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ABSTRACT

NANOELECTRONICS AND QUANTUM TRANSPORT OF DIRAC PARTICLES

SABER ROSTAMZADEH

Ph.D. Thesis, 2019

Thesis Supervisor: Assoc. Prof. İnanç Adagideli

Keywords: Mesoscopic and nanoscale systems, topological phase, spintronics,

diffusion, quantum Boltzmann equation, relativity, Kubo formula, Keldysh formalism

In this thesis, we concentrate on the charge and spin transport in Dirac materials and

discuss their implications in future electronic technologies. These materials are known

for their peculiar band structures, which, unlike the conventional semiconductors, is ef-

fectively described by the massless Dirac equation, and their spectrum possesses Dirac

nodes. We particularly consider two members of this class of materials: graphene and

Weyl semimetals. We first investigate the manipulation of the electronic properties of

graphene via adatom engineering. We demonstrate that adatom deposition induces a

strong spin-orbit interaction in graphene and, furthermore, couples the spin and valley

degrees of freedom, which, in turn, allows for the realization of the valley assisted spin

transport and vice versa using a spin-valley device. We also show that the coupled degrees

of freedom of graphene due to the presence of disorder causes the intrinsic accumulation

of pseudospin charge and pseudospin polarization, which, as we demonstrate, can be used

to construct a pseudospin switch device built from a graphene nanoribbon. We next study

the Weyl semimetals, as the three-dimensional version of graphene, which has attracted

strong interest from the fundamental viewpoint, where they constitute a low energy frame-

work to study the quantum anomalies of the field theory. The electronic structure of these

materials is also interesting owing to the fact that the tilting of the band crossing point

causes giant electronic conduction and hence a more favorable feature for the electron-

ics industry. We then study the quantum kinetic theory of anomalous transport in these

systems to analyze the origin of the chiral anomaly and chiral magnetic effect in Weyl

semimetals. Finally, we study the electronic response of tilted Weyl semimetals by asso-

ciating a relativistic feature to the tilted Weyl cones and then compare our results with the

standard linear response approach. Our calculations show that both the covariant transport

equation and Kubo formula methods offer correct and equivalent results which strongly

agree with the experimental findings.
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ÖZET

SABER ROSTAMZADEH

Doktora Tezi, 2019

Tez Danışmanı: Doç. Dr. İnanç Adagideli

Anahtar kelimeler: Meso ve nanoölçekli sistemler, topolojik yalıtkan ve

üstüniletkenler, rastlantısal matrisler, spintronik, kuantum termodinamiği

Bu tez çalışmasında, Dirac malzemelerindeki yük ve spin taşınımı üzerinde duruyoruz ve

bunların elektronik teknolojiler üzerindeki etkilerini tartışıyoruz. Bu malzemeler, sıradan

yarı iletkenlerin ve geleneksel malzemelerin aksine, etkin olarak Dirac denklemine ben-

zer bir denklem ile tarif edilen, ve spektrumları Dirac düğümlerine sahip olan tuhaf bant

yapıları ile bilinir. Özellikle bu malzeme sınıfının iki üyesini, grafeni ve Weyl yarımetal-

lerini gözönüne alıyoruz. İlk önce grafenin elektronik özelliklerinin adatom mühendis-

liği ile değiştirilmesini araştırıyoruz. Adatom birikiminin grafende kuvvetli bir spin-

yörünge etkileşimi yarattığını, ayrıca spin ve vadi serbestlik derecelerini ilişkilendirdiğini,

bunun da bir spin-vadi cihazı kullanımıyla vadi destekli spin taşınımını (veya tersini)

sağladığını gösteriyoruz. Ayrıca, düzensizlikten dolayı grafen serbestlik derecelerinin

ilişkilendirilmesinin içsel psödospin yükü birikimine ve psödospin polarizasyonununa

neden olduğunu, bunun da grafen nanokurdeleden oluşan bir psödospin anahtar cihazı

yapımında kullanılabildiğini gösteriyoruz. Weyl yarımetalleri, ilk başlarda grafenin üç

boyutlu versiyonu olarak alan teorisinin önerdigi kuantum anomalilerini düşük enerjili

bir çerçevede incelemek için temel bakış açısından büyük ilgi görmüştür. Ayrica, bu

malzemelerin elektronik yapısı, bant geçiş noktasının eğilmesinin dev elektronik iletime

neden olması ve dolayısıyla gelecekteki elektronik endüstrisi için daha elverişli olması

nedeniyle de ilginçtir. Weyl yarımetallerinde kiral anomalinin kökenini ve kiral manyetik

etkisini analiz etmek için bu sistemlerde aykırı taşınımın kuantum kinetik teorisini in-

celiyoruz. Sonunda, eğik Weyl yarımetallerinin elektronik tepkisini, Weyl konilerine

göreli bir özellik ilişkilendirerek araştırıyor ve ardından sonuçlarımızı standart doğrusal

tepki yöntemi ile karşılaştırıyoruz. Hesaplamalarımız, hem kovaryant taşıma denklem-

inin hem de Kubo formül yöntemlerinin, deneysel bulgularla kuvvetle uyuşan doğru ve

eşdeğer sonuçlar sunduğunu göstermektedir.
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Chapter 1

INTRODUCTION

In this thesis, we consider various aspects of transport in Dirac materials. Specifically, we

consider (i) the effect of adatoms in spin-valley scattering in graphene, (ii) generalized

Boltzmann equation in Dirac materials with broken time-reversal symmetry, (iii) anoma-

lous transport in Weyl semimetals and (iv) covariant transport in Dirac materials and Weyl

semimetals with tilted cones.

Dirac materials are a wide range of newly discovered solid state systems that share

certain similarities: their low energy electronic dispersion obeys the Dirac equation and

fermionic excitations behave like massless Dirac fermions. Graphene, topological insu-

lators, Dirac semimetals and Weyl semimetals are among the most notable examples of

Dirac matter, and all possess Dirac cones in their spectrum. These materials offer in-

teresting transport qualities which have motivated extensive studies oriented towards the

technological exploitation of these materials in spintronics and valleytronics applications.

The advent of new technological tools in the fabrication of nanodevices allows the

study of transport in the length scales where the quantum effects are important. These

technological achievements, along with the electronic properties of the Dirac materials

suggest that the Dirac material nanostructures have the potential to be a preferred avenue

for certain device physics applications compared to traditional materials and systems used

in electronics. These novel materials can be engineered to boost their transport qualities.

The presence of adatoms forces both intravalley and intervalley scattering of electrons

as well as producing a spin-orbit coupling. To understand this effect, we first describe

a tight-binding model of graphene with impurities and show how the impurities affect

the spin transitions in graphene. We demonstrate that adatom deposition on graphene

causes coupling between the spin and valley degrees of freedom, rendering graphene with

adatoms a suitable playground for valleytronics and quantum computing applications. We

next construct the quantum kinetic equation using density matrix formalism and Keldysh

Green’s function approaches. We use the diffusion model to study the coupled dynamics

of charge and pseudospin inside a graphene conductor. We find that in graphene the
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coherent transport of charge and pseudospin induces intrinsic pseudospin polarization

due to the charge current with applications in pseudo-spintronics.

We next consider the transport theory of Weyl semimetals from the kinetic equation

point of view in the presence of adatoms and electric and magnetic fields. Weyl semimet-

als are significant for the realization of the chiral fermions and the quantum anomalies

associated with them. We use the transport equation approach since it provides a lucid

microscopic description of anomalous transport and the quantum anomalies. We first

present a systematic derivation of the anomalous equations of motion by projecting the

two band model of Weyl semimetals into an effective one band model. We next focus on

the electronic transport in tilted Weyl semimetals (type I), which violate the Lorentz in-

variance, by adopting a relativistic approach and then compare our results with the Kubo

linear response formalism. We show that these two methods agree in describing the dc

conductivity of tilted Weyl semimetals and its monotonically increasing pattern as a func-

tion of the tilt parameter.

This thesis is organized as follows: In Chapter 2, we study the importance of adatoms

on the electronic properties of graphene. Within our tight-binding model with impurities,

we show spin transitions are affected in graphene. We demonstrate that adatom deposition

on graphene causes its degrees of freedom such as spin and valley to couple which makes

it a suitable playground for valleytronics and quantum computing applications.

In Chapter 3, we present the transport theory of graphene by first constructing the

quantum kinetic equation. We arrive at the kinetic equation from the density matrix and

the Keldysh approaches. We then use the diffusion model to study the coupled dynamics

of charge and pseudospin inside a graphene conductor.

In Chapter 4, we deal with the transport theory of Weyl semimetals from the kinetic

equation point of view. We first present a systematic derivation of the anomalous equa-

tions of motion by projecting the two band model of Weyl semimetals into an effective

one band model. We then apply this effective single band kinetic equation to study the

microscopic origin of the chiral anomaly and chiral magnetic effect.

In Chapter 5, we focus on the electronic transport of the Lorentz violating tilted Weyl

semimetals (type I) by adopting a relativistic approach and then compare our results with

the Kubo linear response formalism.
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Chapter 2

SPIN, VALLEY AND PSEUDOSPIN DYNAMICS IN GRAPHENE

2.1. Introduction

In this chapter, we investigate the coherent transport of extra degrees of freedom of Dirac

particles in graphene. The spin and the valley, associated with the number of the band

crossing point int he Brillouin zone, are two of the additional binary quantum degrees

of freedom that make graphene attractive for nanoelectronic applications. Moreover, a

quantum state constructed from the entangling of the spin and valley degrees of freedom

is appealing as it can be used to write spin information into the valley and vice versa

via a simultaneous flip of spin and valley. Such a coupled basis state also finds various

applications in quantum computation [1]. Most importantly this coupling opens an in-

terface to join the emergent field of valleytronics which aims to use the valley degrees

of freedom in electronic transport with the well established field of spintronics. The val-

ley degrees of freedom in silicon, graphene, and TMDs due to their unique lattice band

structure can grant these materials essential roles to play in the realization of valleytronics

technology [2, 3]. Here, we propose an adatom impurity model to generate strong spin

orbit coupling (SOC) on graphene and then study the transport of charge carriers as well

as a spin-valley coupling in graphene. We then investigate these features and the coherent

coupling of charge and pseudospin giving rise to the pseudospin Edelstein effect from a

quantum transport equation point of view.

With the advent of graphene as a two dimensional material hosting massless Dirac

fermions, there is a growing interest in utilizing the graphene as a next generation ma-

terial that can find applications in valleytronics and spintronics. Other than graphene,

the transition metal dichalcogenides (TMDs) which are among the recently developed

two dimensional materials serve as the candidates for such device realization due to the

presence of valley degrees of freedom in the band structure of the carriers [4–6]. SOC

is already known to be essential in the realization of novel spintronic devices in which

the information exchange happens not only by charge but with the spin degrees of free-
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dom as well [7, 8]. In graphene, due to its weak SOC, the engineering of its properties

via external methods appears to be promising for spintronics applications[9–13].Here, we

demonstrate that the spin-valley coupling, which is induced by the adatoms deposition

of graphene’s surface, offers further functionalities using yet another degree of freedom

associated with the carriers, namely, the valley index [14, 15].

When engineering a valleytronic device, in addition to the intrinsic properties such

as the presence of degenerate multivalleys as well as induced coupling of these valleys

to applied external fields, impurities have the potential to offer additional functionality

by modulating the valley dependent properties [14, 16, 17]. Hence, disorder engineering

aims to control the electronics properties to obtain useful effects for device applications.

The presence of adatoms influences the electronic transport via inducing spin orbit inter-

action [18–20]. One of the important features of the spin-valley coupling is that it allows

for the conversion of the spin current into polarized valley current and vice versa. The

manipulation of spin via the valley degrees of freedom resolves a long sought challenge

of spintronics, which is the generation of polarized spin current without external fields, so

in this sense, the valley engineering in systems possessing multivalleys is crucial [21–23].

In the following, we first present a method of achieving the spin-valley coupling as

well as strong SOC by means of the adatom impurities. We employ a tight binding model

of graphene with randomly distributed impurities and find that, in addition to the standard

Rashba SOC, there is a local spin-valley coupling in graphene lattice which was not taken

into account in the previous studies. We investigate this additional local spin dependent

interaction and compute the spin flip transition rates.

Next, in order to study the coherent transport of spin and valley degrees of freedom for

valleytronic applications, we focus on the derivation of the generalized quantum Boltz-

mann equation[24–28]. The reason for this derivation is that quantum transport equation

in the low dimensional systems, [29, 30], to capture the quantum coherence, tunneling

effects and discreteness of the electronic energy bands[31, 32].

Our construction is based on a dynamical equation and we start from the quantum

Liouville’s equation. We, then, reduce this equation into a balance equation of Boltzmann

type by noting that the observables are quantum mechanical operators and commutators

are respected. This operator approach naturally takes into account the quantum coher-

ence effects. We also provide alternative approaches to transport by using nonequilibrium

Green’s function methods (see the Appendix.B) and semiclassical diffusion approxima-

tion. We then apply the results from the kinetic equation to study the coherent pseudospin-

charge and spin-charge transport in graphene.
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2.2. Tight binding model

In the tight binding model, [33], we obtain the effective description of the electronic band

structure near the Fermi energy, by projecting our Hamiltonian to a space spanned by

a suitable minimal basis set [34–36]. The choice of this minimal basis set, however, is

non-unique, and, as the observables are basis independent, they can be represented via

different basis sets in a different space [37–40]. The electronic structure of graphene has

been studied extensively using the two atomic basis of a single Dirac cone in the tight

binding [41–45]. However, using a two Dirac cone tight binding model can result in

new interaction terms in the Hamiltonian especially when there is intervalley coupling

[38]. Motivated by this, we ask the question of whether there will be novel corrections

to spin dependent interaction if one uses a different representation for the localized wave

functions in the tight binding model.

We start our calculations by choosing a suitable Wannier function that is spread over

the two inequivalent valleys in graphene:

ψ(ri) =
∑

τ=±
ψτ (ri) e

−iKτ ·ri , (2.1)

where τ stands for the valley index. To justify our ansatz, we first show that the dispersion

of graphene carriers by using these plane waves, which are written in the Hilbert space

Hν ⊗ Hσ ⊗ Hs that indeed gives the Dirac dispersion (see the Appendix.A). Note that

the indices ν, σ and s stand for the valley, sublattice (pseudospin) and real spin degrees of

freedom, respectively. The tight binding Hamiltonian in the second quantized form reads

H0 = t
∑

ri,δj

(
ψ†A(ri) ψB(ri + δj) + h.c

)
, (2.2)

where ψ†A/B(ψA/B) are the operators creating (annihilating) particles at the corresponding

position of the atomic sites A and B. The parameter t is the nearest neighbor hopping

which for graphene is about t = 3meV [45]. The carbon atoms are localized in graphene

lattice around ri = n1a1 + n2a2 where a1 and a2 are the primitive cell vectors. The unit

vectors connecting the triangular lattice points are given by, Fig.2.1,

δ1 = a (0,
1√
3

), δ2 =
a

2
(1,− 1√

3
), δ3 =

a

2
(−1,− 1√

3
), (2.3)

where the lattice spacing is about a = 1.42 Å. The conduction and valence bands cross at

two time reversal momenta Kτ = τ(4π
3a
, 0), so-called valleys in graphene, where τ = ± is

the valley index and K± = ±K. It is straightforward to show that the tight binding model

in Eq. (2.2) reproduces the standard Dirac Hamiltonian for graphene using the Taylor

5



A
B

2.2.1. Dirac Hamiltonian

We start our calculations by choosing a suitable Wannier function that is spread over the

two inequivalent valleys in graphene. As we will see below, this induces a SOC and

impurity scattering that gives rise to the novel spin-valley scatterings events. To justify

our ansatz, we first obtain the dispersion of pure graphene by using these plane waves that

are written in the Hilbert space H⌫ ⌦H� ⌦Hs, where the indices ⌫, � and s stand for the

valley, sublattice (pseudospin) and real spin degrees of freedom, respectively. The orbital

motion of an electron in the honeycomb lattice of graphene is approximated by the bare

hopping Hamiltonian (where we use the units ~ = 1)

H0 = t
X

ri,�j

(|riihri + �j| + h.c) . (2.1)

Here |rii and |ri + �ji represent the orthogonal basis comprised of the single electronic

⇡-orbitals in sites A and B, respectively, and �j represents the infinitesimal displacement

between the two immediate sites. The tight binding Hamiltonian in the second quantized

form reads

H0 = t
X

ri,�j

⇣
 †

A(ri)  B(ri + �j) + h.c
⌘
, (2.2)

where  †
A/B( A/B) are the operators creating (annihilating) particles at the corresponding

position of the atomic sites A and B. The parameter t is the nearest neighbor hopping

which for graphene is about t = 3 eV [34]. The carbon atoms are localized in graphene

lattice around ri = n1a1 + n2a2 where a1 and a2 are the primitive cell vectors. Further-

more, the unit vectors connecting the triangular lattice points are given by

�1 = a (0,
1p
3
), �2 =

a

2
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Figure 2.1: (Color online) Hexagonal lattice of Graphene where the two sublattices that give
rise to the pseudospin index are shown in red and blue colors. The infinitesimal displacement
vectors δ1,2,3 between the neighboring atoms that are given in (2.3) are presented as bold
arrows.

expansion for the field operator for the sublattice B as

ψ±B(ri + δj) = ψ±B(ri) + δj · ∇ψ±B(ri) +O(|δ|2), (2.4)

and in light of the relations

3∑

j=1

e±iK·δj = 0,
3∑

j=1

δj e
±iK·δj =

a
√

3

2
(±i, 1). (2.5)

Having checked that the introduced field operator (2.1) indeed gives the correct Dirac

Hamiltonian [45] in the valley isotropic basis, [46],

Ψ† =
(
ψ†+A ψ†+B −ψ†−B ψ†−A

)
, (2.6)

we now focus on obtaining an effective spin-orbit interaction model to investigate the

effect of the valley dof on spin states. We anticipate that the effective description for

the SOC using the ansatz (2.1) can reveal new interaction terms indicating the interplay

between spin and valley degrees of freedom.
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2.2.1. Spin-valley coupling from adatoms

The theoretical calculations show that in graphene the spin relaxation time is large and

is about 1µs [47, 48] yielding a large spin diffusion length, very suitable for spintronics

applications. However, reported experimental results of spin relaxation time are about

100ps, much shorter than what is expected [49, 50]. The main source of this strong

spin relaxation in graphene has been suggested to be the extrinsic effects such as impurity

scattering, spin scattering by magnetic moments and the effect of substrate [9, 47, 48, 51].

Therefore the effect of the disorder in inducing SOC is vital in understanding the spin re-

laxation mechanisms in graphene [47, 52, 53]. The intrinsic SOC in pristine graphene is

due to the deep σ − π bonds, whereas the Rashba interaction is due to the nearby π − π
bonds [45]. The first principle calculations show that the intrinsic SOC is roughly about

10−3meV and the Rashba effect is of the order of 10−2meV [47, 54]. A comparison of

these two SOC suggests that the Rashba SOC is the dominant effect that possibly governs

the relaxation [55].

Apart from the investigations on the spin relaxation in graphene, it turns out that the

enhancement of SOC in graphene is interesting for observation of the quantum spin Hall

effect [56]. Moreover, SOC tuning in graphene is a promising step towards spintronics

applications, where effective manipulation of spins (by only using electric field) needs siz-

able SOC [7, 8]. To that end, it has been proposed that the impurity adsorption in graphene

can significantly improve the SOC where spin splitting of Rashba type and about 200meV

has been reported for Au adsorbed graphene [57]–mainly due to the lattice distortions

generated by the adatoms [9–11, 13, 18, 58, 59]. Furthermore, engineering of graphene

surface using metallic adatoms can magnetize graphene by inducing magnetic moments

[60], which can be an additional source of spin flip scattering and spin relaxation.

Here we show that the impurity adsorption can also play an essential role in improving

the valleytronics properties of graphene by generating spin-valley coupling which will be

important for valleytronics applications [19, 21, 22, 61]. To derive the effective SOC in

graphene, we start with the tight binding description where we consider dilute impurity

adsorption and neglect the correlation between these neighbor impurity centers.

We, first, note that using the hexagonal lattice of graphene, the position operator in

the two atomic site basis can be given as

x̂ =
∑

i∈A

∑

j∈B
|ri〉〈ri|x̂|rj〉〈rj|
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=
∑

ri

ri |ri〉〈ri|+
∑

ri,δj

(ri + δj) |ri + δj〉〈ri + δj|, (2.7)

where |ri〉 and |ri + δj〉 are the single electronic π-orbitals in sites A and B. Likewise,

using the Heisenberg’s equation of motion, v̂ = −i[x̂, H] the velocity operator has the

representation

v̂ =
∑

i∈A

∑

j∈B
|ri〉〈ri|v̂|rj〉〈rj|,

=
∑

ri,δj

|ri〉 〈ri|v̂|ri + δj〉 〈ri + δj|,

= it
∑

ri,δj

δj |ri〉〈ri + δj|. (2.8)

We note that the matrix elements now are

〈ri|v̂|ri + δi〉 = −i
(
〈ri|x̂ H|ri + δi〉 − 〈ri|H x̂|ri + δi〉

)
= i δi 〈ri|H|ri + δi〉. (2.9)

We recall that the matrix elements of the bare Hamiltonian 〈ri|H|ri + δi〉 = t is the

hopping parameter defined in (2.2). It is also worth mentioning that the expansion of

velocity operator up to first order will give the pseudospin vector, which we expected to

be the case in the low energy description of graphene.

Using these preliminaries and the representation of the velocity operator, and consid-

ering the Rashba Hamiltonian in terms of the velocity operator [54]

Hsoc = α (ẑ× s) · v̂, (2.10)

where ẑ = (0, 0, 1) is the unit vector and s = (sx, sy, sz) is the vector of the Pauli spin

matrices, we construct the tight binding form of the Rashba interaction induced by the

random adatom impurities as follows

Hsoc = it
∑

ri,δi

∑

ra

α(ra) (ẑ× s · δi) |ri〉〈ri + δi|+ h.c. (2.11)

Here α(ra) = α δ(ra − ri), is the strength of the uncorrelated adatom impurities. We

assume that adatoms are deposited right on top of the sublattice points ri in random fash-

ion in the hexagonal lattice. Now defining tso = tα, then the effective second quantized

Hamiltonian by defining

η = ẑ× s = (−sy, sx, 0), (2.12)
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and substituting (2.1) reads

Hsoc = itso

∑

ri,δj

η · δj
( [
ψ†+A(ri)e

iK·ri + ψ†−A(ri)e
−iK·ri

]
×

[
ψ+B(ri + δj)e

−iK·(ri+δj) + ψ−B(ri + δj)e
iK·(ri+δj)

] )
+ h.c,

= itso

∑

ri,δj

η · δj
(
ψ†+A(ri)ψ+B(ri + δj) e

−iK·δj + ψ†+A(ri)ψ−B(ri + δj) e
iK·δj eiζ(ri)

+ ψ†−A(ri)ψ+B(ri + δj) e
−iK·δj e−iζ(ri) + ψ†−A(ri)ψ−B(ri + δj) e

iK·δj
)

+ h.c,

(2.13)

where ζ(ri) = ∆K · ri, and ∆K = K+ −K− = 2K is the momentum distance between

the two valleys. Next, keeping only the linear terms in the Taylor expansion for the field

operator in Eq. 2.4 and in lights of the relations relations (2.3) and (2.12) and noting that

η ·
3∑

j=1

δj e
±iK·δj =

a
√

3

2
s∓, (2.14)

where s± = sx ± isy, we finally arrive at the effective Hamiltonian for the SOC as

Hsoc = tso

∑

ri

(
i η ·

3∑

j=1

δj e
−iK·δj

[
ψ†+A(ri)ψ+B(ri) + ψ†−A(ri)ψ+B(ri) e

−iζ(ri)

+ ψ†−B(ri)ψ−A(ri) + ψB−ψ
†
A+

eiζ(ri)
]
− i η ·

3∑

j=1

δj e
iK·δj

[
ψ†+B(ri)ψ+A(ri)

+ ψ†+B(ri)ψ−A(ri) e
iζ(ri) + ψ†−A(ri)ψ−B(ri) + ψ†+A(ri)ψ−B(ri) e

−iζ(ri)
])
,

=

∫
d2r Ψ†τ,σ,s

(
HB-R +

∑

ra

Hspin-valley

)
Ψτ,σ,s, (2.15)

where the spin-valley isotropic basis are

Ψ†τ,σ,s(r) =
(
ψ†+A,s ψ†+B,s −ψ†−B,s ψ†−A,s

)
. (2.16)

such that,

HB-R = λR (τ0σxsy − τzσysx), (2.17)

Hspin-valley =
i λR

4
(γ− τ−s− − γ+ τ+s+)δ(ri − ra), (2.18)

where λR = atso

√
3 and γ± = e±iζ(ra). The first Hamiltonian has the standard form of

the Bychkov-Rashba type SOC [54] for graphene v = vFσ+ · · · , as one anticipates. The

second term, however, is the spin valley interaction term that is originated by the adatoms
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and merits further discussion. During the quasiparticle scattering from the adatoms, this

term results in an intervalley scattering of the carrier along with the flip of their spin

degrees of freedom. The spin-valley locking that we derived by only considering the

effect of adatoms, is suggested to emerge in graphene/TMD hetrojunctions [62]. The

IsIv Iv

Figure 2.2: (Color online) The schematics of a finite width graphene nanoribbon with ran-
domly deposited adatoms on atomic sites. The spin-orbit interaction (2.11) in this system
induces the spin-valley locking (2.18) that can be utilized to generate spin current Is from an
injected valley current Iv.

spin valley mixing term (2.18), which is present in TMDs (see Ref. [63] and references

therein), permits the realization of spin valley device, Fig.2.2, where the spin current can

be created via valley current and vice versa [64]. The spin-valley locking also induces

spin diffusion anisotropy, and coincidentally, materials possessing anisotropic spin life-

time are good candidates for spintronics applications[62]. This indicates that the intrinsic

graphene could be engineered by the external mechanism and adatom deposition in order

to modulate its features to function as a spin valley filter [16, 17, 65–67]. This addi-

tional term can result in the simultaneous valley and spin Hall effects, protection of the

spin or valley index (as there is no spin or valley alone flipping) and spin-valley filtering

[6, 67, 68].

We, thus, showed, in Eqs.2.17 and 2.18, that randomly adding adatoms on top of

carbon atoms in graphene produces a strong Rashba effect as well as a spin dependent

intervalley scattering which is not addressed in previous studies. Next, to compare the

intervalley and intravalley transition rates, we consider the spin independent valley mixing

which occurs in the presence of point-like short-range impurities.

2.2.2. Intervalley scattering

Some of the intriguing electronic properties of graphene are the so called minimal con-

ductivity [69–71] and absence of localization [72] at low temperature near the Dirac point

where the density of states tends to zero that is lacking in othermaterials[73, 74]. The

studies show that most of these electronic properties in graphene are controlled by the im-

purities [71, 74–77]. There are typically two important types of disorder, 1) long range:

Coulomb interaction due to the charged impurities and lattice corrugations, and 2) the

10



short range uncorrelated disorder [78–80],

V (r) =
∑

ri

λB(r−ri) ψ†A(ri)ψA(ri)+
∑

ri,j

λB(r−ri−δj) ψ†B(ri+δj)ψB(ri+δj). (2.19)

More importantly, the short-range impurities are the source of the intervalley scattering

which dominates the momentum relaxation in graphene [81].

In the presence of spin-valley coupling, intervalley scattering also mediates the trans-

port of spin. These features indicate that an accurate theory of transport in graphene needs

to consider the interplay of all such degrees of freedom. Furthermore, the valley degrees

of freedom have a defining role in describing weak localization or weak antilocalization

transport regimes [73, 82]. Therefore the study of intervalley scattering is essential for

the realization of the spin-valley coupled transport.

We next write down the hopping Hamiltonian for the short-range impurity model. In

second quantization language for the potential (2.19) we write

V (r) =
∑

ri

λA

(
ψ†+A(ri) e

−iK.ri + ψ†−A(ri) e
iK.ri

)(
ψ+A(ri) e

iK.ri + ψ−A(ri) e
−iK.ri

)

+
∑

ri,j

λB

(
ψ†+B(ri + δj) e

−iK.(ri+δj) + ψ†−B(ri + δ) eiK.(ri+δj)
)
×

(
ψ+B(ri + δj) e

iK.(ri+δj) + ψ−B(ri + δj) e
−iK.(ri+δj)

)
,

=
∑

ri

λA

(
ψ†+A(ri)ψ+A(ri) + ψ†+A(ri)ψ−A(ri) e

−iζ(ri) + ψ†−A(ri)ψ+A(ri) e
iζ(ri)

+ ψ†−A(ri)ψ−A(ri)
)

+
∑

ri,j

λB

(
ψ†+B(ri + δj) ψ+B(ri + δj) + ψ†+B(ri + δj) ψ−B(ri + δj) e

−iζ(ri)

+ ψ†−B(ri + δj) ψ+B(ri + δj) e
iζ(ri) + ψ†−B(ri + δj) ψ−B(ri + δj)

)
,

=
∑

ri

{
λA

(
ψ†A+ψA+ + ψ†+Aψ−Ae

−iζ(ri) + ψ†−Aψ+Ae
iζ(ri) + ψ†−Aψ−A

)
+

λB

(
ψ†+Bψ+B +

4π√
3
ψ†+Bψ−Be

−iζ(ri) − 4π√
3
ψ†−Bψ+Be

iζ(ri) + ψ†−Bψ−B
)}

=
∑

ri

Ψ†V(ri)Ψ, (2.20)

where V is defined below and λA ≡ λA(r− ri) and λB ≡ λB(r− ri − δj). Note that, to

obtain the last line we have used the Taylor expansion for the envelope function around
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sublattice B such that

ψ
(†)
τ,B(ri + δj) = ψ

(†)
τ,B(ri) + δj.∇ψ(†)

τ,B(ri) +O(|δj|2), (2.21)

which consequently, in the limit δ � 1, yields

ψ
(†)
τ,B(ri + δj) ψτ,B(ri + δj) ≈ (1 + δj · ∇) ψ

(†)
τ,B(ri) ψτ,B(ri), (2.22)

ψ
(†)
τ ′,B(ri + δj) ψτ,B(ri + δj) e

iτζ(ri) ≈ (1− 2iτK · δj) ψ(†)
τ,B(ri) ψτ,B(ri)e

iτζ(ri)

+ δj · ∇
(
ψ

(†)
τ,B(ri) ψτ,B(ri)e

iτζ(ri)
)
, (2.23)

where τ, τ ′ = ± are valley indices and in the continuum limit terms involving total deriva-

tives will vanish. Also note that

∑

j

e±iK·δj =
∑

j

e±2iK·δj = 0,
∑

j

K · δj e±2iK·δj = −2πi√
3
. (2.24)

This allows us to ignore the terms of orders δ such that in the limit λB � λBδ � λBδ
2

we obtain the matrix

V =

[
λ+τ0 ⊗ σ0 + λ−τ3 ⊗ σ3 +

λA
4

(
e−2iζ(ri)τ+ ⊗ σ+ + e2iζ(ri)τ− ⊗ σ−

)

− λB
4

(
e2iζ(ri)τ− ⊗ σ+ + e−2iζ(ri)τ+ ⊗ σ−

)]
⊗ s0, (2.25)

where λ± = λB±λA
2

. As we see from the Hamiltonian, the impurity potential gives rise

to various valley orbit coupling terms that each term has its own merit of discussion. The

impurity potential term as a matrix gives

V =




ψ+A ψ+B −ψ−B ψ−A

ψ†+A λA 0 0 λAe
−2iζ(ri)

ψ†+B 0 λB −λ̃Be−2iζ(ri) 0

−ψ†−B 0 −λ̃Be2iζ(ri) λB 0

ψ†−A λAe
2iζ(ri) 0 0 λA



, (2.26)

where λ̃B = 4π√
3
λB. Note that the terms along the diagonal are intravalley scattering

whereas the off diagonal terms induce the intervalley scatterings. In the next section we

will compute the transition rates due to these different transitions.
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2.3. Spin scattering rates: Fermi’s golden rule

Now we compute the transition rates using Fermi’s golden rule in the presence of short-

range defects and local spin orbit coupling. By solving the eigenvalue problem in graphene,

the electronic states (positive energy) in the valley isotropic basis (2.6) gives

|+〉 =




1

eiϕ

0

0



eik·r, and |−〉 =




0

0

−e−iϕ

1



eik·r, (2.27)

where the indices± refers to two inequivalent valleys in graphene and ϕ = tan−1(ky/kx).

The intervalley transition rate form an initial state into a final state using Fermi’s Golden

Rule for uncorrelated point-like impurities is given by

1

τ(k)
= nimp

∫
k′dk′

∫ 2π

0

dϕ′

2π

∣∣〈in|V|fin〉
∣∣2δ(εk′ − εk). (2.28)

Therefore, the transition matrix elements give

V++ = 〈+|V|+〉 =
(
λA + λBe

−i(ϕ−ϕ′)
)

= 〈−|V|−〉∗ = V∗−−

V+− = 〈+|V|−〉 = e−2iζ(ri)
(
λA + λ̃Be

−i(ϕ+ϕ′)
)

= 〈−|V|+〉∗ = V∗−+.

Therefore

|V++|2 = |V−−|2 = λ2
A + λ2

B + 2λAλB cos(ϕ− ϕ′), (2.29)

|V+−|2 = |V−+|2 = λ2
A + λ̃2

B + 2λAλ̃B cos(ϕ+ ϕ′). (2.30)

Then the rates of intervalley and intravalley scattring are

1

τ
∝





λ2
A + λ2

B + 2λAλB cosϕ′ Intra-Valley,

λ2
A + λ2

B − 2λAλB cosϕ′ Inter-Valley.

(2.31)

To compute the matrix element of the SOC we find that

〈τ, s|HSOC |τ, s〉 = 0 (2.32)
∣∣〈τ, s|HSOC |τ, s′〉

∣∣2 = |γ−|2 + |γ+|2 + 2γ+γ− cos(ϕ+ ϕ′) (2.33)

|〈τ, s|HSOC |τ ′, s′〉|2 = 2|γτ |2 cos2(ϕ+ϕ′

2
) (2.34)
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Figure 2.3: (Color online) The spin scattering rates for the adatom engineered graphene that
induces SOC given in (2.17) and (2.18). During the intravalley scattering the suppression of
back scattering happens while for in the valley mixed spin flips the backscattering is allowed.

where s and s′ are the spin degrees of freedom and picking either ↑ or ↓. The transition

rates show that there is difference between the valley conserved and valley contrasting

spin flip scatterings in terms of the backscattering. We have plotted these rates in Fig. 2.3

fo further discussions. It turns out that the well-known suppression of the backscattering,

which is a feature of the Dirac particles in graphene, is removed in the case of the SOC

induced by the adatoms which allows for a novel valley mixed spin scatterings. Therefore,

while the valley contrasting spin flip forbids the backscattering, the valley contrasting spin

flip permits the Dirac particles to be back scattered.

This new backscattering attributes of the adatom engineered graphene opens new

fronts for its applications as a spin-valley qubit where through the intervalley scatter-

ing the initial states can be restored [1]. In order to understand the coherent dynamics

of the degrees of freedom in graphene, such as the coupling of spin and valley, we next

try to establish a quantum kinetic model for the Dirac Hamiltonian in the presence of

adatoms. After constructing the kinetic model, for better interpretation, we will reduce it

to a diffusion model written the real space [26].

2.4. Quantum transport equation

The dynamics of a statistical system is governed by Liouville’s theorem which describes

the time evolution of the N -body distribution function. This large set of variables, 6N (N

being the number of the atoms), makes the Liouville’s equation complex and impractical

for analytical and numerical use [26]. Contrary to Liouville’s equation which in essence

is a many-body formulation, on the other hand, the Boltzmann equation, describing the
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statistical dynamics of a system out of equilibrium, is formulated for a single-particle

distribution function and hence more functional [26, 27].

In the kinetics model the particles tend to go towards the equilibration by experienc-

ing collisions. The Boltzmann transport equation also takes into account the scatterings

through a collision term that balances the kinetics of the carriers. There are two direc-

tions in using the Boltzmann transport equation to describe the physical quantities. One

way is by solving the equation for the distribution function and use it to find the form of

the quantity under study. We alternatively apply approximations to the transport equation

which in turn gives the Drift-Diffusion models of transport.

In the quantum transport equation, the main object that is described is the quasiparticle

distribution function f(k,X, ε, t) and when deriving the drift-diffusion model, from the

quantum transport equation, its counterpart will be the density matrix ρ(X, t, ε).

We attempt to generate a reliable quantum Boltzmann equation for carriers having

coherent spin and valley degrees of freedom driven by external fields. We assume these

fields have weak spatial and temporal dependence and we stay within the response limit

so a quasi-stationary transport equation is justified.

We start the derivation of quantum transport equation by studying the time evolution

of the density matrix governed by quantum Liouville’s equation,

iρ̇ = [H, ρ]. (2.35)

For a system in equilibrium the density matrix is a function of the unperturbed Hamilto-

nian ρ(H0) [83, 84]. In the presence of external fields however the density matrix will

deviate from its equilibrium form such that

ρ(t) = ρ(H0) + δρ(t), (2.36)

where the non-equilibrium part, when the external fields vanish, will relax into the equi-

librium. Furthermore, we assume an initial condition on time t such that the fields were

absent at very past, namely,

δρ(t = −∞) = 0, (2.37)

where we assume that the non-equilibrium part to have the time dependent form as δρ(t) =

f eαt, α > 0. We consider an impure Graphene sample subjected to external in plane elec-

tric field such that now the one particle Hamiltonian for the system is

H = H0 + V (x) +Hext, (2.38)
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where H0 is the Dirac Hamiltonian for Graphene in the vicinity of a single cone

H0 = vF σ · p, (2.39)

and the disorder potential and the external field is given by

V (x) =
∑

i

V (x− {xi}), Hext = −eE · x. (2.40)

such that the electric field is such thatE = E0e
|α|t and is turned off at the far past, namely,

E(t = −∞)→ 0. Therefore the equation for the density matrix now will read

i
∂δρ

∂t
= [H0 + V (x), δρ]− + [Hext, ρ0]− + · · · . (2.41)

we are interested in studying this equation in linear response regime where the solutions

are in first order in electric field but has a power series expansion in terms of impurity

strength. Therefore we project the Liouville’s equation in the momentum space (plane

wave basis) where the Hamiltonian is diagonal and noting that 〈k|δρ|k′〉 = eαtfkk′ , we

then write

iαfkk′ = H0(k)fkk′−fkk′H0(k′)+
∑

k′′

(
Vkk′′fk′′k′−fkk′′Vk′′k′

)
−eE · [x, ρ0]kk′ . (2.42)

By splitting the projected non-equilibrium density matrix into diagonal and off diagonal

elements, i.e,

fkk′ = fkk′ δkk′ + fkk′(1− δkk′), (2.43)

we manage to separate the matrix equation into two coupled equations in term of diagonal

and off diagonal elements. The off diagonal part, where k 6= k′, reads

iαfkk′ = H0(k) fkk′ − fkk′ H0(k′) + Vkk′fk′ − fkVkk′ + Vkfkk′ − fkk′Vk′

+
∑

k′′ 6=k,k′

(
Vkk′′fk′′k′ − fkk′′Vk′′k′

)
− eE · [x, ρ0]kk′ , (2.44)

and diagonal part gives

iαfk = H0(k) fk − fk H0(k) +
∑

k′ 6=k

(
Vkk′fk′k − fkk′Vk′k

)
− eE · [x, ρ0]kk. (2.45)

We now assume that dominant contribution to the non equilibrium part is coming from the

band diagonal part of the distribution function and the offdiagonal terms, that are induced

by the external fields, are relatively weak, namely, fk � fkk′ , [83, 84]. Hence the final

evolution equation, which will reduce into a Boltzmann type transport equation, must be
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written for the diagonal distribution function. Up to the leading order in the impurity

potential the off diagonal equation then becomes

iαfkk′ −
(
H0(k) fkk′ − fkk′ H0(k′)

)
=
(
Vkk′fk′ − fkVkk′

)
. (2.46)

Subsequently, this equation can be solved by introducing two Green’s functions namely,i.e

G
R(A)

k (z) =
(
z + (−)iα/2−H0(k)

)−1

, (2.47)

which gives the solution for the diagonal distribution function as

fkk′ =
1

2πi

∫ +∞

−∞
dz G

R

k (z)
(
Vkk′fk′ − fkVkk′

)
G
A

k′(z). (2.48)

Next, plugging this solution back into the diagonal equation gives

αfk + i[H0(k) , fk]− eE · [∇k, f ]k = I[fk], (2.49)

where the collision integral due to impurity potential reads

I[fk] =
1

2π

∫
dz
∑

k′

{
Vkk′G

R
k′

(
Vk′kfk − fk′Vk′k

)
GA
k −GR

k

(
Vkk′fk′ − fkVkk′

)
GA
k′Vk′k

}
.

(2.50)

To describe the semiclassical dynamics of quantum carrier, and to obtain a distribution

function which is written both in position and momentum coordinates, we transform this

equation into Wigner coordinates. In the new representation normal product is transferred

into the ∗-products [85] such that up to first order it yields

A B −→ A ? B ≈ A B +
i

2
[A,B]P.B + · · · , (2.51)

where ? = exp i
2

(←−
∂ x
−→
∂ k−

←−
∂ k
−→
∂ x

)
. Working out the Poisson brackets we obtain the semi-

classical Boltzmann equation for Graphene as

∂tf(k,x)+i[H0, f(k,x)]−+
vF
2

[σ , ∇xf(k,x)]+−eE ·∇kf(k,x) = I[f(k,x)]. (2.52)

The semiclassical equation we derived and its solutions are the main tools to describe

transport in a system. As it appears the equation is written for a matrix distribution func-

tion. Next, using the parametrization of the matrix distribution function as f = n+ s · σ,

and assuming that the Hamiltonian is only spin dependent and applying the relaxation

time approximation, then the matrix equation can be written in two coupled scalar equa-

tions for charge and pseudo-spin such as

∂tn− e E · ∇kn+ vF ∇x · s = −n− n0

τp
, (2.53)
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∂ts− e (E · ∇k)s + vF ∇xn+ 2vF s× k = −s− s0

τs
. (2.54)

These calculations demonstrate that the kinetic equation for a two band system, essen-

tially, describes the coupled dynamics of charge and spin. The above equations can be

understood as two balance equations that include the relaxation, diffusion, precession

and the flip mechanisms of the carriers during the scattering. In the following we derive

the diffusion equations for graphene and its intuitive semiclassical interpretations by first

approximating the transport equation and solving it.

2.4.1. Collision kernel: Disorder scattering

To model the disorder in the system, suppose that the spin-less impurities are distributed

randomly throughout the system. The strength of these impurities are described by the

potential

V (x) =
∑

i

V (x− {xi}), (2.55)

where xi’s are the position of the random impurities. Now, substituting this scalar poten-

tial into the collision integral we get

I[f ] = nimp

∑

k′

|Ṽ (k− k′)|2
∫

dz

2π

{
GR
k′

(
fk − fk′

)
GA
k −GR

k

(
fk′ − fk

)
GA
k′

}
, (2.56)

where we have used the notation

Vkk′Vk′k = 〈k|V (x, {xi})|k′〉 〈k′|V (x, {xi})|k〉, (2.57)

and averaged over many impurity instances to obtain

Vkk′Vk′k = nimp|Ṽ (k− k′)|2. (2.58)

On the other hand, the matrix Green’s function for graphene is given by

GR
k (z) =

∑

ξ

(1 + ξ σ · k̂)/2

z − εξk − i0
, (2.59)

where ξ is the chirality index which for a single cone (positive) it coincides with the band

index. Thus within the first Born approximation the collision operator becomes

I[f ] = nimp

∑

k′,ξ,ξ′

|V (k− k′)|2
∫

dz

2π

(
Λξ′ξ
k′k

(z − εξ′k′ + i0)(z − εξk − i0)
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− Λξξ′

kk′

(z − εξ′k′ − i0)(z − εξk + i0)

)
, (2.60)

where the transition matrix is given by

Λξξ′

kk′ =
1 + ξ σ · k̂

2
(fk′ − fk)

1 + ξ′ σ · k̂′
2

. (2.61)

The energy integrand has two set of poles on both upper and lower planes. Closing the

contour in the lower plane the energy integral is simply

∑

k′

∫

lower

dz

2π

1

(z − εξ′k′ + i0)(z − εξk − i0)
= − i

2

∑

k′

1

εξ
′

k′ − εξk − i0
, (2.62)

and noting that there is yet a momentum integral under which we use the identity from

complex analysis

1

εξ
′

k′ − εξk − i0
= P.V

(
1

εξ
′

k′ − εξk

)
+ iπ δ(εξk − εξ

′

k′). (2.63)

The principal value parts from the collision terms cancel identically and surviving term is

the delta function giving the Fermi’s golden rule and setting the condition for the elastic

scattering i.e

I[f ] =
π nimp

2

∑

k′,ξ,ξ′

|u(k − k′)|2
(
Λξξ′

kk′ − Λξ′ξ
k′k

)
δ(εξk − εξ

′

k′). (2.64)

which is essentially the Fermi’s golden rule, extended to quantum transport.

By doing the momentum integral explicitly we can obtain a bound for the relaxation

time in the presence of short-range disorder. Then the relaxation time is expressed as

f0(k)− f(k)

τ
≡ I[f ]

=
π nimp

2

∑

µ,µ′

∫
k′dk′

2π

∫
dφ′

2π
|V (k − k′)|2

(
Λµµ′

kk′ − Λµ′µ
k′k

)
δ(εµk − εµ

′

k′ ).

(2.65)

The relaxation time is then given by

1

τ
=
π nimpV

2

2
g(εF ), (2.66)

where g(εF ) = |εF |
2π v2F

is the density of states at Fermi energy [86].
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2.4.2. Magnetotransport

To compute the deviation from the equilibrium distribution in linear response regime we

expand the non-equilibrium distribution function in terms of equilibrium distribution. As-

suming that the distribution function has a power series expansion in term of the weak

electric field (linear response) we write

f(E,B;k) = f0 + O(E,B) · ∇kf, (2.67)

where the function O(E,B) is first order in the weak field E. The expansion can be

used to self consistently generate higher order corrections to the distribution function.

Substituting this ansatz and keeping terms to first order the transport equation gives

−eτ(E + v ×B) · ∇k

(
f0 + O · v ∂f0

∂ε

)
= −O · v ∂f0

∂ε
, (2.68)

then applying the momentum derivative and noting that ∇kf0 = v ∂εf0, and the band

velocity as v = vF k̂ gives

−eτ(E+v×B) ·
(
v
∂f0

∂ε
+∇k(O ·v)

∂f0

∂ε
+O(E,B) ·v ∂

2f0

∂ε2

)
= −O(E,B) ·v ∂f0

∂ε
.

(2.69)

Next, we consider only the first derivatives of the energy which yields

−eτ(E + v ×B) ·
(
v
∂f0

∂ε
+ O(E,B)

v2
F

εk

∂f0

∂ε

)
= −O(E,B) · v ∂f0

∂ε
, (2.70)

and then taking into account terms of up to the first order in the electric field and noting

that ∂vi/∂pj = v2
F/εk we simply obtain a vector equation, namely,

E =
1

eτ
O(E,B)− v2

F

εk
B×O(E,B), (2.71)

which is solved to yield the generator of the small deviation from the equilibrium as

O(E,B) =
eτ

1 + τ 2(ev2
FB/εk)

2

(
E + eτ

v2
F

εk
B× E

)
, (2.72)

that consequently produces the non-equilibrium part of the distribution [86]

f(E,B) = f0 +
eτ

1 + τ 2ω2

(
E + eτ

v2
F

εk
B× E

)
· v ∂f0

∂ε
, (2.73)

where we introduced the cyclotron frequency in Graphene as

ω =
ev2

F

εk
B. (2.74)
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Using this solution the charge current from the transport equation gives

Ji = −e
∑

k

vif,

= −e
∑

k

∂f0

∂ε

eτ

1 + τ 2ω2
vivj Ej − e

∑

k

∂f0

∂ε

eτ 2ω

1 + τ 2ω2
ε3`j vivjE`, (2.75)

changing the summation into integrals via

∑

k

→
∫
εk dεk
2πv2

F

∫
dφ

2π
, (2.76)

and noting that the density of state (DOS) for Graphene can be written as

DOS(εF ) =
∑

k

δ(εk − εF ) =

∫
εk dεk
2πv2

F

(
− ∂f0

∂ε

)
, (2.77)

and noting that for graphene 〈vivj〉φ = δij v
2
F/2, we obtain the current as

Ji =
e2v2

F ν(εF )

2

( τ

1 + τ 2ω2
δijEj −

ωτ 2

1 + τ 2ω2
εij3 Ej

)
, (2.78)

hence the conductivity tensor consist of diagonal and transverse (Hall) parts is given by

σij =
e2v2

F ν(εF )

2

( τ

1 + τ 2ω2
δij −

ωτ 2

1 + τ 2ω2
εij3

)
. (2.79)

2.5. Diffusion model

For a real physical setting, the transport equation can be further simplified. We consider

an inhomogeneous system in the presence of an external electric field then we write

∂tf(k, x) + i
[
H0(k), f(k, x)

]
− +

vF
2

[
σ ; ∇x f(k, x)

]
+
− e E · ∇pf(k, x) = I[f(k, x)],

(2.80)

where the collision integral is

I[f(k, x)] =
1

2π

∫
dz
∑

k′
|Vkk′|2

(
GR

k′z(fk′ − fk)GA
kz −GR

kz(fk − fk′)G
A
k′z

)
. (2.81)

Note that the matrix Green’s function for the free Graphene Hamiltonian can be written

in terms of projection operators as

G(k, z) =
∑

µ

Pµk Gµ(k, z) (2.82)

21



where µ = ± being the band index

Pµk =
1 + µ σk

2
, Gµ(k, z) =

1

z − ξµk
, (2.83)

one has similar relation for the retarded, advanced function and ξµk = µ vFk, is the kinetic

energy counted from the Fermi level. Furthermore, the spectral function becomes

GR(k, z)−GA(k, z) = −2iπ
∑

µ

Pµk δ(z − εµk), (2.84)

One can use this result by adding retarded and advanced function to the collision integral

and rewritten it as

I[f(k,X)] =
1

2π

∫
dz
∑

k′
|Vkk′|2

[
GR

k′z(fk′ − fk)(GA
kz −GR

kz)− (GR
kz −GA

kz)(fk − fk′)GA
k′z

]
,

= i
∑

k′
|Vkk′|2

(
GR

k′z fk′ − fk′ GA
k′z

)
− i
∑

k′
|Vkk′ |2

(
GR

k′z fk − fk GA
k′z

)

= i
ρ

τ
− fk

τ
(2.85)

where in second line it is straightforward to compute the sums by changing them into

integrals. The second term is proportional with the scattering rate of carriers from impu-

rity with distribution function f(k) while the first term is approximated as the scattering

rate for carriers given with general momentum resolved, energy dependent distribution

function as

gk′′ε =
1

2iπ

(
GR

k′′εfk′′ − fk′′GA
k′′ε

)
, ρε =

∑

k′′
gk′′ε, (2.86)

these assumptions help to conveniently simplify the collision integral. Then the resultant

transport equation becomes

∂tf(k,X) + i
[
H0(k), f(k,X)

]
−

+
vF
2

[
σ ; ∇x f(k,X)

]
+

= i
ρε
τ
− f(k,X)

τ
. (2.87)

We, furthermore, multiply the transport equation with the retarded and advanced functions

from the left and right respectively and then subtract two relations to obtain the quantum

Boltzmann equation [87],

(∂t + τ−1)gk,ε + i[H0(k), gk,ε ]− +
vF
2

[
σ;∇x gk,ε

]
+

= iτ−1
k

(
GR

kερε − ρεGA
kε
)
. (2.88)

We solve this equation using Laplace transform, which is equivalent to setting the time

dependence of the distribution function gk,ε(t) = gk,ε e
|α|t which is consistent with out
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boundary condition that gk,ε(−∞) = 0, and finally it yields

(
Ω + iLk

)
g = L, Lk = [H0(k), ]− (2.89)

and Ω = α + 1
τ
. The left side can be understood as the fast relaxation into equilibrium

which is mediated with the terms in right hand side as scattering and anisotropic deviation

from local density distribution given by Lk,ε = L(0)

k,ε + L(1)

k,ε where

L(0)

k,ε = iτ−1
k

(
GR

kερε − ρεGA
kε
)
, (2.90)

L(1)

kε = −vf
2

[
σ;∇x gk,ε

]
+
. (2.91)

The solution to the transport equation reads

gk,ε =
1

2π

∫
dz′ G+

kz′ Lk,ε G−kz′ , (2.92)

with the matrix retarded and advanced Green’s function given by [88, 89]

G(±)
kz′ =

1

z′ −H0(k)± i Ω
2

=
1

2

(
1 + σk̂

z′ − ξk ± iΩ
2

+
1− σk̂

z′ + ξk ± iΩ
2

)
, (2.93)

where σk̂ = σ · k̂. Therefore the solutions have two set of simple singularities two of

them z′ = ±ξk − iΩ
2

for the retarded function residing on the upper plane and the other

two z′ = ±ξk + iΩ
2

for the advanced function and lying on the lower plane. Computing

the z′ integral over either the upper or lower half plane consequently gives,

gk,ε = ζ1 Lk,ε + ζ2 [σk̂,Lk,ε]− + ζ3 σk̂ Lk,ε σk̂ = D[Lk,ε] (2.94)

where

ζ1 =
2ξ2
k + Ω2

Ω(4ξ2
k + Ω2)

, ζ2 =
−iξk

(4ξ2
k + Ω2)

, ζ3 =
2ξ2
k

Ω(4ξ2
k + Ω2)

. (2.95)

We can establish the different corrections by iteration and get

g(0)

kε = D[L(0)

k,ε(ρ)], (2.96)

g(i)

kε = D[L(1)

k,ε(g
(i−1)

kε )], i ≥ 1, (2.97)

hence up to the second order the perturbative solutions give (see the Appendix. C)

gkε = g(0)

kε
+ g(1)

kε
+ g(2)

kε
. (2.98)

Note that here we are interested in quasi stationary system where ατ � 1 hence Ω ≈ τ−1.

This limit reflects that the relaxation due to the impurity scattering is such short that

takes long time for the system to reach equilibrium which can happen in highly diffusive
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systems. As it is clear this limit is favorable in studying the coupled dynamics of charge

and spin. In the following we try to obtain a quantitative interpretation of charge and

pseudo-spin transport in graphene.

Next we attempt to obtain explicit form of the solutions by parameterizing the density

matrix as ρ = n/2 + σ · s+ σ3s3. Substituting these results back into the kinetic equation

in clean system limit where γ = εF τ � 1 one obtains the set of diffusion equations

describing the coupling charge and pseudo-spin dynamics (Appendix A), [87, 89–91],

D ∇̃2n+ vF ∇̃ · s = 0, (2.99)

D ∇̃2s +Ds ∇̃(∇̃ · s) +
vF
2
∇̃n =

s

τs
, (2.100)

D ∇̃2sz −
γ

1 + 4γ2

vF
2

(ẑ× ∇̃) · s =
sz
τs
, (2.101)

where noting that τ and τs are charge and pseudo-spin relaxation times, respectively, and

we defined

τs =
(1 + 4γ2)2

γ2
τ, D =

v2
F τ

2
, Ds =

v2
F τs

2
. (2.102)

The first equation gives the coupled diffusion of the charge and its compensation by the

pseudospin polarization vector, whereas the second and third equations describe the dif-

fusion, pressesion and relaxation of the in-plane and out of plane pseudospin components.

2.6. Pseudospin Edelstein effect

First, one notes that the charge and pseudo-spin relax differently to the equilibrium. Ac-

cording to the continuity equation, we have

∂tn+∇x · J = 0, (2.103)

therefore we immediately read off from the third equation that

J = vF s−D∇xn (2.104)

For diffusion under field, the electric field can be coupled to equations via the condition

[91]

∇x → ∇x − eE ∂ε, (2.105)

and noting that the mean free path is ` = vF τ , one obtains the Einstein relation that indi-

cating that the charge in graphene is separated into a dynamical part due to the diffusion
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and bias plus pseudospin charge, i.e,

Jcharge = (−D∇x + e E
`

2
∂ε) n+ vF s. (2.106)

Note that the first term is dynamical since it is driven due to the external perturbation and

charge imbalance. To understand this better, we use the unitary map that diagonalize the

graphene Hamiltonian and write down the carrier distribution accordingly as

f(k,x) = n(k,x) 1 + ṽ(φ) · s(k,x), (2.107)

where n is the scalar charge density, s is the pseudospin part of the charge, ṽ(φ) = σ̃ =

UσU †, and note that

σ̃x =

(
cosφ i sinφe−iφ

−i sinφeiφ − cosφ

)
, σ̃y =

(
sinφ −i cosφe−iφ

i cosφeiφ − sinφ

)
. (2.108)

Now defining the general momentum resolved carrier distribution as

ρ(x) =

∫
dk (GRf − fGA), (2.109)

and averaging over the random angle by noting that < σ̃x >φ= σx and < σ̃y >φ= σy one

obtains

ρ(x) = n(x) 1 + σ · s(x). (2.110)

This indicates that a part of the charge distribution that corresponds to the pseudospin is

in fact the residue charge density which is driven by the band coherence near the Dirac

points. One notes that if the band coherence is neglected or the Fermi energy is far from

the Dirac point then this residue (pseudospin) charge will vanish.

We next solve the diffusion equations in a 1D graphene nanoribbon and find that

depending on the degree of the polarization there will be pseudospin accumulation on the

boundaries of the sample. The diffusion equations decouple for the y and z components

of the pseudospin and give

D ∂2
xn+ vF ∂xs

x = 0, (2.111)

(D +Ds) ∂
2
xs
x − sx

τs
= −vF

2
∂xn, (2.112)

(D +Ds) ∂
2
xs
y − sy

τs
= 0, (2.113)

D ∂2
xs
z − sz

τs
= − γ

1 + 4γ2

vF
2
∂xs

y. (2.114)
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The first equation is simply the continuity equation giving a formula fo the current as

D∂xn+ vF s
x = I = constant. (2.115)

The first term in this equation is the usual local charge accumulation whereas the second

term is directly proportional to the distribution of the helicity states pseudospin in the x-

direction and indicates the pseudospin magnetization. One notes that the relation is also

time reversal invariant. Entering of the pseudospin magnetization into the current formula

is rather an unusual contribution since one would assume that the pseudospin current (if

considered to be nonmagnetic) to be present here as of the form ∂xs
x [89]. This suggests

that injecting an electric current, as a result, can induce pseudospin density which alike

the charge density will decay away from the contacts, but, besides, it also will generate

pseudospin polarization: the pseudospin magnetoelectric effect. To see this, we first solve

for ∂xn and plugging in the second equation to obtain

(D +Ds) ∂
2
xs
x −

(1

τ
+

1

τs

)
sx = −I

`
(2.116)

and solving this gives

sx(x) =
I

vF

( τs

τ + τs

)
+ c1 e

√
2

ττs
x
vF + c2 e

−
√

2
ττs

x
vF . (2.117)

Next we assume a sample extended in x-direction with length L where the boundaries are

at x = ±L
2

. We further suppose that there is a constanct charge inection to the system

from the left boundary such that

J
∣∣∣
x=±L

2

= I, (2.118)

Js
x
∣∣∣
x=−L

2

= ηI, (2.119)

Js
x
∣∣∣
x=L

2

= 0 (2.120)

where Jsx is the pseudospin current and naturally we assume that on the first interface the

is a polarization degree given by η whereas at the right interface the pseudospin finally

decays and relaxes to zero [89, 92]. The solution finally gives

sx(x) =
I

vF

(
τ

τ + τs
− η

√
2ττs
τ

cosh
√

2
``s

(x− L/2)

sinh
√

2
``s
L

)
. (2.121)

Assuming that the relaxation time for charge and pseudospin happen at the same rate
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Figure 2.4: (Color online) Diffusion of the pseudospin accumulation (2.122) inside a
graphene conductor along the x-direction plotted with the different degrees of polarization
η. The decay rate follows a Gaussian pattern with spread peak as one expects from diffusion
equation.

such that τ = τs then we obtain

sx(x) =
I

vF

(
1

2
− η
√

2
cosh

√
2(x−L/2)

`

sinh
√

2L
`

)
. (2.122)

Consequently we realize that the pseudospin accumulates at the boundaries and are given

by

sx(x = −L/2) =
I

vF

(
1

2
− η
√

2 tanh

√
2L

`

)
, (2.123)

sx(x = L/2) =
I

vF

(
1

2
− η

√
2

sinh
√

2L
`

)
. (2.124)

One furthermore observes that the equal interface accumulation of pseudospin happens at

the ballistic regime where the size of the sample is comparable with the mean free path

(Fig.2.5)

L =
`√
2

cosh−1
(1 +

√
5

2

)
≈ 0.74 `. (2.125)

To realize the symmetries of pure graphene hinders its technological and engineering

applications. To overcome this obstacle, few approaches are presented to break the sym-

metries of graphene such as breaking the sublattice symmetry. The pseudospin symmetry

breaking is thus favorable to realize the pseudospin magnetism in graphene.

Noting the current formula then the charge density gives

n(x) =
I

vF

( 2τ

τ + τf

) x
`
− 2

`

∫
dx sx(x). (2.126)
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Figure 2.5: (Color online) Pseudospin accumulation in the right (2.124) and left (2.123)
interface of a graphene nanoribbon with polarization degree η = 0.3. There is a critical length
where the accumulation in both the interfaces are identical. Eventually the accumulation at
the interfaces leak to the bulk and reach a constant value.

2.7. Conclusion

In summary, we illustrated that using a suitable local envelope function to describe the

electronic structure in graphene gives rise to the novel effective interplay between the rel-

evant degrees of freedom. These interactions are vital for the realization of spintronics and

valleytronics devices that puts the many useful degrees of freedom of graphene into use

as an alternative way of transporting information. These effective interactions are induced

by external impurities. Hence impurities can be useful in improving the graphene device

functionality. We demonstrated that the adsorption mechanism, by randomly depositing

adatoms on top of the sublattice vertices, along with a short-range impurity model, that

initiates the intervalley coupling, effectively bring about the interplay of the spin and val-

ley degrees of freedom. Furthermore, we calculated the valley and spin relaxation rates

and gave an analytical expression for them.

We provided a ground-up construction of the quantum transport equation using quan-

tum Liouville’s equation. We then applied the gradient approximation and then by inte-

grating out the extra degrees of freedom obtained a real space quantum diffusion equation

describing the coupled dynamics of charge and other degrees of freedom in graphene. In

graphene, we illustrated that to explore the charge transport one has to consider the charge

pseudospin degrees of freedom as well. The pseudospin polarization effectively dictates

that upon applying electric current graphene can be pseudospin magnetized.
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Chapter 3

ANOMALOUS TRANSPORT IN WEYL SEMIMETALS

3.1. Introduction

Dirac and Weyl semimetals (WSM) are members of materials with topological properties.

They are intermediate phases between a trivial insulator and a topological insulator. Both

of these materials can be taught as the three dimensional version of graphene in the sense

that they obey the three dimensional Dirac/Weyl equation. Dirac semimetals (DSM) have

been predicted to occur in band inversion crystals with strong spin orbit coupling in the

presence of space inversion and time reversal symmetries. As a result, the valance and

conduction bands cross at discrete points in the Brillouin zone forming the gapless modes

at the bulk Fermi surface, giving rise to a semimetallic feature [93–96].

The presence of both the time reversal and inversion symmetries in DSMs naturally

result in degenerate Dirac nodes [94]. Another topological phase may appear if one or

two of these symmetries are broken, giving rise to non degenerate Weyl semimetallic

phase [97–100], where the cones which were degenerate in the Dirac phase get separated

in the Weyl phase. Each cone has definite handedness, which protects against gapping

out as the only way to get chiral fermions out is to pair them with the opposite chirality.

Crystals featuring WSM phases, contrary to other types of Dirac matter, [98, 101, 102]

have unique topological features in addition to the Weyl nodes [98, 103, 104]. These

nodes are connected only at the boundary of the crystal via a peculiar half loop surface

states known as the Fermi arcs [102, 105–108]. The notion of chirality is a feature of the

Weyl equation (the massless version of Dirac equation) which, according to the fermion

doubling theorem, predicts that the massless solutions (Weyl fermions) always come in

pairs each with definite helicity [103, 109]. For isotropic Weyl cones, the helicity is

specified by the operator

χ = σ · p̂,

where σ and p̂ are the spin and momentum direction vectors of the particle, respectively.
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In this study, we consider WSM with broken time reversal and inversion symmetry, where

the bands touch at two points in the Brillouin zone. Here each Weyl node carries opposite

chirality as the source and sink of the Berry flux [110].

WSM phase has been the object of recent attention because of the unique band struc-

ture featuring chiral fermions. The most important characteristic associated with the chiral

fermions is the existence of quantum anomalies [111]. Therefore the discovery of WSM

allows the realization of quantum anomalies associated with the Weyl fermions such as

chiral anomaly and chiral magnetic effect in the crystal lattice[112–116].

When both the time reversal (by applying a magnetic field B) and inversion symme-

tries are broken, as we will show in this chapter, the separate Weyl nodes cross at different

energies. Application of an electric field E causes the constant pump of charge between

the nodes indicating the nonequilibrium feature of chiral transport [117–119]. This axial

current is larger when the electric field is locked parallel to the magnetic field and vanishes

when the fields are perpendicular [120].

To better understand the chiral kinetics, we first develop a quantum transport equation

for Weyl Hamiltonian in the presence of electromagnetic fields. In the next section, we

present our main finding which is the systematic derivation of the effective equations of

motion through the band projection. Then using the transport equation model and obtain-

ing the distributions function we compute the chiral current and clarify its microscopic

origin. We finally illustrate that the chiral magnetic effect is directly linked to the flux of

the Berry monopoles indicating a topological origin.

3.2. Nonabelian Boltzmann equation and U(1) gauge fields

In this section we construct a general nonabelian (matrix) quantum transport model in

the presence of electromagnetic fields to examine the chiral transport in Weyl systems we

focus on a single Weyl cone, given by the Hamiltonian

H = vF p · σ, (3.1)

where p is the momentum vector in 3D and the Pauli matrices σ = (σx, σy, σz) operating

in spin/orbital space. Including the electromagnetic field through minimal coupling into

the Hamilt now the Liouville’s equation in position basis gives

iρ̇(x1,x2) =

∫
dx′

(
〈x1|H|x′〉ρ(x′,x2)− ρ(x1,x

′)〈x′|H|x2〉
)

= vF

∫
dx′

(
〈x1|σ · (p− eA)|x′〉ρ(x′,x2)− ρ(x1,x

′)〈x′|(p− eA) · σ|x2〉
)
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= vF

{
σ ·
(
− i−→∇x1 − eA(x1)

)
ρ(x1,x2)− ρ(x1,x2)

(
i
←−∇x2 − eA(x2)

)
· σ
}
.

(3.2)

Next we transform to the center of mass and relative coordinates system (x, r):

x =
x1 + x2

2
, r = x1 − x2. (3.3)

Therefore, in terms of the new coordinate, we have

x1(2) = x + (−)
r

2
, ∇x1(2)

=
1

2
∇x + (−)∇r. (3.4)

Now, assuming slowly varying fields and Taylor expansion in terms of the relative distance

r, we obtain the following formula for the vector potential:

A(x1) ≈ A(x) +
1

2
(r · ∇x)A, A(x2) ≈ A(x)− 1

2
(r · ∇x)A. (3.5)

For the kinetic momentum we obtain

−i∇x1 − eA(x1) = − i
2
∇x − i∇r − eA−

e

2
(r · ∇x)A, (3.6)

i∇x2 − eA(x2) =
i

2
∇x − i∇x − eA +

e

2
(r · ∇x)A, (3.7)

and the Liouville’s equation becomes

iρ̇(r,x) = vF

{
σ ·
[
− i

2
∇x − i∇r − eA−

e

2
(r · ∇x)A

]
ρ(r,x)

−
[ i
2
∇x − i∇r − eA +

e

2
(r · ∇x)A

]
ρ(r,x) · σ

}
. (3.8)

Next, we perform the Wigner transform of the kinetic equation. The Wigner transforma-

tion in the presence of gauge field is given by

f(x,p) =

∫
dr e−i(p+eA)·r ρ(r,x). (3.9)

Applying this transformation to the left hand side and performing the integrals gives

LHS =

∫
dr e−i(p+eA)·rρ̇ =

∫
dr
(
∂t
(
e−i(p+eA)·rρ

)
− ie r · Ȧ e−i(p+eA)·rρ

)

=
(
∂t − e E · ∇p

)
f(x,p), (3.10)

where E = −Ȧ. The right hand side likewise can be cast into the form

RHS =

∫
dr e−i(p+eA)·r

(
∓ i

2
∇x − i∇r − eA∓

e

2
(r · ∇x)A

)
ρ(r,x),

= ∓ i
2
∇xf(x,p) + pf(x,p)± ie

2
B×∇pf(x,p), (3.11)
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where we have used

e−i(p+eA)·r ∇rρ = ∇r

(
e−i(p−eA)·rρ

)
+ i(p + eA)e−i(p+eA)·r ρ, (3.12)

e−i(p+eA)·r ∇xρ = ∇x

(
e−i(p−eA)·rρ

)
+ ie ∇x(r ·A)e−i(p+eA)·r ρ, (3.13)

and
∫
dre−i(p+eA)·r ∇xρ = i(p + eA)f(x,p), (3.14)

∫
dre−i(p+eA)·r ∇xρ = ∇xf(x,p) + ie

∫
dr ∇x(r ·A)e−i(p+eA)·rρ, (3.15)

and finally we reach to the collisionless gauge invariant transport equation

∂tf −
e

2

[
(E + vF σ ×B) , ∇pf

]
+

+
vF
2

[σ , ∇xf ]+ + i[H , f ]− = 0. (3.16)

One observes that excluding the last term, which indicates the quantum corrections, and

ignoring the nonabelian feature of this equation, by considering the distributions as func-

tions not matrices, one arrives at the standard semiclassical Boltzmann equation for the

one band model. The quantum coherence term i[H, f ]− , which can be interpreted as the

precession of the spin (or other degrees of freedom associated with the two band) due

to the momentum space pseudo-magnetic field, is the imprint of the quantum Liouville’s

equation which is our starting point [121, 122]. To describe the electronic structure of a

multi-band system, the system is usually reduced into an effective model with less bands

by band projection [123–125]. Adopting this point of view in the Matrix kinetic equa-

tion leads to an equivalent transport description written effectively in terms of the band

diagonal Hamiltonian. In the following we explicitly carry out the reduction of the matrix

kinetic equation (3.16) and demonstrate the connection between the effective equation of

motion and the Berry curvature.

3.3. Non-abelian SU(2) gauge, band projection and Berry curvature

The main object of interest in the quantum Boltzmann equation is the single particle

distribution (matrix) function. The matrix distribution has diagonal and off-diagonal parts

denoting the contributions of the quantum intraband and interband interference effects

respectively. To elucidate the physical picture of transport in a multiband system it is

customary to derive an effective equation by projecting the original equation into the

energy eigenbasis and applying the gradient approximation [123, 124].

The transport equation can be simplified using a unitary transformation that diagonal-
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ize the Hamiltonian (3.1) such that

U H U † = Hd = vF |p|σz, (3.17)

where by solving the eigenvalue problem, one directly finds that the transformation reads

U = ei
π
2
σ·p̂⊥ =

1√
2

(
1 e−iφ

1 −e−iφ

)
, p⊥ = p× ẑ. (3.18)

with φ = tan−1(ky/kx). Moreover this unitary transformation is momentum dependent

(local gauge), therefore it will naturally induce a covariant derivative

∇p −→ Dp = ∇p − i[A, ]− , A = iU∇pU
† = ∇pφ(I − σx). (3.19)

Note that vector A = (Ax,Ay,Az) is a pure nonabelian SU(2) gauge potential in momen-

tum space with null field strength,

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ]− ,
= i∂µ(U∂νU

†)− i∂ν(U∂νU †) + iU∂µU
† U∂νU

† − iU∂νU † U∂µU †

= i(∂µU)(∂νU
†) + iU∂µνU

† − i(∂νU)(∂µU
†)− iU∂νµU † + iU∂µU

† U∂νU
†

− iU∂νU † U∂µU †,
= 0, (3.20)

indicating that this pure gauge potential has no physical force effect on our system and

we have

i[Aµ,Aν ]− = ∂µAν − ∂νAµ. (3.21)

The transformation also affects the velocity v = ∇pH , and results

v = U ∇pH U †,

= ∇pHd + i[A, Hd]− = DpHd. (3.22)

The covariant matrix velocity on the other hand can be rewritten as

v = vF p + 2vF∇pφ σy, (3.23)

where the first part is the orbital velocity of the particle in the band, while second term is

the contribution due to the gauge (Berry) connection.

After applying the local gauge transformation (3.18) into the transport equation (3.16),
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and considering a stationary and homogeneous system, the transport equation becomes

∂tf +
1

2
[ṗ , Dpf ]+ +

1

2
[v , ∇xf ]+ + i [Hd , f ]− = 0, (3.24)

where the velocity and force matrices are given by

v = vF U σ U † = vF (σz p + ip [A , σz]−), (3.25)

ṗ = −e E− e v×B. (3.26)

In order to obtain an effective single band transport equation, we first express the quantum

coherence term (the commutator) as

[Hd, f ]− = F = i∂tf +
i

2
[ṗ , Dpf ]+ +

i

2
[v , ∇xf ]+ , (3.27)

where, we assume the gradient terms only add corrections to the solution of the ki-

netic equation. Next we apply the band projection scheme by first separating the coher-

ence term into band diagonal and off-diagonal equations. The diagonal equation clearly

will depend on the band diagonal (intraband) and off-diagonal (interband) distribution

functions, fα and fαα
′ , respectively. Using the gradient expansion, and by note that

fα � fαα
′ , we then express the diagonal equation in terms of functional of the intraband

distributions and write

[Hα
d , f

α]− = Fα(fα, f ᾱ, fαᾱ)

= F(1)
α (fα) + F(2)

α (fαᾱ [fα]) + F(3)
α (f ᾱ [fα]) + · · · (3.28)

The first and dominant correction to the coherence term, we indicate it by F(1)
α , is a func-

tional of the intraband distributions. In the second and the third iterations we select the

terms F(2)
α and F(3)

α that depend on the interband and the opposite-band distributions. We

find that

Fα[fα] = i∂tf
α + i ṗαi ∂pif

α + i vαi ∂xif
α +

1

2
(ṗαᾱi Aᾱαi − ṗᾱαi Aαᾱi )fα, (3.29)

Fα[fαᾱ, f ᾱα] =
i

2
(ṗαᾱi ∂pif

ᾱα + ṗᾱαi ∂pif
αᾱ) +

i

2
(vαᾱi ∂xif

ᾱα + vᾱαi ∂xif
αᾱ)

+ ṗαi (Aαᾱi f ᾱα − Aᾱαi fαᾱ),+
1

2
(Aᾱi − Aαi )(ṗαᾱi f ᾱα + ṗᾱαi fαᾱ), (3.30)

Fα[f ᾱ] =
1

2
(Aαᾱi ṗᾱαi − ṗαᾱi Aᾱαi )f ᾱ. (3.31)

We also express the second and the third iterations as a functional of the intraband dis-

tribution by using the band off-diagonal matrix equation (3.27) which contains both the
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interband and intraband distributions as well and gives

[Hd, f ]αᾱ− = Fαᾱ(fα, f ᾱ, fαᾱ). (3.32)

The right hand side reads

Fαᾱ(fα, f ᾱ, fαᾱ) =
i

2

(
ṗαᾱi ∂pif

α + vαᾱi ∂xif
α
)
− 1

2
(ṗαi + ṗᾱi )Aαᾱi fα + i∂tf

αᾱ

+
i

2
(ṗαi + ṗᾱi )[∂pif

αᾱ − i(Aαi − Aᾱi )fαᾱ] +
i

2
(vαi + vᾱi )∂xif

αᾱ

+
1

2
(ṗαi + ṗᾱi )Aαᾱi f ᾱ +

i

2

(
ṗαᾱi ∂pif

ᾱ + vαᾱi ∂xif
ᾱ
)
, (3.33)

there we used the fact that the diagonal and off-diagonal elements of the covariant deriva-

tive are

(Dpf)α = ∇pf
α − i(Aαᾱf ᾱα − fαᾱAᾱα), (3.34)

(Dpf)αᾱ = ∇pf
αᾱ − i(Aαᾱf ᾱ − fαAαᾱ)− i(Aαfαᾱ − fαᾱAᾱ). (3.35)

In order to express the second and third iterations as functional of the only intraband dis-

tribution, we first need to solve the (3.32). Considering the contributions form intraband

distribution functions yields

Hα
d f

αᾱ − fαᾱ H ᾱ
d = Fαᾱ

(
fα, f ᾱ = 0, fαᾱ = 0

)
, (3.36)

which gives

fαᾱ = Fαᾱ(fα) (Hα
d −H ᾱ

d )−1, f ᾱα = (fαᾱ)† = (H ᾱ
d −Hα

d )−1 Fᾱα(fα). (3.37)

Now defining the energy distance between opposite bands as ∆p = Hα
d −Hᾱ

d we find that

fαᾱ[fα] =
i

2
∆−1
p

(
ṗαᾱi ∂pi + vαᾱi ∂xi + i(ṗαi + ṗᾱi )Aαᾱi

)
fα,

= −e
2
Aαᾱ ×B · ∇pf

α − 1

2
Aαᾱ · ∇xf

α − e

∆p

E · Aαᾱfα. (3.38)

Furthermore, noting (3.25), we use the following relations,

ṗαᾱ = −ie∆p A
αᾱ ×B, (3.39)

vαᾱ = −i∆p A
αᾱ, (3.40)

ṗα = −e E− evF p×B, (3.41)

ṗᾱ = −e E + evF p×B, (3.42)

vα = vF p, (3.43)

vᾱ = −vF p, (3.44)
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and express the second iteration as

F(2)
α [fα] =

i

2
(ṗαᾱi ∂pif

ᾱα + vαᾱi ∂xif
ᾱα) + ṗαi A

αᾱ
i f ᾱα − h.c,

=
∆

2

{
− e2

2
ε
ij`
εmnr(A

αᾱ
j ∂piA

ᾱα
m − h.c)B`Bn∂pqf

α

− e

2
ε
ij`

(Aαᾱj ∂piA
ᾱα
m − h.c)B`∂xmf

α − e2

∆
ε
ij`

(Aαᾱj Aᾱαm − h.c)B`Em∂pif
α

− e

∆
(Aαᾱi Aᾱαm − h.c)Em∂xifα

}
− (eEi + eε

ij`
vjB`)

×
{e

2
εmnq(A

αᾱ
i Aᾱαm − h.c)Bn∂pqf

α − 1

2
(Aαᾱi Aᾱαm − h.c)∂xmfα

}
,

=
i∆

2

{
− e2

2
ε
ij`
εmnqεjmrB`Bn∂pibr∂pqf

α − e

2
ε
ij`
ε
jmr
B`∂pibr∂xmf

α

− e2

∆
ε
ij`
ε
jmr
B`Embr∂pif

α − e

∆
ε
imr
Embr∂xif

α
}

+ i(−eEi − eεij`vjB`)

× (−e
2
εmnqεimrBnbr∂pqqf

α − 1

2
ε
imr
∂xmf

α),

=
i∆

2

(
− e2

2
B×∇p(B · b) · ∇pf

α − e

2

[
(∇p · b)∇B −∇p(∇B · b)

]
· ∇xf

α

− e2

∆
B× (b× E) · ∂pfα −

e

∆
E× b · ∇xf

α
)
− ie2

2
B× (b× E) · ∂pfα

− ie

2
E · b · ∇xf

α +
ie2

2
(v ×B)(b ·B) · ∇pf

α +
ie

2
b× (v ×B) · ∇xf

α,

where we have defined the nonabelian Berry curvature as

∂piA
ᾱα
j − ∂pjAᾱαi = Aαᾱi Aᾱαj − Aαᾱj Aᾱαi = iεij` b`, (3.45)

and its derivative

∂pr(A
αᾱ
i Aᾱαj − Aαᾱj Aᾱαi ) = iεij` ∂prb`. (3.46)

Now substituting this term back into the equation (3.28) finally we obtain an effective

single band transport equation

∂tf + ṗ · ∇pf + ṙ · ∇rf = 0, (3.47)

with the terms

ṗ =
(
− eE− e v ×B− e2∆

4
∇p(B · b)×B

)
+ e

[
(−eE− e

2
v ×B)× b

]
×B,

ṙ =
(
v − e∆

4

[
(∇p · b)B−∇p(B · b)

])
+ (−eE− e

2
v ×B)× b,

36



which can be arranged and cast into a familiar form as [115, 118],

ṙ = ∇pε̄+ ṗ× b = (1 + e b ·B)−1
(
∇pε̄+ E× b + e (b · ∇pε̄)B

)
, (3.48)

ṗ = eE + e ṙ×B = (1 + e b ·B)−1
(
e E + e∇ pε̄×B + e2(B · E)b

)
. (3.49)

As it is clear form these equations of motion, there is a correction to the spectrum of Weyl

fermions (Fig.3.1) due to the Berry curvature, namely, ε̄ = ε+ δε = ε+m(b ·B). Here,

m = e∆
4

is the modified energy of the quasiparticles due to the internal Berry monopole

associated with a Weyl nodes and b is the field of a monopole [125–127]. Also note that

the Berry curvature is the reflection of our local gauge analysis of the transport equation,

as a result chiral imbalance (chiral anomaly) that is related to is a natural consequence

of a chiral system [128, 129]. In the remaining of this chapter, we investigate the chiral
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B: Zeeman enerjisi
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Figure 3.1: (Color online) The energy separation between the left and right Weyl nodes is due
to the monopole fields b (Berry curvature) where µ5 = e∆

4 (b ·B) as given in the anomalous
equations of motion. This generates the chemical imbalance between the two chiral fermions
giving rise to the chiral anomaly.

anomaly and the chiral magnetic effect using the established kinetic model and anomalous

equation of motion for the Weyl system.

3.4. Anomalous equations of motion

In a chiral fermionic system, the magnetic field induces the flow of charge current in

the direction of the external electric field generating the chiral magnetic effect, when

there is axial chemical potential due to the presence of Berry curvature [120, 130]. In a

system with the time reversal and inversion symmetries the effect of the Berry curvature

is zero, whereas in Weyl semimetal both the symmetries are broken and Berry curvature

is nonzero in the vicinity of the Weyl points. In the previous section we demonstrated,

from the kinetic equation point of view, that the Berry monopoles greatly affect the band
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velocity of the fermions, and, not surprisingly, this picture also holds true in the wave

packet dynamics as well [125]. In general for Weyl Hamiltonian the transport equation

reduces to, [115, 118, 124],

∂tf
α + ṙα · ∇xf

α + ṗα · ∇pf
α = − fα − fα0

τ
, (3.50)

where the anomalous equation of motion now are prescribed by the contributions from

the Berry curvature field and giving

ṙα = ∇pε
α + ṗα × bα, (3.51)

ṗα = e E + e ṙα ×B. (3.52)

In general the Wigner distribution function f(x,p) is written in the phase space coor-

dinate, however, our motivation on using the kinetic equation perspective is the coarse

grained modeling of chiral kinetics, and therefore we assume that the system under study

(Weyl semimetal) is stationary and homogeneous [115, 118]. With these assumptions

then the kinetic equation reads

e E + e vF p̂×B + e2(B · E)b

1 + e b ·B · ∇pf = − f − f0

τ
. (3.53)

In order to compute quantities one first need to obtain the distribution function by solving

the above transport equation using Chapmann-Ensgok linearization scheme which ulti-

mately yields

f = f 0 − eτ

1 + e b ·B
(
E + e (B · E)b

)
· v ∂f 0

∂ε
, (3.54)

where the electron’s band velocity is v = vF p̂.

As we discussed at length in Sec.2.4.2, on studying the magnetotransport in the frame-

work of the Kinetic equation, the transport coefficients such as magnetoresistivity and

magnetoconductivity are computed via applying the equation (2.73) for the distribution

function. Including this result here we obtain the distribution function as

δf = − eτ

1 + e b ·B + τ 2(
v2F
ε

)2B2

(
E + τ

v2
F

ε
B× E + e (B · E)b

)
· v ∂f 0

∂ε
(3.55)

where for Dirac dispersion we have 1
m

=
v2F
ε

and v = vF p̂. The first term inside the paren-

thesis contributes to the dc current whereas the second term generates the Hall current.

The third term is the chiral magnetic effect that induces the chiral anomaly.

Next, as an trivial exercise, neglecting the Hall effect one can compute the rate of the
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chiral anomaly as

nχ =
∑

p

δf(p),

= eτ

∫
k2dk

2π2
〈E · v〉Ω

∂f 0

∂ε
+ e2τ(B · E)

∫
dk

2π2
〈b · v〉S

∂f 0

∂ε
, (3.56)

and as a result we obtain

n5 =
e2τ

4π2 vF
(B · E)

∫
dε

∂f 0

∂ε
, (3.57)

where n5 = nχ=+1− nχ=−1 is the chiral imbalance between the two (left and right) Weyl

nodes. The first integral in second line vanishes. Hence the non vanishing nonequilib-

rium charge accumulation (chiral anomaly) is proportional to B ·E stems from the Berry

curvature [115]. Note that

〈b · v〉S =

∫
k2dΩ

4π
(b · vF p̂) =

1

4π

∮
b · dS =

vF χ

2
(3.58)

where χ is the quantized Berry flux (Chern number), dΩ = d(cos θ)dφ is the infinitesimal

solid angle and dS = k2dΩ p̂ is a spherical shell encompassing the monopole charge.

Noticing the energy separation of the Weyl nodes such that ετ = ε0 + τm(b · B),

where m = e∆
4

, then the group velocity of the Weyl fermions are

∇pετ = v +m∇p(B ·B). (3.59)

Now to compute the current around a single node we write

J = e
∑

p

(v + em∇p(B ·B))
−eτ

1 + e b ·B
(
E + e (B · E)b

)
· v ∂f 0

∂ε
. (3.60)

The chiral magnetic effect is the current due to the magnetic field which will give

JCME = e4τm(E ·B)B

∫
k2dk dΩ

8π3
(b · v)

∂f 0

∂ε
,

=
e2mχ

2π2

( e2τ

4π2
(E ·B)

∫
dε

∂f 0

∂ε

)
B

=
e2mn5χ

2π2
B, (3.61)

and the conductivity gives,[115, 116, 130],

σCME =
e4τ m

8π4
B2. (3.62)

These results that we are obtained form the microscopic standpoint, completely agree

with other findings that are based on the different approaches [115, 116, 118].
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3.5. Conclusion

We analyzed the kinetic theory of chiral systems, i.e, Weyl semimetal, in the presence

of electromagnetic fields by constructing the Quantum Boltzmann equation. Applying

a gauge transformation and the using band projection, we then arrived at an effective

anomalous kinetic equation where the nonabelian gauge field (curvature) induces correc-

tions in the equations of motion. We then computed the quantum anomalies such as chiral

anomaly and chiral magnetic effect in the Weyl system. The transport equation approach

to study anomalies in the Weyl system is a standard technique that yields as accurate re-

sults as with the conventional field theoretical methods. However, in this approach, as ev-

idenced in the literature, the solution of the kinetic equation was not addressed [115, 118].

However, in our approach, we first solved the effective kinetic equation and obtained the

distribution function for the chiral fermions. Using this solution we next computed the

charge and the current and obtained the chiral anomaly and the charge current due to the

magnetic field. The results for the anomaly related quantities that we obtained from this

kinetic outlook, however, are in agreement with other approaches that are based on the

field theoretical method.
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Chapter 4

COVARIANT TRANSPORT IN TILTED CONES: PSEUDO-RELATIVITY

AND LINEAR RESPONSE

4.1. Introduction

Condensed matter systems having Dirac-like linear energy dispersions proved to be a fer-

tile ground to rediscover fundamental particles of nature. The Weyl semimetal (WSM) is

a newly discovered phase of matter which hosts yet another emergent excitation of quan-

tum field theory: a long-sought fundamental particle of nature first proposed in 1929 by

Herman Weyl as a massless solution to the Dirac equation.[109] Crystals featuring WSM

phases, contrary to other types of Dirac matter,[98, 101, 102] have unique topological fea-

tures such as: the zero-energy excitations in the semimetallic bulk are associated with the

chiral Weyl Fermions, having definite handedness near two distinct nodes,[98, 103, 104]

whereas these nodes are connected only at the boundary of the crystal via a peculiar half

loop surface states known as the Fermi arcs.[102, 105–108] These materials exhibit in-

triguing and distinct phenomena when exposed to electromagnetic fields, such as chiral

anomaly, negative magnetoresistance, and the chiral magnetic effect.[131–133]

Dirac materials, possessing anisotropic and tilted energy cones, where the Fermi sur-

face gains eccentricity and deviates from a standard circular shape, have been reported to

exist in the two dimensional organic conductors α-(BEDT-TTF)2I3 subjected to pressure

and uniaxial strain.[134–136] In these materials, the Dirac crossing occurs away from

the high symmetry points of the Brillouin zone and their associated spectrum is mod-

eled with a modified Dirac Hamiltonian. The presence of the tilt largely impacts the

magneto-electronic and optical properties in these two-dimensional systems with tilted

cones.[134, 136–138] Recently, another type of Weyl cone with no relativistic analog,

due to the violation of Lorentz invariance, in transition-metal dichalcogenides hosting

Weyl fermions has been reported.[106–108, 139–143] As compared to the abovemen-

tioned (moderately) tilted cones in so-called type-I WSMs, the cones are now “overtilted”

such that the isoenergy lines are no longer closed ellipses but open hyperbolas. The search
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for this new type of WSM, coined type II, is ongoing and some candidate materials have

been predicted theoretically.[144–147]

Similar to two-dimensional systems, the tilt of the conical spectrum improves the

transport qualities of three-dimensional WSMs by increasing the mobility and conduc-

tivity of the carriers. This strongly points out the better electronic and spintronic func-

tionality of the tilted materials compared to other types of Dirac matter. For instance, the

reported extremely large and non-saturating magnetoresistance, up to 450, 000% in low

field and 13 × 106% in high fields,[148–150] suggests a suitable magnetic memory and

spintronics applications. Other peculiar properties of WSMs with tilted cone are the large

conductivity of about 108 Ω−1cm−1 as well as an enlarged chiral anomaly [149, 151]

whose origins remain yet unclear and need further theoretical investigation. As evidence

to the significance of the Dirac cone tilting, the transport calculations[152–155] show that

the anomalous Hall and thermal Hall conductivity, Berry curvature and density of states

increase with tilt and peak around the critical tilt value, while optical absorption [156]

shows no upper bound. Furthermore, the critical angle between the tilt and the mag-

netic field sets a threshold for the collapse of the Landau level formation and magnetic

breakdown.[157–159]

A very distinct interpretation of tilted Dirac and Weyl systems come from a relativistic

perspective where the tilt is identified as the rapidity of a specific Lorentz transformation.[136,

137] In the presence of external fields exploiting the Lorentz covariance, the tilt parameter

becomes an essential variable in identifying a boosted frame where the fields transform

trivially and this, in turn, facilitates the study of the problem at hand. [136, 160, 161] Be-

sides this rich attribute, there is another motivation that appeals to the use of relativistic

argumentation in describing the physics of the titled Weyl cone. The direct diagonal-

ization of the Dirac equation in the presence of external fields is a cumbersome task,

[162, 163] while by utilizing a relativistic picture and redefining the fields, this problem

can be tackled easily.[136–138, 158, 164] This suggests the use of the covariant formalism

that allows for a better understanding of the physics of the tilted Weyl cone phase.

In the present chapter, we address the electric transport properties of two- and three-

dimensional Dirac systems and WSMs as a function of the tilt parameter. We show that a

relativistic viewpoint in the form of a covariant Boltzmann equation allows for a quanti-

tatively accurate description of the magnetoconductivity in the diffusive transport regime.

The tilt in the electronic energy dispersion in the general Weyl Hamiltonian, character-

ized by the tilt velocity v0, is equivalent to drift velocity vdrift = E/B under a suitable

Lorentz transformation.[136–138] After obtaining expressions in the relativistically sim-

plified picture where only the magnetic field is present, an inverse Lorentz boost recovers
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the results in the original frame. Additionally, we demonstrate and elucidate how the DC

conductivity increases in moderately tilted type-I WSM in terms of the tilting degree. This

large enhancement, which is about 7 to 10 times larger than in standard WSMs without

tilt, is the focal point of recent experimental debates concerning electronic transport in

WSMs.[148, 149, 165] In order to demonstrate the validity of our approach in terms of

the covariant Boltzmann equation, we perform conductivity calculations using the Kubo

formula. As a result, we find that, apart from quantum corrections at energies close to the

band-contact points, both approaches show a high quantitative agreement. The quantum

corrections happen to be due to the interband coupling which is neglected in the Boltz-

mann equation;

The chapter is organized as follows. In Sec. 4.2 we discuss the basic construction

of the manifestly covariant Boltzmann equation to study transport in the electron’s co-

moving frame of reference which is an inertial frame moving with a velocity equal to

the electron’s drift velocity relative to the laboratory frame of reference. In Sec. 4.3 we

compute the conductivity of a two-dimensional anisotropic and tilted Dirac cone using

the covariant Boltzmann equation as well as Kubo formula and compare the two results.

In Sec. 4.4 we repeat the same calculation for a three-dimensional system of type I WSM

having tilt in kz-direction and compute the longitudinal and perpendicular (to the direction

of the tilt) bulk conductivities using covariant Boltzmann formula as well as Kubo formula

and then compare them. Furthermore, we provide a qualitative understanding of our

findings for the conductivities by computing the tilt-induced renormalization of Fermi

velocity, the density of states and Einstein’s diffusion relation.

4.2. Covariant Boltzmann equation

Tilted Dirac cones in a magnetic field, in both 2D and 3D materials, can be elegantly

described within a covariant formulation,[138, 160, 164] in which the tilt parameter is

associated with an effective electric field.

In order to see this, consider first the minimal Dirac Hamiltonian, in which we omit

the valley degree of freedom. Let us first consider the manifestly covariant situation with

a non-tilted isotropic Dirac cone in three spatial dimensions. In this case, the covari-

ant Dirac equation can be cast into the Schrödinger-type equation, in terms of the Pauli

matrices σ = (σx, σy, σz) and the 2× 2 identity matrix 1,

(H − i ∂
∂t

) |ψ〉 = 0, (4.1)
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in terms of the Hamiltonian

H = vF (k− eA) · σ + eΦbias(r)1, (4.2)

where Φbias(r) = −Ey is a static potential that we choose (arbitrarily) to give rise to an

electric field in the y-direction, while A is the vector potential that generates a homo-

geneous (and static) magnetic field in the z-direction, and |ψ〉 = ψ(vF t, x, y, z). The

Fermi velocity vF plays the role of the speed of light and here, and in the remainder

of this chapter, we use a system of units with ~ = 1. For convenience, we consider

the Landau gauge A = −yB x̂ with a vector potential to be oriented in the x-direction

although the general arguments do not depend on this choice. While the Dirac equa-

tion is invariant under Lorentz transformations, it happens that it is convenient, for a

quantum-mechanical solution, to use a Lorentz boost (in the x-direction) to a frame of

reference, where the electric field vanishes, in which case we simply need to solve the

Hamiltonian for a (charged) Weyl particle in a magnetic field and then transform the so-

lution ψ′(vF t′, x′, y′, z′) in the co-moving frame of reference back to the lab frame, with

ψ′(vF t′, x′, y′, z′) = S(Λ)ψ(vF t, x, y, z). Notice that this transformation is only possible

in the so-called magnetic regime, where the drift velocity vD = E/B is smaller than the

Fermi velocity. It has been shown, both in the case of 2D [162] and 3D [160], that the

convenient Lorentz transformations allow for a simple solution of the Hamiltonian (4.2),

which agrees with the more cumbersome algebraic solution [163] in an arbitrary frame of

reference, where the electric field does not vanish.

Interestingly, the same covariant trick can be used for a tilted Dirac or Weyl cone in

the presence of a magnetic field. In this case, we need to add the term

v0(kx − eAx)1, (4.3)

to our Hamiltonian (4.2), where we have considered the tilt to be in the x-direction, char-

acterized by the velocity v0, which we choose to be smaller than vF in order to remain in

the regime of a type-I WSM. One immediately notices that the additional term conspires

with the electric field in the y-direction, and one can indeed define a Hamiltonian

H − v0kx1 = vF (k− eA) · σ + e(Φbias − Φeff)1, (4.4)

which has the same form as (4.2) in terms of the effective electric field E0
def
= v0B and

thus Φeff = v0Ax = −E0y . The new Hamiltonian is therefore also of covariant form

and amenable to a Lorentz transformation, while the extra term v0kx1 remains diagonal

in any frame of reference since kx is a good quantum number in the Landau gauge. We,
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therefore, use, for a convenient diagonalization of the Hamiltonian of tilted Dirac and

Weyl cones, a Lorentz transformation to the co-moving frame of reference, with velocity

v0 in the x-direction, where S(Λ) = exp(ϑσx/2) and rapidity as η = tanhϑ = E0/vFB,

to make the effective electric field E0 vanish.[136–138, 162, 164] In the new frame the

Dirac equation reads

(H ′ − ε′) e−ϑσx/2|ψ〉 = 0, (4.5)

such that

H ′ = S(Λ) (H − v0 kx1) S(Λ)

= vF (k′ − eA′) · σ + eΦ′bias(r)1, (4.6)

where A′ and k′ are the corresponding vector potential and momentum vector in the co-

moving frame and ε′ = γε (for more details, see the appendix).[138, 160] One notices that

the spectrum in both the frames are related, i.e. ε(E0, B)− v0 kx ≡
√

1− η2[ε′(B′, E ′0 =

0)].[138, 160] This, finally, indicates that the spectrum of a tilted system equivalently can

be obtained by first solving the system in a simplified boosted frame and then restoring

into the original frame by applying an appropriate representation of the inverse Lorentz

transformation.

The tilt term v0 kx 1 in the Hamiltonian (4.4) renormalizes the scattering time of the

carriers, τ−1 =
∑

k |Vimp|2 δ(H−εF ). The anisotropy of the spectrum redefines the Fermi

velocity[136] (see Sec. 4.4.3 for more details) such that the Fermi’s golden rule gives

τ = τ0(1 + O(η2)), where τ0 is the momentum relaxation time when tilt is zero. This

recommends that as long as the tilt is moderate, the relaxation time is mainly dominated

by impurity scattering.

Furthermore, in the framework of the Liouville equation, the quantum mechanical

phase-space distribution function of the carriers of the system (4.4) satisfies the equation

∂ρ/∂t + i[H, ρ] = 0 where ρ is the single-particle density matrix. We next project this

equation into the momentum basis {|k〉} where the Hamiltonian is diagonal and the ma-

trix elements of the density matrix can be written as diagonal and offdiagonal parts, i.e,

ρkk′ = 〈k|ρ|k′〉 = fkδkk′+gkk′ . Consequently, the Liouville equation will be decomposed

into two coupled equations in terms of fk and gkk′ which must be solved simultaneously

to obtain the quantum kinetic equation written in terms of the diagonal distribution ma-

trix fk.[122? ] Next, we convert this equation into an effective semiclassical transport

equation by taking the Wigner transform of the density matrix fk and obtain

∂tf + i{H(k), f}P.B + i[H(k), f ] = 0. (4.7)
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Here f ≡ f(r,k) indicates Wigner’s (matrix) distribution function, {X, Y }P.B = ∂kµX∂xµY−
∂xµX ∂kµY stands for the Poisson’s bracket with µ and ν run through the space and mo-

mentum dimensions and we adopt Einstein’s summation convention. [26, 27, 166, 167]

The commutator [H(k), f ] is the quantum coherence correction to the semiclassical trans-

port equation of two band model. In this study, we assume that the perturbations are weak

such that the transition between the bands are negligible, therefore all the band coherence

effects, such as the Berry curvature correction to the carriers band velocity, are ignored

and we consider the transport regime where the conduction limits only within a single

band.[122–124] Note that the additional term to the energy, v0 kx 1, in general changes

the kinetic equation, however for the spatially homogeneous distribution function which

we consider here its effect vanishes as the Poisson bracket {H(k), f}P.B becomes it-

self zero in the absence of external fields. However, by introducing the electromagnetic

field through minimal coupling in Landau gauge, the Poisson bracket will produce two

drift terms illustrating the Lorentz force driving the motion of electrons and written as,

{H(k − eA,Φ(r)), f}P.B = −e (E + E0) · ∇kf − e∇kε(k) ×B · ∇kf ,[122? ] where

∇kε(k) is the group velocity of the carriers in (4.4). Therefore, applying the relaxation

time approximation, the resulting kinetic equation of the tilted system reads

∂tf + (FE + FB) · ∇kf = −f − f
0

τ
, (4.8)

where f 0 is the equilibrium distribution of the carriers and k is the crystal wave vector of

the carrier inside the lattice. For simplicity we separate the Lorentz force into two terms,

i,e, k̇ = FE + FB, where k̇ represents the time derivative of the crystal momentum, such

that

FE = −e (E + E0),

FB = −e∇kε(k)×B.

(4.9)

While the second expression is the force caused by the magnetic field, the first drift term

is due to the electric fields (bias and effective), and notice that the tilt term (tilt velocity)

in the presence of external fields, only enters, through the drift term, into the kinetic

part and has no effect on the collision part of the transport equation for the tilted Dirac

system. The covariance of the Boltzmann equation indicates that (4.8) is valid in any

frame of reference as long as one prescribes it the transformed fields. The equation takes

a relatively simple form in a frame of reference where E0 = 0.

This, in turn, proves that Hamiltonian (4.4) and its boosted equivalent (4.6) yield

the same kinetic equation up to the Lorentz symmetry. We then utilize this similarity and
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compute the physical quantity of interest in an appropriate inertial frame by implementing

the coordinate-independent Boltzmann transport equation and then restore to the original

frame of reference via the Lorentz transformation law. [166–168]

The rest of this section is therefore devoted to the covariant formulation of Boltz-

mann’s transport equation. The distribution function is a Lorentz scalar since it re-

lates to the number of particles, dN = f(xµ, kµ) dxµ dkµ, through the phase space

volume.[26, 166, 169] Lorentz covariance, as a basic structural property of the Dirac

equation, can be implemented in investigating the statistical kinetics of the carriers in

Dirac (2D) and Weyl (3D) systems. Additionally, we throughout our calculations ignore

the spin degree of freedom, as the spin component affected by the Lorentz boost under-

goes a precession due to the Wigner rotation[170] whereas our main concern is the study

of electronic transport of a tilted system. If the electromagnetic fields are present, the

ratio between the two fields yields a new velocity that determines the drift of the charged

particle, and its modulus vdrift needs to be compared to the effective speed of light vF .

If η = vdrift/vF < 1, there exists a Lorentz transformation to a frame of reference that

allows us to get rid of the electric field (magnetic regime), while the electric regime is

associated with a drift velocity that is larger than the speed of light (η > 1), in which case

one can get rid of the magnetic field by an appropriate Lorentz boost. In the remainder of

this chapter, we concentrate on the magnetic regime, which happens to be relevant for the

covariant description of type-I Weyl semimetals with moderately tilted cones.

The covariant Boltzmann equation with electromagnetic fields in manifest covariant

form is [26, 166, 168]

kµ ∂µf + e Fµν kν
∂f

∂kµ
= −k

µ uµ
v2
F

δf

τ
, (4.10)

where δf = f − f 0, is the deviation from the equilibrium distribution. The collision

kernel is approximated by a suitable relaxation time ansatz where uµ is the 4-velocity

for carrier flow,[166, 168] which in the electron’s local rest frame takes the form uµ =

(vF , 0, 0, 0). Using relativistic notations, the 4-momentum is kµ = (ε/vF ,k) where ε and

vF are the energy and the Fermi velocity of the carriers, respectively. Note that for the

massless carriers with Dirac dispersion we have k = εv/v2
F , in terms of the 4-velocity

vµ = ẋµ = (vF ,v), and τ is the carriers scattering time as the time interval between two

successive collisions. Writing the electromagnetic tensor Fµν explicitly in terms of the

fields F0i = −F i0 = Ei/vF , and F ij = − εij`B`, the equations of motion read

kµ ∂µ =
ε

v2
F

(∂t + v · ∇k), (4.11)
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e Fµν kν
∂

∂kµ
=

ε

v2
F

e

(
E · v ∂

∂ε
+ E · ∇k + v ×B · ∇k

)
. (4.12)

The drift velocity determines the appropriate Lorentz boost defined as (for instance in the

x-direction of space)

Λµ
ν =




γ −γη 0 0

−γη γ 0 0

0 0 1 0

0 0 0 1



, (4.13)

to the frame of reference where E0 vanishes as long as we remain in the magnetic regime,

while the small bias field E = δE is transformed to E′ = δE′ = γδE⊥ + δE‖ as well as

the magnetic field B′z = γ−1 Bz, (B′x,y = 0), in terms of the Lorentz factor

γ−1 =
√

1− η2, η = vdrift/vF . (4.14)

We thus obtain the solution of the covariant Boltzmann equation for a stationary and

homogeneous system, the nonequilibrium distribution, as[86]

δf =
−eτ

1 + ω′2τ 2

(
δE′ + τω′

B′

|B′| × δE
′
)
· ∇k′ε

′
(
f (0)

∂ε′

)
, (4.15)

where, in the co-moving frame, the cyclotron frequency of Dirac fermions is given by

ω′ = e
v2
F

ε′
B′. (4.16)

The first term inside the parenthesis in Eq. (4.15) contributes to the longitudinal conduc-

tivity whereas the second term gives rise to the Hall current. Throughout this chapter we

are only interested in the longitudinal conductivity and hence will neglect the effect of the

second term in the conductivity calculations.

The nonequilibrium current due to an infinitesimal bias is defined through the formula

J = −e Tr(v δf), (4.17)

where the trace (Tr) represents the summation over the momentum and other degrees of

freedom. While computing the current in the lab frame, we use the Lorentz-invariant

distribution function as calculated in Eq. (4.15) prescribed with the transformed fields,

namely,

δE′‖ = δE‖, δE′⊥ = γδE⊥, (4.18)

and then perform the trace by taking into account that the components of the velocity of
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the particle in the lab frame should transform according to the relativistic velocity addition

formula, in directions parallel and perpendicular to the boost, as

v‖ =
v′‖ + vdrift

1 + vdrift
v2F

v′‖
, v⊥ =

√
1− v2drift

v2F

1 + vdrift
v2F

v′‖
v′⊥. (4.19)

Ultimately, one uses the formula σµν = δJµ/δEν for the infinitesimal bias fields[171]

to restore the longitudinal conductivity parallel and perpendicular to the boost direction

and compare them with the result obtained from the Kubo formula and semiclassical

Boltzmann calculations.

4.3. Hamiltonian for 2D anisotropic tilted Dirac cones

The emergence of Dirac physics in condensed matter makes it possible to probe rela-

tivistic effects in materials. In addition, Dirac physics in materials comprises electronic

properties that are generically described by more general Hamiltonians taking into ac-

count the anisotropy and the tilt of the energy dispersion. Restricted to two dimensions,

the general form of a Dirac Hamiltonian with two bands intersecting linearly in a conical

shape reads[134, 136]

HDirac = vµ0kµ1 + vµkµσµ. (4.20)

where the indices µ and ν run over the spatial dimensions x, y. In addition to the anisotropic

Fermi velocity described by the parameter vµ, this Hamiltonian is specified by two pa-

rameters, vx0 and vy0 , that characterize the tilt of the Dirac cones. This type of Hamilto-

nian describes the dispersion of a strained graphene sheet and organic conductors of the

α−(BEDT-TTF)2I3 family.[134] The additional term vµ0kµ1 can be understood on the ba-

sis of tight-binding models for graphene-like systems. Indeed, second-nearest-neighbor

hopping induces the tilt of the Dirac cones if the latter are dragged away from the K and

K ′ points of the first Brillouin zone (e.g. by strain) and breaks the particle-hole symmetry

of the system.[172, 173]

This sufficiently general form of the Hamiltonian (4.20) can be simplified by rescaling

and rotating in momentum and pseudospin spaces,[137, 174] to get

ei
ξtilt
2
σz HDirac(R−1k) e−i

ξtilt
2
σz 7−→ HDirac(k), (4.21)

These transformations remove the anisotropy and bring the tilt into the x-direction such
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that one obtains the minimal Hamiltonian

HDirac = vF k · σ + v0 kx1. (4.22)

where, for simplicity, we set the new Fermi and tilt velocities as vF = vx = vy and

v0 = vx0 = η vF , respectively. The transformationR is given by

R(ξtilt) =

(
cos ξtilt

vy
vx

sin ξtilt

− sin ξtilt
vy
vx

cos ξtilt

)
, (4.23)

where ξtilt = cos−1
(
η−1vx0/vx

)
, and 0 < η < 1 is the tilt parameter defined as

η =
√

(vx0/vx)
2 + (vy0/vy)

2. (4.24)

Note that the transformation R in real space is the combination of a coordinate rescal-

ing followed by a pure SO(2) rotation that maps the original coordinates into modified

coordinates in order to remove the anisotropy in x− y plane and bring the tilt into a spe-

cific direction, namely, (x, y)t −→ (cos ξtilt + iσy sin ξtilt)(x,
vx
vy
y)t, and t stands for matrix

transposition.[137, 138]

Now that we obtained the minimal Hamiltonian model for a general 2D Dirac system,

next, we address the transport theory of the system under the influence of electromagnetic

fields. Under external fields and in the Landau gauge, as we stated in Sec. 4.2, we restore

the Hamiltonian (4.4) for 2D. Additionally, in our gauge choice the term v0kx on the left

hand side is diagonal in pseudospin and momentum space – it only shifts the spectrum in

energy and can thus be absorbed into the Hamiltonian. This indicates that upon minimal

coupling the Hamiltonian, HDirac − v0kx1, has the same covariant form as that of massless

particles in a magnetic field B ẑ and an effective electric field E0 in the y-direction. In

the following, we proceed to compute the transport quantities, i.e, longitudinal electric

conductivity, by first transforming the system into another inertial frame to remove this

effective field.

4.3.1. Conductivity from the Boltzmann equation

The above reasoning allows us to find the Lorentz boost to the appropriate frame of refer-

ence, where we can easily calculate the transport coefficients. Notice also that the separa-

tion between a strong electric field E0 and a bias field δE, which was somewhat artificial

in the Sec. 4.2, is now much more natural – while δE describes a true electric field used to

drive a current through the system, E0 simply represents the tilt of the Dirac cones and not

a physical electric field. Now assuming that the electric field is oriented in the y-direction
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as in Eq. (4.4), the bias and magnetic fields under the Lorentz boost in the x-direction

transform as

E ′x = δEx, E ′y = γ δEy, B′ ' γ−1 B, (4.25)

where we have neglected a small correction ηδEx/vF � B to the magnetic field in the

last expression. Additionally, the components of the velocity of the electron in the lab

frame, using Eq. (4.19), relate to those in the co-moving frame via

vx = vF
cosφ′ + η

1 + η cosφ′
, vy = vF

sinφ′

γ(1 + η cosφ′)
. (4.26)

In lights of these relations, due to the relativistic aberration of angles under a boost, the

polar angle transforms as

dφ =
dφ′

γ(1 + η cosφ′)
, (4.27)

which resembles the relativistic Doppler factor in relativistic beaming. This alternatively

indicates the Jacobian of the transformation from the lab into the co-moving frame of

reference. Using the transformed form of the velocities vµ in Eq. (4.26), the Lorentz-

invariant distribution function (4.15) in the co-moving frame and that∇k′ε
′ = vF (cosφ′, sinφ′),

one can easily compute the magnetoconductivity tensor in the lab frame,

Jx =
−e2τ

2π

∫
ε′dε′

γ

(
∂f (0)

∂ε′

)

∫ 2π

0

dφ′

2π

(cosφ′ + η) cosφ′

(1 + η cosφ′)2
δE ′x, (4.28)

Jy =
−e2τ

2π

∫
ε′dε′

γ2

(
∂f (0)

∂ε′

)

∫ 2π

0

dφ′

2π

(sinφ′)2

(1 + η cosφ′)2
δE ′y. (4.29)

Here and in the following parts, we limit our discussion to the diagonal conductivities.

Formally, this amounts to considering the limit ω′τ → 0 in Eq. (4.15), i.e. the limit where

the scattering time is much smaller than the inverse cyclotron frequency ω′ and where

Landau quantization does not need to be considered. In computing the nonequilibrium

current in the lab frame we, furthermore, need to consider the transformation of the bias

fields as given in (4.25). Now noting the Lorentz transformation of the energy and that at

zero temperature the Dirac distribution gives
(
∂f (0)/∂ε′

)
= −γ−1 δ(ε− εF ), the current

and consequently the conductivity perpendicular to the boost direction (which is identified
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with the tilt direction) in the lab frame reads

σperp(= σyy) = σ0

(γ − 1

η2

)
ετ, (4.30)

where σ0 = e2/h is a fundamental constant such that h/e2 = 25.8 kΩ. Similarly, we find

for the conductivity in the direction of the boost (tilt direction)

σtilt(= σxx) = σ0

(γ − 1

η2γ

)
ετ, (4.31)

and one thus realizes that the ratio

σperp

σtilt
= γ = (1− η2)−1/2, (4.32)

is a direct measure of the relativistic factor and thus of the tilt strength η.

Notice that the above expressions for the conductivity calculated in the framework of

the covariant Boltzmann equation coincide, in the limit γ = 1, with those obtained pre-

viously within semiclassical non-relativistic Boltzmann calculations.[175] We emphasize

that both the relativistic and the non-relativistic Boltzmann approaches do not account for

quantum corrections in the close vicinity of the band contact points that are responsible,

e.g., for the minimal conductivity of graphene.[176] These are better taken into account

within the Kubo formalism, which is discussed in the following subsection.

4.3.2. Kubo formula

To verify the validity of the covariant approach, we compute the conductivity using the

Kubo formula and check the agreement of both methods. Noting that v0 = η vF , the uni-

tary transformationU = exp(−iπσ·n̂/4), where n̂ = ẑ×k/
√
k2
x + k2

y = (sinφ,− cosφ),

diagonalize the Hamiltonian (4.22), and the spectrum of a general 2D Dirac system thus

reads

εα = vF k (η cosφ+ α), (4.33)

where φ is the momentum vector polar angle and α = ±1 is the band index. The corre-

sponding Fermi surface is an ellipse. As in the sections above, we consider a system with

a moderate tilt η < 1, such that we remain in the magnetic regime, where we can get rid

of the tilt by the appropriate Lorentz boost. In the limit of zero temperature (T = 0) for

noninteracting systems, the Kubo-Streda formula for the diagonal conductivity gives[177]

σµµ =
e2

π

∑

k

∫
dε

(
−∂f

(0)

∂ε

)
Πµµ, (4.34)
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where the polarization tensor reads

Πµµ = Tr
(
vµ ImGR vµ ImGR

)
, (4.35)

ImGR = (GR −GA)/2i and the Heisenberg equation gives the velocity operator as vµ =

i[r̂µ, HDirac] where r̂µ is the position operator. In the self-consistent Born approximation,

the first contribution to the advanced (A) and retarded (R) Green’s function of graphene

in the energy eigenbasis reads

G
R/A

(ε) =
∑

α=±

(1 + α σz)/2

ε− v k(η cosφ+ α)± iΓ , (4.36)

where the decay term is proportional to the scattering (relaxation) time τ via Γ−1 = 2τ .

Using the above definition, the spectral function is a diagonal matrix in energy basis and

may be written as

ImGR =
1

Γ

(
A+ 0

0 A−

)
, (4.37)

where

A± =
1

[z − y(η cosφ± 1)]2 + 1
, (4.38)

in which we defined the dimensionless variables z = ε/Γ and y = vFk/Γ. Now to

compute conductivity, we first express the velocity matrix in the helicity basis as

vµ = evF

(
vαµ vαα

′
µ

[vαα
′

µ ]∗ vα
′

µ

)
, (4.39)

where the band velocities are given by

vαµ = (η + α cosφ, sinφ), (4.40)

while the off-diagonal velocities read

vαα
′

µ = (i sinφ e−iφ, −i cosφ e−iφ). (4.41)

We then obtain the polarization as

Πµµ =
∑

α

|Aαv
α|2 +

∑

α 6=α′
Aα v

αα′

µ Aα′ v
α′α
µ

= A2
+ (v+

µ )2 + A2
− (v−µ )2 + 2 A+A−|v+−

µ |2, (4.42)
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where the second term in the first lines shows the quantum coherent mixing of the bands,

whereas the first term gives the intraband contribution and we remind that α and α′ are

the band indices. Now writing the momentum summation in terms of the momentum and

angular integrals as
∑

k → (2π)−2
∫∞

0
ydy

∫ 2π

0
dφ and performing the integrals we finally

obtain

σyy =
σ0

π

[
γ − 1

η2
(1 + z tan−1 z)

+
2z(tan−1 z − z)(1− z/

√
z2 + η2) + η2

2η2

]
, (4.43)

σxx =
σ0

π

[
γ − 1

η2 γ
(1 + z tan−1 z)

+
η2 + 2(z − tan−1 z)(z −

√
z2 + η2

2η2

]
, (4.44)

for the diagonal conductivities in the x- and y-directions.

Equations (4.43) and (4.44) are the main result of this section and merit a detailed

discussion. First, let us investigate the zero-tilt case, η → 0, in which we obtain

σxx = σyy = σ0

[
1

2π
(1 + z tan−1 z) +

tan−1 z

2πz

]
. (4.45)

In the high-energy (diffusive) limit z � 1, we then retrieve the standard result, in agree-

ment with the semiclassical Boltzmann approach, namely[176]

σxx = σyy = σ0 ετ/2, (4.46)

which coincides with Eqs. (4.30) and (4.31) in the static limit (ω = 0). We emphasize that

in the opposite limit of z � 1, i.e. at energies close to the Dirac point, band mixing yields

quantum corrections that are beyond the reach of the semiclassical Boltzmann approach,

within the first Born and relaxation time approximation, and therefore a full quantum

treatment is needed. Indeed, the Kubo and Boltzmann approaches yield different results

then, as we will show below.

Before comparing both approaches, let us discuss in detail some aspects of the con-

ductivities calculated from the Kubo formula. For the case of non-zero tilt in the diffusive

limit, z = ε/Γ = 2ετ � 1, the conductivities (4.43) and (4.44) can be rewritten as

σtilt(= σxx) = σ0

(γ − 1

η2 γ

z

2
+

1

4z

)
, (4.47)

σperp(= σyy) = σ0

(γ − 1

η2

z

2
+

1

4z

)
, (4.48)

where the last term takes into account the first (quantum) correction in 1/z. The conduc-
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Figure 4.1: (Color online) Comparison between the conductivity of the tilted Graphene in
directions perpendicular and parallel to the tilt as a function of the tilt parameter η for values of
the normalized energy as z = 1, 5 and 10. Around zero tilt both the parallel and perpendicular
conductivities, calculated from the Kubo formula, correspond to the isotropic value; while
increasing the tilt develops an anisotropy such that the perpendicular conductivity diverges,
while the parallel one continues to grow up to a finite value.

55



tivities (4.47) and (4.48) are plotted in Fig. 4.1 as a function of the tilt parameter η, for

different values of z. First, notice that the result coincides with that in Eq. (4.46) for zero

tilt, i.e. in the limit η → 0, where we retrieve also σxx = σyy. Figure 4.2 shows a com-

parison between the conductivities (4.47) and (4.48) obtained from the Kubo approach

(dashed lines) and those from the covariant Boltzmann formula, Eqs. (4.31) and (4.30).

The only difference resides in the offset of δσ = σ0/4z = σ0/8ετ , which is due to the

quantum corrections that are neglected in the latter approach. This offset becomes less

relevant at larger values of the tilt where the conductivities are enhanced. This enhance-

ment can globally be understood from the density of states that increases with the tilt

parameter. However, this argument in terms of the density of states does not explain the

strong anisotropy in the conductivities. While the conductivity σtilt along the tilt direction

remains finite and saturates at a value of

σtilt(η → 1) = σ0

(
ετ +

1

8ετ

)
, (4.49)

i.e. the Boltzmann contribution is doubled with respect to the η → 0 limit (4.46), and the

conductivity in the perpendicular direction diverges[178] as

σperp(η → 1) ∼ σ0ετ/
√

1− η2. (4.50)

One thus obtains the same behavior (4.32) for the ratio between the conductivities as in

the Boltzmann analysis.

This difference in the conductivities stems from the anisotropy of the velocities and

mobilities in two directions. Experimentally observed results show that when applying

strain to the graphene crystal, the group velocity of the carriers along the strain drops

by increasing the strain whereas the group velocity along the perpendicular direction to

the strain increases.[179] The tilt affects the carrier density by increasing the number of

available states,[136] but ultimately in the surge of scattering events in a tilted (elliptic)

isoenergy surface, carrier scattering into a state along the perpendicular direction (ellipse

shorter axis) is much more probable than along the tilt (the larger axes) due to the smaller

momentum difference. Hence, the mobility of the carriers is largely influenced by the

direction of the tilt.[180] This result is inline with another empirical finding showing that

the magnetoresistance takes its maximum measure along the tilt direction in α-(BEDT-

TTF)2I3 organic conductors.[174]
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Figure 4.2: (Color online) Comparison between the conductivities σtilt/σ0 and σperp/σ0 of
the tilted Graphene in terms of the tilt parameter for energies at z = 1, 5 and 10. Conductivity
Calculated from the Kubo formula (dashed) agree with the covariant Boltzmann approach
(solid) in (4.31), (4.30). While the perpendicular conductivity diverges in critical limit; the
conductivity parallel to tilt direction saturates at finite value.
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4.4. Type-I Weyl Semimetal

4.4.1. Boltzmann equation

In this section, we present the core result of this chapter and investigate the magneto-

conductivity of type-I Weyl semimetals based on the covariant formalism introduced in

Sec. 4.2. Consider a Weyl material in the presence of perpendicular electric and magnetic

fields – again, we choose the magnetic field to be oriented in the z-direction and a tilt in

the x-direction, i.e. the associated electric field is oriented in the y-direction. The essen-

tial part of the 3D Hamiltonian of this system, according to (4.4), can be cast into the form

H̃Weyl − v0kx1, and, similar to the discussion in 4.2, has a Lorentz symmetric equivalent.

We apply a Lorentz boost in the x-direction with drift velocity v0 = E0/B to work in a

frame where the electric field vanishes. Noting the representation of the Lorentz boost, the

bias fields transform along the boost direction as δE ′y(z) = γδEy(z), δE ′x = δEx and the

magnetic field as B′z = γ−1 Bz. Taking the axis of the polar coordinate, θ = 0, along the

boost direction, simplifies the expressions and using this parametrization in the co-moving

frame we obtain ∇k′ε
′ = vF (cos θ′, sin θ′ cosφ′, sin θ′ sinφ′). Next, implementing the

relativistic addition formula, the velocities transform accordingly as

vx = vF
η + cos θ′

1 + η cos θ′
, (4.51)

vy = vF
sin θ′ cosφ′

γ(1 + η cos θ′)
, (4.52)

vz = vF
sin θ′ sinφ′

γ(1 + η cos θ′)
. (4.53)

Considering the relativistic aberration of the polar angle θ under the Lorentz boost, (4.27),

then the solid angle and consequently, the conic cross section transforms as dΩ = γ−2dΩ′/(1+

η cos θ′)2 where dΩ′ = d(cos θ′)dφ′/(4π) and the azimuthal angle as dφ = dφ′. Thus, the

nonequilibrium current in the lab frame for each spatial direction will give

Jx =
−e2τ

2π2

∫
ε′2dε′

vF

(
∂f (0)

∂ε′

)

∫
dΩ′

γ2

(cos θ′ + η) cos θ′

(1 + η cos θ′)3
δE ′x, (4.54)

Jy =
−e2τ

2π2

∫
ε′2dε′

vF

(
∂f (0)

∂ε′

)

∫
dΩ′

γ3

sin2 θ′ cos2 φ′

(1 + η cos θ′)3
δE ′y, (4.55)

Jz =
−e2τ

2π2

∫
ε′2dε′

vF

(
∂f (0)

∂ε′

)
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∫
dΩ′

γ3

sin2 θ′ sin2 φ′

(1 + η cos θ′)3
δE ′z. (4.56)

As a result, we obtain in the lab frame for the conductivity parallel to the boost

σtilt = σ0
ε2τ

π vF

(
tanh−1 η − η

η3

)
. (4.57)

Similarly for the conductivity in the direction perpendicular to the boost we get

σperp = σ0
ε2τ

π vF

(
γ2η − tanh−1 η

2η3

)
. (4.58)

In the zero-tilt limit, γ → 1, we obtain the isotropic conductivity as σtilt = σperp =

σ0 ε
2τ/(3πvF ), recovering the same result as obtained using semiclassical Boltzmann

equation in zero temperature reported elsewhere in the literature. [181–183]

4.4.2. Kubo formalism

Again, we compare the result obtained from the covariant Boltzmann equation to the

conductivity calculated within linear response theory. We write a minimal type-I Weyl

semimetal Hamiltonian with a tilt in the z-direction (Fig.4.3), parametrized by η =

v0/v < 1 as

H = vF k · σ + η vF kz. (4.59)

Similar to the case of graphene, the unitary transformation U = e−i
θ
2
σ·n̂, where n̂ =

ẑ × k/
√
k2
x + k2

y , brings the Weyl Hamiltonian into the diagonal form. In this basis, the

Green’s function through the polar parametrization reads

G
R/A

(ε) =
∑

α=±

(1 + α σz)/2

ε− v k(η cos θ + α)± iΓ , (4.60)

and the spectral function, in terms of the dimensionless variables give similar diagonal

form as defined in Eq. (4.37) with

A± =
1

[z − y(η cos θ ± 1)]2 + 1
. (4.61)

Writing the velocity operators in energy basis, as given in Eq. (4.39), we obtain the band

diagonal velocities (using spherical coordinates)

vαµ = (α sin θ cosφ, α sin θ sinφ, η + α cos θ), (4.62)
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Figure 4.3: The conical spectrum of a tilted Weyl crossing.

and the off-diagonal velocities are

vαα
′

x = e−iφ(cos θ cosφ+ i sinφ), (4.63)

vαα
′

y = e−iφ(cos θ sinφ− i cosφ), (4.64)

vαα
′

z = −e−iφ sin θ. (4.65)

To compute the conductivity using Eq. (4.34), we write accordingly the conductivity as

σµµ =
e2 Γ

π vF
〈Πµµ〉, (4.66)

where the polarization tensor is defined as before in Eq. (4.42) with the velocities given

in Eqs. (4.62)-(4.65). Moreover, we define the three-dimensional momentum and angular

integrals now as 〈· · · 〉 = (2π)−3
∫∞

0
y2dy

∫ π
0

sin θdθ
∫ 2π

0
dφ. One thus finds the conduc-

tivity

σperp(= σxx = σyy) = σ0
Γ

2π vF

(
a1 z

2 + a2

)
, (4.67)

σtilt(= σzz) = σ0
Γ

2π vF

(
a3 z

2 + a4

)
, (4.68)

where the second term yields the (intrinsic) quantum correction to the conductivity due

to the band mixing effects,[184] and the first term is the Drude conductivity which coin-
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cides with the result of the Boltzmann equation in the diffusive limit z � 1. The other

parameters are defined as

a1 =
η − (1− η2) tanh−1 η

2η3(1− η2)
, (4.69)

a2 =
η + (1− η2) tanh−1 η

2η(1− η2)
, (4.70)

a3 =
tanh−1 η − η

η3
, (4.71)

a4 =
tanh−1 η

η
, (4.72)

and we have restored σ0 by noting that h = 2π. In the limit of zero tilt (η → 0), we obtain

the isotropic conductivity

σxx(= σyy = σzz) = σ0
Γ

4π vF
(z2/3 + 1), (4.73)

recovering the results obtained in previous works using linear response calculations.[132,

133, 185] In figure 4.4, we compare the conductivity of a type-I WSM for zero tilt with

Fermi velocity v ≈ c/300, where c is the speed of light, and constant relaxation time

τ = 10−7s using the Boltzmann approach and Kubo formalism. As in the 2D case, we
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Figure 4.4: (Color online) Isotropic conductivity σw = σ0
Γ

4π vF
of Weyl semimetals with

zero tilt (η = 0) as a function of the normalized energy z. The results calculated from
the Boltzmann and Kubo approaches agree except for a small offset. This nonzero residual
conductivity is due to the band coherence contributions.
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notice a significant increase in the conductivities with the tilt in the case of moderate tilt.

The discrepancy between the Kubo and Boltzmann conductivities is inherited from the

zero-tilt case, where we have already noticed that the Kubo formula systematically yields

a larger conductivity. In the same manner as in the 2D case discussed above, the main

sources of this discrepancy are quantum interference effects between the two bands that

are correctly taken into account via the Kubo formula whereas they are not treated yet in

the first order linear approximation of the Boltzmann equation and thus are not present in

its results. In the zero-tilt limit, the (isotropic) conductivity shows a parabolic behavior in

energy that can be understood qualitatively from the behavior of the density of states for

Weyl semimetal, which is quadratic in energy.

In the nonzero tilt limit, we find again, from our calculations based on the Kubo

formula, that the conductivity σperp in the direction perpendicular to the tilt increases and

diverges for η → 1 and that the conductivity σtilt in the tilt direction is smaller than σperp.

However, contrary to the 2D case, σtilt now also diverges upon increasing tilt (Fig.4.5).

The parallel conductivity can be linked to the longitudinal magnetoresistivity if we set the

magnetic field in z-direction. Therefore the finite value of conductivity in the direction

parallel to the tilt is a theoretical evidence of the enhanced longitudinal magnetoresistance

observed in WSM having tilted Weyl points.[165]

This anisotropy in the conductivity can be understood from the covariant point of view

where the tilt velocity is identified with an effective electric field normal to its direction,

v0 = E0 ×B/B2. Thus in effect, the auxiliary field enhances the conductivity along the

field (perpendicular the tilt direction).

To further corroborate our approach in terms of the covariant Boltzmann equation,

we further inspect the anisotropy and the directional features in the conductivity in the

framework of a semiclassical non-covariant Boltzmann equation. In this case, we take

into account the tilt-induced anisotropy directly in the expression for the averaged veloc-

ities, without appealing to Lorentz boosts to a frame of reference, where the dispersion

becomes effectively isotropic. We can then write the conductivity as

σµν =
e2τ

2π2v3
F

〈
vµvν

(1 + η cos θ)3

〉

Ω

, (4.74)

in terms of the band velocities given in Eq. (4.62) where 〈· · · 〉Ω denotes the averaging

over the random solid angles. In performing the angular integrals, the velocity vz com-

pensates partially for the diverging behavior of the density of states and, as a result, yields

a less divergent expression for σzz. In contrast, the vx and vy velocities produce a more

singular result and thus yield a strongly divergent behavior of σxx and σyy. The calculated
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Figure 4.5: (Color online) Comparison between the parallel-perpendicular conductivity of
type-I WSM computed from the Kubo formula in terms of the tilt parameter, for different
values of the normalized energies. The conductivity in both directions diverge for η → 1, but
the divergence is more pronounced in the direction perpendicular to the tilt. In the zero-tilt
limit, both conductivities match restoring the isotropic value.
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conductivity using the non-covariant Boltzmann equation then gives the expressions

σxx = σyy = σ0
ε2τ

πvF

η − (1− η2) tanh−1 η

2η3(1− η2)
, (4.75)

σzz = σ0
ε2τ

πvF

tanh−1 η − η
η3

, (4.76)

which agree with (4.58) and (4.57) obtained from the covariant Boltzmann approach. This

further confirms the accuracy of the results obtained from the Kubo formula and covariant

Boltzmann approach.

As in the 2D case and the above-mentioned zero-tilt limit for Weyl semimetals, we,

therefore, find a high degree of accuracy between the Kubo-formula approach and the

results from the covariant Boltzmann equation over the whole range of tilt parameters η.

This is summarized in Fig. 4.6. Again, the main difference stems from the conductiv-

ity offset due to interband contributions that are neglected in the Boltzmann approach.

Overall, we find that the increase in the conductivities with the tilt parameter is more pro-

nounced at larger energies, i.e. upon increasing z. This is also represented in the form of

a color plot in Fig. 4.7, where we plot the conductivity σperp in the plane spanned by the

tilt parameter and the energy.

4.4.3. Density of states as a function of the tilt parameter

The increase of the conductivity with the tilt of the Weyl cones can be understood qual-

itatively from an analysis of the density of states (DOS), g(ε), which enters into the ex-

pression of the conductivity in the Einstein relation for a system of d-dimension

σE =
e2v̄2τ

d
g(ε) ∝ g(ε), (4.77)

that we use here for qualitative analysis. The parameter v̄ represents an average velocity

since the Einstein relation does not make a difference between the directions contrary to

the more appropriate Boltzmann or Kubo formulas. The tilt of the Weyl cones enlarges

the Fermi surface and thus increases the DOS. This yields eventually an enhanced con-

ductivity in the type-I WSM. The hike of the DOS can be justified using both Lorentz

covariance and Sommerfeld expansion. From the covariance point of view and due to the

length contraction in lab frame in the direction of boost, it is easy to see that the particle

density scales as dn = γ dn′. Furthermore, since n =
∫
dε g(ε) f(T ≈ 0), and noting the

transformation of energy, the DOS in lab frame, by applying the inverse Lorentz boost,

then gives g(ε) = γ2 g′(ε′). Therefore the expression for the DOS of Weyl semimetals in
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Figure 4.6: (Color online) Conductivity of the tilted type-I WSM perpendicular and paral-
lel to the tilt direction computed from the covariant Boltzmann equation (solid) and Kubo
formula (dashed). The conductivities are expressed as a function of the tilt parameter for
different values of the normalized energy z. The perpendicular conductivity enhances and
diverges at critical value η = 1 while the parallel increases but stays finite in the critical limit.
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Figure 4.7: (Color online) Density plot of the normalized perpendicular conductivity in terms
of the tilt degree and chemical energy.
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the lab frame reads

g(ε, η) =
γ4

2π2

ε2

v3
F

, (4.78)

which is plotted in Fig. 4.8. One notices that the behavior of the DOS reflects indeed, as

expected, that of the conductivities. However, we insist that our argument in terms of the

DOS is qualitative and not sufficient to explain the anisotropy in the conductivities σtilt

and σperp. Notice that the increase of the DOS as a function of the tilt parameter can be

absorbed into a renormalized Fermi velocity (see Fig. 4.9), with

v∗F
vF

= (1− η2)2/3. (4.79)

In general, the DOS can be calculated by counting the number of occupied states

below an energy level. For the WSM having the dispersion (4.59) we obtain

g(ε) =

|k|<kF∑

k

δ
(
vFk(η cos θ + α)− εF

)

=
ε2

4π2 v3
F

∫ π

0

sin θdθ

(η cos θ + α)3
. (4.80)

In the limit of 0 < η < 1 this integral yields the same result (4.78) as that obtained from

the covariance point of view.

4.5. Conclusion

In conclusion, we have studied the influence of the tilt in the dispersion of graphene (or

two-dimensional graphene-like systems) and type-I WSM on the magneto-conductivity.

The tilt can be described elegantly within a covariant framework of the Dirac equation

since it can be viewed as an effective electric field that conspires with the magnetic field.

In the case of type-I WSM with moderate tilts, η < 1, a Lorentz boost into the co-

moving frame of reference characterized precisely by the tilt velocity v0 allows one to

get rid of the electric field – this is the co-called magnetic regime in electrodynamics.

This relativistic effect, accompanied by a Lorentz transformation back to the lab frame,

yields an increased conductivity that we have studied here within the covariant form of

the Boltzmann transport equation both in two and three spatial dimensions. We have

systematically compared the results of the conductivity from the covariant Boltzmann

equation to calculations within the Kubo formula of linear response theory. Furthermore,

the conductivities perpendicular to the tilt direction, calculated within the Boltzmann and

Kubo approach, are enhanced by an extra factor, both in two- and in three-dimensional
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cases, as compared to the direction parallel to the tilt. This demonstrates that transport in

a tilted system becomes directional where σtilt < σperp. This smaller conductivity along

the field direction (z-direction) agrees with the experimental evidence on the extremely

large and nonsaturating longitudinal (z-direction) magnetoresistance reported on type-I

WSM.

Our findings can qualitatively be understood with the help of the DOS, to which the

conductivities are roughly proportional, within the simplified picture provided by Ein-

stein’s relation. The tilt enhances the DOS by some power of the relativistic Lorentz

factor γ = 1/
√

1− η2, which generally enters the expressions, for the conductivities on

the one hand and for the DOS, scattering time and effective Fermi velocity on the other

hand. We further observe that the power of the Lorentz factor that enters in the expres-

sions of the (surface) conductivities, depends on the orientation of the tilt with respect to

that of the conductivity as well as on the system’s spatial dimension. For the renormal-

ization of the effective Fermi velocity, for example, we find v∗F = vF γ
−β with β2D = 3/4

and β3D = 2/3. Thus measuring the ratio v∗F/vF experimentally would allow for an

experimental determination of the tilt and its magnitude in a type-I WSM.
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Appendix A

COHERENT DYNAMICS OF DIRAC PARTICLES IN GRAPHENE

A.1. Tightbinding of the Dirac Hamiltonian

The orbital motion of an electron in the honeycomb lattice of graphene is approximated

by the bare hopping Hamiltonian (where we use the units ~ = 1)

H0 = t
∑

ri,δj

(|ri〉〈ri + δj|+ h.c) , (A.1)

where |ri〉 and |ri + δj〉 represent the orthogonal basis comprised of the single electronic

π-orbitals in sites A and B, respectively, and δj represents the infinitesimal displacement

between the two nearest atomic sites. The tight binding Hamiltonian in the second quan-

tized form reads

H0 = t
∑

ri,δj

(
ψ†A(ri) ψB(ri + δj) + h.c

)
, (A.2)

where ψ†A/B(ψA/B) are the operators creating (annihilating) particles at the corresponding

position of the atomic sites A and B. The parameter t is the nearest neighbor hopping

which for graphene is about t = 3 eV [45]. The carbon atoms are localized in graphene

lattice around ri = n1a1 + n2a2 where a1 and a2 are the primitive cell vectors. Further-

more, the unit vectors connecting the triangular lattice points are given by, Fig.2.1,

δ1 = a (0,
1√
3

), δ2 =
a

2
(1,− 1√

3
), δ3 =

a

2
(−1,− 1√

3
), (A.3)

where the lattice spacing is about a = 1.42 Å. By mapping the local electronic basis into

the Bloch basis via a Fourier transform

|k〉 =
1√
N

∑

ri

eiri·k |ri〉, (A.4)
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where N is the number of unit cells, we can cast the orbital Hamiltonian into the Bloch

form H0 =
∑

kH0(k) and extract the linear dispersion relation. The conduction and

valence bands cross at two time reversal momenta Kτ = τ(4π
3a
, 0), so-called valleys in

graphene, where τ = ± is the valley index and K± = ±K.

Next we turn into the second quantized form and use the field operators (localized

basis) consisting of an extended envelope functions around the each valley momenta and

attempt to obtain the electronic structure and effective Hamiltonian. The field operator

then reads

ψ(ri) =
∑

τ=±
ψτ (ri) e

−iKτ ·ri . (A.5)

It is straightforward to show that the tight binding model in Eq. (A.1) reproduces the

standard Dirac Hamiltonian for graphene

H0 = t
∑

ri,δj

( [
ψ†+A(ri)e

iK·ri + ψ†−A(ri)e
−iK·ri

]
×

[
ψ+B(ri + δj)e

−iK·(ri+δj) + ψ−B(ri + δj)e
iK·(ri+δj)

]
+ h.c

)
,

= t
∑

ri,δj

(
ψ†+A(ri)ψ+B(ri + δj) e

−iK·δj + ψ†−A(ri)ψ−B(ri + δj) e
iK·δj + h.c

)
,

(A.6)

where ψτ,σ = ψτ ⊗ ψσ with τ and σ being the valley and sublattice degrees of freedom.

On writing this representation we neglected the intervalley scattering terms. Next, since

δ � 1, we use the Taylor expansion for the field operator for the sublattice B as

ψ±B(ri + δj) = ψ±B(ri) + δj · ∇ψ±B(ri) +O(|δ|2), (A.7)

and in light of the relations

3∑

j=1

e±iK·δj = 0,
3∑

j=1

δj e
±iK·δj =

a
√

3

2
(±i, 1), (A.8)

and, furthermore, applying the integration by parts by noting that (∇ψB)ψA = ∇(ψBψA)+

ψB∇ψA, we arrive at

H0 =
ta
√

3

2

∑

ri

(
ψ†+A(ri)∂ψ+B(ri) + ψ†−A(ri)∂

∗ψ−B(ri)

− ψ†+B(ri)∂
∗ψ+A(ri) + ψ†−B(ri)∂ψ−A(ri)

)
. (A.9)

where for simplicity we defined ∂ = i∂x + ∂y and its complex conjugate. Noting that the

momentum operator in real space gives k = −i∇, the continuum representation of the
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Hamiltonian will give

H0 = −
∫
d2r Ψ† h Ψ, (A.10)

where the orbital Hamiltonian is

h = vF τ0 ⊗ (−i∂x σx − i∂y σy), (A.11)

and the effective Fermi velocity is vF =
√

3at/2~ ≈ 0.9 × 106 m/s, and the valley

isotropic basis is, [46],

Ψ† =
(
ψ†+A ψ†+B −ψ†−B ψ†−A

)
. (A.12)

This concludes that the two valley tightbinding representation, also, yields the standard

Dirac Hamiltonian for graphene.

A.2. Keldysh formalism

In this section, we rederive the quantum Boltzmann equation from the Keldysh formalism

by supplementing the Dyson equations. The two point Green’s functions in the notation

where x = (t, r) satisfy the left and right Dyson’s equations

(G−1
0 − Σ) ◦G = 1, G ◦ (G−1

0 − Σ) = 1, (A.13)

or their compact form

[G−1
0 − Σ ◦, G]− = 0, (A.14)

where the notation ◦ stands for the convolution of two operators. The nonequilibrium

Green’s functions, here, are matrices in the Keldysh space and defined as

G =

(
GR GK

0 GA

)
, and Σ =

(
ΣR ΣK

0 ΣA

)
. (A.15)

Now substituting these matrices back into Dyson’s equation yields a matrix equations,

whose diagonal component reads

(
G−1

0 − ΣR(A)
)
◦GR(A) = 1, (A.16)

and the same equation can be written for its Hermitian conjugate. Likewise, for the off-

diagonal component we get

(
G−1

0 − ΣR
)
◦GK = ΣK ◦GA. (A.17)
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Subtracting last relations from its conjugate would relate the Keldysh, retarded and ad-

vanced Green’s functions, i.e,

[GR]−1 ◦GK −GK ◦ [GA]−1 = ΣK ◦GA −GR ◦ ΣK . (A.18)

We, next, parameterize the Keldysh function with the help of a “generalized distribution

function” f as

GK = GR ◦ f − f ◦GA, (A.19)

such that Wigner transformation of this will give back the general distribution function up

to zeroth order as g = GRf − fGA. This parameterisation allows us to derive an equa-

tion of motion for the distribution function from the equation of motion for the Green’s

function. We put the equation (A.17) into the form

(
G−1

0 − ΣR
)
◦GK ◦

(
G−1

0 − ΣA
)

= ΣK , (A.20)

now using the parametrization of the Keldysh function (A.19), we obtain

− [G−1
0
◦, f ]−︸ ︷︷ ︸

kinetic term

= Σk − (ΣR ◦ f − f ◦ ΣA)︸ ︷︷ ︸
collision term

. (A.21)

Noting that the bare Green’s function is given byG−1
0 (x1) = i∂t1 +ivF σ ·∇r1−Vcl(r1, t1),

next, setting Vcl = 0, then the left-hand side commutator up on Wigner transform may be

written as

− [i∂t1 + ivF ~σ · ∇r1 − Vcl(r1, t1) ◦, f ]−
WT−−→

− i[ε, f ]
PB

+ vF

(
[σk, f ]− +

i

2
([σk, f ]

PB
− [h, σk]

PB
)
)

= −i∂tf + vF [σk, f ]− −
ivF
2

[~σ,∇rf ]+ . (A.22)

To compute the collision terms we first need to specify the approximate form of the self-

energies. In the self-consistent Born approximation the lowest order self-energy after

averaging over impurity configurations according to Dyson equation is

Σ(x1, x2) = 〈V (x1) G(x1, x2) V (x2)〉. (A.23)

Assuming the random Gaussian disorder where

〈V (x1)V (x2)〉 = γδ(x1 − x2), 〈V (x1)〉 = 0, (A.24)
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the Wigner transform (WT) of the self-energy term becomes

Σ(r1−r2; t1−t2) = γδ(r1−r2) G(r1, r2; t1−t2)
WT−−→ Σ(k, ε) = γ

∑

k′

G(k−k′, ε)

(A.25)

on the other hand we have

ImΣ(r1, r2; ε)δ(r1 − r2) = γ ImG(r1, r1; ε) (A.26)

after integration and noting the space-resolved density of states, DOS = −
∫

dx
π

ImG(x, x; ε),

and the decay time, ImΣ = − 1
2τ

, one gets γ = 1
2πτ DOS and therefore

Σ(k, ε) =
1

2πτ DOS

∑

k′

G(k− k′, ε). (A.27)

Now the Wigner transform of the collision term becomes

Σk − (ΣR ◦ f − f ◦ ΣA)
WT−−→ 1

2πτ DOS

∑

k′

gk′

− 1

2πτ DOS

∑

k′

(
GR(k′, ε) fk − fk GA(k′, ε)

)
,

=
1

τ
ρ+

i

τ
fk, (A.28)

where we have defined ρ = 1
2π DOS

∑
k g, and the sum over the momentum is performed

via integrating out the band structure energy ξ and averaging over the momentum direc-

tion, i.e,

∑

k′

−→ DOS
∫
dξ
∑

k̂′

, ξ = ε(k′)− µ. (A.29)

Overall combining the kinetic and collision terms we finally obtain

∂tfk + ivF [σk, fk]− +
vF
2

[~σ,∇rfk]+ = i
ρ

τ
− fk

τ
, (A.30)

where multiplying this relation from the left with GR and form the right with GA and

subtracting two relations yields

∂tgk + ivF [σk, gk]− +
vF
2

[~σ,∇rgk]+ =
i

τ

(
GR(k, ε) ρ− ρ GA(k, ε)

)
− gk

τ
. (A.31)

A.3. Derivation of the diffusion equations

In this appendix, we establish the set of diffusion equations from the transport equation

to study the real space kinetics Dirac particles in graphene. The stationary source term in
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Eq.2.89 reads

L(0)

kz (ρ) = πτ−1

{(
(1 + σk̂)ρ0 + k̂ · s + s · σ

)
δ(z − ξ+

k )

+
(
(1− σk̂)ρ0 − k̂ · s + s · σ

)
δ(z − ξ−k )

}
, (A.32)

where to derive this relation we reexpressed the density matrix in a vector form, i.e,

ρ = n+ σ · s, s = (s1, s2, s3). (A.33)

We have vividly made use of the following relations

σkσk′ = (k · k′) + iσ · (k× k′), (A.34)

[σk, σk′ ]− = 2i(k× k′) · σ, (A.35)

σkσ = k− ik× σ, (A.36)

σσk = k + ik× σ, (A.37)

σiσjσ` = δijσ` + iεijr σrσ` = δijσ` + δ`jσi − δi`σj + iεij`, (A.38)

σkσσk = 2(σ · k)k− σ, (A.39)

σk̂σσk̂ = 0. (A.40)

The different corrections to the solution of the equation Eq.2.89then give

g(0)

k,ε± = a1(ρ0 ± k̂ · s) +
(
a1 n k̂ + a2 s + a3 k̂× s + a4 (s · k̂) k̂

)
· σ, (A.41)

g(1)

k,ε± = B0 + Biσi, (A.42)

g(2)

k,ε± = −vF
{(

(ξ1 − ξ3)σi + 2iξ2 εji`kjσ` + 2ξ3 kikjσj
)
∂iB0 + (ξ1 + ξ3)∇ · B

}

(A.43)

(A.44)

where

B0 = b1 ∂isi + b2 ki∂in+ b3 εij`kj∂is` + b4 kikj∂isj (A.45)

Bi = b1 ∂in+ (±b1 kj∂isj + b3 kjεij` ∂`ρ0)

+ (b4 kikj∂jn∓ b3 kjkmεi`m∂`sj)± b4 kikjk`∂`sj. (A.46)

We iteratively derive the above relations using

L(1)

kε (g(0)

k,ε±) = −vF
{
a1(∂in± kj∂isj)σi + (a2∂isi + a1ki∂in+ a3εij`kj∂is`

+ a4kikj∂isj)
}
, (A.47)
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L(1)

k,ε±(g(1)

kε ) = −vF
(
σ · ∇B0 +∇ · B

)
, (A.48)

where the coefficients in the limit of ατ � 1, and defining γ = ετ , are given as

a1 = π, a2 = π 1
1+4γ2

, a3 = 2π γ
1+4γ2

, a4 = 4π γ2

1+4γ2
,

b1 = −π vF τ
1+4γ2

, b2 = −vF τ π, b3 = −2π vF τγ
1+4γ2

, b4 = −4π vF τγ
2

1+4γ2
.

(A.49)

We, next, reduce the transport equation that we established here into a diffusion model.

To study transport phenomena in realistic physical systems it is essential to formulate a

kinetic equation written in macroscopic variables. The general distribution matrix gk,z

depends on k,x, t, whereas if one integrates out the momentum dependency k it would

result the bare classical distribution matrix depending only on macroscopic variables x, t.

To establish the drift-diffusion equation we integrate over the momentum dependency of

the pertubative solution:

gkε = g(0)

kε
+ g(1)

kε
+ g(2)

kε
. (A.50)

The following averages will be useful in deriving the drift diffusion equation, i.e,

g(0)

kε = a1 n+ (a2 +
a4

2
) σ · s, (A.51)

g(1)

kε = (b1 +
b4

2
) ∇ · s + (b1 +

b4

2
) ∇n · σ +

b3

2
(∇× s) · σ, (A.52)

g(2)

kε = d1∇2n+ d2∇(∇ · s) · σ + d3 ∇2s · σ, (A.53)

where the average means the momentum integration g(k) =
∫

dk
(2π)2

g(k) where the com-

ponents of the momentum vector in two dimensions read k = k(cosφ, sinφ). Note that

while averaging over the momentum directions we have used the relations

ki1ki2 =
1

2
δi1i2 , ki1ki2ki3 = 0, k4

i1
=

3

8
, k2

i1
k2
i2

=
1

8
,

ki1ki2ki3ki4 =
3

8
δi1i2δi2i3δi3i4︸ ︷︷ ︸
identical indices

+
1

8

(
δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi3i2

)
, (A.54)

∂ij kikjktk` σts` =
3

8
∂2
i siσi +

1

8
(∂2
i sjσj + 2∂ijsjσj),

=
1

8
σi∂

2
j si +

1

4
σi∂ijsj =

1

8
σ ·
(
∇2s⊥ + 2∇(∇ · s⊥)

)
, (A.55)

where s⊥ = (s1, s2). We furthermore defined the coefficients as

d1 = −vF (ξ1 + ξ3)(b1 +
b4

2
) = πv2

F τ
2 1 + 2γ2

1 + 4γ2
, (A.56)
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d2 = −vF (−iξ2b3 +
ξ3b4

4
) = 2πv2

F τ
2 γ2 − γ4

(1 + 4γ2)2
, (A.57)

d3 = −vF
(
ξ1(b1 +

b4

2
) + iξ2b3

)
= πv2

F τ
2 (1 + 2γ2)2 + 2γ2

(1 + 4γ2)2
. (A.58)

Substituting these results back into the kinetic equation one obtain the set of diffusion

equations which will be used to study the coupled dynamics of charge carriers in graphene,

namely,

D∇2n− vF ∇ · s⊥ = 0, (A.59)

z1 D∇2s⊥ + z2 D∇(∇ · s⊥)−z3
vF
2
∇n =

γ2

(1 + 4γ2)

s⊥
τ
, (A.60)

z4 D∇2s3 −z5
vF
2

(ẑ×∇) · s⊥ =
γ2

1 + 4γ2

s3

τ
, (A.61)

where we defined

z1 =
(1 + 2γ2)2 + 2γ2

(1 + 4γ2)2
, (A.62)

z2 =
2(γ2 − γ4)

(1 + 4γ2)2
, (A.63)

z3 =
1 + 2γ2

2(1 + 4γ2)
, (A.64)

z4 =
(1 + 2γ2)2 + 2γ2

(1 + 4γ2)2
, (A.65)

z5 =
γ

1 + 4γ2
. (A.66)

A.4. Charge-spin coupling

In this part, we derive the microscopic model of charge-spin coupling for graphene’s Dirac

particles in a transport regime where the SOC strength is strong. The (pseudo)spin current

can be defined as

J = evF tr
(
σ
∑

k

fk
)
. (A.67)

Note that the general distribution matrix was given by (2.86), hence,l using the matrix

form of the Green’s functions and integrating over the energy variable we obtain

fk =
1

2

∫
dz gkz. (A.68)
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Now, using the above relation we express the current as

J =
evF
2

∫
dz
∑

k

tr
(
σ gkz

)
, (A.69)

and using the perturbative expressions of gkz as it is given in A.50 then we find that

Jcharge =
e

2

∫
dz (vF s +D∇n). (A.70)

The charge density and charge current on the other hand is defined in the second quanti-

zation language as

ρe(r) = e ψ†(r)ψ(r), J(r) = e Re{ψ†(r) v ψ(r)}, (A.71)

such that one can Analogously define the spin density and spin current

s(r) = ψ†(r) Ŝ ψ(r), Js(r) = Re{ψ†(r) Ĵs ψ(r)}, (A.72)

where the spin and spin current operators now give

Ŝ =
~
2
~σ, Ĵs =

1

2
[Ŝ,v]+ =

~
4

[~σ,v]+ , (A.73)

where spin density is a vector while spin current is a tensor of rank 2 having two cartesian

components. For the Dirac Hamiltonian given by

H = vF σ · k, (A.74)

the velocity operator is the pseudospin operator which reads

ẋi =
vF
i~

[xi, pj]− σj = vF σi, (A.75)

and the pseudospin current is

Ĵνi =
~
4

[σν , ẋi]+ =
~vF

2
δ
ν

i . (A.76)

Next averaging over the statistical ensemble gives the pseudospin current gives as

Jνi = tr
(∑

k

fk Ĵνi
)
,

=
vF
2
δ
ν

i

∫
dz tr

(∑

k

gkz

)
,

=
vF
2
δ
ν

i

∫
dz
(

tr g(0)

kε + tr g(1)

kε

)
,

=
1

2
δ
ν

i

∫
dz
(
vF ρ0 +

4(1 + 2γ2)

1 + 4γ2
D∇ · s

)
,
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=
1

2

(
vF n +

4(1 + 2γ2)

1 + 4γ2
D∇ · s

)
δ
ν

i ,

=
1

2

(
vFn + D∇ · s

)
δ
ν

i , (A.77)

where we have used the perturbative expression for the distribution function and the total

charge and the total pseudospin densities are defined through

n =

∫
dz ρ0, s =

∫
dz s. (A.78)

The direction of spin orientation (spin polarization) is given by the statistical average

of spin operator

p = 〈Ŝ〉 = tr(ρ Ŝ) = S. (A.79)

96



Appendix B

LORENTZ TRANSFORMATION OF THE DIRAC HAMILTONIAN

In this appendix, we provide details for the Lorentz transformation (LT) of the Hamilto-

nian (4.4). As mentioned in the main text, we redefine this Hamiltonian as H̃ = H−v0kx1

and, for convenience, set Φ = Φbias − Φeff. Using (4.5) and (4.6), the eigenvalue problem

after applying a pure Lorentz boost in x-direction, where η = tanhϑ, gives
(
eϑσx/2 H̃ eϑσx/2 − ε eϑσx

)
|ψ̃〉 =

{
γ




eΦ + vFηπx − ε vFπx − ηε+ eηΦ

vFπx − ηε+ eηΦ eΦ + vFηπx − ε


+ vFkyσy

}
|ψ̃〉,

=
(
vF (k′x − eA′x)σx + vF k

′
yσy + e Φ′ − ε′

)
|ψ̃〉,

where the kinetic momentum is π = k − eA and |ψ̃〉 = e−ϑσx/2|ψ〉. In the last line, we

have used the LTs

k′x = γ(kx − η
ε

vF
), ε′ = γ(ε− v0kx) = γε, (B.1)

and note that v0 = ηvF . Moreover, the four-potential Aµ = (Φ/vF ,A) likewise trans-

forms as



A′ 0

A′ 1

A′ 2

A′ 3




=




γ −γη 0 0

−γη γ 0 0

0 0 1 0

0 0 0 1







A0

A1

A2

A3



, (B.2)

where γ = (1− η2)−1/2. We thus obtain

Φ′ = γ(Φ− ηvFAx), (B.3)

A′x = γ(Ax − η
Φ

vF
), (B.4)
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and A′y(z) = Ay(z) = 0. Furthermore, noting that vboost = vdrift = E0 ×B/B2, for E0 =

v0B ŷ and B = B ẑ, one finds that vboost = vdrift = v0 x̂. The rapidity of the transformation

is also defined as η = tanhϑ = E0/vF B. In magnetic regime ηδE/vF � ηE0/vF < B,

and in the Landau gauge, we ultimately obtain

Φ′eff = γ(Φeff − ηvF Ax) = γ(−E0 + v0B)y = 0, (B.5)

Φ′bias = γ Φbias = −γ δEy, (B.6)

A′x = γ(Ax − ηΦ/vF ) ≈ −γ(B − ηE0/vF )y,

= −γ−1By. (B.7)

This implies that the boost removes the effective field in the Hamiltonian (4.4) such that

now in the boosted frame we simply have

H̃ ′ = vF (k′ − eA′) · σ + eΦ′bias. (B.8)
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Appendix C

RENORMALIZATION OF EINSTEIN RELATION

We, here, illustrate how the conductivity is originated from the systems microscopic dy-

namics according the Einstein’s kinetic relation. The number of occupied states according

to the Boltzmann distribution function is defined as

n =

∫
dk f(ε) =

∫ +∞

−∞
dε DOS(ε) f(ε), (C.1)

where in low temperature one can adopt the Fermi distribution as the step function or use

the Sommerfeld expansion to simplify the integral into

n ≈
∫ µ

−∞
dε DOS(ε), (T = 0). (C.2)

Therefore, integrating the density of states give the carrier density as

n =
gsgτ
4π

( εF
~vF

)2

, (C.3)

and one obtains

D

µ
=

1

e

n
∂n
∂εF

=
1

2e
εF , (C.4)

where the mobility gives

µ =
e

~
`

kF
= eτ

vF
~
√
πn

. (C.5)

Noting the spin and valley degrees of freedom gS = gτ = 2, D = 1/2v2
F τ and ` = vF τ .

Noting the temperature dependence of the carrier density then mobility of graphene de-

creases by increasing temperature. However in finite temperature the Fermi-Dirac inte-

grals needs to be calculated straightforwardly. In general noting the density of states in

graphene as

DOS(ε) =
gsgτ

2π~2v2
F

|ε|, (C.6)
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then the carrier density yields

n =
gsgτ
2π

(kBT
~vF

)2

F1(βη), (C.7)

where the Fermi-Dirac integral is given by

Fj(α) =
1

Γ(j + 1)

∫ ∞

0

dx
xj

ex−α + 1
. (C.8)

The following asymptotic behavior of Fermi-Dirac integrals, [186], will prove useful in

interpreting the temperature dependence of carrier density

Fj(
η

kBT
) =





e
η

kBT , µ� kBT,

1
Γ(j+2)

(
η

kBT

)j+1{
1 + π2

6
Γ(j+2)

Γ(j)

(
kBT
η

)2

+O(T 4)
}
, µ� kBT.

(C.9)

Therefor, for linear dispersion at low temperature where ξ = η/kBT � 1 the carrier

density gives

n =
gsgτ
4π

( η

~vF

)2

(1 + π2ξ2/3). (C.10)

Next, noting the properties of Fermi-Dirac integrals as

∂αFj(α) = Fj−1(α), (C.11)

derivative of the carrier density with respect to the chemical potential becomes

∂n

∂µ
=
gsgτ
2π

kBT

(~vF )2
F0(βη), (C.12)

where

F0(βη) = ln(eβη + 1) = min
( η

kBT
, ln 2

)
. (C.13)

Therefore, in general the mobility is given as

µ = eD
1

kBT

(F0

F1

)
. (C.14)

The generalized Einstein relation thus read

D

µ
=

1

e

n
∂n
∂η

=
kBT

e

F1

F0

(C.15)

=
η

2e

{
1 +

π2

3

(kBT
η

)2}
, (C.16)
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where

F1

F0

=
1

2

η

kBT

{
1 +

π2

3

(kBT
η

)2}
. (C.17)

The origin of this deviation from the classical law rests in the factor F1/F0. In the low

temperature limit one can neglect the second order term in temperature and set η = εF =

~vF
√
πn to obtain

D

µ
=

~
2e
εF =

~
2e

vF
√
πn. (C.18)

This in turn indicates that the Diffusion-mobility relationship in low temperature is purely

quantum mechanical and goes linear in chemical potential (Fermi energy) and does not

depend on the thermal energy.

Now nothing the rescaling of the carrier density and the Fermi velocity in lab frame

as nlab = γn0, vlab
F = γ−3/2vF one can expect the modified form of the Einstein relation

as
(D
µ

)
lab

= γ−1
( ~

2e
vF
√
πn
)
. (C.19)

The conductivity, furthermore, reads σ = neµ, such that in the low temperature we obtain

σ = D e2 ∂n

∂η
= gsgτ

e2

h
Λ, (C.20)

where the dimensionless parameter is denied as

Λ = D
(kF
vF

)
. (C.21)

The calculations we introduced so far are in the absence of external fields and indicate

that that classical Einstein kinetic relation does not hold true in when there is disorder

scattering.
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