
NOVEL GRADIENT-BASED METHODS FOR

DATA DISTRIBUTION AND PRIVACY IN DATA SCIENCE

by

NURDAN KURU

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sabancı University

September 2019

c© Nurdan Kuru 2019

All Rights Reserved

NOVEL GRADIENT-BASED METHODS FOR DATA DISTRIBUTION AND

PRIVACY IN DATA SCIENCE

Nurdan Kuru

Industrial Engineering, PhD Thesis, September 2019

Thesis Supervisor: Prof. Dr. Ş. İlker Birbil

Keywords: large-scale optimization, differential privacy, momentum-based algorithms

Abstract

With an increase in the need of storing data at different locations, designing algo-
rithms that can analyze distributed data is becoming more important. In this thesis, we
present several gradient-based algorithms, which are customized for data distribution
and privacy. First, we propose a provably convergent, second order incremental and
inherently parallel algorithm. The proposed algorithm works with distributed data. By
using a local quadratic approximation, we achieve to speed-up the convergence with
the help of curvature information. We also illustrate that the parallel implementation
of our algorithm performs better than a parallel stochastic gradient descent method
to solve a large-scale data science problem. This first algorithm solves the problem of
using data that resides at different locations. However, this setting is not necessarily
enough for data privacy. To guarantee the privacy of the data, we propose differen-
tially private optimization algorithms in the second part of the thesis. The first one
among them employs a smoothing approach which is based on using the weighted av-
erages of the history of gradients. This approach helps to decrease the variance of the
noise. This reduction in the variance is important for iterative optimization algorithms,
since increasing the amount of noise in the algorithm can harm the performance. We
also present differentially private version of a recent multistage accelerated algorithm.
These extensions use noise related parameter selection and the proposed stepsizes are
proportional to the variance of the noisy gradient. The numerical experiments show
that our algorithms show a better performance than some well-known differentially
private algorithms.

VERİ BİLİMİNDE MAHREMİYET VE VERİ DAĞILIMINA DAYALI GRADYAN

TABANLI YENİ METODLAR

Nurdan Kuru

Endüstri Mühendisliği, Doktora Tezi, Eylül 2019

Tez Danışmanı: Prof. Dr. Ş. İlker Birbil

Anahtar Kelimeler: büyük ölçeki eniyileme, diferansiyel mahremiyet, momentum

tabanlı algoritmalar

Özet

Veriyi farklı lokasyonlarda saklama ihtiyacındaki artış dağıtık veriyi analiz edebilen
algoritmaların önemini de arttırmıştır. Bu tezde, veri dağıtımı ve mahremiyet özelinde
tanımlanmış gradyan-tabanlı birkaç algoritma tanıtılacaktır. İlk olarak, ispatlanabilir
yakınsak, ikinci dereceden kademeli ve yapısı gereği ayrıştırılabilir bir algoritma öner-
ilecektir. Bu algoritma dağıtık veri ile çalışabilmektedir. Yerel ikinci dereceden yak-
laşım kullanarak eğrilik bilgisi yardımıyla yakınsaklığı hızlandırma başarılmıştır. Ek
olarak, büyük ölçekli veri bilimi problemi üzerinde tanıtılan algoritmanın paralelleştir-
ilmesinin paralel rassal gradyan inişi algoritmasından daha iyi performans sergilediği
gösterilmiştir. Bu tanıtılan ilk algoritma farklı lokasyonlarda saklanan veriyi kullanma
problemini çözse de veri güvenliği için yeterli değildir. Tezin ikinci kısmında veri
güvenliğini garanti etmek amacıyla diferansiyel olarak mahrem eniyileme algoritmaları
tanıtılacaktır. İlk algoritma geçmiş gradyanların ağırlıklı ortalamalarını almaya dayalı
bir düzleştirme yaklaşımı kullanmaktadır. Böylelikle gürültü varyansı düşürülmektedir.
Varyanstaki bu azalma artan gürültü algoritma performansına zarar verebileceği için
eniyileme algoritmaları açısından önemlidir. Ek olarak, yakın zamanda tanıtılmış çok
aşamalı hızlandırılmış bir algoritmanın diferansiyel mahrem versiyonu da verilmiştir.
Tanıtılan mahrem algoritmaların hepsinin parametre seçimi gürültü göz önünde bu-
lundurularak yapılmış, kullanılan adım boyları gürültü eklenmiş gradyanların varyansı
ile orantılı olarak seçilmiştir. Sayısal deneyler de bizim algoritmalarımızın bazı bilinen
diferansiyel olarak mahrem algoritmalardan daha iyi performans sergilediğini göster-
miştir.

To my family and grandmothers

Acknowledgements

First of all, I would like to express my sincere and deepest gratitude to my advisor

Prof. Dr. İlker Birbil, for his guidance, encouragement and constant support. I am

thankful to him for all the advice, moral support and patience in guiding me through

this thesis. I would like to extend my sincere thanks to my co-advisor Assist. Prof.

Dr. Sinan Yıldırım for his guidance, support and important contributions to my study.

I am really honored to work with Prof. Dr. İlker Birbil and Assist. Prof. Dr. Sinan

Yıldırım.

This dissertation could not be completed without the invaluable input of my other

advisers and jury members. I would like to thank Assist. Prof. Dr. Mert Gürbüzbal-

aban for his support, guidance and hospitality during my visit to Rutgers University.

I am also thankful to my thesis committee Prof. Dr. Kerem Bülbül and Prof. Dr.

Ali Taylan Cemgil for their valuable time, interest and insightful comments. Special

thanks to Assoc. Prof. Dr. Murat Çokol for being an advisor and collaborator to me.

I have learnt a lot from him about computational biology.

I am grateful to all of my friends from Industrial Engineering and Mathematics

Programs. Their invaluable friendship made me feel at home at Sabancı University.

Specially, I want to thank to my dear friends Esra Gül, Tekgül Kalaycı and Gamze

Kuruk for always being there for me.

I am deeply grateful to my mother Lütfiye, my father İbrahim and my sister Nurcan.

Without their support and patience, I could never complete this thesis. They were

always next to me with all their warmness and unwavering love. I also want to thank

to my grandparents for their endless love. Although they are not with us anymore, I

still feel my grandmoms’ support behind me.

Lastly, I would like to thank TÜBİTAK for supporting me financially by granting

a scholarship for my visit to Rutgers University.

vii

Table of Contents

Abstract iv

Özet v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 3
1.2 Problem Description . 4
1.3 Proposed Approaches . 6
1.4 Contributions . 7
1.5 Overview of The Thesis . 9

2 Literature Review 10
2.1 Data Distribution . 10
2.2 Differential Privacy . 12
2.3 First Order Accelerated Algorithms . 15

3 An Algorithm Based On Data Distribution 20
3.1 Deterministic HAMSI . 22
3.2 Stochastic HAMSI . 31
3.3 Partitioning And Parallelization . 36
3.4 Example Implementation . 40
3.5 Computational Study . 41

4 Differentially Private Gradient-Based Algorithms 46
4.1 Preliminaries . 49

4.1.1 Gradient-based Optimization 50
4.1.2 Differential Privacy . 51
4.1.3 Dynamical System Approach 53

4.2 Momentum-Based Algorithms Using Full Gradient Descent 55
4.2.1 Gradient Descent Algorithm with Smoothing 56
4.2.2 Multistage Accelerated Algorithm 65

4.3 Momentum-Based Algorithms Using Sampling 69
4.3.1 Stochastic Gradient Descent Algorithm with Smoothing 70
4.3.2 Multistage Accelerated Stochastic Algorithm 74

4.4 Computational Study . 76
4.4.1 Results for Deterministic Algorithms 77
4.4.2 Results for Stochastic Algorithms 81

viii

A Omitted Proofs and Results 94
A.1 Proof of Theorem 4.1.4 . 94
A.2 Proof of Proposition 4.3.2 . 95

ix

List of Figures

3.1 Incremental optimization of a partially separable objective 21

3.2 The factor graph and partitioning of the problem in Example 3.0.1 . . 23

3.3 The number of functions in each color set for MovieLens 100K dataset . 37

3.4 Two stratifications for the MovieLens 100K matrix 38

3.5 Convergence of mb-GD and HAMSI in terms RMSE values with 16

threads. 43

3.6 Convergence behaviors of HAMSI when the number of threads is increased. 43

3.7 Hessian computation, update, and gradient computation time for an

outer iteration of mb-GD and HAMSI with 16 threads. 45

4.1 Convergence Rate for different κ values 65

4.2 Results of DP-GDwS for ε = 0.5, 0.8, 1 78

4.3 Results of DP-GDwS for ε = 0.5, 0.8, 1 79

4.4 Advantage of DP-MAG . 80

4.5 Advantage of DP-MAG for 104 iterations 81

4.6 Deterministic DP - Comparisons . 82

4.7 Deterministic DP - Comparisons for Different Datasets 83

4.8 DP-SGDwS Results for Sample Size = 1 84

4.9 DP-SGDwS Results for Sample Size = 10 85

4.10 DP-SGDwS Results for Sample Size = 100 86

4.11 DP-SGDwS Results for Sample Size = 1000 87

4.12 Results of DP-SGDwS for ε = 1 . 87

4.13 DP-onlineGDwS Results for Bucket Size = 10 88

4.14 Advantage of DP-SMAG For Epsilon = 1 88

4.15 Advantage of DP-SMAG For 104 Iterations 89

x

4.16 Comparison of Stochastic Algorithms For Sample Size = 1 89

4.17 Comparison of Stochastic Algorithms For Sample Size = 10 90

4.18 Comparison of Stochastic Algorithms For Sample Size = 100 90

4.19 Comparison of Stochastic Algorithms For Sample Size = 1000 91

4.20 Comparison of Stochastic Algorithms For Different Datasets 91

4.21 Comparison of Stochastic Algorithms For Sample Size = 1 on MNIST . 92

4.22 Comparison of Stochastic Algorithms For Sample Size = 10 on MNIST 92

4.23 Comparison of Stochastic Algorithms For Sample Size = 100 on MNIST 93

4.24 Comparison of Stochastic Algorithms For Sample Size = 1000 on MNIST 93

xi

List of Algorithms

1 Hessian Approximated Multiple Subsets Iteration (HAMSI) 25

2 Stochastic HAMSI . 31

3 HAMSI with L-BFGS Updates . 39

4 DP-GDwS: Differentially private smoothed gradient descent algorithm . 57

5 DP-MAG: Differentially private multistage accelerated algorithm 67

6 DP-SGDwS: Differentially private smoothed stochastic gradient descent

algorithm . 72

7 DP-SMAG: Differentially private stochastic multistage accelerated algo-

rithm . 74

xii

Chapter 1

Introduction

With the recent interest in maintaining data at different locations, the need for the

analysis of distributed data has increased. Many organizations prefer to distribute

their data since it is more secure and less costly. Moreover, accessing distributed data

is speedy and even if there is a failure about a part of the data, the other parts are not

affected. This scenario considers the distribution of data at one organization. It is also

possible that multiple companies desire a common analysis for their similar data. In

this case, it is not practical to collect all data in a single location, so the first aim is to

find a way to use the distributed data without changing its location. Many studies in

the literature deal with this problem. In this thesis, we present a new algorithm, which

not only uses distributed data but is also provably convergent, second order incremental

and inherently parallel. This algorithm does not require moving data from one location

to another, but if the data holders have a privacy concern, then the proposed algorithm

does not necessarily guarantee privacy.

Nowadays, when entering a website or watching a movie, people provide informa-

tion about themselves. Even if this data is shared voluntarily, the main issue for a

company while using this customer information is to make sure that the identity of

any individual is not revealed. To solve this security problem, we use differential pri-

vacy, one of the popular approaches in machine learning. Differential privacy means

constructing a mechanism that does not give any clue about whether information re-

lated to an individual is present or not present in data. In other words, the output of

the mechanism does not change probabilistically when a new individual’s information

is added. Privacy does not require restricting the questions that can be asked about

1

data or anonymization of data. Rather, it requires that the adversary has no more

information about an individual after substracting this individual’s information.

Differential privacy is also popular in the optimization context. It is known that

by using a suitable noise adding mechanism, iterative algorithms can be made differ-

entially private [4,76]. However, the privacy level can easily be harmed by this process

since a new question is answered by using the same data continuously over subsequent

iterations. We propose adjustments to improve the privacy level to make differential

privacy more compatible with iterative optimization algorithms. Some of these ad-

justments, such as momentum and averaging, have already been used to speed up the

gradient descent (GD) and the stochastic gradient descent (SGD) algorithms [61,80].

Our aim is to obtain improved differentially private algorithms by employing gra-

dient averaging which is used in momentum-based algorithms such as Polyak’s heavy

ball (HB) [66] and Nesterov’s accelerated gradient descent (NAG) [59]. With this aim,

we propose two differentially private algorithms based on HB and NAG, and their

stochastic versions.

Our first algorithm, called the differentially private gradient descent algorithm with

smoothing (DP-GDwS), employs a smoothing approach and uses the information from

the previous iterations while taking steps. We have constructed this smoothing mech-

anism with the aim of improving the privacy level by taking the weighted averages of

the current and the previous noisy gradients. While studying the algorithm’s conver-

gence, we have observed that it can be analyzed in the form of HB. Thus, to further

give its convergence rate, we have made use of the dynamical system approach, which

is one of the recent approaches for analyzing the first order methods [30, 40, 48]. Our

second deterministic algorithm, the differentially private multistage accelerated gradi-

ent (DP-MAG), is based on the multistage accelerated stochastic gradient algorithm

(M-ASG) introduced in [3]. The authors have proposed and analyzed an accelerated

method dealing with noisy gradients, but do not consider the differential privacy in

the algorithm design. Moreover, the variance of the added noise is determined without

taking the data into account. We introduce the private version of this algorithm with

parameters compatible with the differential privacy noise. Additionally, we use a noise

dividing scheme by considering the stages of the algorithm. By following the same

steps as in [3], we present the convergence analysis of our new multi-stage algorithm.

2

In the final part, we propose the stochastic versions of DP-GDwS and DP-MAG.

These versions are based on subsampling at each iteration instead of using complete

data. It is known from the literature that subsampling has an amplification effect over

differential privacy because of the randomness of data selection. With the aim of im-

proving the algorithm and decreasing the amount of noise, we construct the stochastic

versions of our algorithms with different sample sizes and show their advantages with

a numerical study.

1.1 Motivation

In many areas, the use of distributed data, and the need for analyzing data collected

from different owners are increasing. To meet this expectation, we present an improve-

ment over an earlier version of our algorithm HAMSI (Hessian Approximated Multiple

Subsets Iteration), which is a generic second order incremental algorithm for solving

large-scale partially separable convex and nonconvex optimization problems over dis-

tributed data. Our motivation is to improve the convergence proof and the performance

of the algorithm. The new version of the analysis is stronger and easier to follow with

a simplified notation. To the best of our knowledge, a proof for such a determinis-

tic algorithm has not been given before in the machine learning literature. We also

present the stochastic version of HAMSI and provide its convergence proof. Moreover,

after investigating a few shared-memory parallelization techniques, we present a load

balancing heuristic that results in a better numerical performance. Thus, we obtain an

algorithm that is provably convergent, has better performance than parallel SGD and

works well on distributed data. The presented algorithm solves the problem of using

data distributed to multiple locations, but the data owners may also want to protect

the privacy of their data. However, HAMSI does not necessarily guarantee data privacy

in the sense of differential privacy.

Privacy becomes an important concern with the increasing need of collection and

analysis of data. Accordingly, the privacy concern of optimization algorithms has

become a popular problem recently. Despite this attention in the literature, a need

remains for further research and new ideas. The existing studies dealing with the

privacy of iterative algorithms perturb the input or output by using a suitable noise

3

adding mechanism. However, since each new iteration harms privacy, finding a way to

decrease the noise or improve the privacy level by adding the same amount of noise

are important contributions for this concept. The first differentially private SGD was

introduced in 2013. Although various problems have been solved privately using similar

ideas, there still exists a need for further research, especially on the parameter selection

of algorithms by considering the effect of random noise. Moreover, the performance

and analysis of accelerated methods under privacy context has not been throughly

discussed in the literature.

1.2 Problem Description

A vast variety of problems in machine learning can be written as unconstrained opti-

mization problems of the form

min
x

∑
i∈I

fi(x), (1.1)

where x is a parameter vector and fi are a collection of functions. Each i in I represents

a single function and the number of additive terms in the objective function gives the

size of data. This is the general form of the function that we consider during this study.

For different concepts, there will be various assumptions over the function f and the

other parameters.

In this thesis, our first aim is to present an efficient algorithm to solve a large scale

problem on distributed data. A natural approach for solving this type of problems is

applying parallel computation and a divide-and-conquer approach. When the problem

is separable, divide-and-conquer is an advantageous way to obtain a solution to the

problem. However, separability is not satisfied for many type of problems such as var-

ious matrix decomposition or regression problems. Fortunately, this type of problems

have some inherent partially separable structure which allows to run the algorithm in

parallel. Specifically, we focus on the following optimization problem:

min
x∈R|J |

∑
i∈I

fi(xαi), (1.2)

where each term fi : R|J | 7→ R for i ∈ I of the overall objective function f is twice

continuously differentiable. Because of the large-scale problem, I has a large cardinality

where I ≡ {1, 2, . . . , |I|}. On the other hand, each term fi can be written as fi(x) ≡

4

fi(xαi) since it depends only on a small subset of the elements of x. We use αi as index

sets such that αi ⊆ J for all i ∈ I and the function index set J ≡ {1, 2, . . . , |J |}.

Each singleton j ∈ J is denoted as xj and corresponds to a unique component of

vector x. In other words, when we have α = {j1, j2, . . . , jA}, the related vector is

xα = (xj1 , xj1 , . . . , xjA).

To solve our partially separable problem, we use the idea of incremental methods

(cf. [10]). At each iteration τ , a subset of the function terms fi is chosen by the

incremental method. That is, a subset S(τ) is selected from the function indices such

that S(τ) ⊂ I. In the first version of our algorithm, we follow a deterministic framework

for the selection of the subsets. For stochastic HAMSI, this selection is done randomly.

The convergence analyses for both algorithms are provided in Chapter 3. Here, both

in deterministic and stochastic version, by careful selection of subsets S(τ) at each step

τ , the proxy objective satisfies separability and hence, parallel computation can be

applied.

For the second part of this thesis, our main focus is to present private optimization

algorithms with an improved performance. With this aim, we again deal with the

problem in (1.1) with an additional assumption of strongly convexity. Thus, we can

update the objective function as

min
x

∑
i∈I

fi(x) + λ‖x‖2, (1.3)

where λ is the regularization constant, f is a twice continuously differentiable function.

In this part, since the main focus is protecting the privacy, we employ differential

privacy approach. Differential privacy can be achieved by adding noise to the data,

to the function, or to the iteration vector. In a setting like ours, the iteration vector

is revealed at intermediate steps. Therefore, a suitable noise vector should be added

to the gradient or iteration vector at each step. However, this noise does harm the

performance of the algorithm in such a way that it may even cause divergence. Here,

we aim to preserve the privacy of the data while maintaining the performance of the

algorithm. We mainly work on accelerated first order algorithms which are based on

using of not only the current gradient but also gradients from previous iterations to

take the next step. We aim to determine the parameters of the presented algorithms

compatible with the added random noise. Especially the classical stepsize formulations

5

used in non-private settings may affect the performance of the algorithms negatively

after adding the noise required for differential privacy. We propose two differentially

private algorithms based on HB and NAG with special stepsize formulation in both

deterministic and stochastic settings. In this part of the thesis, the deterministic setting

corresponds to using of complete data while computing the gradient and the stochastic

setting is based on sampling of data. With the use of stochastic gradients, we improve

the performance as a result of the decrease in the noise variance.

1.3 Proposed Approaches

The main problem in the first part of this study is using of distributed data in an

optimization algorithm. To this end, we consider our algorithm HAMSI. This algorithm

is inherently parallel, based on a local quadratic approximation, and thus, contain

curvature information which helps to speed-up the convergence. In its original form,

an analysis is given related to the convergence of HAMSI by proving only that the

limit of the infimum of the gradient converges to zero. In Section 3.1, we provide

an improved convergence analysis showing the limit of the gradient tends to zero as

the number of iterations increases. The new analysis is both stronger and easier to

follow with a simplified notation. For further improvement, we consider the stochastic

setting which is a popular approach for the design of gradient-based algorithms. We

present stochastic HAMSI which is constructed by random selection of subsets at each

iteration. The convergence analysis for this version is also given in Chapter 3. In

the numerical experiments, we combine HAMSI with some parallelization techniques

and use the L-BFGS implementation to obtain approximate Hessian matrices. In this

framework, when a large-scale matrix factorization problem is solved for both HAMSI

and a parallel gradient descent method, the numerical experiments show that HAMSI

converges more rapidly than the other algorithm.

Secondly, we propose differentially private version of some first order optimization

algorithms and analyze their convergence properties. We first present a smoothing

approach to decrease the amount of noise required for the privacy of GD. Like other

differentially private methods in the literature, this approach also perturbs the output

at every iteration by adding noise to the approximate gradient. However, unlike those

6

methods, the proposed approach uses exponential smoothing to obtain a weighted sum

of the past and most recent approximate gradients. This weighting mechanism allows us

to run the resulting gradient descent algorithm for a large number of iterations without

breaching privacy. On the other hand, the selection of parameters such as stepsize is

also an important part of the algorithm design. As the last stage, we also analyze the

convergence behavior of our algorithm by using the dynamical system approach.

The second deterministic differentially private algorithm we propose is an updated

version of the algorihtm M-ASG. M-ASG is a multistage accelerated algorithm and

it uses noisy gradients at each iteration. Although M-ASG uses noisy gradients, its

differential privacy is not considered before. We improve this algorithm in the privacy

context by using a noise related stepsize formula and a special noise dividing mecha-

nism. The convergence analysis for the original algorithm has already been given in [3].

We also analyze our version by following the same steps.

In the last part of this thesis, we present the stochastic versions of the two differ-

entially private algorithms with the aim of further improvement of their performances.

The amplification effect of subsampling over the noise variance has already been stud-

ied in the literature. Thus, instead of using the entire data at each iteration, we take

random samples from the data. The numerical experiments also support our findings

and we achieve an improvement over the performance of some known differentially

private optimization algorithms.

1.4 Contributions

The contributions of this thesis to the scientific literature can be summarized in two

parts. We can list the contributions in the first part as follows:

• We propose an improved version of our algorithm HAMSI [45] which is dis-

tributed, second order incremental and inherently parallel. We also provide a

stronger result for the convergence analysis of this algorithm.

• We propose a stochastic version of HAMSI and analyze its convergence.

• By applying several parallelization techniques and presenting a simple load bal-

ancing heuristic, we obtain a better numerical performance than the earlier ver-

7

sion.

The distributed data concept brings another problem of privacy. In case data comes

from different users, the data holders be engaged in a common analysis while securing

their data. Starting with this idea, we reserve the second part of the thesis for privacy

concern and present private first order optimization algorithms by using differential

privacy. Our further contributions with the second part are listed below:

• The first deterministic method we propose is a differentially private algorithm

based on using weighted averages of current and previous gradients. We call this

approach as smoothing. The presented algorithm is a special case of Polyak’s

heavy ball method. By using this fact, we establish the relationship between the

convergence rate and the algorithm parameters by using the dynamical system

approach.

• The second deterministic method is a differentially private version of the recent

algorithm Multistage Accelerated Stochastic Gradient (M-ASG) algorithm [3].

This algorithm is based on using accelerated gradient method at each iteration,

and different from the existing literature, they use a stage-related stepsize for-

mula. The gradient contains noise in [3] as well. However, their noise is not

constructed with the aim of privacy. Here, we present a differentially private ver-

sion of M-ASG by selecting the algorithm parameters compatible with differential

privacy noise.

• The algorithms that we classify as stochastic in the second part are constructed

by using sampling of data. It is known from the literature that the randomness

coming from sampling of data helps to decrease the noise variance. With this idea,

we present the stochastic versions of the differentially private gradient descent

with smoothing (DP-GDwS) and the differentially private multistage accelerated

gradient (DP-MAG) algorithms.

• We use a special stepsize formula for all of the presented differentially private

algorithms. By taking into account their original stepsize formulation presented

for non-private setting, we add a term related to the random noise.

8

1.5 Overview of The Thesis

This thesis consists of four chapters including the introduction. The second chapter is

reserved for a literature review to explain the place of this thesis in the literature.

We consider two different concepts and problems over the solution of (1.1), so divide the

main study into two parts which are presented in Chapter 3 and Chapter 4. In the first

part, we propose an improved version of our algorithm. The second part starting from

Chapter 4 is based on differential privacy concept. We consider the privacy issue of the

first order optimization algorithms and aim to find a way to improve the performance

of these algorithms under privacy noise. Thus, we propose two algorithms based on

heavy ball and accelerated gradient methods. The first part of this chapter is reserved

for deterministic versions of these algorithms with convergence rate analysis. In the

last part, we introduce their stochastic versions and provide numerical experiments.

9

Chapter 2

Literature Review

We group the related literature under three sections: data distribution, differential

privacy and first order accelerated optimization algorithms. First part lists the studies

that give us an insight to propose HAMSI. The differential privacy studies, especially

from optimization point of view are given in the second section. The last section is

reserved for momentum-based algorithms and their convergence analysis for convex

problems.

2.1 Data Distribution

In the first chapter of this thesis, we present an incremental and parallel second-order

algorithm which uses approximate curvature information to solve distributed large-

scale problems. We experience that using second order information can accelerate

convergence even with the incremental gradient as in our case. To obtain the curvature

information, we model the local approximations by quadratic functions. With the help

of the structure of our objective function, we characterize it as a bipartite graph and

the gradient is evaluated for a choosen subset of the component functions at each

iteration. This is similar to incremental and aggregate methods [10,11,68,75,80]. The

subsets of component functions are choosen by considering the separability of inner

problems. This separability structure allows us to distribute the computations over

multiple processors and do the stepwise computations in parallel. Thus, our algorithm

makes use of modern distributed and multicore computer systems easily.

A similar distribution scheme is introduced before in [34] for matrix factorization

10

problem. The authors use this setting to deal with large-scale distributed data while

taking advantage of its partially separability nature [19,73]. The problem is solved by

using SGD and the convergence analysis is provided. The second order incremental

methods are also studied before in the literature. For the least squares problem, a

similar algorithm which is an incremental version of Gauss-Newton method is presented

in [9]. The generalization of this approach is studied as well [38]. They prove the linear

convergence of the method under the assumptions of strong convexity and gradient

growth. Furthermore, the inversion of the exact Hessian matrices of the component

functions is required for their method. Another distributed Newton-like method is

presented for convex problems in [71]. Their approach requires the computation and

inversion of Hessian matrices local to each node. The setting of this method does

not allow space decomposition, thus the entire parameter vector should be stored in

memory and communicated at every iteration. In [74], Sohl-Dickstein et. al introduce

an incremental aggregated quasi-Newton algorithm based on updating the quadratic

model of one component function at each iteration.

The stochastic versions of Quasi-Newton methods form another group of work in

the literature. Gower et. al propose the stochastic block BFGS which does multi-

secant updates and achieves linear convergence for the solution of convex problems by

using variance-reduced gradients [37]. Stochastic quasi-Newton methods with linear

convergence rates are presented in [56] under convexity assumptions. Their algorithm

uses aggregated gradients and variance reduction techniques. Although it is known

that these methods are useful for certain applications, their aggregation steps make

them incompatible with parallel computation. Yousefian et. al propose a regularized

stochastic quasi-Newton method under merely convexity assumption [89]. Note that

because of the difficulties of applying a quasi-Newton method with stochastic (or in-

cremental) gradients, there exists a data consistency problem in this setting, which

causes a suitable structure for parallel computation [8,14,70]. The stochastic variants

of Quasi-Newton methods is still a popular subject with recent studies [7, 36,42,87].

In [38], Gürbüzbalaban et. al analyze the second order incremental methods, but

because of their convexity assumption, their analysis does not cover our deterministic

algorithm. Deterministic HAMSI is analyzed by following [75]. The analysis given

in [75] is related to the incremental gradient algorithms for nonconvex problems and

11

not exactly the same with our approach since they do not consider the incorporation

of second order information. An analysis for stochastic quasi-Newton methods with

nonconvex objective function is given in [85]. By considering the objective function

as an expected value expression with a discrete probability distribution, their analysis

is valid for our stochastic algorithm. However, the direct analysis of our stochastic

algorithm is based on the paper [12] which studies online learning algorithms under

different assumptions. In a more recent study, Mokhtari et. al consider an incremental

stochastic quasi-Newton method and give its convergence properties [55]. They prove

the superlinear convergence rate of their algorithm which is a stochastic version of the

L-BFGS method.

2.2 Differential Privacy

Differential privacy is first introduced by Dwork as a solution to the problem of reveal-

ing useful information about a data without harming privacy of any individual [23].

In this study, a mechanism satisfying ε-differentially privacy is also introduced. This

mechanism adds a suitable noise to the answer of the query applied to data. Although

it is presented as ε-indistinguishability, the first definition and mechanism design of

differential privacy is based on [26]. In [26], it is also shown that Laplace mechanism

satisfies differential privacy. Later, another mechanism complement to Laplace, expo-

nential mechanism is presented by McSherry and Talwar [53]. Similar to studies [23,26],

we use Laplace noise in our design. Although ε-DP is preferred to protect data privacy,

a relaxed version, (ε, δ)-differential privacy is also preferred in some studies [62]. This

version is suitable when ε-DP is too strict and prevent to obtain a meaningful result.

For our algorithms, we prefer ε-DP. A lot of variants of differential privacy are also

studied in the literature such as Renyi differential privacy [54], concentrated differen-

tial privacy [28], local differential privacy [22]. A recent survey studies these variants

which provides different types of privacy guarantees [21].

After constructing a differentially private mechanism, one of the basic problems is

the effect of composition over the privacy level. Since we aim to obtain differentially

private iterative optimization algorithm, the effect of composition is a crucial compo-

nent of our algortithm design. As an answer to this problem, [25,26] gives a bound as

12

kε-DP for k times composition of an ε-DP mechanism. Later, it is proven that tighter

bounds for composition are possible with advanced composition theorems [13,28,29,43].

Differential privacy is a popular approach for the design of privacy-preserving ma-

chine learning algorithms. The idea of differential privacy is used for protecting data

privacy for many type of problems such as boosting [29], linear and logistic regres-

sion [17,92], support vector machines (SVM) [69] and risk minimization [18]. Especially,

there is a large literature about the differential privacy of emprical risk minimization

(ERM) [4, 18, 47, 93]. This is not suprising since differential privacy is popular in ma-

chine learning models and ERM covers many machine learning tasks. The first known

study about differential privacy of ERM is presented by Chaudhuri et. al [18]. They

present two algorithms the first of which is based on output perturbation and the noise

is added to the output of ERM algorithm. With the second algorithm, they introduce

objective perturbation and add the noise onto the objective function before minimizing.

In this paper, some open problems are mentioned related to extending the objective

perturbation idea to the general convex functions. One of the problems is answered by

Kifer et. al [47] in 2012. They modify the idea to general convex objectives such that

the required noise is smaller than [18]. In another study [4], Bassily et. al consider the

differential privacy of convex ERM problem and present an efficient exponential mech-

anism satisfying ε-DP. Moreover, they obtain improved bounds than [47] and [18], and

show that their algorithms match the lower bounds. In the same study, an algorithm

which hits the lower bounds for strongly convex loss function is also provided. Another

study, [79] gives better utility bounds for problems such as sparse linear regression. In

2017, Zhang et. al [93] present two efficient algorithms with privacy and utility guaran-

tees. The algorithms at the previously mentioned papers [4,79] are slow and require to

run the model for Ω(n2) iterations to satisfy a predefined accuracy where n is the data

size. In [93], they eliminate this condition and show that their algorithm on strongly

convex and smooth objective is much faster than differentially private SGD algorithm

presented in [4]. In the same paper, a random round SGD algorithm is introduced

for non-convex and smooth objectives. In 2017, Wang et. al [83] propose algorithms

which achive optimal or near optimal utility bounds. Their algorithm design is based

on gradient perturbation and Gaussian mechanism. In the second part, they consider

a non-convex objective function and obtain a tighter utility bound than [93]. There

13

also exists some recent papers about the differential privacy of ERM in the litera-

ture [44,82,84]. In [84], the authors propose a differentially private SGD for nonconvex

ERM and analyze privacy and utility guarantees. The distributed version of the pro-

posed algorithm is also given. In the second paper, Wang et. al propose DP Laplacian

smoothing SGD algorithm in convex and nonconvex settings. The algorithm is based

on Laplacian operator which is introduced in [63] to improve the performance by re-

ducing the variance of SGD. The proposed algorithm is compared with DP-SGD and

obtained a better performance for logistic regression and SVM. Although most of the

mentioned studies in ERM deal with convex and strongly convex problems, differen-

tially private algorithms for non-convex objective function (especially in deep learning)

are also studied in the literature [1, 72, 90]. Similar to Abadi et. al [1], we will use the

idea of norm clipping to bound the gradient. The idea of norm clipping is based on

scaling down the norm of the gradient to a threshold value C if it is greater than C.

Specifically, we are dealing with differentially private gradient-based algorithm de-

sign. To explain the differences of our work from others, we further discuss the existing

studies related to differential privacy of GD and SGD in detail. In [76], the authors

solve logistic regression problem in a differentially private setting constructed by using

SGD and mini-batch SGD. At each iteration, they perturb the gradient by adding

a suitable noise. Our methods can be thought as generalizations of this approach,

since there is a local privacy at each iteration in our approach as well. However, their

method has a disadvantage since the number of iterations is more restricted than ours

because of higher variance. Another study that introduces the differentially private

version of SGD is [17]. In this paper, they solve logistic regression problem and reveal

the identifier by adding a suitable random noise. This approach performs better than

the one presented by Dwork [26]. However, it does not guarantee the privacy of each

iteration, so not compatible with our scenario. Song et. al add heterogeneous noise

while learning with SGD and claim that the performance is better than the less noisy

and single learning rate algorithms [77]. In [4], the authors add a suitable random noise

to the gradient calculation of stochastic variant of the gradient descent algorithm. By

taking help of subsampling, the privacy level is improved as in our approach. Although

stochastic algorithms are more popular in the differential privacy context, there still ex-

ist studies considering the differentially private deterministic algorithms. Again in [4],

14

the deterministic version of their algorithm which uses gradient descent is also consid-

ered. As a related study, Zhang et. al present two algorithms in their study [93]. In

addition to the other differences with our algorithm, they focus on (ε, δ)-differential

privacy which is a weaker form of ε-differential privacy. In a more recent study [65],

Pichapati et. al consider a differentially private SGD algorithm and to decrease the

amount of noise required for privacy they use coordinate-wise adaptive clipping. Their

idea is based on clipping the gradient by using its mean and variance. Again, the

weaker form, (ε, δ)-differential privacy, is satisfied for their algorithm.

In this thesis, we take advantage of subsampling while preserving the privacy of

data. It is known that using sample batches instead of a single point is a more reliable

way for SGD although it is more costly than the single point selection. Not only for

optimization algorithms, also in differential privacy context, the improving effect of

sampling has been studied. [49] prove the amplification effect of sampling and give a

new privacy bound resulting from this sampling procedure. This proof handles with

the privacy of the data whose one entity is taken out. but in our case, we are changing

one element of data with a new entity, so this study and the related theorem is not

completely applicable to our case. In [86], Wang et. al also deal with subsampling

and differential privacy, and provide a theorem and proof based on the ideas presented

in [6]. We use a different version of this theorem that we have obtained by making the

privacy level tighter based on the same proof.

Another arrangement used in our algorithm, DP-GDwS is taking the step at each

iteration by using not only the current gradient also the information coming from the

previous iteration. Although it is novel to use this approach in the context of differential

privacy, there are studies which use a similar idea to speed-up the convergence of GD

and SGD. The detailed review of accelerated methods is given in the next section.

2.3 First Order Accelerated Algorithms

First order algorithms have been used since 1950s in the context of convex optimiza-

tion [31]. They are still popular for many types of problems arising in machine learning,

control theory and signal processing [5, 50, 57] because of small cost per-iteration and

being compatible with large scale optimization problems [35]. Especially, when com-

15

puting the second order information becomes computationally expensive, first order

algorithms are prefarable. The simplest first order algorithm, Gradient Descent [16]

achieves linear convergence with suitable stepsize when the objective is strongly con-

vex. In [58], it is proved that the convergence rate of first order algorithms on convex

problems with Lipschitz continous gradient cannot achieve a better rate than O(1/k2)

where k is the number of iterations. Nesterov [59] presents an accelerated algorithm

(NAG) that converges with rate O(1/k2) which closes the gap between the guaranteed

optimal rate and the convergence rate that is achieved for GD. The NAG method is

based on using a momentum term to accelerate the algorithm. That is, accelerated

methods use not only the current but also the previous iterations and the correspond-

ing gradients to take a step. Another popular momentum-based algorithm is Polyak’s

Heavy Ball (HB) method. Different from the NAG method, HB method uses the pre-

vious iteration but not the previous gradient to take a step. Nesterov’s method is

known as achieving linear rate for strongly convex objective. On the other hand the

HB method converges linearly and has a better convergence factor for strongly convex,

twice continuously differentiable objective and Lipschitz continous gradient, in other

words, it is better than the GD and NAG methods under these assumptions. For not

necessarily convex and Lipschitz continous gradient, the necessary conditions for the

convergence of the HB method is given in the literature [91]. On the other hand, [48]

shows with an example that the HB method may not converge under strong convexity.

There are many studies in the literature dealing with the convergence of the momentum-

based first order optimization methods. In [35], Ghadimi et al. present a global con-

vergence analysis for HB method on convex optimization problems. When objective

function is convex and Lipschitz continous, they prove O(1/k) convergence for the HB

method where k is the number of iterations. Under strong convexity assumption, it

is proved that the algorithm converges linearly to the minimum. Our DP-GDwS al-

gorithm is based on the HB method with special parameters and we solve a strongly

convex problem as well. On the other hand, because of the noisy gradients in our

method, this analysis cannot be followed.

Although most of the papers in the literature take deterministic setting into ac-

count while analyzing the momentum-based methods, there exist some studies which

analyze the convergence of stochastic accelerated algorithms [32, 51, 67, 88]. In [32],

16

Gadat et. al present almost sure convergence result for stochastic heavy ball method

for nonconvex coercive functions and give convergence rate analysis for strongly convex

quadratic functions. Yang et. al present a unified framework for the analysis of the

GD, the NAG and the HB methods in stochastic setting for both convex and strongly

convex objectives [88]. They use constant stepsize and assume the boundedness of

the variance of the noise which is defined as the difference between full gradient and

stochastic gradient. In [88], again a unified framework similar to [88] is presented with

an additional nonconvexity assumption. Similarly, the variance is assumed bounded in

this paper. Both papers achieve a rate of O(1/
√
k) by analyzing the Cesaro averages

of the iterations. Another study [67] analyzes the stability and generalization error

of stochastic gradient with the momentum method. In [51], the authors deal with

the stochastic heavy ball method and presents the first linear convergence result in a

simplified setting of quadratic objectives. Jain et al. introduce a stochastic variant of

the NAG method for the solution of least squares regression [41]. It is known that the

excess risk of the algorithm can be separated as bias and variance terms. In this paper,

they achieve a better rate for the bias while retaining minimax rate for the variance

term. On the other hand, in [46], they claim that although accelerated methods beats

the SGD method in deterministic setting, that is not the case for stochastic approx-

imation. They prove this claim by solving simple problems with the best parameter

setting and compare the SGD method with the NAG and the HB methods. They also

present an algorithm called Accelerated Stochastic Gradient Descent (ASGD) which

is a variant of the NAG method and has better performance than the SGD, the NAG

and the HB methods.

In our algorithm DP-GDwS, we solve strongly convex problems by using a special

type of the HB method with noisy full gradients. The analysis summarized above for

the stochastic heavy ball method are not valid for our method because of different

assumptions about the algorithm parameters and the objective function selection. The

analysis in [88] can be followed for the convergence of DP-GDwS. However, we give a

stronger convergence result.

To analyze their algorithms, all of the papers mentioned above use the standard

approach which is not easy to construct and differs from one algorithm to another.

Recently, a systematic approach based on control theory is preferred to analyze the

17

first order optimization algorithms [2,3,30,40,48]. These papers use Lyapunov functions

which are nonnegative functions representing the current state of an algorithm. After

constructing the Lyapunov function, the convergence rate can be found with respect

to the rate of decrease of this function. Lessard et. al [48] and Fazlyab et. al [30] use

integral quadratic constraints (IQC) approach from robust control theory to construct

the Lyapunov function. In [40], it is obtained by using dissipativity which is a notion

about energy dissipation in physics. Their approach results in smaller linear matrix

inequalities (LMI) which is simpler than the one in [48]. They analyze the NAG

method and generalize the approach for various settings. In [2], Aybat et al. analyze

the robustness measure to the gradient noise of the GD and the NAG methods. For the

quadratic case, they present exact expressions by using robust control theory and tight

bounds for smooth strongly convex case by using Lyapunov functions. They also show

that the NAG method has a better convergence rate than the GD method under the

same robustness. In another study, Aybat et al. [3] introduce a multistage accelerated

stochastic algorithm which uses noisy gradients. Their algorithm achieves optimal rate

for both deterministic and stochastic settings.

There exist other works presenting accelerated algorithms, for which the design or

the analysis is contructed with respect to the dynamic system approach. For exam-

ple, the analysis of the tradeoff between robustness and performance of the algorithms

is considered in [20]. They design a momentum-based algorithm by considering the

tradeoff between robustness and performance for smooth strongly convex problems.

The rate analysis is done with respect to the approach from control theory as in [48].

In [78], Sun et al. consider the heavy ball problem over convex setting and claim to

obtain a better or the same complexity result with the existing studies under weaker

assumptions. They obtain the first non-ergodic convergence rate of O(1/k) over co-

coercive objective function with constant stepsize again by using the dynamical system

approach. The linear convergence of the HB method is also proved under the condi-

tion of relaxed strongly convexity which is weaker than strong convexity. The known

fastest linear convergence rate for first order algorithms is ρ and ρ2 for ρ = 1−
√
m/L

when the objective function is m-strongly convex and the gradient is L-Lipschitz con-

tinous. Nesterov’s algorithm achieves rate ρ when the function is strongly convex with

parameter m and L. In [81], their aim is to present an algorithm which has a better

18

convergence rate than the globally convergent first order algorithms. They design the

Triple Momentum Method by using three momentum terms. In the design of this al-

gorithm, they exploit IQC approach from [48], but the convergence proof does not rely

on the approaches from control theory.

In this thesis, we take the advantage of these approaches while analyzing our algo-

rithms DP-GDwS and DP-MAG. For DP-GDwS, we follow the similar steps as in [2].

Their approach is applied on the GD, the NAG methods but not on the HB method.

With simple adjustments, we obtain an expression for the convergence rate of our al-

gorithm. For our second deterministic algorithm, DP-MAG, the convergence analysis

follows the same steps as in [3].

19

Chapter 3

An Algorithm Based On Data

Distribution

In this chapter, we consider a partially separable objective function whose general form

is as in (1.2). There are various strategies for the solution of this type of problems.

In this thesis, we focus on a different strategy and instead of classical approach of

selecting xi, we select fi at each iteration. These approaches are named as incremental

methods; cf. [10]. An incremental method selects a subset from function indices at

each iteration, and then takes a step towards the minimum of the selected functions.

In other words, for every iteration τ , subset S(τ) ⊂ I is selected and the update is done

with respect to the proxy objective function,
∑

i∈S(τ) fi(x) (see Figure 3.1). Although

the actual objective function is never evaluated and different proxy objective is used

at each iteration, the incremental algorithms still converge to the solution of the main

problem under mild conditions. SGD can be given as an example of this type of

algorithms. In our algorithm, we aim to use parallel computation, and hence, we select

the subsets carefully such that the proxy objective will be separable.

Next, we provide an example to present the general approach. The rather generic

objective function in (1.2) covers many types of optimization problems arising in ma-

chine learning. Although we demonstrate our approach with a simple example, the

given formulation is compatible with many other problems and it can be easily checked

that various problems such as logistic regression, matrix completion can be handled by

writing the objective function as partially separable as in Equation (1.2).

20

x1 x2 x3 x4 x5 x6

f1 f2 f3

x1 x2 x3 x4 x5 x6

f1 f2 f3

Figure 3.1: Incremental optimization of a partially separable objective by two proxy

objectives f1(x) + f3(x) and f2(x). At each step, we pick a subset of functions and

ignore the remainings. The black and white squares represent the chosen and omitted

functions, respectively. By careful selection of subsets, we can process each proxy

objective in parallel and obtain an approximation to the true solution. Based on this

scheme, we present a second order algorithm.

Example 3.0.1. [[45], Page 4] Consider the following matrix factorization problem:

min
x

∥∥∥∥∥∥∥∥∥


y1 y2

y3 y4

y5 y6

−


x1

x2

x3

(x4 x5

)∥∥∥∥∥∥∥∥∥
2

F

,

where ‖ · ‖F is the Frobenius norm. By using our notation, the objective function can

be written as∑
i∈I

fi(xαi) = (y1 − x1x4)2 + (y2 − x1x5)2 + · · ·+ (y6 − x3x5)2.

Clearly, we have I = {1, 2, . . . , 6} and J = {1, 2, . . . , 5} with the subsets α1 = {1, 4},

α2 = {1, 5}, α3 = {2, 4}, α4 = {2, 5}, α5 = {3, 4}, and α6 = {3, 5}.

Now, we consider a more general problem which we aim to factorize an observed

data matrix Y ∈ RK×N . In other words, our aim is to find two factor matrices X1 and

X2, where X1 ∈ RK×L and X2 ∈ RL×N such that

min
X1,X2

‖Y −X1X2‖2F .

In elementwise notation we have

f(x) =
∑
a,b

(ya,b −
∑
k

x1,a,kx2,k,b)
2. (3.1)

Letting i = (a, b), we can write this objective as

f(x) =
∑
i∈I

fi(xαi),

21

where αi is the set of indices that correspond to the row a of X1 and column b of X2. In

case some entries of the matrix Y are unknown, the summation in Eq.3.1 is constructed

only by using the observed pairs (a, b), which still keeps the form of the final objective.

In this chapter, we make the following contributions:

• We propose a generic second-order algorithm which can be used for large scale

convex and nonconvex optimization problems. It has application for the solution

of various type of problems such as matrix-tensor factorization, regression, and

neural network training.

• The convergence properties of our algorithm for the deterministic case is pro-

vided. In machine learning, convergence analysis for such a deterministic algo-

rithm has not provided before to the best of our knowledge.

• We also present stochastic version which is based on random selection of subsets

and demonstrate its convergence analysis.

• By considering several parallelization strategies, we present a simple load balanc-

ing heuristic. This approach is especially suitable for parallel solution of matrix

and tensor factorization problems since the observed entries is not uniformly

distributed.

• With the aim of presenting an application, we give an implementation based on

L-BFGS procedure [15].

• In the numerical experiments part, we solve various sized large-scale matrix fac-

torization problems. Our results are compared with a well-known first order

method [34] and it is shown that HAMSI achieves faster convergence.

3.1 Deterministic HAMSI

The main idea of our algorithm is iterating over multiple datasets and using of a second

order approximation at each iteration. Before derivation of the generic algorithm, we

first present an expression for the function index set I. We can write I as union of

mutually disjoint subsets Sk for k = 1, . . . , K such that

I = S1 ∪ · · · ∪ Sk ∪ · · · ∪ SK .

22

x1 x2 x3

f1 f3 f5 f2 f4 f6

x4 x5

x1 x2 x3

f1 f4 f6

x4 x5

x1 x2 x3

f3 f5 f2

x4 x5

Figure 3.2: (Left) The factor graph of the problem in Example 3.0.1. (Middle and

Right) A partitioning of function index set as I = ∪Kk=1Sk where Sk = Sk,1∪ · · ·∪Sk,Bk
for k = 1, . . . , K. In this example K = 2 and with number of blocks B1 = B2 = 2.

(Middle) First subset (k = 1) with S1 = S1,1 ∪ S1,2 = {1} ∪ {4, 6} and α1,1 = {1, 4},

α1,2 = {2, 3, 5}, (Right) Second subset (k = 2) with S2 = S2,1 ∪ S2,2 = {3, 5} ∪ {2},

αk,1 = {2, 3, 4} and αk,2 = {1, 5}.

This collection of subsets is referred as a cover and denoted by S ≡ {S1, . . . , SK}. We

partition I into subsets, moreover the subsets Sk ∈ S for k = 1, . . . , K can be further

partitioned into mutually exclusive blocks Bk as

Sk = Sk,1 ∪ · · · ∪ Sk,b ∪ · · · ∪ Sk,Bk .

For the example in Figure 3.1, the function index set has the following partition which

we first write as union of subsets and then as union of blocks:

I = S1 ∪ S2 = (S1,1 ∪ S1,2) ∪ S2,1 = ({1} ∪ {3}) ∪ {2}.

There are various ways for chosing the cover S. After fixing the cover, the partition

of Sk can be decided by using the factor graph. There, the individual blocks can be

optimized independently. To achieve that, the partition of subsets should be done

carefully and the variables from each function fi such that i ∈ Sk,b should be mutually

disjoint where Sk,b represents the bth block of the subset at k-th iteration. To increase

the degree of paralellism, the number of blocks can be increased since the parallelism

in a subset Sk is limited by the number of blocks in this subset.

To clarify the partition and make it easy to follow, we use a bipartite graph. The

partitioning framework for our simple problem in Example 3.0.1 is given in Figure 3.2.

In this example, we aim to solve a small matrix factorization problem for which some

entries are missing and we complete these entries by using our algorithm.

Formally, we can write the function index set as union of subsets and related blocks

23

as follows

I =
K⋃
k=1

Bk⋃
b=1

Sk,b.

Thus, the partially separable objective function whose generic form is given in (1.2)

can be written as

min
x∈R|J |

K∑
k=1

Bk∑
b=1

∑
i∈Sk,b

fi(xαi). (3.2)

The parallelization of this problem in (3.2) is possible because of its separability

over the second summation which is indexed by b. In other words, we use the mutually

disjoint nature of the parameter sets at each block of a subset. To achieve this we

define

αk,b ≡
⋃
i∈Sk,b

αi for all k = 1, . . . , K; b = 1, . . . , Bk,

and require αk,b ∩αk,b′ = ∅ for b 6= b′ and for all k = 1, . . . , K. We need the equality

αk,b ∩ αk,b′ = ∅ for the parallel and exact computation of the (partial) gradients. On

the other hand, there exists synchronization-free algorithms in literature which the

parameter sets in blocks may overlap. We give further explanation about this case in

Section 3.5. In any case we have,

fk,b(xαk,b) =
∑
i∈Sk,b

fi(xαi).

Now, we proceed to present the final form of our optimization problem:

min
x∈R|J |

K∑
k=1

Bk∑
b=1

fk,b(xαk,b). (3.3)

The proposed algorithm uses incremental gradients and a second order information

which comes from an approximation to the Hessian of the objective function. Because

of the usage of multiple subsets in addition to incremental gradients and second order

information, our algorithm is called Hessian Approximated Multiple Subsets Iteration

(HAMSI).

The main idea of the algorithm is using of local convex quadratic approximation

while computing the step. The local quadratic approximation can be expressed as

Q(z; x̂, g,H, β) ≡ (z − x̂)>g +
1

2
(z − x̂)>H(z − x̂) +

1

2
β‖z − x̂‖2, (3.4)

24

Algorithm 1: Hessian Approximated Multiple Subsets Iteration (HAMSI)

1 input: x, H, αk,b for all k = 1, . . . , K; b = 1, . . . , Bk.

2 t = 1

3 K = [K, 1, 2, . . . , K − 1, K]

4 repeat

5 Update βt (increasing sequence)

6 K ← SetSchedule(K)

7 for ` = 1, 2, . . . , K + 1 do

8 k = K[`]

9 for b = 1, 2, . . . , Bk do in parallel

10 xαk,b = arg minzQ(z;xαk,b ,∇fk,b(xαk,b), Hαk,b , βt)

11 Evaluate approximate Hessian matrix H at x

12 t← t+ 1

13 until convergence or t > max_epochs

where g is an incremental gradient, H is (an approximation to) the Hessian of the

objective function. The parameter β is important to bound the stepsize and control

the oscillation of the incremental steps.

The high-level pseudocode of HAMSI is given in Algorithm 1. In the algorithm,

x represents the current solution. At each inner iteration k, the functions in related

subset Sk (lines 7-10) are used. The selection of subsets is deterministic and the order

of the selection is determined by a SetSchedule function. SetSchedule takes the

current order as parameter and obtain the new order by applying one cyclic left-shift

to the first K elements of K. The first and the last element of the sequence becomes

the same number. To explain the framework clearly, we give an illustrative example

for K = 5:

Iteration t [3, 4, 5, 1, 2, 3] = SetSchedule([2, 3, 4, 5, 1, 2])

Iteration t+ 1 [4, 5, 1, 2, 3, 4] = SetSchedule([3, 4, 5, 1, 2, 3])

Iteration t+ 2 [5, 1, 2, 3, 4, 5] = SetSchedule([4, 5, 1, 2, 3, 4])
...

...

In this setting, the subsets are defined once at the beginning and SetSchedule

function only reorders a schedule arrayK of sizeK+1 appropriately. As it is mentioned,

25

we use the same number as the first and last element in K. This approach is preferred

since updating the Hessian approximation with the same subsets is reasonable for

practical purposes. The same rule is also applied for the example implementation

given in Algorithm 3 in Section 3.4. We note that this setting does not change the

convergence analysis.

For each subset, the corresponding blocks are traversed (lines 9 and 10) and the

corresponding part of the solution is updated. The updated part can be denoted as⋃Bk
b=1αk,b.

An important point is that the blocks of the inner step are used in parallel in inner

loop and we use different blocks from the same approximate Hessian matrix H at all

inner iterations until completion of the tth cycle. In other words, for each block b from

subset k, the related submatrix of H is denoted by Hαk,b , where Hα = {H(i, i′) : i, i′ ∈

α}. Here, β is a constant parameter during inner iterations and it is updated for each

new iteration as shown in line 5. We further explain the update rule for β at the end

of convergence analysis.

There exists some details about the implementation of the algorithm which can be

seen from the description above. To exemplify these details, which are related to the

construction of quadratic approximation (line 10) and the solution of the corresponding

subproblem, we provide an explicit implementation in Section 3.4.

Next, we show the convergence properties of HAMSI when the order of subset

selection is deterministic. The construction of HAMSI is similar to the one given

in [52, 75]. In the previous analysis of HAMSI, the convergence is showed by proving

the limit of the infimum of the gradient converges to zero. Here, we provide an improved

convergence analysis showing the limit of the gradient tends to zero as the number of

iterations increases.

To simplify our notation, we define

∇fSk(x) ≡
Bk∑
b=1

∇fk,b(xαk,b).

The solution and approximate Hessian at iteration t is denoted by by x(t) and H t,

respectively. We update the current solution in lines 7-10. Those inner iterates are

denoted by x(t,`) and the very last inner iterate x(t,K+1) becomes x(t+1) after line 10.

We first list the assumptions before presenting our analysis:

26

A.1 The twice differentiable objective function f is bounded below.

A.2 The Hessian matrices for the component functions are uniformly bounded at

every iteration. That is, for every Sk and t, we have

‖∇2fSk(x
(t))‖ ≤ L,

where L is the well-known Lipschitz constant.

A.3 The eigenvalues of the approximation matrices are bounded so that

(U + βt)
−1 = Ut ≤ ‖(H t + Iβt)

−1‖ ≤Mt = (M + βt)
−1

holds. Here, Ut and Mt are known constants with 0 < M ≤ U , and I denotes

the identity matrix.

A.4 The gradient norms are uniformly bounded at every iteration t. That is, for every

Sk we have

‖∇fSk(x(t))‖ ≤ C,

where C is a known constant.

The proof of main convergence theorem is completed by using two lemmas. The

first lemma helps us to present a bound on the difference between the true gradient

of a block at x(t) and the evaluated gradient at the inner iterate x(t,`). The result

obtained from the second lemma is related to the bound on the error committed by

taking incremental steps at the inner iterates x(t,`) instead of the exact Newton step at

x(t). Then, we present our convergence result with our main theorem.

Note that we use S[`] instead of SK[`] to underline the dependence of subset selection

on the index `. Moreover, we define x(t,0) ≡ x(t) to clarify our summations.

Lemma 3.1.1. In Algorithm 1, let x(t) be the solution at iteration t and x(t,`) be the

inner iteration `. Then, we have

‖∇fS`(x(t,`−1))−∇fS`(x(t))‖ ≤ LMtC(`− 1). (3.5)

Proof. By using Assumption A.2, we have

‖∇fS`(x(t,`−1))−∇fS`(x(t))‖ ≤ L‖xt,l−1 − x(t)‖

= L‖xt,l−1 − xt,l−2 + xt,l−2 − xt,l−3 + · · ·+ xt,1 − x(t)‖

≤ L
∑`−1

j=1 ‖xt,j − xt,j−1‖.

27

Note for j = 1, · · · , `− 1 that

‖xt,j − xt,j−1‖ = ‖xt,j−1 − (H t + βtI)−1∇fSj(x(t,j−1))− xt,j−1‖ ≤MtC,

where the last inequality holds by Assumption A.4. Therefore, we have

‖∇fS`(x(t,`−1))−∇fS`(x(t))‖ ≤ LMtC(`− 1).

We obtain a bound on the difference between two consecutive iterations with the

next lemma.

Lemma 3.1.2. Given two consecutive iterations, t and t+ 1 of Algorithm 1, we have

‖x(t+1) − x(t)‖ ≤ B + C(M + 1)

M + 1
Mt,

where B ≡ 1
2
LCK(K + 1).

Proof. At iteration t+ 1, we have

x(t+1) = x(t) −
∑K+1

`=1 (H t + βtI)−1∇fS`(x(t,`−1))

= x(t) − (H t + βtI)−1∇f(x(t))

+(H t + βtI)−1
∑K+1

`=1 (∇fS`(x(t))−∇fS`(x(t,`−1))).

This shows that

x(t+1) − x(t) = ∆t − (H t + βtI)−1∇f(x(t)), (3.6)

where

∆t ≡ (H t + βtI)−1
K+1∑
`=1

(∇fS`(x(t))−∇fS`(x(t,`−1))).

Using now (3.5) implies

‖∆t‖ ≤Mt

∑K+1
`=1 ‖∇fS`(x(t))−∇fS`(x(t,`−1))‖

≤Mt

∑K+1
`=1 LMtC(`− 1) = 1

2
LM2

t CK(K + 1) = BM2
t .

(3.7)

Then, we obtain

‖x(t+1) − x(t)‖ = ‖∆t − (H t + βtI)−1∇f(x(t))‖

≤ ‖∆t‖+ ‖(H t + βtI)−1‖∇f(x(t))‖

≤ BM2
t + CMt ≤ B+C(M+1)

M+1
Mt.

28

Finally,the convergence of our algorithm is presented in the following theorem.

Theorem 3.1.3. Consider the iterates x(t) of Algorithm 1. Suppose that β(t) ≥ 1 is

chosen to satisfy
∞∑
t=1

Ut =∞ and
∞∑
t=1

M2
t <∞. (3.8)

Then,

lim
t↑∞
∇f(x(t)) = 0,

and for each accumulation point x∗ of the sequence {x(t)}, we have ∇f(x∗) = 0.

Proof. As f is a twice differentiable function, we have

f(x(t+1))− f(x(t)) ≤ ∇f(x(t))
T

(x(t+1) − x(t)) +
LK

2
‖x(t+1) − x(t)‖2.

Using now Lemma 3.1.2 along with (3.6) and (3.7), we obtain

f(x(t+1))− f(x(t)) ≤ ∇f(x(t))T∆t −∇f(x(t))T (H t + βtI)−1∇f(x(t)) + LK
2
‖x(t+1) − x(t)‖2

≤ ‖∇f(x(t))‖‖|∆t‖ − Ut‖∇f(x(t))‖2 + LK
2

(
B+C(M+1)

M+1

)2
M2

t

≤ −Ut‖∇f(x(t))‖2 + B̄M2
t ,

(3.9)

where B̄ ≡ CB+LK
2

(
B+C(M+1)

M+1

)2
. Due to Assumption A.1, we can write infx∈Rn f(x) =

f ∗ > −∞. Thus, we obtain

0 ≤ f(x(t+1))− f ∗ ≤ f(x(t))− f ∗ + B̄M2
t .

Relation (3.8) and Lemma 2.2 in [52] together show that the sequence {f(x(t))} con-

verges. By using (3.9), we further have

f(x(1))− f ∗ ≥ f(x(1))− f(x(t)) =
∑t−1

j=1(f(x(t))− f(x(t+1)))

≥
∑t−1

j=1 Uj‖∇f(x(j))‖2 − B̄
∑t−1

j=1M
2
j

≥ inf
1≤j≤t−1

‖∇f(x(j))‖2
∑t−1

j=1 Uj − B̄
∑t−1

j=1M
2
j .

Let now t→∞, then

f(x(1))− f ∗ ≥ inf
j≥1
‖∇f(x(j))‖2

∞∑
j=1

Uj − B̄
∞∑
j=1

M2
j . (3.10)

Using again Assumption A.1 and conditon (3.8), we obtain

inf
t≥1
‖∇f(x(t))‖ = 0. (3.11)

29

Now, suppose for contradiction that the sequence {∇f(x(t))} does not converge to

zero. Then, there exists an increasing sequence of integers such that for some ε > 0,

we have ‖∇f(x(tτ))‖ ≥ ε for all τ . On the other hand, the relation (3.11) implies that

there exist some j > tτ such that ‖∇f(x(j))‖ ≤ ε
2
. Let jτ be the least integer for each

τ satisfying these inequalities. Then, we have

ε
2
≤ ‖∇f(x(tτ))‖ − ‖∇f(x(jτ))‖

≤ ‖∇f(x(tτ))−∇f(x(jτ))‖

≤ LK‖xtτ − xjτ‖ ≤ LK B+C(M+1)
M+1

∑jτ−1
k=tτ

Mk,

where the last inequality follows from Lemma 3.1.2. Since 0 < M ≤ U , there exists

ζ ≤ M
U
≤ 1 such that

M + βk ≥ ζU + βk ≥ ζ(U + βk) =⇒ Mk ≤
1

ζ
Uk.

Thus, we obtain

0 < B̂ ≡ ε(M + 1)ζ

2LK(B + C(M + 1))
≤

jτ−1∑
k=tτ

Uk.

Then, using together with inequality (3.9), we obtain

f(x(tτ))− f(x(jτ)) ≥
∑jτ−1

k=tτ
Uk‖∇f(x(k))‖2 − B̄

∑jτ−1
k=tτ

M2
k

≥ B̂ inf
tτ≤k≤jτ−1

‖∇f(x(k))‖2 − B̄
∑∞

k=tτ
M2

k .

Since the left-hand-side of the inequality converges and the condition (3.8) holds, we

have

lim
τ↑∞

inf
tτ≤k≤jτ−1

‖∇f(x(k))‖2 = 0. (3.12)

But our choice of tτ and jτ guarantees ‖∇f(x(k))‖ > ε
2
for all tτ ≤ k ≤ jτ , and hence,

we arrive at a contradiction with (3.12). Therefore, ∇f(x(t)) converges, and with the

continuity of the gradient, we conclude for each accumulation point x∗ of the sequence

{x(t)} that ∇f(x∗) = 0 holds.

Clearly, the simple choice of β(t) = (ηt)γ with η > 0 and γ ∈ (0.5, 1] satisfies

condition (3.8).

30

Algorithm 2: Stochastic HAMSI

1 input: x, H, αk,b for all k = 1, · · · , K; b = 1, · · · , Bk.

2 t = 1

3 K = [K, 1, 2, · · · , K − 1, K]

4 repeat

5 Update βt (increasing sequence)

6 K ← Shuffle(K)

7 for ` = 1, 2, · · · , K + 1 do

8 k = K[`]

9 for b = 1, 2, · · · , Bk do in parallel

10 xαk,b = arg minzQ(z;xαk,b ,∇fk,b(xαk,b), Hαk,b , βt)

11 Evaluate approximate Hessian matrix H at x

12 t← t+ 1

13 until convergence or t > max_epochs

3.2 Stochastic HAMSI

We next propose a stochatic version of HAMSI which is based on the random selection

of the blocks instead of following a deterministic schedule as shown in the previous sec-

tion. The pseudocode of this version is given in Algorithm 2. The only difference with

HAMSI is the random selection of the subsets of from data. The analysis of stochastic

HAMSI is presented for the selection of subsets with replacement. However, we pro-

vide the numerical experiments for without replacement scheme, which corresponds to

"shuffling". This approach has been used in the literature before [34].

Now, we proceed to prove the convergence of the proposed algorithm HAMSI when

the order of subset selection is random. The idea of the presented proof comes from

the analysis given in [12]. During this part we will use Ĥ(t) = (H(t) + β(t)I)−1, which

is second order information at iteration t, to ease the notation.

Our discussion is given under the some assumptions.

A.1 The objective function is three times differentiable with continuous derivatives

and it is bounded from below.

31

A.2 The Hessian matrices for the component functions are uniformly bounded at

every iteration t. That is, for every Sk and t, we have

||∇2fSk || ≤ L,

where L is the Lipschitz constant.

A.3 The eigenvalues of the approximation matrices are bounded so that

(U + βt)
−1 = Ut ≤ ‖(H t + Iβt)

−1‖ ≤Mt = (M + βt)
−1

holds. Here, Ut and Mt are known constants with 0 < M ≤ U , and I denotes

the identity matrix.

A.4 The gradient norms are uniformly bounded at every iteration t; i.e., for every Sk

we have

||∇fSk(x(t))|| ≤ C,

where C is a constant.

A.5 When the norm of the parameter x is larger than a certain horizonD, the opposite

of the gradient −∇f(x) points towards the origin.

infx2≥Dx
T∇f(x) > 0.

Before presenting the main theorem, we prove that the iterates xt are confined in

a bounded region by using Assumption A.5.

Lemma 3.2.1. The parameter vectors x(t) are confined almost surely in a bounded

region of the parameter space.

Proof. We give the proof in three steps.

Step a. We define a suitable criterion

ut = ρ(||x(t)||2)

with

ρ(x) ,

 0 ifx < D

(x−D)2 ifx ≥ D.

32

Step b. By using the definition of ρ, the following expression is satisfied

ρ(y)− ρ(x) ≤ (y − x)ρ′(x) + (y − x)2. (3.13)

The inequality in (3.13) becomes equality when x > D and y > D. Next, we

apply (3.13) to the difference ut+1 − ut,

ut+1 − ut = ρ(||x(t+1)||2)− ρ(||x(t)||2).

After necessary arrangements and taking expectation over past information Pt
we obtain

E [ut+1 − ut|Pt] ≤ −2(x(t))T Ĥ(t)∇f(x(t))ρ′
(
||x(t)||2

)
+M2

t C
2ρ′
(
||x(t)||2

)
+4||x(t)||2M2

t C
2 − 4||x(t)||M3

t C
3 +M4

t C
4,

(3.14)

E [ut+1 − ut|Pt] ≤ −2(x(t))T Ĥ(t)∇f(x(t))ρ′
(
||x(t)||2

)
+M2

t C
2A. (3.15)

When ||x(t)||2 < D, the first term of the right hand side of this inequality is null

because ρ′
(
||x(t)||2

)
= 0. When ||x(t)||2 ≥ D, the first term of the right hand side

of this inequality is negative because of Assumption A.5. Thus,

E [ut+1 − ut|Pt] ≤M2
t C

2A,

where A is a positive constant.

Step c. Assume that ut converges a value u∞ greater than 0. When the parameter t is

large enough, the convergence of ut implies that ‖x(t)‖2 > D and ‖x(t+1)‖2 > D.

As it is mentioned earlier, the inequality (3.13) becomes equality and it implies

that the infinite sum given below converges almost surely:

∞∑
t=1

(x(t))T Ĥ(t)∇f(x(t))ρ′
(
(x(t))2

)
<∞. (3.16)

This result is not compatible with Assumption A.5. We must therefore conclude

that ut converges to zero.

33

The convergence of ut requires that the norm u2t is bounded, and thus, the con-

finement of parameters in a bounded region is proved with the help of Assumption

A.5. Since the confinement property is satisfied, it is guaranteed that all continuous

functions of x(t), such as ||x(t)||2, ∇f(x(t)) and, all derivatives of f , are bounded. Thus,

we can introduce positive constants K1, K2, ... whenever we need a bound for such

expressions in the rest of analysis.

Theorem 3.2.2. The function f(x(t)) converges almost surely and the gradient ∇f(x(t))

converges to 0 almost surely.

Proof. The proof is again completed in three steps.

Step a. The first step is again to define a suitable criterion function,

ft = f(x(t)) ≥ 0.

Step b. The variations of ft can be bounded by using a first order Taylor expansion and

bounding the second order derivatives with L with the help of Assumption A.2:∣∣∣∣ft+1 − ft +
[
Ĥ(t)∇fSt(x(t))

]T
∇f(x(t))

∣∣∣∣ ≤ ||Ĥ(t)∇fSt(x(t))||2L

and thus,

ft+1 − ft ≤ −
[
Ĥ(t)∇fSt(x(t))

]T
∇f(x(t)) + ||Ĥ(t)∇fSt(x(t))||2L.

Now, we take the conditional expectation and obtain

E[ft+1 − ft|Pt] ≤ −
[
Ĥ(t)∇f(x(t))

]T
∇f(x(t)) + ||Ĥ(t)||2E

[
||∇fSt(x(t))||2|Pt

]
L.

(3.17)

Since Ĥ(t) is a positive definite matrix, we have

E[ft+1 − ft|Pt] ≤ ||Ĥ(t)||2E
[
||∇fSt(x(t))||2|Pt

]
L,

and

[ft+1 − ft|Pt] ≤M2
t

1

K

K∑
t=1

||fSt(x(t))||2L,

E[ft+1 − ft|Pt] ≤M2
t C

2K1.

Then, we can bound the positive expected variations of ht as follows

E[δt(ft+1 − ft)] = E[δtE[ft+1 − ft|Pt]] ≤M2
t C

2L.

34

This bound is the summation of convergent infinite sums, and the Quasi-Martingale

Theorem [12] implies that ft = f(x(t)) converges almost surely,

f(x(t))→ f∞.

Step c. In this last step, we prove that the gradient vector ∇f(x(t)) converges to zero

almost surely. By taking expectation of (3.17) and summing on t = 1, ...,∞, we

obtain
∞∑
t=1

E[ft+1 − ft|Pt] ≤ −
∞∑
t=1

[
Ĥ(t)∇f(x(t))

]T
∇f(x(t)) +

∞∑
t=1

M2
t C

2L. (3.18)

We see that the convergence of f(x(t)) implies the convergence of the following

infinite sum:
∞∑
t=1

[
Ĥ(t)∇f(x(t))

]T
∇f(x(t)) <∞. (3.19)

The convergence of the squared gradient ∇f(x(t)) is not clear yet. We define a

second criterion

gt =
(
∇f(x(t))

)2
.

By using Taylor expansion procedure for ft, we can bound the variations of gt.

gt+1 − gt ≤ −2
[
Ĥ(t)∇fSt(x(t))

]T
∇2f(x(t))∇f(x(t)) +

[
Ĥ(t)∇fSt(x(t))

]2
K1.

Now, we take conditional expectation and use K4 as bound for the second deriva-

tives. The resulting inequality is given by

E[gt+1 − gt|Pt] ≤ 2
[
Ĥ(t)∇f(x(t))

]T
∇f(x(t))K4 +M2

t C
2K1. (3.20)

We can also bound the positive expected variations of gt as

E[δt(gt+1−gt)] = E[δtE(gt+1−gt|Pt)] ≤ 2
[
Ĥ(t)∇f(x(t))

]T
∇f(x(t))K2+M2

t C
2K1.

(3.21)

The two terms on the right hand side are the summands of convergent infi-

nite sums. The Quasi-Martingale Theorem [12] implies that gt converges almost

surely. We know that
∞∑
t=1

[
Ĥ(t)∇f(x(t))

]T
∇f(x(t)) <∞. (3.22)

Thus, gt → 0 as t→∞ and ∇f(x(t))→ 0 as t→∞.

35

3.3 Partitioning And Parallelization

To achieve our second aim of improving the performance of HAMSI, we investigate some

parallelization schemes which can be applied to gradient-based optimization algorithms.

Designing parallel optimization algorithms is based on finding a suitable cover S =

{S1, . . . , SK} for function index set I and partitioning each subset S into blocks. In

numerical experiments, we describe three parallelization strategy Color, Hogwild,

and Strata and present their variants Color-B and Strata-B, which are suitable

for partially separable objectives as in our objective (3.3).

The first parallelization method Color is based on coloring of the bipartite graph

representation of the problem. For a given bipartite graph G = (I,J , E), the coloring

is done in the following basis: if any two function vertices in I are adjacent to at

least one parameter vertices in J , we color them differently. If this is satisfied for all

vertices, then the coloring is called valid. After obtaining a valid coloring, the function

vertices I can be partitioned into disjoint subsets and each block in the same subset

can be processed in parallel.

To apply coloring-based parallelization, there are two necessary conditions: (i) the

number of synchronization points should be as small as possible; (ii) the load distribu-

tion among the processors should be balanced. The formal definition of graph coloring

problem requires minimum number of colors and thus the first condition is satisfied.

Although keeping the number of colors small is not easy, there exists some suitable,

cheap heuristics that can be used for bipartite-graph coloring [33]. For HAMSI, we

will use a heuristic which is based on visiting the vertices in some order and using the

suitable color with the smallest index (first-fit policy) [33].

After completing the coloring, since the subsets are well defined, we can distribute

the blocks in any subset evenly to the processors. However, we have observed from the

first experiments that first-fit policy results in an unbalanced distribution of functions.

Although the smaller numbered color sets has very large cardinality, the color sets

with larger indexes have a few functions. To solve this problem, we present a simple

heuristic; color selection is done randomly instead of taking the one with smaller index.

Additionally, random selection is firstly done among the available colors used before, if

it is not possible, a new color is selected. By using this approach, Color-B, a balanced

distribution of functions into color sets is achieved as it can be seen from Figure 3.3.

36

100 200 300 400 500 600 700

Color class (sorted by cardinality)

0

100

200

300

400

500

600

700

800

900

C
a
rd

in
a
lit

y

COLOR

COLOR-B

Figure 3.3: The number of functions in each color set for MovieLens 100K dataset.

(Color) uses a first-fit approach and (Color-B) selects a random available color.

As it is obtained form our experiments, the minimum number of colors can be in

the order of thousands for a valid coloring. Thus, we cannot assign a small number

for K, the number of subsets. To fix this issue for both Color and Color-B, we

firstly package the colors into K bins such that each bin obtains almost equal number

of functions. Packaging is done with a first-fit policy and the new color is put into the

bin including has less than |I|/K functions. Then the k-th bin is taken as Sk, the k-th

subset.

The second parallelization technique we employ is Hogwild. The idea is to dis-

tribute the functions into K subsets randomly such that each subset has almost the

same number of functions. Again, similar to Color, each block includes a single

function. The disadvantage of this method is that the parameter sets in the blocks

may overlap and this causes incorrect calculations of some gradient entries in parallel

processing. However, Hogwild assumes that even there exists error in the gradient,

it is not significant because of the large sized parameter sets.

The last parallelization method, stratification, is recently employed on paralleliza-

tion of SGD on distributed setting in [34]. For the problems in multi-dimensional form

such as matrix factorization, this method is based on partitioning the parameter di-

mensions into intervals. Thus, a number of function strata is obtained and they can

be processed in parallel. In Figure 3.4, we give two stratifications example for Movie-

Lens 100K matrix. The rows and columns in the matrix represent 943 users and 1682

37

(a) Strata (b) Strata-B

Figure 3.4: Two stratifications for the MovieLens 100K matrix (Left) Strata uses equi-

length intervals. (Right) Strata-B uses a balancing scheme with non-equal intervals.

The number of functions included is written on each rectangle.

movies, respectively. The subsets Sk for k ∈ {1, 2, 3, 4} are shown with stratums and

the blocks Bk = 4 for k ∈ {1, 2, 3, 4} are represented by colored rectangles. Here,

the functions in different strata are given in different colors. The block intervals are

different in each subset, thus, we can process the blocks in the same subset in parallel.

Although the original framework used in [34] does not aim to balance the number of

functions in the blocks of the same subset, there exists studies considering equi-length

intervals in the literature. We call this version with equi-length interval as Strata.

In Figure 3.4(a), Strata is employed, but it is clearly seen that the function-to-

block distribution is still unbalanced because of sparsity and irregularity of the data.

To fix this load imbalance problem, we present Strata-B which aims to obtain blocks

with (almost) equal functions for each subset. The intervals for a single dimension are

constructed as follows: we start with an empty interval and extend it until it contains

no more than |I|/K functions. Then the next interval is defined in the same fashion.

After covering the current dimension, the process is repeated for the next one. Since

all dimensions are not considered at once, we may not achieve a complete balance for

the number of functions in blocks. However, the experiments show that this approach

results in a better performance than Strata. For example, in Figure 3.4(a), we obtain

blocks with 6624, 3492, 2449, and 13585 functions, on the other hand in Figure 3.4(b),

these values are 6395, 6232, 6204 and 6183 for Strata-B.

38

Algorithm 3: HAMSI with L-BFGS Updates

1 input: x, schedule, η, γ and αk,b for all k = 1, . . . , K; b = 1, . . . , Bk.

2 t = 1, S = 0, Y = 0

3 K = [K, 1, 2, . . . , K − 1, K]

4 repeat

5 βt = (ηt)γ

6 K ← SetSchedule(K, schedule)

7 for ` = 1, 2, . . . , K + 1 do

8 k = K[`]

9 for b = 1, 2, . . . , Bk do in parallel

10 gαk,b = ∇fk,b(xαk,b)

11 if ` = 1 then

12 ḡαk,b = gαk,b , x̄αk,b = xαk,b

13 xαk,b = xαk,b − 1
βt

(σgαk,b +Wαk,bNW
>
αk,b

gαk,b)

14 s = x− x̄, y = g − ḡ,

15 if s>y > 0 then

16 σ = s>y
y>y

17 S = [S(:, 2 : M), s], Y = [Y (:, 2 : M), y], W = [S, σY]

18 C = Y >Y , R = triu(S>Y), D = diag(R)I

19 N =

 R−>(D + σC)R−1 −R−>

−R−1 0


20 t← t+ 1

21 until convergence or t > max_epochs

39

3.4 Example Implementation

In this part, we give a particular implementation of HAMSI where BFGS quasi-Newton

update rule is used to approximate Hessian matrices. The algorithm for this version is

given in Algorithm 3. Specifically, we use limited memory BFGS (L-BFGS) in inner

iterations to construct and solve the quadratic models [15]. The advantage of L-BFGS

is that it does not require to form any |J | × |J | matrices and O(|J |2) operations.

Instead, it allows to compute (H(t) + βtI)−1v for a given vector v and the required

memory becomes O(M |J |), where M is the memory size. In the general version of

HAMSI (Algorithm 1), this part corresponds to the exact solution of the subproblem.

To compute approximate Hessian by using Quasi-Newton updates, in addition to

the difference of two consecutive iterates, the difference of the gradients should be

evaluated. In the given algorithm, Algorithm 3, line 12 corresponds to keeping the

previous iterates and gradients. Then, in 14, the difference of iterates s, the difference

of gradients y are computed. L-BFGS algorithm updates the approximate Hessian by

using M of these difference vectors s and y. The resulting matrices sized |J | ×M are

denoted by S and Y in the algorithm. The related part and computing approximate

Hessian is given from line 14 to line 19. For details about this part, we refer to [15].

The selection of subsets is done with the SetSchedule function. This function

takes all the subsets in the same cyclic order which correspons to our determinis-

tic version. The selection of subsets randomly without replacement does also exist

in the literature (cf. [34]). For our numerical experiments given in Section 4.4, the

SetSchedule function is used in two ways to obtain deterministic (det) and stochas-

tic (stoc) results. The deterministic order is the same as in Algorithm 1, it uses the one

cyclic left-shift. The illustration of SetSchedule function for the stochastic version

(shuffling) is given below for K = 5:

Iteration Deterministic Stochastic

t K = [3, 4, 5, 1, 2, 3] K = [3, 1, 4, 5, 2, 3]

t+ 1 K = [4, 5, 1, 2, 3, 4] K = [2, 4, 5, 3, 1, 2]

t+ 2 K = [5, 1, 2, 3, 4, 1] K = [3, 5, 2, 1, 4, 3]
...

...
...

We parallelize all the vector and matrix operations in HAMSI. Additionally, for

the parallel computation of the gradient vector, we employ the methods given in

40

Section 3.3. To make the algorithm more practical, we apply a lazy update x =

x − 1
βt

(σg + WNW>g) once for every iteration at line 7, instead of the updates in

line 13. Moreover, we do this update in parallel from right-to-left to improve the cost

and memory efficiency of HAMSI. The right-to-left order corresponds to the order in

W (N(W>g)). With this approach, we do not need to store WNW> and instead of

expensive matrix-matrix multiplications, we only perform three matrix-vector multi-

plications.

These operations are parallelized by block-partitioning of the columns and the rows

ofW> andW , respectively. Additionally, to avoid expensive shift operations for S and

Y (at line 17), at every outer iteration, we only update the corresponding row/column

of R = triu(S>Y) which the new s and y vectors are inserted on top of an existing

column.

3.5 Computational Study

Average Final RMSE Value

Dataset Algorithm schedule Hogwild Color Color-B Strata Strata-B

1M
ratings

– 6040
users

- – 3883
movies

mb-GD
det 3.1074 3.1061 3.0845 2.5315 2.4588

stoc 3.1433 3.1470 3.1003 2.5325 2.4650

(25 seconds)
HAMSI

det 0.6901 0.6955 0.7102 0.6133 0.6022

stoc 0.6900 0.7987 0.8017 0.6088 0.5994

10M
ratings

– 71567
users

– 10681
movies

mb-GD
det 4.3167 4.2676 4.2617 4.0029 3.4088

stoc 4.3009 4.2863 4.2801 4.0035 3.4094

(250 seconds)
HAMSI

det 0.9279 1.0181 0.8941 0.8923 0.8643

stoc 0.9207 1.1357 1.1229 0.8988 0.8652

20M
ratings

– 138493
users

– 26744
movies

mb-GD
det 4.8655 4.8051 4.8000 4.8093 3.8890

stoc 4.8641 4.8279 4.8142 4.8091 3.8975

(500 seconds)
HAMSI

det 1.0170 1.1117 0.9521 1.0113 0.9042

stoc 1.0112 1.2944 1.2220 1.0231 0.9035

Table 3.1: Root-mean square errors for mb-GD and HAMSI (deterministic and stochas-

tic version) with different parallelization techniques.

We use the MovieLens datasets with different ratings (1M, 10M, 20M) for the ex-

41

periments [39]. The number of users and movies for each dataset is given in the first

column of Table 3.1. Here, we aim to factorize User × Movie matrices such that

the inner dimensions of the factor matrices is 50. We compare the performance of

our algorithm, HAMSI, with mini-batch gradient descent (mb-GD) algorithm. The

implementation of these two methods are similar to each other with some minor dif-

ferences. First, mb-GD requires a different schedule order K which is sized K and

order is permutation of {1, 2, . . . , K}. Second difference is the update rule, instead of

(line 13), mb-GD uses the stochastic gradient update equation x ← x − 1
βt
g. Mean-

while, for the first iterations of HAMSI, the full S and Y matrices are not available

yet and the gradient descent update is employed at these iterations. Since mb-GD

does not use approximate Hessian, the lines 14–19 are ignored for the related experi-

ments. There also exists some constant parameters in the algorithms, we use them as

(η = 0.001, γ = 0.51) for mb-GD and (η = 0.06, γ = 0.51) for HAMSI.

The experiments are grouped into two sets which respect to the stopping rule.

The first set of experiments, (I), considers fixed wallclock time, and the second one,

(II), considers fixed number of iterations. For (I), the algorithms run for 25, 250 and

500 seconds for the datasets 1M, 10M and 20M, respectively. At the end of each

experiment, we report the root-mean-square error (RMSE) to define the training error.

All parallelization schemes mentioned in Section 3.3 with 1, 2, 4, 8 and 16 threads are

used and each experiment is repeated three times. At each repetition, we generate

the initial solutions by employing random seeds. Thus, we perform 900 experiments

in total (3 (datasets) × 2 (algorithms) × 5 (parallelization scheme) × 5 (#threads) ×

3 (random seeds) × 2 (scheduling)). Additionally, the number of subsetsK is defined as

20 for Hogwild, Color and Color-B. For Strata and Strata-B, it is determined

as the number of threads automatically.

The results for the RMSE averages for the first experiment set (I) is given in Ta-

ble 3.1. The parallel processing is employed with 16 threads for this experiments.

Here, since we perform the experiments for a fixed time, the performance of algorithms

is almost defined by the parallelization technique. We observe that Strata-B gives

the best results in the deterministic setting. Moreover, Color-B results in better

RMSE than Color in both deterministic and stochastic version. When we compare

the performances of HAMSI and mb-GD, it is clearly seen that HAMSI outperforms

42

0 5 10 15 20 25
Wallclock Time [s]

0

1

2

3

4

5

6

R
M

S
E

1M

0 50 100 150 200 250
Wallclock Time [s]

0

1

2

3

4

5

6

R
M

S
E

10M

0 100 200 300 400 500
Wallclock Time [s]

0

1

2

3

4

5

6

R
M

S
E

20M

HAMSI
Mini-batch GD

Figure 3.5: Convergence of mb-GD and HAMSI in terms RMSE values with 16 threads.

0 5 10 15 20 25
Wallclock Time [s]

0

1

2

3

4

5

6

R
M

S
E

HAMSI, 1M

0 50 100 150 200 250
Wallclock Time [s]

0

1

2

3

4

5

6
R

M
S
E

HAMSI, 10M

0 100 200 300 400 500
Wallclock Time [s]

0

1

2

3

4

5

6

R
M

S
E

HAMSI, 20M

Number of threads
1

2

4

8

16

Figure 3.6: Convergence behaviors of HAMSI when the number of threads is increased.

mb-GD although mb-GD can perform more iterations because of only using the first

order information.

For further comparison of mb-GD and HAMSI, we compare the change in RMSE

values with respect to wallclock time. The related plots are given in Figure 3.5. Here,

we pick Strata-B for parallelization since it the best performing one in Table 3.1

in the deterministic setting. We observe that HAMSI achieves faster improvement in

addition to the better RMSE value at final step. By looking at these results, we can

also conclude that HAMSI obtains an important performance gain with the help of the

second order information.

To discuss the effects of number of threads over the convergence of HAMSI, we

repeat the experiments with various number of threads. For Strata-B, we keep the

number of threads and the batch size equal to each other. Thus, increasing the number

of threads results in smaller batch size, i.e, higher variance of the gradient estimation.

However, the results of experiments given in Figure 3.6 show that this variance does not

have a significant effect on the performance of HAMSI. Conversely, the performance

becomes better with the increasing number of threads.

In the next set of experiments, we analyze the efficiency of the parallelization meth-

43

ods. Here, we use a partitioning for the cost of an outer iteration to observe the effect

of parallelization schemes clearly. The partitions for Algorithm 3 are as follows:

• data pass and gradient computation (line 10),

• performing the updates (line 13),

• maintaining the approximate Hessian (lines 14–19).

In Figure 3.7, we show the time spent in each of these three phases for different

parallelization schemes with 16 threads. As it can be seen clearly, the Hessian approx-

imation is much cheaper than the gradient computation and update parts. Also, as

expected, the main time consuming phase for mb-GD is gradient computation. Thus,

by using parallelization in gradient-based optimization, it is possible to increase the

effectiveness of the algorithms. Although the iterations for mb-GD is cheaper and the

algorithm can perform more iterations than HAMSI during the same time interval, the

final RMSE values of HAMSI is much better than the values of mb-GD as it can be

seen from Table 3.1 and Figure 3.5.

44

mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ti
m

e
 p

e
r

d
a
ta

 p
a
ss

 [
s]

HOGWILD COLOR COLOR-B STRATA STRATA-B

Hessian
Update
Gradient

(a) 1M

mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

ti
m

e
 p

e
r

d
a
ta

 p
a
ss

 [
s]

HOGWILD COLOR COLOR-B STRATA STRATA-B Hessian
Update
Gradient

(b) 10M

mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI mb-GD HAMSI
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ti
m

e
 p

e
r

d
a
ta

 p
a
ss

 [
s]

HOGWILD COLOR COLOR-B STRATA STRATA-B Hessian
Update
Gradient

(c) 20M

Figure 3.7: Hessian computation, update, and gradient computation time for an outer

iteration of mb-GD and HAMSI with 16 threads.

45

Chapter 4

Differentially Private Gradient-Based

Algorithms

Differential privacy roughly promises securing an individual’s data while still revealing

useful information about a population [23]. In other words, the data analyst guarantees

that the data owner will not be effected while using the data of any individual for

analysis. The privacy is not a concern when the data owner and the data analyst are

the same. However, in real world, it happens that a single analysis is constructed over

the data gathered from different data owners. Then, privacy becomes an issue. Here,

we take this scenario into consideration and try to find a solution for the problem over

the data collected from multiple data contributers by an analyst.

The first part of this chapter is reserved for privacy of two first order deterministic

accelerated algorithms which use full data to compute the gradient. We propose a vari-

ant of the gradient descent method as our first algorithm. For the ease of explanation

and clarity, we will sacrifice generality in the text and put the optimization problem in

a certain context. The outline of our first algorithm is as follows: At every iteration of

the algorithm, the data holder computes a gradient vector by using the full data and

releases the noisy version of the gradient. This released vector is then used to obtain

a smoothed overall gradient which is finally used to update the parameter estimate.

Once the noisy gradient is released; it does not matter in terms of data privacy whether

the data holder or the analyst performs the update with the smoothed gradient. Since

the analyst cannot know the gradient without noise, the privacy is protected with the

help of random noise. As an illustration of this idea, we solve the regularized logistic

46

regression problem.

The second deterministic private algorithm is based on the the multistage acceler-

ated stochastic gradient algorithm (M-ASG) which is presented in [3]. In their setting,

the full gradient is used with noise which corresponds to stochastic gradient. In other

words, although the algorithm is called "stochastic", there is not a randomness about

the gradient computation and the complete data is used at each iteration. Similarly,

we present the differentially private version of M-ASG in the deterministic setting.

However, we also consider stochastic M-ASG which is constructed by sampling the

data. To avoid confussion, we denote the original deterministic algorithm with noisy

gradient by M-ASG and the stochastic version by stocMASG. In M-ASG, they divide

the number of iterations into stages and at each stage, accelerated gradient method is

run with stage related parameters and noisy gradient. Although their analysis takes

the noisy gradient into consideration, the noise variance and distribution is not con-

structed with respect to differential privacy. There, the aim of noise is to consider the

case without exact gradient information. Our purpose is to introduce a differentially

private multistage accelerated algorithm by using not only stage but also noise related

parameters. We also follow a multistage approach at noise variance calculation and

present a stage related noise division scheme.

The second part of this chapter is reserved for the stochastic versions of the al-

gorithms mentioned above. While dealing with differential privacy, it is important to

find a way to decrease the amount of random noise or improve the performance of the

algorithm. One of the most popular and easy way to achieve this aim is subsampling.

It is known that the uncertainity coming from the random selection of data helps to

improve the differential privacy. In this part, instead of using the full data, we only use

a randomly chosen sample. We aim to decrease the variance of noise with the help of

privacy amplification theorems for subsampling. In addition to the random sampling,

we also try the online version of DP-GDwS. This version is based on using the data

as distict subsets which are taken in a deterministic setting. Although the privacy

amplification effect of sampling does not exist for this concept, using disjoint samples

from the data helps to decrease the noise variance.

There exists studies in the literature regarding the use of stochastic gradient descent

(SGD) in a differentially private way, (cf, [17, 76]). They study the setting in which

47

the final output of an optimizer is revealed after it is perturbed with noise. This

perturbation ensures differential privacy in [17]. Unlike [17], we are interested in a

setting where the intermediate updates of our algorithm are also available to the analyst

and differential privacy is ensured by perturbing the gradient vectors rather than the

final output. The latter setting may be more suitable since gradient-based algorithms

are well known to have convergence guarantees with noisy gradients (provided that

they are unbiased). Also, the setting in which the intermediate steps are visible can

be extended for scenarios where more than one data holder collaborate to perform a

gradient-based algorithm on the union of their data sets.

The work in [76] is more relevant to ours in the sense that the authors are interested

in the differential privacy of their stochastic gradient descent algorithm where the

intermediate steps are revealed. They propose using stochastic gradient descent with

noisy gradients calculated from disjoint mini-batches. This procedure does protect the

privacy of the data; however, because of the high variance, it can restrict the number

of iterations that is a crucial component for an optimization algorithm.

In sum, this chapter aims to present private and still convergent algorithms by

decreasing the required noise. To achieve this, we use some existing methods that are

used to accelerate GD and SGD. Our main adjustments and related contributions are

as follows:

• First, we present our novel algorithm DP-GDwS, a smoothing method that uses

the previous gradients besides the current gradient to take a step. With the

help of smoothing approach, we achieve to decrease the noise variance and our

algorithm satisfy a given privacy level with less noise.

Similar ideas are used to speed-up the convergence of gradient descent before. For

instance, momentum-based methods [80], and accelerated gradient methods [59]

are in this context. However, to the best of our knowledge, using smoothing in

optimization with differential privacy similar to our setting has not been tried

before.

• We also present a differentially private multistage accelerated gradient method

(DP-MAG), which is based on M-ASG [3]. For this algorithm, we divide the

privacy level into stages and compute the related noise variance specific to each

48

stage. This means that variance of the noise differs from iteration to iteration.

This is an extension.

• DP-GDwS algorithm can be classified as a variant of heavy ball method with

some special adjustments. By using this fact, we analyze our method with the

help of the linear dynamical system approach. For the convergence analysis of

DP-MAG, we present a theorem by following the similar steps as in the analysis

of M-ASG [3].

• In the second part, we propose the stochastic versions of DP-GDwS and DP-MAG

by employing sampling to improve the performance. In addition to mini-batch

approach, we also present online version of DP-GDwS where we take disjoint

buckets from the data. Although we lose the advantages of subsampling with

this approach, we obtain an efficient algorithm with the help of disjoint selection

of buckets.

• Last, we provide stepsize formulas for our algorithms. It is important to take the

effect of the random noise into consideration in a principled way while finding

the direction. We use this idea to improve the numerical performances of both

deterministic algorithms DP-GDwS and DP-MAG, and their stochastic versions

DP-SGDwS and DP-SMAG. The simulation studies show that we do achieve

better performance than the heavy ball and accelerated methods with classical

stepsize formulas.

4.1 Preliminaries

Let Id and 0d denote d × d identity and zero matrices, respectively. The Kronecker

delta function δ[k] is defined as follows: δ[0] = 1 and δ[k] = 0 for any integer k ≥ 1.

For matrix A ∈ Rd×d, trace of A is shown as Tr(A) and the transpose of A is AT .

The spectral radius of A is the largest absolute value of its eigenvalues and denoted by

ρ(A). Let Sm denote all m × m symmetric matrices and similarly let Sm+ be the set

of all m×m symmetric and positive definite matrices. The Kronecker product of two

matrices A and B is shown as A⊗B.

49

Definition 4.1.1. A differentiable function f : Rd → R is Lf -smooth on S ⊂ Rd if for

all x, y ∈ S, the following inequality holds

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2.

Definition 4.1.2. For scalars 0 < µ < L, we define Sµ,L(Rd) as the set of continuously

differentiable functions f : Rd → R which are strongly convex with modulus µ and

Lipschitz continuous with L, satisfying

L

2
‖x− y‖2 ≥ f(x)− f(y)−∇f(y)T (x− y) ≥ µ

2
‖x− y‖2.

The ratio κ = L/µ is called the condition number. The following lemma is well-

known; see [60] (Theorem 2.1.12) for the proof.

Lemma 4.1.1. If f ∈ Sµ,L(Rd), then for every x, y ∈ Rd, we have

(∇f(x)−∇f(y))T (x− y) ≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖∇f(x)−∇f(y)‖2.

4.1.1 Gradient-based Optimization

As mentioned in the first chapter, we are dealing with the unconstrained, strongly

convex optimization problem of the form

min
x

∑
i∈I

fi(x), (4.1)

where x is a parameter vector and fi are a collection of functions and each i corresponds

to a single element from I.

For x ∈ Rd, we define the gradient vector for I = {1, 2, ..., n}

∇f(x) =
n∑
i=1

∇fi(x). (4.2)

Using this notation, we can further define the subsample gradient for some subset of

data B ⊆ {1, . . . , n} with |B| = m

∇fB(x) :=
∑
i∈B

∇fi(x). (4.3)

In order to solve the problem (4.1) with the basic gradient method, we use the

following update at iteration t,

xt+1 = xt − αt∇f(xt), (4.4)

50

where αt is the learning rate.

As αHB and βHB are the learning rate and momentum parameter respectively, the

update rule for HB [66] at iteration t is

xt+1 = xt − αHB∇f(xt) + βHB(xt − xt−1). (4.5)

For NAG [59], the iterations can be written as

xt+1 = zt − αAG∇f(zt),

zt = (1 + βAG)xt − βAGxt−1,
(4.6)

where αAG and βAG are the learning rate and the momentum parameter, respectively.

Similarly, in order to solve problem (4.1) with a mini-batch stochastic gradient

method, we use the following update at iteration t with batch Bt,

xt+1 = xt − αt∇fBt(xt), (4.7)

where αt is the learning rate. Note that when Bt is a singleton, then (4.7) corresponds

to the standard stochastic gradient method. We can define stochastic versions of the

accelerated gradient and the heavy ball methods in the same fashion, i.e., replacing

the gradients with their minibatch estimates.

4.1.2 Differential Privacy

We are interested in modifying the steps of first order optimization algorithms to have

privacy-preserving updates. Our setting is as follows: The data holder makes public

the iterates {xt}0≤t≤T for a total of T iterations. Also, αt is known. If the data holder

applies the related update of the method directly, the vectors ∇f(xt) are revealed.

This violates privacy since the revealed terms are deterministic functions of the data.

Therefore, due to privacy concerns, some random version of the gradient has to be

used. Differential privacy quantifies the privacy level that one guarantees by such

randomizations.

The setting of differential privacy considers those mechanisms as randomized algo-

rithms. A randomized algorithm takes an input dataset D ∈ D and returns the random

output AD ∈ X . Such an algorithm can be associated to a function A : D → X that

maps a data set from D to a probability distribution A(D) ∈ X such that the random

output AD ∼ A(D).

51

Differential privacy basically requires that the output of an algorithm does not

change probabilistically when one record of the data is changed. For datasets D1 and

D2, let h(D1, D2) be the Hamming distance between D1 and D2, that is the number

of different elements between the datasets. A differentially private algorithm ensures

that A(D1) and A(D2) are ‘not much different’ if h(D1, D2) = 1. This ‘difference’ is

expressed mathematically by the following formal definition of differential privacy.

Definition 4.1.3 (ε- Differential Privacy). (Definition 1, [24]) A randomized algorithm

A with set of input data sets D and range for its output X is ε- differential private if

for all data sets D1, D2 ∈ D differing on at most one element i.e. h(D1, D2) ≤ 1, and

all X ⊆ X ,

P[AD1 ∈ X] ≤ eεP[AD2 ∈ X]. (4.8)

Most existing differentially private methods perturb certain functions of data with

suitably chosen random noise. The amount of this noise is related to the maximum

amount of change in the functions of the data when one single entity of the data is

changed. This leads to the definition of sensitivity.

Definition 4.1.4 (Sensitivity). (Definition 3.1, [27]) For a function on datasets ϕ :

D 7→ Rk, k ≥ 1, the L1-sensitivity of ϕ is defined as

S
(ϕ)
1 = max

D1,D2∈D:h(D1,D2)=1
||ϕ(D1)− ϕ(D2)||1 (4.9)

for all D1, D2 differing at most one element.

One of the most widely used differentially private mechanisms is the Laplace mech-

anism, which we will use in our proposed method also.

Theorem 4.1.2 (Laplace mechanism). (Theorem 1, [24]) Given function ϕ : D 7→ Rk,

the mechanism Aϕ, which adds independently generated noise with Laplace distribution

Lap(S
(ϕ)
1 /ε) to each of the k output terms, enjoys ε-differential privacy.

Our methods, which we present in the following sections, use the Laplace mechanism

at every iteration. As in our method, with every repetition of the mechanism on the

same data, new bits of information are given to the adversary, which causes further

privacy loss. The theorem below gives a formal explanation.

52

Theorem 4.1.3 (Composition). (Corollary 3.15, [27]) Let Ai each provide εi-differentially

privacy. The sequence (A1, . . . ,AT), whose output is the concatenation of the outputs

of the individual algorithms, provides
∑T

i=1 εi- differentially privacy.

Next, we cite a result from the literature regarding our method. Improvement

in differential privacy by means of random subsampling is quantified in the following

theorem. This theorem is based on the proof of Lemma 34 given in [86]. We obtain a

tighter bound and the proof is given in Appendix A.1.

Theorem 4.1.4 (Subsampling). Let M : Ym → X be a ε-differentially private algo-

rithm. Then, the algorithm M′ : Yn → X that first selects a random subsample of

m distinct rows from its input data y1:n ∈ Yn and then runs M on the subsample is

ε′-differentially private where

ε′ = 2(eε − 1)
m

n
. (4.10)

Although we improve the theorem given in [86] by obtaining a tighter bound for

privacy under sampling, there is another bound which is even tighter than ours for

ε ≤ 1. Thus, the main theorem that we use for our numerical study (when ε ≤ 1) is

given below.

Theorem 4.1.5. (Lemma 2.2, [4]) Over a domain of data sets Yn, if an algorithm

M is ε′ ≤ 1 differentially private, then for any data sets Y ∈ Yn, executing M on

uniformly random γn entries of Y ensures 2γε′-differential privacy.

4.1.3 Dynamical System Approach

Reformulation of algorithms as linear dynamical systems is a popular approach to

analyze the first order methods [30,40,48]. The standard convergence analyses are hard

to interpret, and they are different for each algorithm. These methods also require

the exact gradient information, which is not available for stochastic algorithms or

approaches emloying noisy gradients. Dynamical system approach aims to present a

systematical way to understand the relationship between the algorithm parameters,

the convergence rate, and the gradient noise (if it exists).

53

A discrete-time linear dynamical system can be expressed as

ξt+1 = Aξt +But,

yt = Cξt +Dut,

ut = φ(yt),

(4.11)

where A, B, C and D are system matrices, ξt is the state, yt is the output and ut is

the input [48]. The function φ is the feedback rule and for our case it corresponds to

the nonlinear gradient since we are dealing with strongly convex objective.

Example 4.1.1. For GD method, the iterations are in the following form

xt+1 = xt − α∇f(xt)

so the system matrices are as follows:

A = Id,

B = −αId,

C = Id,

D = 0d

(4.12)

And the state vector in dynamical system representation (4.11) is ξt = xt for GD

method.

For strongly convex quadratic objective functions, the analysis is easier since the

gradient and the resulting system is linear. In this case, the (asymptotic) convergence

rate can be obtained by computing the spectral radius of the state-transition matrix

[48].

To illustrate the idea, we provide the convergence rate computation for strongly

convex quadratic objectives in the following example.

Example 4.1.2. ([48], Page 5) Assume that the objective function f is strongly convex

quadratic function f(y) = 1
2
yTQy − pTy + r, where mId ≤ Q ≤ LId and the system

matrices are A,B,C and D where D = 0. When we run a first order optimization

algorithm over the problem, the system becomes

ξt+1 = Aξt +But,

yt = Cξt,

54

ut = ∇f(yt) = Q(yt − y∗).

To talk about the optimality of y∗, u∗ = ∇f(y∗) = 0 and this requires y∗ = Cξ∗ and

ξ∗ = Aξ∗ where ξ∗ = x∗. Thus, we obtain

ξt+1 − ξ∗ = (A+BQC)(ξt − ξ∗).

A necessary and sufficient condition to show the convergence of ξt to ξ∗ is that the

spectral radius of T = (A+BQC) is strictly less than 1. If we denote the spectral radius

of T as ρ(T), for any ε > 0 and all sufficiently large t, ρ(T)t ≤ ‖T t‖ ≤ (ρ(T) + ε)t.

Then, the convergence rate of the algorithm can be bounded as

‖ξt − ξ∗‖ = ‖T t(ξ0 − ξ∗)‖ ≤ ‖T t‖‖ξ0 − ξ∗‖ ≤ (ρ(T) + ε)t‖ξ0 − ξ∗‖

which shows the relationship between convergence rate and the spectral radius.

On the other hand, for other type of problems with strongly convex objectives, a

linear dynamic system with nonlinear feedback approach (due to the nonlinear gradi-

ent) can be used as in [2]. In [2], the authors derive upper bounds on the robustness

with the help of Lyapunov functions and analyze GD and NAG methods.

Lyapunov theory is based on minimum energy and used to explain the convergence

behaviors of algorithms. Lyapunov function is a nonnegative function representing

the state of the algorithm. Its value decreases along all admissible trajectories. After

constructing this function, the convergence rate of the method can be explained by

relating to the decrease of the internal energy.

4.2 Momentum-Based Algorithms Using Full Gradi-

ent Descent

We first present our deterministic algorithms which use the full data to compute the

gradient vector. Differential privacy of the algorithms which use full data is studied

before in the literature [4, 93]. However, using full data causes higher variance of

required noise for DP. To overcome this problem, we present an approach to improve

the performance of the full gradient algorithms with noise related parameter selection.

We apply this idea to our algorithms.

55

4.2.1 Gradient Descent Algorithm with Smoothing

When privacy is of concern for the optimization problem given in Section 4.1.1, one

approach is to update the parameter xt of iteration t using a noisy gradient vector

∇̃f(xt) = ∇f(xt) + ηt, (4.13)

where the noise term is a Laplace distributed random variable

ηt,i
i.i.d.∼ Lap(σt), i = 1, . . . , d,

independent from the other noise terms and ηt = [ηt,1, ..., ηt,d].

Although the privacy of an algorithm can be guaranteed in this way, the perfor-

mance will be affected because of the noise added at each iteration. As it is mentioned

before, we aim to improve the performance of the algorithms by adding less noise to

satisfy the same privacy level. With this aim, we propose DP-GDwS.

Algorithm DP-GDwS

We introduce a smoothing effect to improve the differential privacy of the algorithm.

More concretely, the update rule for our algorithm is

xt+1 = xt − αt∇̃f
(t)

(x1:t), (4.14)

where the smoothed gradient estimate ∇̃f
(t)

(x1:t) is a geometrically weighted average

of all the previous gradients and the current one. Specifically, letting

∇̃f
(0)

(x0) = β∇f(x0) + η0,

we define the rest recursively as

∇̃f
(t)

(x1:t) = (1− β)∇̃f
(t−1)

(x1:t−1) + β∇f(xt) + ηt. (4.15)

The idea of using a smoothed gradient is to improve the privacy level with the same

amount of noise by means of giving a smaller weight to the new gradient calculation.

Note that the new information that an adversary can learn from the xt given the

previous samples x1, . . . , xt−1 is

β∇f(xt) + ηt, (4.16)

56

which is a noise-added calculation. This is in contrast with ∇f(xt) + ηt. In the latter

case, the sensitivity of the calculation is 1/β times more and therefore the privacy

breach is 1/β times more.

Algorithm 4 describes our gradient-descent method for solving the generic problem

formulated in (4.1) when the desired privacy level is ε and the maximum number of

iterations is T .

Algorithm 4: DP-GDwS: Differentially private smoothed gradient descent

algorithm

1 Input: Sensitive data y1:n, initial value x0, number of iterations T , total

privacy breach ε

2 Output: The adversar’s view: xt, t = 1, . . . , T .

3 for t = 0, . . . , T − 1 do

4 Calculate ∇f(xt) =
∑n

i=1∇fi(xt)

5 Calculate S1(xt) and set σt = S1(xt)β
ε/T

.

6 Sample ηt ∼ Lap(σt)

7 if t = 0 then

8 Initialise

∇̃f
(0)

(x0) = β∇f(x0) + η0.

9 else

10 Calculate

∇̃f
(t)

(x1:t) = (1− β)∇̃f
(t−1)

(x1:t−1) + β∇f(xt) + ηt.

11 Update xt+1 = xt − αt∇̃f(x1:t).

We now proceed to establishing the differential privacy of Algorithm 4 formally. As

revealed in Proposition 4.2.1, this is simply done by combining the results of Laplace

mechanism and composition.

Proposition 4.2.1. The proposed smoothing scheme in (4.15) leads to an ε-DP private

algorithm when the variance of the noise at any iteration t is

σt =
S1(xt)β

ε/T
, (4.17)

57

where S1(xt) is the sensitivity bound, β is the smoothing weight, T is the maximum

number of iterations and n is the data size.

Proof. Observing (4.2), we see that change in one data item changes only one term in

f(xt). Therefore, the sensitivity of f(xt) is given by S1(xt). Hence, with (4.17), the

privacy loss of revealing (4.16) with σt at iteration t would be

ε0 = S1(xt)β/σt = ε/T.

Finally, we apply Theorem 4.1.3 to conclude that the privacy loss after T iterations is

ε.

Determining the Stepsize

The theory regarding gradient algorithms suggest that the stepsize should be propor-

tional to 1/L, where L is the Lipschitz constant. Instead, to adjust the stepsize, we

look at the variance of ∇̃f(xt) with respect to the noise terms until time t. We then

suggest the following general form for the stepsize αt

αt ≈

Var
∇̃f (t)

(xt, . . . , xt)︸ ︷︷ ︸
t+1 times

−1/2 1

(T + 1)γ
, (4.18)

where the term in square brackets is the average over the variances with respect to the

components of the gradient vector, T is the number of iterations and γ ∈ (0, 1] is a

constant. Note that we consider the smoothed gradient vector evaluated with the same

xt for all iterations up to iteration t. The idea of checking the variance with the same

xt is based on the assumption that as the number of iterations grows xt’s are getting

close to each other. For x ∈ X , let

S2(x) = sup
x,x′
||f(x)− f(x′)||2

be the L2-sensitivity of f(x). We present a bound on the variances in Proposition 4.2.2;

the proof is left to Appendix A.2 for the case where the gradient vector is computed

over the sampled data. However, the proof is satisfied also for the deterministic case

with a simple adjustment (the variance of the full gradient is taken instead of the

variance of the sampled gradient in (A.5)).

58

Proposition 4.2.2. For given xt ∈ X , smoothing parameter 0 < β ≤ 1, and ηi
i.i.d.∼

Lap(σ) for i = 1, . . . , t, the trace of the covariance of ∇̃f
(t)

(xt, . . . , xt) with respect to

noise vector η1:t is bounded as

Var

∇̃f (t)
(xt, . . . , xt)︸ ︷︷ ︸
t+1 times

 ≤ (S1(xt)
2

4
+

2dσ2

β2

)
β

2− β
. (4.19)

In the light of the above proposition, if the privacy loss and the number of iterations

are chosen as ε and T , respectively, we choose the stepsize is as follows:

αt =

((
S2(xt)

2

4d
+

2S1(xt)
2(

ε
T

)2
)

β

2− β

)−1/2
0.25

(T + 1)1/2
. (4.20)

Note that we have T , the maximum number of iterations, in the stepsize formula. This

makes sense in our setting, since due to privacy concerns, it is not possible to run

the algorithm infinitely. Since T is fixed and we compute the sensitivity bound as

independent from the iteration vector xt, our stepsize formulation is fixed and does not

change during iterations. Thus, the final form of the stepsize is

α =

((
S2
2

4d
+

2S2
1(

ε
T

)2
)

β

2− β

)−1/2
0.25

(T + 1)1/2
. (4.21)

Convergence Rate Analysis

The iterations of DP-GDwS can be written as

xt+1 = xt − αβ∇f(xt) + (1− β)(xt − xt−1),

which is a special case of the heavy ball method for αβ = αHB, 1− β = βHB when the

heavy ball iterates are as in (4.5).

For the dynamical system representation of HB, the system matrices can be written

as follows:

A =

 (1 + βHB)Id −βHBId
Id 0d

 , B =

 −αHBId
0d

 , C =
[
Id 0d

]
, D = 0d.

Since we are dealing with differential privacy, instead of working with the full gradient,

we will take the noisy version as ∇f(xt) + ηt where ηt ∈ Rd is the Laplace distributed

noise. Then, the algorithm can be written as:

ξt+1 = Aξt +B(ut + ηt),

ht = Cξt,

ut = ∇f(ht),

(4.22)

59

where A, B, C and D are as before. To explain the relation between ξt and xt (t ≥ 0),

we use xt = Tξt where T = [Id 0d] (for HB). Similar to [2], we denote f(Tξ) as f̄(ξ)

to simplify the notation, and thus, f̄(ξt) = f(xt) for all t ≥ 0.

To satisfy ε-DP, ηt is Laplace distributed with mean 0 and variance σ2 = (S1/εiter)
2.

That is,

E[ηt] = 0, E[‖ηt‖2] = σ2.

Since we continuously add noise, there is a possibility that limt→∞ E[f(xt)] may not

exist. So, we consider the worst-case limiting suboptimality as in [2] to determine the

robustness of the algorithm to the noise,

J = lim sup
t→∞

1

σ2
E[f(xt)− f ∗], (4.23)

where f ∗ is the optimal objective function value.

Next, we explain the relationship between the robustness and the parameters of

DP-GDwS. As mentioned before, we will use the idea in [2] to analyze our algorihtm

DP-GDwS. Their analysis is based on bounding J with the help of Lyapunov functions.

Similar to [2], we aim to bound E[f(xt) − f ∗] for our algorithm, DP-GDwS, by using

non-negative parameters ψ0, R which depend on algorithm parameters, initial point

and the convergence rate 0 < ρ < 1 as follows:

E[f(xt)− f ∗] ≤ ρ2kψ0 + σ2R, ∀k ≥ 0.

Thus R is as an upper bound on J . We can say that the convergence rate of the

expected suboptimality is ρ to the interval around 0 with radius σ2J . As it is clearly

seen, the case σ = 0 corresponds to the convergence rate of f(xt) to directly f ∗ and

the part σ2R corresponds to the effect of the random noise.

Specifically, our Lyapunov function is in the following form

VP,c(ξ) = VP (ξ) + c(f̄(ξ)− f ∗), (4.24)

where c is nonnegative constant P is a positive semidefinite matrix shown as P � 0,

and VP (ξ) = (ξ−ξ∗)TP (ξ−ξ∗). The idea of constructing a Lyapunov function is based

on determining the convergence rate by considering the change in the function value.

We know that under noisy gradient, Lemma 4.1 ([3]) which explains the evolution of

VP (ξt+1) along t, and Corrollary 4.2 ([3]) which characterize the difference E[VP (ξt+1)]−

60

ρ2E[VP (ξt)] is satisfied.

Before deriving the bounds, we need some assumptions:

A.1 There exists a symmetric matrix X ∈ Sm+d such that

X � Φ(A,B, P, ρ) (4.25)

for some P ∈ Sm+ and ρ ∈ (0, 1) where

Φ(A,B, P, ρ) =

 ATPA− ρ2P ATPB

BTPA BTPB


A.2 For some nonnegative constants Γ and c, the same parameters ρ and X as before

satisfy

E


 ξt − ξ∗

∇f(ht)

T X
 ξt − ξ∗

∇f(ht)


 ≤ c(ρ2E[f̄(ξt)− f ∗]− E[f̄(ξt+1)− f ∗] + σ2Γ)

(4.26)

for every t ≥ 0.

Thus, as in Aybat et. al ([2]), by using A.1 and A.2 along with Corollary 4.2, the

following inequalities are satisfied for all t ≥ 0

ρ2E[VP,c(ξt)] + σ2(Tr(BTPB) + cΓ) ≥ E[VP,c(ξt+1)],

and

E[VP,c(ξt)] ≤ ρ2tVP,c(ξ0) +
1− ρ2t

1− ρ2
σ2RP ,

where RP = Tr(BTPB) + cΓ.

We next consider the steps of our DP-GDwS algorithm (with DP noise) given by

xt+1 = (2− β)xt − (1− β)xt−1 − αβ(∇f(xt) + ηt).

Lemma 4.2.3. Let f ∈ Sµ,L(Rd), then for any ρ ∈ (0, 1),

 ξt − ξ∗

∇f(ht)

T (X1 + (1− ρ2)X2)

 ξt − ξ∗

∇f(ht)

 ≤ ρ2(f(xt)− f ∗)− (f(xt+1)− f ∗)

−Lα
2β2

2
‖ηt‖2 + Lαβ [(1− β)(xt − xt−1)− αβ∇f(ht)] ηt + αβ∇f(ht)ηt,

(4.27)

61

where X1 = X̃1 ⊗ Id and X2 = X̃2 ⊗ Id with

X̃1 =
1

2


−L(1− β)2 L(1− β)2 −(1− Lαβ)(1− β)

L(1− β)2 −L(1− β)2 (1− Lαβ)(1− β)

−(1− Lαβ)(1− β) (1− Lαβ)(1− β) αβ(2− Lαβ)


and

X̃2 =
1

2


µ 0 −1

0 0 0

−1 0 0

 .
Proof. The iterations of our algorithm can be written as follows:

xt+1 = (2− β)xt − (1− β)xt−1 − αβ∇f(ht),

ht = xt.

Then from Definition 4.1.2, we can write

f(ht)− f(xt+1) ≥ ∇f(ht)
T (ht − xt+1)−

L

2
‖xt+1 − ht‖2.

Then,

f(ht)− f(xt+1) ≥ ∇f(ht)
T (ht − (2− β)xt + (1− β)xt−1 + αβ(∇f(ht) + ηt))

−L
2
‖(2− β)xt − (1− β)xt−1 − αβ(∇f(ht) + ηt)− ht‖2

(4.28)

= −(1− β)(xt − xt−1)∇f(ht) + αβ‖∇f(ht)‖2 + αβ‖∇f(ht)‖ηt −
L

2
(1− β)2‖xt − xt−1‖2

+Lαβ(1− β)(xt − xt−1)(∇f(ht) + ηt)−
α2β2L

2
‖∇f(ht) + ηt‖2

(4.29)

=

 xt − xt−1
∇f(ht)

T  −L
2
(1− β)2 Lαβ(1−β)−(1−β)

2

Lαβ(1−β)−(1−β)
2

−α2β2L
2

+ αβ

 xt − xt−1
∇f(ht)

− Lα2β2

2
‖ηt‖2

+Lαβ [(1− β)(xt − xt−1)− αβ∇f(ht)] ηt + αβ∇f(ht)ηt

(4.30)

=
1

2


xt − x∗

xt−1 − x∗

∇f(ht)


T 

1 0

−1 0

0 1


T  −L

2 β
2 Lαβ(1−β)−(1−β)

2

Lαβ(1−β)−(1−β)
2 −α2β2L2 + αβ




1 0

−1 0

0 1




xt − x∗

xt−1 − x∗

∇f(ht)


−Lα

2β2

2
‖ηt‖2 + Lαβ [(1− β)(xt − xt−1)− αβ∇f(ht)] ηt + αβ∇f(ht)ηt

(4.31)

62

Thus,

1

2


xt − x∗

xt−1 − x∗

∇f(ht)


T 

−L(1− β)2 L(1− β)2 −(1− Lαβ)(1− β)

L(1− β)2 −L(1− β)2 (1− Lαβ)(1− β)

−(1− Lαβ)(1− β) (1− Lαβ)(1− β) αβ(2− Lαβ)




xt − x∗

xt−1 − x∗

∇f(ht)


−Lα

2β2

2
‖ηt‖2 + Lαβ [(1− β)(xt − xt−1)− αβ∇f(ht)] ηt + αβ∇f(ht)ηt ≤ f(xt)− f(xt+1),

(4.32)

which gives the first matrix X1. Similarly,by using Definition 4.1.2

f(x∗)− f(ht) ≥ ∇f(ht)(x∗ − ht) +
µ

2
‖x∗ − ht‖2

= ∇f(ht)(x∗ − xt) +
µ

2
‖x∗ − xt‖2

f(x∗)− f(xt) ≥
1

2


xt − x∗
xt−1 − x∗
∇f(ht)


T 

µ 0 −1

0 0 0

−1 0 0




xt − x∗
xt−1 − x∗
∇f(ht)

 , (4.33)

and that gives us the second matrix X2. When we take

X = X1 + (1− ρ2)X2,

and by (4.32) and multiplying (4.33) by (1− ρ2) we obtain the desired result.

Thus, (4.26) is satisfied and A.2 is correct for DP-GDwS. The following proposition,

which is constructed based on the Proposition 4.6 in [2], helps us to find (ρ, P) pairs

where ρ is the convergence rate and P is a d× d positive definite matrix. Since we are

dealing with a variant of HB and using smoothing, X1, X2 and the bound differs, but

the proof follows the same steps as the proof of Proposition 4.6 in [2].

Proposition 4.2.4. Let f ∈ Sµ,L(Rd), and consider the DP-GDwS iterations. Assume

there exist ρ ∈ (0, 1), P ∈ S2d
+ , and c0, c ≥ 0 such that

c0X0 + cX(ρ) � Φ(A,B, P, ρ), (4.34)

where

X0 =

 2µLCTC −(µ+ L)CT

−(µ+ L)C 2Id

 , X(ρ) = X1 + (1− ρ2)X2

63

for X1 and X2 defined in previous lemma. Then the following bounds hold for all t ≥ 0:

E[VP,c(ξt)] ≤ ρ2tVP,c(ξ0) +
1− ρ2t

1− ρ2
σ2α2β2

(c
2
Ld+ Tr(P11)

)
, (4.35)

where P11 ∈ Sd+ is the submatrix of P formed by its first d rows and d columns.

Although solving the given matrix inequality (4.34) gives us the rate, solving this

inequality becomes harder with the increasing size of d. To overcome this issue, [2]

proves that finding a matrix P ∈ S2
+ satisfying the inequality (4.35) is enough to find

a convergence rate. Their corollary is generalized to our method as follows:

Corollary 4.2.5. (Corollary 4.7, [2]) Let f ∈ Sµ,L(Rd), and consider the DP-GDwS

iterations with parameters α and β. Assume there exist ρ ∈ (0, 1), P̃ ∈ S2
+, c0 ≥ 0,

and c > 0 such that c0X0 +cX(ρ) � Φ(A,B, P, ρ) with X0 defined in Proposition 4.2.4,

X1, X2 defined in Lemma 4.2.3, and P = P̄ ⊗ Id. Then for all t ≥ 0,

E[f(xt)− f ∗] ≤ ρ2tψ0 + (1− ρ2t)σ2RAG(α, β), (4.36)

RAG(α, β) =


Lα2β2d
2(1−ρ2)

cL+2P̃11

cL+2(P̃11−P̃ 2
12/P̃22)

, P̃22 > 0;

Lα2β2d
2(1−ρ2) , P̃22 = 0,

(4.37)

where ψ0 = 1
c
VP,c(ξ0). As a consequence, J ≤ RAG(α, β).

As a result, the algorithm, DP-GDwS, converges to the interval [f ∗, f ∗ + σ2RAG]

with rate ρ if there exists (ρ, P) pairs such that P is positive definite and (4.35) is

satisfied. There are some approaches to find suitable ρ and P, but it is difficult to find

a solution by solving the related matrix inequality analytically for HB. For NAG, it is

easier since the general form of the P matrix is known in terms of algorithm parameters.

On the other hand, the existing studies dealing with the rate of HB generally apply

a grid search method to determine suitable (ρ, P) pairs. Since DP-GDwS is a special

form of HB, we apply a grid search approach similar to the one in [48].

In [48], the authors obtain a convergence rate for HB when IQC approach is used.

They consider the non-noisy setting and claim that HB fails to converge for large

condition number κ values when the step size is α = 4
(
√
L+
√
µ)2

which is the optimal

stepsize for HB for quadratic objective. In the same paper, it is also shown that the

performance of HB is better for α = 1
L
. In case the gradient is noisy, the analysis in [2]

64

shows that the rate value determines the convergence rate to the interval [f ∗, f ∗ +

σ2RAG] as it mentioned before. For our algorithm DP-GDwS, we obtain the result in

the left plot of Figure 4.1 for various κ values. It is clearly seen that our algorithm

performs better for larger κ values. The green plot in the same figure shows the rate

in case the objective function is quadratic and we see that our version obtains an

improvement over the rate for quadratics.

Figure 4.1: Convergence Rate for different κ values

We claim that by selecting smaller β values, the required noise is decreased and

we improve the performance of the algorithm. To prove this claim, we repeat the

convergence rate experiments for ε = 1 and β ∈ {0.01, 0.02, ..., 0.99, 1} values. The

result is given in the right plot of Figure 4.1 . The x-axis represents 1− β and y-axis

is the corresponding rate value. The figure shows that increasing values of 1−β which

means the decreasing values of β result in better convergence rate until a threshold

value. This supports our idea of using smoothing to improve the performance.

4.2.2 Multistage Accelerated Algorithm

In this part, we present differentially private version of M-ASG introduced in [3]. This

algorithm consists of stages where accelerated gradient is used and at each iteration

they compute a noisy full gradient instead of the gradient itself. The authors prove

that M-ASG achieves the optimal rate both in deterministic and stochastic versions.

Although their study deals with gradient with random noise, they do not consider the

differential privacy context in the algorithm design. In other words, the variance of the

noise is not computed by considering the sensitivity of data as in differential privacy.

65

Our extension considers the following:

• We add sensitivity related Laplace noise to satisfy differential privacy by taking

the multistage approach into consideration. That is, instead of satisfying ε/T

privacy for each iteration, we satisfy ε/K privacy at each stage where ε is privacy

level, T is the number of iterations and K is the number of stages.

• We use a noise related stepsize at each stage by keeping the stage-related formulas

as required in [3].

Algorithm DP-MAG

The original algorithm M-ASG is a multistage accelerated algorithm which uses Nes-

terov’s accelerated gradient method with noisy full gradient [3]. The authors divide

the number of iterations into stages and determine the number of iterations nk and

stepsize αk at each stage k ∈ 1, ..., K as

n1 ≥ 1, α1 =
1

L
,

nk = 2kd
√
κ log(2p+2)e, αk =

1

22kL

(4.38)

where p ≥ 1, L is the Lipschitz constant and
∑K

k=1 nk = T with T number of iterations

in total. M-ASG achieves the optimal rate and it is given in Theorem 3.4 ([3]) that

the last iterate of each stage, xknk+1, satisfies the following bound for all k ≥ 1:

E[f(xknk+1)]− f ∗ ≤
2

2(p+1)(k−1) (exp(−n1/
√
κ)(f(x00)− f ∗)) +

σ2
√
κ

L2k−1
, (4.39)

where x00 is the initial iterate.

In (4.39), σ2 represents the noise variance which is a predefined constant, and

independent from the structure of the data. This noise is not constructed with the

aim of privacy, they only consider the case where an inexact gradient is available, thus

the algorithm is not proven to be differentially private. On the other hand, to satisfy

differential privacy a noise adding mechanism constructed by considering sensitivity

bound is used in the literature as in Theorem 4.1.2. To make M-ASG differentially

private, we propose some arrangements related to algorithm parameters and the noise

dividing scheme to the stages.

The reason behind this noise dividing scheme is that the number of iterations at

each stage increases with ratio 2k where k is the stage number; see (4.38). On the

66

other hand, it is clear from the same equation that the stepsize decreases with ratio

22k. Thus, we expect a balance between the iteration number, the stepsize and the

variance of noise for each stage. To keep this balance, we divide the noise into the

stages equally.

Algorithm 5 describes our differentially private version of M-ASG method for solv-

ing the generic problem formulated in (1.1) when the desired privacy level is ε and the

maximum number of iterations is T .

Algorithm 5: DP-MAG: Differentially private multistage accelerated algo-

rithm

1 Input: Initial value x00, the sequence of stepsizes {αk}Kk=1, number of

iterations at each stage {nk}Kk=1, total privacy breach ε

2 Output: The adversar’s view: xt, t = 1, . . . , T .

3 Set n0 = −1

4 for k = 1; k ≤ K; k = k + 1 do

5 Compute εk = ε/K

6 Set xk0 = xk1 = xk−1nk−1+1

7 for t = 1; t ≤ nk; t = t+ 1 do

8 Calculate S1(x
k
t) and set σk,t =

S1(xkt)

εk/nk
.

9 Sample ηkt ∼ Lap(σk,t)

10 Set β =
1−
√
µ/L

1+
√
µ/L

11 Set ykt = (1 + βk)x
k
t − βkxkt−1

12 Calculate ∇̃f(ykt , η
k
t) = ∇f(ykt) + ηkt

13 Set xkt+1 = ykt − αk,t∇̃f(ykt , η
k
t)

We now proceed to establishing the differential privacy of Algorithm 5 formally by

combining the results of Laplace mechanism and composition. The proof follows the

same steps as in Proposition 4.2.1 with β = 1.

Proposition 4.2.6. The proposed algorithm in (5) is ε-DP private when the variance

of the noise at any iteration t of stage k is

σk,t =
S1(x

k
t)

ε/K
, (4.40)

67

where S1(x
k
t) is the sensitivity bound, K is the total number of stages and n is the data

size. By using this approach, the variance of noise at each iteration t, stage k can be

computed as

σk,t =
S1(x

k
t)

ε/(Knk)
=

S1(x
k
t)

εk/(nk)
, (4.41)

where nk and εk is the number of iterations and the privacy level at stage k = 1, 2, ..., K,

respectively.

Determining the Stepsize

Similar to the previous algorithm DP-GDwS, we take into account the variance of

∇̃f(xkt) with respect to the noise terms until time t to adjust the stepsize. We then

suggest a general form based on the formulation in the original work [3]. Our noise

related approach for the stepsize αk,t at stage k > 1 and iteration t is

αk,t ≈
1

22(k+1)L

Var
∇̃f (k,t)

(xkt , . . . , x
k
t)︸ ︷︷ ︸

nk+1 times

−1/2 , (4.42)

where the term in square brackets is again the average over the variances with respect

to the components of the gradient vector. By using the Proposition 4.2.2 and the

bound presented in Appendix A.2, we choose the stepsize as

αk,t =
1

22(k+1)2L


S2(x

k
t)

2

4d
+

2S1(x
k
t)

2(
ε

nkK

)2
 1

1− β2


−1/2

, k = 1, . . . , K, (4.43)

where ε and T are the privacy loss and the number of iterations, respectively. Since

we compute the sensitivity bounds as independent from the iteration vector xkt , the

bounds can be taken as S1 and S2 and our stepsize formulation becomes independent

from t.

Convergence Analysis

Our convergence analysis is based on the dynamical system representation of the algo-

rithm. The linear dynamical system representation of the accelerated gradient descent

method at iteration t can be written as

ξt+1 = Aξt +B∇f(yt, ηt),

yt = Cξt,
(4.44)

68

where ξt =
[
xTt xTt−1

]T
∈ R2d is the state vector and A, B and C are system matrices

with appropriate dimensions defined as Kronecker products A = Ã ⊗ Id, B = B̃ ⊗ Id
and C = C̃ ⊗ Id with

Ã =

 1 + βAG −βAG
1 0

 , B̃ =

 −αAG
0

 , C̃ =
[
I 0

]
, D̃ = 0,

where βAG and αAG are momentum and stepsize parameters for NAG method respec-

tively. Since we are dealing with noisy gradient instead of gradient itself, we will use

its noisy version which will be shown as ∇̃f(yt, ηt). From the main theorem related to

M-ASG (Theorem 3.4, [3]), the following result is satisfied for DP-MAG.

Theorem 4.2.7. Let f ∈ Sµ,L(Rd). Consider running DP-MAG with the following

parameters:

n1 ≥ 0, α1 =
1

22(k+1)L

nk = 2k


√
κ log(2p+2)


S2

2

4d
+

2S2
1(

ε
nkK

)2
 1

1− β2


1/4
 ,

αk =
1

22(k+1)2L


S2

2

4d
+

2S2
1(

ε
nkK

)2
 1

1− β2


−1/2

(4.45)

for any k > 1 and p ≥ 1 and t is the current iteration value. The last iterate of each

stage, i.e, xknk+1, satisfies the following bound for all k ≥ 1:

E[f(xknk+1)]− f ∗ ≤
2

2(p+1)(k−1) (exp(−1

8
n1/
√
κ)(f(x00)− f ∗)) +

max(σ2
k)
√
κ

8L2k−1
. (4.46)

Note that as in [3], we take the number of iterations in the first stage as

n1 = d2
√
κ log

√
κe.

4.3 Momentum-Based Algorithms Using Sampling

This section is reserved for the stochastic versions of the algorithms presented in the

previous chapter. It is known in the literature that the uncertainity coming from the

random selection of data helps to protect the privacy. By using this idea, we aim

to improve the privacy of DP-GDwS and DP-MAG with the help of sampling. The

69

following sections explain the details related to the new versions and the parameter

selection schemes. Our idea of using noise related stepsize again results in better

performance when we compare our results against the standard stepsize formulations.

4.3.1 Stochastic Gradient Descent Algorithm with Smoothing

When privacy is of concern for the optimization problem given in Section 4.1.1, one

approach is to update the parameter xt using a noisy stochastic gradient vector

∇̃fBt(xt) = ∇fBt(xt) + ηt, (4.47)

where Bt is the random sample and the noise term is a Laplace distributed random

variable

ηt,i
i.i.d.∼ Lap(σt), i = 1, . . . , d,

independent from the other noise terms and ηt = [ηt,1, ..., ηt,d]. We combine this idea

of subsampling the data with our previous algorithms introduced in Section 4.2.1 and

Section 4.2.2.

Indeed, the differentially private algorithm in [76] returns the sequence {xt}t≥1 that

is produced as

xt+1 = xt − αt∇̃fBt(xt). (4.48)

In [76], αt is the stepsize at time t and Bt’s are disjoint and known to the analyst. If

we want this update to be ε-DP, then σt has to be taken at least S1(xt)/ε, where for

x ∈ X , S1(x) is the L1-sensitivity of the f(x). In [76], since every data sample is used

only once in gradient calculation, the overall algorithm is also ε-DP. We next employ

this idea of subsampling the data and present the online version of DP-GDwS which

we call DP-onlineGDwS.

Algorithm DP-SGDwS

In this part, we introduce a stochastic algorithm which uses weighted averages of

weighted averages of the current and the previous noisy gradients. More concretely,

the update rule for our algorithm is

xt+1 = xt − αt∇̃f
(t)

B1:t
(x1:t), (4.49)

70

where ∇̃f
(t)

B1:t
(x1:t) is the smoothed stocghastic gradient estimate. Specifically, letting

∇̃f
(0)

B0
(x0) = β∇f(x0) + η0,

we define the rest recursively as

∇̃f
(t)

B1:t
(x1:t) = (1− β)∇̃f

(t−1)
B1:t−1

(x1:t−1) + β∇fB1:t(xt) + ηt. (4.50)

With the help of smoothing approach, the new information that an adversary can learn

from the xt given the previous samples x1, . . . , xt−1 becomes

β∇fBt(xt) + ηt, (4.51)

which is a noise-added calculation. Again, for ∇fBt(xt) + ηt, the sensitivity of the

calculation is 1/β times more and therefore the privacy breach is 1/β times more.

Algorithm 6 describes our stochastic gradient descent method for solving the generic

problem formulated in (4.1) when the desired privacy level is ε and the maximum

number of iterations is T . We note that a similar strategy to ours that combines mini-

batching with a noise-adding mechanism for averaged quantities has been used in [64];

however in a different setting for the purpose of private variational Bayesian inference.

We now proceed to establishing the differential privacy of Algorithm 6 formally.

The next result is simply obtained by combining the results of Laplace mechanism,

subsampling and composition.

Proposition 4.3.1. The proposed smoothing scheme in (4.15) leads to an ε-DP private

algorithm (ε ≤ 1) when the variance of the noise at any iteration t is

σt =
S1(xt)β

nε
2mT

, (4.52)

where S1(xt) is the sensitivity bound, β is the smoothing weight, m is the subsample

size, T is the maximum number of iterations and n is the data size.

Proof. Assume Bt is fixed and known. Observing (4.3), we see that change in one data

item changes only one term in fBt(xt). Therefore, the sensitivity of fBt(xt) is equal to

the sensitivity of f(xt), which we denoted to be S1(xt). Hence, if Bt were known, the

privacy loss of revealing (4.51) with σt in (4.52) the at iteration t would be

ε0 = S1(xt)β/σt =
nε

2mT
.

71

Algorithm 6: DP-SGDwS: Differentially private smoothed stochastic gradi-

ent descent algorithm

1 Input: Sensitive data y1:n, initial value x0, subsample size m, number of

iterations T , total privacy breach ε

2 Output: The adversar’s view: xt, t = 1, . . . , T .

3 for t = 0, . . . , T − 1 do

4 Sample Bt of size m uniformly from {1, . . . , n}.

5 Calculate ∇fBt(xt) =
∑

i∈Bt ∇fi(xt)

6 Calculate S1(xt) and set σt = S1(xt)β
nε

2mT
.

7 Sample ηt ∼ Lap(σt)

8 if t = 0 then

9 Initialise

∇̃f
(0)

B0
(x0) = β∇fB0(x0) + η0.

10 else

11 Calculate

∇̃f
(t)

B1:t
(x1:t) = (1− β)∇̃f

(t−1)
B1:t−1

(x1:t−1) + β∇fBt(xt) + ηt.

12 Update xt+1 = xt − αt∇̃f
(t)

B1:t
(x1:t).

72

By Theorem 4.1.5, subsampling with size m out of n samples makes the privacy per

iteration equal to 2ε0m/n = ε/T . Finally, we apply Theorem 4.1.3 to conclude that

the privacy loss after T iterations is ε.

Determining the Stepsize

In order to adjust the stepsize for the differential privacy, we look at the variance of

∇̃f(xt) with respect to the joint distribution of (B1:t, η1:t), the subsamples and the

noise terms until time t. Similar to the previous section, we then suggest the following

general form for the stepsize αt

αt ≈

Var
∇̃f (t)

B0:t
(xt, . . . , xt)︸ ︷︷ ︸
t+1 times

−1/2 1

(T + 1)γ
, (4.53)

where T is the number of iterations and γ ∈ (0, 1] is constant. We present the following

bound on the variances; the proof is in Appendix A.2.

Proposition 4.3.2. For given xt ∈ X , subsample size m, data size n, smoothing

parameter β where 0 < β ≤ 1, and ηi
i.i.d.∼ Lap(σ) for i = 1, . . . , t, the trace of the

covariance of ∇̃f
(t)

B1:t
(xt, . . . , xt) with respect to the joint distribution of (B1:t, η1:t) is

bounded as

Var

∇̃f (t)

B0:t
(xt, . . . , xt)︸ ︷︷ ︸
t+1 times

 ≤ [S2(xt)
2

4
m

(
1− m− 1

n− 1

)
+ 2dσ2

]
β

2− β
. (4.54)

In the light of the above proposition, in Algorithm 6, if the privacy loss and the

number of iterations are chosen as ε and T , respectively, we choose the stepsize as

follows:

αt =

([
S2(xt)

2

4d
m

(
1− m− 1

n− 1

)
+

2S1(xt)
2(

nε
2mT

)2
]

β

2− β

)−1/2
0.25

(T + 1)1/2
. (4.55)

Note that we have T , the maximum number of iterations, in the formulation of stepsize.

Since T is fixed and we can compute the sensitivity bounds S1 and S2 as independent

from xt, our stepsize formulation is constant during iterations similar to previous sec-

tion.

73

4.3.2 Multistage Accelerated Stochastic Algorithm

In this part, we present the stochastic version of DP-MAG algorithm which is presented

in Section 4.2.2. As it is mentioned before, the amplification effect of sampling is one

of the easy ways to improve the differential privacy. With our main aim of obtaining

private algorithms with less noise and better performance, we will present the stochastic

version of DP-MAG, which we denote by DP-SMAG.

Algorithm DP-SMAG

The pseudocode of DP-SMAG is given in Algorithm 7. The only difference with Algo-

rithm 5 is the sampling step in Line 8. Again, to determine the noise variance, we first

define the privacy level per stage and then the privacy level per iteration. Different

from DP-MAG, we add the related noise to the gradient that is computed with respect

to the subsampled data.

Algorithm 7: DP-SMAG: Differentially private stochastic multistage accel-

erated algorithm

1 Input: Sensitive data y1:n, initial value x00, the sequence of stepsizes {αk}Kk=1,

number of iterations at each stage {nk}Kk=1, total privacy breach ε

2 Output: The adversar’s view: xt, t = 1, . . . , T .

3 Set n0 = −1

4 for k = 1; k ≤ K; k = k + 1 do

5 Compute εk = ε/K

6 Set xk0 = xk1 = xk−1nk−1+1

7 for t = 1; t ≤ nk; t = t+ 1 do

8 Sample Bk,t of size m uniformly from {1, . . . , n}.

9 Calculate S1(x
k
t) and set σk,t =

S1(xkt)
nεk

2mnk

.

10 Sample ηkt ∼ Lap(σk,t)

11 Set βk =
1−
√
µ/L

1+
√
µ/L

12 Set ykt = (1 + βk)x
k
t − βkxkt−1

13 Calculate ∇̃fBk,t(y
k
t , η

k
t) = ∇fBk,t(ykt) + ηkt

14 Set xkt+1 = ykt − αk,t∇̃fBk,t(y
k
t , η

k
t)

74

The following proposition proves the differential privacy of Algorithm 7 formally by

combining the results of Laplace mechanism and composition. The proof follows the

same steps as the proof of Proposition 4.3.1 with β = 1 and hence, we skip the proof.

Proposition 4.3.3. The proposed algorithm in (7) with sample size m is ε-DP private

when the variance of the noise at any stage k is

σk,t =
S1(x

k
t)

ε/K
, (4.56)

where S1(x
k
t) is the sensitivity bound, K is the total number of stages, and n is the data

size. By using this approach, the variance of noise at each iteration t, stage k can be

computed as

σk,t =
S1(x

k
t)

nε
2mKnk

=
S1(x

k
t)

nεk
2mnk

, (4.57)

where εk is the privacy level and nk is the number of iterations at stage k = 1, 2, ..., K.

Determining the Stepsize

Similar to the previous algorithm DP-SGDwS, to adjust the proportionality constant

of the stepsize, we look at the variance of ∇̃fBt(xkt) with respect to the noise terms

until time t. We then suggest the following general form based on the formula in the

original work [3] and our noise related approach for the stepsize αk,t at stage k > 1 and

iteration t is

αk,t ≈
1

22(k+1)2L

Var

∥∥∥∥∥∥∇̃f (t)

Bk,t
(xkt , . . . , x

k
t)︸ ︷︷ ︸

nk+1 times

∥∥∥∥∥∥
2

2



−1/2

. (4.58)

The stepsize formulation is depend on both k and t. However, since we can compute

upper bounds S1 and S2 as independent from the iteration vectors, the dependence over

t is removed. Thus, when the privacy loss and the number of iterations are chosen as

ε and T , respectively, we choose the following stepsize in Algorithm 7

αk =
1

22(k+1)2L


S2

2

4d
m

(
1− m− 1

n− 1

)
+

2S2
1(

nε
2mnkK

)2
 1

1− β2


−1/2

, k = 1, . . . , K.

(4.59)

75

Similar to the DP-MAG algorithm, the number of iterations at stage k ≥ 1 is computed

as

nk = 2k


√
κ log(2p+2)


S2

2

4d
m

(
1− m− 1

n− 1

)
+

2S2
1(

nε
2mnkK

)2
 1

1− β2


1/4
 .

4.4 Computational Study

All simulation experiments in this section are performed for a regularized logistic re-

gression problem for binary classification. The model has observations yi = (ζi, zi),

i = 1, . . . , n, where ζi ∈ Z ⊆ Rd is a d × 1 vector of covariates and zi ∈ {−1, 1} is a

binary response whose conditional probability given ζi depends on a d × 1 parameter

vector x ∈ X ⊆ Rd as follows:

p(zi|ζi, x) =
1

1 + e−ziζi·x
, i = 1, . . . , n.

Since the probability distribution of ζi’s does not depend on x, the maximum likelihood

problem is defined as in

x∗ = arg max
x∈X

n∑
i=1

f(x; ζi, zi), (4.60)

where

f(x; ζi, zi) := − log
(
1 + e−ziζi·x

)
+ λ‖x‖2.

In order to calculate the sensitivity of the gradient of the log-likelihood, observe that

for a fixed x, for all ζ, ζ ′, z, z′, we have

‖∇f(x; ζ, z)−∇f(x; ζ ′, z′)‖1 =

∥∥∥∥ zζ exp(zζ · x)

1 + exp(zζ · x)
− z′ζ ′ exp(zζ ′ · x)

1 + exp(z′ζ ′ · x)

∥∥∥∥
1

≤ ‖ζ‖1
∣∣∣∣ zζ exp(zζ · x)

1 + exp(zζ · x)

∣∣∣∣+ ‖ζ ′‖1
∣∣∣∣z′ζ ′T exp(zζ ′ · x)

1 + exp(z′ζ ′ · x)

∣∣∣∣
≤ ‖ζ‖1 + ‖ζ ′‖1 (4.61)

Therefore, S1(x) = 2 supζ∈Z ‖ζ‖1 for all x. Moreover, by following the similar steps one

can show that S2(x) = 2 supζ∈Z ‖ζ‖2. For the first part of experiments to follow, we use

a synthetic data with d = 10 and n = 104. and the value of regularization parameter

λ is taken as 0.01. Although we randomly produce the data, we have tried different

76

random datasets and the improved performance of our algorithms is still satisfied.

Unless otherwise stated, the dataset used in the experiments is synthetic.

The second part of experiments is reserved for the solution of regularized logistic

regression problem on MNIST dataset. MNIST contains 60, 000× 400 data points and

60, 000 labels. Each labels contains numbers 1, 2, ..., 8, but we will follow a similar

approach to [76] and classify them as 1 vs others (−1).

To determine the noise variance, we need the norm of the gradient which depends

on the norm of the dataset as it can be seen in (4.4). That means, the norm of the data

highly affects variance of the noise, i.e, the performance of the algorithms. To decrease

this effect, we take help of the norm clipping approach which is used in differential

privacy context before [1]. This approach works as follows: if the norm of the gradient

is less than a threshold constant C, it remains the same. Otherwise, we scale it down

to the value C. In our experiments we take this value as 2.

The stepsize for GD (SGD) is taken as 1√
t
where t is the current iteration as in [76].

For HB (SHB) and NAG (SNAG), the stepsize and momentum parameter β̄ (which

corresponds to 1− β for DP-GDws and DP-SGDwS) selection is as follows:

αHB =
1

L
, β̄HB =

(√
κ− 1√
κ+ 1

)2

,

αNAG =
1

L
, β̄NAG =

√
κ− 1√
κ+ 1

,

respectively.

Now, we proceed to show the performance results for each algorithm in related

sections and compare with some existing methods from the literature.

4.4.1 Results for Deterministic Algorithms

In this section, we present results for our deterministic algorithms, DP-GDwS and

DP-MAG. All experiments are repeated 10 times and the averages of the results are

plotted.

DP-GDwS

The first set of experiments show the results for DP-GDwS. As it is mentioned before,

this algorithm aims to obtain an improved performance and privacy by decreasing the

77

noise variance. The smoothing scheme, which is based on taking the coefficient of the

current gradient is β ∈ (0, 1) instead of 1, helps to decrease the variance of the noise.

Thus, we first compare the resulting plots for various β values at various privacy levels

in Figure 4.2 to demonstrate the effect of smoothing. The x-axis and y-axis represents

the number of iterations and the objective function error, respectively. Most of the

plots in this chapter are constructed by using logarithmic scaling of the axes. However,

since the performance differences for different β values are seen more clearly, we do not

use logarithmic scaling for these figures.

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.5

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.8

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 1

 = 0.1

 = 0.4

 = 0.7

 = 1

Figure 4.2: Results of DP-GDwS for ε = 0.5, 0.8, 1

Figure 4.2 shows that the decreasing β values results in better performance for

various privacy levels. This is an important result, since we achieve to decrease the

objective function error and make the algorithm satisfy the same privacy level with

less noise. Moreover, the results show that our approach achieve the best performance

even at tighter privacy levels. The case β = 1 corresponds to the differentially private

gradient descent algorithm (DP-GD) with noise related stepsize and our smoothing

approach beats this version of DP-GD. To show our contribution more clearly, we plot

78

the final value of the objective error, f − f ∗, vs β ∈ {0.01, 0.02, ..., 0.99, 1} values for

different privacy levels in Figure 4.3. It is clearly seen that increasing beta values

result in higher objective function error and the best performance is obtained around

β = 0.1. In other words, we achieve the aim of performing better while satisfying the

same privacy level with less noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

f-
f*

 = 0.5

 = 0.8

 = 1

Figure 4.3: Results of DP-GDwS for ε = 0.5, 0.8, 1

DP-MAG

This part is reserved for the performance of our second algorithm DP-MAG which is

based on the existing M-ASG algorithm. Although M-ASG uses the noisy gradients to

take steps, the amount of noise is not determined by considering the differential privacy.

To show that our adjustments result in an improved performance in DP, we first give

a comparison figure for DP-MAG and differentially private version of M-ASG. As it is

shown in Figure 4.4, for various privacy levels, our version performs much better than

M-ASG and M-ASG* which is a variant of M-ASG [3]. In other words, our approach,

which is using noise related stepsize along with a special noise dividing scheme, helps

to improve the algorithm under the amount of noise required for differential privacy.

Note that all of the experiments in this section are run for 103 iterations, however, to

clarify that M-ASG and M-ASG* cannot catch up with DP-MAG when the number of

79

iterations increases, we provide another figure, Figure 4.5. The number of iterations is

chosen as 104 for this figure. The resulting plots show that DP-MAG has still better

performance than others.

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.5

MASG

MASG*

DP-MAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.8

MASG

MASG*

DP-MAG

10
0

10
1

10
2

10
3

Iteration count

10
-3

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1

MASG

MASG*

DP-MAG

Figure 4.4: Advantage of DP-MAG

Comparison of Differentially Private Deterministic Algorithms

Next, we proceed to compare the performance of our methods DP-GDwS and DP-MAG

against differentially private version of other well-known algorithms. The results can be

found in Figure 4.6. Since the smoothing achieves improvement over the performance,

we take β = 0.1 for DP-GDwS. It is clearly seen from Figure 4.6 that our algorithms

perform better than the differentially private versions of GD, NAG, HB, M-ASG and

M-ASG*. We again note that M-ASG* is another multistage accelerated algorithm

defined in [3] with noisy gradient.

In the second part, we compare the performance of the algorithms for different

datasets. As it is mentioned, we present the results for a synthetic dataset, however,

80

10
0

10
1

10
2

10
3

10
4

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.5

MASG

MASG*

DP-MAG

10
0

10
1

10
2

10
3

10
4

Iteration count

10
-2

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 1

MASG

MASG*

DP-MAG

Figure 4.5: Advantage of DP-MAG for 104 iterations

our experiments show that reproducing the data with different seed values does not

change the result; DP-GDwS and DP-MAG still performs better than the other private

algorithms. To prove that, we give the resulting figure in Figure 4.7. This plot shows

the final value of the objective error f−f ∗ of all algorithms for ten different dataset and

ε = 0.5. The results for DP-NAG and DP-HB are not included since their objective

error is high and affect the scaling of the y-axis. The figure shows that our algorithms

clearly perform better than the others and it is independent from the random dataset.

4.4.2 Results for Stochastic Algorithms

We now present the numerical results for our stochastic algorithms with sample sizes

1, 10, 100 and 1000. Each experiment is performed 10 times and the averages of related

results are given.

DP-SGDwS

This section includes the result of our first stochastic algorithm DP-SGDwS. Similar

to DP-GDwS, our aim for this algorithm is to obtain better performance by keeping

the same privacy level. So, to check whether we achieve this purpose, we first give

results for various β values and privacy levels. Again, β = 1 corresponds to DP-SGD

with noise related stepsize. The resulting plots can be found in Figures 4.8, 4.9, 4.10

and 4.11 for sample sizes 1, 10, 100 and 1000, respectively. These results show that

smoothing approach results in less objective function error while satisfying the same

privacy level. Especially for small ε values, which means the algorithm is more private,

81

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.5

GD

AG

HB

MASG

MASG*

DP-GDwS

DP-MAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

f-
f*

 = 0.8

GD

AG

HB

MASG

MASG*

DP-GDwS

DP-MAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

f-
f*

 = 1

GD

AG

HB

MASG

MASG*

DP-GDwS

DP-MAG

Figure 4.6: Deterministic DP - Comparisons

β = 0.1 still performs better than the other methods.

Similar to the deterministic version, we again give a comparison of final objective

function value for β ∈ {0.01, 0.02, ..., 0.99, 1} in stochastic setting. The resulting plot

can be found in Figure 4.12. It is clearly seen that our approach of using smaller β

result in better performance while satisfying a given privacy level with less noise.

As it is mentioned before, we can also construct an online version of DP-GDwS

(DP-onlineGDwS). This algorithm is based on a deterministic setting but since we use

the data in subsets, the results are listed in this section. DP-onlineGDwS works as

follows: at each iteration, instead of random sampling, we use the data in buckets

and the buckets are disjoint at each iteration. The total number of iterations is not

predefined as in the other experiments, but the algorithm continues until all data is

used once. In other words, if the size of buckets b and data size n, then the number of

iterations becomes n
b
. Figure 4.13 shows the performance of DP-onlineGDwS for bucket

size value 10. Again, similar to deterministic and stochastic versions, the smoothing

approach helps to improve the algorithm in online setting as well.

82

DP-GD DP-MASG DP-MASG* DP-GDwS DP-MAG

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

F
in

a
l
f-

f*
 V

a
lu

e

 = 0.5

Figure 4.7: Deterministic DP - Comparisons for Different Datasets

DP-SMAG

Now, we present the results for the DP-SMAG algorithm. DP-SMAG is based on the

differentially private version of stochastic M-ASG. In other words, we use M-ASG with

subsampling, but the algorithm parameters are defined by considering the noise and a

special noise dividing scheme is employed. By directly adjusting the amount of noise

with respect to the differential privacy, stochastic version of M-ASG and M-ASG* does

not perform better than DP-SMAG. So, to show that our approach of noise related

stepsize and special noise dividing scheme helps to obtain a better result with stochastic

gradient, we compare M-ASG, M-ASG* and DP-SMAG in Figure 4.14. These results

are taken for various sample size values and for ε = 1. As it is clearly seen, DP-SMAG

achieves the best perfomance among these algorithms.

To show that stochastic version of M-ASG does not perform better than our version

with the increasing number of iterations, we compare the algorithms with the same

parameters and 104 iterations. Figure 4.15 shows that with increasing number of

iterations (in other words, with increasing noise variance), our algorithm DP-SMAG

still performs better than the original versions.

83

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.5, sample size = 1

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.8, sample size = 1

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 1, sample size = 1

 = 0.1

 = 0.4

 = 0.7

 = 1

Figure 4.8: DP-SGDwS Results for Sample Size = 1

Comparison of Differentially Private Stochastic Algorithms

This part is reserved for the comparison of DP-SGDwS and DP-SMAG with other

differentially private stochastic algorithms SGD, stochastic version of NAG (SNAG)

and HB (SHB), stocMASG and stocMASG*. The related results are given in figures

4.16, 4.17, 4.18 and 4.19 for sample sizes 1, 10, 100 and 1000, respectively. Here, β is

taken as 0.1 for DP-SGDwS as in the deterministic comparisons plots. It is seen that

our algorithms perform better than the other differentially private stochastic algorithms

for various privacy levels and sample sizes.

In the second part of the comparisons, we check the performance differences of

stochastic algorithms for different synthetic datasets. The resulting plots which show

the final f − f ∗ value for sample sizes 1, 10, 100 and 1000 and ε = 0.5 are given in

Figure 4.20. It is clearly seen that DP-SGDwS and DP-SMAG performs better than

the other algorithms without depending on the dataset.

In the last figures, we discuss the performance of stochastic algorithms for various

84

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.5, sample size = 10

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.8, sample size = 10

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 1, sample size = 10

 = 0.1

 = 0.4

 = 0.7

 = 1

Figure 4.9: DP-SGDwS Results for Sample Size = 10

sample sizes on MNIST dataset. The results for sample sizes 1, 10, 100 and 1000 are

given in Figures 4.21, 4.22, 4.23 and 4.24, respectively. These plots show that the best

performing algorithm in this setting is DP-SMAG. Although DP-SGDwS is the second

best for most of the results, it cannot always overperform the DP-SMAG and stochastic

versions of M-ASG and M-ASG*. However, it is clearly seen that smoothing gives a

better performance than SGD, NAG and HB for all given privacy levels and sample

size values.

85

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.5, sample size = 100

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.8, sample size = 100

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 1, sample size = 100

 = 0.1

 = 0.4

 = 0.7

 = 1

Figure 4.10: DP-SGDwS Results for Sample Size = 100

86

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.5, sample size = 1000

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.8, sample size = 1000

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 1, sample size = 1000

 = 0.1

 = 0.4

 = 0.7

 = 1

Figure 4.11: DP-SGDwS Results for Sample Size = 1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

f-
f*

Final f-f
*
 vs , = 1

sample size = 1

sample size = 10

sample size = 100

sample size = 1000

Figure 4.12: Results of DP-SGDwS for ε = 1

87

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.5, bucket size = 10

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 0.8, bucket size = 10

 = 0.1

 = 0.4

 = 0.7

 = 1

0 200 400 600 800 1000

Iteration count

0

2

4

6

8

10

12

14

f-
f*

 = 1, bucket size = 10

 = 0.1

 = 0.4

 = 0.7

 = 1

Figure 4.13: DP-onlineGDwS Results for Bucket Size = 10

10
0

10
1

10
2

10
3

Iteration count

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 1

StocMASG

StocMASG*

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 10

StocMASG

StocMASG*

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 100

StocMASG

StocMASG*

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 1000

StocMASG

StocMASG*

DP-SMAG

Figure 4.14: Advantage of DP-SMAG For Epsilon = 1

88

10
0

10
1

10
2

10
3

10
4

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 1, sample size = 1

StocMASG

StocMASG*

DP-SMAG

10
0

10
1

10
2

10
3

10
4

Iteration count

10
-2

10
0

10
2

10
4

f-
f*

 = 1, sample size = 10

StocMASG

StocMASG*

DP-SMAG

10
0

10
1

10
2

10
3

10
4

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 1, sample size = 100

StocMASG

StocMASG*

DP-SMAG

10
0

10
1

10
2

10
3

10
4

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 1, sample size = 1000

StocMASG

StocMASG*

DP-SMAG

Figure 4.15: Advantage of DP-SMAG For 104 Iterations

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.5, sample size = 1

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.8, sample size = 1

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 1

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.16: Comparison of Stochastic Algorithms For Sample Size = 1

89

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.5, sample size = 10

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.8, sample size = 10

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 10

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.17: Comparison of Stochastic Algorithms For Sample Size = 10

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.5, sample size = 100

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.8, sample size = 100

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 100

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.18: Comparison of Stochastic Algorithms For Sample Size = 100

90

10
0

10
1

10
2

10
3

Iteration count

10
-1

10
0

10
1

10
2

f-
f*

 = 0.5, sample size = 1000

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 0.8, sample size = 1000

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 1000

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.19: Comparison of Stochastic Algorithms For Sample Size = 1000

DP-SGD DP-StocMASG DP-StocMASG* DP-SGDwS DP-SMAG

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
in

a
l
f-

f*
 V

a
lu

e

 = 0.5, Sample Size = 1

DP-SGD DP-StocMASG DP-StocMASG* DP-SGDwS DP-SMAG

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
in

a
l
f-

f*
 V

a
lu

e

 = 0.5, Sample Size = 10

DP-SGD DP-StocMASG DP-StocMASG* DP-SGDwS DP-SMAG

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
in

a
l
f-

f*
 V

a
lu

e

 = 0.5, Sample Size = 100

DP-SGD DP-StocMASG DP-StocMASG* DP-SGDwS DP-SMAG

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
in

a
l
f-

f*
 V

a
lu

e

 = 0.5, Sample Size = 1000

Figure 4.20: Comparison of Stochastic Algorithms For Different Datasets

91

10
0

10
1

10
2

10
3

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.5, sample size = 1

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.8, sample size = 1

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 1

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.21: Comparison of Stochastic Algorithms For Sample Size = 1 on MNIST

10
0

10
1

10
2

10
3

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.5, sample size = 10

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.8, sample size = 10

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 10

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.22: Comparison of Stochastic Algorithms For Sample Size = 10 on MNIST

92

10
0

10
1

10
2

10
3

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.5, sample size = 100

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.8, sample size = 100

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 100

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.23: Comparison of Stochastic Algorithms For Sample Size = 100 on MNIST

10
0

10
1

10
2

10
3

Iteration count

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.5, sample size = 1000

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

10
3

f-
f*

 = 0.8, sample size = 1000

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

10
0

10
1

10
2

10
3

Iteration count

10
-2

10
-1

10
0

10
1

10
2

f-
f*

 = 1, sample size = 1000

SGD

SNAG

SHB

StocMASG

StocMASG*

DP-SGDwS

DP-SMAG

Figure 4.24: Comparison of Stochastic Algorithms For Sample Size = 1000 on MNIST

93

Appendix A

Omitted Proofs and Results

A.1 Proof of Theorem 4.1.4

This result improves Lemma 34 in [86]. The only difference is that we obtain a tighter

privacy level by arranging their proof. We already have the result from this study with

subsampling rate γ = m
n
, the new privacy is changed from ε to

ε′ = log(1 + κ[eε − 1])− log(1 + γ[e−ε − 1])

For x > 0, log(1 + x) ≤ x and for −1 < y < 0 we have log(1 + y) > y
1+y

. Using this,

ε′ ≤ γ(eε − 1)− γ[e−ε − 1]

1 + γ[e−ε − 1]

= γ[eε − 1]− γ[1− eε]
eε(1 + γ[e−ε − 1])

= γ[eε − 1] +
γ[1− eε]

eε(1 + γ[e−ε − 1])

= γ[eε − 1]

(
1 +

1

eε(1 + γ[e−ε − 1])

)
= γ[eε − 1]

(
1 +

1

eε + γ[1− eε]

)
Since

eε + γ[1− eε] = eε(1− γ) + γ ≥ 1,

we conclude that

ε′ ≤ 2γ[eε − 1]

where γ = m
n
.

94

A.2 Proof of Proposition 4.3.2

Let us fix x1 = . . . = xt = x. We shall use the following identity

Var

∇̃f (t)

B0:t
((x, . . . , x)︸ ︷︷ ︸
t+1 times

; y1:n)

 = tr
{
Cov

(
∇̃f

(t)

B0:t
(x0:t; y1:n)

)}
. (A.1)

Recall that

∇̃f
(t)

B0:t
(x0:t; y1:n) = (1− β)∇̃f

(t−1)
B0:t−1

(x0:t−1; y1:n) + β∇fBt(xt; y1:n) + ηt

= (1− β)∇̃f
(t−1)
B0:t−1

(x0:t−1; y1:n) + β

(
∇fBt(xt; y1:n) +

ηt
β

)
,

where ηt is Laplace noise. Expanding the right hand side until the first iteration, we

obtain

∇̃f
(t)

B0:t
(x0:t; y1:n) =

t∑
k=0

(1− β)t−kβ

(
∇fBk(x; y1:n) +

ηk
β

)
.

Taking the expectation leads to

E
[
∇̃f

(t)

B0:t
(x0:t; y1:n)

]
=
(
1− (1− β)t+1

) 1

n

n∑
i=1

∇f(x, yi). (A.2)

Moreover, we can simply derive

Cov
(
∇̃f

(t)

B0:t
(x0:t; y1:n)

)
= Cov

(
t∑

k=0

(1− β)t−kβ

(
∇fBk(x; y1:n) +

ηk
β

))

=
t∑

k=0

(1− β)2(t−k)β2Cov
(
∇fBk(x; y1:n) +

ηk
β

)
≤ β2

∞∑
k=0

(1− β)2kCov
(
∇fBk(x; y1:n) +

ηk
β

)
= β2 1

1− (1− β)2
Cov

(
∇fB0(x; y1:n) +

η0
β

)
=

β

2− β
Cov

(
∇fB0(x; y1:n) +

η0
β

)
. (A.3)

From here on we drop the subscript from η0 and B0 to simplify the notation. Since

η ∼ Lap(σ), we have

Cov
(
∇fB(x; y1:n) +

η

β

)
= Cov (∇fB(x; y1:n)) + 2

σ2

β2
Id. (A.4)

Let R = [ri,j] = Cov (∇fB(x; y1:n)). When the indices in B are sampled without

replacement, then the diagonal terms in R, can be written as

rk,k = σ2
y,km

(
1− m− 1

n− 1

)
, k = 1, . . . , d, (A.5)

95

where σ2
y,k is the population variance given by

σ2
y,k =

1

n

n∑
i=1

(
∂f(x; yi)

∂x(k)
− 1

n

n∑
j=1

∂f(x; yj)

∂x(k)

)2

. (A.6)

Given x ∈ x, let

S
(k)
1 (x) = sup

y,y′

∣∣∣∣∂f(x; y)

∂x(k)
− ∂f(x; y′)

∂x(k)

∣∣∣∣ , k = 1, . . . , d

be the L1-sensitivity of the gradient over the dimension k. Since for each x we have

supy,y′
∣∣∣∂f(x;yi)∂x(k)

− ∂f(x;yj)

∂x(k)

∣∣∣ ≤ S
(k)
1 (x), the population variance in (A.6) can be bounded

as

σ2
y,k ≤

S
(k)
1 (x)2

4
. (A.7)

Combining (A.3), (A.4), (A.5), and (A.7), and using the relation

S2(x)2 = S
(1)
1 (x) + . . .+ S

(d)
1 (x),

we bound the trace of the covariance as

tr
{
Cov

(
∇̃f

(t)

B0:t
(x0:t; y1:n)

)}
≤
[
m
S2(x)2

4

(
1− m− 1

n− 1

)
+ 2d

σ2
t

β2

]
β

2− β
. (A.8)

96

Bibliography

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang. Deep Learning with Differential Privacy. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security, pages

308–318. ACM, 2016.

[2] N. S. Aybat, A. Fallah, M. Gürbüzbalaban, and A. Ozdaglar. Robust Acceler-

ated Gradient Methods for Smooth Strongly Convex Functions. arXiv preprint

arXiv:1805.10579, 2018.

[3] N. S. Aybat, A. Fallah, M. Gürbüzbalaban, and A. Ozdaglar. A Universally

Optimal Multistage Accelerated Stochastic Gradient Method. arXiv preprint

arXiv:1901.08022, 2019.

[4] R. Bassily, A. Smith, and A. Thakurta. Differentially Private Empirical Risk

Minimization: Efficient Algorithms and Tight Error Bounds. arXiv preprint

arXiv:1405.7085, 2014.

[5] A. Beck and M. Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for

Linear Inverse Problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[6] A. Beimel, S. P. Kasiviswanathan, and K. Nissim. Bounds on the Sample Com-

plexity for Private Learning and Private Data Release. In Theory of Cryptography

Conference, pages 437–454. Springer, 2010.

[7] A. S. Berahas, M. Jahani, and M. Takáč. Quasi-Newton Methods for Deep Learn-

ing: Forget the Past, Just Sample. arXiv preprint arXiv:1901.09997, 2019.

[8] A. S. Berahas, J. Nocedal, and M. Takáč. A Multi-Batch L-BFGS Method for

Machine Learning. In Advances in Neural Information Processing Systems 29:

97

Annual Conference on Neural Information Processing Systems 2016, December

5-10, 2016, Barcelona, Spain, pages 1055–1063, 2016.

[9] D. P. Bertsekas. Incremental Least Squares Methods and the Extended Kalman

Filter. SIAM Journal on Optimization, 6(3):807–822, 1996.

[10] D. P. Bertsekas. Incremental gradient, subgradient, and proximal methods for

convex optimization: A survey. Optimization for Machine Learning, 2010:1–38,

2011.

[11] D. Blatt, A. O. Hero, and H. Gauchman. A Convergent Incremental Gradient

Method with a Constant Step Size. SIAM Journal on Optimization, 18(1):29–51,

2007.

[12] L. Bottou. Online Learning and Stochastic Approximations. On-line learning in

neural networks, 17(9):142, 1998.

[13] M. Bun and T. Steinke. Concentrated Differential Privacy: Simplifications, Exten-

sions, and Lower Bounds. In Theory of Cryptography Conference, pages 635–658.

Springer, 2016.

[14] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A Stochastic Quasi-

Newton Method for Large-Scale Optimization. SIAM Journal on Optimization,

26(2):1008–1031, 2016.

[15] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton

matrices and their use in limited memory methods. Mathematical Programming,

63(1-3):129–156, 1994.

[16] A. Cauchy. Méthode générale pour la résolution des systemes d’équations simul-

tanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[17] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In Ad-

vances in Neural Information Processing Systems, pages 289–296, 2009.

[18] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially Private Empirical

Risk Minimization. Journal of Machine Learning Research, 12(Mar):1069–1109,

2011.

98

[19] A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari. Nonnegative Matrix and

Tensor Factorization. Wiley, 2009.

[20] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard. A Robust Accelerated Optimization

Algorithm for Strongly Convex Functions. In 2018 Annual American Control

Conference (ACC), pages 1376–1381. IEEE, 2018.

[21] D. Desfontaines and B. Pejó. SoK: Differential Privacies. arXiv preprint

arXiv:1906.01337, 2019.

[22] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local Privacy and Statisti-

cal Minimax Rates. In 2013 IEEE 54th Annual Symposium on Foundations of

Computer Science, pages 429–438. IEEE, 2013.

[23] C. Dwork. Differential Privacy. Springer-Verlag, 33rd International Colloquium

on Automata, Languages and Programming, part II (ICALP 2006), 2006.

[24] C. Dwork. Differential Privacy: A Survey of Results. In International Conference

on Theory and Applications of Models of Computation, pages 1–19. Springer, 2008.

[25] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our Data,

Ourselves: Privacy via Distributed Noise Generation. In Annual International

Conference on the Theory and Applications of Cryptographic Techniques, pages

486–503. Springer, 2006.

[26] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating Noise to Sensitivity

in Private Data Analysis. In Theory of Cryptography Conference, pages 265–284.

Springer, 2006.

[27] C. Dwork and A. Roth. The Algorithmic Foundations of Differential Privacy.

Foundations and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

[28] C. Dwork and G. N. Rothblum. Concentrated Differential Privacy. arXiv preprint

arXiv:1603.01887, 2016.

[29] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and Differential Privacy. In

Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium

on, pages 51–60. IEEE, 2010.

99

[30] M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado. Analysis of Optimization

Algorithms via Integral Quadratic Constraints: Nonstrongly Convex Problems.

SIAM Journal on Optimization, 28(3):2654–2689, 2018.

[31] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research

logistics quarterly, 3(1-2):95–110, 1956.

[32] S. Gadat, F. Panloup, and S. Saadane. Stochastic Heavy Ball. Electronic Journal

of Statistics, 12(1):461–529, 2018.

[33] A. H. Gebremedhin, D. Nguyen, Md. M. A. Patwary, and A. Pothen. ColPack:

Software for Graph Coloring and Related Problems in Scientific Computing. ACM

Trans. Math. Softw., 40(1):1:1–1:31, October 2013.

[34] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-Scale Matrix Factor-

ization with Distributed Stochastic Gradient Descent. In ACM SIGKDD, 2011.

[35] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the

Heavy-ball method for convex optimization. In 2015 European Control Conference

(ECC), pages 310–315. IEEE, 2015.

[36] R. Gower, F. Hanzely, P. Richtárik, and S. U. Stich. Accelerated Stochastic Matrix

Inversion: Ggeneral Theory and Speeding up BFGS Rules for Faster Second-Order

Optimization. In Advances in Neural Information Processing Systems, pages 1619–

1629, 2018.

[37] R. M. Gower, D. Goldfarb, and P. Richtárik. Stochastic Block BFGS: Squeezing

More Curvature out of Data. In Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine Learning Research,

pages 1869–1878, New York, New York, USA, 20–22 Jun 2016. PMLR.

[38] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. A globally convergent incremental

Newton method. Mathematical Programming, 151(1):283–313, 2015.

[39] F. M. Harper and J. A. Konstan. The MovieLens Datasets: History and Context.

ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December 2015.

100

[40] B. Hu and L. Lessard. Dissipativity Theory for Nesterov’s Accelerated Method.

In Proceedings of the 34th International Conference on Machine Learning-Volume

70, pages 1549–1557. JMLR. org, 2017.

[41] P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Accelerat-

ing Stochastic Gradient Descent for Least Squares Regression. arXiv preprint

arXiv:1704.08227, 2017.

[42] A. Jalilzadeh, A. Nedić, U. V. Shanbhag, and F. Yousefian. A Variable Sample-size

Stochastic Quasi-Newton Method for Smooth and Nonsmooth Stochastic Convex

Optimization. In 2018 IEEE Conference on Decision and Control (CDC), pages

4097–4102. IEEE, 2018.

[43] P. Kairouz, S. Oh, and P. Viswanath. The Composition Theorem for Differential

Privacy. IEEE Transactions on Information Theory, 63(6):4037–4049, 2017.

[44] Y. Kang, Y. Liu, and W. Wang. Weighted Distributed Differential Privacy ERM:

Convex and Non-convex. arXiv preprint arXiv:1910.10308, 2019.

[45] K. Kaya, F. Öztoprak, Ş. İ. Birbil, A. T. Cemgil, U. Şimşekli, N. Kuru, H. Kop-

tagel, and M. K. Öztürk. A framework for parallel second order incremental

optimization algorithms for solving partially separable problems. Computational

Optimization and Applications, 72(3):675–705, 2019.

[46] R. Kidambi, P. Netrapalli, P. Jain, and S. Kakade. On the insufficiency of existing

momentum schemes for stochastic optimization. In 2018 Information Theory and

Applications Workshop (ITA), pages 1–9. IEEE, 2018.

[47] D. Kifer, A. Smith, and A. Thakurta. Private Convex Empirical Risk Minimization

and High-dimensional Regression. In Conference on Learning Theory, pages 25–1,

2012.

[48] L. Lessard, B. Recht, and A. Packard. Analysis and Design of Optimization

Algorithms via Integral Quadratic Constraints. SIAM Journal on Optimization,

26(1):57–95, 2016.

[49] N. Li, W. Qardaji, and D. Su. On Sampling, Anonymization, and Differential

Privacy or, k-Anonymization Meets Differential Privacy. In Proceedings of the 7th

101

ACM Symposium on Information, Computer and Communications Security, pages

32–33. ACM, 2012.

[50] Q. Lin, Z. Lu, and L. Xiao. An Accelerated Randomized Proximal Coordinate

Gradient Method and Its Application to Regularized Empirical Risk Minimization.

SIAM Journal on Optimization, 25(4):2244–2273, 2015.

[51] N. Loizou and P. Richtárik. Linearly convergent stochastic heavy ball method for

minimizing generalization error. arXiv preprint arXiv:1710.10737, 2017.

[52] O. L. Mangasarian and M. V. Solodov. Serial and parallel backpropagation con-

vergence via nonmonotone perturbed minimization. Optimization Methods and

Software, 4:103–116, 1994.

[53] F. McSherry and K. Talwar. Mechanism Design via Differential Privacy. In FOCS,

volume 7, pages 94–103, 2007.

[54] I. Mironov. Rényi Differential Privacy. In 2017 IEEE 30th Computer Security

Foundations Symposium (CSF), pages 263–275. IEEE, 2017.

[55] A. Mokhtari, M. Eisen, and A. Ribeiro. IQN: An Incremental Quasi-

Newton Method with Local Superlinear Convergence Rate. arXiv preprint

arXiv:1702.00709, 2017.

[56] P. Moritz, R. Nishihara, and M. I. Jordan. A linearly-convergent stochastic l-bfgs

algorithm. In Artificial Intelligence and Statistics, pages 249–258, 2016.

[57] I. Necoara and V. Nedelcu. Rate Analysis of Inexact Dual First-Order Methods

Application to Dual Decomposition. IEEE Transactions on Automatic Control,

59(5):1232–1243, 2013.

[58] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency

in Optimization. 1983.

[59] Y. Nesterov. A method of solving a convex programming problem with convergence

rate O(1/k2). Soviet Mathematics Doklady, 27:372–376, 1993.

[60] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course,

volume 87. Springer, 2004.

102

[61] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical

programming, 120(1):221–259, 2009.

[62] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth Sensitivity and Sampling in

Private Data Analysis. In Proceedings of the thirty-ninth annual ACM symposium

on Theory of computing, pages 75–84. ACM, 2007.

[63] S. Osher, B. Wang, P. Yin, X. Luo, F. Barekat, M. Pham, and A. Lin. Laplacian

Smoothing Gradient Descent. arXiv preprint arXiv:1806.06317, 2018.

[64] M. Park, J. Foulds, K. Chaudhuri, and M. Welling. Variational Bayes in Private

Settings (VIPS). arXiv preprint arXiv:1611.00340, 2016.

[65] V. Pichapati, A. T. Suresh, F. X. Yu, S. J Reddi, and S. Kumar. AdaClip:

Adaptive Clipping for Private SGD. arXiv preprint arXiv:1908.07643, 2019.

[66] B. T. Polyak. Some methods of speeding up the convergence of iteration methods.

USSR Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

[67] A. Ramezani-Kebrya, A. Khisti, and B. Liang. On the Stability and Con-

vergence of Stochastic Gradient Descent with Momentum. arXiv preprint

arXiv:1809.04564, 2018.

[68] N. L. Roux, M. Schmidt, and F. R. Bach. A Stochastic Gradient Method with an

Exponential Convergence Rate for Finite Training Sets. In Advances in Neural

Information Processing Systems, pages 2663–2671, 2012.

[69] B. I. P. Rubinstein, P. L. Bartlett, L. Huang, and N. Taft. Learning in a

Large Function Space: Privacy-Preserving Mechanisms for SVM Learning. arXiv

preprint arXiv:0911.5708, 2009.

[70] N. N. Schraudolph, J. Yu, and S. Günter. A Stochastic Quasi-Newton Method for

Online Convex Optimization. In Proceedings of the 11th International Conference

Artificial Intelligence and Statistics (AISTATS), pages 433–440, 2007.

[71] O. Shamir, N. Srebro, and T. Zhang. Communication Efficient Distributed Opti-

mization using an Approximate Newton-type Method. In International Conference

on Machine Learning (ICML), 2014.

103

[72] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings

of the 22nd ACM SIGSAC conference on computer and communications security,

pages 1310–1321. ACM, 2015.

[73] A. P. Singh and G. J. Gordon. A Unified View of Matrix Factorization Mod-

els. In European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases, Part II, pages 358–373. Springer, 2008.

[74] J. Sohl-Dickstein, B. Poole, and S. Ganguli. Fast large-scale optimization by

unifying stochastic gradient and quasi-Newton methods. In Proceedings of the 31th

International Conference on Machine Learning (ICML), pages 604–612, 2014.

[75] M. V. Solodov. Incremental Gradient Algorithms with Stepsizes Bounded Away

from Zero. Computational Optimization and Applications, 11(1):23–35, 1998.

[76] S. Song, K. Chaudhuri, and A. D. Sarwate. Stochastic gradient descent with

differentially private updates. In Global Conference on Signal and Information

Processing (GlobalSIP), 2013 IEEE, pages 245–248. IEEE, 2013.

[77] S. Song, K. Chaudhuri, and A. D. Sarwate. Learning from Data with Heteroge-

neous Noise Using SGD. In Artificial Intelligence and Statistics, pages 894–902,

2015.

[78] T. Sun, P. Yin, D. Li, C. Huang, L. Guan, and H. Jiang. Non-ergodic Convergence

Analysis of Heavy-Ball Algorithms. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 5033–5040, 2019.

[79] K. Talwar, A. Thakurta, and L. Zhang. Private Empirical Risk Minimization Be-

yond the Worst Case: The Effect of the Constraint Set Geometry. arXiv preprint

arXiv:1411.5417, 2014.

[80] P. Tseng. An Incremental Gradient (-Projection) Method with Momentum Term

and Adaptive Stepsize Rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

[81] B. Van Scoy, R. A. Freeman, and K. M. Lynch. The Fastest Known Globally

Convergent First-Order Method for Minimizing Strongly Convex Functions. IEEE

Control Systems Letters, 2(1):49–54, 2017.

104

[82] B. Wang, Q. Gu, M. Boedihardjo, F. Barekat, and S. J. Osher. DP-LSSGD: A

Stochastic Optimization Method to Lift the Utility in Privacy-Preserving ERM.

arXiv preprint arXiv:1906.12056, 2019.

[83] D. Wang, M. Ye, and J. Xu. Differentially Private Empirical Risk Minimization

Revisited: Faster and More General. In Advances in Neural Information Process-

ing Systems, pages 2722–2731, 2017.

[84] L. Wang, B. Jayaraman, D. Evans, and Q. Gu. Efficient Privacy-Preserving Non-

convex Optimization. arXiv preprint arXiv:1910.13659, 2019.

[85] X. Wang, S. Ma, D. Goldfarb, and W. Liu. Stochastic Quasi-Newton Methods for

Nonconvex Stochastic Optimization. SIAM Journal on Optimization, 27(2):927–

956, 2017.

[86] Y. Wang, J. Lei, and S. E. Fienberg. Learning with Differential Privacy: Stability,

Learnability and the Sufficiency and Necessity of ERM Principle. Journal of

Machine Learning Research, 17, 2016.

[87] A. Wills, C. Jidling, and T. Schon. A fast quasi-newton-type method for large-

scale stochastic optimisation. arXiv preprint arXiv:1810.01269, 2018.

[88] T. Yang, Q. Lin, and Z. Li. Unified Convergence Analysis of Stochastic Mo-

mentum Methods for Convex and Non-convex Optimization. arXiv preprint

arXiv:1604.03257, 2016.

[89] F. Yousefian, A. Nedić, and U. V. Shanbhag. Stochastic quasi-Newton methods

for non-strongly convex problems: convergence and rate analysis. In Decision and

Control (CDC), 2016 IEEE 55th Conference on, pages 4496–4503. IEEE, 2016.

[90] L. Yu, L. Liu, C. Pu, M. E. Gürsoy, and S. Truex. Differentially Private Model

Publishing for Deep Learning. arXiv preprint arXiv:1904.02200, 2019.

[91] S. K. Zavriev and F. V. Kostyuk. Heavy-ball method in nonconvex optimization

problems. Computational Mathematics and Modeling, 4(4):336–341, 1993.

105

[92] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional Mechanism:

Regression Analysis under Differential Privacy. Proceedings of the VLDB Endow-

ment, 5(11):1364–1375, 2012.

[93] J. Zhang, K. Zheng, W. Mou, and L. Wang. Efficient Private ERM for Smooth

Objectives. arXiv preprint arXiv:1703.09947, 2017.

106

	Abstract
	Özet
	Acknowledgements
	Introduction
	Motivation
	Problem Description
	Proposed Approaches
	Contributions
	Overview of The Thesis

	Literature Review
	Data Distribution
	Differential Privacy
	First Order Accelerated Algorithms

	An Algorithm Based On Data Distribution
	Deterministic HAMSI
	Stochastic HAMSI
	Partitioning And Parallelization
	Example Implementation
	Computational Study

	Differentially Private Gradient-Based Algorithms
	Preliminaries
	Gradient-based Optimization
	Differential Privacy
	Dynamical System Approach

	Momentum-Based Algorithms Using Full Gradient Descent
	Gradient Descent Algorithm with Smoothing
	Multistage Accelerated Algorithm

	Momentum-Based Algorithms Using Sampling
	Stochastic Gradient Descent Algorithm with Smoothing
	Multistage Accelerated Stochastic Algorithm

	Computational Study
	Results for Deterministic Algorithms
	Results for Stochastic Algorithms

	Omitted Proofs and Results
	Proof of Theorem 4.1.4
	Proof of Proposition 4.3.2

