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ABSTRACT 

 

LOW ENERGY HEVC AND VVC VIDEO COMPRESSION HARDWARE 
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Thesis Supervisor: Assoc. Prof. İlker Hamzaoğlu 
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Video compression standards compress a digital video by reducing and removing 

redundancy in the digital video using computationally complex algorithms. As spatial and 

temporal resolutions of videos increase, compression efficiencies of video compression 

algorithms are also increasing. However, increased compression efficiency comes with 

increased computational complexity. Therefore, it is necessary to reduce computational 

complexities of video compression algorithms without reducing their visual quality in order to 

reduce area and energy consumption of their hardware implementations. 

In this thesis, we propose a novel technique for reducing amount of computations 

performed by HEVC intra prediction algorithm. We designed low energy, reconfigurable 

HEVC intra prediction hardware using the proposed technique. We also designed a low energy 

FPGA implementation of HEVC intra prediction algorithm using the proposed technique and 

DSP blocks. We propose a reconfigurable VVC intra prediction hardware architecture. We also 

propose an efficient VVC intra prediction hardware architecture using DSP blocks. We 

designed low energy VVC fractional interpolation hardware. We propose a novel approximate 

absolute difference technique. We designed low energy approximate absolute difference 

hardware using the proposed technique. We propose a novel approximate constant 
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multiplication technique. We designed approximate constant multiplication hardware using the 

proposed technique. 

We quantified computation reductions achieved by the proposed techniques and video 

quality loss caused by the proposed approximation techniques. The proposed approximate 

absolute difference technique and approximate constant multiplication technique cause very 

small PSNR loss. The other proposed techniques cause no PSNR loss. We implemented the 

proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx 

Virtex 6 or Xilinx Virtex 7 FPGAs and estimated their power consumptions using Xilinx 

XPower Analyzer tool. The proposed techniques significantly reduced power and energy 

consumptions of these FPGA implementations. 
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DÜŞÜK ENERJİLİ HEVC VE VVC VIDEO SIKIŞTIRMA DONANIMLARI 
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Tez Danışmanı: Doç. Dr. İlker Hamzaoğlu 
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Video sıkıştırma standartları, bir sayısal videonun içindeki gereksiz bilgileri, yüksek 

hesaplama karmaşıklığına sahip algoritmalar yardımıyla, azaltarak veya kaldırarak videoyu 

sıkıştırır. Videoların zamansal ve uzaysal çözünürlüğü arttıkça, video sıkıştırma 

algoritmalarının sıkıştırma etkinliği de artmaktadır. Ancak bu artan sıkıştırma etkinliği, yüksek 

hesaplama karmaşıklığını da beraberinde getirmektedir. Bu yüzden, video sıkıştırma 

algoritmalarının donanımlarının alanını ve harcadıkları enerji miktarını azaltmak için, bu 

algoritmaların hesaplama karmaşıklığını, görsel kaliteyi düşürmeden azaltmak gereklidir. 

Bu tezde, HEVC çerçeve içi öngörü algoritmasının hesaplama miktarını azaltmak için 

orijinal bir teknik önerilmektedir. Önerilen teknik kullanılarak, düşük enerjili, yeniden 

ayarlanabilir HEVC çerçeve içi öngörü donanımı tasarlanmıştır. Önerilen teknik ve DSP 

blokları kullanılarak, düşük enerjili bir HEVC çerçeve içi öngörü FPGA gerçeklemesi 

tasarlanmıştır. Yeniden ayarlanabilir VVC çerçeve içi öngörü mimarisi önerilmektedir. DSP 

bloklarının kullanıldığı, etkin bir VVC çerçeve içi öngörü mimarisi önerilmektedir. Düşük 

enerjili VVC kesikli aradeğerleme donanımı tasarlanmıştır. Orijinal bir yaklaşık mutlak fark 

hesaplama tekniği önerilmektedir. Önerilen teknik kullanılarak düşük enerjili yaklaşık mutlak 

değer hesaplama donanımları tasarlanmıştır. Orijinal bir yaklaşık sabit çarpma tekniği 

önerilmektedir. Önerilen teknik kullanılarak, yaklaşık sabit çarpma donanımı tasarlanmıştır. 
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Önerilen tekniklerin sağladığı hesaplama azaltmaları ve yaklaşık tekniklerin neden 

olduğu video kalitesi kayıpları ölçüldü. Önerilen yaklaşık mutlak değer tekniği ve yaklaşık sabit 

çarpma tekniği çok düşük PSNR kaybına neden oldu. Önerilen diğer teknikler ise PSNR 

kaybına neden olmadı. Önerilen donanım mimarileri Verilog donanım tasarlama dili ile 

gerçeklendi. Verilog RTL kodları Xilinx Virtex 6 veya Xilinx Virtex 7 FPGA'larına sentezlendi 

ve güç tüketimleri Xilinx XPower Analyzer aracı ile tahmin edildi. Önerilen teknikler, bu 

FPGA gerçeklemelerinin güç ve enerji tüketimlerini önemli ölçüde azalttı. 
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CHAPTER I 

 

INTRODUCTION 

 

 

 

Temporal and spatial video resolutions are increasing. This is expected to continue 

in the future as well. To store or transmit this large amount of video data, video 

compression standards with high compression efficiency are needed. Joint Collaborative 

Team on Video Coding (JCT-VC) developed a video compression standard called High 

Efficiency Video Coding (HEVC) [1, 2, 3]. HEVC provides 50% better coding efficiency 

than the previous video compression standard, H.264. HEVC uses computationally more 

complex algorithms to provide better compression efficiency. Joint Video Experts Team 

(JVET) is developing a new video compression standard called Versatile Video Coding 

(VVC) [4], which is expected to be finalized in 2020. JVET provided a software model 

for the current version of VVC. Current version of VVC provides better compression 

efficiency than HEVC using computationally more complex algorithms. 

Video compression standards compress a video by removing redundancies in the 

video such as spatial, temporal and statistical redundancies. There is spatial correlation 

between neighboring pixels in a video frame. Intra prediction and mode decision 

algorithms removes spatial redundancy by determining the correlation between 

neighboring blocks of pixels in a frame and encoding this correlation instead of pixel 

values. There is temporal correlation between neighboring frames of a video. Inter 

prediction and mode decision algorithms removes temporal redundancy by determining 

the correlation between blocks of pixels in neighboring frames and encoding this 

correlation instead of pixel values. There is statistical redundancy between the data that 

will be encoded. Entropy coding algorithms such as Huffman variable length coding 

algorithm remove statistical redundancy by representing the more frequently occurring 

data with small number of bits and less frequently occurring data with large number of 

bits. 
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Approximate computing is a promising solution to increased computational 

complexity of video compression algorithms [5]-[9]. Approximate computing allows 

designing faster, lower area and lower power consuming hardware than the exact 

optimized hardware by trading off speed, area and power consumption with quality. 

Therefore, it can be used in error tolerant applications such as video compression. 

1.1 HEVC Video Compression Standard 

HEVC is the current state-of-the-art video compression standard developed by 

Collaborative Team on Video Coding (JCT-VC). HEVC video compression standard 

consists of several video compression algorithms such as intra prediction, motion 

estimation, transform, quantization and entropy coder. The top-level block diagram of 

HEVC encoder and HEVC decoder are shown in Figure 1.1 and Figure 1.2, respectively. 

HEVC encoder has a forward path and a reconstruction path. The forward path 

generates bitstream. A frame is divided into 8x8, 16x16, 32x32 or 64x64 coding units 

(CU). A CU can be divided into prediction units (PU). PU sizes are from 4x4 up to 64x64. 

PU size can be the same as or less than the size of current CU. Motion estimation 

determines the best inter prediction for the current CU. Intra prediction determines the 

best intra prediction for the current CU. Mode decision determines the best prediction 

among them and PU size in terms of video quality and bit rate. Residue, difference 

between the current CU and the best prediction, is encoded using transform, quantization 

and entropy coder algorithms to generate bitstream. Since HEVC decoder does not have 

access to the original frame, reconstruction path in the encoder is used to prevent 

mismatch between encoder and decoder. By using reconstruction path, identical reference 

frames are used in both encoder and decoder. 

Reconstruction path begins with inverse quantization and inverse transform to 

generate the reconstructed residue. Since quantization is a lossy process, inverse 

quantized and inverse transformed coefficients are not identical to the original residue. 

Reconstructed frame is generated by adding the reconstructed residue to the predicted 

pixels. Blocking artifacts are reduced by using deblocking filter (DBF) algorithm. 
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Figure 1.1 HEVC Encoder Block Diagram 

 

 

 

Figure 1.2 HEVC Decoder Block Diagram 

 

HEVC intra prediction algorithm predicts the pixels of a block from the pixels of 

its already coded and reconstructed neighboring blocks in the same frame. For the 

luminance component of a frame, intra PU size can be from 4x4 up to 32x32 and number 

of intra prediction modes for a PU can be up to 35 [1, 2]. There are 33 angular prediction 

modes, DC and planar prediction modes. In angular prediction modes, predicted pixels 

are generated by weighted average of two neighboring pixels. 
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HEVC inter prediction algorithm predicts the pixels of a block in the current frame 

from the pixels of already coded and reconstructed blocks in the neighboring frames. Inter 

PU size can be from 4x8 and 8x4 up to 64x64. HEVC inter prediction algorithm, first, 

performs integer pixel motion estimation for a PU. Then, it performs fractional motion 

estimation for the same PU. It uses three different 8-tap FIR filters for generating half 

pixels and quarter pixels [1, 2]. 

HEVC uses discrete cosine transform (DCT) for transform unit (TU) sizes of square 

shapes from 4x4 up to 32x32. HEVC also uses discrete sine transform (DST) for 4x4 intra 

prediction case [1, 2]. Inverse discrete cosine transform (IDCT) and inverse discrete sine 

transform (IDST) are used in the reconstruction path of encoder and in the decoder. 

HEVC entropy coder uses context adaptive binary arithmetic coding (CABAC) to 

generate output bitstream. 

HEVC uses deblocking filter algorithm to reduce blocking artifacts on the edges of 

PUs. 

1.2 VVC Video Compression Standard 

JVET is currently developing a new video compression standard called Versatile 

Video Coding (VVC) [4]. VVC is not finalized yet. However, a software model 

implementing its current version is provided. The current version of VVC standard has 

much better coding efficiency than HEVC at the expense of much higher computational 

complexity [4]. VVC has a similar top-level block diagram to HEVC.  

VVC intra prediction algorithm is similar to HEVC intra prediction algorithm. 

However, in VVC, number of angular intra prediction modes is increased to 65. In 

addition, VVC uses 4-tap cubic and 4-tap gaussian filters for angular intra prediction 

modes [12, 13]. 

VVC inter prediction algorithm performs the same two-stage search as HEVC. 

However, VVC performs fractional motion estimation at one sixteenth motion vector 

accuracy. It also has an improved motion vector prediction process [1, 2, 13]. 

VVC uses integer based DCT same as HEVC. However, VVC uses an Adaptive 

Multiple Transform (AMT) scheme which uses DCT-II, DCT-V, DCT-VIII, DST-I and 

DST-VII based on prediction type. In addition, VVC TU sizes can be from 4x4 up to 

64x64 [13]-[16]. 



5 

 

VVC entropy coder uses CABAC algorithm similar to HEVC entropy coder with 

several enhancements. VVC DBF algorithm is the same as HEVC DBF algorithm [1, 2, 

13]. 

1.3 Thesis Contributions 

We propose a novel technique for reducing amount of computations performed by 

HEVC intra prediction algorithm and, therefore, reducing energy consumption of HEVC 

intra prediction hardware. The proposed technique significantly reduced the amount of 

computations by reorganizing HEVC intra prediction equations. The proposed technique 

does not affect PSNR and bit rate. A low energy HEVC intra angular prediction hardware 

using the proposed technique is designed and implemented. The proposed technique 

significantly reduced energy consumption of the HEVC intra prediction hardware [18]. 

Since full-custom DSP blocks in Xilinx FPGAs perform constant multiplications 

faster and with less energy than adders and shifters, we propose an efficient FPGA 

implementation of HEVC intra prediction for angular prediction modes using the 

proposed computation and energy reduction technique and DSP blocks in FPGA. In the 

proposed FPGA implementation, one HEVC intra angular prediction equation is 

implemented using one DSP block instead of using two DSP blocks and two adders [19]. 

We propose two VVC reconfigurable intra prediction hardware. They are the first 

VVC intra prediction hardware in the literature. The first hardware implements 

multiplications with constants using adders and shifters instead of using multipliers. 

Therefore, it can be used in ASIC implementations of VVC encoders. The second 

hardware implements multiplications with constants using DSP blocks in FPGA instead 

of using adders and shifters. Therefore, it can be used in FPGA implementations of VVC 

encoders [20]. 

We propose an efficient FPGA implementation of VVC intra prediction for angular 

prediction modes. In the proposed FPGA implementation, intra angular prediction 

equations are manipulated in such a way that one intra angular prediction equation is 

implemented using two DSP blocks and two adders [21]. 

We propose a reconfigurable VVC fractional interpolation hardware for motion 

compensation. The proposed hardware has a reconfigurable datapath which can be 

configured to implement any of the 15 different 8-tap FIR filters used for fractional 

interpolation. Since the proposed hardware is used for motion compensation in VVC 

encoder and decoder, only one fractional pixel per integer pixel is interpolated [22]. 
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We propose four novel approximate absolute difference hardware using special 

approximation techniques [23]. We propose a novel approximate constant multiplication 

technique. The proposed approximate constant multiplication technique decreases 

complexity of constant multiplication by converting it to a multiplication with a smaller 

constant, concatenation and constant shift operation. The proposed approximation 

techniques reduce area and power consumption of hardware implementations with 

negligible video quality loss.   

1.4 Thesis Organization 

The rest of the thesis is organized as follows. 

Chapter II, first, explains HEVC intra prediction algorithm. It describes the 

proposed technique for reducing amount of computations performed by HEVC intra 

prediction. The proposed HEVC intra prediction hardware is explained and its 

implementation results are given. Then, the proposed FPGA implementation of HEVC 

intra prediction using the proposed technique and DSP blocks is explained. The 

implementation results are given. Finally, comparison of the proposed hardware with the 

ones proposed in literature is presented. 

Chapter III, first, explains VVC intra prediction algorithm. The proposed 

reconfigurable VVC intra prediction hardware implementations are explained and their 

implementation results are given. Then, the proposed FPGA implementation of VVC 

intra prediction using DSP blocks is explained. The implementation results are given. 

Finally, comparison of the proposed hardware with the ones proposed in literature is 

presented. 

Chapter IV, first, explains VVC fractional interpolation algorithm. Then, the 

proposed VVC fractional interpolation hardware and its reconfigurable datapath are 

explained. Finally, implementation results are given, and literature comparison is 

presented. 

Chapter V, first, explains approximate computing. Then, the proposed novel 

approximate absolute difference technique is explained. The proposed four different 

approximate absolute difference hardware are presented. Their implementation results are 

given. They are compared with approximate absolute difference hardware 

implementations using the proposed approximate adders in literature. Then, the proposed 

novel approximate constant multiplication technique is explained. HEVC 2D transform 

and VVC 2D transform hardware implementations using the proposed approximate 
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constant multiplier are presented. Their rate-distortion performances and hardware 

implementation results are given.  

Chapter VI presents conclusions and future works. 
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CHAPTER II 

 

HEVC INTRA PREDICTION HARDWARE 

 

 

2.1 HEVC Intra Prediction Algorithm 

HEVC intra prediction algorithm predicts the pixels in prediction units (PU) of a 

coding unit (CU) using the pixels in the available neighboring PUs [1]. For the luminance 

component of a frame, 4x4, 8x8, 16x16 and 32x32 PU sizes are available. As shown in 

Figure 2.1, there are 33 angular prediction modes (Mode) corresponding to different 

prediction angles (Angle) for each PU size. In addition, there are DC and planar prediction 

modes for each PU size. An 8x8 PU, four 4x4 PUs in it, and their neighboring pixels are 

shown in Figure 2.2. 

 

 

Figure 2.1 HEVC Intra Prediction Mode Directions 
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Figure 2.2 Neighboring Pixels of 4x4 and 8x8 PUs 

 

In HEVC intra prediction algorithm, first, reference main array is determined. The 

pixels in the reference main array are used in the intra prediction equations. If the 

prediction mode is equal to or greater than 18, reference main array is selected from above 

neighboring pixels. However, first four pixels of this array are reserved to left neighboring 

pixels, and if prediction angle is less than zero, these pixels are assigned to the array. If 

the prediction mode is less than 18, reference main array is selected from left neighboring 

pixels. However, first four pixels of this array are reserved to above neighboring pixels, 

and if prediction angle is less than zero, these pixels are assigned to the array. 

After the reference main array is determined, ildx which is used to determine 

positions of the pixels in this array that will be used in the intra prediction equations and 

iFact which is used to determine coefficients of these pixels are calculated as shown in 

equations (2.1a) and (2.1b), respectively. If iFact is equal to 0, neighboring pixels are 

copied directly to predicted pixels. Otherwise, predicted pixels are calculated as shown 

in equation (2.2). 

 

 

𝑖𝐼𝑑𝑥 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) ≫ 5 (2.1a) 

𝑖𝐹𝑎𝑐𝑡 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) & 31 (2.1b) 

𝑝𝑟𝑒𝑑[𝑥, 𝑦] = ((32 − 𝑖𝐹𝑎𝑐𝑡) ∗ 𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 1] + 𝑖𝐹𝑎𝑐𝑡 ∗ 𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 2]

+ 16) ≫ 5 
(2.2) 
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All the intra prediction equations can be obtained from equation (2.2). As an 

example, reference main array and prediction equations for the 8x8 intra prediction mode 

6 with prediction angle 13 are shown in equations (2.3a) and (2.3b), respectively. The 

neighboring pixels used in these equations can be seen in Figure 2.2. 

 

𝑥 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 −  1), 𝑦 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 −  1)  

𝑟𝑒𝑓𝑀𝑎𝑖𝑛 = [0,0,0,0,0,0,0,0, 𝑅, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝑉𝐴, 𝑉𝐵, 𝑉𝐶, 𝑉𝐷, 𝑉𝐸, 𝑉𝐹, 𝑉𝐺, 𝑉𝐻] (2.3a) 

𝑝𝑟𝑒𝑑[0,0] = 𝑝𝑟𝑒𝑑[1,0] = [19 ∗ 𝐴 + 13 ∗ 𝐵 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,0] = 𝑝𝑟𝑒𝑑[3,0] = [19 ∗ 𝐵 + 13 ∗ 𝐶 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,0] = 𝑝𝑟𝑒𝑑[5,0] = 𝑝𝑟𝑒𝑑[6,0] = [19 ∗ 𝐶 + 13 ∗ 𝐷 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,0] = [19 ∗ 𝐷 + 13 ∗ 𝐸 + 16] >> 5 

 

(2.3b) 

𝑝𝑟𝑒𝑑[0,1] = 𝑝𝑟𝑒𝑑[1,1] = [6 ∗ 𝐵 + 26 ∗ 𝐶 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,1] = 𝑝𝑟𝑒𝑑[3,1] = [6 ∗ 𝐶 + 26 ∗ 𝐷 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,1] = 𝑝𝑟𝑒𝑑[5,1] = 𝑝𝑟𝑒𝑑[6,1] = [6 ∗ 𝐷 + 26 ∗ 𝐸 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,1] = [6 ∗ 𝐸 + 26 ∗ 𝐹 + 16] >> 5 

 

 

𝑝𝑟𝑒𝑑[0,2] = 𝑝𝑟𝑒𝑑[1,2] = [25 ∗ 𝐶 + 7 ∗ 𝐷 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,2] = 𝑝𝑟𝑒𝑑[3,2] = [25 ∗ 𝐷 + 7 ∗ 𝐸 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,2] = 𝑝𝑟𝑒𝑑[5,2] = 𝑝𝑟𝑒𝑑[6,2] = [25 ∗ 𝐸 + 7 ∗ 𝐹 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,2] = [25 ∗ 𝐹 + 7 ∗ 𝐺 + 16] >> 5 

 

 

𝑝𝑟𝑒𝑑[0,3] = 𝑝𝑟𝑒𝑑[1,3] = [12 ∗ 𝐷 + 20 ∗ 𝐸 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,3] = 𝑝𝑟𝑒𝑑[3,3] = [12 ∗ 𝐸 + 20 ∗ 𝐹 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,3] = 𝑝𝑟𝑒𝑑[5,3] = 𝑝𝑟𝑒𝑑[6,3] = [12 ∗ 𝐹 + 20 ∗ 𝐺 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,3] = [12 ∗ 𝐺 + 20 ∗ 𝐻 + 16] >> 5 

 

 

𝑝𝑟𝑒𝑑[0,4] = 𝑝𝑟𝑒𝑑[1,4] = [31 ∗ 𝐸 + 1 ∗ 𝐹 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,4] = 𝑝𝑟𝑒𝑑[3,4] = [31 ∗ 𝐹 + 1 ∗ 𝐺 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,4] = 𝑝𝑟𝑒𝑑[5,4] = 𝑝𝑟𝑒𝑑[6,4] = [31 ∗ 𝐺 + 1 ∗ 𝐻 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,4] = [31 ∗ 𝐻 + 1 ∗ 𝐼 + 16] >> 5 

 

 

𝑝𝑟𝑒𝑑[0,5] = 𝑝𝑟𝑒𝑑[1,5] = [18 ∗ 𝐹 + 14 ∗ 𝐺 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,5] = 𝑝𝑟𝑒𝑑[3,5] = [18 ∗ 𝐺 + 14 ∗ 𝐻 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,5] = 𝑝𝑟𝑒𝑑[5,5] = 𝑝𝑟𝑒𝑑[6,5] = [18 ∗ 𝐻 + 14 ∗ 𝑉𝐴 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,5] = [18 ∗ 𝑉𝐴 + 14 ∗ 𝑉𝐵 + 16] >> 5 

 

 

𝑝𝑟𝑒𝑑[0,6] = 𝑝𝑟𝑒𝑑[1,6] = [5 ∗ 𝐺 + 27 ∗ 𝐻 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,6] = 𝑝𝑟𝑒𝑑[3,6] = [5 ∗ 𝐻 + 27 ∗ 𝑉𝐴 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,6] = 𝑝𝑟𝑒𝑑[5,6] = 𝑝𝑟𝑒𝑑[6,6] = [5 ∗ 𝑉𝐴 + 27 ∗ 𝑉𝐵 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,6] = [5 ∗ 𝑉𝐵 + 27 ∗ 𝑉𝐶 + 16] >> 5 

 

 

𝑝𝑟𝑒𝑑[0,7] = 𝑝𝑟𝑒𝑑[1,7] = [24 ∗ 𝐻 + 8 ∗ 𝑉𝐴 + 16] >> 5 
𝑝𝑟𝑒𝑑[2,7] = 𝑝𝑟𝑒𝑑[3,7] = [24 ∗ 𝑉𝐴 + 8 ∗ 𝑉𝐵 + 16] >> 5 

𝑝𝑟𝑒𝑑[4,7] = 𝑝𝑟𝑒𝑑[5,7] = 𝑝𝑟𝑒𝑑[6,7] = [24 ∗ 𝑉𝐵 + 8 ∗ 𝑉𝐶 + 16] >> 5 
𝑝𝑟𝑒𝑑[7,7] = [24 ∗ 𝑉𝐶 + 8 ∗ 𝑉𝐷 + 16] >> 5 

 

 



11 

 

2.2 A Computation and Energy Reduction Technique for HEVC Intra Prediction 

In this thesis, a novel technique is proposed for reducing amount of computations 

performed by HEVC intra prediction algorithm and, therefore, reducing energy 

consumption of HEVC intra prediction hardware. The proposed technique reorganizes 

the HEVC intra prediction equations by utilizing the fact that the sum of the coefficients 

used in each HEVC angular intra prediction equation is 32. The reorganized intra 

prediction equations require less number of addition and shift operations than the original 

ones. This reduces the amount of computations performed by 4x4, 8x8, 16x16 and 32x32 

luminance angular prediction modes. It does not affect the PSNR and bit rate. 

In this thesis, a low energy HEVC intra prediction hardware for angular prediction 

modes of all PU sizes (4x4, 8x8, 16x16 and 32x32) is also designed and implemented 

using Verilog HDL. The Verilog RTL code is mapped to an FPGA implemented in 40 

nm CMOS technology. The FPGA implementation is verified to work correctly on an 

FPGA board. The FPGA implementation can work at 166 MHz, and it can process 40 full 

HD (1920 x 1080) video frames per second. The proposed HEVC intra prediction 

hardware implementing the reorganized HEVC intra prediction equations has up to 

24.63% less energy consumption than an HEVC intra prediction hardware implementing 

the original HEVC intra prediction equations. 

Several HEVC intra prediction hardware implementations are proposed in the 

literature [24]-[33]. Some of them have higher performance than the proposed HEVC 

intra prediction hardware at the expense of much larger hardware area. The area of the 

proposed hardware is much smaller than the ones proposed in [24]-[32]. Some of these 

HEVC intra prediction hardware use separate hardware for each PU size. Some of them 

use many parallel intra prediction datapaths. Some of them use multipliers instead of 

adders and shifters for implementing multiplication with constants. 

Power consumptions of the hardware implementations proposed in [24]-[31] are 

not reported. The proposed hardware consumes less power than the one proposed in [32]. 

The proposed HEVC intra prediction hardware implementation performs intra prediction 

for all PU sizes. Since the HEVC intra prediction hardware implementation proposed in 

[33] performs intra prediction only for 4x4 and 8x8 PU sizes, it has smaller area and 

consumes less power than the proposed one. 
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2.2.1 Proposed Computation and Energy Reduction Technique 

In this thesis, data reuse technique is first used for reducing amount of computations 

performed by HEVC intra prediction algorithm. In HEVC, intra 4x4, 8x8, 16x16 and 

32x32 luminance angular prediction modes have identical equations. There are identical 

equations between luminance angular prediction modes of different PU sizes as well. Data 

reuse technique calculates the common prediction equations for all 4x4, 8x8, 16x16 and 

32x32 luminance angular prediction modes only once and uses the result for the 

corresponding prediction modes. There are 33792, 8448, 2112 and 528 prediction 

equations in 32x32, 16x16, 8x8 and 4x4 luminance angular prediction modes, 

respectively. As shown in Table 2.1, using data reuse technique, the numbers of prediction 

equations that should be calculated for 32x32, 16x16, 8x8 and 4x4 luminance angular 

prediction modes are reduced to 3735, 1507, 593 and 201, respectively. 

 

Table 2.1 Prediction Equation Reductions by Data Reuse 

 4x4 PU 8x8 PU 16x16 PU 32x32 PU 32x32 CU 

# of P. Equations 528 2112 8448 33792 135168 

# of P. Equations 

with Data Reuse 
201 593 1507 3735 14848 

Reduction (%) 61.93 71.92 82.16 88.94 89.02 

 

A 32x32 CU includes one 32x32 PU, four 16x16 PUs, sixteen 8x8 PUs and sixty 

four 4x4 PUs. As shown in Figure 2.2, an 8x8 PU and some of the 4x4 PUs have common 

neighboring pixels. They also have common prediction equations. 4x4, 8x8, 16x16 and 

32x32 PUs also have common neighboring pixels and common prediction equations. 

Therefore, data reuse technique is used for calculating predicted pixels of a 32x32 PU and 

predicted pixels of the corresponding four 16x16 PUs, sixteen 8x8 PUs and sixty four 4x4 

PUs. In this way, the number of prediction equations that should be calculated for a 32x32 

CU is reduced from 135168 to 14848. 

In this thesis, a novel technique is proposed for reducing amount of computations 

performed by HEVC intra prediction algorithm. The proposed technique reorganizes the 

HEVC intra prediction equations by utilizing the fact that the sum of the coefficients used 

in each HEVC angular intra prediction equation is 32. This reduces the amount of 

computations performed by 4x4, 8x8, 16x16 and 32x32 luminance angular prediction 

modes. It does not affect the PSNR and bit rate. 
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The original version of each intra prediction equation requires two multiplications 

with constants. Both constants are between 1 and 31. The sum of both constants is 32. 

Reorganized version of each intra prediction equation requires two multiplications with 

constants. One constant is always 32. The other constant is between 1 and 16. 

Multiplications with constants are implemented using addition and shift operations. The 

reorganized intra prediction equations require less number of addition and shift operations 

than the original ones. 

An HEVC intra prediction equation and its reorganized version are shown in 

equations (2.4a) and (2.5a), respectively. As shown in equation (2.4b), original intra 

prediction equation requires six addition and five shift operations. As shown in equations 

(2.5b) and (2.5c), its reorganized version requires two addition, two subtraction and three 

shift operations. Another HEVC intra prediction equation and its reorganized version are 

shown in equations (2.6a) and (2.7a), respectively. As shown in equation (2.6b), original 

intra prediction equation requires six addition and five shift operations. As shown in 

equations (2.7b) and (2.7c), its reorganized version requires one addition, two subtraction 

and two shift operations. 

 

 

Numbers of addition and shift operations required for original HEVC intra 

prediction algorithm and HEVC intra prediction algorithm with reorganized equations for 

all the PUs in a 32x32 CU after using data reuse technique are shown in Table 2.2. The 

(9 ∗ 𝐴 + 23 ∗ 𝐵 + 16) ≫ 5 (2.4a) 

(𝐴 + (𝐴 ≪ 3) + 𝐵 + (𝐵 ≪ 1) + (𝐵 ≪ 2) + (𝐵 ≪ 4) + 16) ≫ 5 (2.4b) 

(32 ∗ 𝐵 − 9 ∗ (𝐵 − 𝐴) + 16) ≫ 5 (2.5a) 

𝑡𝑒𝑚𝑝 = 𝐵 − 𝐴 (2.5b) 

((𝐵 ≪ 5) − (𝑡𝑒𝑚𝑝 + (𝑡𝑒𝑚𝑝 ≪ 3)) + 16) ≫ 5 (2.5c) 

(𝐴 + 31 ∗ 𝐵 + 16) ≫ 5 (2.6a) 

(𝐴 + 𝐵 + (𝐵 ≪ 1) + (𝐵 ≪ 2) + (𝐵 ≪ 3) + (𝐵 ≪ 4) + 16) ≫ 5 (2.6b) 

(32 ∗ 𝐵 − (𝐵 − 𝐴) + 16) ≫ 5 (2.7a) 

𝑡𝑒𝑚𝑝 = 𝐵 − 𝐴 (2.7b) 

((𝐵 ≪ 5) − (𝑡𝑒𝑚𝑝) + 16) ≫ 5 (2.7c) 
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total numbers of addition and shift operations are calculated by adding the numbers of 

addition and shift operations required for each intra angular prediction equation for all 

the PUs in a 32x32 CU. Subtraction operations are counted as addition operations. The 

proposed technique reduces numbers of addition and shift operations by 40.3% and 

49.8%, respectively. 

 

Table 2.2 Addition and Shift Reductions by the Proposed Technique 

  Original Reorganized Reduction (%) 

# of Addition 75348 45024 40.3 

# of Shift 84932 42652 49.8 

 

2.2.2 Proposed HEVC Intra Prediction Hardware 

The proposed HEVC intra prediction hardware implementing angular prediction 

modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) including data reuse and the proposed 

technique is shown in Figure 2.3. There are ten pipelined datapaths. Each datapath 

calculates the result of one intra prediction equation in each clock cycle. Therefore, ten 

parallel datapaths calculate the results of ten intra prediction equations in each clock 

cycle. 

 

 

Figure 2.3 Proposed HEVC Intra Prediction Hardware 

 

Three local neighboring buffers are used to store neighboring pixels in the 

previously coded and reconstructed neighboring PUs. After a PU in the current CU is 

coded and reconstructed, the neighboring pixels in this PU are stored in the corresponding 
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buffers. These on chip neighboring buffers reduce the required off-chip memory 

bandwidth. The predicted pixels are stored in the prediction equation register file. 

A 32x32 CU, which includes one 32x32 PU, four 16x16 PUs, sixteen 8x8 PUs and 

sixty four 4x4 PUs, has 528 neighboring pixels. Storing all 528 neighboring pixels in 528 

registers would increase the hardware area. In order to reduce the hardware area, 32x32 

CU is split into 8x8 blocks and prediction equations, regardless of their PU sizes, are 

divided into groups based on the pixels they use. The prediction equations using pixels 

from the same 8x8 block are grouped together. In this way, only neighboring pixels of 

current 8x8 block and corresponding four 4x4 blocks are stored in 42 registers. After these 

neighboring pixel registers are loaded in 16 clock cycles, ten parallel datapaths are used 

to calculate the prediction equations for current 8x8 block and corresponding four 4x4 

blocks.  

The proposed datapath for calculating reorganized versions of HEVC intra 

prediction equations is shown in Figure 2.4. This datapath requires adder and shifter 

hardware for two multiplications with constants. One constant is always 32. The other 

constant is between 1 and 16. The datapath necessary for calculating original versions of 

HEVC intra prediction equations is shown in Figure 2.5. This datapath requires adder and 

shifter hardware for two multiplications with constants. Both constants are between 1 and 

31. Therefore, the proposed datapath requires less hardware area and consumes less 

power. 

 

 

Figure 2.4 Proposed HEVC Intra Prediction Datapath 
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Figure 2.5 Original HEVC Intra Prediction Datapath 

 

The proposed hardware is implemented using Verilog HDL. The Verilog RTL code 

is verified with RTL simulations. The RTL simulation results matched the results of 

HEVC intra prediction implementation in HEVC HM software encoder [34]. The Verilog 

RTL code is synthesized and mapped to an FPGA implemented in 40nm CMOS 

technology. The FPGA implementation is verified with post place and route simulations. 

Post place and route simulation results matched the results of HEVC intra prediction 

implementation in HEVC HM software encoder [34]. 

As shown in Figure 2.6, the FPGA implementation is also verified to work correctly 

on an FPGA board which includes an FPGA implemented in 40 nm CMOS technology, 

512 MB external memory and interfaces such as UART and DVI. In the FPGA, processor 

local bus (PLB) is used for the communication between the proposed HEVC intra 

prediction hardware and microprocessor. The proposed FPGA implementation uses 6013 

LUTs, 2006 DFFs and 4 BRAMs. It can work at 166 MHz, and it can process 40 full HD 

(1920x1080) video frames per second. 

Verilog RTL code of the proposed HEVC intra prediction hardware is also 

synthesized to a 90 nm standard cell library and the resulting netlist is placed and routed. 

The resulting ASIC implementation can work at 250 MHz, and it can process 60 full HD 
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(1920x1080) video frames per second. Its gate count is 16.1K, according to NAND (2x1) 

gate area excluding on-chip memory. 

 

 

Figure 2.6 FPGA Implementation of HEVC Intra Prediction Hardware 

 

Power consumption of the proposed FPGA implementation is estimated using a 

gate level power estimation tool. Post place and route timing simulations are performed 

for Tennis and Kimono videos at 100 MHz [35], and signal activities are stored in VCD 

files. These VCD files are used for estimating power consumption of the FPGA 

implementation. The power and energy consumption results of the FPGA implementation 

for one frame of each video quantized with three different quantization parameters (QP) 

are shown in Table 2.3 and Table 2.4. 

 

Table 2.3 Energy Consumption Reductions for Kimono (1920x1080) 

 Original HEVC Intra Prediction Hardware Proposed HEVC Intra Prediction Hardware 

QP 28 35 42 28 35 42 

Time (ms) 40.78 40.78 40.78 40.78 40.78 40.78 

Clock (mW) 27.91 27.91 27.91 23.02 23.02 23.02 

Signal (mW) 21.74 21.61 21.57 17.94 17.87 17.42 

Logic (mW) 18.53 18.36 18.31 12.52 12.44 11.70 

BRAM (mW) 2.54 2.54 2.54 2.54 2.54 2.54 

Power (mW) 70.72 70.72 70.33 56.02 55.87 54.68 

Energy (uJ) 2884.5 2884.5 2868.6 2284.9 2278.8 2230.3 

Energy Reduction    20.79 % 21.00 % 22.25 % 
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Table 2.4 Energy Consumption Reductions for Tennis (1920x1080) 

 Original HEVC Intra Prediction Hardware Proposed HEVC Intra Prediction Hardware 

QP 28 35 42 28 35 42 

Time (ms) 40.78 40.78 40.78 40.78 40.78 40.78 

Clock (mW) 27.91 27.91 27.91 23.02 23.02 23.02 

Signal (mW) 22.03 21.93 22.20 17.49 17.13 17.61 

Logic (mW) 19.27 19.15 19.53 11.76 11.22 11.99 

BRAM (mW) 2.54 2.54 2.54 2.54 2.54 2.54 

Power (mW) 71.75 71.53 72.18 54.81 53.91 55.16 

Energy (uJ) 2926.5 2917.6 2944.1 2235.6 2198.9 2249.9 

Energy Reduction    23.61 % 24.63 % 23.58 % 

 

The time it takes for the FPGA implementation to process one frame is shown in 

the tables. Original HEVC intra prediction hardware does not use the proposed 

computation and energy reduction technique. Therefore, it uses the original HEVC intra 

prediction datapath shown in Figure 2.5. Both original and proposed HEVC intra 

prediction hardware calculate the result of one intra prediction equation in each clock 

cycle. The proposed technique did not affect the critical path of the HEVC intra prediction 

hardware. Therefore, the time it takes to process one frame is the same for both original 

and proposed HEVC intra prediction hardware. 

However, as it can be seen from Figure 2.4 and Figure 2.5, since the proposed 

HEVC intra prediction hardware performs less addition and shift operations in one clock 

cycle than original HEVC intra prediction hardware, it has smaller hardware area. 

Therefore, it consumes up to 24.63% less energy than original HEVC intra prediction 

hardware. Since HEVC intra prediction hardware is used as part of an HEVC video 

encoder, only internal power consumption is considered, input and output power 

consumptions are ignored. Therefore, power consumption of the FPGA implementation 

can be divided into four main categories; clock power, logic power, signal power and 

BRAM power. 

Comparisons of the FPGA and ASIC implementations of proposed HEVC intra 

prediction hardware with the FPGA and ASIC implementations of HEVC intra prediction 

hardware proposed in the literature are shown in Table 2.5 and Table 2.6, respectively. 

The area of the proposed hardware is much smaller than the ones proposed in [24]-[32]. 

Power consumptions of the hardware implementations proposed in [24]-[31] are not 

reported. The proposed hardware consumes less power than the one proposed in [32]. 

 



19 

 

Table 2.5 Comparison of FPGA Implementations 

 [24] [25] [26] [27] [33] Proposed 

Technology 65 nm 28 nm 40 nm 40 nm 40 nm 40 nm 

DFF 5.5 K 22 K 110 K 6934 849 2006 

LUT 14 K 43 K 170 K 13409 2381 6013 

BRAM --- 94 --- --- 4 4 

Max Freq. (MHz) 110 150 219 162 150 166 

Frames per Sec.  
30 

3840x2160 
--- 

24 

3840x2160 
--- 

30 

1920x1080 

40 

1920x1080 

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8 4, 8, 16, 32 

 

Table 2.6 Comparison of ASIC Implementations 

 [28] [29] [30] [31] [32] [33] Proposed 

Technology 90 nm 40 nm 90 nm 130 nm 90 nm 90 nm 90 nm 

Gate Count 127.3 K 27 K 76.8 K 324 K 712.2 K 5.4 K 16.1 K 

Max Freq. (MHz) 200 200 270 400 357 150 250 

Frames per Sec.  
30 

3840x2160 
--- --- 

60 

1920x1080 

46 

2560x1600 

30 

1920x1080 

60 

1920x1080 

Memory 6 KB 4.9 KB 5.6 KB --- --- --- 3 KB 

Power Dissipation --- --- --- --- 92.1 mW 23.2 mW 28.5 mW 

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8 4, 8, 16, 32 

 

The proposed HEVC intra prediction hardware implementation performs intra 

prediction for all PU sizes. Since the HEVC intra prediction hardware implementation 

proposed in [33] performs intra prediction only for 4x4 and 8x8 PU sizes, it has smaller 

area and consumes less power than the proposed HEVC intra prediction hardware. 

Some of the HEVC intra prediction hardware implementations have higher 

performance than the proposed HEVC intra prediction hardware implementation at the 

expense of much larger hardware area. The frames per second performance of the HEVC 

intra prediction hardware implementation proposed in [27] is not reported. Since the 

HEVC intra prediction hardware implementations in [25, 29, 30] are proposed for an 

HEVC decoder, their frames per second performances for an HEVC encoder are not 

reported. 

2.3 DSP Block Based FPGA Implementation of HEVC Intra Prediction 

A computation and energy reduction technique for HEVC intra prediction is 

proposed in [18]. This technique reorganizes the HEVC intra prediction equations by 

utilizing the fact that the sum of the coefficients used in each HEVC angular intra 

prediction equation is 32. This reduces the amount of computations performed by 4x4, 
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8x8, 16x16 and 32x32 luminance angular prediction modes. It does not affect the PSNR 

and bit rate. 

Xilinx FPGAs have built-in full-custom DSP blocks which can perform constant 

multiplications faster and with less energy than adders and shifters. A DSP block can be 

used to perform different constant multiplications by providing proper constant value to 

its input. Therefore, it is more efficient to implement constant multiplications using DSP 

blocks instead of using adders and shifters in an FPGA implementation. 

In this thesis, an efficient FPGA implementation of HEVC intra prediction for 

angular prediction modes of all PU sizes (4x4, 8x8, 16x16 and 32x32) is proposed. The 

proposed FPGA implementation uses the computation and energy reduction technique for 

HEVC intra prediction proposed in [18]. However, it implements intra angular prediction 

equations using DSP blocks in FPGA instead of using adders and shifters. In this way, 

one HEVC intra angular prediction equation is implemented using only one DSP block 

instead of using two DSP blocks and two adders. 

The proposed FPGA implementation can work at 227 MHz in a Xilinx Virtex 6 

FPGA. It, in the worst case, can process 55 Full HD (1920x1080) video frames per 

second. The proposed FPGA implementation has up to 15.97% less energy consumption 

than the FPGA implementation of HEVC intra prediction using the computation and 

energy reduction technique proposed in [18] and adders and shifters. The proposed FPGA 

implementation has up to 34.66% less energy consumption than the FPGA 

implementation of HEVC intra prediction using original prediction equations and DSP 

blocks. 

Several HEVC intra prediction hardware are proposed in the literature [18], [24]-

[27], [33]. They are compared with the proposed HEVC intra prediction hardware. 

The proposed HEVC intra prediction hardware implementing angular prediction 

modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) using the computation and energy 

reduction technique proposed in [18] and DSP blocks is shown in Figure 2.7. There are 

ten pipelined datapaths. Each datapath calculates the result of one intra prediction 

equation in each clock cycle. Therefore, ten parallel datapaths calculate the results of ten 

intra prediction equations in each clock cycle. 

Three local neighboring buffers are used to store neighboring pixels in the 

previously coded and reconstructed neighboring PUs. After a PU in the current CU is 

coded and reconstructed, the neighboring pixels in this PU are stored in the corresponding 
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buffers. These on chip neighboring buffers reduce required off-chip memory bandwidth. 

The predicted pixels are stored in the prediction equation register file. 

 

 

Figure 2.7 Proposed HEVC Intra Prediction Hardware 

 

A 32x32 CU has 528 neighboring pixels. Storing all 528 neighboring pixels in 528 

registers would increase the hardware area. In order to reduce the hardware area, 32x32 

CU is split into 8x8 blocks and prediction equations, regardless of their PU sizes, are 

divided into groups based on the pixels they use. The prediction equations using pixels 

from the same 8x8 block are grouped together. In this way, only neighboring pixels of 

current 8x8 block and corresponding four 4x4 blocks are stored in 42 registers. After these 

neighboring pixel registers are loaded in 16 clock cycles, ten parallel datapaths are used 

to calculate the prediction equations for current 8x8 block and corresponding four 4x4 

blocks. 

In an FPGA implementation, multiplication operations in the intra prediction 

equations can be implemented more efficiently using DSP blocks instead of using adders 

and shifters. Structure of a DSP48E1 block is shown in Figure 2.8. If constant 

multiplications are implemented using adders and shifters, 10 adders and 10 multiplexers 

are necessary to implement one original intra prediction equation [18]. If constant 

multiplications are implemented using DSP blocks, as shown in Figure 2.9, two DSP 

blocks and two adders are necessary to implement one original intra prediction equation. 
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Figure 2.8 Structure of a DSP48E1 Block 

 

 

Figure 2.9 Original HEVC Intra Prediction Datapath 

 

 

Figure 2.10 Proposed HEVC Intra Prediction Datapath 

 

However, as shown in Figure 2.10, one reorganized intra prediction equation can 

be implemented using only one DSP block. The DSP block is configured to perform 

multiplication and addition operations. For example, reorganized intra prediction 
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equation shown in (2.5a) is implemented using a DSP block as follows. (9 ∗ (𝐴 − 𝐵)) is 

implemented using part of the DSP block implementing 𝐵 ∗ (𝐴 ± 𝐷). One neighboring 

pixel is shifted left by 5 and ORed with 16 to implement (32 ∗ 𝐵 + 16) and the result is 

given to C input of DSP block. Since the last 5 bits of 32 ∗ 𝐵 is zero, (32 ∗ 𝐵 + 16) can 

be implemented by changing 5th bit of 32 ∗ 𝐵 from zero to one. 

In this thesis, an HEVC intra prediction hardware implementing angular prediction 

modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) using the original intra prediction 

equations and DSP blocks is also designed for comparison. Both HEVC intra prediction 

hardware designs are implemented using Verilog HDL. The Verilog RTL codes are 

verified with RTL simulations. RTL simulation results matched the results of HEVC intra 

prediction implementation in HEVC HM software encoder [34]. 

The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX75T 

FF1759 FPGA with speed grade 3 using Xilinx ISE 14.7. FPGA implementations are 

verified with post place and route simulations. Post place and route simulation results 

matched the results of HEVC intra prediction implementation in HEVC HM software 

encoder [34]. 

FPGA implementation results of HEVC intra prediction hardware using original 

intra prediction equations and adders and shifters (ORG_AS) [18], reorganized intra 

prediction equations and adders and shifters (REORG_AS) [18], original intra prediction 

equations and DSP blocks (ORG_DSP), reorganized intra prediction equations and DSP 

blocks (REORG_DSP) are shown in Table 2.7. 

 

Table 2.7 Implementation Results 

 ORG_AS [18] REORG_AS [18] ORG_DSP REORG_DSP 

FPGA Xilinx Virtex 6 Xilinx Virtex 6 Xilinx Virtex 6 Xilinx Virtex 6 

DFF 2567 2006 1167 1168 

LUT 5521 6013 4510 4425 

BRAM 4 4 4 4 

DSP48E1 --- --- 20 10 

Max. Freq. (MHz) 166 166 212 227 

Frames per Second  40 1920x1080 40 1920x1080 52 1920x1080 55 1920x1080 

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 

 

Power consumptions of all FPGA implementations are estimated using Xilinx 

XPower Analyzer tool. Post place and route timing simulations are performed for Tennis 



24 

 

and Kimono videos at 100 MHz [35], and signal activities are stored in VCD files. These 

VCD files are used for estimating power consumptions of FPGA implementations. 

Energy consumption results of all FPGA implementations for one frame of each 

video quantized with three different quantization parameters (QP) are shown in Figure 

2.11. The proposed FPGA implementation of HEVC intra prediction using the 

computation and energy reduction technique proposed in [18] and DSP blocks has up to 

15.97% less energy consumption than the FPGA implementation of HEVC intra 

prediction using the computation and energy reduction technique proposed in [18] and 

adders and shifters. The proposed FPGA implementation of HEVC intra prediction using 

the computation and energy reduction technique proposed in [18] and DSP blocks has up 

to 34.66% less energy consumption than the FPGA implementation of HEVC intra 

prediction using original prediction equations and DSP blocks. 

 

 

Figure 2.11 Energy Consumption Results 

 

Comparison of the proposed FPGA implementation of HEVC intra prediction using 

the computation and energy reduction technique proposed in [18] and DSP blocks with 

the FPGA implementations of HEVC intra prediction hardware proposed in the literature 

is shown in Table 2.8. Area of the proposed FPGA implementation is smaller than the 

ones proposed in [18], [24]-[27]. Power consumptions of the HEVC intra prediction 

hardware proposed in [24]-[27] are not reported. The proposed FPGA implementation 

consumes less power than the one proposed in [18]. Since the HEVC intra prediction 

hardware proposed in [33] performs intra prediction only for 4x4 and 8x8 PU sizes, it has 

smaller area and consumes less power than the proposed hardware. 

Some of the HEVC intra prediction hardware have higher performance than the 

proposed HEVC intra prediction hardware at the expense of much larger hardware area. 

Frames per second performance of the HEVC intra prediction hardware proposed in [27] 
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is not reported. Since the HEVC intra prediction hardware in [25] is proposed for an 

HEVC decoder, its frames per second performance for an HEVC encoder is not reported. 

 

Table 2.8 Comparison of FPGA Implementations 

 [18] [24] [25] [26] [27] [33] Proposed 

FPGA 
Xilinx 

Virtex 6 
65 nm FPGA 

Xilinx 

Zynq 7045 

Xilinx 

Virtex 6 

Altera 

Arria II GX 

Xilinx 

Virtex 6 

Xilinx 

Virtex 6 

DFF 2006 5.5 K 22 K 110 K 6934 849 1168 

LUT 6013 14 K 43 K 170 K 13409 2381 4425 

BRAM 4 --- 94 --- --- 4 4 

DSP48E1 --- --- --- --- 8 --- 10 

Max. Freq. (MHz) 166 110 150 219 162 150 227 

Frames per Second  
40 

1920x1080 

30 

3840x2160 
--- 

24 

3840x2160 
--- 

30 

1920x1080 

55 

1920x1080 

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8 4, 8, 16, 32 
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CHAPTER III 

 

VVC INTRA PREDICTION HARDWARE 

 

 

3.1 VVC Intra Prediction Algorithm 

VVC intra prediction algorithm predicts pixels of a PU using neighboring pixels in 

neighboring PUs. 4x4, 8x8, 16x16, 32x32, 64x64 PU sizes are used for luminance 

components of frames. VVC has 65 intra angular prediction modes (mode) for each PU 

size. Prediction angles (angle) corresponding to each prediction mode are shown in Figure 

3.1. VVC also has DC and planar prediction modes for each PU size. Neighboring pixels 

of an 8x8 PU and four 4x4 PUs are shown in Figure 3.2. 

 

 

Figure 3.1 VVC Intra Prediction Angles 
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Figure 3.2 Neighboring Pixels 

 

Table 3.1 Cubic and Gaussian Filter Coefficients 

 Filter Coefficients 

Cubic  

Filters 

1 0 256 0 0 

2 -3 252 8 -1 

3 -5 247 17 -3 

4 -7 242 25 -4 

5 -9 236 34 -5 

6 -10 230 43 -7 

7 -12 224 52 -8 

8 -13 217 61 -9 

9 -14 210 70 -10 

10 -15 203 79 -11 

11 -16 195 89 -12 

12 -16 187 98 -13 

13 -16 179 107 -14 

14 -16 170 116 -14 

15 -17 162 126 -15 

16 -16 153 135 -16 

17 -16 144 144 -16 

Gaussian 

Filters 

18 47 161 47 1 

19 43 161 51 1 

20 40 160 54 2 

21 37 159 58 2 

22 34 158 62 2 

23 31 156 67 2 

24 28 154 71 3 

25 26 151 76 3 

26 23 149 80 4 

27 21 146 85 4 

28 19 142 90 5 

29 17 139 94 6 

30 16 135 99 6 

31 14 131 104 7 

32 13 127 108 8 

33 11 123 113 9 

34 10 118 118 10 
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17 different 4-tap cubic filters and 17 different 4-tap gaussian filters are used as 

intra prediction equations. Coefficients of these 4-tap filters are shown in Table 3.1. Cubic 

filters are used for 4x4 and 8x8 prediction units. Gaussian filters are used for 16x16, 

32x32 and 64x64 prediction units. 

VVC intra prediction algorithm determines reference pixel array (rparray) which 

consists of pixels that will be used in intra prediction equations of the corresponding 

prediction mode and PU size. Reference pixel array is filled with above neighboring 

pixels if prediction mode is more than or equal to 34. However, if prediction angle is less 

than zero, its first four pixels are filled with left neighboring pixels. Reference pixel array 

is filled with left neighboring pixels if prediction mode is less than 34. However, if 

prediction angle is less than zero, its first four pixels are filled with above neighboring 

pixels. 

VVC intra prediction algorithm calculates deltaint as shown in equation (3.1a). It 

calculates deltafract as shown in equation (3.1b). deltaint is used for determining positions 

of pixels in reference pixel array that will be used in intra prediction equations. Four 

pixels used in intra prediction equations are adjacent pixels in reference pixel array, but 

they may not be adjacent in video frame. These four pixels are selected as shown in 

equations (3.2a)-(3.2e), where rp[0], rp[1], rp[2] and rp[3] are the selected pixels from 

reference pixel array. If rp[1] is the left-most pixel in reference pixel array, rp[0] is equal 

to rp[1]. If rp[2] is the right-most pixel in the reference pixel array, rp[3] is equal to rp[2]. 

PU size is used for determining whether cubic or gaussian filters will be used. deltafract 

is used for determining which 4-tap filter among 17 4-tap filters will be used. 

 

𝑑𝑒𝑙𝑡𝑎𝑖𝑛𝑡 = ((𝑦 + 1) ∗ 𝑎𝑛𝑔𝑙𝑒) ≫ 5  (3.1a) 

𝑑𝑒𝑙𝑡𝑎𝑓𝑟𝑎𝑐𝑡 = ((𝑦 + 1) ∗ 𝑎𝑛𝑔𝑙𝑒) & 31  (3.1b) 

𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 = 𝑥 + 𝑑𝑒𝑙𝑡𝑎𝑖𝑛𝑡 + 1 (3.2a) 

r𝑝[1] = 𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥] (3.2b) 

𝑟𝑝[2] = 𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 + 1] (3.2c) 

𝑟𝑝[0] = (𝑥 == 0)? 𝑟𝑝[1]  ∶  𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 − 1] (3.2d) 

𝑟𝑝[3] = (𝑥 == (𝑤𝑖𝑑𝑡ℎ − 1)) ? 𝑟𝑝[2] ∶  𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 + 2] (3.2e) 

𝑥 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 −  1), 𝑦 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 −  1)  

 



29 

 

Reference pixel array and prediction equations for 8x8 intra angular prediction 

mode 9 with prediction angle -13 are shown in equations (3.3a) and (3.3b), respectively. 

 

rparray = [0, 0 ,0, 0, 0, O, M, J, R, A, B, C, D, E, F, G, H, 0, 0, 0, 0, 0, 0, 0, 0] 

 
(3.3a) 

pp[0,0] = pp[1,0] = (-17C + 162B + 126A - 15A) ≫ 8 

pp[2,0] = pp[3,0] = (-17B + 162A + 126R – 15R) ≫ 8 

pp[4,0] = pp[5,0] = pp[6,0] = (-17A + 162R + 126J – 15J) ≫ 8 

pp[7,0] = (-17R + 162J + 126M – 15M) ≫ 8 

 

(3.3b) 

 

pp[0,1] = pp[1,1] = (-10A + 230B + 43C - 7D) ≫ 8 

pp[2,1] = pp[3,1] = (-10R + 230A + 43B - 7C) ≫ 8 

pp[4,1] = pp[5,1] = pp[6,1] = (-10J + 230R + 43A - 7B) ≫ 8 

pp[7,1] = (-10M + 230J + 43R - 7A) ≫ 8 

 

 

pp[0,2] = pp[1,2] = (-14E + 210D + 70C – 10B) ≫ 8 

pp[2,2] = pp[3,2] = (-14D + 210C + 70B – 10A) ≫ 8 

pp[4,2] = pp[5,2] = pp[6,2] = (-14C + 210B + 70A – 10R) ≫ 8 

pp[7,2] = (-14B + 210A + 70R – 10J) ≫ 8 

 

 

pp[0,3] = pp[1,3] = (-16C + 187D + 98E – 13F) ≫ 8 

pp[2,3] = pp[3,3] = (-16B + 187C + 98D – 13E) ≫ 8 

pp[4,3] = pp[5,3] = pp[6,3] = (-16A + 187B + 98C – 13D) ≫ 8 

pp[7,3] = (-16R + 187A + 98B – 13C) ≫ 8 

 

 

pp[0,4] = pp[1,4] = (-5G + 247F + 17E – 3D) ≫ 8 

pp[2,4] = pp[3,4] = (-5F + 247E + 17D – 3C) ≫ 8 

pp[4,4] = pp[5,4] = pp[6,4] = (-5E + 247D + 17C – 3B) ≫ 8 

pp[7,4] = (-5D + 247C + 17B – 3A) ≫ 8 

 

 

pp[0,5] = pp[1,5] = (-16H + 153G + 135F – 16E) ≫ 8 

pp[2,5] = pp[3,5] = (-16G + 153F + 135E – 16D) ≫ 8 

pp[4,5] = pp[5,5] = pp[6,5] = (-16F + 153E + 135D – 16C) ≫ 8 

pp[7,5] = (-16E + 153D + 135C – 16B) ≫ 8 

 

 

pp[0,6] = pp[1,6] = (-9F + 236G + 34H) ≫ 8 

pp[2,6] = pp[3,6] = (-9E + 236F + 34G – 5H) ≫ 8 

pp[4,6] = pp[5,6] = pp[6,6] = (-9D + 236E + 34F – 5G) ≫ 8 

pp[7,6] = (-9C + 236D + 34E – 5F) ≫ 8 

 

 

pp[0,7] = pp[1,7] = (79H – 11G) ≫ 8 

pp[2,7] = pp[3,7] = (-15H + 203H + 79G – 11F) ≫ 8 

pp[4,7] = pp[5,7] = pp[6,7] = (-15G + 203G + 79F – 11E) ≫ 8 

pp[7,7] = (-15F + 203F + 79E – 11D) ≫ 8 

 

 

 

3.2 Reconfigurable Intra Angular Prediction Hardware for VVC 

Two VVC reconfigurable intra prediction hardware are proposed. They implement 

65 VVC intra angular prediction modes for 4x4, 8x8, 16x16, 32x32 prediction units. The 

first reconfigurable hardware (RECON_AS) implements multiplications with constants 

using adders and shifters instead of using multipliers. Therefore, it can be used in ASIC 
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implementations of VVC encoders. It uses thirty reconfigurable datapaths. Each 

RECON_AS datapath can calculate any 4-tap gaussian and cubic filter used in VVC intra 

angular prediction. It is configured by a filter selection signal in each clock cycle. 

FPGAs have built-in full-custom DSP blocks which can perform constant 

multiplications faster and with less energy than adders and shifters. A DSP block can be 

used to perform different constant multiplications by providing proper constant value to 

its input. Therefore, it is more efficient to implement constant multiplications using DSP 

blocks instead of using adders and shifters in an FPGA implementation. 

The second reconfigurable hardware (RECON_DSP) implements multiplications 

with constants using DSP blocks in FPGA instead of using adders and shifters. Therefore, 

it can be used in FPGA implementations of VVC encoders. It uses thirty reconfigurable 

datapaths. Each RECON_DSP datapath uses four DSP blocks. It can calculate any 4-tap 

gaussian and cubic filter used in VVC intra angular prediction. It is configured by 

changing DSP inputs in each clock cycle. 

RECON_AS and RECON_DSP VVC intra prediction hardware are implemented 

with Verilog HDL. The Verilog codes are mapped to a 28 nm FPGA and a 90 nm standard 

cell library. RECON_AS and RECON_DSP FPGA implementations work at 108 and 105 

MHz, respectively. They process 30 full HD (1920x1080) video frames per second. 

RECON_AS and RECON_DSP ASIC implementations work at 218 and 208 MHz, and 

they process 62 full HD and 59 full HD video frames per second, respectively. 

RECON_AS ASIC implementation has up to 12.8% less energy consumption than 

RECON_DSP ASIC implementation. Therefore, RECON_AS can be used in ASIC 

implementations of VVC encoders. RECON_DSP FPGA implementation has up to 

30.2% less energy consumption than RECON_AS FPGA implementation. Therefore, 

RECON_DSP can be used in FPGA implementations of VVC encoders. 

In the literature, there is no VVC intra prediction hardware. However, there are 

HEVC intra prediction hardware [18, 24, 26, 28, 36]. RECON_AS and RECON_DSP 

VVC intra prediction hardware are compared with them. 

In VVC, intra angular prediction modes of a PU have identical prediction equations. 

Intra angular prediction modes of different PU sizes have identical prediction equations 

as well. In this thesis, data reuse technique is used to calculate identical prediction 

equations only once and use the results for the corresponding prediction modes. 

Prediction equations calculated with and without data reuse are shown in Table 3.2 and 

Table 3.3. 
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Table 3.2 Cubic Filter Prediction Equations 

 
4x4 

Pred. Unit 

8x8 

Pred. Unit 

32x32 

Coding Unit 

Prediction Equations 1040 4160 133120 

Prediction Equations 

with Data Reuse 

405 1042 29478 

Reduction (%) 61.06 74.95 77.85 

 

Table 3.3 Gaussian Filter Prediction Equations 

 
16x16 

Pred. Unit 

32x32 

Pred. Unit 

32x32 

Coding Unit 

Prediction Equations 16680 66560 133120 

Prediction Equations 

with Data Reuse 

2597 6641 11810 

Reduction (%) 84.43 90.02 91.13 

 

There are 4*4*65 = 1040 intra angular prediction equations for 4x4 PU size. There 

are 4160, 16680, 66560 intra angular prediction equations for 8x8, 16x16, 32x32 PU 

sizes, respectively. Data reuse technique reduced numbers of intra angular prediction 

equations for 4x4, 8x8, 16x16, 32x32 PU sizes to 405, 1042, 2597 and 6641, respectively. 

There are 133120 cubic filter prediction equations for sixteen 8x8 PUs and sixty-

four 4x4 PUs in a 32x32 CU. Data reuse technique reduced number of these cubic filter 

prediction equations to 29478. There are 133120 gaussian filter prediction equations for 

one 32x32 PU and four 16x16 PUs in a 32x32 CU. Data reuse technique reduced number 

of these gaussian filter prediction equations to 11810. 

The proposed VVC reconfigurable intra prediction hardware is shown in Figure 3.3 

(a). It implements 65 angular prediction modes for 4x4, 8x8, 16x16, 32x32 PU sizes. It 

uses data reuse technique. It has thirty pipelined reconfigurable datapaths (RDP). Each 

RDP calculates an intra prediction equation in a clock cycle. Thirty RDPs calculate thirty 

intra prediction equations in a clock cycle. Neighboring pixels in neighboring PUs are 

stored in left, top and reconstructed neighboring buffers. Predicted pixels are stored in 

prediction equation register file. 
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Figure 3.3 (a) VVC Reconfigurable Intra Prediction Hardware  

(b) RECON_AS Datapath 

(c) RECON_DSP Datapath (d) DSP Block 
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In order to avoid storing all 528 neighboring pixels of a 32x32 CU, it is divided into 

8x8 blocks and prediction equations using pixels from the same 8x8 block are grouped 

together. Neighboring pixels of current 8x8 block and four 4x4 blocks are stored in 42 

registers. In addition, there are extra registers to store pixels from previous 8x8 blocks, 

and these registers are used when pixels from two different blocks are required in a 

prediction equation. First, these registers are loaded. Then, thirty RDPs calculate 

prediction equations for current 8x8 block and four 4x4 blocks. 

Two different reconfigurable datapaths are proposed. The first reconfigurable 

datapath (RECON_AS) is shown in Figure 3.3 (b). It implements VVC intra angular 

prediction equations using adders and shifters. It takes four neighboring pixels and a 

selection signal as input and calculates the 4-tap cubic or gaussian filter corresponding to 

the selection signal. It is configured by the selection signal to multiply four input pixels 

with coefficients of the corresponding 4-tap cubic or gaussian filter. Then, the 

multiplication results are added using an adder tree and the result is shifted right by eight. 

FPGAs have built-in full-custom DSP blocks which can perform constant 

multiplications faster and with less energy than adders and shifters. A DSP block can be 

used to perform different constant multiplications by providing proper constant value to 

its input. Therefore, it is more efficient to implement constant multiplications using DSP 

blocks instead of using adders and shifters in an FPGA implementation. DSP block 

architecture is shown in Figure 3.3 (d). It has one pre-adder, one multiplier and one 

arithmetic logic unit (ALU). It also has optional pipeline registers. 

Therefore, the second reconfigurable datapath (RECON_DSP) uses DSP blocks in 

FPGA to implement multiplications with constants as shown in Figure 3.3 (c). It takes 

four neighboring pixels and a selection signal as input and calculates the 4-tap cubic or 

gaussian filter corresponding to the selection signal. It multiplies four input pixels with 

coefficients of the corresponding 4-tap cubic or gaussian filter using four DSP blocks. 

Two DSP blocks which are shown as MULT in Figure 3.3 (c), multiply two input pixels 

with the corresponding coefficients and write the results to output registers. Other two 

DSP blocks, which are shown as MULT_ADD in Figure 3.3 (c), multiply the other two 

input pixels with the corresponding coefficients and add the multiplication results. Then, 

two MULT_ADD results are added and the result is shifted right by eight. 

The proposed RECON_AS and RECON_DSP hardware are implemented with 

Verilog HDL. The Verilog codes are synthesized, placed and routed to a 28 nm FPGA. 

Functional simulation results and post place and route timing simulation results matched 
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results of VVC JEM software encoder [37]. FPGA implementations are also verified on 

an FPGA board as shown in Figure 3.4. The FPGA board has a 28 nm FPGA, 1 GB 

DRAM and several interfaces such as HDMI. The VVC intra prediction hardware and 

microprocessor communicates using a bus. 

 

 

Figure 3.4 FPGA Implementation 

 

The Verilog codes are synthesized, placed and routed to a 90 nm standard cell 

library as well. Since DSP blocks are only available in FPGAs, RECON_DSP ASIC 

implementation uses multipliers. FPGA and ASIC implementation results are given in 

Table 3.4. 

 

Table 3.4 Implementation Results 

 RECON_AS RECON_DSP 

Technology 
28 nm 

FPGA 

90 nm 

ASIC 

28 nm 

FPGA 

90 nm 

ASIC 

Slice/Gate  

Count 
20352 96.1 K 13666 92.3 K 

DFF 6237 --- 4076 --- 

LUT 49556 --- 32499 --- 

Memory 3.2 KB 3.2 KB 3.2 KB 3.2 KB 

DSP Block --- --- 120 --- 

Max Freq. (MHz) 108 218 105 208 

Frames per Sec.  
30 

1920x1080 

62 

1920x1080 

30 

1920x1080 

59 

1920x1080 

Power (mW) 1037.8 42.2 637.7 48.4 

PU Size 4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32 

 

RECON_AS FPGA implementation uses 49556 LUTs, 6237 DFFs, 4 BRAMs. It 

works at 108 MHz.  RECON_DSP FPGA implementation uses 32499 LUTs, 4076 DFFs, 
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4 BRAMs, 120 DSP blocks. It works at 105 MHz. Both FPGA implementations process 

30 full HD (1920x1080) video frames per second (fps). 

RECON_AS ASIC implementation uses 96.1K gates based on NAND (2x1) gate 

area. It works at 218 MHz. It processes 62 full HD video fps. RECON_DSP ASIC 

implementation uses 92.3K gates based on NAND (2x1) gate area. It works at 208 MHz. 

It processes 59 full HD video fps. 

Power consumptions of RECON_AS and RECON_DSP FPGA implementations 

are estimated for Tennis, Kimono, ParkScene and Basketball Drive (1920x1080) videos 

at 100 MHz [35] using a gate level power estimation tool. Signal activities captured 

during post place and route timing simulations are used to estimate power consumptions. 

The energy consumptions for one frame of each video are given in Figure 3.5. Since 

RECON_DSP FPGA implementation uses DSP blocks instead of adders and shifters, it 

has up to 30.2% less energy consumption than RECON_AS FPGA implementation. 

 

 

Figure 3.5 Power Consumptions 

 

Table 3.5 Hardware Comparison 

 [36] [24] [26] [28] [18] RECON_AS RECON_DSP 

FPGA Technology 40 nm 65 nm 40 nm 40 nm 40 nm 28 nm 28 nm 

DFF 849 5.5 K 110 K --- 2006 6234 4076 

LUT 2381 14 K 170 K 24 K 6013 49556 32499 

BRAM 3.2 KB 6 KB --- 6 KB 3.2 KB 3.2 KB 3.2 KB 

Max Freq. (MHz) 150 110 219 100 166 108 105 

Frames per Sec.  
30 

1920x1080 

30 

3840x2160 

24 

3840x2160 

60 

1920x1080 

40 

1920x1080 

30 

1920x1080 

30 

1920x1080 

PU Size 4, 8 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 

 

In Table 3.5, RECON_AS and RECON_DSP hardware are compared with HEVC 

intra prediction hardware in the literature [18, 24, 26, 28, 36]. Since VVC intra prediction 
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algorithm is more complex than HEVC intra prediction algorithm, RECON_AS and 

RECON_DSP hardware are slower and have larger area than the HEVC intra prediction 

hardware. 

3.3 DSP Block Based FPGA Implementation of VVC Intra Prediction 

An efficient FPGA implementation of VVC intra prediction for angular prediction 

modes of 4x4, 8x8, 16x16 and 32x32 PU sizes is proposed. The proposed FPGA 

implementation uses 30 identical DSP datapaths (DDP). In the proposed FPGA 

implementation, intra angular prediction equations are manipulated in such a way that 

one intra angular prediction equation is implemented using two DSP blocks and two 

adders. Therefore, each DDP has two DSP blocks and two adders, and it can calculate 

any 4-tap gaussian and cubic filter used in VVC intra angular prediction in one clock 

cycle by changing DSP inputs. 

The proposed VVC intra angular prediction hardware is implemented using Verilog 

HDL. The Verilog RTL code is verified to work at 119 MHz on a Xilinx Virtex7 FPGA. 

The proposed VVC intra angular prediction hardware, in the worst case, can process 34 

full HD (1920x1080) frames per second.  

Two VVC intra prediction hardware implementations are proposed in [20]. Several 

HEVC intra prediction hardware implementations are proposed in the literature [18, 24, 

26, 28]. The proposed VVC intra prediction hardware is compared with VVC and HEVC 

intra prediction hardware in the literature. 

In VVC, identical prediction equations are used in an intra angular prediction mode 

or in different intra angular prediction modes or in the intra angular prediction modes of 

different PU sizes. In the proposed hardware, data reuse technique is used to calculate 

identical prediction equations only once. There are 4x4 (PU size) x 65 (intra angular 

prediction modes) = 1040 intra angular prediction equations for 4x4 PU size. Numbers of 

prediction equations for other PU sizes are shown in Table 3.6. The number of prediction 

equations calculated for 4x4 PU size is reduced to 405 by using data reuse technique. 

Numbers of prediction equation reductions for other PU sizes are shown in Table 3.6. 

Cubic filters are used for 4x4 and 8x8 PU sizes. Total number of cubic filter 

prediction equations for sixty-four 4x4 PUs and sixteen 8x8 PUs in a 32x32 CU without 

data reuse is 133120. Gaussian filters are used for 16x16 and 32x32 PU sizes. Total 

number of gaussian filter prediction equations for four 16x16 PUs and one 32x32 PU in 

a 32x32 CU without data reuse is 133120. The numbers of cubic filter prediction 
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Table 3.6 Intra Angular Prediction Equation Reductions by Data Reuse 

 Cubic Filters Gaussian Filters 

 4x4 PU 8x8 PU 32x32 CU 16x16 PU 32x32 PU 32x32 CU 

# of Pred.Equations 1040 4160 133120 16680 66560 133120 

# of Pred. Equations 

with Data Reuse 
405 1042 29478 2597 6641 11810 

Reduction (%) 61.06 74.95 77.85 84.43 90.02 91.13 

 

equations and gaussian filter prediction equations calculated are reduced by 77.85% and 

91.13%, respectively with data reuse technique. 

The proposed VVC intra prediction hardware is shown in Figure 3.6. It implements 

65 angular prediction modes for PU sizes from 4x4 to 32x32. It has thirty parallel 

reconfigurable DSP datapaths (DDP). One DDP, which can be configured to implement 

any of the 34 cubic and gaussian filters, is shown in Figure 3.7. 

 

 

Figure 3.6 Proposed FPGA Implementation of VVC Intra Prediction 

 

32x32 coding unit (CU) is divided into 8x8 blocks and the neighboring pixels for 

the current 8x8 block and four 4x4 blocks within the current 8x8 block are loaded to 

registers. There are extra registers to store pixels from previous blocks, in case that an 

equation requires pixels from different 8x8 blocks. Therefore, the number of registers to 

store is decreased by storing only the neighboring pixels of 8x8 blocks, instead of keeping 

all neighboring pixels of 32x32 CU. 
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Figure 3.7 Proposed FPGA Reconfigurable DSP Datapath (DDP) 

 

FPGAs have built-in full-custom DSP blocks which can perform constant 

multiplications faster and with less energy than adders and shifters. A DSP block can be 

used to perform different constant multiplications by providing proper constant values to 

its inputs. Therefore, it is more efficient to implement constant multiplications using DSP 

blocks instead of using adders and shifters in an FPGA implementation. 

Xilinx DSP block architecture is shown in Figure 3.8. It has one pre-adder, one 

multiplier and one arithmetic logic unit (ALU). It also has optional pipeline registers. A 

DSP block can be configured to implement different operations. 

In VVC, each intra angular prediction equation requires four multiplication 

operations to multiply four pixels with corresponding filter coefficients and three addition 

operations to add the results of these four multiplications. Therefore, four DSP blocks are 

necessary for implementing an intra angular prediction equation in its original form as in 

[20]. 

In the proposed FPGA implementation, intra angular prediction equations are 

manipulated in such a way that one intra angular prediction equation is implemented using 

two DSP blocks and two adders. Therefore, each DDP has two DSP blocks and two 

adders, and it can calculate any 4-tap gaussian and cubic filter used in VVC intra angular 

prediction in one clock cycle by changing A, B, C and D inputs of DSP blocks. 

-
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Figure 3.8 Xilinx DSP48E1 Block 

 

In the proposed FPGA implementation, DSP blocks are configured to implement 

equation (3.4). Each DDP implements equation (3.5).  

 

𝑃 = 𝐵 ∗ (𝐷 − 𝐴) + 𝐶  (3.4) 

𝑃 = (𝐵1 ∗ (𝐷1 − 𝐴1) + 𝐶1) +   (𝐵2 ∗ (𝐷2 − 𝐴2) + 𝐶2) + 𝐸𝑥𝑡𝑟𝑎𝑇𝑒𝑟𝑚  (3.5) 

 

Four filter coefficients used in 34 VVC intra angular prediction equations are shown 

in Table 3.7. The A, B, C, D inputs of two DSP blocks and the extra term necessary for 

calculating each intra angular prediction equation using a DDP are also shown in Table 

3.7. The inputs of DSP blocks are shown in the order they appear in equation (3.5). 

Constant numbers are given to B inputs of two DSP blocks. Pixels or shifted pixels are 

given to D, A and C inputs of DSP blocks. Multiplexers are used to select the proper 

inputs for implementing each intra angular prediction equation. 

For example, the intra angular prediction equation “Filter 1” shown in Table 3.7 is 

implemented using a DDP as shown in equations (3.6a), (3.6b) and (3.6c). 

 

𝑃 = (4 ∗ (2 ∗ 𝑝3 − 𝑝2) + 0) +  (3 ∗ (0 − 𝑝1) + (−𝑝4)) + 256 ∗ 𝑝2  (3.6a) 

𝑃 = (8 ∗ 𝑝3 − 4 ∗ 𝑝2 − 3 ∗ 𝑝1 − 𝑝4 + 256 ∗ 𝑝2)  (3.6b) 

𝑃 = (−3 ∗ 𝑝1 + 252 ∗ 𝑝2 + 8 ∗ 𝑝3 − 𝑝4) (3.6c) 

 

The proposed VVC intra prediction hardware is implemented using Verilog HDL. 

The Verilog RTL code is synthesized, placed and routed to a Xilinx XC7VX485T 

FFG1157 FPGA with speed grade 3 using Xilinx Vivado2017.2. The FPGA 

implementation is verified with post place and route simulations. The proposed 
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Table 3.7 DDP Configurations 

F

Filters 

Filter Coefficients DSP Block 1 DSP Block 2 
E

Extra 

Term 

C
o

e
ff

1
 

C
o

e
ff

2
 

C
o

e
ff

3
 

C
o

e
ff

4
 

B1 D1 A1 C1 B2 D2 A2 C2 

0 0 256 0 0 0 0 p2 0 0 0 0 0 p2≪8 

1 -3 252 8 -1 4 p3≪1 p2 0 3 0 p1 (-p4) p2≪8 

2 -5 247 17 -3 9 p3 p2 p3≪3 -3 p1 (-p4) (-p1)≪1 p2≪8 

3 -7 242 25 -4 14 0 p2 (-p4)≪2 7 (-p1) p3 p3≪5 p2≪8 

4 -9 236 34 -5 5 (-p4) p2≪2 0 9 (-p1) (-p3)≪2 (-p3)≪1 p2≪8 

5 -10 230 43 -7 -43 (-p3) p2≪1 (-p2)≪4 10 p2≪4 p1 (-p4)≪3 p4 

6 -12 224 52 -8 32 p3 p2 p1≪3 20 p3 p1 (-p4)≪3 p2≪8 

7 -13 217 61 -9 -9 p4 p2 (-p3)≪2 13 (-p1) (-p2)≪4 p3≪6 p3 

8 -14 210 70 -10 -12 p1 p2 (-p4)≪1 70 p2 -p3 (-p4)≪3 p2≪7 

9 -15 203 79 -11 -75 (-p3) p2 p3≪2 15 (-p1) p4 p4≪2 p2≪7 

10 -16 195 89 -12 61 p3 p2 (-p1)≪4 12 p3 p4 p3≪4 p2≪8 

11 -16 187 98 -13 69 p3 p2 (-p1)≪4 13 p3 p4 p3≪4 p2≪8 

12 -16 179 10

7 

-14 -51 (-p3)≪1 p2 (-p1)≪4 5 p3 p4≪1 (-p4)≪2 p2≪7 

13 -16 170 11

6 

-14 86 p3 p2 (-p1)≪4 14 p3 p4 p3≪4 p2≪8 

14 -17 162 12

6 

-15 -17 p1 p2≪1 p4 126 p3 0 (-p4)≪4 p2≪7 

15 -16 153 13

5 

-16 103 p3 p2 (-p1)≪4 16 p3 p4 p3≪4 p2≪8 

16 -16 144 14

4 

-16 -144 (-p3) p2 0 16 (-p1) p4 0 0 

17 47 161 47 1 -161 0 p2 p4 47 p1 (-p3) 0 0 

18 43 161 51 1 -161 0 p2 p4 43 p1 (-p3) p3≪3 0 

19 40 160 54 2 -32 (-p1) p2 p4≪1 54 0 (-p3) p1≪3 p2≪7 

20 37 159 58 2 -159 0 p2 p4≪1 37 p1 (-p3)≪1 (-p3)≪4 0 

21 34 158 62 2 -62 (-p3) p2≪1 0 34 p1 (-p2) p4≪1 0 

22 31 156 67 2 -5 (-p3) p2≪2 p2≪3 31 p1 (-p3)≪1 p4≪1 p2≪7 

23 28 154 71 3 -71 (-p3) p2≪1 p1≪5 3 p4 (-p2)≪2 (-p1)≪2 0 

24 26 151 76 3 -76 (-p3) p2≪1 (-p2) 3 p1≪3 (-p4) p1≪1 0 

25 23 149 80 4 -21 (-p1) p2 p1≪1 80 p3 0 p4≪2 p2≪7 

26 21 146 85 4 -18 0 p2 p4≪2 21 p1 (-p3)≪2 p3 p2≪7 

27 19 142 90 5 -14 (-p3) p2 p4≪2 19 p1 (-p3)≪2 p4 p2≪7 

28 17 139 94 6 -11 (-p3)≪3 p2 p1≪4 6 p3 (-p4) p1 p2≪7 

29 16 135 99 6 -7 (-p3)≪4 p2 p1≪4 6 p4 p3≪1 (-p3) p2≪7 

30 14 131 10

4 

7 -3 (-p3)≪5 p2 p3≪3 7 p1≪1 (-p4) 0 p2≪7 

31 13 127 10

8 

8 -127 0 p2 p4≪3 13 p1 (-p3)≪3 p3≪2 0 

32 11 123 11

3 

9 -113 (-p3) p2 p1 10 p1 (-p2) p4≪3 p4 

33 10 118 11

8 

10 -118 (-p3) p2 0 0 p1 (-p4) 0 0 

 

FPGA implementation uses 5766 DFFs, 46382 LUTs, 4 BRAMs and 60 DSP48E1s 

blocks. It works at 119 MHz. It can process 34 full HD (1920x1080) video frames per 

second (fps). 

The proposed VVC intra prediction hardware is compared with HEVC and VVC 

intra prediction hardware in the literature in Table 3.8. Since VVC intra prediction 

algorithm is more complex than HEVC intra prediction algorithm, the proposed VVC 

intra prediction hardware implementation and the two VVC intra prediction hardware 

implementations proposed in [20] are slower and have more area than the HEVC intra 

prediction hardware implementations [18, 24, 26, 28]. 
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Table 3.8 Hardware Comparison 

 [10] [12] [13] [14] [15] 
[11] 

RECON_AS 

[11] 

RECON_DSP 
Proposed 

FPGA Xilinx 6 Stratix III Arria II 

GX 

Virtex 6 Xilinx 6 Virtex 7 Virtex 7 Virtex 7 

FPGA Technology 40 nm 65 nm 40 nm 40 nm 40 nm 28 nm 28 nm 28 nm 

Standard HEVC HEVC HEVC HEVC HEVC VVC VVC VVC 

DFF 849 5.5 K 110 K --- 2006 6234 4076 5766 

LUT 2381 14 K 170 K 24 K 6013 49556 32499 46382 

BRAM 3.2 KB 6 KB --- 6 KB 3.2 KB 3.2 KB 3.2 KB 3.2 KB 

DSP Block --- --- --- --- --- --- 120 60 

Max Freq. (MHz) 150 110 219 100 166 108 105 119 

Frames per Sec.  
30 

1920x1080 

30 

3840x2160 

24 

3840x2160 

60 

1920x1080 

40 

1920x1080 

30 

1920x1080 

30 

1920x1080 

34 

1920x1080 

PU Size 4, 8 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 

 

RECON_AS hardware implements VVC intra prediction using adders and shifters 

[20]. It does not use DSP blocks. RECON_DSP hardware implements VVC intra 

prediction using DSP blocks [20]. It uses four DSP blocks and one adder for 

implementing an intra angular prediction equation. The proposed VVC intra prediction 

hardware is faster than both RECON_AS and RECON_DSP hardware. It uses 50% less 

DSP blocks than RECON_DSP hardware. 
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CHAPTER IV 

 

VVC FRACTIONAL INTERPOLATION HARDWARE 

 

 

 

HEVC standard uses 3 different 8-tap FIR filters for fractional interpolations and 

provides 1/4 fractional pixel accuracy. However, VVC standard uses 15 different 8-tap 

FIR filters for fractional interpolations and provides 1/16 fractional pixel accuracy. 

Therefore, VVC fractional interpolation has much higher computational complexity than 

HEVC fractional interpolation. 

In this thesis, a reconfigurable VVC fractional interpolation hardware for motion 

compensation (MC) is proposed. The proposed hardware supports all prediction unit (PU) 

sizes. It interpolates necessary fractional pixels for the fractional pixel location in an 8x8 

PU pointed by the given fractional pixel accurate motion vector. For larger PU sizes, the 

PU is divided into 8x8 blocks, and the blocks are interpolated separately. Since the 

proposed hardware is used for motion compensation stage of VVC encoder and decoder, 

only one fractional pixel per integer pixel is required. Therefore, the proposed hardware 

has a reconfigurable datapath which can be configured to implement any of the 15 

different 8-tap FIR filters. 

The proposed VVC fractional interpolation hardware is implemented using Verilog 

HDL. The Verilog RTL code is verified to work at 250 MHz on a Xilinx Virtex 7 FPGA. 

The proposed VVC fractional interpolation hardware, in the worst case, can process 66 

quad full HD (3840x2160) frames per second. The proposed reconfigurability reduced 

the power consumption of FPGA implementation of the proposed VVC fractional 

interpolation hardware by 77%. 

The proposed hardware is the first VVC fractional interpolation hardware for 

motion compensation in the literature. Several HEVC fractional interpolation hardware 

implementations are proposed in the literature [38]-[43]. The proposed VVC fractional 

interpolation hardware is compared with them. 
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4.1 VVC Fractional Interpolation Algorithm 

VVC standard uses 15 different 8-tap FIR filters for fractional pixel interpolation. 

The coefficients of these 15 FIR filters are shown in Table 4.1. A-3 – A4 show input pixels 

for a filter where sub-indices represent the indices of coefficients. The F7 8-tap FIR filter 

equation is shown in equation (4.1) as an example. 

 

Table 4.1 VVC Fractional Interpolation Filters 

Filters 
Coefficients 

A-3 A-2 A-1 A0 A1 A2 A3 A4 

1 0 1 -3 63 4 -2 1 0 

2 -1 2 -5 62 8 -3 1 0 

3 -1 3 -8 60 13 -4 1 0 

4 -1 4 -10 58 17 -5 1 0 

5 -1 4 -11 52 26 -8 3 -1 

6 -1 3 -9 47 31 -10 4 -1 

7 -1 4 -11 45 34 -10 4 -1 

8 -1 4 -11 40 40 -11 4 -1 

9 -1 4 -10 34 45 -11 4 -1 

10 -1 4 -10 31 47 -9 3 -1 

11 -1 3 -8 26 52 -11 4 -1 

12 0 1 -5 17 58 -10 4 -1 

13 0 1 -4 13 60 -8 3 -1 

14 0 1 -3 8 62 -5 2 -1 

15 0 1 -2 4 63 -3 1 0 

 

F7 = (-A-3 + 4*A-2 - 11*A-1 + 45*A0 + 34*A1 - 10*A2+ 4*A3 + 4*A4) >> 6 (4.1) 

 

Integer pixels, fractional pixels and FIR filters used to interpolate these fractional 

pixels are shown in Figure 4.1. There are 255 fractional (half and quarter) pixels for one 

integer pixel. There are 15 half-pixels between two neighboring horizontal integer pixels 

called horizontal half-pixels. There are 15 half-pixels between two neighboring vertical 

integer pixels called vertical half-pixels. These 15 horizontal and 15 vertical half-pixels 

are interpolated from nearest integer pixels in horizontal and vertical directions, 

respectively, using 15 different 8-tap FIR filters. There are 15x15=225 quarter-pixels 

between 15 horizontal and 15 vertical half-pixels. These quarter-pixels are interpolated 

from nearest horizontal half-pixels using 15 different 8-tap FIR filters. 

VVC fractional interpolation algorithm used for motion compensation interpolates 

necessary fractional pixels for one out of 255 fractional pixel locations pointed by the 

given 1/16 pixel accurate motion vector. Necessary fractional pixels are determined using 

x fraction and y fraction of the given 1/16 pixel accurate motion vector. If either x fraction 

or y fraction is zero, only necessary half-pixels are interpolated. If neither x fraction nor 

y fraction is zero, horizontal half-pixels necessary to interpolate the quarter-pixels are 
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interpolated first. Then, the necessary quarter-pixels are interpolated using these 

horizontal half-pixels. 

 

 

Figure 4.1 Integer, Half and Quarter Pixels 

 

4.2 Proposed VVC Fractional Interpolation Hardware 

The proposed reconfigurable VVC fractional interpolation hardware for all PU 

sizes is shown in Figure 4.2. The proposed hardware interpolates the necessary fractional 

pixels for luma component of an 8x8 PU for a given 1/16 pixel accurate motion vector 

using integer or half-pixels. For larger PU sizes, the PU is divided into 8x8 blocks and 

these blocks are interpolated separately. For example, a 16x16 PU is divided into four 

8x8 blocks and each 8x8 block is interpolated separately. 

 

 

Figure 4.2 Proposed VVC Fractional Interpolation Hardware 
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Since 15x8 horizontal half-pixels are necessary for interpolating quarter-pixels, 

15x8x8 on-chip transpose memory is used to store horizontal half-pixels necessary for 

interpolating quarter-pixels in certain cases. The horizontal half-pixels interpolated from 

nearest integer pixels in horizontal direction are stored in transpose memory horizontally 

in 15 clock cycles. Then, 15 horizontal half-pixels are read vertically from transpose 

memory in each clock cycle to interpolate quarter-pixels. 

The proposed hardware takes 15 integer pixels in each clock cycle. It interpolates 8 

fractional pixels in each clock cycle using 8 parallel reconfigurable datapaths. If the 

necessary fractional pixels are half-pixels, 8x8 half-pixels are interpolated using the 

integer pixels in 8 clock cycles. If the necessary fractional pixels are quarter-pixels, 15x8 

horizontal half-pixels are interpolated using the integer pixels in 15 clock cycles. Then, 

8x8 quarter-pixels are interpolated using these horizontal half-pixels in 8 clock cycles. 

There are three pipeline stages in the proposed hardware. Therefore, the proposed 

hardware interpolates the half-pixels and quarter-pixels for an 8x8 PU in 11 and 29 clock 

cycles, respectively. 

15 different 8-tap FIR filters are used to interpolate half-pixels and quarter-pixels. 

Last 7 FIR filters are symmetric of the first 7 FIR filters. Therefore, in this thesis, a 

reconfigurable datapath which implements the first 8 FIR filters is proposed. It can be 

configured to calculate output of any of the first 8 FIR filters. To calculate output of one 

of the last 7 FIR filters using the proposed reconfigurable datapath, inputs are reversed, 

and corresponding symmetric filter is selected. 

The proposed reconfigurable datapath is shown in Figure 4.3. It implements 

multiplications with constant coefficients using adders and shifters. It has 14 

adders/subtractors and their inputs are determined by a filter selection signal. It selects 

different input pixels with different shift amounts for each fractional interpolation 

equation using input multiplexers as shown in Table 4.2. 

In this thesis, a baseline VVC fractional interpolation hardware is also designed and 

implemented for comparison. The baseline hardware has the same architecture as the 

proposed hardware. The only difference is their datapaths. In the baseline hardware 

datapath, all 15 FIR filters are implemented separately and output of one FIR filter is 

selected based on filter selection signal. Therefore, the baseline hardware datapath has 91 

adders while the proposed reconfigurable datapath has 14 adders. 

The proposed and the baseline VVC fractional interpolation hardware are 

implemented using Verilog HDL. The Verilog RTL codes are verified with RTL 
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simulations. The Verilog RTL codes are synthesized and mapped to a Xilinx 

VC7VX330T-3FFG1157 FPGA using Xilinx ISE 14.7. The FPGA implementations are 

verified with post place and route simulations. The simulation results matched the results 

of a software implementation of VVC fractional interpolation algorithm. 

 

 

Figure 4.3 Proposed Reconfigurable Datapath 
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As shown in Figure 4.4, FPGA implementations are also verified to work correctly 

on a Xilinx Virtex 7 VC707 FPGA board which includes an FPGA, 1 GB DRAM and 
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computer, stores them to DDR memory and sends them to FPGA using high-speed AXI-

4 bus. The proposed hardware interpolates the video frames. Then, interpolated video 

frames are displayed on HDMI monitor. 

 

 

Figure 4.4 FPGA Board Implementation 

 

As shown in Table 4.2, FPGA implementation of the proposed VVC fractional 

interpolation hardware uses 1688 DFFs and 4467 LUTs. It can work at 250 MHz, and it 

can process 66 quad full HD (3840x2160) frames per second. FPGA implementation of 

the baseline VVC fractional interpolation hardware uses 5446 DFFs and 12016 LUTs. It 

can work at 238 MHz, and it can process 63 quad full HD (3840x2160) frames per second. 

 

Table 4.3 Implementation Results 

 Baseline Proposed 

Technology Xilinx Virtex 7 TSMC 90 nm Xilinx Virtex 7 TSMC 90 nm 

Slice/Gate Count 3630 48.3 K 1407 11.7 K 

DFF 5446 --- 1688 --- 

LUT 12016 --- 4467 --- 

Max. Freq. (MHz) 238 417 250 357 

Frames per Second  63 (3840x2160) 110 (3840x2160) 66 (3840x2160) 95 (3840x2160) 

 

The Verilog RTL codes of the baseline and proposed VVC fractional interpolation 

hardware are also synthesized to TSMC 90 nm standard cell library, and the resulting 
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netlists are placed and routed. As shown in Table 4.3, ASIC implementations of the 

baseline and proposed hardware use 48.3K and 11.7K gates, respectively, based on 

NAND (2x1) gate area excluding on-chip memory. ASIC implementations of the baseline 

and proposed hardware can work at 417 and 357 MHz, respectively, and they can process 

110 and 95 quad full HD frames per second, respectively. 

Since the proposed hardware is the first VVC fractional interpolation hardware for 

motion compensation in the literature, it is compared with HEVC fractional interpolation 

hardware in the literature [38]-[43]. The comparison is shown in Table 4.4. The HEVC 

fractional interpolation hardware proposed in [38] is designed for motion compensation. 

The others can be used for both motion estimation (ME) and motion compensation. 

 

Table 4.4 Hardware Comparison 

 [38] [39] [40] [41] [42] [43] Proposed 

FPGA Xilinx 

Virtex 6 

Xilinx 

Virtex 6 
Arria II GX 

Xilinx 

Virtex 5 
Stratix III 

Xilinx 

Virtex 6 

Xilinx 

Virtex 7 

Slices --- --- --- 2181 --- 1498 1407 

LUTs 3005 3929 18831 5017 7701 3806 4467 

Block RAMs 2 6 --- 2 --- --- --- 

Max. Freq. (MHz) 100 200 200 283 278 233 250 

Frames per Second  64 
2560x1600 

30 
3840x2160 

60 
1920x1080 

30 
2560x1600 

60 
3840x2160 

35 
3840x2160 

66 
3840x2160 

Design Only MC ME + MC ME + MC ME + MC ME + MC ME + MC Only MC 

Standard HEVC HEVC HEVC HEVC HEVC HEVC VVC 

 

Since VVC fractional interpolation has higher computational complexity than 

HEVC fractional interpolation, the proposed hardware has higher area than the HEVC 

fractional interpolation hardware proposed in [38]. However, since the proposed 

hardware is designed for motion compensation, it does not have higher area than the other 

HEVC fractional interpolation hardware in the literature. 

Power consumptions of the baseline and proposed hardware are estimated using 

Xilinx XPower Analyzer tool. Post place and route timing simulations are performed for 

Tennis and Kimono (1920x1080) video frames at 100 MHz [35].  The signal activities of 

these timing simulations are stored in VCD files, and they are used for estimating the 

power consumptions of FPGA implementations. The power consumptions of both the 

baseline and proposed hardware are shown in Table 4.5. Clock, signal and logic power 

consumptions are given for detailed analysis. Total power consumption of the proposed 

hardware for Tennis and Kimono frames is 76.21% and 77.02% less than that of the 

baseline hardware, respectively. 
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Table 4.5 Power Consumption Results 

 Baseline Proposed 

Frame Tennis Kimono Tennis Kimono 

Clock (mW) 68.33 68.33 13.84 13.84 

Signal (mW) 96.75 131.64 16.64 22.58 

Logic (mW) 99.27 135.36 32.40 40.64 

Total Power (mW) 264.35 335.33 62.88 77.06 

Power Reduction --- --- 76.21 % 77.02 % 
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CHAPTER V 

 

APPROXIMATE VIDEO COMPRESSION HARDWARE 

 

 

 

Approximate computing is a promising solution to increased computational 

complexity of signal processing applications [44]-[52]. Approximate computing allows 

designing faster, smaller area and lower power consuming hardware than the exact 

optimized hardware designs, by trading off speed, area and power consumption with 

quality. Therefore, it can be used in error tolerant applications. 

Different approximate computing approaches are proposed in the literature [53]-

[57]. A commonly used approximate computing approach is using general purpose 

approximate arithmetic circuits such as approximate adders and multipliers [58]-[63] 

instead of exact arithmetic circuits. These approximate arithmetic circuits have different 

accuracy, speed, area and power consumption. The ones satisfying accuracy, speed, area 

and power consumption requirements of an application can be used for that application. 

Several approximate adders are proposed in the literature [58]-[60]. Almost Correct 

Adder (ACA-I) proposed in [58] splits an adder into overlapping sub-adders with fixed 

size. Since it has shorter critical path, it is faster than exact adder. It has larger area than 

exact adder because of overlapping sub-adders. However, its accuracy is high. 

Error Tolerant Adder (ETA-II) proposed in [59] splits input operands into accurate 

and inaccurate parts. Accurate part includes several most significant bits (MSB) and 

inaccurate part includes the remaining least significant bits (LSB). Accurate part is added 

exactly. Since MSBs affect error magnitude more than LSBs, this reduces error. 

Inaccurate part is added approximately without generating or taking in carry signal. 

Generic Accuracy Configurable Adder (GeAr) proposed in [60] provides a 

generalized model for accuracy-configurable adders which allows adders to be configured 

as various approximate adders such as ACA-I and ETA-II. It also has a reconfigurable 

error correction unit which enables computation of accurate results when required.  
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Several approximate multipliers are proposed in the literature [61]-[63]. The 

approximate multiplier proposed in [61] first generates partial products. Then, the partial 

products are reduced to addition of two operands using approximate 4-2 compressors. 

Finally, these two partial products are added with an exact adder. In the paper, two 

different approximate 4-2 compressors and two different approximate multiplier 

architectures are proposed. Four different approximate multipliers are proposed by using 

these two different approximate 4-2 compressors and two different multiplier 

architectures. First multiplier architecture uses only approximate 4-2 compressors to 

reduce the partial products to two operands. Second multiplier architecture uses 

approximate 4-2 compressors for LSBs and exact 4-2 compressors for MSBs.  

The accuracy configurable multiplier proposed in [62] divides multiplicand and 

multiplier into two parts named as high and low. Two parts of the multiplicand and two 

parts of the multiplier are multiplied separately and added. These four multiplications can 

be done using exact or approximate multipliers. The approximate multiplier first 

generates partial products. Then, addition of partial products is done approximately or 

exactly depending on bit position. LSBs are calculated using exact addition. Middle bits 

are all estimated to be 1 and a carry value is estimated. MSBs are calculated using exact 

addition and the estimated carry value.  

The approximate multiplier proposed in [63] first generates partial products. Then, 

it reduces the partial products to addition of three operands using a novel method called 

‘an incomplete adder cell’ (iCAC) and OR gates which have lower complexity than exact 

addition. These three operands are reduced to two operands using exact addition. MSBs 

of last two operands are added using exact addition. Middle bits are added using a carry-

maskable adder (CMA). Accuracy of CMA is controlled by a mask input. LSBs are 

calculated using OR gates instead of using exact addition.  

5.1 Novel Approximate Absolute Difference Hardware 

Absolute difference (AD) operation is heavily used in many applications such as 

motion estimation (ME) for video compression [47], ME for frame rate conversion [48], 

stereo matching for depth estimation [49]. Since most of the applications using AD 

operation are error tolerant by their nature, approximate hardware designs can be used in 

these applications. 

Approximate AD hardware can be designed by using general purpose approximate 

adders proposed in the literature in exact AD hardware. However, better approximate AD 
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hardware can be designed by using special approximation techniques for AD hardware 

instead of using general purpose approximate adders. 

In this thesis, four novel approximate AD hardware designs are proposed. These 

approximate AD hardware designs use special approximation techniques for AD 

hardware instead of using general purpose approximate adders proposed in the literature. 

The proposed approximate AD hardware are compared with two exact baseline AD 

hardware and ten other approximate AD hardware. 

These ten approximate AD hardware are obtained by using five approximate adders 

proposed in the literature [50]-[52] in the two exact baseline AD hardware. These two 

exact baseline AD hardware have exact subtractors. Therefore, approximate adders 

proposed in the literature are used as approximate subtractors by giving 2’s complement 

of one input to the approximate adders instead of the original input. 

Two exact baseline AD hardware and all fourteen approximate AD hardware are 

implemented using Verilog HDL. The Verilog RTL codes are synthesized and mapped to 

a Xilinx XC6VLX130T FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. The 

FPGA implementations are verified with post place and route simulations. 

The proposed approximate AD hardware implementations have higher 

performance, smaller area and lower power consumption than exact AD hardware 

implementations at the expense of lower accuracy. The proposed approximate AD 

hardware implementations have less error, smaller area and lower power consumption 

than the approximate AD hardware implementations which use approximate adders 

proposed in the literature [50]-[52]. 

In the hardware implementations of applications using AD operations such as video 

compression, frame rate conversion and depth estimation, large number of parallel AD 

hardware such as 512, 1024 are used. In this thesis, area and power consumption results 

are reported for one AD hardware. Area and power consumption reductions achieved by 

using the approximate AD hardware proposed in this thesis would be much larger for the 

hardware implementations using large number of parallel AD hardware. 

5.1.1 Proposed Approximate Absolute Difference Hardware 

The three proposed approximate AD hardware are shown in Figure 5.1. As shown 

in Figure 5.1 (a), proposed_0 hardware consists of a subtractor and XOR gates. First, two 

8-bit inputs A and B are subtracted with an exact subtractor hardware. Then, each bit of 

the subtraction result is XOR’ed with the sign bit of the subtraction result. If A >= B, the 
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sign bit is 0. Therefore, each bit is XOR’ed with 0. In this case, proposed_0 hardware 

computes the correct absolute difference. If A < B, the sign bit is 1. Therefore, each bit is 

XOR’ed with 1. In this case, the output of proposed_0 hardware is 1 less than the correct 

absolute difference. Therefore, the maximum error of proposed_0 hardware is 1. 

As shown in Figure 5.1 (b), in proposed_1 hardware, the most significant 7 bits of 

subtraction result is XOR’ed with the sign bit. But, the  least significant bit of the 

subtraction result is not XOR’ed with the sign bit. Therefore, proposed_1 hardware has 1 

less XOR gate than proposed_0 hardware. However, its maximum error is 2 which is 1 

more than the maximum error of proposed_0 hardware. 

As shown in Figure 5.1 (c), in proposed_2 hardware, the most significant 6 bits of 

subtraction result is XOR’ed with the sign bit. But, the  least significant 2 bits of the 

subtraction result is not XOR’ed with the sign bit. Therefore, proposed_2 hardware has 2 

less XOR gates than proposed_0 hardware. However, its maximum error is 4 which is 3 

more than the maximum error of proposed_0 hardware. 

 

 

Figure 5.1 Proposed Approximate Absolute Difference Hardware 

(a) proposed_0, (b) proposed_1, (c) proposed_2 

 

The proposed_half approximate AD hardware is shown in Figure 5.2. It uses two 

4-bit subtractors instead of one 8-bit subtractor. The results of two 4-bit subtractors are 

XOR’ed with the sign bit of first 4-bit subtraction result. The middle bit of AD is 

calculated by XOR’ing sign bits of both 4-bit subtraction results and the least significant 

bit of first 4-bit subtraction result. 
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Figure 5.2 Proposed Approximate Absolute Difference Hardware (proposed_half) 

 

Since using two 4-bit subtractors instead of one 8-bit subtractor significantly 

reduces the delay of critical path which is carry propogation, proposed_half hardware is 

faster than proposed_0, proposed_1 and proposed_2 hardware. However, proposed_half 

hardware has a maximum error of 33 which is larger than the maximum errors of 

proposed_0, proposed_1 and proposed_2 hardware. 

The four approximate AD hardware proposed in this thesis are compared with ten 

other approximate AD hardware. These ten approximate AD hardware are obtained by 

using five approximate adders proposed in the literature [50]-[52] in the two exact 

baseline AD hardware shown in Figure 5.3. These two exact baseline AD hardware have 

exact subtractors. Therefore, approximate adders proposed in the literature are used as 

approximate subtractors by giving 2’s complement of one input to the approximate adders 

instead of the original input. 
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Figure 5.3 Exact Absolute Difference Hardware (a) Baseline 1 (b) Baseline 2 

 

Ten approximate AD hardware are obtained by replacing exact subtractors in the 

two exact baseline AD hardware with the following five approximate adders in the 

literature; Almost Correct Adder I (ACA_I) [50], Almost Correct Adder II (ACA_II) [50], 

Error Tolerant Adder II (ETA_II) [51], Generic Accuracy Configurable Adder with N, R 

and P values of 8, 1 and 1, respectively (GEAR_N8_R1_P2) [52] and Generic Accuracy 

Configurable Adder with N, R and P values of 8, 2 and 4, respectively 

(GEAR_N8_R2_P4) [52]. 

Accuracy analysis of the approximate AD hardware proposed in this thesis and 

these ten approximate AD hardware is shown in Table 5.1. For example, B1_ACA_I 

hardware is obtained by using ACA_I approximate adder in the exact baseline 1 absolute 

difference hardware. B2_ACA_I hardware is obtained by using ACA_I approximate 

adder in the exact baseline 2 absolute difference hardware. The eight other approximate 

AD hardware in Table 5.1 are obtained similarly. The proposed_0, proposed_1 and 

proposed_2 hardware have less accuracy than the ten approximate AD hardware. 

However, they have much less maximum and average error than the ten approximate AD 

hardware. 
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Table 5.1 Accuracy Analysis of Approximate Absolute Difference Hardware 

 Max. Error Average Error Accuracy (%) 

Proposed_0 1 0.498 50.195 

Proposed_1 2 0.496 75.195 

Proposed_2 4 0.992 62.695 

Proposed_half 33 7.637 39.941 

B1_ACA_I 128 2.188 96.679 

B2_ACA_I 128 3.418 95.312 

B1_ACA_II 64 5.906 84.179 

B2_ACA_II 64 7.168 81.250 

B1_ETAII 64 5.926 84.179 

B2_ETAII 64 7.168 81.250 

B1_GeAr_R1_P2 144 10.172 75.488 

B2_GeAr_R1_P2 144 14.168 69.922 

B1_GeAr_R2_P4 64 1.125 98.242 

B2_GeAr_R2_P4 64 1.480 97.656 

 

5.1.2 Implementation Results 

Two exact baseline AD hardware and all fourteen approximate AD hardware are 

implemented using Verilog HDL. The Verilog RTL codes are verified with RTL 

simulations. RTL simulation results matched the results of MATLAB implementations 

of the corresponding approximate AD algorithms. 

The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX130T 

FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. The FPGA implementations are 

verified with post place and route simulations. Post place and route simulation results 

matched the results of MATLAB implementations of the corresponding approximate AD 

algorithms. 

Power consumptions of all the FPGA implementations are estimated using Xilinx 

XPower Analyzer tool. Post place and route timing simulations are performed at 100 MHz 

and the signal activities of these timing simulations are stored in VCD files. Then, they 

are used for estimating the power consumptions of the FPGA implementations. 
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Table 5.2 FPGA Implementation Results of Approximate Absolute Difference 

Hardware 

 LUT Slice Frequency (MHz) Power (mW) 

Exact Baseline 1 20 15 499 4.64 

Exact Baseline 2 26 10 599 4.74 

Proposed_0 19 10 651 5.26 

Proposed_1 17 10 653 5.26 

Proposed_2 16 9 671 4.27 

Proposed_half 18 7 800 4.52 

B1_ACA_I 36 12 453 5.95 

B2_ACA_I 34 15 624 5.59 

B1_ACA_II 31 13 458 5.54 

B2_ACA_II 30 15 689 5.22 

B1_ETAII 31 15 457 5.62 

B2_ETAII 30 17 688 5.17 

B1_GeAr_R1_P2 29 13 499 5.33 

B2_GeAr_R1_P2 26 19 771 5.03 

B1_GeAr_R2_P4 32 17 449 5.23 

B2_GeAr_R2_P4 34 14 608 5.21 

 

The FPGA implementation results are shown in Table 5.2. All four approximate 

AD hardware proposed in this thesis have higher performance and less area than both 

exact baseline hardware. Proposed_2 and proposed_half hardware also have lower power 

consumption than both exact baseline hardware. 

The proposed_0, proposed_1 and proposed_2 hardware have less area than the 

other ten approximate AD hardware. They also have much less maximum and average 

error than the other ten approximate AD hardware. Proposed_2 and proposed_half 

hardware also have lower power consumption than the other ten approximate AD 

hardware. 

Average error vs. delay graph for all 14 approximate AD hardware is shown in 

Figure 5.4. Proposed_0, proposed_1 and proposed_2 hardware have the best average error 

vs. delay performance. 
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Figure 5.4 Average Error vs. Delay Graph 

 

Proposed_0 hardware has the largest area and power consumption among the four 

approximate AD hardware proposed in this thesis. However, it has the smallest maximum 

and average errors. Proposed_1 hardware has less area than proposed_0. It has same 

power consumption as proposed_0. It has higher accuracy than proposed_0. It has almost 

the same average error as proposed_0. But, it has larger maximum error than proposed_0. 

Therefore, either proposed_0 or proposed_1 hardware can be used in an application 

depending on its accuracy and hardware requirements. 

Proposed_2 hardware is faster than proposed_0 and proposed_1 hardware. It also 

has less area and lower power consumption than proposed_0 and proposed_1 hardware. 

However, it has larger maximum and average error than proposed_0 and proposed_1 

hardware. Therefore, it can be used in applications which can tolerate its maximum and 

average error. 

Since using two 4-bit subtractors instead of one 8-bit subtractor significantly 

reduces the delay of critical path which is carry propogation, proposed_half hardware is 

the fastest approximate AD hardware. It also has less area than proposed_0, proposed_1, 

and proposed_2 hardware. However, it has larger maximum and average error than 

proposed_0, proposed_1, and proposed_2 hardware. Therefore, it can be used in 

applications which can tolerate its maximum and average error. 

In the hardware implementations of applications using AD operations such as video 

compression, frame rate conversion and depth estimation, large number of parallel AD 

hardware such as 512, 1024 are used. In this thesis, area and power consumption results 

are reported for one AD hardware. Area and power consumption reductions achieved by 
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using the approximate AD hardware proposed in this thesis would be much larger for the 

hardware implementations using large number of parallel AD hardware. 

5.2 Novel Approximate Constant Multiplier 

Multiplying a variable with a constant is called constant multiplication. Constant 

multiplication is used in many applications such as video processing, video compression 

and machine learning. Therefore, in this thesis, a novel approximate constant 

multiplication technique is proposed. The proposed approximate constant multiplication 

technique is based on the exact constant multiplier proposed in [64] which can only be 

used for the DSP blocks in FPGAs. However, the proposed approximate constant 

multiplier can be used in both FPGA and ASIC implementations. 

The proposed approximate constant multiplication technique decreases complexity 

of constant multiplication by converting it to a multiplication with a smaller constant, 

concatenation and constant shift operation. It achieves this by manipulating variable 

multiplicand and constant multiplier in the constant multiplication operation. Since 

concatenation and constant shift operations require no hardware resources, approximate 

constant multiplication hardware implementing the proposed approximation technique 

reduces constant multiplication to multiplication with a smaller constant. 

Since HEVC 2D transform and VVC 2D transform algorithms include many 

constant multiplication operations, in this thesis, HEVC 2D transform and VVC 2D 

transform algorithms are selected as case studies for the proposed approximate constant 

multiplier. The proposed approximate constant multiplier causes negligible PSNR loss 

and bit rate increase when it is used to implement the constant multiplications in HEVC 

2D transform and VVC 2D transform. The proposed approximate constant multiplier 

reduces area, reduces power consumption, and increases performance of HEVC 2D 

transform hardware and VVC 2D transform hardware. 

5.2.1 Proposed Approximate Constant Multiplier 

5.2.1.1 Proposed Approximate Constant Multiplication Technique 

The proposed approximate constant multiplication technique decreases complexity 

of constant multiplication by converting it to a multiplication with a smaller constant, 

concatenation and constant shift operation. It achieves this by manipulating variable 

multiplicand and constant multiplier in the constant multiplication operation. Since 
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concatenation and constant shift operations require no hardware resources, approximate 

constant multiplication hardware implementing the proposed approximation technique 

reduces constant multiplication to multiplication with a smaller constant. 

Multiplication of a v bit variable V with c bit constant C is shown in equation (5.1). 

Constant multiplier (C) is manipulated as in equation (5.2). Any constant integer can be 

written as in equation (5.2). MSBs and LSBs of variable multiplicand (V) are separated 

as in equation (5.3) using the b value found in equation (5.2).  Then, manipulated versions 

of V and C are multiplied as in equations (5.4) - (5.9). Equation (5.9) implements exact 

constant multiplication operation. The symbols “×”, “«” and “{,}” represent 

multiplication, left shift and concatenation operations, respectively. 

 

CVP =   (5.1) 

)21(2 CCC
ba
+=   (5.2) 

   0:1:12 −+−= bVbvVV
b  (5.3) 

)21(2 CCVCV
ba
+=   (5.4) 

)2(2 CCVVCV
ba
+=   (5.5) 

    )20:1:12(2 CCVbVbvVCV
bba
+−+−=  (5.6) 

   )0:1):1(2(2 −+−+= bVbvVCCVCV
ba

 (5.7) 

 ( )   0:1,:12 −−+= bVbvVCCVCV
a

 (5.8) 

 ( )    abVbvVCCVCV −−+= 0:1,:1  (5.9) 

 

The manipulated exact multiplication equation in (5.9) requires multiplication of 

variable multiplicand (V) with a smaller constant (CC) than the constant multiplier (C), 

an addition, a concatenation and a constant shift operation. Addition operation in equation 

(5.9) is removed to obtain the proposed approximate constant multiplication equation in 

(5.10).  

 

( )    abVCCVCV −= 0:1,   (5.10) 

 

Concatenation and constant shift operations require no hardware resources. 

Therefore, the proposed approximation technique reduces multiplication with constant C 
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to multiplication with a smaller constant (CC). Computational complexity reduction 

depends on the values of constants C and CC. In the best case, CC is 1 and constant 

multiplication is eliminated. In the worst case, CC is one bit smaller than C. 

Three approximate constant multiplication examples are shown in Figure 5.5. These 

examples show that constant CC is much smaller than constant C. Therefore, the proposed 

approximation technique reduces bit length of constant multiplication. It also removes 

addition operation. In one of the examples, since CC is 1, constant multiplication is also 

removed. Therefore, approximate constant multiplication hardware implementing the 

proposed approximation technique performs multiplication with constant 36 without using 

any hardware resources. 

 

Figure 5.5 Examples of Approximate Constant Multiplication 

 

Exact constant multiplication hardware, exact constant multiplication hardware with 

proposed manipulation and the proposed approximate constant multiplication hardware are 

shown in Figure 5.6. The symbols “v”, “c” and “cc” represent bit lengths of input variable 

(V), constant (C) and manipulated constant (CC), respectively. Since CC is always smaller 

than C, the proposed approximation technique reduces area and increases performance of 

constant multiplication hardware. 
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Figure 5.6 Constant Multiplication Hardware (a) Exact Constant Multiplication, 

 (b) Exact Constant Multiplication with Proposed Manipulation, (c) Proposed 

Approximate Constant Multiplication 

5.2.1.2 Proposed Approximate Constant Multiplier Datapath Generator 

The proposed approximate constant multiplication requires pre-determined 

constant multiplication, concatenation and constant shift operations. These operations 

differ for each constant C. They should be determined for implementing the datapath 

necessary to perform the approximate constant multiplication. 

As shown in Figure 5.7, a python based datapath generator is proposed to determine 

constant multiplication, concatenation and constant shift operations for an input variable 

and constants. The proposed datapath generator takes input variable (V) bit length and 

constants that will be multiplied with V as inputs. If a constant is power of 2, this constant 

multiplication is implemented with a constant shift operation. If a constant is power of 2 

multiple of another constant in the input constants, this constant multiplication is also 

implemented with constant shift operation. 

 

 

Figure 5.7 Flow Chart of the Proposed Datapath Generator 
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The remaining constant multiplications are implemented using the proposed 

approximate constant multiplication technique. The proposed datapath generator 

determines constant multiplication, concatenation and constant shift operations necessary 

for these input constants. Then, it generates a text file containing Verilog HDL 

implementations of the datapaths which perform the constant multiplications. 

5.2.2 Case Studies: HEVC 2D Transform and VVC 2D Transform 

High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) video 

compression standards use Discrete Cosine Transform (DCT) and Discrete Sine 

Transform (DST) for 2D transform operations [65]-[66]. Since DCT and DST algorithms 

include many constant multiplication operations, HEVC 2D transform and VVC 2D 

transform algorithms are selected as case studies for the proposed approximate constant 

multiplication technique. 

HEVC uses DCT-II for transform operations. It uses 4x4, 8x8, 16x16, 32x32 

Transform Unit (TU) sizes. HEVC uses DST-VII only for 4x4 TUs in certain cases. HEVC 

performs 2D transform operation by applying 1D transforms in vertical and horizontal 

directions. The coefficients in HEVC 1D transform matrices are derived from DCT and 

DST basis functions. However, integer coefficients are used for simplicity. 4x4 DCT matrix 

used in HEVC is shown in equation (5.11) as an example. 

 

𝐷𝐶𝑇_4𝑥4𝐻𝐸𝑉𝐶 =  [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

]  (5.11) 

 

VVC uses DCT-II, DCT-VIII and DST-VII for transform operations. It uses 4x4, 

8x8, 16x16, 32x32 and 64x64 TU sizes. VVC performs 2D transform operation by applying 

1D transforms in vertical and horizontal directions. While HEVC uses the same transform 

types in vertical and horizontal directions, VVC may use different transform types in 

vertical and horizontal directions. The coefficients in VVC 1D transform matrices are 

derived from DCT and DST basis functions. However, integer coefficients are used for 

simplicity. 4x4 DCT-V matrix used in VVC is shown in equation (5.12) as an example. 

 

𝐷𝐶𝑇_4𝑥4𝑉𝑉𝐶 =  [

117 219 296 336
296 296 0 −296
336 −117 −296 219
219 −336 296 −117

]  (5.12) 
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29 different constants (C values) used in HEVC DCT matrices are listed in Table 

5.3. CC, a and b values determined to manipulate these constants as in equation (5.2) and 

the corresponding approximate constant multiplication equations as in equation (5.10) are 

also listed in Table 5.3. Multiplications with constants 4 and 64 are implemented exactly 

by constant shift operations. Multiplication with same constant in the approximate 

constant multiplication equations is implemented once and the result is used for all 

equations. For example, multiplication with 5 is implemented once and the result is used 

for multiplications with constants 22, 82 and 88. 

 

Table 5.3 Approximate Constant Multiplications for HEVC 2D DCT 

C CC a b Approximate constant 

multiplication 

4 - - - V<<2 

9 1 0 3 {V, V[2:0]} << 0 

13 3 0 2 {(V * 3), V[1:0]} << 0 

18 1 1 3 {V, V[2:0]} << 1 

22 5 1 1 {(V * 5), V[0:0]} << 1 

25 3 0 3 {(V * 3), V[2:0]} << 0 

31 15 0 1 {(V * 15), V[0:0]} << 0 

36 1 2 3 {V, V[2:0]} << 2 

38 9 1 1 {(V * 9), V[0:0]} << 1 

43 21 0 1 {(V * 21), V[0:0]} << 0 

46 11 1 1 {(V * 11), V[0:0]} << 1 

50 3 1 3 {(V * 3), V[2:0]} << 1 

54 13 1 1 {(V * 13), V[0:0]} << 1 

57 7 0 3 {(V * 7), V[2:0]} << 0 

61 15 0 2 {(V * 15), V[1:0]} << 0 

64 - - - V<<6 

67 33 0 1 {(V * 33), V[0:0]} << 0 

70 17 1 1 {(V * 17), V[0:0]} << 1 

73 9 0 3 {(V * 9), V[2:0]} << 0 

75 37 0 1 {(V * 37), V[0:0]} << 0 

78 19 1 1 {(V * 19), V[0:0]} << 1 

80 1 4 2 {V, V[1:0]} << 4 

82 5 1 3 {(V * 5), V[2:0]} << 1 

83 41 0 1 {(V * 41), V[0:0]} << 0 

85 21 0 2 {(V * 21), V[1:0]} << 0 

87 43 0 1 {(V * 43), V[0:0]} << 0 

88 5 3 1 {(V * 5), V[0:0]} << 3 

89 11 0 3 {(V * 11), V[2:0]} << 0 

90 11 1 2 {(V * 11), V[1:0]} << 1 
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Approximate constant multiplications for 57 different constants used in VVC 

transforms are also implemented. However, they are not shown in this thesis for 

simplicity. 

5.2.2.1 Error Analysis 

Error caused by proposed approximate constant multiplier differs for each constant. 

Errors caused for the constants used in HEVC 2D DCT are determined as follows. 

Average percentage error for a constant C is calculated as in equations (5.13)-(5.15). Input 

variable bit length is taken as 8 bits. The constant is multiplied with all possible values of 

input variable (0-255) with exact multiplier and with the proposed approximate constant 

multiplier. Error for the input variable value i (Ei) is calculated by taking absolute 

difference of the exact multiplication result and approximate multiplication result as in 

equation (5.13). Percentage error for the input variable value i (PEi) is calculated as in 

equation (5.14). Average percentage error for the constant C is calculated by computing 

average of percentage errors for all possible values of input variable (0-255) as in equation 

(5.15). 

 

                                                              )()( iCappriCexactE
i

−=                                                                (5.13) 

                                                                        100
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
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errorpercentageaverage                                                        (5.15) 

 

Average percentage errors for the constants used in HEVC 2D DCT are calculated 

and shown in Figure 5.8. The results show that the proposed approximate constant 

multiplier causes very small errors. Average percentage errors for the constants used in 

VVC 2D transform are also calculated. However, they are not shown in this thesis for 

simplicity. The proposed approximate constant multiplier causes very small errors for these 

constants as well. 
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Figure 5.8 Average Percentage Error (%) for HEVC 2D DCT Constants 

 

Impacts of the proposed approximate constant multiplier and the approximate 

multipliers proposed in [61], [62] and [63] on rate-distortion performance of HEVC 

standard is determined using HEVC HM reference software encoder 15.0 [34]. First frame 

of Basketball Drive (1920x1080), Kristen and Sara (1280x720), and Party Scene (832x480) 

test videos are coded with HEVC HM 15.0 using five different multipliers for implementing 

constant multiplications in HEVC 2D transform; exact multiplier (Orig_H), the 

approximate constant multiplier proposed in this thesis (Prop_H), the approximate 

multiplier proposed in [61] (M1_H), the approximate multiplier proposed in [62] (M2_H), 

and the approximate multiplier proposed in [63] (M3_H). 

The resulting rate-distortion performances are shown in Figure 5.9. The proposed 

approximate constant multiplier causes negligible PSNR loss and bit rate increase 

compared to using exact multiplier. The proposed approximate constant multiplier has 

better rate-distortion performance than the approximate multipliers proposed in the 

literature. 

 

 

Figure 5.9 HEVC Bit Rate and PSNR (dB) Comparison 
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Impacts of the proposed approximate constant multiplier and the approximate 

multipliers proposed in [61], [62] and [63] on rate-distortion performance of VVC standard 

is determined using VVC VTM reference software encoder 2.0 [67]. First frame of 

Basketball Drive (1920x1080), Kristen and Sara (1280x720), and Party Scene (832x480) 

test videos are coded with VVC VTM 2.0 using five different multipliers for implementing 

constant multiplications in VVC 2D transform; exact multiplier (Orig_V), the approximate 

constant multiplier proposed in this thesis (Prop_V), the approximate multiplier proposed 

in [61] (M1_V), the approximate multiplier proposed in [62] (M2_V), and the approximate 

multiplier proposed in [63] (M3_V). 

The resulting rate-distortion performances are shown in Figure 5.10. The proposed 

approximate constant multiplier causes negligible PSNR loss and bit rate increase 

compared to using exact multiplier. The proposed approximate constant multiplier has 

better rate-distortion performance than the approximate multipliers proposed in the 

literature. 

 

 

Figure 5.10 VVC Bit Rate and PSNR (dB) Comparison 

5.2.2.2 Proposed Hardware Implementations 

Five different HEVC 2D transform hardware are designed and implemented. The 

only difference between them is the multipliers used to implement constant 

multiplications in HEVC 2D transform. First hardware (Orig_H) uses exact multiplier. 

Second hardware (Prop_H) uses the approximate constant multiplier proposed in this 

thesis. The other three hardware (M1_H, M2_H, M3_H) use the approximate multipliers 

proposed in [61], [62], [63], respectively. 
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Five different VVC 2D transform hardware are also designed and implemented. 

The only difference between them is the multipliers used to implement constant 

multiplications in VVC 2D transform. First hardware (Orig_V) uses exact multiplier. 

Second hardware (Prop_V) uses the approximate constant multiplier proposed in this 

thesis. The other three hardware (M1_V, M2_V, M3_V) use the approximate multipliers 

proposed in [61], [62], [63], respectively. 

The proposed HEVC and VVC 2D transform hardware perform 2D transform by first 

performing 1D transform on the columns of a TU, and then performing 1D transform on 

the rows of the TU. After 1D column transform, the resulting coefficients are stored in a 

transpose memory, and they are used as input for 1D row transform. The proposed HEVC 

2D transform hardware support 4x4, 8x8, 16x16 and 32x32 TUs. The proposed VVC 2D 

transform hardware support 4x4, 8x8, 16x16, 32x32 and 64x64 TUs. 

The proposed five HEVC 2D transform hardware and five VVC 2D transform 

hardware are implemented using Verilog HDL. The Verilog RTL codes are synthesized 

and mapped to a Xilinx XC7VX690T FFG1761 FPGA with speed grade 3 using Xilinx 

Vivado 2017.2. FPGA implementations are verified with post place and route 

simulations. Post place and route simulation results matched the results of HEVC 2D 

transform and VVC 2D transform software implementations. The FPGA implementation 

results are shown in Table 5.4 and Table 5.5. 

 

Table 5.4 FPGA Implementation Results of HEVC 2D Transform 

 Orig_H Prop_H M1_H M2_H M3_H 

FPGA Virtex-7 Virtex-7 Virtex-7 Virtex-7 Virtex-7 

LUT 31062 30986 42553 47266 45571 

DFF 11862 11648 11543 12174 11893 

BRAM 32 32 32 32 32 

DSP Block 370 108 0 0 20 

Frequency (MHz) 147 161 149 147 158 

 

Table 5.5 FPGA Implementation Results of VVC 2D Transform 

 Orig_V Prop_V M1_V M2_V M3_V 

FPGA Virtex-7 Virtex-7 Virtex-7 Virtex-7 Virtex-7 

LUT 100279 83424 133641 141649 145544 

DFF 32336 25444 46190 51062 47535 

BRAM 32 32 32 32 32 

DSP Block 1303 240 0 0 20 

Frequency (MHz) 117 109 109 104 108 
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As shown in Table 5.4, HEVC 2D transform FPGA implementation using the 

proposed approximate constant multiplier (Prop_H) has 70.8% less DSP blocks than 

HEVC 2D transform FPGA implementation using exact multiplier (Orig_H). Prop_H 

FPGA implementation also has higher performance than Orig_H FPGA implementation. 

Prop_H FPGA implementation has less Lookup Tables (LUT) and higher performance 

than HEVC 2D transform FPGA implementations using the approximate multipliers 

proposed in the literature (M1_H, M2_H, M3_H). However, Prop_H FPGA 

implementation has DSP blocks. M1_H, M2_H, M3_H FPGA implementations do not 

have DSP blocks. 

As shown in Table 5.5, VVC 2D transform FPGA implementation using the 

proposed approximate constant multiplier (Prop_V) has 81.5% less DSP blocks than 

VVC 2D transform FPGA implementation using exact multiplier (Orig_V). Prop_V 

FPGA implementation has less LUTs than VVC 2D transform FPGA implementations 

using the approximate multipliers proposed in the literature (M1_V, M2_V, M3_V). 

However, Prop_V FPGA implementation has DSP blocks. M1_V, M2_V, M3_V FPGA 

implementations do not have DSP blocks. 

Power consumptions of all HEVC and VVC 2D transform FPGA implementations 

are estimated using Xilinx Vivado 2017.2. Signal activities captured during post place 

and route timing simulations are used to estimate power consumptions. Energy 

consumptions of HEVC 2D transform FPGA implementations for transforming six 4x4 

TUs, four 8x8 TUs, four 16x16 TUs, five 32x32 TUs are determined and shown in Figure 

5.11. Prop_H FPGA implementation has less energy consumption than the other HEVC 

2D transform FPGA implementations. Energy consumptions of VVC 2D transform 

FPGA implementations for transforming two 4x4 TUs, two 8x8 TUs, two 16x16 TUs, 

three 32x32 TUs are determined and shown in Figure 5.12. Prop_V FPGA 

implementation has less energy consumption than the other VVC 2D transform FPGA 

implementations. 
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Figure 5.11 Energy Consumptions of               Figure 5.12 Energy Consumptions of 

HEVC 2D Transform                                         VVC 2D Transform 

FPGA Implementations                                      FPGA Implementations 

 

The Verilog RTL codes are also synthesized, placed and routed to a TSMC 90nm 

standard cell library. The ASIC implementation results are shown in Table 5.6 and Table 

5.7. Gate counts of all the ASIC implementations are calculated according to NAND 

(3x1) gate area. As shown in Table 5.6, HEVC 2D transform ASIC implementation using 

the proposed approximate constant multiplier (Prop_H) has smaller area, lower power 

consumption and higher performance than the other HEVC 2D transform ASIC 

implementations. As shown in Table 5.7, VVC 2D transform ASIC implementation using 

the proposed approximate constant multiplier (Prop_V) has smaller area and lower power 

consumption than the other VVC 2D transform ASIC implementations. 

 

Table 5.6 ASIC Implementation Results of HEVC 2D Transform 

 Orig_H Prop_H M1_H M2_H M3_H 

Technology TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm 

Area  180 K 152 K 180 K 195 K 187 K 

Frequency (MHz) 250 330 278 264 264 

Power (mW) 102 90.6 105.4 115.2 112 
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Table 5.7 ASIC Implementation Results of VVC 2D Transform 

 Orig_V Prop_V M1_V M2_V M3_V 

Technology TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm 

Area 630 K 458 K 632 K 672 K 646 K 

Frequency (MHz) 192 250 250 245 260 

Power (mW) 332.2 248 333.1 358.8 356.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 

 

 

 

 

 

 
 

CHAPTER VI 

 

CONCLUSIONS AND FUTURE WORKS 

 

 

 

In this thesis, we proposed a novel computation and energy reduction technique for 

HEVC intra prediction. We designed low energy, reconfigurable HEVC intra prediction 

hardware using the proposed technique. We also designed an FPGA implementation of 

HEVC intra prediction using DSP blocks. We proposed reconfigurable VVC intra 

prediction hardware. We also designed an FPGA implementation of VVC intra prediction 

using DSP blocks. We proposed VVC fractional interpolation hardware. We proposed 

several approximate absolute difference hardware. We proposed a novel approximate 

constant multiplier. We designed HEVC 2D transform and VVC 2D transform hardware 

using the proposed approximate constant multiplier.  

We quantified computation reductions achieved by the proposed techniques and 

video quality loss caused by the proposed approximation techniques. The proposed 

approximation techniques cause very small PSNR loss. The other proposed techniques 

cause no PSNR loss. We implemented the proposed hardware architectures in Verilog 

HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 or Xilinx Virtex 7 FPGAs, 

and we estimated their power consumptions using Xilinx XPower Analyzer tool. The 

proposed techniques significantly reduced power and energy consumptions of these 

FPGA implementations. 

As future work, approximate video compression algorithms for HEVC and VVC 

video compression standards can be proposed. HEVC and VVC video encoders and 

decoders can be proposed by implementing exact or approximate hardware of HEVC and 

VVC video compression algorithms and integrating them with the ones implemented in 

this thesis. VVC video compression standard is still in standardization process. The 
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proposed techniques can be used to implement the video compression algorithms in final 

VVC standard. 
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