
I

LOW ENERGY HEVC AND VVC VIDEO COMPRESSION HARDWARE

by

Hasan Azgın

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sabancı University

August 2019

II

III

© Hasan Azgın 2019

All Rights Reserved

IV

To my Family

V

ACKNOWLEDGEMENT

I would like to thank my thesis supervisor, Dr. İlker Hamzaoğlu for all his guidance,

support, and patience throughout my PhD study. I am grateful for not only his detailed reviews,

academical guidance, but also his life lessons and talks on the life. I particularly want to thank

him for his belief in me during my study. It has been a great honor for me to work under his

guidance.

I would like to thank to the members of System-on-Ship Design and Testing Lab; Ercan

Kalalı and Ahmet Can Mert for their great friendship and their collaboration during my studies.

I would like to give my special thanks to my mother, my father and my brother. They

have always believed in me and supported me in the good times and the bad times. This thesis

is dedicated with love to them.

Finally, I would like to thank Sabanci University and Scientific and Technological

Research Council of Turkey (TUBITAK) for supporting me throughout my graduate education.

This thesis was supported by TUBITAK under the contracts 115E290 and 118E134.

VI

ABSTRACT

LOW ENERGY HEVC AND VVC VIDEO COMPRESSION HARDWARE

Hasan Azgın

Electronics, PhD Dissertation, 2019

Thesis Supervisor: Assoc. Prof. İlker Hamzaoğlu

Keywords: HEVC, VVC, Intra Prediction, Fractional Interpolation, Approximate Computing,

Hardware Implementation, FPGA, Low Energy, DSP

Video compression standards compress a digital video by reducing and removing

redundancy in the digital video using computationally complex algorithms. As spatial and

temporal resolutions of videos increase, compression efficiencies of video compression

algorithms are also increasing. However, increased compression efficiency comes with

increased computational complexity. Therefore, it is necessary to reduce computational

complexities of video compression algorithms without reducing their visual quality in order to

reduce area and energy consumption of their hardware implementations.

In this thesis, we propose a novel technique for reducing amount of computations

performed by HEVC intra prediction algorithm. We designed low energy, reconfigurable

HEVC intra prediction hardware using the proposed technique. We also designed a low energy

FPGA implementation of HEVC intra prediction algorithm using the proposed technique and

DSP blocks. We propose a reconfigurable VVC intra prediction hardware architecture. We also

propose an efficient VVC intra prediction hardware architecture using DSP blocks. We

designed low energy VVC fractional interpolation hardware. We propose a novel approximate

absolute difference technique. We designed low energy approximate absolute difference

hardware using the proposed technique. We propose a novel approximate constant

VII

multiplication technique. We designed approximate constant multiplication hardware using the

proposed technique.

We quantified computation reductions achieved by the proposed techniques and video

quality loss caused by the proposed approximation techniques. The proposed approximate

absolute difference technique and approximate constant multiplication technique cause very

small PSNR loss. The other proposed techniques cause no PSNR loss. We implemented the

proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx

Virtex 6 or Xilinx Virtex 7 FPGAs and estimated their power consumptions using Xilinx

XPower Analyzer tool. The proposed techniques significantly reduced power and energy

consumptions of these FPGA implementations.

VIII

ÖZET

DÜŞÜK ENERJİLİ HEVC VE VVC VIDEO SIKIŞTIRMA DONANIMLARI

Hasan Azgın

Elektronik Müh., Doktora Tezi, 2019

Tez Danışmanı: Doç. Dr. İlker Hamzaoğlu

Anahtar Kelimeler: HEVC, VVC, Çerçeve İçi Öngörü, Kesirli Aradeğerleme, Yaklaşık

Hesaplama, Donanım Gerçekleme, FPGA, Düşük Enerji, DSP

Video sıkıştırma standartları, bir sayısal videonun içindeki gereksiz bilgileri, yüksek

hesaplama karmaşıklığına sahip algoritmalar yardımıyla, azaltarak veya kaldırarak videoyu

sıkıştırır. Videoların zamansal ve uzaysal çözünürlüğü arttıkça, video sıkıştırma

algoritmalarının sıkıştırma etkinliği de artmaktadır. Ancak bu artan sıkıştırma etkinliği, yüksek

hesaplama karmaşıklığını da beraberinde getirmektedir. Bu yüzden, video sıkıştırma

algoritmalarının donanımlarının alanını ve harcadıkları enerji miktarını azaltmak için, bu

algoritmaların hesaplama karmaşıklığını, görsel kaliteyi düşürmeden azaltmak gereklidir.

Bu tezde, HEVC çerçeve içi öngörü algoritmasının hesaplama miktarını azaltmak için

orijinal bir teknik önerilmektedir. Önerilen teknik kullanılarak, düşük enerjili, yeniden

ayarlanabilir HEVC çerçeve içi öngörü donanımı tasarlanmıştır. Önerilen teknik ve DSP

blokları kullanılarak, düşük enerjili bir HEVC çerçeve içi öngörü FPGA gerçeklemesi

tasarlanmıştır. Yeniden ayarlanabilir VVC çerçeve içi öngörü mimarisi önerilmektedir. DSP

bloklarının kullanıldığı, etkin bir VVC çerçeve içi öngörü mimarisi önerilmektedir. Düşük

enerjili VVC kesikli aradeğerleme donanımı tasarlanmıştır. Orijinal bir yaklaşık mutlak fark

hesaplama tekniği önerilmektedir. Önerilen teknik kullanılarak düşük enerjili yaklaşık mutlak

değer hesaplama donanımları tasarlanmıştır. Orijinal bir yaklaşık sabit çarpma tekniği

önerilmektedir. Önerilen teknik kullanılarak, yaklaşık sabit çarpma donanımı tasarlanmıştır.

IX

Önerilen tekniklerin sağladığı hesaplama azaltmaları ve yaklaşık tekniklerin neden

olduğu video kalitesi kayıpları ölçüldü. Önerilen yaklaşık mutlak değer tekniği ve yaklaşık sabit

çarpma tekniği çok düşük PSNR kaybına neden oldu. Önerilen diğer teknikler ise PSNR

kaybına neden olmadı. Önerilen donanım mimarileri Verilog donanım tasarlama dili ile

gerçeklendi. Verilog RTL kodları Xilinx Virtex 6 veya Xilinx Virtex 7 FPGA'larına sentezlendi

ve güç tüketimleri Xilinx XPower Analyzer aracı ile tahmin edildi. Önerilen teknikler, bu

FPGA gerçeklemelerinin güç ve enerji tüketimlerini önemli ölçüde azalttı.

X

TABLE OF CONTENTS

ACKNOWLEDGEMENT ..V

1 ABSTRACT ... VI

2 ÖZET ..VIII

3 TABLE OF CONTENTS ...X

LIST OF FIGURES .. XII

LIST OF TABLES ... XIV

LIST OF ABBREVIATIONS .. XV

1 CHAPTER I INTRODUCTION .. 1

1.1 HEVC Video Compression Standard ... 2

1.2 VVC Video Compression Standard ... 4

1.3 Thesis Contributions .. 5

1.4 Thesis Organization .. 6

2 CHAPTER II HEVC INTRA PREDICTION HARDWARE 8

2.1 HEVC Intra Prediction Algorithm ... 8

2.2 A Computation and Energy Reduction Technique for HEVC Intra Prediction 11

2.2.1 Proposed Computation and Energy Reduction Technique .. 12

2.2.2 Proposed HEVC Intra Prediction Hardware .. 14

2.3 DSP Block Based FPGA Implementation of HEVC Intra Prediction 19

3 CHAPTER III VVC INTRA PREDICTION HARDWARE 26

3.1 VVC Intra Prediction Algorithm .. 26

3.2 Reconfigurable VVC Intra Prediction Hardware ... 29

3.3 DSP Block Based FPGA Implementation of VVC Intra Prediction 36

4 CHAPTER IV VVC FRACTIONAL INTERPOLATION HARDWARE 42

4.1 VVC Fractional Interpolation Algorithm ... 43

4.2 Proposed VVC Fractional Interpolation Hardware .. 44

5 CHAPTER V APPROXIMATE VIDEO COMPRESSION HARDWARE 50

XI

5.1 Novel Approximate Absolute Difference Hardware .. 51

5.1.1 Proposed Approximate Absolute Difference Hardware ... 52

5.1.2 Implementation Results .. 56

5.2 Novel Approximate Constant Multiplier Hardware ... 59

5.2.1 Proposed Approximate Constant Multiplier Hardware .. 59

5.2.1.1 Proposed Approximate Constant Multiplication Technique 59

5.2.1.2 Proposed Approximate Constant Multiplier Datapath Generator 62

5.2.2 Case Studies: HEVC 2D Transform and VVC 2D Transform 63

5.2.2.1 Error Analysis .. 65

5.2.2.2 Proposed Hardware Implementations .. 67

6 CHAPTER VI CONCLUSIONS AND FUTURE WORKS 72

7 BIBLIOGRAPHY .. 74

XII

LIST OF FIGURES

Figure 1.1 HEVC Encoder Block Diagram ... 3

Figure 1.2 HEVC Decoder Block Diagram ... 3

Figure 2.1 HEVC Intra Prediction Mode Directions ... 8

Figure 2.2 Neighboring Pixels of 4x4 and 8x8 PUs .. 9

Figure 2.3 Proposed HEVC Intra Prediction Hardware .. 14

Figure 2.4 Proposed HEVC Intra Prediction Datapath ... 15

Figure 2.5 Original HEVC Intra Prediction Datapath ... 16

Figure 2.6 FPGA Implementation of HEVC Intra Prediction Hardware 17

Figure 2.7 Proposed FPGA Implementation of HEVC Intra Prediction 21

Figure 2.8 Structure of a DSP48E1 Block ... 22

Figure 2.9 Original HEVC Intra Prediction Datapath ... 22

Figure 2.10 Proposed HEVC Intra Prediction Datapath.. 22

Figure 2.11 Energy Consumption Results ... 24

Figure 3.1 VVC Intra Prediction Angles ... 26

Figure 3.2 Neighboring Pixels ... 27

Figure 3.3 (a) VVC Reconfigurable Intra Prediction Hardware (b) RECON_AS Datapath

(c) RECON_DSP Datapath (d) DSP Block ... 32

Figure 3.4 FPGA Implementation ... 34

Figure 3.5 Power Consumptions ... 35

Figure 3.6 Proposed FPGA Implementation of VVC Intra Prediction 37

Figure 3.7 Proposed FPGA Reconfigurable DSP Datapath (DDP) 38

Figure 3.8 Xilinx DSP48E1 Block .. 39

Figure 4.1 Integer, Half and Quarter Pixels .. 44

Figure 4.2 Proposed VVC Fractional Interpolation Hardware .. 44

Figure 4.3 Proposed Reconfigurable Datapath .. 46

Figure 4.4 FPGA Board Implementation .. 47

Figure 5.1 Proposed Approximate Absolute Difference Hardware (a) proposed_0,

(b) proposed_1, (c) proposed_2 ... 53

Figure 5.2 Proposed Approximate Absolute Difference Hardware (proposed_half) 54

Figure 5.3 Exact Absolute Difference Hardware (a) Baseline 1 (b) Baseline 2 55

Figure 5.4 Average Error vs. Delay Graph .. 58

azgin_phd_thesis.docx
azgin_phd_thesis.docx

XIII

Figure 5.5 Examples of Approximate Constant Multiplication .. 61

Figure 5.6 Constant Multiplication Hardware (a) Exact Constant Multiplication, (b) Exact

Constant Multiplication with Proposed Manipulation, (c) Proposed Approximate

Constant Multiplication ... 62

Figure 5.7 Flow Chart of the Proposed Datapath Generator ... 62

Figure 5.8 Average Percentage Error (%) for HEVC 2D DCT Constants 66

Figure 5.9 HEVC Bit Rate and PSNR (dB) Comparison .. 66

Figure 5.10 VVC Bit Rate and PSNR (dB) Comparison .. 67

Figure 5.11 Energy Consumptions of HEVC 2D Transform FPGA Implementations 70

Figure 5.12 Energy Consumptions of VVC 2D Transform FPGA Implementations 70

XIV

LIST OF TABLES

Table 2.1 Prediction Equation Reductions by Data Reuse ... 12

Table 2.2 Addition and Shift Reductions by the Proposed Technique 14

Table 2.3 Energy Consumption Reductions for Kimono(1920x1080)................................... 17

Table 2.4 Energy Consumption Recutions for Tennis (1920x1080) 18

Table 2.5 Comparison of FPGA Implementations ... 19

Table 2.6 Comparison of ASIC Implementations .. 19

Table 2.7 Implementation Results .. 23

Table 2.8 Comparison of FPGA Implementations ... 25

Table 3.1 Cubic and Gaussian Filter Coefficients .. 27

Table 3.2 Cubic Filter Prediction Equations .. 31

Table 3.3 Gaussian Filter Prediction Equations ... 31

Table 3.4 Implementation Results .. 34

Table 3.5 Hardware Comparison.. 35

Table 3.6 Intra Angular Prediction Equation Reductions by Data Reuse 37

Table 3.7 DDP Configurations ... 40

Table 3.8 Hardware Comparison.. 41

Table 4.1 VVC Fractional Interpolation Filters ... 43

Table 4.2 Reconfigurable Datapath Inputs ... 46

Table 4.3 Implementation Results .. 47

Table 4.4 Hardware Comparison.. 48

Table 4.5 Power Comsumption Results ... 49

Table 5.1 Accuracy Analysis of Approximate Absolute Difference Hardware 56

Table 5.2 FPGA Implementation Results of Approximate Absolute Difference Hardware .. 57

Table 5.3 Approximate Constant Multiplications for HEVC 2D DCT 64

Table 5.4 FPGA Implementation Results of HEVC 2D Transform 68

Table 5.5 FPGA Implementation Results of VVC 2D Transform ... 68

Table 5.6 ASIC Implementation Results of HEVC 2D Transform .. 70

Table 5.7 ASIC Implementation Results of VVC 2D Transform .. 71

XV

LIST OF ABBREVIATIONS

BRAM Block RAM

CABAC Context Adaptive Binary Arithmetic Coding

CU Coding Unit

DBF Deblocking Filter

DCT Discrete Cosine Transform

DST Discrete Sine Transform

FPGA Field Programmable Gate Array

HEVC High efficiency Video Coding

HM HEVC Test Model

IDCT Inverse Discrete Cosine Transform

JEM Joint Exploration Model

PSNR Peak Signal to Noise Ratio

PU Prediction Unit

QP Quantization Parameter

TU Transform Unit

VCD Value Change Dump

VVC Versatile Video Coding

1

CHAPTER I

INTRODUCTION

Temporal and spatial video resolutions are increasing. This is expected to continue

in the future as well. To store or transmit this large amount of video data, video

compression standards with high compression efficiency are needed. Joint Collaborative

Team on Video Coding (JCT-VC) developed a video compression standard called High

Efficiency Video Coding (HEVC) [1, 2, 3]. HEVC provides 50% better coding efficiency

than the previous video compression standard, H.264. HEVC uses computationally more

complex algorithms to provide better compression efficiency. Joint Video Experts Team

(JVET) is developing a new video compression standard called Versatile Video Coding

(VVC) [4], which is expected to be finalized in 2020. JVET provided a software model

for the current version of VVC. Current version of VVC provides better compression

efficiency than HEVC using computationally more complex algorithms.

Video compression standards compress a video by removing redundancies in the

video such as spatial, temporal and statistical redundancies. There is spatial correlation

between neighboring pixels in a video frame. Intra prediction and mode decision

algorithms removes spatial redundancy by determining the correlation between

neighboring blocks of pixels in a frame and encoding this correlation instead of pixel

values. There is temporal correlation between neighboring frames of a video. Inter

prediction and mode decision algorithms removes temporal redundancy by determining

the correlation between blocks of pixels in neighboring frames and encoding this

correlation instead of pixel values. There is statistical redundancy between the data that

will be encoded. Entropy coding algorithms such as Huffman variable length coding

algorithm remove statistical redundancy by representing the more frequently occurring

data with small number of bits and less frequently occurring data with large number of

bits.

2

Approximate computing is a promising solution to increased computational

complexity of video compression algorithms [5]-[9]. Approximate computing allows

designing faster, lower area and lower power consuming hardware than the exact

optimized hardware by trading off speed, area and power consumption with quality.

Therefore, it can be used in error tolerant applications such as video compression.

1.1 HEVC Video Compression Standard

HEVC is the current state-of-the-art video compression standard developed by

Collaborative Team on Video Coding (JCT-VC). HEVC video compression standard

consists of several video compression algorithms such as intra prediction, motion

estimation, transform, quantization and entropy coder. The top-level block diagram of

HEVC encoder and HEVC decoder are shown in Figure 1.1 and Figure 1.2, respectively.

HEVC encoder has a forward path and a reconstruction path. The forward path

generates bitstream. A frame is divided into 8x8, 16x16, 32x32 or 64x64 coding units

(CU). A CU can be divided into prediction units (PU). PU sizes are from 4x4 up to 64x64.

PU size can be the same as or less than the size of current CU. Motion estimation

determines the best inter prediction for the current CU. Intra prediction determines the

best intra prediction for the current CU. Mode decision determines the best prediction

among them and PU size in terms of video quality and bit rate. Residue, difference

between the current CU and the best prediction, is encoded using transform, quantization

and entropy coder algorithms to generate bitstream. Since HEVC decoder does not have

access to the original frame, reconstruction path in the encoder is used to prevent

mismatch between encoder and decoder. By using reconstruction path, identical reference

frames are used in both encoder and decoder.

Reconstruction path begins with inverse quantization and inverse transform to

generate the reconstructed residue. Since quantization is a lossy process, inverse

quantized and inverse transformed coefficients are not identical to the original residue.

Reconstructed frame is generated by adding the reconstructed residue to the predicted

pixels. Blocking artifacts are reduced by using deblocking filter (DBF) algorithm.

3

Figure 1.1 HEVC Encoder Block Diagram

Figure 1.2 HEVC Decoder Block Diagram

HEVC intra prediction algorithm predicts the pixels of a block from the pixels of

its already coded and reconstructed neighboring blocks in the same frame. For the

luminance component of a frame, intra PU size can be from 4x4 up to 32x32 and number

of intra prediction modes for a PU can be up to 35 [1, 2]. There are 33 angular prediction

modes, DC and planar prediction modes. In angular prediction modes, predicted pixels

are generated by weighted average of two neighboring pixels.

4

HEVC inter prediction algorithm predicts the pixels of a block in the current frame

from the pixels of already coded and reconstructed blocks in the neighboring frames. Inter

PU size can be from 4x8 and 8x4 up to 64x64. HEVC inter prediction algorithm, first,

performs integer pixel motion estimation for a PU. Then, it performs fractional motion

estimation for the same PU. It uses three different 8-tap FIR filters for generating half

pixels and quarter pixels [1, 2].

HEVC uses discrete cosine transform (DCT) for transform unit (TU) sizes of square

shapes from 4x4 up to 32x32. HEVC also uses discrete sine transform (DST) for 4x4 intra

prediction case [1, 2]. Inverse discrete cosine transform (IDCT) and inverse discrete sine

transform (IDST) are used in the reconstruction path of encoder and in the decoder.

HEVC entropy coder uses context adaptive binary arithmetic coding (CABAC) to

generate output bitstream.

HEVC uses deblocking filter algorithm to reduce blocking artifacts on the edges of

PUs.

1.2 VVC Video Compression Standard

JVET is currently developing a new video compression standard called Versatile

Video Coding (VVC) [4]. VVC is not finalized yet. However, a software model

implementing its current version is provided. The current version of VVC standard has

much better coding efficiency than HEVC at the expense of much higher computational

complexity [4]. VVC has a similar top-level block diagram to HEVC.

VVC intra prediction algorithm is similar to HEVC intra prediction algorithm.

However, in VVC, number of angular intra prediction modes is increased to 65. In

addition, VVC uses 4-tap cubic and 4-tap gaussian filters for angular intra prediction

modes [12, 13].

VVC inter prediction algorithm performs the same two-stage search as HEVC.

However, VVC performs fractional motion estimation at one sixteenth motion vector

accuracy. It also has an improved motion vector prediction process [1, 2, 13].

VVC uses integer based DCT same as HEVC. However, VVC uses an Adaptive

Multiple Transform (AMT) scheme which uses DCT-II, DCT-V, DCT-VIII, DST-I and

DST-VII based on prediction type. In addition, VVC TU sizes can be from 4x4 up to

64x64 [13]-[16].

5

VVC entropy coder uses CABAC algorithm similar to HEVC entropy coder with

several enhancements. VVC DBF algorithm is the same as HEVC DBF algorithm [1, 2,

13].

1.3 Thesis Contributions

We propose a novel technique for reducing amount of computations performed by

HEVC intra prediction algorithm and, therefore, reducing energy consumption of HEVC

intra prediction hardware. The proposed technique significantly reduced the amount of

computations by reorganizing HEVC intra prediction equations. The proposed technique

does not affect PSNR and bit rate. A low energy HEVC intra angular prediction hardware

using the proposed technique is designed and implemented. The proposed technique

significantly reduced energy consumption of the HEVC intra prediction hardware [18].

Since full-custom DSP blocks in Xilinx FPGAs perform constant multiplications

faster and with less energy than adders and shifters, we propose an efficient FPGA

implementation of HEVC intra prediction for angular prediction modes using the

proposed computation and energy reduction technique and DSP blocks in FPGA. In the

proposed FPGA implementation, one HEVC intra angular prediction equation is

implemented using one DSP block instead of using two DSP blocks and two adders [19].

We propose two VVC reconfigurable intra prediction hardware. They are the first

VVC intra prediction hardware in the literature. The first hardware implements

multiplications with constants using adders and shifters instead of using multipliers.

Therefore, it can be used in ASIC implementations of VVC encoders. The second

hardware implements multiplications with constants using DSP blocks in FPGA instead

of using adders and shifters. Therefore, it can be used in FPGA implementations of VVC

encoders [20].

We propose an efficient FPGA implementation of VVC intra prediction for angular

prediction modes. In the proposed FPGA implementation, intra angular prediction

equations are manipulated in such a way that one intra angular prediction equation is

implemented using two DSP blocks and two adders [21].

We propose a reconfigurable VVC fractional interpolation hardware for motion

compensation. The proposed hardware has a reconfigurable datapath which can be

configured to implement any of the 15 different 8-tap FIR filters used for fractional

interpolation. Since the proposed hardware is used for motion compensation in VVC

encoder and decoder, only one fractional pixel per integer pixel is interpolated [22].

6

We propose four novel approximate absolute difference hardware using special

approximation techniques [23]. We propose a novel approximate constant multiplication

technique. The proposed approximate constant multiplication technique decreases

complexity of constant multiplication by converting it to a multiplication with a smaller

constant, concatenation and constant shift operation. The proposed approximation

techniques reduce area and power consumption of hardware implementations with

negligible video quality loss.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II, first, explains HEVC intra prediction algorithm. It describes the

proposed technique for reducing amount of computations performed by HEVC intra

prediction. The proposed HEVC intra prediction hardware is explained and its

implementation results are given. Then, the proposed FPGA implementation of HEVC

intra prediction using the proposed technique and DSP blocks is explained. The

implementation results are given. Finally, comparison of the proposed hardware with the

ones proposed in literature is presented.

Chapter III, first, explains VVC intra prediction algorithm. The proposed

reconfigurable VVC intra prediction hardware implementations are explained and their

implementation results are given. Then, the proposed FPGA implementation of VVC

intra prediction using DSP blocks is explained. The implementation results are given.

Finally, comparison of the proposed hardware with the ones proposed in literature is

presented.

Chapter IV, first, explains VVC fractional interpolation algorithm. Then, the

proposed VVC fractional interpolation hardware and its reconfigurable datapath are

explained. Finally, implementation results are given, and literature comparison is

presented.

Chapter V, first, explains approximate computing. Then, the proposed novel

approximate absolute difference technique is explained. The proposed four different

approximate absolute difference hardware are presented. Their implementation results are

given. They are compared with approximate absolute difference hardware

implementations using the proposed approximate adders in literature. Then, the proposed

novel approximate constant multiplication technique is explained. HEVC 2D transform

and VVC 2D transform hardware implementations using the proposed approximate

7

constant multiplier are presented. Their rate-distortion performances and hardware

implementation results are given.

Chapter VI presents conclusions and future works.

8

CHAPTER II

HEVC INTRA PREDICTION HARDWARE

2.1 HEVC Intra Prediction Algorithm

HEVC intra prediction algorithm predicts the pixels in prediction units (PU) of a

coding unit (CU) using the pixels in the available neighboring PUs [1]. For the luminance

component of a frame, 4x4, 8x8, 16x16 and 32x32 PU sizes are available. As shown in

Figure 2.1, there are 33 angular prediction modes (Mode) corresponding to different

prediction angles (Angle) for each PU size. In addition, there are DC and planar prediction

modes for each PU size. An 8x8 PU, four 4x4 PUs in it, and their neighboring pixels are

shown in Figure 2.2.

Figure 2.1 HEVC Intra Prediction Mode Directions

- 26

- 21

- 17

 -9

- 5

0

9

13

17

21

26

Mode

5 2 0 -2 -17 -21 - 26 9 13 17 21 26 32

34 27 26 - 25 21 20 19 28 29 30 31 32 33

- 5 -9 -13

24 23 22

- 32

 18

Angle

 17

 16

 15

 13

 12

10

7

6

5

4

3

32 2

 2

5

 9

8

 -13

-2

 14

11

- 32 18

9

Figure 2.2 Neighboring Pixels of 4x4 and 8x8 PUs

In HEVC intra prediction algorithm, first, reference main array is determined. The

pixels in the reference main array are used in the intra prediction equations. If the

prediction mode is equal to or greater than 18, reference main array is selected from above

neighboring pixels. However, first four pixels of this array are reserved to left neighboring

pixels, and if prediction angle is less than zero, these pixels are assigned to the array. If

the prediction mode is less than 18, reference main array is selected from left neighboring

pixels. However, first four pixels of this array are reserved to above neighboring pixels,

and if prediction angle is less than zero, these pixels are assigned to the array.

After the reference main array is determined, ildx which is used to determine

positions of the pixels in this array that will be used in the intra prediction equations and

iFact which is used to determine coefficients of these pixels are calculated as shown in

equations (2.1a) and (2.1b), respectively. If iFact is equal to 0, neighboring pixels are

copied directly to predicted pixels. Otherwise, predicted pixels are calculated as shown

in equation (2.2).

𝑖𝐼𝑑𝑥 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) ≫ 5 (2.1a)

𝑖𝐹𝑎𝑐𝑡 = ((𝑦 + 1) ∗ 𝐴𝑛𝑔𝑙𝑒) & 31 (2.1b)

𝑝𝑟𝑒𝑑[𝑥, 𝑦] = ((32 − 𝑖𝐹𝑎𝑐𝑡) ∗ 𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 1] + 𝑖𝐹𝑎𝑐𝑡 ∗ 𝑟𝑒𝑓𝑀𝑎𝑖𝑛[𝑥 + 𝑖𝐼𝑑𝑥 + 2]

+ 16) ≫ 5
(2.2)

10

All the intra prediction equations can be obtained from equation (2.2). As an

example, reference main array and prediction equations for the 8x8 intra prediction mode

6 with prediction angle 13 are shown in equations (2.3a) and (2.3b), respectively. The

neighboring pixels used in these equations can be seen in Figure 2.2.

𝑥 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 − 1), 𝑦 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 − 1)

𝑟𝑒𝑓𝑀𝑎𝑖𝑛 = [0,0,0,0,0,0,0,0, 𝑅, 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝑉𝐴, 𝑉𝐵, 𝑉𝐶, 𝑉𝐷, 𝑉𝐸, 𝑉𝐹, 𝑉𝐺, 𝑉𝐻] (2.3a)

𝑝𝑟𝑒𝑑[0,0] = 𝑝𝑟𝑒𝑑[1,0] = [19 ∗ 𝐴 + 13 ∗ 𝐵 + 16] >> 5
𝑝𝑟𝑒𝑑[2,0] = 𝑝𝑟𝑒𝑑[3,0] = [19 ∗ 𝐵 + 13 ∗ 𝐶 + 16] >> 5

𝑝𝑟𝑒𝑑[4,0] = 𝑝𝑟𝑒𝑑[5,0] = 𝑝𝑟𝑒𝑑[6,0] = [19 ∗ 𝐶 + 13 ∗ 𝐷 + 16] >> 5
𝑝𝑟𝑒𝑑[7,0] = [19 ∗ 𝐷 + 13 ∗ 𝐸 + 16] >> 5

(2.3b)

𝑝𝑟𝑒𝑑[0,1] = 𝑝𝑟𝑒𝑑[1,1] = [6 ∗ 𝐵 + 26 ∗ 𝐶 + 16] >> 5
𝑝𝑟𝑒𝑑[2,1] = 𝑝𝑟𝑒𝑑[3,1] = [6 ∗ 𝐶 + 26 ∗ 𝐷 + 16] >> 5

𝑝𝑟𝑒𝑑[4,1] = 𝑝𝑟𝑒𝑑[5,1] = 𝑝𝑟𝑒𝑑[6,1] = [6 ∗ 𝐷 + 26 ∗ 𝐸 + 16] >> 5
𝑝𝑟𝑒𝑑[7,1] = [6 ∗ 𝐸 + 26 ∗ 𝐹 + 16] >> 5

𝑝𝑟𝑒𝑑[0,2] = 𝑝𝑟𝑒𝑑[1,2] = [25 ∗ 𝐶 + 7 ∗ 𝐷 + 16] >> 5
𝑝𝑟𝑒𝑑[2,2] = 𝑝𝑟𝑒𝑑[3,2] = [25 ∗ 𝐷 + 7 ∗ 𝐸 + 16] >> 5

𝑝𝑟𝑒𝑑[4,2] = 𝑝𝑟𝑒𝑑[5,2] = 𝑝𝑟𝑒𝑑[6,2] = [25 ∗ 𝐸 + 7 ∗ 𝐹 + 16] >> 5
𝑝𝑟𝑒𝑑[7,2] = [25 ∗ 𝐹 + 7 ∗ 𝐺 + 16] >> 5

𝑝𝑟𝑒𝑑[0,3] = 𝑝𝑟𝑒𝑑[1,3] = [12 ∗ 𝐷 + 20 ∗ 𝐸 + 16] >> 5
𝑝𝑟𝑒𝑑[2,3] = 𝑝𝑟𝑒𝑑[3,3] = [12 ∗ 𝐸 + 20 ∗ 𝐹 + 16] >> 5

𝑝𝑟𝑒𝑑[4,3] = 𝑝𝑟𝑒𝑑[5,3] = 𝑝𝑟𝑒𝑑[6,3] = [12 ∗ 𝐹 + 20 ∗ 𝐺 + 16] >> 5
𝑝𝑟𝑒𝑑[7,3] = [12 ∗ 𝐺 + 20 ∗ 𝐻 + 16] >> 5

𝑝𝑟𝑒𝑑[0,4] = 𝑝𝑟𝑒𝑑[1,4] = [31 ∗ 𝐸 + 1 ∗ 𝐹 + 16] >> 5
𝑝𝑟𝑒𝑑[2,4] = 𝑝𝑟𝑒𝑑[3,4] = [31 ∗ 𝐹 + 1 ∗ 𝐺 + 16] >> 5

𝑝𝑟𝑒𝑑[4,4] = 𝑝𝑟𝑒𝑑[5,4] = 𝑝𝑟𝑒𝑑[6,4] = [31 ∗ 𝐺 + 1 ∗ 𝐻 + 16] >> 5
𝑝𝑟𝑒𝑑[7,4] = [31 ∗ 𝐻 + 1 ∗ 𝐼 + 16] >> 5

𝑝𝑟𝑒𝑑[0,5] = 𝑝𝑟𝑒𝑑[1,5] = [18 ∗ 𝐹 + 14 ∗ 𝐺 + 16] >> 5
𝑝𝑟𝑒𝑑[2,5] = 𝑝𝑟𝑒𝑑[3,5] = [18 ∗ 𝐺 + 14 ∗ 𝐻 + 16] >> 5

𝑝𝑟𝑒𝑑[4,5] = 𝑝𝑟𝑒𝑑[5,5] = 𝑝𝑟𝑒𝑑[6,5] = [18 ∗ 𝐻 + 14 ∗ 𝑉𝐴 + 16] >> 5
𝑝𝑟𝑒𝑑[7,5] = [18 ∗ 𝑉𝐴 + 14 ∗ 𝑉𝐵 + 16] >> 5

𝑝𝑟𝑒𝑑[0,6] = 𝑝𝑟𝑒𝑑[1,6] = [5 ∗ 𝐺 + 27 ∗ 𝐻 + 16] >> 5
𝑝𝑟𝑒𝑑[2,6] = 𝑝𝑟𝑒𝑑[3,6] = [5 ∗ 𝐻 + 27 ∗ 𝑉𝐴 + 16] >> 5

𝑝𝑟𝑒𝑑[4,6] = 𝑝𝑟𝑒𝑑[5,6] = 𝑝𝑟𝑒𝑑[6,6] = [5 ∗ 𝑉𝐴 + 27 ∗ 𝑉𝐵 + 16] >> 5
𝑝𝑟𝑒𝑑[7,6] = [5 ∗ 𝑉𝐵 + 27 ∗ 𝑉𝐶 + 16] >> 5

𝑝𝑟𝑒𝑑[0,7] = 𝑝𝑟𝑒𝑑[1,7] = [24 ∗ 𝐻 + 8 ∗ 𝑉𝐴 + 16] >> 5
𝑝𝑟𝑒𝑑[2,7] = 𝑝𝑟𝑒𝑑[3,7] = [24 ∗ 𝑉𝐴 + 8 ∗ 𝑉𝐵 + 16] >> 5

𝑝𝑟𝑒𝑑[4,7] = 𝑝𝑟𝑒𝑑[5,7] = 𝑝𝑟𝑒𝑑[6,7] = [24 ∗ 𝑉𝐵 + 8 ∗ 𝑉𝐶 + 16] >> 5
𝑝𝑟𝑒𝑑[7,7] = [24 ∗ 𝑉𝐶 + 8 ∗ 𝑉𝐷 + 16] >> 5

11

2.2 A Computation and Energy Reduction Technique for HEVC Intra Prediction

In this thesis, a novel technique is proposed for reducing amount of computations

performed by HEVC intra prediction algorithm and, therefore, reducing energy

consumption of HEVC intra prediction hardware. The proposed technique reorganizes

the HEVC intra prediction equations by utilizing the fact that the sum of the coefficients

used in each HEVC angular intra prediction equation is 32. The reorganized intra

prediction equations require less number of addition and shift operations than the original

ones. This reduces the amount of computations performed by 4x4, 8x8, 16x16 and 32x32

luminance angular prediction modes. It does not affect the PSNR and bit rate.

In this thesis, a low energy HEVC intra prediction hardware for angular prediction

modes of all PU sizes (4x4, 8x8, 16x16 and 32x32) is also designed and implemented

using Verilog HDL. The Verilog RTL code is mapped to an FPGA implemented in 40

nm CMOS technology. The FPGA implementation is verified to work correctly on an

FPGA board. The FPGA implementation can work at 166 MHz, and it can process 40 full

HD (1920 x 1080) video frames per second. The proposed HEVC intra prediction

hardware implementing the reorganized HEVC intra prediction equations has up to

24.63% less energy consumption than an HEVC intra prediction hardware implementing

the original HEVC intra prediction equations.

Several HEVC intra prediction hardware implementations are proposed in the

literature [24]-[33]. Some of them have higher performance than the proposed HEVC

intra prediction hardware at the expense of much larger hardware area. The area of the

proposed hardware is much smaller than the ones proposed in [24]-[32]. Some of these

HEVC intra prediction hardware use separate hardware for each PU size. Some of them

use many parallel intra prediction datapaths. Some of them use multipliers instead of

adders and shifters for implementing multiplication with constants.

Power consumptions of the hardware implementations proposed in [24]-[31] are

not reported. The proposed hardware consumes less power than the one proposed in [32].

The proposed HEVC intra prediction hardware implementation performs intra prediction

for all PU sizes. Since the HEVC intra prediction hardware implementation proposed in

[33] performs intra prediction only for 4x4 and 8x8 PU sizes, it has smaller area and

consumes less power than the proposed one.

12

2.2.1 Proposed Computation and Energy Reduction Technique

In this thesis, data reuse technique is first used for reducing amount of computations

performed by HEVC intra prediction algorithm. In HEVC, intra 4x4, 8x8, 16x16 and

32x32 luminance angular prediction modes have identical equations. There are identical

equations between luminance angular prediction modes of different PU sizes as well. Data

reuse technique calculates the common prediction equations for all 4x4, 8x8, 16x16 and

32x32 luminance angular prediction modes only once and uses the result for the

corresponding prediction modes. There are 33792, 8448, 2112 and 528 prediction

equations in 32x32, 16x16, 8x8 and 4x4 luminance angular prediction modes,

respectively. As shown in Table 2.1, using data reuse technique, the numbers of prediction

equations that should be calculated for 32x32, 16x16, 8x8 and 4x4 luminance angular

prediction modes are reduced to 3735, 1507, 593 and 201, respectively.

Table 2.1 Prediction Equation Reductions by Data Reuse

 4x4 PU 8x8 PU 16x16 PU 32x32 PU 32x32 CU

of P. Equations 528 2112 8448 33792 135168

of P. Equations

with Data Reuse
201 593 1507 3735 14848

Reduction (%) 61.93 71.92 82.16 88.94 89.02

A 32x32 CU includes one 32x32 PU, four 16x16 PUs, sixteen 8x8 PUs and sixty

four 4x4 PUs. As shown in Figure 2.2, an 8x8 PU and some of the 4x4 PUs have common

neighboring pixels. They also have common prediction equations. 4x4, 8x8, 16x16 and

32x32 PUs also have common neighboring pixels and common prediction equations.

Therefore, data reuse technique is used for calculating predicted pixels of a 32x32 PU and

predicted pixels of the corresponding four 16x16 PUs, sixteen 8x8 PUs and sixty four 4x4

PUs. In this way, the number of prediction equations that should be calculated for a 32x32

CU is reduced from 135168 to 14848.

In this thesis, a novel technique is proposed for reducing amount of computations

performed by HEVC intra prediction algorithm. The proposed technique reorganizes the

HEVC intra prediction equations by utilizing the fact that the sum of the coefficients used

in each HEVC angular intra prediction equation is 32. This reduces the amount of

computations performed by 4x4, 8x8, 16x16 and 32x32 luminance angular prediction

modes. It does not affect the PSNR and bit rate.

13

The original version of each intra prediction equation requires two multiplications

with constants. Both constants are between 1 and 31. The sum of both constants is 32.

Reorganized version of each intra prediction equation requires two multiplications with

constants. One constant is always 32. The other constant is between 1 and 16.

Multiplications with constants are implemented using addition and shift operations. The

reorganized intra prediction equations require less number of addition and shift operations

than the original ones.

An HEVC intra prediction equation and its reorganized version are shown in

equations (2.4a) and (2.5a), respectively. As shown in equation (2.4b), original intra

prediction equation requires six addition and five shift operations. As shown in equations

(2.5b) and (2.5c), its reorganized version requires two addition, two subtraction and three

shift operations. Another HEVC intra prediction equation and its reorganized version are

shown in equations (2.6a) and (2.7a), respectively. As shown in equation (2.6b), original

intra prediction equation requires six addition and five shift operations. As shown in

equations (2.7b) and (2.7c), its reorganized version requires one addition, two subtraction

and two shift operations.

Numbers of addition and shift operations required for original HEVC intra

prediction algorithm and HEVC intra prediction algorithm with reorganized equations for

all the PUs in a 32x32 CU after using data reuse technique are shown in Table 2.2. The

(9 ∗ 𝐴 + 23 ∗ 𝐵 + 16) ≫ 5 (2.4a)

(𝐴 + (𝐴 ≪ 3) + 𝐵 + (𝐵 ≪ 1) + (𝐵 ≪ 2) + (𝐵 ≪ 4) + 16) ≫ 5 (2.4b)

(32 ∗ 𝐵 − 9 ∗ (𝐵 − 𝐴) + 16) ≫ 5 (2.5a)

𝑡𝑒𝑚𝑝 = 𝐵 − 𝐴 (2.5b)

((𝐵 ≪ 5) − (𝑡𝑒𝑚𝑝 + (𝑡𝑒𝑚𝑝 ≪ 3)) + 16) ≫ 5 (2.5c)

(𝐴 + 31 ∗ 𝐵 + 16) ≫ 5 (2.6a)

(𝐴 + 𝐵 + (𝐵 ≪ 1) + (𝐵 ≪ 2) + (𝐵 ≪ 3) + (𝐵 ≪ 4) + 16) ≫ 5 (2.6b)

(32 ∗ 𝐵 − (𝐵 − 𝐴) + 16) ≫ 5 (2.7a)

𝑡𝑒𝑚𝑝 = 𝐵 − 𝐴 (2.7b)

((𝐵 ≪ 5) − (𝑡𝑒𝑚𝑝) + 16) ≫ 5 (2.7c)

14

total numbers of addition and shift operations are calculated by adding the numbers of

addition and shift operations required for each intra angular prediction equation for all

the PUs in a 32x32 CU. Subtraction operations are counted as addition operations. The

proposed technique reduces numbers of addition and shift operations by 40.3% and

49.8%, respectively.

Table 2.2 Addition and Shift Reductions by the Proposed Technique

 Original Reorganized Reduction (%)

of Addition 75348 45024 40.3

of Shift 84932 42652 49.8

2.2.2 Proposed HEVC Intra Prediction Hardware

The proposed HEVC intra prediction hardware implementing angular prediction

modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) including data reuse and the proposed

technique is shown in Figure 2.3. There are ten pipelined datapaths. Each datapath

calculates the result of one intra prediction equation in each clock cycle. Therefore, ten

parallel datapaths calculate the results of ten intra prediction equations in each clock

cycle.

Figure 2.3 Proposed HEVC Intra Prediction Hardware

Three local neighboring buffers are used to store neighboring pixels in the

previously coded and reconstructed neighboring PUs. After a PU in the current CU is

coded and reconstructed, the neighboring pixels in this PU are stored in the corresponding

15

buffers. These on chip neighboring buffers reduce the required off-chip memory

bandwidth. The predicted pixels are stored in the prediction equation register file.

A 32x32 CU, which includes one 32x32 PU, four 16x16 PUs, sixteen 8x8 PUs and

sixty four 4x4 PUs, has 528 neighboring pixels. Storing all 528 neighboring pixels in 528

registers would increase the hardware area. In order to reduce the hardware area, 32x32

CU is split into 8x8 blocks and prediction equations, regardless of their PU sizes, are

divided into groups based on the pixels they use. The prediction equations using pixels

from the same 8x8 block are grouped together. In this way, only neighboring pixels of

current 8x8 block and corresponding four 4x4 blocks are stored in 42 registers. After these

neighboring pixel registers are loaded in 16 clock cycles, ten parallel datapaths are used

to calculate the prediction equations for current 8x8 block and corresponding four 4x4

blocks.

The proposed datapath for calculating reorganized versions of HEVC intra

prediction equations is shown in Figure 2.4. This datapath requires adder and shifter

hardware for two multiplications with constants. One constant is always 32. The other

constant is between 1 and 16. The datapath necessary for calculating original versions of

HEVC intra prediction equations is shown in Figure 2.5. This datapath requires adder and

shifter hardware for two multiplications with constants. Both constants are between 1 and

31. Therefore, the proposed datapath requires less hardware area and consumes less

power.

Figure 2.4 Proposed HEVC Intra Prediction Datapath

16

Figure 2.5 Original HEVC Intra Prediction Datapath

The proposed hardware is implemented using Verilog HDL. The Verilog RTL code

is verified with RTL simulations. The RTL simulation results matched the results of

HEVC intra prediction implementation in HEVC HM software encoder [34]. The Verilog

RTL code is synthesized and mapped to an FPGA implemented in 40nm CMOS

technology. The FPGA implementation is verified with post place and route simulations.

Post place and route simulation results matched the results of HEVC intra prediction

implementation in HEVC HM software encoder [34].

As shown in Figure 2.6, the FPGA implementation is also verified to work correctly

on an FPGA board which includes an FPGA implemented in 40 nm CMOS technology,

512 MB external memory and interfaces such as UART and DVI. In the FPGA, processor

local bus (PLB) is used for the communication between the proposed HEVC intra

prediction hardware and microprocessor. The proposed FPGA implementation uses 6013

LUTs, 2006 DFFs and 4 BRAMs. It can work at 166 MHz, and it can process 40 full HD

(1920x1080) video frames per second.

Verilog RTL code of the proposed HEVC intra prediction hardware is also

synthesized to a 90 nm standard cell library and the resulting netlist is placed and routed.

The resulting ASIC implementation can work at 250 MHz, and it can process 60 full HD

17

(1920x1080) video frames per second. Its gate count is 16.1K, according to NAND (2x1)

gate area excluding on-chip memory.

Figure 2.6 FPGA Implementation of HEVC Intra Prediction Hardware

Power consumption of the proposed FPGA implementation is estimated using a

gate level power estimation tool. Post place and route timing simulations are performed

for Tennis and Kimono videos at 100 MHz [35], and signal activities are stored in VCD

files. These VCD files are used for estimating power consumption of the FPGA

implementation. The power and energy consumption results of the FPGA implementation

for one frame of each video quantized with three different quantization parameters (QP)

are shown in Table 2.3 and Table 2.4.

Table 2.3 Energy Consumption Reductions for Kimono (1920x1080)

 Original HEVC Intra Prediction Hardware Proposed HEVC Intra Prediction Hardware

QP 28 35 42 28 35 42

Time (ms) 40.78 40.78 40.78 40.78 40.78 40.78

Clock (mW) 27.91 27.91 27.91 23.02 23.02 23.02

Signal (mW) 21.74 21.61 21.57 17.94 17.87 17.42

Logic (mW) 18.53 18.36 18.31 12.52 12.44 11.70

BRAM (mW) 2.54 2.54 2.54 2.54 2.54 2.54

Power (mW) 70.72 70.72 70.33 56.02 55.87 54.68

Energy (uJ) 2884.5 2884.5 2868.6 2284.9 2278.8 2230.3

Energy Reduction 20.79 % 21.00 % 22.25 %

18

Table 2.4 Energy Consumption Reductions for Tennis (1920x1080)

 Original HEVC Intra Prediction Hardware Proposed HEVC Intra Prediction Hardware

QP 28 35 42 28 35 42

Time (ms) 40.78 40.78 40.78 40.78 40.78 40.78

Clock (mW) 27.91 27.91 27.91 23.02 23.02 23.02

Signal (mW) 22.03 21.93 22.20 17.49 17.13 17.61

Logic (mW) 19.27 19.15 19.53 11.76 11.22 11.99

BRAM (mW) 2.54 2.54 2.54 2.54 2.54 2.54

Power (mW) 71.75 71.53 72.18 54.81 53.91 55.16

Energy (uJ) 2926.5 2917.6 2944.1 2235.6 2198.9 2249.9

Energy Reduction 23.61 % 24.63 % 23.58 %

The time it takes for the FPGA implementation to process one frame is shown in

the tables. Original HEVC intra prediction hardware does not use the proposed

computation and energy reduction technique. Therefore, it uses the original HEVC intra

prediction datapath shown in Figure 2.5. Both original and proposed HEVC intra

prediction hardware calculate the result of one intra prediction equation in each clock

cycle. The proposed technique did not affect the critical path of the HEVC intra prediction

hardware. Therefore, the time it takes to process one frame is the same for both original

and proposed HEVC intra prediction hardware.

However, as it can be seen from Figure 2.4 and Figure 2.5, since the proposed

HEVC intra prediction hardware performs less addition and shift operations in one clock

cycle than original HEVC intra prediction hardware, it has smaller hardware area.

Therefore, it consumes up to 24.63% less energy than original HEVC intra prediction

hardware. Since HEVC intra prediction hardware is used as part of an HEVC video

encoder, only internal power consumption is considered, input and output power

consumptions are ignored. Therefore, power consumption of the FPGA implementation

can be divided into four main categories; clock power, logic power, signal power and

BRAM power.

Comparisons of the FPGA and ASIC implementations of proposed HEVC intra

prediction hardware with the FPGA and ASIC implementations of HEVC intra prediction

hardware proposed in the literature are shown in Table 2.5 and Table 2.6, respectively.

The area of the proposed hardware is much smaller than the ones proposed in [24]-[32].

Power consumptions of the hardware implementations proposed in [24]-[31] are not

reported. The proposed hardware consumes less power than the one proposed in [32].

19

Table 2.5 Comparison of FPGA Implementations

 [24] [25] [26] [27] [33] Proposed

Technology 65 nm 28 nm 40 nm 40 nm 40 nm 40 nm

DFF 5.5 K 22 K 110 K 6934 849 2006

LUT 14 K 43 K 170 K 13409 2381 6013

BRAM --- 94 --- --- 4 4

Max Freq. (MHz) 110 150 219 162 150 166

Frames per Sec.
30

3840x2160

24

3840x2160

30

1920x1080

40

1920x1080

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8 4, 8, 16, 32

Table 2.6 Comparison of ASIC Implementations

 [28] [29] [30] [31] [32] [33] Proposed

Technology 90 nm 40 nm 90 nm 130 nm 90 nm 90 nm 90 nm

Gate Count 127.3 K 27 K 76.8 K 324 K 712.2 K 5.4 K 16.1 K

Max Freq. (MHz) 200 200 270 400 357 150 250

Frames per Sec.
30

3840x2160
--- ---

60

1920x1080

46

2560x1600

30

1920x1080

60

1920x1080

Memory 6 KB 4.9 KB 5.6 KB --- --- --- 3 KB

Power Dissipation --- --- --- --- 92.1 mW 23.2 mW 28.5 mW

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8 4, 8, 16, 32

The proposed HEVC intra prediction hardware implementation performs intra

prediction for all PU sizes. Since the HEVC intra prediction hardware implementation

proposed in [33] performs intra prediction only for 4x4 and 8x8 PU sizes, it has smaller

area and consumes less power than the proposed HEVC intra prediction hardware.

Some of the HEVC intra prediction hardware implementations have higher

performance than the proposed HEVC intra prediction hardware implementation at the

expense of much larger hardware area. The frames per second performance of the HEVC

intra prediction hardware implementation proposed in [27] is not reported. Since the

HEVC intra prediction hardware implementations in [25, 29, 30] are proposed for an

HEVC decoder, their frames per second performances for an HEVC encoder are not

reported.

2.3 DSP Block Based FPGA Implementation of HEVC Intra Prediction

A computation and energy reduction technique for HEVC intra prediction is

proposed in [18]. This technique reorganizes the HEVC intra prediction equations by

utilizing the fact that the sum of the coefficients used in each HEVC angular intra

prediction equation is 32. This reduces the amount of computations performed by 4x4,

20

8x8, 16x16 and 32x32 luminance angular prediction modes. It does not affect the PSNR

and bit rate.

Xilinx FPGAs have built-in full-custom DSP blocks which can perform constant

multiplications faster and with less energy than adders and shifters. A DSP block can be

used to perform different constant multiplications by providing proper constant value to

its input. Therefore, it is more efficient to implement constant multiplications using DSP

blocks instead of using adders and shifters in an FPGA implementation.

In this thesis, an efficient FPGA implementation of HEVC intra prediction for

angular prediction modes of all PU sizes (4x4, 8x8, 16x16 and 32x32) is proposed. The

proposed FPGA implementation uses the computation and energy reduction technique for

HEVC intra prediction proposed in [18]. However, it implements intra angular prediction

equations using DSP blocks in FPGA instead of using adders and shifters. In this way,

one HEVC intra angular prediction equation is implemented using only one DSP block

instead of using two DSP blocks and two adders.

The proposed FPGA implementation can work at 227 MHz in a Xilinx Virtex 6

FPGA. It, in the worst case, can process 55 Full HD (1920x1080) video frames per

second. The proposed FPGA implementation has up to 15.97% less energy consumption

than the FPGA implementation of HEVC intra prediction using the computation and

energy reduction technique proposed in [18] and adders and shifters. The proposed FPGA

implementation has up to 34.66% less energy consumption than the FPGA

implementation of HEVC intra prediction using original prediction equations and DSP

blocks.

Several HEVC intra prediction hardware are proposed in the literature [18], [24]-

[27], [33]. They are compared with the proposed HEVC intra prediction hardware.

The proposed HEVC intra prediction hardware implementing angular prediction

modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) using the computation and energy

reduction technique proposed in [18] and DSP blocks is shown in Figure 2.7. There are

ten pipelined datapaths. Each datapath calculates the result of one intra prediction

equation in each clock cycle. Therefore, ten parallel datapaths calculate the results of ten

intra prediction equations in each clock cycle.

Three local neighboring buffers are used to store neighboring pixels in the

previously coded and reconstructed neighboring PUs. After a PU in the current CU is

coded and reconstructed, the neighboring pixels in this PU are stored in the corresponding

21

buffers. These on chip neighboring buffers reduce required off-chip memory bandwidth.

The predicted pixels are stored in the prediction equation register file.

Figure 2.7 Proposed HEVC Intra Prediction Hardware

A 32x32 CU has 528 neighboring pixels. Storing all 528 neighboring pixels in 528

registers would increase the hardware area. In order to reduce the hardware area, 32x32

CU is split into 8x8 blocks and prediction equations, regardless of their PU sizes, are

divided into groups based on the pixels they use. The prediction equations using pixels

from the same 8x8 block are grouped together. In this way, only neighboring pixels of

current 8x8 block and corresponding four 4x4 blocks are stored in 42 registers. After these

neighboring pixel registers are loaded in 16 clock cycles, ten parallel datapaths are used

to calculate the prediction equations for current 8x8 block and corresponding four 4x4

blocks.

In an FPGA implementation, multiplication operations in the intra prediction

equations can be implemented more efficiently using DSP blocks instead of using adders

and shifters. Structure of a DSP48E1 block is shown in Figure 2.8. If constant

multiplications are implemented using adders and shifters, 10 adders and 10 multiplexers

are necessary to implement one original intra prediction equation [18]. If constant

multiplications are implemented using DSP blocks, as shown in Figure 2.9, two DSP

blocks and two adders are necessary to implement one original intra prediction equation.

22

Figure 2.8 Structure of a DSP48E1 Block

Figure 2.9 Original HEVC Intra Prediction Datapath

Figure 2.10 Proposed HEVC Intra Prediction Datapath

However, as shown in Figure 2.10, one reorganized intra prediction equation can

be implemented using only one DSP block. The DSP block is configured to perform

multiplication and addition operations. For example, reorganized intra prediction

23

equation shown in (2.5a) is implemented using a DSP block as follows. (9 ∗ (𝐴 − 𝐵)) is

implemented using part of the DSP block implementing 𝐵 ∗ (𝐴 ± 𝐷). One neighboring

pixel is shifted left by 5 and ORed with 16 to implement (32 ∗ 𝐵 + 16) and the result is

given to C input of DSP block. Since the last 5 bits of 32 ∗ 𝐵 is zero, (32 ∗ 𝐵 + 16) can

be implemented by changing 5th bit of 32 ∗ 𝐵 from zero to one.

In this thesis, an HEVC intra prediction hardware implementing angular prediction

modes for all PU sizes (4x4, 8x8, 16x16 and 32x32) using the original intra prediction

equations and DSP blocks is also designed for comparison. Both HEVC intra prediction

hardware designs are implemented using Verilog HDL. The Verilog RTL codes are

verified with RTL simulations. RTL simulation results matched the results of HEVC intra

prediction implementation in HEVC HM software encoder [34].

The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX75T

FF1759 FPGA with speed grade 3 using Xilinx ISE 14.7. FPGA implementations are

verified with post place and route simulations. Post place and route simulation results

matched the results of HEVC intra prediction implementation in HEVC HM software

encoder [34].

FPGA implementation results of HEVC intra prediction hardware using original

intra prediction equations and adders and shifters (ORG_AS) [18], reorganized intra

prediction equations and adders and shifters (REORG_AS) [18], original intra prediction

equations and DSP blocks (ORG_DSP), reorganized intra prediction equations and DSP

blocks (REORG_DSP) are shown in Table 2.7.

Table 2.7 Implementation Results

 ORG_AS [18] REORG_AS [18] ORG_DSP REORG_DSP

FPGA Xilinx Virtex 6 Xilinx Virtex 6 Xilinx Virtex 6 Xilinx Virtex 6

DFF 2567 2006 1167 1168

LUT 5521 6013 4510 4425

BRAM 4 4 4 4

DSP48E1 --- --- 20 10

Max. Freq. (MHz) 166 166 212 227

Frames per Second 40 1920x1080 40 1920x1080 52 1920x1080 55 1920x1080

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32

Power consumptions of all FPGA implementations are estimated using Xilinx

XPower Analyzer tool. Post place and route timing simulations are performed for Tennis

24

and Kimono videos at 100 MHz [35], and signal activities are stored in VCD files. These

VCD files are used for estimating power consumptions of FPGA implementations.

Energy consumption results of all FPGA implementations for one frame of each

video quantized with three different quantization parameters (QP) are shown in Figure

2.11. The proposed FPGA implementation of HEVC intra prediction using the

computation and energy reduction technique proposed in [18] and DSP blocks has up to

15.97% less energy consumption than the FPGA implementation of HEVC intra

prediction using the computation and energy reduction technique proposed in [18] and

adders and shifters. The proposed FPGA implementation of HEVC intra prediction using

the computation and energy reduction technique proposed in [18] and DSP blocks has up

to 34.66% less energy consumption than the FPGA implementation of HEVC intra

prediction using original prediction equations and DSP blocks.

Figure 2.11 Energy Consumption Results

Comparison of the proposed FPGA implementation of HEVC intra prediction using

the computation and energy reduction technique proposed in [18] and DSP blocks with

the FPGA implementations of HEVC intra prediction hardware proposed in the literature

is shown in Table 2.8. Area of the proposed FPGA implementation is smaller than the

ones proposed in [18], [24]-[27]. Power consumptions of the HEVC intra prediction

hardware proposed in [24]-[27] are not reported. The proposed FPGA implementation

consumes less power than the one proposed in [18]. Since the HEVC intra prediction

hardware proposed in [33] performs intra prediction only for 4x4 and 8x8 PU sizes, it has

smaller area and consumes less power than the proposed hardware.

Some of the HEVC intra prediction hardware have higher performance than the

proposed HEVC intra prediction hardware at the expense of much larger hardware area.

Frames per second performance of the HEVC intra prediction hardware proposed in [27]

25

is not reported. Since the HEVC intra prediction hardware in [25] is proposed for an

HEVC decoder, its frames per second performance for an HEVC encoder is not reported.

Table 2.8 Comparison of FPGA Implementations

 [18] [24] [25] [26] [27] [33] Proposed

FPGA
Xilinx

Virtex 6
65 nm FPGA

Xilinx

Zynq 7045

Xilinx

Virtex 6

Altera

Arria II GX

Xilinx

Virtex 6

Xilinx

Virtex 6

DFF 2006 5.5 K 22 K 110 K 6934 849 1168

LUT 6013 14 K 43 K 170 K 13409 2381 4425

BRAM 4 --- 94 --- --- 4 4

DSP48E1 --- --- --- --- 8 --- 10

Max. Freq. (MHz) 166 110 150 219 162 150 227

Frames per Second
40

1920x1080

30

3840x2160

24

3840x2160

30

1920x1080

55

1920x1080

PU Size 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8 4, 8, 16, 32

26

CHAPTER III

VVC INTRA PREDICTION HARDWARE

3.1 VVC Intra Prediction Algorithm

VVC intra prediction algorithm predicts pixels of a PU using neighboring pixels in

neighboring PUs. 4x4, 8x8, 16x16, 32x32, 64x64 PU sizes are used for luminance

components of frames. VVC has 65 intra angular prediction modes (mode) for each PU

size. Prediction angles (angle) corresponding to each prediction mode are shown in Figure

3.1. VVC also has DC and planar prediction modes for each PU size. Neighboring pixels

of an 8x8 PU and four 4x4 PUs are shown in Figure 3.2.

Figure 3.1 VVC Intra Prediction Angles

27

Figure 3.2 Neighboring Pixels

Table 3.1 Cubic and Gaussian Filter Coefficients

 Filter Coefficients

Cubic

Filters

1 0 256 0 0

2 -3 252 8 -1

3 -5 247 17 -3

4 -7 242 25 -4

5 -9 236 34 -5

6 -10 230 43 -7

7 -12 224 52 -8

8 -13 217 61 -9

9 -14 210 70 -10

10 -15 203 79 -11

11 -16 195 89 -12

12 -16 187 98 -13

13 -16 179 107 -14

14 -16 170 116 -14

15 -17 162 126 -15

16 -16 153 135 -16

17 -16 144 144 -16

Gaussian

Filters

18 47 161 47 1

19 43 161 51 1

20 40 160 54 2

21 37 159 58 2

22 34 158 62 2

23 31 156 67 2

24 28 154 71 3

25 26 151 76 3

26 23 149 80 4

27 21 146 85 4

28 19 142 90 5

29 17 139 94 6

30 16 135 99 6

31 14 131 104 7

32 13 127 108 8

33 11 123 113 9

34 10 118 118 10

28

17 different 4-tap cubic filters and 17 different 4-tap gaussian filters are used as

intra prediction equations. Coefficients of these 4-tap filters are shown in Table 3.1. Cubic

filters are used for 4x4 and 8x8 prediction units. Gaussian filters are used for 16x16,

32x32 and 64x64 prediction units.

VVC intra prediction algorithm determines reference pixel array (rparray) which

consists of pixels that will be used in intra prediction equations of the corresponding

prediction mode and PU size. Reference pixel array is filled with above neighboring

pixels if prediction mode is more than or equal to 34. However, if prediction angle is less

than zero, its first four pixels are filled with left neighboring pixels. Reference pixel array

is filled with left neighboring pixels if prediction mode is less than 34. However, if

prediction angle is less than zero, its first four pixels are filled with above neighboring

pixels.

VVC intra prediction algorithm calculates deltaint as shown in equation (3.1a). It

calculates deltafract as shown in equation (3.1b). deltaint is used for determining positions

of pixels in reference pixel array that will be used in intra prediction equations. Four

pixels used in intra prediction equations are adjacent pixels in reference pixel array, but

they may not be adjacent in video frame. These four pixels are selected as shown in

equations (3.2a)-(3.2e), where rp[0], rp[1], rp[2] and rp[3] are the selected pixels from

reference pixel array. If rp[1] is the left-most pixel in reference pixel array, rp[0] is equal

to rp[1]. If rp[2] is the right-most pixel in the reference pixel array, rp[3] is equal to rp[2].

PU size is used for determining whether cubic or gaussian filters will be used. deltafract

is used for determining which 4-tap filter among 17 4-tap filters will be used.

𝑑𝑒𝑙𝑡𝑎𝑖𝑛𝑡 = ((𝑦 + 1) ∗ 𝑎𝑛𝑔𝑙𝑒) ≫ 5 (3.1a)

𝑑𝑒𝑙𝑡𝑎𝑓𝑟𝑎𝑐𝑡 = ((𝑦 + 1) ∗ 𝑎𝑛𝑔𝑙𝑒) & 31 (3.1b)

𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 = 𝑥 + 𝑑𝑒𝑙𝑡𝑎𝑖𝑛𝑡 + 1 (3.2a)

r𝑝[1] = 𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥] (3.2b)

𝑟𝑝[2] = 𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 + 1] (3.2c)

𝑟𝑝[0] = (𝑥 == 0)? 𝑟𝑝[1] ∶ 𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 − 1] (3.2d)

𝑟𝑝[3] = (𝑥 == (𝑤𝑖𝑑𝑡ℎ − 1)) ? 𝑟𝑝[2] ∶ 𝑟𝑝𝑎𝑟𝑟𝑎𝑦[𝑟𝑝𝑎𝑟𝑟𝑎𝑦𝑖𝑛𝑑𝑒𝑥 + 2] (3.2e)

𝑥 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 − 1), 𝑦 = 0 𝑡𝑜 (𝑃𝑈𝑠𝑖𝑧𝑒 − 1)

29

Reference pixel array and prediction equations for 8x8 intra angular prediction

mode 9 with prediction angle -13 are shown in equations (3.3a) and (3.3b), respectively.

rparray = [0, 0 ,0, 0, 0, O, M, J, R, A, B, C, D, E, F, G, H, 0, 0, 0, 0, 0, 0, 0, 0]

(3.3a)

pp[0,0] = pp[1,0] = (-17C + 162B + 126A - 15A) ≫ 8

pp[2,0] = pp[3,0] = (-17B + 162A + 126R – 15R) ≫ 8

pp[4,0] = pp[5,0] = pp[6,0] = (-17A + 162R + 126J – 15J) ≫ 8

pp[7,0] = (-17R + 162J + 126M – 15M) ≫ 8

(3.3b)

pp[0,1] = pp[1,1] = (-10A + 230B + 43C - 7D) ≫ 8

pp[2,1] = pp[3,1] = (-10R + 230A + 43B - 7C) ≫ 8

pp[4,1] = pp[5,1] = pp[6,1] = (-10J + 230R + 43A - 7B) ≫ 8

pp[7,1] = (-10M + 230J + 43R - 7A) ≫ 8

pp[0,2] = pp[1,2] = (-14E + 210D + 70C – 10B) ≫ 8

pp[2,2] = pp[3,2] = (-14D + 210C + 70B – 10A) ≫ 8

pp[4,2] = pp[5,2] = pp[6,2] = (-14C + 210B + 70A – 10R) ≫ 8

pp[7,2] = (-14B + 210A + 70R – 10J) ≫ 8

pp[0,3] = pp[1,3] = (-16C + 187D + 98E – 13F) ≫ 8

pp[2,3] = pp[3,3] = (-16B + 187C + 98D – 13E) ≫ 8

pp[4,3] = pp[5,3] = pp[6,3] = (-16A + 187B + 98C – 13D) ≫ 8

pp[7,3] = (-16R + 187A + 98B – 13C) ≫ 8

pp[0,4] = pp[1,4] = (-5G + 247F + 17E – 3D) ≫ 8

pp[2,4] = pp[3,4] = (-5F + 247E + 17D – 3C) ≫ 8

pp[4,4] = pp[5,4] = pp[6,4] = (-5E + 247D + 17C – 3B) ≫ 8

pp[7,4] = (-5D + 247C + 17B – 3A) ≫ 8

pp[0,5] = pp[1,5] = (-16H + 153G + 135F – 16E) ≫ 8

pp[2,5] = pp[3,5] = (-16G + 153F + 135E – 16D) ≫ 8

pp[4,5] = pp[5,5] = pp[6,5] = (-16F + 153E + 135D – 16C) ≫ 8

pp[7,5] = (-16E + 153D + 135C – 16B) ≫ 8

pp[0,6] = pp[1,6] = (-9F + 236G + 34H) ≫ 8

pp[2,6] = pp[3,6] = (-9E + 236F + 34G – 5H) ≫ 8

pp[4,6] = pp[5,6] = pp[6,6] = (-9D + 236E + 34F – 5G) ≫ 8

pp[7,6] = (-9C + 236D + 34E – 5F) ≫ 8

pp[0,7] = pp[1,7] = (79H – 11G) ≫ 8

pp[2,7] = pp[3,7] = (-15H + 203H + 79G – 11F) ≫ 8

pp[4,7] = pp[5,7] = pp[6,7] = (-15G + 203G + 79F – 11E) ≫ 8

pp[7,7] = (-15F + 203F + 79E – 11D) ≫ 8

3.2 Reconfigurable Intra Angular Prediction Hardware for VVC

Two VVC reconfigurable intra prediction hardware are proposed. They implement

65 VVC intra angular prediction modes for 4x4, 8x8, 16x16, 32x32 prediction units. The

first reconfigurable hardware (RECON_AS) implements multiplications with constants

using adders and shifters instead of using multipliers. Therefore, it can be used in ASIC

30

implementations of VVC encoders. It uses thirty reconfigurable datapaths. Each

RECON_AS datapath can calculate any 4-tap gaussian and cubic filter used in VVC intra

angular prediction. It is configured by a filter selection signal in each clock cycle.

FPGAs have built-in full-custom DSP blocks which can perform constant

multiplications faster and with less energy than adders and shifters. A DSP block can be

used to perform different constant multiplications by providing proper constant value to

its input. Therefore, it is more efficient to implement constant multiplications using DSP

blocks instead of using adders and shifters in an FPGA implementation.

The second reconfigurable hardware (RECON_DSP) implements multiplications

with constants using DSP blocks in FPGA instead of using adders and shifters. Therefore,

it can be used in FPGA implementations of VVC encoders. It uses thirty reconfigurable

datapaths. Each RECON_DSP datapath uses four DSP blocks. It can calculate any 4-tap

gaussian and cubic filter used in VVC intra angular prediction. It is configured by

changing DSP inputs in each clock cycle.

RECON_AS and RECON_DSP VVC intra prediction hardware are implemented

with Verilog HDL. The Verilog codes are mapped to a 28 nm FPGA and a 90 nm standard

cell library. RECON_AS and RECON_DSP FPGA implementations work at 108 and 105

MHz, respectively. They process 30 full HD (1920x1080) video frames per second.

RECON_AS and RECON_DSP ASIC implementations work at 218 and 208 MHz, and

they process 62 full HD and 59 full HD video frames per second, respectively.

RECON_AS ASIC implementation has up to 12.8% less energy consumption than

RECON_DSP ASIC implementation. Therefore, RECON_AS can be used in ASIC

implementations of VVC encoders. RECON_DSP FPGA implementation has up to

30.2% less energy consumption than RECON_AS FPGA implementation. Therefore,

RECON_DSP can be used in FPGA implementations of VVC encoders.

In the literature, there is no VVC intra prediction hardware. However, there are

HEVC intra prediction hardware [18, 24, 26, 28, 36]. RECON_AS and RECON_DSP

VVC intra prediction hardware are compared with them.

In VVC, intra angular prediction modes of a PU have identical prediction equations.

Intra angular prediction modes of different PU sizes have identical prediction equations

as well. In this thesis, data reuse technique is used to calculate identical prediction

equations only once and use the results for the corresponding prediction modes.

Prediction equations calculated with and without data reuse are shown in Table 3.2 and

Table 3.3.

31

Table 3.2 Cubic Filter Prediction Equations

4x4

Pred. Unit

8x8

Pred. Unit

32x32

Coding Unit

Prediction Equations 1040 4160 133120

Prediction Equations

with Data Reuse

405 1042 29478

Reduction (%) 61.06 74.95 77.85

Table 3.3 Gaussian Filter Prediction Equations

16x16

Pred. Unit

32x32

Pred. Unit

32x32

Coding Unit

Prediction Equations 16680 66560 133120

Prediction Equations

with Data Reuse

2597 6641 11810

Reduction (%) 84.43 90.02 91.13

There are 4*4*65 = 1040 intra angular prediction equations for 4x4 PU size. There

are 4160, 16680, 66560 intra angular prediction equations for 8x8, 16x16, 32x32 PU

sizes, respectively. Data reuse technique reduced numbers of intra angular prediction

equations for 4x4, 8x8, 16x16, 32x32 PU sizes to 405, 1042, 2597 and 6641, respectively.

There are 133120 cubic filter prediction equations for sixteen 8x8 PUs and sixty-

four 4x4 PUs in a 32x32 CU. Data reuse technique reduced number of these cubic filter

prediction equations to 29478. There are 133120 gaussian filter prediction equations for

one 32x32 PU and four 16x16 PUs in a 32x32 CU. Data reuse technique reduced number

of these gaussian filter prediction equations to 11810.

The proposed VVC reconfigurable intra prediction hardware is shown in Figure 3.3

(a). It implements 65 angular prediction modes for 4x4, 8x8, 16x16, 32x32 PU sizes. It

uses data reuse technique. It has thirty pipelined reconfigurable datapaths (RDP). Each

RDP calculates an intra prediction equation in a clock cycle. Thirty RDPs calculate thirty

intra prediction equations in a clock cycle. Neighboring pixels in neighboring PUs are

stored in left, top and reconstructed neighboring buffers. Predicted pixels are stored in

prediction equation register file.

32

Figure 3.3 (a) VVC Reconfigurable Intra Prediction Hardware

(b) RECON_AS Datapath

(c) RECON_DSP Datapath (d) DSP Block

33

In order to avoid storing all 528 neighboring pixels of a 32x32 CU, it is divided into

8x8 blocks and prediction equations using pixels from the same 8x8 block are grouped

together. Neighboring pixels of current 8x8 block and four 4x4 blocks are stored in 42

registers. In addition, there are extra registers to store pixels from previous 8x8 blocks,

and these registers are used when pixels from two different blocks are required in a

prediction equation. First, these registers are loaded. Then, thirty RDPs calculate

prediction equations for current 8x8 block and four 4x4 blocks.

Two different reconfigurable datapaths are proposed. The first reconfigurable

datapath (RECON_AS) is shown in Figure 3.3 (b). It implements VVC intra angular

prediction equations using adders and shifters. It takes four neighboring pixels and a

selection signal as input and calculates the 4-tap cubic or gaussian filter corresponding to

the selection signal. It is configured by the selection signal to multiply four input pixels

with coefficients of the corresponding 4-tap cubic or gaussian filter. Then, the

multiplication results are added using an adder tree and the result is shifted right by eight.

FPGAs have built-in full-custom DSP blocks which can perform constant

multiplications faster and with less energy than adders and shifters. A DSP block can be

used to perform different constant multiplications by providing proper constant value to

its input. Therefore, it is more efficient to implement constant multiplications using DSP

blocks instead of using adders and shifters in an FPGA implementation. DSP block

architecture is shown in Figure 3.3 (d). It has one pre-adder, one multiplier and one

arithmetic logic unit (ALU). It also has optional pipeline registers.

Therefore, the second reconfigurable datapath (RECON_DSP) uses DSP blocks in

FPGA to implement multiplications with constants as shown in Figure 3.3 (c). It takes

four neighboring pixels and a selection signal as input and calculates the 4-tap cubic or

gaussian filter corresponding to the selection signal. It multiplies four input pixels with

coefficients of the corresponding 4-tap cubic or gaussian filter using four DSP blocks.

Two DSP blocks which are shown as MULT in Figure 3.3 (c), multiply two input pixels

with the corresponding coefficients and write the results to output registers. Other two

DSP blocks, which are shown as MULT_ADD in Figure 3.3 (c), multiply the other two

input pixels with the corresponding coefficients and add the multiplication results. Then,

two MULT_ADD results are added and the result is shifted right by eight.

The proposed RECON_AS and RECON_DSP hardware are implemented with

Verilog HDL. The Verilog codes are synthesized, placed and routed to a 28 nm FPGA.

Functional simulation results and post place and route timing simulation results matched

34

results of VVC JEM software encoder [37]. FPGA implementations are also verified on

an FPGA board as shown in Figure 3.4. The FPGA board has a 28 nm FPGA, 1 GB

DRAM and several interfaces such as HDMI. The VVC intra prediction hardware and

microprocessor communicates using a bus.

Figure 3.4 FPGA Implementation

The Verilog codes are synthesized, placed and routed to a 90 nm standard cell

library as well. Since DSP blocks are only available in FPGAs, RECON_DSP ASIC

implementation uses multipliers. FPGA and ASIC implementation results are given in

Table 3.4.

Table 3.4 Implementation Results

 RECON_AS RECON_DSP

Technology
28 nm

FPGA

90 nm

ASIC

28 nm

FPGA

90 nm

ASIC

Slice/Gate

Count
20352 96.1 K 13666 92.3 K

DFF 6237 --- 4076 ---

LUT 49556 --- 32499 ---

Memory 3.2 KB 3.2 KB 3.2 KB 3.2 KB

DSP Block --- --- 120 ---

Max Freq. (MHz) 108 218 105 208

Frames per Sec.
30

1920x1080

62

1920x1080

30

1920x1080

59

1920x1080

Power (mW) 1037.8 42.2 637.7 48.4

PU Size 4,8,16,32 4,8,16,32 4,8,16,32 4,8,16,32

RECON_AS FPGA implementation uses 49556 LUTs, 6237 DFFs, 4 BRAMs. It

works at 108 MHz. RECON_DSP FPGA implementation uses 32499 LUTs, 4076 DFFs,

35

4 BRAMs, 120 DSP blocks. It works at 105 MHz. Both FPGA implementations process

30 full HD (1920x1080) video frames per second (fps).

RECON_AS ASIC implementation uses 96.1K gates based on NAND (2x1) gate

area. It works at 218 MHz. It processes 62 full HD video fps. RECON_DSP ASIC

implementation uses 92.3K gates based on NAND (2x1) gate area. It works at 208 MHz.

It processes 59 full HD video fps.

Power consumptions of RECON_AS and RECON_DSP FPGA implementations

are estimated for Tennis, Kimono, ParkScene and Basketball Drive (1920x1080) videos

at 100 MHz [35] using a gate level power estimation tool. Signal activities captured

during post place and route timing simulations are used to estimate power consumptions.

The energy consumptions for one frame of each video are given in Figure 3.5. Since

RECON_DSP FPGA implementation uses DSP blocks instead of adders and shifters, it

has up to 30.2% less energy consumption than RECON_AS FPGA implementation.

Figure 3.5 Power Consumptions

Table 3.5 Hardware Comparison

 [36] [24] [26] [28] [18] RECON_AS RECON_DSP

FPGA Technology 40 nm 65 nm 40 nm 40 nm 40 nm 28 nm 28 nm

DFF 849 5.5 K 110 K --- 2006 6234 4076

LUT 2381 14 K 170 K 24 K 6013 49556 32499

BRAM 3.2 KB 6 KB --- 6 KB 3.2 KB 3.2 KB 3.2 KB

Max Freq. (MHz) 150 110 219 100 166 108 105

Frames per Sec.
30

1920x1080

30

3840x2160

24

3840x2160

60

1920x1080

40

1920x1080

30

1920x1080

30

1920x1080

PU Size 4, 8 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32

In Table 3.5, RECON_AS and RECON_DSP hardware are compared with HEVC

intra prediction hardware in the literature [18, 24, 26, 28, 36]. Since VVC intra prediction

36

algorithm is more complex than HEVC intra prediction algorithm, RECON_AS and

RECON_DSP hardware are slower and have larger area than the HEVC intra prediction

hardware.

3.3 DSP Block Based FPGA Implementation of VVC Intra Prediction

An efficient FPGA implementation of VVC intra prediction for angular prediction

modes of 4x4, 8x8, 16x16 and 32x32 PU sizes is proposed. The proposed FPGA

implementation uses 30 identical DSP datapaths (DDP). In the proposed FPGA

implementation, intra angular prediction equations are manipulated in such a way that

one intra angular prediction equation is implemented using two DSP blocks and two

adders. Therefore, each DDP has two DSP blocks and two adders, and it can calculate

any 4-tap gaussian and cubic filter used in VVC intra angular prediction in one clock

cycle by changing DSP inputs.

The proposed VVC intra angular prediction hardware is implemented using Verilog

HDL. The Verilog RTL code is verified to work at 119 MHz on a Xilinx Virtex7 FPGA.

The proposed VVC intra angular prediction hardware, in the worst case, can process 34

full HD (1920x1080) frames per second.

Two VVC intra prediction hardware implementations are proposed in [20]. Several

HEVC intra prediction hardware implementations are proposed in the literature [18, 24,

26, 28]. The proposed VVC intra prediction hardware is compared with VVC and HEVC

intra prediction hardware in the literature.

In VVC, identical prediction equations are used in an intra angular prediction mode

or in different intra angular prediction modes or in the intra angular prediction modes of

different PU sizes. In the proposed hardware, data reuse technique is used to calculate

identical prediction equations only once. There are 4x4 (PU size) x 65 (intra angular

prediction modes) = 1040 intra angular prediction equations for 4x4 PU size. Numbers of

prediction equations for other PU sizes are shown in Table 3.6. The number of prediction

equations calculated for 4x4 PU size is reduced to 405 by using data reuse technique.

Numbers of prediction equation reductions for other PU sizes are shown in Table 3.6.

Cubic filters are used for 4x4 and 8x8 PU sizes. Total number of cubic filter

prediction equations for sixty-four 4x4 PUs and sixteen 8x8 PUs in a 32x32 CU without

data reuse is 133120. Gaussian filters are used for 16x16 and 32x32 PU sizes. Total

number of gaussian filter prediction equations for four 16x16 PUs and one 32x32 PU in

a 32x32 CU without data reuse is 133120. The numbers of cubic filter prediction

37

Table 3.6 Intra Angular Prediction Equation Reductions by Data Reuse

 Cubic Filters Gaussian Filters

 4x4 PU 8x8 PU 32x32 CU 16x16 PU 32x32 PU 32x32 CU

of Pred.Equations 1040 4160 133120 16680 66560 133120

of Pred. Equations

with Data Reuse
405 1042 29478 2597 6641 11810

Reduction (%) 61.06 74.95 77.85 84.43 90.02 91.13

equations and gaussian filter prediction equations calculated are reduced by 77.85% and

91.13%, respectively with data reuse technique.

The proposed VVC intra prediction hardware is shown in Figure 3.6. It implements

65 angular prediction modes for PU sizes from 4x4 to 32x32. It has thirty parallel

reconfigurable DSP datapaths (DDP). One DDP, which can be configured to implement

any of the 34 cubic and gaussian filters, is shown in Figure 3.7.

Figure 3.6 Proposed FPGA Implementation of VVC Intra Prediction

32x32 coding unit (CU) is divided into 8x8 blocks and the neighboring pixels for

the current 8x8 block and four 4x4 blocks within the current 8x8 block are loaded to

registers. There are extra registers to store pixels from previous blocks, in case that an

equation requires pixels from different 8x8 blocks. Therefore, the number of registers to

store is decreased by storing only the neighboring pixels of 8x8 blocks, instead of keeping

all neighboring pixels of 32x32 CU.

DDP
#1

DDP
#2

DDP
#3

DDP
#4

DDP
#5

DDP
#6

DDP
#7

DDP
#8

DDP
#9

DDP
#10

DDP
#11

DDP
#12

DDP
#13

DDP
#14

DDP
#15

DDP
#16

DDP
#17

DDP
#18

DDP
#19

DDP
#20

DDP
#21

DDP
#22

DDP
#23

DDP
#24

DDP
#25

DDP
#26

DDP
#27

DDP
#28

DDP
#29

DDP
#30

128X8 LEFT
NEIGHBORING BUF.

256x64 TOP
NEIGHBORING BUF.

128x64 RECONSTRUCTED
NEIGHBORING BUF.

NEIGHBORING REGISTERS

A
D

D
R

ES
S

G
EN

ER
A

T
O

R
 A

N
D

 C
O

N
TR

O
L

U
N

IT

PREDICTION EQUATION REGISTER FILE

38

Figure 3.7 Proposed FPGA Reconfigurable DSP Datapath (DDP)

FPGAs have built-in full-custom DSP blocks which can perform constant

multiplications faster and with less energy than adders and shifters. A DSP block can be

used to perform different constant multiplications by providing proper constant values to

its inputs. Therefore, it is more efficient to implement constant multiplications using DSP

blocks instead of using adders and shifters in an FPGA implementation.

Xilinx DSP block architecture is shown in Figure 3.8. It has one pre-adder, one

multiplier and one arithmetic logic unit (ALU). It also has optional pipeline registers. A

DSP block can be configured to implement different operations.

In VVC, each intra angular prediction equation requires four multiplication

operations to multiply four pixels with corresponding filter coefficients and three addition

operations to add the results of these four multiplications. Therefore, four DSP blocks are

necessary for implementing an intra angular prediction equation in its original form as in

[20].

In the proposed FPGA implementation, intra angular prediction equations are

manipulated in such a way that one intra angular prediction equation is implemented using

two DSP blocks and two adders. Therefore, each DDP has two DSP blocks and two

adders, and it can calculate any 4-tap gaussian and cubic filter used in VVC intra angular

prediction in one clock cycle by changing A, B, C and D inputs of DSP blocks.

-
D1 A1

×

B1

+

C1

-
D2A2

×

B2

+

C2

+

DSP48E1 DSP48E1

+
ExtraTerm

>> 8

Equation
Reg.

39

Figure 3.8 Xilinx DSP48E1 Block

In the proposed FPGA implementation, DSP blocks are configured to implement

equation (3.4). Each DDP implements equation (3.5).

𝑃 = 𝐵 ∗ (𝐷 − 𝐴) + 𝐶 (3.4)

𝑃 = (𝐵1 ∗ (𝐷1 − 𝐴1) + 𝐶1) + (𝐵2 ∗ (𝐷2 − 𝐴2) + 𝐶2) + 𝐸𝑥𝑡𝑟𝑎𝑇𝑒𝑟𝑚 (3.5)

Four filter coefficients used in 34 VVC intra angular prediction equations are shown

in Table 3.7. The A, B, C, D inputs of two DSP blocks and the extra term necessary for

calculating each intra angular prediction equation using a DDP are also shown in Table

3.7. The inputs of DSP blocks are shown in the order they appear in equation (3.5).

Constant numbers are given to B inputs of two DSP blocks. Pixels or shifted pixels are

given to D, A and C inputs of DSP blocks. Multiplexers are used to select the proper

inputs for implementing each intra angular prediction equation.

For example, the intra angular prediction equation “Filter 1” shown in Table 3.7 is

implemented using a DDP as shown in equations (3.6a), (3.6b) and (3.6c).

𝑃 = (4 ∗ (2 ∗ 𝑝3 − 𝑝2) + 0) + (3 ∗ (0 − 𝑝1) + (−𝑝4)) + 256 ∗ 𝑝2 (3.6a)

𝑃 = (8 ∗ 𝑝3 − 4 ∗ 𝑝2 − 3 ∗ 𝑝1 − 𝑝4 + 256 ∗ 𝑝2) (3.6b)

𝑃 = (−3 ∗ 𝑝1 + 252 ∗ 𝑝2 + 8 ∗ 𝑝3 − 𝑝4) (3.6c)

The proposed VVC intra prediction hardware is implemented using Verilog HDL.

The Verilog RTL code is synthesized, placed and routed to a Xilinx XC7VX485T

FFG1157 FPGA with speed grade 3 using Xilinx Vivado2017.2. The FPGA

implementation is verified with post place and route simulations. The proposed

+/-

0

B

A

D

C

P

18

30

25

48

25

42 48

DSP48E1

25

48

25

30

18

25

30 X + -

40

Table 3.7 DDP Configurations

F

Filters

Filter Coefficients DSP Block 1 DSP Block 2
E

Extra

Term

C
o

e
ff

1

C
o

e
ff

2

C
o

e
ff

3

C
o

e
ff

4

B1 D1 A1 C1 B2 D2 A2 C2

0 0 256 0 0 0 0 p2 0 0 0 0 0 p2≪8

1 -3 252 8 -1 4 p3≪1 p2 0 3 0 p1 (-p4) p2≪8

2 -5 247 17 -3 9 p3 p2 p3≪3 -3 p1 (-p4) (-p1)≪1 p2≪8

3 -7 242 25 -4 14 0 p2 (-p4)≪2 7 (-p1) p3 p3≪5 p2≪8

4 -9 236 34 -5 5 (-p4) p2≪2 0 9 (-p1) (-p3)≪2 (-p3)≪1 p2≪8

5 -10 230 43 -7 -43 (-p3) p2≪1 (-p2)≪4 10 p2≪4 p1 (-p4)≪3 p4

6 -12 224 52 -8 32 p3 p2 p1≪3 20 p3 p1 (-p4)≪3 p2≪8

7 -13 217 61 -9 -9 p4 p2 (-p3)≪2 13 (-p1) (-p2)≪4 p3≪6 p3

8 -14 210 70 -10 -12 p1 p2 (-p4)≪1 70 p2 -p3 (-p4)≪3 p2≪7

9 -15 203 79 -11 -75 (-p3) p2 p3≪2 15 (-p1) p4 p4≪2 p2≪7

10 -16 195 89 -12 61 p3 p2 (-p1)≪4 12 p3 p4 p3≪4 p2≪8

11 -16 187 98 -13 69 p3 p2 (-p1)≪4 13 p3 p4 p3≪4 p2≪8

12 -16 179 10

7

-14 -51 (-p3)≪1 p2 (-p1)≪4 5 p3 p4≪1 (-p4)≪2 p2≪7

13 -16 170 11

6

-14 86 p3 p2 (-p1)≪4 14 p3 p4 p3≪4 p2≪8

14 -17 162 12

6

-15 -17 p1 p2≪1 p4 126 p3 0 (-p4)≪4 p2≪7

15 -16 153 13

5

-16 103 p3 p2 (-p1)≪4 16 p3 p4 p3≪4 p2≪8

16 -16 144 14

4

-16 -144 (-p3) p2 0 16 (-p1) p4 0 0

17 47 161 47 1 -161 0 p2 p4 47 p1 (-p3) 0 0

18 43 161 51 1 -161 0 p2 p4 43 p1 (-p3) p3≪3 0

19 40 160 54 2 -32 (-p1) p2 p4≪1 54 0 (-p3) p1≪3 p2≪7

20 37 159 58 2 -159 0 p2 p4≪1 37 p1 (-p3)≪1 (-p3)≪4 0

21 34 158 62 2 -62 (-p3) p2≪1 0 34 p1 (-p2) p4≪1 0

22 31 156 67 2 -5 (-p3) p2≪2 p2≪3 31 p1 (-p3)≪1 p4≪1 p2≪7

23 28 154 71 3 -71 (-p3) p2≪1 p1≪5 3 p4 (-p2)≪2 (-p1)≪2 0

24 26 151 76 3 -76 (-p3) p2≪1 (-p2) 3 p1≪3 (-p4) p1≪1 0

25 23 149 80 4 -21 (-p1) p2 p1≪1 80 p3 0 p4≪2 p2≪7

26 21 146 85 4 -18 0 p2 p4≪2 21 p1 (-p3)≪2 p3 p2≪7

27 19 142 90 5 -14 (-p3) p2 p4≪2 19 p1 (-p3)≪2 p4 p2≪7

28 17 139 94 6 -11 (-p3)≪3 p2 p1≪4 6 p3 (-p4) p1 p2≪7

29 16 135 99 6 -7 (-p3)≪4 p2 p1≪4 6 p4 p3≪1 (-p3) p2≪7

30 14 131 10

4

7 -3 (-p3)≪5 p2 p3≪3 7 p1≪1 (-p4) 0 p2≪7

31 13 127 10

8

8 -127 0 p2 p4≪3 13 p1 (-p3)≪3 p3≪2 0

32 11 123 11

3

9 -113 (-p3) p2 p1 10 p1 (-p2) p4≪3 p4

33 10 118 11

8

10 -118 (-p3) p2 0 0 p1 (-p4) 0 0

FPGA implementation uses 5766 DFFs, 46382 LUTs, 4 BRAMs and 60 DSP48E1s

blocks. It works at 119 MHz. It can process 34 full HD (1920x1080) video frames per

second (fps).

The proposed VVC intra prediction hardware is compared with HEVC and VVC

intra prediction hardware in the literature in Table 3.8. Since VVC intra prediction

algorithm is more complex than HEVC intra prediction algorithm, the proposed VVC

intra prediction hardware implementation and the two VVC intra prediction hardware

implementations proposed in [20] are slower and have more area than the HEVC intra

prediction hardware implementations [18, 24, 26, 28].

41

Table 3.8 Hardware Comparison

 [10] [12] [13] [14] [15]
[11]

RECON_AS

[11]

RECON_DSP
Proposed

FPGA Xilinx 6 Stratix III Arria II

GX

Virtex 6 Xilinx 6 Virtex 7 Virtex 7 Virtex 7

FPGA Technology 40 nm 65 nm 40 nm 40 nm 40 nm 28 nm 28 nm 28 nm

Standard HEVC HEVC HEVC HEVC HEVC VVC VVC VVC

DFF 849 5.5 K 110 K --- 2006 6234 4076 5766

LUT 2381 14 K 170 K 24 K 6013 49556 32499 46382

BRAM 3.2 KB 6 KB --- 6 KB 3.2 KB 3.2 KB 3.2 KB 3.2 KB

DSP Block --- --- --- --- --- --- 120 60

Max Freq. (MHz) 150 110 219 100 166 108 105 119

Frames per Sec.
30

1920x1080

30

3840x2160

24

3840x2160

60

1920x1080

40

1920x1080

30

1920x1080

30

1920x1080

34

1920x1080

PU Size 4, 8 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32 4, 8, 16, 32

RECON_AS hardware implements VVC intra prediction using adders and shifters

[20]. It does not use DSP blocks. RECON_DSP hardware implements VVC intra

prediction using DSP blocks [20]. It uses four DSP blocks and one adder for

implementing an intra angular prediction equation. The proposed VVC intra prediction

hardware is faster than both RECON_AS and RECON_DSP hardware. It uses 50% less

DSP blocks than RECON_DSP hardware.

42

CHAPTER IV

VVC FRACTIONAL INTERPOLATION HARDWARE

HEVC standard uses 3 different 8-tap FIR filters for fractional interpolations and

provides 1/4 fractional pixel accuracy. However, VVC standard uses 15 different 8-tap

FIR filters for fractional interpolations and provides 1/16 fractional pixel accuracy.

Therefore, VVC fractional interpolation has much higher computational complexity than

HEVC fractional interpolation.

In this thesis, a reconfigurable VVC fractional interpolation hardware for motion

compensation (MC) is proposed. The proposed hardware supports all prediction unit (PU)

sizes. It interpolates necessary fractional pixels for the fractional pixel location in an 8x8

PU pointed by the given fractional pixel accurate motion vector. For larger PU sizes, the

PU is divided into 8x8 blocks, and the blocks are interpolated separately. Since the

proposed hardware is used for motion compensation stage of VVC encoder and decoder,

only one fractional pixel per integer pixel is required. Therefore, the proposed hardware

has a reconfigurable datapath which can be configured to implement any of the 15

different 8-tap FIR filters.

The proposed VVC fractional interpolation hardware is implemented using Verilog

HDL. The Verilog RTL code is verified to work at 250 MHz on a Xilinx Virtex 7 FPGA.

The proposed VVC fractional interpolation hardware, in the worst case, can process 66

quad full HD (3840x2160) frames per second. The proposed reconfigurability reduced

the power consumption of FPGA implementation of the proposed VVC fractional

interpolation hardware by 77%.

The proposed hardware is the first VVC fractional interpolation hardware for

motion compensation in the literature. Several HEVC fractional interpolation hardware

implementations are proposed in the literature [38]-[43]. The proposed VVC fractional

interpolation hardware is compared with them.

43

4.1 VVC Fractional Interpolation Algorithm

VVC standard uses 15 different 8-tap FIR filters for fractional pixel interpolation.

The coefficients of these 15 FIR filters are shown in Table 4.1. A-3 – A4 show input pixels

for a filter where sub-indices represent the indices of coefficients. The F7 8-tap FIR filter

equation is shown in equation (4.1) as an example.

Table 4.1 VVC Fractional Interpolation Filters

Filters
Coefficients

A-3 A-2 A-1 A0 A1 A2 A3 A4

1 0 1 -3 63 4 -2 1 0

2 -1 2 -5 62 8 -3 1 0

3 -1 3 -8 60 13 -4 1 0

4 -1 4 -10 58 17 -5 1 0

5 -1 4 -11 52 26 -8 3 -1

6 -1 3 -9 47 31 -10 4 -1

7 -1 4 -11 45 34 -10 4 -1

8 -1 4 -11 40 40 -11 4 -1

9 -1 4 -10 34 45 -11 4 -1

10 -1 4 -10 31 47 -9 3 -1

11 -1 3 -8 26 52 -11 4 -1

12 0 1 -5 17 58 -10 4 -1

13 0 1 -4 13 60 -8 3 -1

14 0 1 -3 8 62 -5 2 -1

15 0 1 -2 4 63 -3 1 0

F7 = (-A-3 + 4*A-2 - 11*A-1 + 45*A0 + 34*A1 - 10*A2+ 4*A3 + 4*A4) >> 6 (4.1)

Integer pixels, fractional pixels and FIR filters used to interpolate these fractional

pixels are shown in Figure 4.1. There are 255 fractional (half and quarter) pixels for one

integer pixel. There are 15 half-pixels between two neighboring horizontal integer pixels

called horizontal half-pixels. There are 15 half-pixels between two neighboring vertical

integer pixels called vertical half-pixels. These 15 horizontal and 15 vertical half-pixels

are interpolated from nearest integer pixels in horizontal and vertical directions,

respectively, using 15 different 8-tap FIR filters. There are 15x15=225 quarter-pixels

between 15 horizontal and 15 vertical half-pixels. These quarter-pixels are interpolated

from nearest horizontal half-pixels using 15 different 8-tap FIR filters.

VVC fractional interpolation algorithm used for motion compensation interpolates

necessary fractional pixels for one out of 255 fractional pixel locations pointed by the

given 1/16 pixel accurate motion vector. Necessary fractional pixels are determined using

x fraction and y fraction of the given 1/16 pixel accurate motion vector. If either x fraction

or y fraction is zero, only necessary half-pixels are interpolated. If neither x fraction nor

y fraction is zero, horizontal half-pixels necessary to interpolate the quarter-pixels are

44

interpolated first. Then, the necessary quarter-pixels are interpolated using these

horizontal half-pixels.

Figure 4.1 Integer, Half and Quarter Pixels

4.2 Proposed VVC Fractional Interpolation Hardware

The proposed reconfigurable VVC fractional interpolation hardware for all PU

sizes is shown in Figure 4.2. The proposed hardware interpolates the necessary fractional

pixels for luma component of an 8x8 PU for a given 1/16 pixel accurate motion vector

using integer or half-pixels. For larger PU sizes, the PU is divided into 8x8 blocks and

these blocks are interpolated separately. For example, a 16x16 PU is divided into four

8x8 blocks and each 8x8 block is interpolated separately.

Figure 4.2 Proposed VVC Fractional Interpolation Hardware

Filter 1/15
Filter 2/15

Filter 3/15
Filter 4/15
Filter 5/15
Filter 6/15
Filter 7/15
Filter 8/15

Filter 9/15
Filter 10/15
Filter 11/15
Filter 12/15

Filter 13/15
Filter 14/15
Filter 15/15

Integer Pixel Quarter PixelHorizontal Half Pixel Vertical Half Pixel

Reconfigurable
Datapath

#1

Reconfigurable
Datapath

#2

Reconfigurable
Datapath

#3

Reconfigurable
Datapath

#4

Reconfigurable
Datapath

#5

Reconfigurable
Datapath

#6

Reconfigurable
Datapath

#7

Reconfigurable
Datapath

#8

Integer Pixels
Registers

OUTPUT MEMORY

TRANSPOSE MEMORY

45

Since 15x8 horizontal half-pixels are necessary for interpolating quarter-pixels,

15x8x8 on-chip transpose memory is used to store horizontal half-pixels necessary for

interpolating quarter-pixels in certain cases. The horizontal half-pixels interpolated from

nearest integer pixels in horizontal direction are stored in transpose memory horizontally

in 15 clock cycles. Then, 15 horizontal half-pixels are read vertically from transpose

memory in each clock cycle to interpolate quarter-pixels.

The proposed hardware takes 15 integer pixels in each clock cycle. It interpolates 8

fractional pixels in each clock cycle using 8 parallel reconfigurable datapaths. If the

necessary fractional pixels are half-pixels, 8x8 half-pixels are interpolated using the

integer pixels in 8 clock cycles. If the necessary fractional pixels are quarter-pixels, 15x8

horizontal half-pixels are interpolated using the integer pixels in 15 clock cycles. Then,

8x8 quarter-pixels are interpolated using these horizontal half-pixels in 8 clock cycles.

There are three pipeline stages in the proposed hardware. Therefore, the proposed

hardware interpolates the half-pixels and quarter-pixels for an 8x8 PU in 11 and 29 clock

cycles, respectively.

15 different 8-tap FIR filters are used to interpolate half-pixels and quarter-pixels.

Last 7 FIR filters are symmetric of the first 7 FIR filters. Therefore, in this thesis, a

reconfigurable datapath which implements the first 8 FIR filters is proposed. It can be

configured to calculate output of any of the first 8 FIR filters. To calculate output of one

of the last 7 FIR filters using the proposed reconfigurable datapath, inputs are reversed,

and corresponding symmetric filter is selected.

The proposed reconfigurable datapath is shown in Figure 4.3. It implements

multiplications with constant coefficients using adders and shifters. It has 14

adders/subtractors and their inputs are determined by a filter selection signal. It selects

different input pixels with different shift amounts for each fractional interpolation

equation using input multiplexers as shown in Table 4.2.

In this thesis, a baseline VVC fractional interpolation hardware is also designed and

implemented for comparison. The baseline hardware has the same architecture as the

proposed hardware. The only difference is their datapaths. In the baseline hardware

datapath, all 15 FIR filters are implemented separately and output of one FIR filter is

selected based on filter selection signal. Therefore, the baseline hardware datapath has 91

adders while the proposed reconfigurable datapath has 14 adders.

The proposed and the baseline VVC fractional interpolation hardware are

implemented using Verilog HDL. The Verilog RTL codes are verified with RTL

46

simulations. The Verilog RTL codes are synthesized and mapped to a Xilinx

VC7VX330T-3FFG1157 FPGA using Xilinx ISE 14.7. The FPGA implementations are

verified with post place and route simulations. The simulation results matched the results

of a software implementation of VVC fractional interpolation algorithm.

Figure 4.3 Proposed Reconfigurable Datapath

Table 4.2 Reconfigurable Datapath Inputs

F
il

te
rs

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I1
0

I1
1

I1
2

I1
3

I1
4

1 0 0 B 0 C<<2 D<<6 C D E<<2 0 0 F<<1 0 G 0

2 A B<<1 0 C<<2 C<<1 D<<6 C D<<1 E<<3 0 0 F<<1 F G 0

3 A B<<1 B C<<3 0 D<<6 0 D<<2 E<<4 E E<<2 F<<2 0 G 0

4 A B<<2 0 C<<3 C<<1 D<<6 D<<1 D<<3 E<<4 E 0 F<<2 F G 0

5 A B<<2 C C<<3 C<<2 D<<6 D<<2 D<<4 E<<5 E<<1 E<<3 F<<3 G G<<2 H

6 A B<<1 B C<<3 C<<1 D<<5 D<<4 D E<<5 C E F<<3 F<<1 G<<2 H

7 A B<<2 D C<<3 C<<1 D<<5 D<<4 D<<2 E<<5 E<<1 C F<<3 F<<1 G<<2 H

8 A B<<2 F C<<3 C<<1 D<<5 D<<3 0 E<<5 E<<3 C F<<3 F<<2 G<<2 H

As shown in Figure 4.4, FPGA implementations are also verified to work correctly

on a Xilinx Virtex 7 VC707 FPGA board which includes an FPGA, 1 GB DRAM and

interfaces such as UART and HDMI. Microblaze processor reads video frames from

-

+

-

-

+

+

+

R
EG

R
EG

-

+

+

+

+

-

R
EG

R
EG

+ >> 6

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

F
ra

c
ti

o
n

a
l

p
ix

e
l

S
h

if
te

d
 i

n
te

g
er

 p
ix

el
s

47

computer, stores them to DDR memory and sends them to FPGA using high-speed AXI-

4 bus. The proposed hardware interpolates the video frames. Then, interpolated video

frames are displayed on HDMI monitor.

Figure 4.4 FPGA Board Implementation

As shown in Table 4.2, FPGA implementation of the proposed VVC fractional

interpolation hardware uses 1688 DFFs and 4467 LUTs. It can work at 250 MHz, and it

can process 66 quad full HD (3840x2160) frames per second. FPGA implementation of

the baseline VVC fractional interpolation hardware uses 5446 DFFs and 12016 LUTs. It

can work at 238 MHz, and it can process 63 quad full HD (3840x2160) frames per second.

Table 4.3 Implementation Results

 Baseline Proposed

Technology Xilinx Virtex 7 TSMC 90 nm Xilinx Virtex 7 TSMC 90 nm

Slice/Gate Count 3630 48.3 K 1407 11.7 K

DFF 5446 --- 1688 ---

LUT 12016 --- 4467 ---

Max. Freq. (MHz) 238 417 250 357

Frames per Second 63 (3840x2160) 110 (3840x2160) 66 (3840x2160) 95 (3840x2160)

The Verilog RTL codes of the baseline and proposed VVC fractional interpolation

hardware are also synthesized to TSMC 90 nm standard cell library, and the resulting

MICROBLAZE
(Control &

Communication)

D
D

R
3

FPGA
(FVC Interpolation

Hardware)

AXI-4 BUS

HDMI
Display

Computer

48

netlists are placed and routed. As shown in Table 4.3, ASIC implementations of the

baseline and proposed hardware use 48.3K and 11.7K gates, respectively, based on

NAND (2x1) gate area excluding on-chip memory. ASIC implementations of the baseline

and proposed hardware can work at 417 and 357 MHz, respectively, and they can process

110 and 95 quad full HD frames per second, respectively.

Since the proposed hardware is the first VVC fractional interpolation hardware for

motion compensation in the literature, it is compared with HEVC fractional interpolation

hardware in the literature [38]-[43]. The comparison is shown in Table 4.4. The HEVC

fractional interpolation hardware proposed in [38] is designed for motion compensation.

The others can be used for both motion estimation (ME) and motion compensation.

Table 4.4 Hardware Comparison

 [38] [39] [40] [41] [42] [43] Proposed

FPGA Xilinx

Virtex 6

Xilinx

Virtex 6
Arria II GX

Xilinx

Virtex 5
Stratix III

Xilinx

Virtex 6

Xilinx

Virtex 7

Slices --- --- --- 2181 --- 1498 1407

LUTs 3005 3929 18831 5017 7701 3806 4467

Block RAMs 2 6 --- 2 --- --- ---

Max. Freq. (MHz) 100 200 200 283 278 233 250

Frames per Second 64
2560x1600

30
3840x2160

60
1920x1080

30
2560x1600

60
3840x2160

35
3840x2160

66
3840x2160

Design Only MC ME + MC ME + MC ME + MC ME + MC ME + MC Only MC

Standard HEVC HEVC HEVC HEVC HEVC HEVC VVC

Since VVC fractional interpolation has higher computational complexity than

HEVC fractional interpolation, the proposed hardware has higher area than the HEVC

fractional interpolation hardware proposed in [38]. However, since the proposed

hardware is designed for motion compensation, it does not have higher area than the other

HEVC fractional interpolation hardware in the literature.

Power consumptions of the baseline and proposed hardware are estimated using

Xilinx XPower Analyzer tool. Post place and route timing simulations are performed for

Tennis and Kimono (1920x1080) video frames at 100 MHz [35]. The signal activities of

these timing simulations are stored in VCD files, and they are used for estimating the

power consumptions of FPGA implementations. The power consumptions of both the

baseline and proposed hardware are shown in Table 4.5. Clock, signal and logic power

consumptions are given for detailed analysis. Total power consumption of the proposed

hardware for Tennis and Kimono frames is 76.21% and 77.02% less than that of the

baseline hardware, respectively.

49

Table 4.5 Power Consumption Results

 Baseline Proposed

Frame Tennis Kimono Tennis Kimono

Clock (mW) 68.33 68.33 13.84 13.84

Signal (mW) 96.75 131.64 16.64 22.58

Logic (mW) 99.27 135.36 32.40 40.64

Total Power (mW) 264.35 335.33 62.88 77.06

Power Reduction --- --- 76.21 % 77.02 %

50

CHAPTER V

APPROXIMATE VIDEO COMPRESSION HARDWARE

Approximate computing is a promising solution to increased computational

complexity of signal processing applications [44]-[52]. Approximate computing allows

designing faster, smaller area and lower power consuming hardware than the exact

optimized hardware designs, by trading off speed, area and power consumption with

quality. Therefore, it can be used in error tolerant applications.

Different approximate computing approaches are proposed in the literature [53]-

[57]. A commonly used approximate computing approach is using general purpose

approximate arithmetic circuits such as approximate adders and multipliers [58]-[63]

instead of exact arithmetic circuits. These approximate arithmetic circuits have different

accuracy, speed, area and power consumption. The ones satisfying accuracy, speed, area

and power consumption requirements of an application can be used for that application.

Several approximate adders are proposed in the literature [58]-[60]. Almost Correct

Adder (ACA-I) proposed in [58] splits an adder into overlapping sub-adders with fixed

size. Since it has shorter critical path, it is faster than exact adder. It has larger area than

exact adder because of overlapping sub-adders. However, its accuracy is high.

Error Tolerant Adder (ETA-II) proposed in [59] splits input operands into accurate

and inaccurate parts. Accurate part includes several most significant bits (MSB) and

inaccurate part includes the remaining least significant bits (LSB). Accurate part is added

exactly. Since MSBs affect error magnitude more than LSBs, this reduces error.

Inaccurate part is added approximately without generating or taking in carry signal.

Generic Accuracy Configurable Adder (GeAr) proposed in [60] provides a

generalized model for accuracy-configurable adders which allows adders to be configured

as various approximate adders such as ACA-I and ETA-II. It also has a reconfigurable

error correction unit which enables computation of accurate results when required.

51

Several approximate multipliers are proposed in the literature [61]-[63]. The

approximate multiplier proposed in [61] first generates partial products. Then, the partial

products are reduced to addition of two operands using approximate 4-2 compressors.

Finally, these two partial products are added with an exact adder. In the paper, two

different approximate 4-2 compressors and two different approximate multiplier

architectures are proposed. Four different approximate multipliers are proposed by using

these two different approximate 4-2 compressors and two different multiplier

architectures. First multiplier architecture uses only approximate 4-2 compressors to

reduce the partial products to two operands. Second multiplier architecture uses

approximate 4-2 compressors for LSBs and exact 4-2 compressors for MSBs.

The accuracy configurable multiplier proposed in [62] divides multiplicand and

multiplier into two parts named as high and low. Two parts of the multiplicand and two

parts of the multiplier are multiplied separately and added. These four multiplications can

be done using exact or approximate multipliers. The approximate multiplier first

generates partial products. Then, addition of partial products is done approximately or

exactly depending on bit position. LSBs are calculated using exact addition. Middle bits

are all estimated to be 1 and a carry value is estimated. MSBs are calculated using exact

addition and the estimated carry value.

The approximate multiplier proposed in [63] first generates partial products. Then,

it reduces the partial products to addition of three operands using a novel method called

‘an incomplete adder cell’ (iCAC) and OR gates which have lower complexity than exact

addition. These three operands are reduced to two operands using exact addition. MSBs

of last two operands are added using exact addition. Middle bits are added using a carry-

maskable adder (CMA). Accuracy of CMA is controlled by a mask input. LSBs are

calculated using OR gates instead of using exact addition.

5.1 Novel Approximate Absolute Difference Hardware

Absolute difference (AD) operation is heavily used in many applications such as

motion estimation (ME) for video compression [47], ME for frame rate conversion [48],

stereo matching for depth estimation [49]. Since most of the applications using AD

operation are error tolerant by their nature, approximate hardware designs can be used in

these applications.

Approximate AD hardware can be designed by using general purpose approximate

adders proposed in the literature in exact AD hardware. However, better approximate AD

52

hardware can be designed by using special approximation techniques for AD hardware

instead of using general purpose approximate adders.

In this thesis, four novel approximate AD hardware designs are proposed. These

approximate AD hardware designs use special approximation techniques for AD

hardware instead of using general purpose approximate adders proposed in the literature.

The proposed approximate AD hardware are compared with two exact baseline AD

hardware and ten other approximate AD hardware.

These ten approximate AD hardware are obtained by using five approximate adders

proposed in the literature [50]-[52] in the two exact baseline AD hardware. These two

exact baseline AD hardware have exact subtractors. Therefore, approximate adders

proposed in the literature are used as approximate subtractors by giving 2’s complement

of one input to the approximate adders instead of the original input.

Two exact baseline AD hardware and all fourteen approximate AD hardware are

implemented using Verilog HDL. The Verilog RTL codes are synthesized and mapped to

a Xilinx XC6VLX130T FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. The

FPGA implementations are verified with post place and route simulations.

The proposed approximate AD hardware implementations have higher

performance, smaller area and lower power consumption than exact AD hardware

implementations at the expense of lower accuracy. The proposed approximate AD

hardware implementations have less error, smaller area and lower power consumption

than the approximate AD hardware implementations which use approximate adders

proposed in the literature [50]-[52].

In the hardware implementations of applications using AD operations such as video

compression, frame rate conversion and depth estimation, large number of parallel AD

hardware such as 512, 1024 are used. In this thesis, area and power consumption results

are reported for one AD hardware. Area and power consumption reductions achieved by

using the approximate AD hardware proposed in this thesis would be much larger for the

hardware implementations using large number of parallel AD hardware.

5.1.1 Proposed Approximate Absolute Difference Hardware

The three proposed approximate AD hardware are shown in Figure 5.1. As shown

in Figure 5.1 (a), proposed_0 hardware consists of a subtractor and XOR gates. First, two

8-bit inputs A and B are subtracted with an exact subtractor hardware. Then, each bit of

the subtraction result is XOR’ed with the sign bit of the subtraction result. If A >= B, the

53

sign bit is 0. Therefore, each bit is XOR’ed with 0. In this case, proposed_0 hardware

computes the correct absolute difference. If A < B, the sign bit is 1. Therefore, each bit is

XOR’ed with 1. In this case, the output of proposed_0 hardware is 1 less than the correct

absolute difference. Therefore, the maximum error of proposed_0 hardware is 1.

As shown in Figure 5.1 (b), in proposed_1 hardware, the most significant 7 bits of

subtraction result is XOR’ed with the sign bit. But, the least significant bit of the

subtraction result is not XOR’ed with the sign bit. Therefore, proposed_1 hardware has 1

less XOR gate than proposed_0 hardware. However, its maximum error is 2 which is 1

more than the maximum error of proposed_0 hardware.

As shown in Figure 5.1 (c), in proposed_2 hardware, the most significant 6 bits of

subtraction result is XOR’ed with the sign bit. But, the least significant 2 bits of the

subtraction result is not XOR’ed with the sign bit. Therefore, proposed_2 hardware has 2

less XOR gates than proposed_0 hardware. However, its maximum error is 4 which is 3

more than the maximum error of proposed_0 hardware.

Figure 5.1 Proposed Approximate Absolute Difference Hardware

(a) proposed_0, (b) proposed_1, (c) proposed_2

The proposed_half approximate AD hardware is shown in Figure 5.2. It uses two

4-bit subtractors instead of one 8-bit subtractor. The results of two 4-bit subtractors are

XOR’ed with the sign bit of first 4-bit subtraction result. The middle bit of AD is

calculated by XOR’ing sign bits of both 4-bit subtraction results and the least significant

bit of first 4-bit subtraction result.

54

Figure 5.2 Proposed Approximate Absolute Difference Hardware (proposed_half)

Since using two 4-bit subtractors instead of one 8-bit subtractor significantly

reduces the delay of critical path which is carry propogation, proposed_half hardware is

faster than proposed_0, proposed_1 and proposed_2 hardware. However, proposed_half

hardware has a maximum error of 33 which is larger than the maximum errors of

proposed_0, proposed_1 and proposed_2 hardware.

The four approximate AD hardware proposed in this thesis are compared with ten

other approximate AD hardware. These ten approximate AD hardware are obtained by

using five approximate adders proposed in the literature [50]-[52] in the two exact

baseline AD hardware shown in Figure 5.3. These two exact baseline AD hardware have

exact subtractors. Therefore, approximate adders proposed in the literature are used as

approximate subtractors by giving 2’s complement of one input to the approximate adders

instead of the original input.

55

Figure 5.3 Exact Absolute Difference Hardware (a) Baseline 1 (b) Baseline 2

Ten approximate AD hardware are obtained by replacing exact subtractors in the

two exact baseline AD hardware with the following five approximate adders in the

literature; Almost Correct Adder I (ACA_I) [50], Almost Correct Adder II (ACA_II) [50],

Error Tolerant Adder II (ETA_II) [51], Generic Accuracy Configurable Adder with N, R

and P values of 8, 1 and 1, respectively (GEAR_N8_R1_P2) [52] and Generic Accuracy

Configurable Adder with N, R and P values of 8, 2 and 4, respectively

(GEAR_N8_R2_P4) [52].

Accuracy analysis of the approximate AD hardware proposed in this thesis and

these ten approximate AD hardware is shown in Table 5.1. For example, B1_ACA_I

hardware is obtained by using ACA_I approximate adder in the exact baseline 1 absolute

difference hardware. B2_ACA_I hardware is obtained by using ACA_I approximate

adder in the exact baseline 2 absolute difference hardware. The eight other approximate

AD hardware in Table 5.1 are obtained similarly. The proposed_0, proposed_1 and

proposed_2 hardware have less accuracy than the ten approximate AD hardware.

However, they have much less maximum and average error than the ten approximate AD

hardware.

56

Table 5.1 Accuracy Analysis of Approximate Absolute Difference Hardware

 Max. Error Average Error Accuracy (%)

Proposed_0 1 0.498 50.195

Proposed_1 2 0.496 75.195

Proposed_2 4 0.992 62.695

Proposed_half 33 7.637 39.941

B1_ACA_I 128 2.188 96.679

B2_ACA_I 128 3.418 95.312

B1_ACA_II 64 5.906 84.179

B2_ACA_II 64 7.168 81.250

B1_ETAII 64 5.926 84.179

B2_ETAII 64 7.168 81.250

B1_GeAr_R1_P2 144 10.172 75.488

B2_GeAr_R1_P2 144 14.168 69.922

B1_GeAr_R2_P4 64 1.125 98.242

B2_GeAr_R2_P4 64 1.480 97.656

5.1.2 Implementation Results

Two exact baseline AD hardware and all fourteen approximate AD hardware are

implemented using Verilog HDL. The Verilog RTL codes are verified with RTL

simulations. RTL simulation results matched the results of MATLAB implementations

of the corresponding approximate AD algorithms.

The Verilog RTL codes are synthesized and mapped to a Xilinx XC6VLX130T

FF1156 FPGA with speed grade 3 using Xilinx ISE 14.7. The FPGA implementations are

verified with post place and route simulations. Post place and route simulation results

matched the results of MATLAB implementations of the corresponding approximate AD

algorithms.

Power consumptions of all the FPGA implementations are estimated using Xilinx

XPower Analyzer tool. Post place and route timing simulations are performed at 100 MHz

and the signal activities of these timing simulations are stored in VCD files. Then, they

are used for estimating the power consumptions of the FPGA implementations.

57

Table 5.2 FPGA Implementation Results of Approximate Absolute Difference

Hardware

 LUT Slice Frequency (MHz) Power (mW)

Exact Baseline 1 20 15 499 4.64

Exact Baseline 2 26 10 599 4.74

Proposed_0 19 10 651 5.26

Proposed_1 17 10 653 5.26

Proposed_2 16 9 671 4.27

Proposed_half 18 7 800 4.52

B1_ACA_I 36 12 453 5.95

B2_ACA_I 34 15 624 5.59

B1_ACA_II 31 13 458 5.54

B2_ACA_II 30 15 689 5.22

B1_ETAII 31 15 457 5.62

B2_ETAII 30 17 688 5.17

B1_GeAr_R1_P2 29 13 499 5.33

B2_GeAr_R1_P2 26 19 771 5.03

B1_GeAr_R2_P4 32 17 449 5.23

B2_GeAr_R2_P4 34 14 608 5.21

The FPGA implementation results are shown in Table 5.2. All four approximate

AD hardware proposed in this thesis have higher performance and less area than both

exact baseline hardware. Proposed_2 and proposed_half hardware also have lower power

consumption than both exact baseline hardware.

The proposed_0, proposed_1 and proposed_2 hardware have less area than the

other ten approximate AD hardware. They also have much less maximum and average

error than the other ten approximate AD hardware. Proposed_2 and proposed_half

hardware also have lower power consumption than the other ten approximate AD

hardware.

Average error vs. delay graph for all 14 approximate AD hardware is shown in

Figure 5.4. Proposed_0, proposed_1 and proposed_2 hardware have the best average error

vs. delay performance.

58

Figure 5.4 Average Error vs. Delay Graph

Proposed_0 hardware has the largest area and power consumption among the four

approximate AD hardware proposed in this thesis. However, it has the smallest maximum

and average errors. Proposed_1 hardware has less area than proposed_0. It has same

power consumption as proposed_0. It has higher accuracy than proposed_0. It has almost

the same average error as proposed_0. But, it has larger maximum error than proposed_0.

Therefore, either proposed_0 or proposed_1 hardware can be used in an application

depending on its accuracy and hardware requirements.

Proposed_2 hardware is faster than proposed_0 and proposed_1 hardware. It also

has less area and lower power consumption than proposed_0 and proposed_1 hardware.

However, it has larger maximum and average error than proposed_0 and proposed_1

hardware. Therefore, it can be used in applications which can tolerate its maximum and

average error.

Since using two 4-bit subtractors instead of one 8-bit subtractor significantly

reduces the delay of critical path which is carry propogation, proposed_half hardware is

the fastest approximate AD hardware. It also has less area than proposed_0, proposed_1,

and proposed_2 hardware. However, it has larger maximum and average error than

proposed_0, proposed_1, and proposed_2 hardware. Therefore, it can be used in

applications which can tolerate its maximum and average error.

In the hardware implementations of applications using AD operations such as video

compression, frame rate conversion and depth estimation, large number of parallel AD

hardware such as 512, 1024 are used. In this thesis, area and power consumption results

are reported for one AD hardware. Area and power consumption reductions achieved by

59

using the approximate AD hardware proposed in this thesis would be much larger for the

hardware implementations using large number of parallel AD hardware.

5.2 Novel Approximate Constant Multiplier

Multiplying a variable with a constant is called constant multiplication. Constant

multiplication is used in many applications such as video processing, video compression

and machine learning. Therefore, in this thesis, a novel approximate constant

multiplication technique is proposed. The proposed approximate constant multiplication

technique is based on the exact constant multiplier proposed in [64] which can only be

used for the DSP blocks in FPGAs. However, the proposed approximate constant

multiplier can be used in both FPGA and ASIC implementations.

The proposed approximate constant multiplication technique decreases complexity

of constant multiplication by converting it to a multiplication with a smaller constant,

concatenation and constant shift operation. It achieves this by manipulating variable

multiplicand and constant multiplier in the constant multiplication operation. Since

concatenation and constant shift operations require no hardware resources, approximate

constant multiplication hardware implementing the proposed approximation technique

reduces constant multiplication to multiplication with a smaller constant.

Since HEVC 2D transform and VVC 2D transform algorithms include many

constant multiplication operations, in this thesis, HEVC 2D transform and VVC 2D

transform algorithms are selected as case studies for the proposed approximate constant

multiplier. The proposed approximate constant multiplier causes negligible PSNR loss

and bit rate increase when it is used to implement the constant multiplications in HEVC

2D transform and VVC 2D transform. The proposed approximate constant multiplier

reduces area, reduces power consumption, and increases performance of HEVC 2D

transform hardware and VVC 2D transform hardware.

5.2.1 Proposed Approximate Constant Multiplier

5.2.1.1 Proposed Approximate Constant Multiplication Technique

The proposed approximate constant multiplication technique decreases complexity

of constant multiplication by converting it to a multiplication with a smaller constant,

concatenation and constant shift operation. It achieves this by manipulating variable

multiplicand and constant multiplier in the constant multiplication operation. Since

60

concatenation and constant shift operations require no hardware resources, approximate

constant multiplication hardware implementing the proposed approximation technique

reduces constant multiplication to multiplication with a smaller constant.

Multiplication of a v bit variable V with c bit constant C is shown in equation (5.1).

Constant multiplier (C) is manipulated as in equation (5.2). Any constant integer can be

written as in equation (5.2). MSBs and LSBs of variable multiplicand (V) are separated

as in equation (5.3) using the b value found in equation (5.2). Then, manipulated versions

of V and C are multiplied as in equations (5.4) - (5.9). Equation (5.9) implements exact

constant multiplication operation. The symbols “×”, “«” and “{,}” represent

multiplication, left shift and concatenation operations, respectively.

CVP = (5.1)

)21(2 CCC
ba
+= (5.2)

   0:1:12 −+−= bVbvVV
b (5.3)

)21(2 CCVCV
ba
+= (5.4)

)2(2 CCVVCV
ba
+= (5.5)

   )20:1:12(2 CCVbVbvVCV
bba
+−+−= (5.6)

   )0:1):1(2(2 −+−+= bVbvVCCVCV
ba

 (5.7)

 ()   0:1,:12 −−+= bVbvVCCVCV
a

 (5.8)

 ()    abVbvVCCVCV −−+= 0:1,:1 (5.9)

The manipulated exact multiplication equation in (5.9) requires multiplication of

variable multiplicand (V) with a smaller constant (CC) than the constant multiplier (C),

an addition, a concatenation and a constant shift operation. Addition operation in equation

(5.9) is removed to obtain the proposed approximate constant multiplication equation in

(5.10).

()    abVCCVCV −= 0:1, (5.10)

Concatenation and constant shift operations require no hardware resources.

Therefore, the proposed approximation technique reduces multiplication with constant C

61

to multiplication with a smaller constant (CC). Computational complexity reduction

depends on the values of constants C and CC. In the best case, CC is 1 and constant

multiplication is eliminated. In the worst case, CC is one bit smaller than C.

Three approximate constant multiplication examples are shown in Figure 5.5. These

examples show that constant CC is much smaller than constant C. Therefore, the proposed

approximation technique reduces bit length of constant multiplication. It also removes

addition operation. In one of the examples, since CC is 1, constant multiplication is also

removed. Therefore, approximate constant multiplication hardware implementing the

proposed approximation technique performs multiplication with constant 36 without using

any hardware resources.

Figure 5.5 Examples of Approximate Constant Multiplication

Exact constant multiplication hardware, exact constant multiplication hardware with

proposed manipulation and the proposed approximate constant multiplication hardware are

shown in Figure 5.6. The symbols “v”, “c” and “cc” represent bit lengths of input variable

(V), constant (C) and manipulated constant (CC), respectively. Since CC is always smaller

than C, the proposed approximation technique reduces area and increases performance of

constant multiplication hardware.

62

Figure 5.6 Constant Multiplication Hardware (a) Exact Constant Multiplication,

 (b) Exact Constant Multiplication with Proposed Manipulation, (c) Proposed

Approximate Constant Multiplication

5.2.1.2 Proposed Approximate Constant Multiplier Datapath Generator

The proposed approximate constant multiplication requires pre-determined

constant multiplication, concatenation and constant shift operations. These operations

differ for each constant C. They should be determined for implementing the datapath

necessary to perform the approximate constant multiplication.

As shown in Figure 5.7, a python based datapath generator is proposed to determine

constant multiplication, concatenation and constant shift operations for an input variable

and constants. The proposed datapath generator takes input variable (V) bit length and

constants that will be multiplied with V as inputs. If a constant is power of 2, this constant

multiplication is implemented with a constant shift operation. If a constant is power of 2

multiple of another constant in the input constants, this constant multiplication is also

implemented with constant shift operation.

Figure 5.7 Flow Chart of the Proposed Datapath Generator

Constant
Manipulation & Approximation

Bit Length of V

Verilog HDL Datapath Generation

b

Preprocessing

Constants (C)

Power of 2
Constants

Multiple
Constants

Bit Length of
V

a CC

Appr_Mul_Datapath.v

Inputs

Processing

Output

×

V

CC V×CC

V[b-1:0]

V[b-1:0]
«a

v × cc bits
mult.

×

V

C

v × c bits
mult.

V×C

×

V

CC

...

V[b-1:0]

... «a

v × cc bits
mult.

+

V[v-1:b]

(a) (b) (c)

... ...

63

The remaining constant multiplications are implemented using the proposed

approximate constant multiplication technique. The proposed datapath generator

determines constant multiplication, concatenation and constant shift operations necessary

for these input constants. Then, it generates a text file containing Verilog HDL

implementations of the datapaths which perform the constant multiplications.

5.2.2 Case Studies: HEVC 2D Transform and VVC 2D Transform

High Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC) video

compression standards use Discrete Cosine Transform (DCT) and Discrete Sine

Transform (DST) for 2D transform operations [65]-[66]. Since DCT and DST algorithms

include many constant multiplication operations, HEVC 2D transform and VVC 2D

transform algorithms are selected as case studies for the proposed approximate constant

multiplication technique.

HEVC uses DCT-II for transform operations. It uses 4x4, 8x8, 16x16, 32x32

Transform Unit (TU) sizes. HEVC uses DST-VII only for 4x4 TUs in certain cases. HEVC

performs 2D transform operation by applying 1D transforms in vertical and horizontal

directions. The coefficients in HEVC 1D transform matrices are derived from DCT and

DST basis functions. However, integer coefficients are used for simplicity. 4x4 DCT matrix

used in HEVC is shown in equation (5.11) as an example.

𝐷𝐶𝑇_4𝑥4𝐻𝐸𝑉𝐶 = [

64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36

] (5.11)

VVC uses DCT-II, DCT-VIII and DST-VII for transform operations. It uses 4x4,

8x8, 16x16, 32x32 and 64x64 TU sizes. VVC performs 2D transform operation by applying

1D transforms in vertical and horizontal directions. While HEVC uses the same transform

types in vertical and horizontal directions, VVC may use different transform types in

vertical and horizontal directions. The coefficients in VVC 1D transform matrices are

derived from DCT and DST basis functions. However, integer coefficients are used for

simplicity. 4x4 DCT-V matrix used in VVC is shown in equation (5.12) as an example.

𝐷𝐶𝑇_4𝑥4𝑉𝑉𝐶 = [

117 219 296 336
296 296 0 −296
336 −117 −296 219
219 −336 296 −117

] (5.12)

64

29 different constants (C values) used in HEVC DCT matrices are listed in Table

5.3. CC, a and b values determined to manipulate these constants as in equation (5.2) and

the corresponding approximate constant multiplication equations as in equation (5.10) are

also listed in Table 5.3. Multiplications with constants 4 and 64 are implemented exactly

by constant shift operations. Multiplication with same constant in the approximate

constant multiplication equations is implemented once and the result is used for all

equations. For example, multiplication with 5 is implemented once and the result is used

for multiplications with constants 22, 82 and 88.

Table 5.3 Approximate Constant Multiplications for HEVC 2D DCT

C CC a b Approximate constant

multiplication

4 - - - V<<2

9 1 0 3 {V, V[2:0]} << 0

13 3 0 2 {(V * 3), V[1:0]} << 0

18 1 1 3 {V, V[2:0]} << 1

22 5 1 1 {(V * 5), V[0:0]} << 1

25 3 0 3 {(V * 3), V[2:0]} << 0

31 15 0 1 {(V * 15), V[0:0]} << 0

36 1 2 3 {V, V[2:0]} << 2

38 9 1 1 {(V * 9), V[0:0]} << 1

43 21 0 1 {(V * 21), V[0:0]} << 0

46 11 1 1 {(V * 11), V[0:0]} << 1

50 3 1 3 {(V * 3), V[2:0]} << 1

54 13 1 1 {(V * 13), V[0:0]} << 1

57 7 0 3 {(V * 7), V[2:0]} << 0

61 15 0 2 {(V * 15), V[1:0]} << 0

64 - - - V<<6

67 33 0 1 {(V * 33), V[0:0]} << 0

70 17 1 1 {(V * 17), V[0:0]} << 1

73 9 0 3 {(V * 9), V[2:0]} << 0

75 37 0 1 {(V * 37), V[0:0]} << 0

78 19 1 1 {(V * 19), V[0:0]} << 1

80 1 4 2 {V, V[1:0]} << 4

82 5 1 3 {(V * 5), V[2:0]} << 1

83 41 0 1 {(V * 41), V[0:0]} << 0

85 21 0 2 {(V * 21), V[1:0]} << 0

87 43 0 1 {(V * 43), V[0:0]} << 0

88 5 3 1 {(V * 5), V[0:0]} << 3

89 11 0 3 {(V * 11), V[2:0]} << 0

90 11 1 2 {(V * 11), V[1:0]} << 1

65

Approximate constant multiplications for 57 different constants used in VVC

transforms are also implemented. However, they are not shown in this thesis for

simplicity.

5.2.2.1 Error Analysis

Error caused by proposed approximate constant multiplier differs for each constant.

Errors caused for the constants used in HEVC 2D DCT are determined as follows.

Average percentage error for a constant C is calculated as in equations (5.13)-(5.15). Input

variable bit length is taken as 8 bits. The constant is multiplied with all possible values of

input variable (0-255) with exact multiplier and with the proposed approximate constant

multiplier. Error for the input variable value i (Ei) is calculated by taking absolute

difference of the exact multiplication result and approximate multiplication result as in

equation (5.13). Percentage error for the input variable value i (PEi) is calculated as in

equation (5.14). Average percentage error for the constant C is calculated by computing

average of percentage errors for all possible values of input variable (0-255) as in equation

(5.15).

)()(iCappriCexactE
i

−= (5.13)

 100
)(



=

iCexact

E
PE

i

i
 (5.14)

256

255

0


=

=
i

i
PE

errorpercentageaverage (5.15)

Average percentage errors for the constants used in HEVC 2D DCT are calculated

and shown in Figure 5.8. The results show that the proposed approximate constant

multiplier causes very small errors. Average percentage errors for the constants used in

VVC 2D transform are also calculated. However, they are not shown in this thesis for

simplicity. The proposed approximate constant multiplier causes very small errors for these

constants as well.

66

Figure 5.8 Average Percentage Error (%) for HEVC 2D DCT Constants

Impacts of the proposed approximate constant multiplier and the approximate

multipliers proposed in [61], [62] and [63] on rate-distortion performance of HEVC

standard is determined using HEVC HM reference software encoder 15.0 [34]. First frame

of Basketball Drive (1920x1080), Kristen and Sara (1280x720), and Party Scene (832x480)

test videos are coded with HEVC HM 15.0 using five different multipliers for implementing

constant multiplications in HEVC 2D transform; exact multiplier (Orig_H), the

approximate constant multiplier proposed in this thesis (Prop_H), the approximate

multiplier proposed in [61] (M1_H), the approximate multiplier proposed in [62] (M2_H),

and the approximate multiplier proposed in [63] (M3_H).

The resulting rate-distortion performances are shown in Figure 5.9. The proposed

approximate constant multiplier causes negligible PSNR loss and bit rate increase

compared to using exact multiplier. The proposed approximate constant multiplier has

better rate-distortion performance than the approximate multipliers proposed in the

literature.

Figure 5.9 HEVC Bit Rate and PSNR (dB) Comparison

67

Impacts of the proposed approximate constant multiplier and the approximate

multipliers proposed in [61], [62] and [63] on rate-distortion performance of VVC standard

is determined using VVC VTM reference software encoder 2.0 [67]. First frame of

Basketball Drive (1920x1080), Kristen and Sara (1280x720), and Party Scene (832x480)

test videos are coded with VVC VTM 2.0 using five different multipliers for implementing

constant multiplications in VVC 2D transform; exact multiplier (Orig_V), the approximate

constant multiplier proposed in this thesis (Prop_V), the approximate multiplier proposed

in [61] (M1_V), the approximate multiplier proposed in [62] (M2_V), and the approximate

multiplier proposed in [63] (M3_V).

The resulting rate-distortion performances are shown in Figure 5.10. The proposed

approximate constant multiplier causes negligible PSNR loss and bit rate increase

compared to using exact multiplier. The proposed approximate constant multiplier has

better rate-distortion performance than the approximate multipliers proposed in the

literature.

Figure 5.10 VVC Bit Rate and PSNR (dB) Comparison

5.2.2.2 Proposed Hardware Implementations

Five different HEVC 2D transform hardware are designed and implemented. The

only difference between them is the multipliers used to implement constant

multiplications in HEVC 2D transform. First hardware (Orig_H) uses exact multiplier.

Second hardware (Prop_H) uses the approximate constant multiplier proposed in this

thesis. The other three hardware (M1_H, M2_H, M3_H) use the approximate multipliers

proposed in [61], [62], [63], respectively.

68

Five different VVC 2D transform hardware are also designed and implemented.

The only difference between them is the multipliers used to implement constant

multiplications in VVC 2D transform. First hardware (Orig_V) uses exact multiplier.

Second hardware (Prop_V) uses the approximate constant multiplier proposed in this

thesis. The other three hardware (M1_V, M2_V, M3_V) use the approximate multipliers

proposed in [61], [62], [63], respectively.

The proposed HEVC and VVC 2D transform hardware perform 2D transform by first

performing 1D transform on the columns of a TU, and then performing 1D transform on

the rows of the TU. After 1D column transform, the resulting coefficients are stored in a

transpose memory, and they are used as input for 1D row transform. The proposed HEVC

2D transform hardware support 4x4, 8x8, 16x16 and 32x32 TUs. The proposed VVC 2D

transform hardware support 4x4, 8x8, 16x16, 32x32 and 64x64 TUs.

The proposed five HEVC 2D transform hardware and five VVC 2D transform

hardware are implemented using Verilog HDL. The Verilog RTL codes are synthesized

and mapped to a Xilinx XC7VX690T FFG1761 FPGA with speed grade 3 using Xilinx

Vivado 2017.2. FPGA implementations are verified with post place and route

simulations. Post place and route simulation results matched the results of HEVC 2D

transform and VVC 2D transform software implementations. The FPGA implementation

results are shown in Table 5.4 and Table 5.5.

Table 5.4 FPGA Implementation Results of HEVC 2D Transform

 Orig_H Prop_H M1_H M2_H M3_H

FPGA Virtex-7 Virtex-7 Virtex-7 Virtex-7 Virtex-7

LUT 31062 30986 42553 47266 45571

DFF 11862 11648 11543 12174 11893

BRAM 32 32 32 32 32

DSP Block 370 108 0 0 20

Frequency (MHz) 147 161 149 147 158

Table 5.5 FPGA Implementation Results of VVC 2D Transform

 Orig_V Prop_V M1_V M2_V M3_V

FPGA Virtex-7 Virtex-7 Virtex-7 Virtex-7 Virtex-7

LUT 100279 83424 133641 141649 145544

DFF 32336 25444 46190 51062 47535

BRAM 32 32 32 32 32

DSP Block 1303 240 0 0 20

Frequency (MHz) 117 109 109 104 108

69

As shown in Table 5.4, HEVC 2D transform FPGA implementation using the

proposed approximate constant multiplier (Prop_H) has 70.8% less DSP blocks than

HEVC 2D transform FPGA implementation using exact multiplier (Orig_H). Prop_H

FPGA implementation also has higher performance than Orig_H FPGA implementation.

Prop_H FPGA implementation has less Lookup Tables (LUT) and higher performance

than HEVC 2D transform FPGA implementations using the approximate multipliers

proposed in the literature (M1_H, M2_H, M3_H). However, Prop_H FPGA

implementation has DSP blocks. M1_H, M2_H, M3_H FPGA implementations do not

have DSP blocks.

As shown in Table 5.5, VVC 2D transform FPGA implementation using the

proposed approximate constant multiplier (Prop_V) has 81.5% less DSP blocks than

VVC 2D transform FPGA implementation using exact multiplier (Orig_V). Prop_V

FPGA implementation has less LUTs than VVC 2D transform FPGA implementations

using the approximate multipliers proposed in the literature (M1_V, M2_V, M3_V).

However, Prop_V FPGA implementation has DSP blocks. M1_V, M2_V, M3_V FPGA

implementations do not have DSP blocks.

Power consumptions of all HEVC and VVC 2D transform FPGA implementations

are estimated using Xilinx Vivado 2017.2. Signal activities captured during post place

and route timing simulations are used to estimate power consumptions. Energy

consumptions of HEVC 2D transform FPGA implementations for transforming six 4x4

TUs, four 8x8 TUs, four 16x16 TUs, five 32x32 TUs are determined and shown in Figure

5.11. Prop_H FPGA implementation has less energy consumption than the other HEVC

2D transform FPGA implementations. Energy consumptions of VVC 2D transform

FPGA implementations for transforming two 4x4 TUs, two 8x8 TUs, two 16x16 TUs,

three 32x32 TUs are determined and shown in Figure 5.12. Prop_V FPGA

implementation has less energy consumption than the other VVC 2D transform FPGA

implementations.

70

Figure 5.11 Energy Consumptions of Figure 5.12 Energy Consumptions of

HEVC 2D Transform VVC 2D Transform

FPGA Implementations FPGA Implementations

The Verilog RTL codes are also synthesized, placed and routed to a TSMC 90nm

standard cell library. The ASIC implementation results are shown in Table 5.6 and Table

5.7. Gate counts of all the ASIC implementations are calculated according to NAND

(3x1) gate area. As shown in Table 5.6, HEVC 2D transform ASIC implementation using

the proposed approximate constant multiplier (Prop_H) has smaller area, lower power

consumption and higher performance than the other HEVC 2D transform ASIC

implementations. As shown in Table 5.7, VVC 2D transform ASIC implementation using

the proposed approximate constant multiplier (Prop_V) has smaller area and lower power

consumption than the other VVC 2D transform ASIC implementations.

Table 5.6 ASIC Implementation Results of HEVC 2D Transform

 Orig_H Prop_H M1_H M2_H M3_H

Technology TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm

Area 180 K 152 K 180 K 195 K 187 K

Frequency (MHz) 250 330 278 264 264

Power (mW) 102 90.6 105.4 115.2 112

71

Table 5.7 ASIC Implementation Results of VVC 2D Transform

 Orig_V Prop_V M1_V M2_V M3_V

Technology TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm TSMC 90 nm

Area 630 K 458 K 632 K 672 K 646 K

Frequency (MHz) 192 250 250 245 260

Power (mW) 332.2 248 333.1 358.8 356.7

72

CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

In this thesis, we proposed a novel computation and energy reduction technique for

HEVC intra prediction. We designed low energy, reconfigurable HEVC intra prediction

hardware using the proposed technique. We also designed an FPGA implementation of

HEVC intra prediction using DSP blocks. We proposed reconfigurable VVC intra

prediction hardware. We also designed an FPGA implementation of VVC intra prediction

using DSP blocks. We proposed VVC fractional interpolation hardware. We proposed

several approximate absolute difference hardware. We proposed a novel approximate

constant multiplier. We designed HEVC 2D transform and VVC 2D transform hardware

using the proposed approximate constant multiplier.

We quantified computation reductions achieved by the proposed techniques and

video quality loss caused by the proposed approximation techniques. The proposed

approximation techniques cause very small PSNR loss. The other proposed techniques

cause no PSNR loss. We implemented the proposed hardware architectures in Verilog

HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 or Xilinx Virtex 7 FPGAs,

and we estimated their power consumptions using Xilinx XPower Analyzer tool. The

proposed techniques significantly reduced power and energy consumptions of these

FPGA implementations.

As future work, approximate video compression algorithms for HEVC and VVC

video compression standards can be proposed. HEVC and VVC video encoders and

decoders can be proposed by implementing exact or approximate hardware of HEVC and

VVC video compression algorithms and integrating them with the ones implemented in

this thesis. VVC video compression standard is still in standardization process. The

73

proposed techniques can be used to implement the video compression algorithms in final

VVC standard.

74

BIBLIOGRAPHY

[1] High Efficiency Video Coding, ITU-T Rec. H.265 and ISO/IEC 23008-2 (HEVC),

ITU-T and ISO/IEC, April 2013.

[2] G.J. Sullivan, J.R. Ohm, W.J. Han, T.Wiegand, “Overview of the High Efficiency

Video Coding (HEVC) Standard,” IEEE Trans. On Circuits and Systems for Video

Technology, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.

[3] F. Pescador, M. Chavarrias, M.J. Garrido, E. Juarez, C. Sanz, “Complexity Analysis

of an HEVC Decoder Based on a Digital Signal Processor,” IEEE Trans. On

Consumer Electronics, vol. 59, no. 2, pp. 391-399, May 2013.

[4] Algorithm Description of Versatile Video Coding and Test Model 5, Joint Video

Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG11,

March 2019.

[5] Q. Xu, T. Mytkowicz and N. S. Kim, “Approximate Computing: A Survey,” IEEE

Design & Test, vol. 33, no. 1, pp. 8-22, Feb. 2016.

[6] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel, “Cross-Layer

approximate computing: From logic to architectures,” IEEE Design Automation

Conference, Austin, USA, Jun. 2016.

[7] C. Liu, J. Han, F. Lombardi, “An analytical framework for evaluating the error

characteristics of approximate adders,” IEEE Trans. on Computers, vol. 64, no. 5, pp.

1268-1281, May 2015.

[8] E. Kalali and I. Hamzaoglu, “Approximate HEVC fractional interpolation filters and

their hardware implementations,” IEEE Trans. on Consumer Electronics, vol. 64, no.

3, pp. 285-291, Aug. 2018.

[9] O. Tasdizen, A. Akin, H. Kukner, and I. Hamzaoglu, “Dynamically variable step

search motion estimation algorithm and a dynamically reconfigurable hardware for

its implementation”, IEEE Trans. on Consumer Electronics, vol. 55, no. 3, pp.1645-

1653, Aug. 2009.

75

[10] M. Cetin and I. Hamzaoglu, "An adaptive true motion estimation algorithm for frame

rate conversion of high definition video and its hardware implementations," IEEE

Trans. on Consumer Electronics, vol. 57, no. 2, pp. 923-931, May 2011.

[11] S. Jin et al., “FPGA Design and Implementation of a Real-Time Stereo Vision

System,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 20, no. 1,

pp. 15-26, Jan. 2010.

[12] J. Lainema, F. Bossen, W. J. Han, J. Min and K. ugur, “Intra Coding of the HEVC

Standard”, IEEE Trans. On Circuits and Systems for Video Technology, vol. 22, no.

12, pp. 1792-1801, Dec. 2012.

[13] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm, J.Boyce, “Algorithm Description of

Joint Exploration Model 4”, JVET-D1001, Oct. 2016.

[14] J. Chen, Y.Chen, M. Karczewicz, X. Li, W. Chien, “Enhanced Multiple Transform

for Video Coding”, Proc. Data Compression Conference, April 2016.

[15] X. Zhao, J. Chen, M. Karczewics, L. Zhang, X. Li, W.Chien, “Enhanced Multiple

Transform for Video Coding”, Proc. Data Compression Conference, April 2016.

[16] T. Biatek, V. Lorcy, P. Castel, P. Philippe, “Low-Complexity Adaptive Multiple

Transform for Video Coding”, Proc. Data Compression Conference, April 2016.

[17] J. Vanne, M. Viitanen, T. D. Hämäläinen and A. Hallapuro, “Comparative Rate-

Distortion-Complexity Analysis of HEVC and AVC Video Codecs”, IEEE Trans. On

Circuits and Systems for Video Technology, vol.22, no. 12, pp. 1885-1898, Dec. 2012.

[18] H. Azgin, E. Kalali, I. Hamzaoglu, “A Computation and Energy Reduction

Technique for HEVC Intra Prediction”, IEEE Trans. On Consumer Electronics, vol.

63, no. 1, pp. 36-43, Feb. 2017.

[19] H. Azgin, A. C. Mert, E. Kalali and I. Hamzaoglu, “An Efficient FPGA

Implementation of HEVC Intra Prediction”, IEEE Int. Conf. on Consumer

Electronics, March 2018.

[20] H. Azgin, A. C. Mert, E. Kalali and I. Hamzaoglu, “Reconfigurable Intra Prediction

Hardware for Future Video Coding”, IEEE Trans. on Consumer Electronics, vol. 63,

no. 4, pp. 419-425, Nov. 2017.

[21] H. Azgin, E. Kalali and I. Hamzaoglu, “An Efficient FPGA Implementation of

Versatile Video Coding Intra Prediction”, Euromicro Conf. on Digital System Design

(DSD), Aug. 2019.

76

[22] H. Azgin, A. C. Mert, E. Kalali and I. Hamzaoglu, “A Reconfigurable Fractional

Interpolation Hardware for VVC Motion Compensation” Euromicro Conf. on Digital

System Design (DSD), Aug. 2018.

[23] A. C. Mert, H. Azgin, E. Kalali and I. Hamzaoglu, “Novel Approximate Absolute

Difference Hardware”, Euromicro Conf. on Digital System Design (DSD), Aug. 2019.

[24] B. Min, Z. Xu, R. C. C. Cheung, “A Fully Pipelined Hardware Architecture for Intra

Prediction of HEVC”, IEEE Trans. on Circuits and Systems for Video Technology,

July 2016.

[25] M. Abeydeera, M. Karunaratne, G. Karunaratne, K. De Silva, A. Pasqual, “4K Real

Time HEVC Decoder on FPGA”, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 26, no. 1, pp. 236-249, Jan. 2016.

[26] F. Amish, E. B. Bourennane, “Fully Pipelined Real Time Hardware Solution for High

Efficiency Video Coding (HEVC) Intra Prediction”, Journal of System Architecture,

vol. 64, pp. 133-147, March 2016.

[27] M. U. K. Khan, M. Shafique, M. Grellert, J. Henkel, “Hardware-Software

Collaborative Complexity Reduction Scheme for The Emerging HEVC Intra

Encoder,” Design, Automation and Test in Europe (DATE) Conference, pp. 125-128,

March 2013.

[28] G. Pastuszak, A. Abramowski, “Algorithm and Architecture Design of The

H.265/HEVC Intra Encoder”, IEEE Trans. on Circuits and Systems for Video

Technology, vol. 26, no. 1, pp. 210-222, Jan. 2016.

[29] C. T. Huang, M. Tikekar, A. Chandrakasan, “Memory-Hierarchical and Mode-

Adaptive HEVC Intra Prediction Architecture for Quad Full HD Video Decoding”,

IEEE Trans. on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 7, pp. 1515-

1525, July 2014.

[30] P. Chiang, Y. Ting, H. Chen, S. Jou, I. Chen, H. Fang, T. Chang, “A QFHD 30 fps

HEVC Decoder Design”, IEEE Trans. on Circuits and Systems for Video Technology,

vol. 26, no. 4, pp. 724-735, April 2016.

[31] N. Zhou, D. Ding, L. Yu, “On Hardware Architecture and Processing Order of HEVC

Intra Prediction Module”, Picture Coding Symposium, pp. 101-104, Dec. 2013.

[32] Z. Liu, D. Wang, H. Zhu, X. Huang, “41.7BN-pixels/s Reconfigurable Intra

Prediction Architecture for HEVC 2560x1600 Encoder”, IEEE Int. Conf. on

Acoustics, Speech and Signal Processing, pp. 2634-2638, May 2013.

77

[33] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Low Energy Intra Prediction Hardware for

High Efficiency Video Coding”, Journal of Real-Time Image Processing, Dec. 2014.

[34] K. McCann, B. Bross, W.J. Han, I.K. Kim, K. Sugimoto, G. J. Sullivan, “High

Efficiency Video Coding (HEVC) Test Model 15 (HM 15) Encoder Description”,

JCTVC-Q1002, June 2014.

[35] F. Bossen, “Common test conditions and software reference configurations”,

JCTVC-I1100, May 2012.

[36] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A High Performance and Low Energy Intra

Prediction Hardware for High Efficiency Video Coding”, Int. Conf. on Field

Programmable Logic and Applications (FPL), pp. 719-722, Aug. 2012.

[37] J. Chen, E. Alshina, G. J. Sullivan, J. R. Ohm, J. Boyce, “Algorithm Description of

Joint Exploration Model 7,” JVET-G1001, Jul. 2017.

[38] E. Kalali, Y. Adibelli, and I. Hamzaoglu, “A reconfigurable HEVC sub-pixel

interpolation hardware”, IEEE Int. Conference on Consumer Electronics - Berlin,

Sept. 2013.

[39] E. Kalali and I. Hamzaoglu, “A low energy HEVC sub-pixel interpolation hardware,”

IEEE Int. Conference on Image Processing, pp. 1218-1222, Oct. 2014.

[40] G. Pastuszak and M. Trochimiuk, “Architecture design and efficiency evaluation for

the high-throughput interpolation in the HEVC encoder”, 16th Euromicro Conference

on Digital System Design, Sep. 2013.

[41] C. M. Diniz, M. Shafique, S. Bampi, and J. Henkel, “A reconfigurable hardware

architecture for fractional pixel interpolation in high efficiency video coding,” IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 2,

pp. 238-251, Feb. 2015.

[42] H. Maich, C. Afonso, D. Franco, B. Zatt, M. Porto, and L. Agostini, “High

throughput hardware design for the HEVC fractional motion estmation interpolation

unit”, IEEE 20th International Conference on Electronics, Circuits, and Systems, May

2014.

[43] A. C. Mert, E. Kalali, and I. Hamzaoglu, “An HEVC fractional interpolation

hardware using memory based constant multiplication,” IEEE Int. Conf. On

Consumer Electronics (ICCE), pp. 742-746, Jan. 2018.

[44] J. Han and M. Orshansky, “Approximate computing: An emerging paradigm for

energy-efficient design,” 18th IEEE European Test Symposium (ETS), May 2013.

78

[45] S. Mittal, “A survey of techniques for approximate computing,” ACM Computing

Surveys, vol. 48, no. 4, May 2016.

[46] G. A. Gillani, M. A. Hanif, M. Krone, S. H. Gerez, M. Shafique, and A. B. J.

Kokkeler, “SquASH: Approximate square-accumulate with self-healing,” IEEE

Access, vol. 6, pp. 49112-49128, Aug. 2018.

[47] T. Ayhan and M. Altun, “Circuit aware approximate system design with case studies

in image processing and neural networks,” IEEE Access, vol. 7, pp. 4726-4734, Dec.

2018.

[48] I. Hammad and K. El-Sankary, “Impact of approximate multipliers on VGG deep

learning network,” IEEE Access, vol. 6, pp. 60438-60444, Oct. 2018.

[49] B. Liu, H. Qin, Y. Gong, W. Ge, M. Xia, and L Shi, “EERA-ASR: An energy-

efficient reconfigurable architecture for automatic speech recognition with hybrid

DNN and approximate computing,” IEEE Access, vol. 6, pp. 52227-52237, Sep.

2018.

[50] K. Roy and A. Raghunathan, “Approximate computing: An energy-efficient

computing technique for error resilient applications,” IEEE Computer Society Annual

Symposium on VLSI, Jul. 2015.

[51] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digital signal

processing using approximate adders,” IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 32, no. 1, pp. 124-137, Jan. 2013.

[52] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. L. Kamran, “AxBench: A

multiplatform benchmark suite for approximate computing,” IEEE Design & Test,

vol. 34, no. 2, pp. 60-68, Apr. 2017.

[53] E. Kalali and I. Hamzaoglu, “Approximate HEVC fractional interpolation filters and

their hardware implementations,” IEEE Trans. on Consumer Electronics, vol. 64, no.

3, pp. 285-291, Aug. 2018.

[54] S. Xu and B. C. Schafer, “Toward self-tunable approximate computing,” IEEE Trans.

on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 778-789, Apr.

2019.

[55] Y. Kim, Y. Zhang, and P. Li, “Energy efficient approximate arithmetic for error

resilient neuromorphic computing,” IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, vol. 23, no. 11, pp. 2733-2737, Nov. 2015.

79

[56] A. Raha, H. Javakumar, and V. Raghunathan, “Input-based dynamic reconfiguration

of approximate arithmetic units for video encoding,” IEEE Trans. on Very Large

Scale Integration (VLSI) Systems, vol. 24, no. 3, pp. 846-857, Mar. 2016.

[57] V. T. Lee, A. Alaghi, R. Pamula, V. S. Sathe, L. Ceze, and M. Oskin, “Architecture

consideration for stochastic computing accelerators,” IEEE Trans. on Computer-

Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2277-2289, Nov.

2018.

[58] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition: A new

paradigm for arithmetic circuit design,” Design, Automation & Test in Europe

Conference & Exhibition (DATE), Munich, Germany, April 2008.

[59] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed adder for

error-tolerant application,” 12th Int. Symposium Integrated Circuit, Singapore,

Singapore, Dec. 2009.

[60] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel, “A low latency generic accuracy

configurable adder,” ACM/EDAC/IEEE Design Automation Conference (DAC), San

Francisco, USA, Jun. 2015.

[61] A. Momeni, J. Han, P. Montuschi, F. Lombardi, “Design and analysis of approximate

compressors for multiplication,” IEEE Trans. Computers, Vol. 64, No. 4, pp. 984-

994, Apr. 2015.

[62] K. Bhardwaj, P. S. Mane, J. Henkel, “Power- and area-efficient Approximate

Wallace Tree Multiplier for error-resillient systems,” in Proc. 15th Int. Symp. Quality

Electron. Design (ISQED), Mar. 2014, pp. 263-269.

[63] T. Yang, T. Ukezono, and T. Sato, “A low-power high-speed accuracy-controllabel

approximate multiplier design,” 23rd Asia and South Pacific Design Automation Conf.

(ASP-DAC), Jan. 2018.

[64] A. C. Mert, H. Azgin, E. Kalali, and I. Hamzaoglu, “Efficient multiple constant

multiplication using DSP blocks in FPGA,” 28th Int. Conf. on Field Programmable

Logic and Applications (FPL), Aug. 2018.

[65] E. Kalali, A. C. Mert, and I. Hamzaoglu, “A computation and energy reduction

technique for HEVC Discrete Cosine Transform,” IEEE Trans. on Consumer

Electronics, vol. 62, no. 2, pp. 166-174, May 2016.

[66] A. C. Mert, E. Kalali, and I. Hamzaoglu, “High performance 2D transform hardware

for future video coding,” IEEE Trans. on Consumer Electronics, vol. 63, no. 2, pp.

117-125, May 2017.

80

[67] J. Chen, Y. Ye, and S. H. Kim, “Algorithm description for versatile video coding and

test model 2 (VTM 2),” JVET-K1002, Jul. 2018.

