 

carbonate phases were co-activated by thermal treatment. The pozzolanicity measurements 

by electrical conductivity are rendered inaccurate for SCMs containing activated carbonate 

phases.    



REFERENCES 

 
 

[1]  R. Andrew, "Global CO2 emissions from cement production," CICERO Center for 
International Climate Research, Oslo, 2017. 

[2]  C. D. Keeling, "Industrial production of carbon dioxide from fossil fuels and 
limestone," Tellus, 25, no. https://doi.org/10.3402/tellusa.v25i2.9652, pp. 174-198, 
1973.  

[3]  USGS, "Cement statistics, in: Historical Statistics for Mineral and Material 
Commodities in the United States," U.S. Geological Survey Data Series 140, 
Virginia, 2015. 

[4]  H. G. Van Oss, "Cement, in: 2014 Minerals Yearbook," USGS, Virgina, 2017. 

[5]  T. A. Boden, R. J. Andres and G. Marland, "Regional and National Fossil-Fuel CO2 
Emissions," U.S.Department of Energy, Tennessee, 2017. 

[6]  B. Vanderborght and U. Brodmaan, "The Cement CO2 Protocol: CO2 Emissions 
Monitoring and Reporting Protocol for the Cement Industry," World Business 
Council for Sustainable Development, Newyork, 2001. 

[7]  F. C. Lai, "Innovaive cement additives quality improves in sustainable cement and 
concrete," Sains Malaysiana, vol. 11, no. 44, pp. 1599-1607, 2015.  

[8]  J. Ke, M. McNeil, L. Price, N. Z. Khanna and N. Zhou, "Estimation of CO2 
emission from China's Cement production: Methodologies and uncertainties," 
Energy Policy, vol. 57, pp. 172-181, 2013.  

[9]  Q. Zhu, "CO2 abatement in the cement industry," IEA Clean Coal Centre-CCC/184, 
2011. 

[10]  F. M. Lea, The chemistry of cement and concrete 3rd edition, New York: Chemical 
Publishing Company, 1971.  

[11]  S. L. Znackzko Jaworski, Oczierki Istorii Wiażuszczich Wieszczestw (Histroy of 
Binding Materials), Moscow: Izd. Akadeiemii Nauk SSSR, 1963.  

[12]  R. H. Bouge, The Chemistry of Portland Cement, New York: Reinhold Publication 
Corporation , 1947.  

[13]  R. Malinowski and Y. Garfinkel, Concrete Intern, London, 1991.  



[14]  J. Bensted and C. Nichola , Cement Wapno Beton, Beograd, 2003.  

[15]  P. K. Mehta, "ASTM Publication," Special Technical Publication, New York, 1953. 

[16]  H. F. Gonnermann, W. Lerch and M. W. Whiteside, "PCA Research Labortory 
Bulletin," Cement Inc., Chicago, 1953. 

[17]  H. F. W. Taylor , Cement Chemistry, Washington: T. Telford, 1997.  

[18]  A. C. A. Muller, K. L. Scrivener, A. M. Gajewicz and P. J. McDonald, 
"Densification of C-S-H measured by H NMR relaxometry," Journal of Physical 
Chemistry , vol. C117, no. 1, pp. 403-412, 2013.  

[19]  P. F. G. Banfill, "7th ICCC Paris," ICCC, Paris, 1980. 

[20]  W. Kurdowski , Cement and Concrete Chemistry, London: Springer , 2014.  

[21]  E. CEN, "Composition, specifications and conformity criteria of common cements," 
European Standards, Zurich, 2000. 

[22]  W. Gaca, "Cement Wapno Gips," ICO, Berlin, 1963. 

[23]  R. Kovacs, "8th ICCC Rio de Janeiro," Rio Pub , Rio de Janeiro, 1986. 

[24]  N. B. Winter, Understanding Cement, Suffolk: WHD Microanalysis Consultants 
Ltd, 2009.  

[25]  T. C. Powers and T. L. Brownyard, "Studies of the physical properties of hardened 
portland cement paste," in American Concrete Ins., Miami, 1946.  

[26]  A. M. Neville, "Properties of Concrete," Prentice Hall - 4th Edition , Princeton, 
1995. 

[28]  W. A. Gutteridge and J. A. Dalziel, "Filler cement: The effect of the secondary 
component on the hydration of Portland cement. Part I. A fine non-hydraulic filler," 
Cement and Concrete Research , vol. 20, no. 2, pp. 778-782, 1990.  

[29]  M. Regourd and P. Barnes , "Structure and Performance of Cements," Applied 
Science , vol. 12, no. 1, p. 109, 1983.  

[30]  W. Kurdowski and S. N. Ghosh, Advances in Cement Technology, Oxford: 
Pergamon Press, 1983.  

[31]  P. K. Mehta, "Concrete Technology for Sustainable Development," Concrete 
International , Boston, 1999. 



[32]  M. Schneider, M. Romer, M. Tschudin and H. Bolio, "Sustianable Cement 
Production - Present and Future," Cement and Concrete Research , vol. 41, no. 5, 
pp. 642-650, 2011.  

[33]  H. Pollmann , "Composition of cement phases, in structure and performance of 
cements," Taylor Pub, New York, 2009. 

[34]  K. J. Wang, M. S. Konsta-Gdoutos and S. R. Shah, "Hydration, rheology, and 
strength of ordinary Portland cement (OPC)-Cement kiln dust (CKD) - Slag 
binders," ACI Mater, vol. 99, no. 3, pp. 173-179, 2002.  

[35]  B. Lothenbach, K. Scrivener and R. D. Hooton, "Supplementary cementitious 
materials," Cement and Concrete Research , vol. 41, no. 3, pp. 217-229, 2011.  

[36]  M. Thomas, "Supplementary Cementing Materials in Concrete," in Durability of 
Concrete , CRC Press, 2013, p. Chap. 9. 

[37]  M. D. A. Thomas and et al. , "Supplementary cementitous materials on chloride 
bining in hardened cement paste," Cement and Concrete Research , vol. 42, no. 1, 
pp. 1-7, 2012.  

[38]  K. De Weerdt and et al. , "Hydration mechanism of ternary Portland cements 
contuing limestone powder and fly ash," Cement and Concrete Research , vol. 41, 
no. 3, pp. 279-291, 2011.  

[39]  R. W. Mielenz and O. Glantz, "Effect of calcination on natural Pozzolans," in 
Sypozium on use of Pozzolanic Materials in Mortars and Conceret, New York, 
1950.  

[40]  B. Marsh and R. Day, "Pozzolanic and cementitiuos reactions of fly ash in blended 
cement pastes," Cement and Concrete Research, vol. 41, no. 3, pp. 301-310, 1988.  

[41]  M. Ghrici, S. Kenai and M. Said-Mansour, "Mechanical properties and durability of 
mortar and concrete containing natural pozzolana and limestone blended cement," 
Cement and Concrete Composites, vol. 29, no. 7, pp. 542-549, 2007.  

[42]  K. Weerdt, "Hydration mechanism of ternary Portland cements containing limestone 
powder and fly ash," Cement and Concrete Research , vol. 41, no. 3, pp. 279-291, 
2011.  

[43]  M. Moesgaard, "Physical performance of blended cements containing clacium 
aluminosilicate glass powder and limestone," Cement and Concrete Research , vol. 
41, no. 3, pp. 359-364, 2011.  



[44]  K. Vance and et al., "Hydration and strength development in ternary Portland 
cement blends containing Limestone and fly ash or metakaolin," Cement and 
Concrete Composites , 2013.  

[45]  L. Vizcaino, A. Alujas, F. Martirena and K. Scrivener, "Low clinker cements made 
with ternary blends of calcined clay and limestone: Influence of grinding procedures 
on mechanical properties," Cement and Concrete Composites, 2013.  

[46]  S. Kumar and et al. , "Mechanical activiation of granulated blast furnace slag and its 
effect on the properties and structure of Portland slag cement," Cement and Concrete 
Composites , vol. 30, no. 1, pp. 679-685, 2008.  

[47]  S. Murgier, H. Zanni and D. Gouvenot, "Blast furnace slag cement: a 29 Si and 27 
Al NMR study," 2004, vol. 7, no. 2, pp. 389-394, Comptes Rendus Chimie.  

[48]  S. Pal, A. Mukherjee and S. Pathak, "Investigation of hydraulic activity of ground 
granulated blast furnace slag in concrete," Cement and Concrete Research , vol. 33, 
no. 4, pp. 1481-1486, 2003.  

[49]  K. Yeau and E. Kim, "An exprimental study on corrosion resistence of concrete with 
ground granulated blast-furnace slag," Cement and Concrete Research , vol. 35, no. 
2, pp. 1391-1399, 2005.  

[50]  S. Kosmatka , B. Kerkhoff and W. C. Panarese, "Fly ash, slag, silica fume, and 
natural pozzolans in design and control of concrete mixtures," Portland Cement 
Association , Washington D.C, 2003. 

[51]  K. D. Hoang, "Hardening acceleraor for fly ash blended cement," NTNU - 
Norwegian University of Science and Technology , Trondheim , 2012. 

[52]  T. Ostnor, "Alternative Pozzolans as supplementary cementitious materials in 
concrete," SINTEF, Trondheim, 2007. 

[53]  W. A. Gutteridge, "On the dissolution of the interstitial phase in Portland cemnet," 
Cement and Concrete Research , vol. 9, no. 3, pp. 319-324, 1979.  

[54]  H. Cement, "https://www.hanson.co.uk/en/products/cement," Hanson Cement - 
Under Heidelberg Cement , Liverpool, 2004. 

[55]  J. S. Damtoft, J. Lukasik , D. Herfort, D. Sorrentino and E. M. Gartner , "Sustainable 
development and climate change initiatives," Cement and Concrete Research , vol. 
38, pp. 115-127, 2008.  

[56]  R. J. Lauf, L. A. Harris and S. S. Rawlston, "Pyrite framboids as the source of 
magnetite spheres in fly ash," Environmental Science and Technology , vol. 16, pp. 
218-220, 1982.  



[57]  P. Mounanga and et al. , "Improvement of the early-age reactivity of fly ash and 
blast furnace slag cementitious system using limestone filler," Material and 
Structures , vol. 44, no. 2, pp. 437-453, 2011.  

[58]  M. E. A. Thiery , "Influence of carbonation on the microstructure and moisture 
properties of cement-based materials case of materials prepared with fly ash," 2011. 

[59]  T. Bier, J. Kropp and H. Hilsdorf, "Formation of silica gel during carbonation of 
cementitious system containing slag cements," in Natural Pozzolan in Concrete, 
Paris, 1989.  

[60]  M. A. Czerewko, J. C. Cripps, J. M. Reid and C. G. Duffel, "The development of a 
new testing protocol for sulphur compounds in structural backfills," Quarterly 
Journal of Engineering Geology and Hydrogeology , vol. 36, pp. 133-142, 2003.  

[61]  J. Schieber and G. Baird, "On the origin and significance of Pyrite spheres in 
Devonian black shales of north america," Journal of Sedimentary Research, vol. 71, 
pp. 155-166, 2001.  

[62]  P. S. Mozley, "Relation between depositional environment and the elemental 
composition of early diagenetic siderite," Geology, vol. 17, pp. 704-709, 1989.  

[63]  R. Talero and V. Rahhal, "Calorimetric comparison of portland cements containing 
silica fume and metakaolin," Journal of Thermal Analysis and Calorimetry , vol. 96, 
pp. 383-393, 2009.  

[64]  P. Greil, "Structure and Mechanical Properties," in Glass and Ceramics , Nuernberg, 
University of Erlangen, 2002.  

[65]  H. Justnes, "Condensed silica fume as a cement admixture," in Structure and 
Performance of Cements , Taylor and Francis, 2009.  

[66]  C. J. Mueller, "Pozzolanic activity of natural clay minerals with respect to 
environmental geotechniques," ETH , Zuerich , 2005. 

[67]  S. H. Kosmatka , B. Kerkhoff and W. C. Panarese, "Fly ash, slag, silica fume, and 
natural pozzolans," Portland Cement Association , 2003. 

[68]  F. Massaza, "Pozzolanic Cements," Cement and Concrete Composites, vol. 15, pp. 
185-214, 1993.  

[69]  C. S. Poon, S. C. Kou and L. Lam, "Compressive strength, chloride diffusivity and 
pore structure of high performace metakaolin and silica fume concrete," 
Construction and Building Materials, vol. 20, pp. 858-865, 2006.  

[70]  D. Herfort, "Portland limestone cements," ECRA , Dusseldorf, 2012. 



[71]  A. Ipavec and et al., "Chloride binding into hydrated blended cements: The influence 
of limestone and alkalinity," Cement and Concrete Research , vol. 48, no. 0, pp. 74-
85, 2013.  

[72]  K. D. Ingram and K. E. Daugherty, "A review of limestone additions to Portland 
cement and concrete," Cement and Concrete Composites , vol. 13, no. 3, pp. 165-
170, 1991.  

[73]  T. Vuk , V. Tinta, R. Gabrovsek and V. Kaucic, "The effect of limestone addition, 
clinker type and fineness on properties of Portland cement," Cement and Concrete 
Research , vol. 31, no. 1, pp. 135-139, 2001.  

[74]  S. Tsivilis , G. Batis, E. Chaniotakis, G. Grigoriadis and D. Theodossis, "Properties 
and behavior of limestone cement concrete and mortar," Cement and Concrete 
Research, vol. 30, no. 10, pp. 1679-1683, 2000.  

[75]  I. Elkhadiri, A. Diouri, A. Boukhari, J. Aride and E. Puertas , "Mechanical behavior 
of various mortars made by combined fly ash and limestone in Portland cement," 
Cement and Concrete Research , vol. 32, no. 10, pp. 1597-1603, 2002.  

[76]  F. Bergaya and G. Legaly, "General Introduction: clays, clay minerals, and clay 
science," in Handbook of clay science , Developments in clay science, Elsevier, 
2006.  

[77]  S. Guggenheim and R. T. Martin, "Definition of clay and clay minerals: Joint report 
of the AIPEA nomencalture and CMS nomecalture committees," CLay and Clay 
Minerals , vol. 43, pp. 255-256, 1995.  

[78]  D. M. Moore and R. C. Reynolds , X-ray diffraction and identification and analysis 
of clay minerals, New York: Oxford University Press , 1989.  

[79]  C. K. Wentworth , "A scale of grade and class terms for clastic sediments," Journal 
of Geology, vol. 30, pp. 377-392, 1922.  

[80]  H. L. Alling , "A metric grade scale for sedimentary rocks," The jounal of Geology , 
vol. 51, pp. 259-269, 1943.  

[81]  D. Heim, "Tone und Tonminerale - Grunlagen der sedimentologie und mineralogie," 
Ferdinand Enke Verlag, Stuttgart, 1990. 

[82]  H. H. Murray, "Applied clay mineralogy - occurences, precessing and application of 
Kaolins, Bentonites, Palygorskite-Sepiolite, and common clays," Developmenets in 
Clay Science, vol. 2, 2007.  

[83]  E. Galan, "Genesis of clay minerals," in Handbook of clay science , Elsevier, 2006, 
p. Vol.1. 



[84]  M. Okrusch and S. Matthes, Mineralogie - ein einfuhrung in die spezielle 
mineralogie petrologie und lagerstattenkunde, Heildelberg: Springer Verlag, 2005.  

[85]  E. H. De Carlo , G. M. McMurtry and H. W. Yeh, "Geochemistry of hydrothermal 
deposites from loihi submarine volcano," Earth and Planetary Science Letters , vol. 
66, pp. 438-449, 1983.  

[86]  H. Kristmannsdottir, "Alteration of basaltic rocks by hydrothermal-activity at 100-
300C," Developments in Sedimentology , vol. 27, pp. 359-367, 1979.  

[87]  K. Marumo and K. H. Hattori, "Seafloor hydrothermal clay alteration at Jade in the 
back-arc Trough: mineralogy, geochemistry and isotope characteristics," 
Geochimica et Cosmochimica Acta , vol. 63, pp. 2785-2804, 1999.  

[88]  G. M. McMurtry, W. Chung-Ho and Y. Hsueh-Wen , "Chemical and isotopic 
investigations into the origin of clay minerals from Galapagos hydrothermal mounds 
field," Geochimica et Cosmochimica Acta, vol. 47, pp. 475-489, 1983.  

[89]  F. Press and R. Siever, Allgemeine geologie - Einfuhrung in das system erde, 
Heidelberg: Spektrum Akademischer Verlag, 2003.  

[90]  www.mindat.org.  

[91]  R. Grim, "Applied clay mineralogy," McGraw-Hill , I.S.I.T.E, 1962. 

[92]  F. Bergaya, B. K. Theng and G. Lagaly, Handbook of clay science, Vol.1 : Elsevier , 
2011.  

[93]  J. K. Mitchell, Fundamentals of soil behavior, 3rd Edition : John Wiley & Sons Inc. , 
2005.  

[94]  P. S. L. Souza and D. C. C. Dal Molin, "Viability of using calcined clays, from 
industerial by-products, as pozzolans of high reactivity," Cement and Concrete 
Research , vol. 35, no. 10, pp. 1993-1998, 2005.  

[95]  R. Fernandez Lopez, "Calcined clayey soils as a potential replacement for cement in 
developing countries," EPFL, Laussane, 2009. 

[96]  A. C. Dunham, "Development in industrial mineralogy: I. The mineralogy of brick-
making," Proc. Geo. Soc, Yorkshire, 1992. 

[97]  L. Stoch, "Application of thermal analysis methods in studies of siliciclastic rocks of 
various levels," Geologiczne, Warsow, 1974. 

[98]  H. Justnes, I. Meland , J. O. Bjorgum, J. Krane and T. Skjetne, Advance Cement 
Research, vol. 3, p. 105, 1990.  



[99]  T. R. Jones, J. Bensted and P. Barnes , "Metakaolin as a pozzolanic addition to 
concrete," Spon Press, London, 2002. 

[100]  A. Palomo, M. T. Blanco-Varela, M. L. Granizo, F. Puertas , T. Vazquez and M. W. 
Grutzeck, "Chemical stability of cementitious materials based on metakaolin," 
Cement and Concrete Research , vol. 29, pp. 997-1004, 1999.  

[101]  J. Davidovits , "High alkali cements for 21st century concretes," in Concrete 
Technology, Past, Present and Future, ACI-V, 1994, pp. 383-397. 

[102]  G. Malquori, "Portland-pozzolana cement," in 4th international symposium on the 
chemistry of cement , Washington , 1962.  

[103]  W. Kurdowski and H. Pomadowski , "Selected properties of concretes modified with 
varying content of metakaolinite additive," Silicates Ind., Warsow, 2001. 

[104]  P. s. De Silva and F. P. Glasser, "Phase relations in the system CaO-Al2O3-SiO2-
H2O relevant to metakaolincalcium hydroxide hydration," Cement and Concrete 
Research , vol. 23, pp. 627-639, 1993.  

[105]  J. A. Larbi and J. M. Bijem, "Effect of mineral admixtures on the cement paste 
aggregate interface," in 4th CANMET/ACI International Conference on fly ash, 
silica, fume, slag, and natural pozzolans in concrete, Istanbul , 1992.  

[106]  G. A. Chadbourn, "Chloride resistance and durability of cement paste and concrete 
containing metakaolin," University of Aston, Aston, 1997. 

[107]  H. Xu and J. S. J. Van Deventer, "The geopolymerisation of alumino-silicate 
minerals," International Journal of Mineral Processing , vol. 59, no. 3, p. 247, 2000.  

[108]  Q. Mohsen and N. Y. Mostafa, "Investigating the possibility of utilising low 
kaolinitic clays in production of geopolymer bricks," Ceramic. Silik , vol. 54, no. 2, 
p. 160, 2010.  

[109]  H. H. Murray, "Applied clay mineralogy: Occurences, Processing and Application 
of Kaolins, Bentonites, Palygorskite-sepoilite, and common clays," Development in 
Clay Science, vol. 2, 2007.  

[110]  A. Shvarzman, K. Kovler, G. S. Grader and G. E. Shter, "The effect of 
dehydroxylation/amorphization degree on pozzolanic activity of kaolinite," Cement 
and Concrete Research , vol. 33, pp. 405-416, 2003.  

[111]  C. He, E. Makovicky and B. Osbaeck, "Thermal stability and pozzolanic activity of 
calcined illite," Applied Clay Science, vol. 9, no. 5, pp. 337-354, 1995.  



[112]  C. He, E. Makovicky and B. Osbaeck, "Thermal stability and pozzolanic activity of 
raw and calcined mixed-layer mica-smectite," Applied Clay Science , vol. 17, no. 3, 
pp. 141-161, 2000.  

[113]  C. He, E. Makovicky and B. Osbaeck, "Thermal treatment and pozzolanic activity of 
sepiolite," Applied Clay Science , vol. 10, no. 5, pp. 337-349, 1996.  

[114]  C. He, E. Makovicky and B. Osbaeck, "Thermal treatment and pozzolanic activity of 
Na-and Ca-montmorillonite," Applied Clay Science , vol. 10, no. 5, pp. 351-368, 
1996.  

[115]  C. He, E. Makovicky and B. Osbaeck, "Thermal stability and pozzolanic activity of 
calcined kaolin," Applied Clay Science , vol. 9, no. 3, pp. 165-187, 1994.  

[116]  C. He, B. Osbaeck and E. Makovicky, "Pozzolanic reactions of six principal clay 
minerals: Activiation, reactivity assessments and technological effects," Cement and 
Concrete Research , vol. 25, no. 8, pp. 1691-1702, 1995.  

[117]  B. B. Sabir, S. Wild and J. Bai, "Metakaolin and calcined clay as pozzolans for 
concrete: a review," Cemenet and Concrete Composites, vol. 23, no. 1, pp. 441-454, 
2001.  

[118]  R. Siddique and J. Klaus, "Influence of metakaolin on the properties of mortar and 
concrete: A review," Applied Clay Science , vol. 43, no. 4, pp. 392-400, 2009.  

[119]  R. C. Mielenz, K. T. Greene and N. C. Schieltz, "Natural pozzolan for concrete," 
Economic Geology, vol. 46, no. 3, pp. 311-328, 1951.  

[120]  C. Bich, J. Ambroise and J. Pera, "Influence of degree of dehydroxylation on the 
pozzolanic activity of metakaolin," Applied Clay Science , vol. 44, no. 3, pp. 194-
200, 2009.  

[121]  M. Murat, "Hydration reaction and hardening of calcined clays and related minerals: 
II. influence of mineralogical properties of the raw-kaolinite on the reactivity of 
metakaolinite," Cement and Concrete Resreach , vol. 13, no. 4, pp. 511-518, 1983.  

[122]  A. Chakcouk, B. Samet and T. Mnif, "Study on the potential use of Tunisian clays as 
pozzolanic material," Appliled Clay Science , vol. 33, no. 2, pp. 276-281, 2006.  

[123]  A. Tironi and et al. , "Kaolinitic clacined clays: Factors affecting its performance as 
pozzolans," Construction and Building Materials , vol. 28, no. 1, pp. 276-281, 2012.  

[124]  B. Samet , T. Mnif and M. Chaabouni, "Use of a kaolinitic clay as a pozzolanic 
material for cements: Formulation of blended cement," Cement and Concrete 
Composites, vol. 29, no. 10, pp. 741-749, 2007.  



[125]  G. Habert and et al., "Effects of the secondary minerals of the natural pozzolans on 
their pozzolanic activity," Cement and Concrete Research , vol. 38, no. 7, pp. 963-
975, 2008.  

[126]  S. Salvador , "Pozzolanic properties of flash-calcined kaolinite: A comparative study 
with soak-calcined products," Cement and Concrete Research , vol. 25, no. 1, pp. 
102-112, 1995.  

[127]  G. I. Cadoret , "Method and installation for the dehydroxylation treatment of 
aluminium silicate," SGMC, Paris , 2004. 

[128]  P. Ptacek, F. Frajkorova, F. Soukal and T. Opravil, "Kinetics and mechanism of 
three stages of thermal transformation of kaolinite to metakaolinite," Powder 
Technology , vol. 264, pp. 439-445, 2014.  

[129]  R. C. Mackenzie and M. Society , "The differential thermal investigation of clays," 
Mineralogical Society (Clay Mineral Group), 1957. 

[130]  B. R. Ilic, A. A. Mitrovic and L. R. Milicic, "Thermal treatment of kaolin clay to 
obtain metakaolin," Hemijska Industrija, vol. 64, pp. 351-356, 2010.  

[131]  A. Souri, H. Kazemi Kamyab , R. Snellings , R. Naghizadeh, F. Golestani-Fard and 
K. Scrivener , "Pozzolanic activity of mechanochemically and thermally activated 
kaolins in cement," Cement and Concrete Research , vol. 77, pp. 47-59, 2015.  

[132]  A. Shvarzman, K. Kovler, G. S. Grader and G. E. Shter, "The effect of 
dehydroxylation/amorphization degree on pozzolanic activity of kaolinite," Cement 
and Concrete Research , vol. 33, pp. 405-416, 2003.  

[133]  A. Alujas, R. Fernandez, R. Quintana , K. L. Scrivener and F. Martirena , 
"Pozzolanic reactivity of low grade kaolinite clays: Influence of calcination 
temperature and impact of calcination products on OPC hydration," Applied Clay 
Science , vol. 108, pp. 94-101, 2015.  

[134]  M. Murat and C. Comel , "Hydration reaction and hardening of calcined clays and 
related minerlas. III. Influence of calcination process of kaolinite on mechanical 
strength of hardened metakaolinite," Cement and Concrete Research , vol. 13, pp. 
631-637, 1983.  

[135]  K. J. D. Mackenzie and D. E. Rogers, "Thermal and Mossbauer studies of iron-
containing hydrous silicates : I. Nontronite," Thermochimica Acta, vol. 18, pp. 177-
196, 1977.  



[136]  G. W. Brindley and M. Nakahira, "The Kaolinite-Mullite reaction series: II, 
metakaolin," Journal of the American Ceramics Society , vol. 42, no. 7, pp. 314-318, 
1959.  

[137]  G. W. Brindley and M. Nakahira, "The Kaolinite-Mullite reaction Series: I, A survey 
of outstanding problems," Journal of the American Ceramic Society, vol. 42, no. 7, 
pp. 311-314, 1959.  

[138]  G. W. Brindley and M. Nakahira, "The Kaolinite-Mullite reactions series: III, the 
high-temperature phases," Journal of the American Ceramic Society , vol. 42, no. 7, 
pp. 319-324, 1959.  

[139]  R. C. Mielenz, N. C. Schieltz and M. E. King, "Thermogravimetric analysis of clay 
and clay-like minerals," Clays and Clay Minerals , vol. 2, pp. 285-314, 1953.  

[140]  R. San Nicolas , "Approche performantielle des beton avec metakaolins obtenus par 
calcination flash," Universite Paul Sabatier-Toulouse III, Toulouse, 2011. 

[141]  J. Sanz and et al., "Aluminum-27 and Silicon-29 Magic-Angle spinning nuclear 
magnetic resonance study of the kaolinite-mullite transformation," Journal of the 
American Ceramic Society , vol. 71, no. 10, pp. C418-C421, 1988.  

[142]  R. Fernandez, F. Martirena and K. L. Scrivener, "The origin of the pozzolanic 
activity of calcined clay minerals: A comparison between kaolinite, illite and 
montmorillonite," Cement and Concrete Research , vol. 41, no. 1, pp. 113-122, 
2011.  

[143]  C. E. White and et al. , "Density functional modeling of the local structure of 
kaolinite subjected to thermal dehydroxylation," Journal of Physical Chemistry A, 
vol. 114, no. 4, pp. 4988-4996, 2010.  

[144]  C. E. White and et al . , "Structure of kaolinite and influence of stacking faults: 
Reconciling theory and experiment using inelastic neutron scattering analysis," 
Journal of Chemical Physics, vol. 138, no. 19, 2013.  

[145]  J. Lambert, W. Millman and J. Fripiat, "Revisiting kaolinite dehydroxylation: A 
silicon-29 and aluminum-27 MAS NMR study," Journal of the American Chemical 
Society , vol. 111, pp. 3517-3522, 1989.  

[146]  E. M. J. Berodier, "Impact of the supplementary cementitious materials on the 
kinetics and microstructural development of cement hydration," EPFL, Laussane, 
2015. 



[147]  A. Tironi, M. A. Trezza, A. N. Scian and E. F. Irassar, "Assessment of pozzolanic 
activity of different calcined clays," Cement and Concrete Composites, vol. 37, pp. 
319-327, 2013.  

[148]  A. S. Silva, A. Gameiro, J. Grilo, R. Veiga and A. Velosa, "Long-term behavior of 
lime-metakaolin pastes at ambient temperature and humid curing condition," 
Applied Clay Science , Vols. 88-89, pp. 49-55, 2014.  

[149]  J. Ambroise, M. Murat and J. Pera, "Hydration reaction and hardening of calcined 
clays and related minerals. IV. Experimental conditions for strength improvement on 
metakaolinite minicylinders," Cement and Concrete Research , vol. 15, pp. 83-88, 
1985.  

[150]  K. De Weerdt, M. B. Haha, G. Le Saout, K. O. Kjellsen, H. Justnes and B. 
Lothenbach, "Hydration mechanism of ternary Portland cements containing 
limestone powder and fly ash," Cement and Concrete Research , vol. 41, pp. 279-
291, 2011.  

[151]  M. Zajac, A. Rossberg, G. Le Saout and B. Lothenbach , "Influence of limestone and 
anhydrite on the hydration of Portland Cements," Cement and Concrete Composites 
, vol. 46, pp. 99-108, 2014.  

[152]  V. L. Bonavetti, V. F. Rahhal and E. F. Irassar, "Studies on the carboaluminate 
formation in limestone filler-blended cement," Cement and Concrete Research, vol. 
31, pp. 853-859, 2001.  

[153]  B. Lothenbach, G. Le Saout, E. Gallucci and K. Scrivener, "Influence of limestone 
on the hydration of Portland cements," Cement and Concrete Research , vol. 38, pp. 
848-860, 2008.  

[154]  G. Kakali , S. Tsivilis , E. Aggeli and M. Bati, "Hydration products of C3A, C3S 
and Portland cement in the presence of CaCO3," Cement and Concrete Research, 
vol. 30, pp. 1073-1077, 2000.  

[155]  T. Matschei , B. Lothenbach and F. P. Glasser, "The role of calcium carbonate in 
cement hydration," Cement and Concrete Research , vol. 37, pp. 551-558, 2007.  

[156]  O. Chowaniec, "Limestone addition in cement," EPFL 5335, Lausanne , 2012. 

[157]  C. E. Tsivilis , S. E. Badogiannis , G. Pathoulasa and A. Ilias, "A study on the 
parameters affecting the properties of Portland limestone cements," Cement and 
Concrete Composites , vol. 21, pp. 107-116, 1999.  

[158]  T. Ramlochan and M. Thomas , "Effect of metakaolin on external sulfate attack," 
ACI Special Publication , 2000. 



[159]  N. M. Al-Akhras, "Durability of metakaolin concrete to sulfate attack," Cement and 
Concrete Research, vol. 36, no. 9, pp. 1727-1734, 2006.  

[160]  C. Shi, D. Wang and A. Behnood, "Review of Thaumasite sulfate attack on cement 
and concrete," Journal of Materials in Civil Engineering , vol. 24, no. 12, pp. 1450-
1460, 2012.  

[161]  A. Skaropoulou and et al. , "Use of mineral admixtures to improve the resistance of 
limestone cement concrete against thaumasite from of sulfate attack," Cement and 
Concrete Composites , 2013.  

[162]  F. Bellmann and J. Stark, "Prevention of thaumasite formation in concrete exposed 
to sulphate attack," Cement and Concrete Research , vol. 38, no. 10, pp. 1154-1161, 
2007.  

[163]  F. Bellmann and J. Stark , "The role of calcium hydroxide in the formation of 
thaumasite," Cement and Concrete Research , vol. 38, no. 10, pp. 1154-1161, 2008.  

[164]  T. Chappex and K. L. Scrivener , "The influence of aluminium on the dissolution of 
amorphous silica and its relation to alkali silica reaction," Cement and Concrete 
Research , vol. 42, no. 12, pp. 1645-1649, 2012.  

[165]  M. N. Saad, W. P. De Andrade and V. A. Paulon , "Properties of mass concrete 
containing an active pozzolan made from clay," Concrete International , vol. 4, no. 
07, pp. 59-65, 1982.  

[166]  K. De Weerdt, K. Kjellsen, E. Sellevold and H. Justnes, "Synergy between fly ash 
and limestone powder in ternary cements," Cement and Concrete Composites , vol. 
33, no. 1, pp. 30-38, 2011.  

[167]  B. Lothrnbach , T. Matschei, G. Moschner and F. P. Glasser, "Thermodynamic 
modelling of the effect of temperature on the hydration and porosity of Portland 
cement," Cement and Concrete Research , vol. 38, no. 1, pp. 1-18, 2008.  

[168]  W. P. Inskeep and P. R. Bloom , "An evaluation of rate equations for calcite 
precipitation kinetics at less than 0.01 atm and pH greater than 8," Geochimica et 
Cosmochimica Acta , vol. 49, no. 10, pp. 2165-2180, 1985.  

[169]  B. Lothenbach, G. Le Saout, E. Gallucci and K. Scrivener, "Influence of limestone 
on the hydration of Portland cements," Cement and Concrete Research, vol. 38, no. 
6, pp. 848-860, 2008.  

[170]  G. Menendez, V. Bonavetti and E. F. Irassar, "Strength development of ternary 
blended cement with limestone filler and blast-furnace slag," Cement and Concrete 
Composites , vol. 25, no. 1, pp. 61-67, 2003.  



[171]  M. Antoni, J. Rossen, F. Martirena and K. Scrivener, "Cement substitution by a 
combination of metakaolin and limestone," Cement and Concrete Research , vol. 42, 
pp. 1579-1589, 2012.  

[172]  M. Antoni, "Investigation of Cement substitution by blends of calcined clays and 
limestone," Ecole Polytechnique Federale de Lausanne , Thesis 6001, 2013. 

[173]  H. H. Murray, "Applied clay mineralogy today and tomorrow," Clay Minerals , vol. 
34, pp. 39-49, 1997.  

[174]  D. Herfort and J. S. Damtoft, "US Patent WO 2010/130511 A1 - Portland Limestone 
Calcined Clay Cement," World Intellectual Property Organization , 2010. 

[175]  G. Habert, N. Choupay , G. Escadeillas, D. Guillaume and J. M. Montel , "Clay 
content of argillites: Influence on cement based mortars," Applied Clay Science , vol. 
43, pp. 322-330, 2008.  

[176]  C. L. Christ , J. C. Hathaway , P. B. Hostetler and A. O. Shepard , "Palygorskite: 
new X-ray data," American Mineralogy, vol. 54, pp. 198-205, 1969.  

[177]  F. Bullerjahn, M. Zajac and D. Nied, "US Patent 2017/0267586 A1 - Supplementary 
cementitous materials made of aluminium silicate and dolomite," 2017. 

[178]  J. Dupuis and D. Chazay, "US 2007/028925 A1 - Installation and process for 
calcining a mineral load containing a carbonate in order to produce a hydraulic 
binder," 2007. 

[179]  G. Meynardi, "US patnet 1988/4737191 - Process for manufacturing hydraulic 
binders," 1988. 

[180]  D. J. Cook and R. N. Swaing , "Cement Replacement Materials," Concrete 
Technology and Design, pp. 40-72, 1985.  

[181]  IPCC, "Revised 1966 IPCC Guidelines for national greenhouse gas inventories," 
IPCC/OECD/IEA, Paris, 1997. 

[182]  WBCSD, "World business council for sustainable developmenet - Cement industry 
energy and CO2 performance " Getting the numbers right"," CSI, Washington DC, 
2009. 

[183]  "Environmental characteristics of clays and clay mineral deposite (usgs.gov)," 2015. 

[184]  E. Benhelal , G. Zahedi , E. Shamsaei and A. Bahadori, "Global strategies and 
potentials to curb CO2 emissions in cement industry," Journal of Cleaner 
Production , vol. 12, pp. 142-161, 2013.  



[185]  G. Kalkali and et al. , "Thermal treatment of kaolin: the effect of mineralogy on the 
pozzolanic activity," Applied Clay Science , vol. 20, pp. 73-80, 2001.  

[186]  S. Wild and et al. , "Relative strength, pozzolanic activity and cement hydration in 
superplasticised metakaolin concrete," Cement and Concrete Research, vol. 26, no. 
10, pp. 1537-1544, 1996.  

[187]  M. A. Caldarone, K. A. Gruber and R. G. Burg, "High reactivity metakaolin : a new 
generation mineral admixture," Concrete International, vol. 1, pp. 37-40, 1994.  

[188]  D. S. Snell, "Review of synthesis and properties of Tobermorite, C-S-H (I), and C-S-
H gel," Journal of American Ceramic Society , vol. 58, no. 7-8, pp. 272-295, 1975.  

[189]  G. L. Kaousek, "Crystal chemistry of hydrous calcium silicates: (I) substitution of 
aluminum in lattice of Tobermorite," Journal of American Ceramic Society , vol. 40, 
no. 3, pp. 74-80, 1957.  

[190]  M. Jackson, E. Landis , P. Brune , M. Vitti and Q. Li, "Mechanical resilience and 
cementitious processes in imperial roman architectural mortar," PNAS, pp. 18484-
18489, 2007.  

[191]  M. Luxan, F. Madruga and J. Savedra, "Rapid evaluation of pozzolanic activity of 
natural products by conductivity measurements," Cement and Concrete Research , 
vol. 4, pp. 63-68, 1989.  

[192]  H. Murray, "Traditional and new application for Kalinite, smectite, and palygorskite: 
a general overview," Applied Clay Science , pp. 207-221, 2000.  

[193]  R. Rodriguez-Camacho and R. Uribe-Afif, "Importance of using the natural 
pozzolans on concrete durability," Cement and Concrete Research , vol. 2, pp. 441-
454, 2002.  

[194]  K. Scrivener , M. Antoni , A. Favier and F. Martirena , "Low carbon cement based 
on clinker, calcined clay and limestone," Journal of the American Ceramic Society , 
pp. 1901-1910, 2011.  

[195]  A. Ipavec and et al. , "Carboaluminate phases formation during the hydration of 
calcite-containing portland cement," Jounal of the American Ceramic Society , vol. 
94, no. 4, pp. 1238-1242, 2011.  

[196]  J. Pera , S. Husson and B. Guilhot, "Influence of finely ground limestone on cement 
hydration," Cement and Concrete Composite, vol. 21, no. 2, pp. 99-105, 1999.  

[197]  E. Worrell, L. Price, N. Martin , C. Hendriks and L. Ozawa Meida, "Carbon dioxide 
emission from the global cement industry," Annual Review of Energy and The 
Environment , pp. 303-329, 2001.  



 

 


	ABSTRACT
	ÖZET
	ÖZET
	ÖZET
	ACKNOWLEDGMENT
	ACKNOWLEDGMENT
	TABLE OF CONTENT
	TABLE OF CONTENT
	TABLE OF CONTENT
	LIST OF FIGURES
	LIST OF TABLES
	Glossary
	CHAPTER 1
	INTRODUCTION
	1.1 General
	1.2 Objectives of Study
	1.3  Materials and Methods
	1.3.1 Materials
	1.3.1.1 Schist-minerals as possible supplementary cementitious materials (SCMs)
	1.3.1.2 Schist-type materials Studied
	1.3.1.3 Reference Kaolinite and Carbonate Source
	1.3.1.4 Used Ordinary Portland Cement

	1.3.2 Methods
	1.3.2.1 Chemical phase composition analysis
	1.3.2.1.1 X-ray powder diffraction
	1.3.2.1.2 Quantitative Phase Analysis by Rietveld Method

	1.3.2.2 Microstructure Evaluation
	1.3.2.2.1 Imaging with secondary electrons in a scanning electron microscope (SEM)
	1.3.2.2.2 Elemental Distribution maps with Energy Dispersive Spectroscopy (EDS)

	1.3.2.3 Thermal Analysis for Determining Activation Process Parameters
	1.3.2.4. Activation of schist-type SCMs by heat-treatment
	1.3.2.4.1 Virgin and Carbonate-Modified SCM alternatives

	1.3.2.5 Calcination Process
	1.3.2.6 Pozzolanicity Measurement
	1.3.2.7 Evaluation Compressive Strength of Cement Containing Schist-Type SCM Alternatives
	1.3.2.7.1 Paste Preparation
	1.3.2.7.2 Test Specimen Preparation
	1.3.2.7.3 Compressive Strength Test
	1.3.2.7.4 Measure Strength Data Analysis





	CHAPTER 2
	LITERATURE REVIEW
	2.1 Cement manufacture CO2 emission
	2.2 Brief History of Binders
	2.3 Ordinary Portland Cement (OPC)
	2.4. Supplementary Cementing Materials (SCMs)
	2.4.1 Blast Furnace Slag
	2.4.2. Fly Ash
	2.4.3. Silica Fume
	2.4.4. Limestone

	2.5. Calcined Clay as SCM
	2.5.1 Clay Minerals
	2.5.2 Kaolinite and Meta-Kaolinite

	2.6 Clay Reactivity
	2.6.1 Calcination of Clay
	2.6.2 Calcination through Thermal Activation
	2.6.2 Thermal Activation

	2.7 Limestone Calcined Clay Cement (LC3)
	2.7.2 Limestone and Metakaolin in Blended Cement

	2.8 Using More Complex Clay Structure as SCM


	CHAPTER 3
	CALCINED CLAY CEMENT (C3)
	3.1. General
	3.2 Evaluation of Raw Materials (Virgin Powders)
	3.2.1 Chemical Phase Analysis (X-ray Diffraction and Rietveld)
	3.2.1.1 Bozalan Schist
	3.2.1.2 Camlica Schist
	3.2.1.3 Tastepe Schist
	3.2.1.4 Kovukdere Schist
	3.2.1.5 Muratbey Schist
	3.2.1.6 Ladik Schist
	3.2.1.7 Pure Kaolinite (Benchmark Sample)

	3.2.2 Thermogravimetric Analysis (TGA)
	3.2.2.1 Bozalan Schist
	3.2.2.2 Camlica Schist
	3.2.2.3 Tastep Schist
	3.2.2.4 Kovukdere Schist
	3.2.2.5 Muratbey Schist
	3.2.2.6 Ladik Schist
	3.2.2.7 Kaolinite

	3.2.3 Electrical Conductivity Measurement (Pozzolanicity)
	3.2.3.1 Bozalan Schist
	3.2.3.2 Camlica Schist
	3.2.3.3 Tastepe Schist
	3.2.3.4 Kovukdere Schist
	3.2.3.5 Muratbey Schist
	3.2.3.6 Ladik Schist
	3.2.3.7 Kaolinite

	3.2.4 Microstructure and Composition Analysis (SEM-EDS)

	3.3. Evaluation of Calcined Schists (Heat-treated and activated Powders)
	3.3.1 Microstructure and Composition Analysis (SEM-EDS)
	3.3.2 Pozzolanic Reactions and Heat Treatments
	3.3.3 Phase Analysis, Conductivity Measurements and TGA
	3.3.3.1 Kaolinite
	3.3.3.2 Bozalan Schist
	3.3.3.3 Tastepe Schist
	3.3.3.4 Camlica Schist
	3.3.3.5 Kovukdere Schist
	3.3.3.6 Muratbey Schist
	3.3.3.7 Ladik Schist

	3.3.4 Compressive Strength Test
	3.3.4.1 Calcined Clay Cement (C3) by heat-treated material up to 30% of WLT
	3.3.4.2 Calcined Clay Cement (C3) by heat-treated material up to 50% of WLT
	3.3.4.3 Calcined Clay Cement (C3) by heat-treated material up to 80% of WLT


	3.5 Discussion
	3.6 Conclusion


	CHAPTER 4
	LIMESTONE CALCINED CLAY and CARBONATE CEMENT (LC4)
	4.1 General
	4.2 Experimental
	4.2.1 Materials

	4.3 Sample Preparation
	4.3.1 Calcined Clay Cement (C3) Samples
	4.3.2 Limestone Calcined Clay and Carbonate Cement (LC4) Sample
	4.3.3 Cement Paste Sample Preparation

	4.4 Tests and Methods
	4.4.1 Phase Analysis
	4.4.2 Thermal Analysis
	4.4.3 Microstructure Analysis
	4.4.4 Compression Test

	4.5 Results
	4.5.1 Virgin Materials (Before Activation)
	4.5.1.1 Phase Distribution
	4.5.1.1.1 M1 - Green
	4.5.1.1.2 M2 – Brown
	4.5.1.1.3 M3 – Pink
	4.5.1.1.4 M4 – Black

	4.5.1.2 Activation Process
	4.5.1.2.1 M1-Green
	4.5.1.2.2 M2-Brown
	4.5.1.2.3 M3-Pink
	4.5.1.2.4 M4-Black

	4.5.1.3 Microstructure Analysis
	4.5.1.3.1 M1 – Green
	4.5.1.3.2 M2 – Brown
	4.5.1.3.3 M3 – Pink
	4.5.1.3.4 M4 – Black


	4.5.2 Calcined Materials (C3 and LC4)
	4.5.2.1 Phase Distribution and Evolution during activation process
	4.5.2.1.1 M1 with and without 15% ,𝐶𝐶. Addition
	4.5.2.1.2 M2 with and without 15% ,𝐶𝐶. Addition
	4.5.2.1.3 M3 with and without 15% ,𝐶𝐶. Addition
	4.5.2.1.4 M4 with and without 15% ,𝐶𝐶. Addition

	4.5.2.2 Scaling up the Activation Process
	4.5.2.2.1 M1 with and without 15% ,𝐶𝐶. Addition
	4.5.2.2.2 M2 with and without 15% ,𝐶𝐶. Addition
	4.5.2.2.3 M3 with and without 15% ,𝐶𝐶. Addition
	4.5.2.2.4 M4 with and without 15% ,𝐶𝐶. Addition

	4.5.2.3 Microstructure Analysis
	4.5.2.3.1 M1 with and without 15% ,𝐶𝐶. Addition
	4.5.2.3.2 M2 with and without 15% ,𝐶𝐶. Addition
	4.5.2.3.3 M3 with and without 15% ,𝐶𝐶. Addition
	4.5.2.3.4 M4 with and without 15% ,𝐶𝐶. Addition


	4.5.2 Compressive Strength Measurement

	4.6 Discussion
	4.7 Conclusion


	CHAPTER 5
	CONCLUSION

	REFERENCES

