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ABSTRACT

Markov Chain Monte Carlo Algorithm for Bayesian Policy Search

Vahid Tavakol Aghaei

Mechatronics Engineering, PhD Dissertation, August 2019

Keywords: Reinforcement Learning; Markov Chain Monte Carlo; Particle

filtering; Risk sensitive reward; Policy search; Control

The fundamental intention in Reinforcement Learning (RL) is to seek for opti-

mal parameters of a given parameterized policy. Policy search algorithms have paved

the way for making the RL suitable for applying to complex dynamical systems, such

as robotics domain, where the environment comprised of high-dimensional state and

action spaces. Although many policy search techniques are based on the wide spread

policy gradient methods, thanks to their appropriateness to such complex environ-

ments, their performance might be affected by slow convergence or local optima

complications. The reason for this is due to the urge for computation of the gra-

dient components of the parameterized policy. In this study, we avail a Bayesian

approach for policy search problem pertinent to the RL framework, The problem of

interest is to control a discrete time Markov decision process (MDP) with continu-

ous state and action spaces. We contribute to the field by propounding a Particle

Markov Chain Monte Carlo (P-MCMC) algorithm as a method of generating sam-

ples for the policy parameters from a posterior distribution, instead of performing

gradient approximations. To do so, we adopt a prior density over policy parameters

and aim for the posterior distribution where the ‘likelihood’ is assumed to be the

expected total reward. In terms of risk-sensitive scenarios, where a multiplicative

expected total reward is employed to measure the performance of the policy, rather

than its cumulative counterpart, our methodology is fit for purpose owing to the

fact that by utilizing a reward function in a multiplicative form, one can fully take

sequential Monte Carlo (SMC), known as the particle filter within the iterations of

the P-MCMC. it is worth mentioning that these methods have widely been used

in statistical and engineering applications in recent years. Furthermore, in order to
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deal with the challenging problem of the policy search in large-dimensional state

spaces an Adaptive MCMC algorithm will be proposed.

This research is organized as follows: In Chapter 1, we commence with a general

introduction and motivation to the current work and highlight the topics that are

going to be covered. In Chapter 2ö a literature review pursuant to the context of

the thesis will be conducted. In Chapter 3, a brief review of some popular policy

gradient based RL methods is provided. We proceed with Bayesian inference notion

and present Markov Chain Monte Carlo methods in Chapter 4. The original work

of the thesis is formulated in this chapter where a novel SMC algorithm for policy

search in RL setting is advocated. In order to exhibit the fruitfulness of the proposed

algorithm in learning a parameterized policy, numerical simulations are incorporated

in Chapter 5. To validate the applicability of the proposed method in real-time it will

be implemented on a control problem of a physical setup of a two degree of freedom

(2-DoF) robotic manipulator where its corresponding results appear in Chapter 6.

Finally, concluding remarks and future work are expressed in chapter 7.
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ÖZET

Bayes Politika Arama için Markov Zinciri Monte Carlo Algoritması

Vahid Tavakol Aghaei

Mekatronik Mühendisliği, Doktora Tezi, Ağustos 2019

Anahtar Kelimeler: Takviyeli öğrenme, Markov zinciri Monte Carlo, Parçacık

filtre, Riske duyarlı ödül, Politika araması, kontrol

Takviye Öğrenimindeki temel amaç, belirli bir parametrelenmiş kontrol politikanın

en uygun parametrelerini aramaktır. Politika arama algoritmaları, ortamın yüksek

boyutlu durum ve eylem alanlarından oluştuğu robotik alan gibi karmaşık dinamik

sistemlere uygulanmaya uygun hale getirmenin yolunu açmıştır. Birçok politika

arama tekniği geniş çaplı politika gradyan yöntemlerine dayanmasına rağmen, bu tür

karmaşık ortamlara uygun olmaları nedeniyle performansları yavaş yakınsama veya

yerel optima komplikasyonlarından etkilenebilir. Bunun nedeni, parametreleştirilmiş

politikanın gradyan bileşenlerinin hesaplanma dürtüsünden kaynaklanmaktadır. Bu

çalışmada, Takviye Öğrenme çerçevesine uygun politika arama problemi için bir

Bayesian yaklaşımı elde ettik. İlgilendiğimiz konu, sürekli durum ve eylem alan-

ları ile ayrık zaman bir Markov karar sürecini (MDP) kontrol etmektir. Gradyan

yaklaştırmaları yerine, bir Posterior Dağılımından politika parametreleri için numune

üretme yöntemi olarak bir Parçacık Markov Zinciri Monte Carlo (P-MCMC) algorit-

ması geliştirerek bu alana katkıda bulunuyoruz. Bunu yapmak için, politika parame-

treleri üzerinde önceden bir yoğunluğu benimsiyoruz ve ’olasılığın’ beklenen toplam

ödül olduğu varsayılan posterior dağıtımı hedefliyoruz. Politikanın kümülatif muadili

yerine performansını ölçmek için çoklayıcı beklenen toplam bir ödülün kullanıldığı

riske duyarlı senaryolar açısından, metodolojimiz bir ödül fonksiyonunu çarpımcı

bir formda kullanmaktan dolayı amaca uygundur. P-MCMC’nin yinelemelerinde

parçacık filtresi olarak bilinen sıralı Monte Carlo’yu (SMC) tamamen kullanılabilir.

Bu yöntemlerin son yıllarda istatistik ve mühendislik uygulamalarında yaygın olarak

kullanıldığını belirtmekte fayda var. Ayrıca, politika araştırmasının bir başka zor-

layıcı sorununu büyük boyutlu uzaylarda ele almak için, bir Uyarlamalı MCMC

algoritması önerilecektir.
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Many thanks to Prof. Volkan Patoğlu who provided us the experimental setup for

our real-time evaluations.

I would like to thank my fellow labmates Dr. Mustafa Yalçın, Arda Ağababaoğlu,
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Chapter 1

Introduction

1.1 Motivation

Without any doubt, reinforcement learning (RL) can be recognized as the most

propitious framework for the experts in the machine learning, control and robotics

community; see Sutton and Barto (1998) for an introduction. In RL problem, an

agent interacts sequentially and autonomously with an unknown environment to

collect some data samples called trajectories or rollouts. It then utilizes the gener-

ated data to search for a policy; mapping from states to actions; that maximizes a

performance criterion i.e, an expected total reward (objective function), in the long

run. Most of the methods available in the literature are concerned with providing

online policy parameter estimates. The fundamental concept of these paradigms is

that, an ongoing approximation of the parameters acquired using the available data

sets, could be updated when a new collection of data is received. The choice of a

policy plays a crucial role in data collection part. Different policies result in different

data collection patterns, which, in turn, affect how the policy is updated. Therefore,

effective and precise parameter estimation methods for a policy are of significant im-

portance specially in real time applications for example when commanding robotic

1
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tasks, an unfavorable deviation in the policy parameters can cause disastrous out-

comes. Policy search can be done either in a model-free or model-based fashion.

The former case focuses on generating samples directly from the real robot or sim-

ulation platform where there is no model of the system at hand and agent learns

an optimal control policy from these collected data samples. In the latter agent

attempts to construct a model of the system’s dynamics and subsequently employs

the obtained model to learn the policy. Among the existing policy search RL meth-

ods, closer attention is paid to the gradient based algorithms where improvements in

the policy parameters are pursuant to the gradient ascent approach that is followed

by the gradient of the expected total reward with a predefined learning step size.

These methods have been shown to be successful in dealing with high-dimensional

continuous state spaces. Since such complex large scale environments are inherent

in the robotic domain policy gradient (PG) methods are attracting widespread in-

terest among the researchers in the context of robotics. Despite the fact that the

PG techniques bear numerous advantages, it should be noted that they are prone

to some weaknesses, as well. The challenges that one may encounter when using

these methods are quality of the estimated gradient of the objective function, fur-

thermore, scaling the learning rate. A major drawback of these algorithms is that a

local search of the policy space is performed during the learning process which may

lead to either being trapped in a local optimal point or poor convergence speed.

A different approach to cope with these problems is a Bayesian inference method.

Bayesian parameter estimators demand that a prior distribution for the unknown

policy parameter is assigned. The target is then to determine the posterior dis-

tribution of the policy parameter given the observed data. Moreover it is possible

to provide some characteristics of this posterior distribution in order to produce a

point estimate of the parameter. The posterior mean, posterior median and the max-

imum a-posteriori probability (MAP) estimators can be pointed out as some popular

Bayesian estimators in the field. Besides the aforementioned approximators, there

also exist Monte Carlo based methods for Bayesian parameter inference when an
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accurate evaluation of the posterior distribution is not feasible. As an alternative

approach, the maximum likelihood estimation (MLE) method incorporates the like-

lihood of the sampled data to include all the appropriate information for calculating

policy parameter. To summarize, Bayesian inference with roots in statistics, takes

into account a-priori knowledge in the form of a probabilistic distribution of the past

experience of the agent in interacting with the environment and incorporates it in

the learning procedure by modeling the distribution over policy parameters.

1.2 Contribution

The major contribution of the present study is to perform Bayesian inference

for the policy search method in RL by using a Markov chain Monte Carlo (MCMC)

algorithm. Specifically, our algorithm is a particle MCMC algorithm (P-MCMC),

involving a Sequential Monte Carlo (SMC), also known as particle filters, within its

learning iterations. SMC methods are special cases of Monte Carlo algorithms in

which the idea behind just depends on sampling from complex distributions, when-

ever an analytic computation can not be carried out. The novelty of our approach is

due to a formulation of the policy search problem in a Bayesian framework where the

expected total reward, J(θ), is formed by the product of exponential rewards and is

treated as a pseudo-likelihood function. We propose the multiplicative formulation

as the notion of risk-sensitivity in the structure of the reward function to use the

SMC algorithm in the proposed method. Combined with an uninformative prior,

µ(θ), this leads to a pseudo-posterior distribution for the policy parameter π(θ).

π(θ) ∝ µ(θ)J(θ).
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This pseudo-posterior distribution can be utilized to identify promising regions for

the policy parameter. Our dominant observations that follow the Bayesian formu-

lation above are:

• Unbiased estimate of the expected total reward for a given set of policy pa-

rameters via SMC is possible

• It can be used within an MCMC algorithm that targets π(θ).

With regard to handling the drawbacks of gradient based methods, four main

claims about our proposed method can be expressed:

1. The presented approach in this thesis is not based on estimating the gradi-

ent information of the expected total reward, instead it aims to employ the

estimates of the expected multiplicative reward via MCMC algorithm. Its

structure is very straightforward to implement and therefore, reduces the com-

putation load by omitting the need for gradient calculations.

2. The proposed method is less likely to get stuck around an optimum solution

point since it does not produce a point estimate of the parameters. Instead, it

generates samples from π(θ) which can then be used to explore the surface of

J(θ). In particular, those samples can be applied to identify favorable regions

for the policy parameters, consequently keeping the agent away from getting

trapped by some data samples which might distract the learning from its main

objective.

3. Our proposed algorithm can have comparable, if not better, convergence prop-

erties in terms of computation time.

4. It can be dedicated to both robotic control problems and statistical Bayesian

learning domains in which the proposed method can simultaneously learn and
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predict the model and control gains in uncertain environments with high pre-

cision and facilitates the procedure of adapting the controller to changing con-

ditions by using data sampling techniques. By explicitly putting prior distri-

butions on unknown policy parameters, Bayesian methods provide a promising

technique for handling parameter uncertainty.

Therefore, the scope of this research is to use the proposed MCMC methodology

in policy search problems as an alternative to gradient-based methods. The claims

on robustness and convergence time are supported with our numerical experiments

throughout the thesis where we compare our proposed method with three state-of-

the-art gradient based methods.

1.3 Outline

This thesis focuses on the parameter estimation problem for stochastic param-

eterized policies in the robotics and control domains in an offline manner using data

driven methods. The main contents of this thesis is divided into six chapters laid

out as follows:

Chapter 2: Literature Review

A literature review of the available studies relevant to the scope of the thesis

is presented. It covers the research done in the area of Reinforcement Learning and

Bayesian inference. Furthermore, it touches upon the recent works which ignited

the spark to determine the approach of the thesis.
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Chapter 3: Reinforcement Learning

The RL problem is introduced and a review of some well established policy

gradient based RL methods such as REINFOCE, GPOMDP and episodic Natural

Actor Critic (eNAC) algorithms is presented. We cast the idea from the robotics

domain to the fuzzy control and describe the usage of these algorithms in tuning the

control gains of a general Proportional-Derivative (PD) fuzzy controller. The results

of this chapter led to the publication of one conference paper which are presented

in section 5.1.

Chapter 4: Markov Chain Monte Carlo Methods

The main contributions of this thesis are highlighted here. In the first part, a

novel gradient-free algorithm, which is based on the Bayesian RL framework with

MCMC algorithm for the policy search problem in continuous MDPs, is proposed.

To capture the essence, some MCMC methods are reviewed.

In the second part, to enhance the capability of the proposed MCMC algorithm

and make it well suited for high-dimensional state spaces, where the number of

unknown parameters to be learned are increasing with each dimension, an adaptive

MCMC algorithm is proposed. This chapter contributed to the publication of a

journal article and a conference paper which their outcomes are incorporated in

section 5.2 and section 5.3. Not to mention that another paper is currently under

preparation regarding the proposed adaptive MCMC algorithm and its initial results

are presented in section 5.4.
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Chapter 5: Numerical experiments and Simulations

This chapter is dedicated to the numerical simulations of the methods described

in chapters 3 and 4 where learning control policies for three different nonlinear sys-

tems are studied. The chapter is split into four sections: In the first part, PG RL

methods will be used to tune the control gains of a PD-type Fuzzy Logic Controller

(FLC). The next section manifests the benefits of our proposed MCMC algorithm

over PG RL ones. An extensive comparison is made through the control of a non-

linear model of an Inverted Pendulum. Further, the trajectory control of a planar

manipulator is taken up as a more complex, nonlinear control problem in the robotics

domain. The chapter is concluded by the extension of the proposed MCMC algo-

rithm to an adaptive form and is applied to the control problem of a Ballbot model.

Chapter 6: Experimental results

In order to validate the proposed MCMC algorithm in the real-time applications

we furnish our theoretical accomplishments by a real-time implementation. For this

purpose, a modified formation of the MCMC algorithm has been derived resulting in

an MCMC algorithm which does not include the SMC, anymore. This algorithm is

tested on a physical setup of a 2-DoF planar manipulator with the goal of trajectory

tracking. This chapter has been prepared as a journal manuscript paper and is ready

for submission.

Chapter 7: Conclusions

The overall concept of the thesis is summarized and our work is concluded by

supplying final observations. A discussion has been provided to express the open

research problems that can be contemplated as our future work both in theory and

practice.



Chapter 2

Literature Review

Summary : In this chapter we will have an overview to the available literature

related to the research domain of this thesis. It comprises both the available papers

in the domain of RL and Bayesian inference methods in policy search.

2.1 Reinforcement Learning

Reinforcement learning (RL) initiated in the primary work of Sutton and Barto

(1998), is a significantly auspicious learning mechanism specially in the robotics

branch where an agent (controller) interacts with its environment in order to obtain

an optimal policy (action selection scheme). The attempt to get the optimal policy

is carried out with respect to a cost function so that the principal goal of it is

to optimize the performance measure over a long period of time. In general, RL

problems include value function, policy search and actor-critic methods. In the

value function RL the agent tries to get an optimal policy by first assigning a value

to the action that is resulted in moving to a new state then picks the action that

maximizes the value function. These methods are not usually well qualified for

8
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discrete state spaces and thus demand some function approximators to map the

discrete states to continuous ones as done by Gu et al. (2016) where a normalized

advantage function (NAF) is used to obtain the maximum value of the Q-function

analytically. In order to alleviate the need for estimating or learning the value

function, policy search methods are used. These methods, which use parameterized

policy, depend on maximizing the expected cumulative rewards. It is common to use

a Gaussian probability distribution for the parameterized policy when dealing with

continuous state spaces in which its mean and standard deviation can be considered

as the parameters. A detailed review to these methods can be found in Kober

et al. and Deisenroth et al. (2013). Benefiting from parameterized policies, have

facilitated employment of RL to dynamical systems, such as control of robots as

studied by Levine et al. (2016). Policy search methods can generally be divided into

gradient-free and gradient-based methods (known as policy gradient). The former

are usually suitable for low-dimensional spaces while its successful extensions for

high-dimensional spaces are found such as Koutńık et al. (2013) where a compressed

large-scale network search for the optimal policy is performed. Evolutionary search

algorithms have also been used as gradient-free methods in policy search problems

as did by Salimans et al. (2017). Policy gradient methods are effectively used in

high-dimensional state spaces. The works carried out by Peters and Schaal (2006)

and Peters and Schaal (2007) have shown their functionality in the robotics domain.

Among the existing RL approaches, a large portion of the policy search methods

has been dedicated to PG ones which captivated an enormous interest between the

researchers in the field due to their efficient applications. Despite this PGs are

guaranteed to converge to a local optimal policy. However, estimated gradients

suffer from high variance and this makes the convergence of the PG policy search

methods slow. Most recently, Pajarinen et al. (2019) have proposed to use Kullback-

Leibler (KL)-divergence and entropy bounds to update the natural gradients in

policy search problem. Opposed to Kober and Peters (2008) where policy gradients

are approximated for policy update step, Deisenroth and Rasmussen (2011) proposed
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a policy search method called PILCO where the transition model of the system

is modeled by Gaussian processes and policy improvement is done by analytically

calculating policy gradients. To estimate the gradients in PG methods, a recent

paper by Ciosek and Whiteson (2018) suggest summing over the chosen actions

by the stochastic policy rather than using the action selected during the sampled

trajectory.

Policy search methods which does not explicitly depend on a model of a sys-

tem are called model-free approaches where the required stochastic trajectories are

provided by drawing state action samples from the robot. In the model-based sce-

nario, instead of using real robots, simulation environments are hired and the learned

model dynamics are used for observing samples to create robot paths. A good exam-

ple for this case is done by Tangkaratt et al. (2014) where first a state space model

of the system is learned by using least square estimation method and then the policy

is obtained by policy gradients with parameter-based exploration method (PGPE)

which is already proposed by Sehnke et al. (2010). For an extensive study regard-

ing the model-based policy search please refer to Polydoros and Nalpantidis (2017).

Although working with simulations are easy in comparison to real robots, learning

a forward model of a system is challenging than learning a policy mapping. On the

other side, working with real robots is challenging due to the iterative interactions

that can result in probable damages that may occur to the robot.

The third category unifies the advantages of the the value function based and

policy search methods where the parameterized policy plays the role of an actor and

the critic is considered to be the learned value function. The parameterized policy

(here called actor) is advantageous since it can cope with continuous state action

spaces without any need for function approximators. On the other side, the critic

has the ability to calculate lower variance gradient estimates of the expected total

rewards for the actor. This property makes them superior over the other classes by

speeding up the convergence. A class of actor-critic methods with natural gradients
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can be found in Peters and Schaal (2008) and Schulman et al. (2015) where the

value of the critic is used to learn the actor. A comprehensive survey about the

actor-critic methods can be found in Grondman et al. (2012).

In recent years, as opposed to classical RL, Deep RL ( DRL) algorithms are

introduced. For instance, the prominent and pioneering ones preceded in the work

done by Mnih et al. (2015) which extends the Q-learning algorithm to deep neural

networks. Tangkaratt et al. (2018) propose a unique actor-critic method called

guided actor-critic (GAC) and claim that the deterministic policy gradient (DPG)

is actually a special case of their algorithm. Another formulation of the DPG, is

suggested by Lillicrap et al. (2015) as deep deterministic PG (DDPG), which relies

on the PG methods. For learning robust control policies a category of model-based

DRL methods are used by Finn et al. (2016) and Tzeng et al. (2015). The extension

of the actor-critic methods in the domain of DRL can be found in Wu et al. (2017).

2.2 Bayesian Inference and Markov Chain Monte

Carlo Methods

Bayesian optimization (BO) concept, which is dealt with completely in Brochu

et al. (2010), is considered as a useful tool for learning in an uncertain environment

while making decisions. It takes unknown parameters as random variables and

assumes some distributions over them to explicitly incorporate uncertainty. This

uninformative prior information over the parameters quantify the uncertainty to

balance the exploration-exploitation tradeoff. Although the primary goal in RL is to

opt for actions which makes the future rewards maximum according to the available

estimates of the model (exploitation), exploring the areas of the parameter space to

get possible high rewards are also inevitable. Bayesian inference for RL problems are

classified to model-free and model-based ones where for the former prior distribution
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is maintained over the parameters of the policy (or value function) whereas for the

latter the prior is taken over parameters of the state transition or reward function, as

discussed in Ghavamzadeh et al. (2015). The early examples of the Bayesian model-

free method can be found in Dearden et al. (1998) where they used prior distribution

for the Q-values in choosing the suitable action for discrete states. To extend the

idea to the continuous problems Engel et al. (2005) took Gaussian processes to model

Q-functions. Unlike the PG algorithms in RL which natural gradient methods have

been used to estimate the gradients in policy improvement step Ghavamzadeh and

Engel (2006) substituted the natural gradient approaches with a Bayesian structure

and modeled the policy gradients with Gaussian processes. They use a Bayesian PG

algorithm to estimate the posterior mean of the gradient of the expected return.

For the model-based case an explicit model of the system dynamics and the

structure of the reward function can be learned. For instance, Wilson et al. (2014)

put GPs on the model dynamics and attempt to learn their approximate mean

function leading in learning the dynamical model of the system and the reward

structure. Their approach was somehow limited to low dimensional state spaces. In

order to develop it and scale to high-dimensional states instead of using GPs, Gal

and Ghahramani (2016) and Higuera et al. (2018) propose to use Bayesian Neural

Networks (NN). A sample work which uses BO for modeling the expected reward

has been presented by Marco et al. (2017). They use a Bayesian method based on

entropy search to target parameters which maximally decrease the uncertainty about

the location of the minimum of the expected return. In order to speed up the learning

procedure in BO one solution is to take advantage of the prior information. To

reach this goal, Pautrat et al. (2018) leverage the existing multiple prior information

about the expected reward by proposing a method called Most Likely Expected

Improvement (MLEI).

All the above mentioned works in the Bayesian RL domain have concentrated

on putting prior distributions either over the system dynamics model or expected
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return and value function. In contrast to them we will attain priors over the pol-

icy parameters and considering the stochastic optimization tacked in Hoffman et al.

(2008) to cast the policy search problem to the Bayesian inference. Instead of tar-

geting the expected return, we define a posterior distribution which is proportional

to the expected return and try to sample the policy parameters form this posterior

distribution by using the MCMC algorithms covered in Andrieu et al. (2003) and

Cemgil (2013). Similar to our work Wilson et al. (2010) have proposed putting pri-

ors over the policy parameters but they have used a hybrid MCMC method based

on importance sampling which benefits from the gradient information approximated

via trajectories. Prior to them Hoffman et al. (2008) used the same idea as an alter-

native to policy search using expectation maximization. Subsequently, they made

some modifications to their approach for dealing with general MDPs by using re-

versible jump MCMC algorithm; see Fan and Sisson (2011), simulated annealing

and clustering techniques in Hoffman et al. (2012). Unlike them, we will employ

particle MCMC methodology explained in Andrieu et al. (2010) which replaces the

intractable likelihood with an unbiased estimator given by a particle filter. Recently

a policy guided Monte Carlo method (PGMC) has been proposed by Bojesen (2018)

to improve the performance of the MCMC. Although most of the MCMC algorithms

successfully can deal with the policy search problem, in high-dimensional state spaces

or when the number of parameters are high an adaptive structure would be benefi-

cial as considered by Andrieu and Robert (2001), Haario et al. (2005), Nguyen et al.

(2018).



Chapter 3

Reinforcement Learning in

Continuous State Spaces

Summary : In this chapter an overview to the RL structure, based on policy

search techniques, in the domain of learning continuous and high dimensional state

space dynamic systems driven by continuous input signals will be presented. General

notations for the RL problem will be introduced in 3.1. Subsequently, some well-

known policy gradient methods will be introduced.

3.1 Problem Statement and Background

In general, RL problems can be specified with the notion of Markov decision

processes (MDP). An MDP is defined by the tuple

(S,A, g, η, r)

Here, S ⊆ Rds , where ds > 0 represents a set of ds-dimensional continuous state

space, andA ⊆ Rda , da > 0, stands for a continuous action space (control command).

14
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We treat the state and action variables at time t as random variables St ∈ S and

At ∈ A whose realizations will be denoted as st and at, respectively. At time

t > 0, a transition from current state st to the next state st+1 as a result of taking

an action at admits a transition law described by the transition density function

g(st+1|st, at). We are interested in finite time horizon settings with a time length of

n which episodically restart from an initial state. We denote the probability density

for the initial state by η(s1). The reward function r : A × S × S → R assigns an

instantaneous real-valued scalar reward for the state transition from current state

st to the next state st+1 with action at, represented as r(at, st, st+1).

Let the control policy hθ(at|st) be a stochastic parameterized policy with pa-

rameter θ ∈ Θ ⊆ Rdθ for some dθ > 0 and policy space Θ. The stochastic definition

permits a characteristic resulting in exploration of the state space which is use-

ful for hidden MDPs where the optimal policy is proven to be stochastic (Sutton

et al. (2000)). The policy parameter θ corresponds to a probability density func-

tion hθ(at|st) for the randomized action At at time t given state St = st. Letting

Xt = (St, At) taking values in X = S ×A, this induces a Markov chain for {Xt}t≥1

with transition law

fθ(xt|xt−1) := g(st+1|st, at)hθ(at|st) (3.1)

where xt = (st, at). Therefore, the joint probability density of a trajectory (also

called path, or rollout) x1:n until time n is

pθ(x1:n) := fθ(x1)
n∏
t=2

fθ(xt|xt−1) (3.2)

where f(x1) = η(s1)hθ(a1|s1), the initial distribution for X1.

The objective of policy search in RL is to seek optimal or plausible policy param-

eters θ with respect to some expected performance of the trajectory X1:n. A trajec-

tory (path or rollout) is defined to be a collection of states s1:n+1 = [s1, s2, . . . , sn+1]
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and actions a1:n = [a1, a2, . . . , an]. Define Rn : X n → R to be the discounted sum of

the immediate rewards up to time n

Rn(x1:n) :=
n−1∑
t=1

γt−1r(at, st, st+1) (3.3)

where γ ∈ (0, 1] is a discount factor, and let U : R→ R be a monotonically increasing

and continuous utility function with inverse U−1. In a finite horizon reinforcement

learning setting, the performance of a certain policy, Jn(θ) based on U and Rn is

given by

Jn(θ) = Eθ[U(Rn(X1:n))] =

∫
pθ(x1:n)U(Rn(x1:n))dx1:n. (3.4)

where pθ(x1:n) is the trajectory distribution. Various works formulate reinforcement

learning as an inference problem for the policy parameter θ that is based on either

maximizing (some function of) Jn(θ) with optimization techniques such as Gullapali

et al. (1994), Dayan and Hinton (1997), Kimura and Kobayashi (1998), Toussaint

and Storkey (2006), Peters (2005), Mitsunaga et al. (2005), Kappen et al. (2012),

Maddison et al. (2017), or exploring admissible regions of Jn(θ) via some Bayesian

approach as done by Hoffman et al. (2008) and Wingate et al. (2011).

3.2 Gradient based Algorithms for Policy

Optimization

In some classical RL problems which are based on temporal differences as dis-

cussed in Sutton and Barto (1998), the expected reward of a policy for each indi-

vidual state per time step i.e. st is calculated. This quantity which is known as

value function V h(st), at each time step t, assesses the quality of each action at

in the state st. Then this value is used to compute and subsequently update the

policy h. However, since this value must be calculated for each state, it demands
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filling the whole state-action space with the corresponding information for the value

function. To explore the action space in order to find the one leading to an optimal

value is therefore computationally hard, especially when the action space is continu-

ous. Therefore, utilizing these methods in high-dimensional continuous state spaces

are challenging. Policy search methodologies which will be discussed next have

been proposed as alternatives to deal with the problems involved in value-based RL

methods.

There are different choices for the function U depending on the nature of the

reinforcement learning problem in terms of dealing with risk. A common choice is

U(x) = x, which corresponds to the risk-neutral case where the performance measure

of a policy reduces to its expected total reward. This case has been most extensively

studied in the literature. Especially, among the available RL methods, the policy

gradient algorithms which have drawn the most attention can be implemented in

high-dimensional state-action spaces. This makes them well-suited in the robotics

domain, where indeed problems usually involve coping with aforementioned spaces.

Usage of policy gradient algorithms has been pioneered in the works by Gullapali

et al. (1994). These methods have been employed to deal with complex control

and robotics problems, such as those dealt in Kimura and Kobayashi (1998), Peters

(2005), Mitsunaga et al. (2005), and Tavakol Aghaei and Onat (2017).

Specifically, the goal of policy optimization in RL is to quest optimal policy

parameters θ that maximize the expected value of some function of Rn.

θ̂ = arg max
θ∈Θ

Jn(θ). (3.5)

Although it is hardly ever possible to evaluate θ̂ directly with this choice of Rn,

maximization of Jn(θ) can be performed with policy gradient (PG) methods that
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utilize the steepest ascent rule to update their parameters at iteration i as

θ(i+1) = θ(i) + β∇Jn(θ(i)), (3.6)

where β is a learning rate and

∇Jn(θ) =

(
∂Jn(θ)

∂θ1

, . . . ,
∂Jn(θ)

∂θdθ

)T
is the gradient of the expected total reward with respect to θ = (θ1, . . . , θdθ). How-

ever, unless the state and the action spaces are finite or the Markov chain {Xt}t≥1

admit linear and Gaussian transitional laws, it is impossible or too difficult to eval-

uate the gradient ∇Jn(θ) in (3.6). In the sequel, we will review three main policy

gradient methods that are proposed to efficiently approximate ∇Jn(θ).

3.2.1 The REINFORCE Algorithm

One of the very first methods in estimating ∇Jn(θ) in (3.6) is the REINFORCE

algorithm introduced by Williams (1992) which exploits the idea of likelihood ratio

methods. Since Rn does not depend on θ, ∇Jn(θ) can be written as:

∇Jn(θ) =

∫
∇pθ(x1:n)Rn(x1:n)dx1:n. (3.7)

Next, by using (3.2) as well as the ‘likelihood trick’ identified by ∇pθ(x1:n) =

pθ(x1:n)∇ log pθ(x1:n), where the product converted to summation according to log-

arithm’s specifications, we can rewrite

∇Jn(θ) =

∫
pθ(x1:n)

[
n∑
t=1

∇ log hθ(at|st)

]
Rn(x1:n)dx1:n. (3.8)
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(3.8) includes the log-derivative of the policy distribution. Since the derivative of the

logarithm of the policy solely depends on the policy parameter, estimating a gradient

from paths is possible without an explicit model by swapping the expectation with

summation. This policy estimator is known as episodic REINFORCE. Due to the

lack of exact information about the trajectory distribution pθ(x1:n) or non-linearity

in pθ(x1:n), the integration over this probability distribution may not be possible.

The REINFORCE algorithm approximates ∇Jn(θ) by producing N ≥ 1 generated

trajectories of length n from pθ(x1:n),

x
(i)
1:n = (s

(i)
1 , a

(i)
1 , . . . , s

(i)
n , a

(i)
n )

i.i.d.∼ pθ(x1:n), i = 1, . . . , N,

and then performing the Monte Carlo estimate

∇Jn(θ) ≈ 1

N

N∑
i=1

[
n∑
t=1

∇ log hθ(a
(i)
t |s

(i)
t )

]
Rn(x

(i)
1:n). (3.9)

In Williams (1992), it is shown that this estimator suffers from high variance.

In order to reduce this variance, he proposes to make use of a baseline b ∈ Rdθ to

modify (3.9) as

∂Jn(θ)

∂θj
≈ 1

N

N∑
i=1

[
n∑
t=1

∂ log hθ(a
(i)
t |s

(i)
t )

∂θj

](
Rn(x

(i)
1:n)− bj

)
,

j = 1, . . . , dθ. (3.10)

This baseline b = (b1, · · · , bdθ) is adaptively calculated during iterations from sample

trajectories x
(i)
1:n in a heuristic manner so that the variance of the approximation is

minimized and it is adapted during the iterations.

∇θJ(θ) = Eθ [∇θ log pθ(x1:n) (R(x1:n)− b)] (3.11)
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This is an unbiased estimator as

∇θJ(θ) = Eθ [∇θ log pθ(x1:n)b] = b

∫
∇θpθ(x1:n)dx1:n

= b∇θ

∫
pθ(x1:n)dx1:n = b∇θ[1] = 0 (3.12)

In order to minimize the variance one should calculate the optimal baseline by

equating the gradient of the variance of (3.10) with respect to baseline b to zero as

∂

∂bj
V ar

[
∇θjJn(θ)

]
=

∂

∂bj
(E[(∇θjJn(θ))2]− E[∇θjJn(θ)]2) = 0 (3.13)

According to (3.12) the second expression in (3.13) would be zero. Putting the

equivalent expression for ∇θJ(θ) denoted by (3.11) in the first term of the right

hand side of (3.13) will yield in

∂

∂bj

(
E
(
∂

∂θj
log hθ(at|st)(R(x1:n)− bj)

)2
)

= 0 (3.14)

Thus by solving this equation with respect to b the optimal baseline will be obtained:

b =
E
((∑n−1

t=0 ∇θ log hθ(at|st)
)2
R(x1:n)

)
E
((∑n−1

t=0 ∇θ log hθ(at|st)
)2
) (3.15)

The resulting REINFORCE algorithm is given in Algorithm 1. The REIN-

FORCE algorithm utilizes the return of the entire episode to assess the quality of

the taken actions during each trajectory. The variance of the returns depends on the

length of the paths and may increase henceforth, the performance of the approxi-

mated gradient may get worse, regardless of whether it is utilized with the baseline.

One way to overcome this weakness is to use the rewards earned in each time step.
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This perception inspired the proposal of a new algorithm called Gradient in Partially

Observable Markov Decision Processes (GPOMDP); see Baxter and Bartlett (2000).

Algorithm 1: REINFORCE Algorithm

Input: Number of time steps n, Number of episodes N , Initial parameter θ
with dimension dθ

Output: Gradient estimate for expected return ∇θJ(θ)
for each episode e = 1, 2, . . . , N do

Collect the data set as trajectories {x1:n, u1:n−1, r1:n}e=1:N

Compute the expected discounted reward

Re(x1:n) =
n∑
t=1

γt−1r(at, st, st+1)

end
Calculate the optimal baseline

b =

∑N
e=1

((∑n−1
t=0 ∇θ log hθ(a

(e)
t |s

(e)
t )
)2

Re(x1:n)

)
∑N

e=1

((∑n
t=1∇θ log hθ(a

(e)
t |s

(e)
t )
)2
)

Approximate the gradient for each dθ

∇θJ(θ) =
1

N

N∑
e=1

n∑
t=1

∇θ log hθ(a
(e)
t |s

(e)
t )(Re(x1:n)− b)

3.2.2 The GPOMDP Algorithm

As previously stated the variance of the REINFORCE algorithm is directly

dependent on the number of visits to the state. Thus, its value is prone to get larger

whenever the state space is high-dimensional. The gradient estimation in GPOMDP

algorithm is done according to the instantaneous rewards rt which are being assigned

to the agent in each time step. It hinges on the fact that rewards are not correlated
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with future actions.

∇θJ(θ) = E

[
n∑
k=1

k∑
t=1

∇θ log hθ(at|st)(rk − bk)

]
(3.16)

Here expectation is over the samples in each episode and bk is the calculated base-

line for each time step similarly according to (3.15) with a difference that here for

GPOMDP the immediate rewards are used. The resulting algorithm is given in

Algorithm 2

Algorithm 2: GPOMDP Algorithm

Input: Number of time steps n, Number of episodes N , Initial parameter θ
with dimension dθ

Output: Gradient estimate for expected return ∇θJ(θ)
for each episode e = 1, 2, . . . , N do

Collect the data set as trajectories {x1:n, u1:n−1, r1:n}e=1:N

end
for each time step t = 1,2, . . . , n do

Calculate the optimal baseline for each time step

b =

∑N
e=1

(∑j
t=1∇θ log hθ(a

(e)
t |s

(e)
t )
)2

rj∑N
e=1

∑n
t=1

(∑j
t=1∇θ log hθ(a

(e)
t |s

(e)
t )
)2

Approximate the gradient for each dθ

∇θJ(θ) =
N∑
e=1

n∑
j=1

(
j∑
t=1

∇θ log hθ(a
(e)
t |s

(e)
t )

)
(r

(e)
j − bj)

end

3.2.3 The eNAC Algorithm

The policy gradient theorem given by Sutton et al. (1999) states that in the

approximated gradient of the cost function, instead of using the total reward of a

trajectory, the quality function of the state and action at a time step Q(st, at) can
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be used. Then the calculated gradient regarding the baseline can be given by:

∇θJ(θ) = E

[
n∑
t=1

∇θ log hθ(at|st)(Q(st, at)− bt)

]
(3.17)

In order to estimate the quality function Q(st, at) function approximation meth-

ods have been proposed in Sutton et al. (1999). This function which is known as an

advantage function is composed of the combination of some basis functions φ with

parameter weight vectors w and given as:

Aw(st, at) = φ(st, at)
Tw ≈ Q(st, at)− bt (3.18)

For the sake of simplicity, it is assumed that the baseline is zero. Now we

should find a parameter vector that can minimize the squared error between the

quality function and the advantage function:

∂

∂w
E

[
n∑
t=1

(Q(st, at)− Aw(st, at))
2

]
= 0 (3.19)

By taking the derivative in (3.19) we will get:

2E

[
n∑
t=1

(Q(st, at)− Aw(st, at))
∂

∂w
Aw(st, at)

]
= 0 (3.20)

By subtracting the resulting equation from equation (3.17) by the assumption that

the baseline is zero and considering ∂
∂w
Aw(st, at) = φ(st, at) one can get:

∇θJ(θ) = E

[
n∑
t=1

∇θ log hθ(at|st)Aw(st, at)

]
(3.21)
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By taking basis functions to be φ(st, at) = ∇θ log hθ(at|st) and considering the

fact that Aw(st, at) = φ(st, at)
Tw then the gradient can be rewritten as:

∇θJ(θ) = E

[
n∑
t=1

∇θ log hθ(at|st)∇θ log hθ(at|st)T
]
w = Gθw (3.22)

It is shown by Peters and Schaal (2008) that the matrix Gθ cancels out for the

natural gradient and thus the approximated gradient of the cost function needs solely

the calculation of parameter vector w. They proposed the episodic Natural Actor

Critic (eNAC) algorithm to obtain these parameters where the problem has been

treated as a regression one. The complete derivations regarding the eNAC algorithm

can be found in Peters (2007). This algorithm is summarized in Algorithm 3. Note

that we limit ourselves to the survey of just those strategies which are firmly related

to the work in this thesis.
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Algorithm 3: The eNAC Algorithm

Input: Number of time steps n, Number of episodes N , Initial parameter θ
with dimension dθ

Output: Gradient estimate for expected return ∇θJ(θ) = w
for each episode e = 1, 2, . . . , N do

Collect the data set as trajectories {x1:n, u1:n−1, r1:n}e=1:N

Copmute the expected discounted reward

Re(x1:n) =
n∑
t=1

γt−1r(at, st, st+1)

Compute the feauture matrix

ψe =

[∑n
t=1∇θ log hθ(a

(e)
t |s

(e)
t )

φ(s(e))

]
end
Establish the feature and return matrices

R =
[
R1, R2, . . . , RN

]
, ψ =

[
ψ1, ψ2, . . . , ψN

]
Using regression problem calculate the vector of parameters w[

w
v

]
=
(
ψTψ

)−1
ψTR



Chapter 4

Monte Carlo Methods

Summary : In this chapter the principle ideas of the Monte Carlo methods

including importance sampling, Markov Chain Monte Carlo (MCMC), Metropolis-

Hastings, Sequential Monte Carlo will be sketched first. Then these methods in

the context of the Bayesian inference will be extended to the reinforcement learning

setting. The objective is to propose an MCMC algorithm for the problem of policy

search in the RL paradigm.

4.1 Monte Carlo Approximation

The motivation is to take expectation over a measurable function which is

defined by some random variable X → X and denoted by ω : X → Rdω with a

probability distribution as p(x):

Ω = E [ω(X)] =

∫
X
p(x)ω(x)dx (4.1)

Solving this integral is possible by using analytical integration methods under the

condition that both the kernel distribution p(x) and the measurable function ω(x)

26
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are completely available and known. However, in most cases, an explicit model of

a system is not at hand and thus these situations do not hold. Another challenge

arises when the dimensionality of the variable space dX is large i.e., the computation

complexity explodes exponentially with the dimension of X . This phenomenon is

known as curse of dimensionality (Bellman (1957)). Robotic frameworks frequently

need to manage these high-dimensional states and actions because of the numerous

degrees of freedom (DoFs) of modern robots. Therefore, numerical methods can

hardly be applied to these problems. A promising option in contrast to deterministic

techniques for integration issues is Monte Carlo method, where random samples are

drawn from some artificial distributions (easy to sample from) and then these data

samples are used to estimate the integral.

In the Monte Carlo methods, the distribution which is going to be approx-

imated Ω is targeted with N independent, identically distributed (i.i.d) samples

X [1], X [2], . . . , X [N ] which are either directly drawn from Ω or from an instrumental

expert designed distribution. By averaging over these N examples the distribution

Ω will be approximated.

Ω ≈ 1

N

N∑
i=1

ω(X [i]) (4.2)

It is proven that this estimator is an unbiased estimator and when the number

of samples N approaches infinity, the convergence of the estimator is guaranteed

(Rosenthal (2006)).

4.2 Importance Sampling

As it maybe obvious from its name, Importance Sampling (IS) puts weights

on samples depending on their significance and similarity degree between them. IS

is regularly exhibited as a strategy for decreasing the variance of an approximated
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expectation via cautiously picking a distribution. In general, the goal is to evaluate

the integral
∫
f(x)p(x)dx by i.i.d ∼ p(x). Now instead of taking samples from p(x)

a new distribution which is easy to sample from namely q(x) is introduced. Then

approximating the integral changes to estimating the following one:

P (f) = EP [f(X)] =

∫
f(x)

p(x)

q(x)
q(x)dx, i.i.d ∼ q(x) (4.3)

The ratio p(x)/q(x) is called the weights W (x) of the IS. This estimator is always

unbiased if and only if both p(x) and q(x) own the same support. One modification

to the IS formulation is normalized IS where it is divided by sum of the weights

applied to the samples:

PIS(f) =

∑N
i=1 f(x[i])W (x[i])∑N

i=1W (x[i])
(4.4)

Importance sampling in the subject of RL has been incorporated as a func-

tion approximation tool to estimate the Q-values (Precup et al. (2001) and Precup

et al. (2000)). It has also been used to improve the REINFORCE algorithm for the

partially observable MDP problems (Meuleau et al. (2001)).

4.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) algorithms are alternatives for sampling

from distributions which are complex. MCMC is dependent on the creation of an

ergodic Markov Chain where its samples are able to imitate the ones drawn from

the objective distribution. It should be noted that, MCMC demands a stationary

distribution π to converge to.

A chain with a Markovian property is a sequence of samples {Xn}n≥1 drawn

from a transition probability P where n is an index for the sample number which
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has the following attribute:

p(Xn|X1:n−1 = x1:n−1) = p(Xn|Xn−1 = xn−1) (4.5)

expressing that the present state of the chain at time n given all the preceding states

relies only on the previous state at time n− 1.

MCMC methods have drawn attention in various branches such as machine

learning, image processing and statistics (Andrieu et al. (2003) Erdil et al. (2016)

Yıldırım et al. (2015)).

4.3.1 Metropolis-Hastings Algorithm

A very simple yet applicable class of MCMC algorithms is Metropolis-Hastings

(MH) discussed in Hastings (1970) and Metropolis et al. (1953). The overall insight

of the MH algorithm consists of proposing a new value x′ conditional on its previous

value x from a candidate proposal kernel q(x′|x). The Chain then either admits

it and the next state exploration happens around the accepted value or denies the

proposed value x′ and the current value does not encounter a change. The acceptance

ratio of the MH algorithm is according to:

α(x′, x) = min

{
1,
q(x|x′)π(x′)

q(x′|x)π(x)

}
(4.6)

A general form of the MH algorithm is summarized in Algorithm 4.

4.4 Sequential Monte Carlo

A recursive type of the importance sampling is known as Sequential Monte

Carlo (SMC) which is useful for the situations with sequential interactions. Lets
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Algorithm 4: The MH Algorithm

Input: Number of iterations i, Initial value for sample x(1)

for each episode iteration i = 1, 2, . . . , N do
Sample a uniform random number u ∼ U [0, 1]
Sample a candidate value from the proposal kernel given the current
value x′ ∼ q(x′|x(i))

Compare the acceptance probability with the drawn uniform random
number

if u ≤ α(x′, x) = min
{

1, q(x|x
′)π(x′)

q(x′|x)π(x)

}
proposal is accepted ; x(i+1) = x′

else
proposal is rejected ; x(i+1) = x(i)

end
end

assume a sequence of random variables {Xn}n≥1 over a space X with a sequence

of distributions {πn}n≥1. A sequence of real-valued functions {φn}n≥1 are also de-

fined. The objective is to compute the expectation over the real-valued function in

a sequential manner as:

πn(φn) = Eπn [φn(X1:n)] =

∫
φ(x1:n)πn(x1:n)dx1:n (4.7)

In the sequel we will describe how to deal with this integral.

4.4.1 Sequential Importance Sampling and resampling

The proposal importance distributions for the πn(x1:n) can be defined in a

sequential form {qn(x1:n)}n≥1 as importance weights defined by the following term:

wn(x1:n) =
πn(x1:n)

qn(x1:n)
(4.8)



Chapter 4 Monte Carlo Methods 31

since the importance density qn(x1:n) has a sequential behavior it can be written in

the following form:

qn(x1:n) = q(x1)
n∏
t=2

q(xt|x1:t−1) (4.9)

with an initial distribution of q(x1). In this direction, the equation (4.8) can be

rearranged as:

wn(x1:n) =
πn(x1:n)πn−1(x1:n−1)

qn−1(x1:n−1)πn−1(x1:n−1)
= wn−1(x1:n−1)

πn(x1:n)

πn−1(x1:n−1)q(xn|x1:n−1)
(4.10)

The calculated importance weight then is used to obtain the normalized version of

it which is utilized in the sequential importance sampling (SIS) algorithm which is

given in Algorithm 5

W (i)
n =

wn(X
(i)
1:n)∑N

i=1wn(X
(i)
1:n)

(4.11)

An issue with IS is that, except if the proposal distribution q(x1:n) is very similar

to the objective true distribution πn(x1:n), the normalized weights will ordinarily put

their significance in just a single particle leading to a small number of particles with

a large weight in comparison to the others. This phenomenon is called the weight

degeneracy problem. To overcome this problem a resampling step is introduced. In

the resampling procedure, samples are drawn from the weighted distribution X
(i)
1:n−1

(with different weights) and are substituted with the particles which are equally

weighted X̃
(i)
1:n−1. For performing resampling, first we approximate πn−1(x1:n−1) as:

π̂n−1(x1:n−1) =
N∑
i=1

W
(i)
n−1δ(x

(i)
1:n−1) (4.12)
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Algorithm 5: The SIS Algorithm

Input: Number of iterations i, number of time steps n
for n = 1, 2, . . . do

for iterations i = 1,2,. . . ,N do
if n = 1

Sample from initial density X(i) ∼ q(X1)

Compute its corresponding importance weight w1(X
(i)
1 ) =

π1(X
(i)
1 )

q1(X
(i)
1 )

else
Sample X

(i)
n ∼ q(X

(i)
n |X(i)

1:n−1), Compose the data

X
(i)
1:n =

(
X

(i)
1:n−1, X

(i)
n

)
Compute the importance weight

wn(X
(i)
1:n) = wn−1(X

(i)
1:n−1)

πn(X
(i)
1:n)

πn−1(X
(i)
1:n−1)q(X

(i)
n |X(i)

1:n−1)

end
for iterations i = 1,2,. . . ,N do

calculate the normaliozing importance weight

W (i)
n =

wn(X
(i)
1:n)∑N

i=1wn(X
(i)
1:n)

end

end

Now N particles are independently drawn from π̂n−1(x1:n−1) according to the fol-

lowing probability density:

X̃
(i)
1:n−1 ∼ P(X̃

(i)
1:n−1 = X

(i)
1:n−1) = W

(j)
n−1 (4.13)

Then these particles are used to approximate an equally weighted function with

weights 1/N

π̂n−1(x1:n−1) =
1

N

N∑
i=1

δ(x̃
(i)
1:n−1) (4.14)

In the next step we have π̂n−1(x1:n−1) and can estimate πn(x1:n) by drawing samples

X
(i)
n from the resampled distribution as X

(i)
n ∼ q(X

(i)
n |X̃(i)

1:n−1) and after constructing
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the data samples as X
(i)
1:n =

(
X̃

(i)
1:n−1, X

(i)
n

)
, weights are assigned to them as following:

Wn(X
(i)
1:n) =

πn(X
(i)
1:n)

πn−1(X̃
(i)
1:n−1)q(X

(i)
n |X̃(i)

1:n−1)
(4.15)

4.5 Sequential Markov Chain Monte Carlo

Algorithm for Reinforcement Learning

4.5.1 Introduction

Policy search approaches have encouraged the use of reinforcement learning

(RL) to dynamic frameworks, for example, control of robots. Numerous policy

search algorithms depend on the gradient based methods, and in this manner may

encounter the ill effects of slow convergence or local optima difficulties. In the pre-

sented thesis, we adopt a gradient-free Bayesian inference strategy to the policy

search problem under RL setting, for the case of controlling a discrete time Markov

Decision process with continuous state and action spaces. The method consists

of accepting a prior density over unknown policy parameters and then targeting

the posterior distribution where the likelihood is considered as the expected re-

turn. We propose a Markov chain Monte Carlo (MCMC) algorithm as a strategy

for creating samples for the policy parameters from the objective posterior func-

tion. The proposed algorithm is compared with certain outstanding gradient based

RL techniques and shows progressively proper performance regarding time response

accomplishments and convergence speed.

We advocate a unique RL policy search technique utilizing Particle Markov

chain Monte Carlo (P-MCMC), an ongoing and effective group of MCMC strate-

gies for complex distributions. Our algorithm is best pertinent for risk-sensitive
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situations, where a multiplicative expected total reward is used to quantify the per-

formance of the executed actions, as opposed to the more typical additive one; since

with a multiplicative structure for the return function, one can completely use se-

quential Monte Carlo (SMC), known as the standard particle filters (Doucet et al.,

(2001)) inside the iterations of the P-MCMC.

The proposed algorithm does not require gradient computations and along these

lines it does not create a point-wise estimate for the policy, rather, it appraises

the approximations done over the expected reward straightforwardly and supplies

samples from the policy density which would then be able to be utilized to investigate

the surface of the policy performance to recognize the ideal areas throughout the

policy space. In this way, it does not face the danger of stalling out in nearby

local optimal points or veer from its desired solution because of the bad choices of

learning rate for the gradient ascent laws. In that sense, our proposed strategy might

be invaluable, in any event, in terms of breadth of applicability, over techniques that

do require gradient calculations. The claims on robustness and convergence are

bolstered with given numerical investigations and simulations in Chapter 5.

4.5.2 Policy Search Based on Reward Assessment

Here we take the structure of the Markov Decision Process (MDP) the same as

that discussed in Section 3.1. The term policy search in RL refers to an ultimate

goal of an agent (controller) for finding optimal policy parameters θ considering

the quality of the expected cost of a given trajectory x1:n. Assume a discounted

summation of the instantaneous rewards over a trajectory in each step time given

as:

R (x1:n) =
n−1∑
t=1

γt−1r (st, at) (4.16)
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where x1:n = [(s1, a1), (s2, a2), . . . , (sn, an)] is a trajectory of state-action pairs ob-

tained from the state space transition kernel, γ is a discount factor and r is a

real-valued reward at each time. Consider a monotonically increasing and continu-

ous utility function (Howard and Matheson (1972)) as U : R → R with its inverse

denoted as U−1. In a finite horizon RL setting, the performance of a certain policy

is given as:

J(θ) = Eθ [U(R(X1:n)] =

∫
pθ(x1:n)U (R(X1:n)) dx1:n (4.17)

where pθ(x1:n) is the path transition density. Some papers focus on RL problem as

an inference mechanism which try to solve the policy search problem by maximizing

J(θ) via hiring optimization tools such as Toussaint and Storkey (2006), Kappen

et al. (2012) Kimura and Kobayashi (1998). Some other works use Bayesian methods

to search for favorable portions of J(θ) such as Hoffman et al. (2008) and Wingate

et al. (2011). In this study we extend the idea to the risk-sensitivity in RL and

incorporate Bayesian inference to cope with the policy search dilemma.

We go for a specific alternative for the utility function U in the form of an

exponential one:

U(X) =
1

κ
exp(κX) (4.18)

where κ > 0 is a risk component. By this choice we can rewrite the relation for the

cost function J(θ) given in equation 4.17:

J(θ) = Eθ
[

1

κ
exp(κR(X1:n))

]
=

1

κ

∫
pθ(x1:n)

n−1∏
t=1

exp
{
κr(at, st, st+1)γt−1

}
dx1:n. (4.19)

where in the structure of the return function instead of additive return we used

a multiplicative reward function. Then the classical policy search problem in the

finite time horizon can be modified to a risk-sensitive framework where the goal is to
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seek for policy parametrization θ ∈ Θ that maximizes U−1(J(θ)) which is the same

problem as to maximizing J(θ), see Osogami (2012) and Marcus et al. (1997). The

risk-sensitivity can manage the uncertainty occupied in the return function in the

RL framework. The source of the uncertainties are naturally because of the either

characteristic stochastic model dynamics or parameters involved (Tamar (2015)).

There exist some papers which focused on risk sensitive RL. For example, Geibel

and Wysotzki (2011) have made use of some error states to create the risk and then

applied it to the value function based RL. Another work done by Mihatsch and

Neuneier (2002) assigned temporal differences (TD) errors to be the risk-sensitive

element instead of changing the structure of the return and established the risk-

sensitive category for the Q-learning algorithm. In a recent attempt by Shen et al.

(2013), a risk-sensitive Q-learning algorithm for unknown state-spaces have been

extracted. In fact, these algorithms are applicable for discrete state spaces and

therefore in a general sense differ from our structure where the control problem in

MDPs with continuous state and action spaces are concerned.

The cumulative expected reward leads to approximations with large bias and

variance as elaborately argued by Maddison et al. (2017). To lighten this issue,

we will transform the return function to an exponential multiplicative total reward.

The contribution of this step emerges in the reformulation of the policy search in

a Bayesian inference form where the expected multiplicative return, is handled as

if it is a likelihood function. The supporting idea to opt for an expectation of a

multiplicative return is the ability to employ unbiased lower variance estimators of

J(θ).

4.5.3 Bayesian inference as a tool for policy search

The primary commitment in this work is to propose a Bayesian methodology for

RL that is executed by means of MCMC. In particular, our procedure is a particle
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MCMC calculation including a SMC (particle filter) in its iterations. The novelty

of the presented approach is due to a formulation of the policy search problem in a

Bayesian inference where the normal expected multiplicative reward is treated as a

pseudo-likelihood function. The purpose behind taking J(θ) as an expectation of a

multiplicative reward is the capacity to utilize lower variance and unbiased estima-

tors of it, in spite of the techniques that employ the additive reward functions which

lead in approximations with high variance. Rather than attempting to think of a

single policy parametrization, the problem is extended into a Bayesian setting where

the performance function J(θ) is considered as a likelihood function of θ. Then a

posterior distribution π(θ) is constructed which is proportional to the multiplication

of an informative prior function of policy parameters µ(θ) with the cost function as:

π(θ) ∝ µ(θ)J(θ) (4.20)

in which instead of dealing directly with J(θ), we choose π(θ) as an artificial distri-

bution and perform sampling through MCMC algorithm. By this method we can

benefit from the fact that the areas with high reward can be thoroughly investigated

by the agent until it is adequately sure that no other policy improvement will occur

which leads to ending up with the optimal parameters among the solution space.

There exist likewise Bayesian techniques for policy learning proposed for a

particular choice of the utility function as U(x) = x. Like our structure, these

approaches put a prior distribution with probability density µ(θ) over the policy

parameter θ and employ some reasonable function of J(θ) as the likelihood function

to establish an instrumental posterior distribution to target. For instance, a trans-

dimensional MCMC algorithm which is essentially based on Expected Maximization

(EM) algorithm is presented for sampling from π(θ) in the work done by Hoffman

et al. (2007). Another option for tackling the posterior density is proposed in Wilson

et al. (2010) where a hybrid MCMC algorithm based on importance sampling is used.

Unlike our work Wingate et al. (2011) allow for negative rewards in the structure of
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the value function but use the exponential form of it as likelihood and then employ

an approximate MCMC algorithm to draw samples from the posterior function.

Additionally, there are hybrid methods as the EM algorithm, where the aim is to

maximize the value function V (π) with respect to policy parameters by applying

forward-backward algorithms as shown by Toussaint and Storkey (2006). Lately in

Maddison et al. (2017), similar to our work, an exponential utility function has been

chosen for the risk-sensitivity case for the return function but they tackle the policy

search problem in RL with particle filter based value function and then update the

polices with policy gradient algorithms.

4.5.4 Policy search via MCMC

In this part, the advantages of the Bayesian approach will be clarified. The

problem of our interest is focused on the control of an MDP with continuous state

and action space in discrete time.

In the situation where the analytical evaluation of the integrals mentioned in

equation (4.17) is not easy to handle (intractable), approximation methods can play

an essential role. Although, as an estimator a suitable alternative would be the

use of classical numerical integration methods, they may face the so called curse of

dimensionality problem. It is due to the explosion of the computation load with

the number of dimensions. A promising choice for the numerical integration can

be Monte Carlo estimators. A famous category of these estimators is MCMC al-

gorithms which have drawn interest among the experts ranging from statistics to

Machine Learning. MCMC methods are well-suited for high-dimensional complex

distributions where sampling are difficult. It is a sampling approach constructed for

a deep search of the parameter space and puts its concentration more on the most

prominent parts of the space where the value of the total expected reward is large.



Chapter 4 Monte Carlo Methods 39

Taking into account the relation (4.20), it is computationally hard to handle the

posterior distribution π(θ) which includes an intractable integral derived from J(θ).

MCMC techniques are based on creating an ergodic Markov chain
{
θ(m)

}
m≥0

which is guaranteed to finally provide samples distributed with respect to a target

distribution, starting from an initial point θ(0), which has the true target distribution

as the stationary distribution, for our situation π(θ). Statistically, en ergodic Markov

Chain stands for a chain which has the property of being irreducible and aperiodic.

For finite state Markov chains, irreducibility implies that each state can be visited

beginning from each of them and aperiodicity signifies that each state can be visited

any time step n greater than some fixed number. In the event that one reproduces

such a Markov chain, after a sufficiently long time the samples of the Markov chain

will concede π(θ). Generally speaking, sampling from a target distribution with a

transition kernel P considering the samples
{
X(i)

}
i≥0

from Markov Chain occurs in

the following manner. Given a current initial sample x(1), a next sample state x(2) is

drawn. Then x(3) is sampled conditioned on the previous sample x(2). This process

continues sequentially according to the transition probability P (x(n)|x(n−1)). Then

the target distribution at time n denoted as πn(x) with respect to the transition

kernel P becomes:

πn(x) =

∫
P (x|x′)πn−1(x′)dx′ (4.21)

which results in a sequence of marginal distributions {πn}n≥1.

4.5.4.1 Metropolis-Hastings algorithm for policy search

The main question here is how to find a transition kernel P that is easy to

sample from, and target density π(θ) is its invariant distribution i.e., in the long run

when n approaches infinity it should meet π = Pπ. The answer is to use the simple

yet famous Metropolis-Hastings (MH) algorithm. Apparently, the most widely used

MCMC method is the MH methodology where most of the useful MCMC algorithms
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can be conceived as special cases or expansions of this method. While, this approach

does not present any method to determine an explicit mathematical expression to

the distribution which is typically difficult to obtain even for discrete state spaces

case, it just conveys a procedure to draw samples given the past ones.

The strategy of the MH algorithm for the invariant density π(θ) incorporates

sampling a candidate proposal θ′ given the present one θ(m−1) = θ for trials m =

1, 2, . . . as indicated by a proposal density q(θ′|θ) as

θ′ ∼ q(θ′|θ).

steering the chain towards the proposal indicating that the proposed value θ′ is

accepted with an acceptance probability of α(θ, θ′) = min{1, ρ(θ, θ′)}, (for which

0 ≤ α(θ, θ′) ≤ 1) and thus the current quantity of the parameter changes as θ(m) = θ′

or it remains the same as its previous value θ(m) = θ expressing that the proposed

value is dismissed. The acceptance ratio is formulated as:

ρ(θ, θ′) =
q(θ|θ′)
q(θ′|θ)

π(θ′)

π(θ)
=
q(θ|θ′)
q(θ′|θ)

µ(θ′)J(θ′)

µ(θ)J(θ)
. (4.22)

when a symmetrical proposal distribution is chosen the acceptance rate will be sim-

plified to:

ρ(θ, θ′) =
π(θ′)

π(θ)
(4.23)

The transition kernel P in the MH step is defined as:

P (θ′|θ) = q(θ′|θ)α(θ, θ′) + δ(θ − θ′)β(θ′) (4.24)

where δ(.) is the Delta Dirac function and β is the rejection probability with 0 ≤

β(θ′) ≤ 1 which is given as:

β(θ′) =

∫
(1− α(θ, θ′)) q(θ′|θ)dθ (4.25)
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Samples are not directly picked from the transition kernel P , they are instead

sampled from the proposal distribution q(θ′|θ), yet dismissing a portion of the sam-

ples drawn. Usually, evaluating P is not feasible since most of the time it is in-

tractable. It is worth noting that the choice of the proposal distribution is essential

to the extent that the statistical features of the Markov chain strongly depend on

this decision. An inadequate decision brings about potentially poor performance of

the Monte Carlo estimators. To be specific, the efficiency of the MH algorithm de-

pends on the quality of the selected standard deviation of the proposal distribution.

On the unlikely case that it is excessively limited, it will generate samples which are

closely correlated and mixing slowly. Then again, in case it is excessively wide, the

rejection rate can be remarkably high resulting in the repetition of the old param-

eters during the new iterations. Generally, samples created by the MCMC should

be mixed well such that they effectively overlook their previous values. Specifically,

it is necessary to choose a logical proposal variance to guarantee well-mixing. It is

simple to demonstrate that the samples produced by MH algorithm will converge

asymptotically to those drawn from the target distribution, as shown by Andrieu

et al. (2003).

The MH algorithm requires the ability of calculating the acceptance ratio

ρ(θ, θ′) for any given θ, θ′ ∈ Θ. For our case, this is not possible since calcula-

tion of ρ(θ, θ′) demands computation of both J(θ) and J(θ′) which is not generally

feasible due to the complex formulation of J(θ) in (4.19). Despite this, we are still

able to target π(θ) using an MCMC algorithm in case unbiased and non-negative

estimates of J(θ) can be found i.e,. obtain random variables Ĵ(θ) ≥ 0 such that we

have:

E[Ĵ(θ)] = J(θ)

The MH algorithm that uses such estimate Ĵ(θ) instead of J(θ) is called the
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pseudo-marginal MH algorithm (PMMH) (Andrieu and Roberts (2009)). The appli-

cation of the proposed PMMH algorithm for our RL problem is given in Algorithm 6.

For a broader family of such algorithms for hidden Markov models (HMM), namely

particle MCMC algorithms; refer to Andrieu et al. (2010). Algorithm 6 reveals that

dealing with non-negative unbiased estimators of J(θ) denoted as Ĵ instead of J(θ)

itself is possible, and we can still target π(θ) directly.

Algorithm 6: Pseudo-marginal Metropolis-Hastings for reinforcement learn-
ing

Input: Number of time steps n, initial value and estimate of expected
performance (θ(0), Ĵ (0)), proposal distribution q(θ′|θ), number of
particles N

Output: Samples θ(k), k = 1, 2, . . .
for k = 1, 2, . . . do

Given θ(k−1) = θ and Ĵ (k−1) = Ĵ , sample a proposal value θ′ ∼ q(θ′|θ).
Obtain an unbiased estimate Ĵ ′ of J(θ′) by using Algorithm 7 with N
particles.

Accept the proposal and set θ(k) = θ′ and Ĵ (k) = Ĵ ′ with probability
min{1, ρ̂(θ, θ′)} where

ρ̂(θ, θ′) =
q(θ|θ′)
q(θ′|θ)

µ(θ′)

µ(θ)

Ĵ ′

Ĵ
,

otherwise reject the proposal and set θ(k) = θ and Ĵ (k) = Ĵ.
end

4.5.4.2 SMC for approximating the cost function J(θ)

The challenge now is getting unbiased estimators of J(θ) for any given policy

parameter θ. Considering the point that a multiplicative expected reward function

is used we can come up with a solution for this problem by employing an SMC

algorithm. The basic concepts of the SMC method have already been covered in

section 4.4.1. For sake of simplicity (and without loss of generality regarding the

validity of our methodology), we will assume from now on that κ = 1 and the
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immediate reward function only depends on xt = (at, st). With this assumption, we

can rewrite the equation for J(θ)

J(θ) =

∫
fθ(x1) exp{r(a1, s1)}

n−1∏
t=1

fθ(xt|xt−1) exp
{
γt−1r(at, st)

}
dx1:n, (4.26)

which suggests that we may extend the problem of estimating the expected return

in our RL setting into the framework of Feynman-Kac formulae stated in Del Moral

(2004), in which {Xt}t≥1 is the Markov chain and exp{γt−1r(at, st)} is the potential

function at time t. In other words, we can think of {Xt}t≥1 as the latent Markov

process of a hidden Markov model, and γt−1r(at, st) as the conditional observation

density at time t for some fixed observation. It was shown in Del Moral (2004) that

a non-negative and unbiased estimator of J(θ) can be obtained by running a SMC

algorithm, known as particle filter, as in Algorithm 7.

Algorithm 7 includes propagation, weighting, and re-sampling of N particles

(samples) at a time step. When only one particle is used i.e. N = 1, the algo-

rithm is simplified to sampling a single trajectory X1:n ∼ pθ(x1:n) and computing

exp {R(X1:n)} =
∏n

t=1 e
γt−1r(Xt) as an estimate of the expected total reward.

We hereby point out some results which connect RL and hidden Markov models

in the context of Feynman-Kac formulae by implementing inference methods used

for hidden Markov models and RL. For example, an Expectation Maximization

(EM) algorithm has been used for discrete and Gaussian RL settings in Toussaint

and Storkey (2006). An approximate inference tool based on EM used for more

complex situations in Rawlik et al. (2010). Likewise, in a most recent paper by

Maddison et al. (2017), Algorithm 7 has been used for an unbiased estimator of

J(θ). While they employ this estimator to update the policy parameters by using

policy gradient algorithm, we implement an MCMC algorithm by traversing the

space of the posterior distribution in a Bayesian learning framework.
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Algorithm 7: SMC algorithm for an unbiased estimate of J(θ)

Input: Policy θ, number of time steps n, discount factor γ
Output: Unbiased estimate of Ĵ
Start with Ĵ0 = 1.
for t = 1, . . . , n do

for i = 1, . . . , N do
if t = 1 then

Sample X̂
(i)
1 ∼ ηθ(x1).

else

Sample X̂
(i)
t ∼ fθ(·|X(i)

t−1) using the transition density
end

Calculate W
(i)
t = eγ

t−1r(X̂
(i)
t ).

end
if t < n then

Resample from {X̂(i)
t , i = 1, . . . , N} with probabilities proportional

to {W (i)
t , i = 1, . . . , N} to obtain resampled particles

{X(i)
t , i = 1, . . . , N}, i.e.

P (X
(i)
t = X̂

(j)
t ) =

W
(j)
t∑N

j′=1W
(j′)
t

, i = 1, . . . , N.

end

Update the estimate: Ĵt = Ĵt−1 × 1
N

∑N
i=1W

(i)
t return Ĵ.

end

4.6 Adaptive MCMC for Policy Search

in High-dimensional State Spaces

4.6.1 Introduction

Dealing with nonlinear and complex systems in case of the parameter estima-

tion is conceived to be a challenging task in different aspects, specially control and

robotics systems due to the inherent large scale dimensions. Three common sense

solutions to this problem are categorized as Expectation Maximization (EM) (see

for example the method taken by Fearnhead et al. (2010) for state space parameter
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estimation), gradient based (such as policy gradient RL performed by Peters (2005),

where the gradients are estimated and PILCO where the gradients are calculated

analytically as introduced in Deisenroth and Rasmussen (2011)) and Bayesian in-

ference methods (a current complete review by Kantas et al. (2015)). Although the

advantage of the Bayesian methods over both EM and gradient-based is that it can

be computationally cheaper, the other two may better be scaled to high-dimensional

state spaces. One common disadvantage for the gradient based and EM is that they

are prone to get stuck in local optima, whereas the Bayesian inference can skip local

solutions and come up with a global one. In this section, we intend to improve

the performance of the proposed MCMC algorithm to approximate the policy pa-

rameters of a nonlinear state-space model in a way that it becomes well-suited for

high-dimensions. For this purpose, the proposed MCMC algorithm will be modified

to an adaptive form. (Adaptive-MCMC). The reason for this is that tuning the

parameters of the proposal distribution by hand is not practical due to the large

number of variables. To show the effectiveness of the proposed Adaptive-MCMC

algorithm, it will be applied on a nonlinear model of a Ballbot system to control the

stabilization of the yaw, pitch and roll. The resulting successful simulations will be

presented in Chapter 5.

4.6.2 Bayesian inference for general state space framework

State space models (generally Hidden Markov models (HMM)), constitute a

sequence of latent Markov Decision Process (MDP) state models {Xt}t≥1 taking

values in some measurable space X ⊆ Rdx . The MDP can be categorized by its initial

distribution η(.) and corresponding state transition density fθ(.) where θ ∈ Θ ⊂ Rdθ

is the unknown parameter vector. Assuming a sequence of observations {Yt}t≥1

made for the latent variables from the measurement distribution gθ(.) we have

X1 ∼ η(.)
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xt ∼ fθ(xt|xt−1); t = 2, 3, . . .

yt ∼ gθ(yt|xt)

Bayesian method aims to find the latent HMM states which are conditioned

on some observations up to a final time T i.e., calculating the marginal posterior

distribution p(x1:T |y1:T ) as following:

p(xt|y1:t) =

∫
gθ(yt|xt)fθ(xt|xt−1)

p(yt|y1:t−1)
p(xt−1|y1:t−1)dxt−1 (4.27)

Generally speaking, unless the state space model is either discrete (finite) or

it obeys a linear Gaussian model (Kalman Filter can deal with), that integral in

equation (4.27) turns in to an intractable one which can not be evaluated. This

methodology approximates the state variables given the observations with the as-

sumption that the parameter vector θ is known. But for the problem of our interest

it is not the case. In order to cast this idea to approximating the policy parameters,

we take θ as random variables and create a prior distribution over them as µ(θ).

Then a posterior distribution is constructed where the latent variables are consid-

ered as parameter vector θ (which are going to be estimated) conditional on some

observations regarding the parameter θ. The sequence of observed data to be used

are assumed to be the measure of some performance of the system for each parameter

denoted as J(θ). Since we are dealing with the RL framework which is based on the

policy search with respect to the expected total rewards, the performance function

J(θ) (as the observed data) is assumed to be the expected value of multiplicative

rewards. Thus the posterior distribution will have the form p(θ1:N |J1:N(θ)) where N

is the number of total iterations for collecting data. According to equation (4.27),

the resulting posterior distribution is almost impossible to calculate and sample

from. To alleviate this, an artificial distribution which is proportional to the com-

bination of the observations and the priors introduced for parameters is proposed

as p(x1:T |y1:T ) ∝ µ(x1:T )p(y1:T |x1:T ), where from now on we replace the notation of
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latent variables x1:T and observations y1:T with their corresponding variables as pa-

rameter vector θ and expected cost function of parameter vector J(θ), respectively

i.e., p(θ|J(θ)) ∝ µ(θ)p(J(θ)|θ). So rather than directly evaluating the marginal

posterior conditioned on J(θ), we target its equivalent proportional expression. For

continuous non-Gaussian state space models sampling from full posterior p(θ|J(θ))

or calculating marginal likelihood p(J(θ)|θ) is not possible directly. Despite this,

except if we can find an unbiased and non-negative estimate of J(θ), it is still prac-

tical to sample from the posterior. One approach for targeting this problem is to

leverage the PMMH where employs an SMC algorithm to estimate the marginal

likelihood as p̂(J(θ)|θ). Then this estimate will be used to compute the acceptance

rate for the Metropolis-Hastings (MH) algorithm. One advantage that can be stated

about PMMH algorithm is its capability to target the posterior distribution what-

ever the number of particles is. However, when it comes to the high-dimensioanl

problems where the number of parameters θ is relatively large, it demands precise

tuning of all the proposal distributions which is not cost-effective. Specially, when

the problem at hand is beyond the statistical problems, for example in control and

robotics domain where tuning multi-dimensional parameter of policy plays a crucial

role in the safety and performance of the system. Therefore, letting the standard

deviations of the proposal distributions as a fixed value during the whole learning

iterations is not reasonable. The algorithm traverses the parameter space in each

iteration but assigning constant values for the proposal distribution may restrict it

for some specific regions leading to a repetitive excessive acceptance or rejection

of the policy parameters (updating all the parameters at the same time would not

be possible), whereas modifying the proposal distribution according to the system’s

new situation (considering the stability and logical working point at each area of

the policy space) can cause a remarkable improvement in the learning performance

of the PMMH algorithm.



Chapter 4 Monte Carlo Methods 48

4.6.3 Adaptive MCMC

The concept of the Adaptive MCMC (A-MCMC) has faced great enthusiasm

due to some developments on its hypothetical facts (Haario et al. (2001), Roberts

and Rosenthal (2008)). One of the advantages of the A-MCMC algorithm is that

it employs all of the samples from the beginning of the sampling procedure to tune

the covariance matrix of the proposal density. Assume a random walk Metropolis

for the proposal distribution of the MCMC algorithm:

Xi+1 = Xi +N (µ, sΣ) (4.28)

which is performed by using a multivariate Gaussian density identified by:

p(x;µ,Σ) =
1

(2π)dx/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(4.29)

where dx is the dimensionality of the state-space and µ is the mean and s is an

scaling factor for the covariance matrix. As shown by Roberts and Rosenthal (2001)

and Roberts et al. (1994), the optimal value for the scaling factor s is equal to

2.38/
√
dx for large scale problems. Goal here is to tune the covariance matrix Σ

by employing an adaptive method. We dedicate our focus to the adaptive method

introduced by Robbins and Monro (1951). In fact we are looking for a method

which is mathematically reasonable and on the other side is computationally cheap.

Considering the expected acceptance probability ᾱ which is usually a non-increasing

monotonic function and optimal acceptance as α∗ the Robbins-Monro update rule

can be stated as: if ᾱ > α∗ then Σ is too small and need to be increased and vice

versa. According to this intuition the following updating law is given:

Σi+1 = Σi + λi+1(ᾱi − α∗) (4.30)
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where λ > 0 is a stochastic step size which guarantees that in the long run the

changes occurred in the value of Σ will eventually disappear meaning that:

|Σi+1 − Σi| ≤ λi+1 → 0

The value of the step size λ in the Robbins-Monro formula should satisfy the fol-

lowing conditions:
∞∑
i=1

λi =∞

∞∑
i=1

λ1+ε
i <∞; ε > 0

Since the derivations of the A-MCMC algorithm is out of the scope of this

study, we just refer to the A-MCMC algorithm that has been used for our problem.

This algorithm was elaborately outlined in the works done by Atchade et al. (2010),

Bai et al. (2008). An adaptive metropolis algorithm introduced by Haario et al.

(2001) which will be used during the iterations of our proposed MCMC algorithm

is given in Algorithm 8. As mentioned earlier, although an acceptable scaling factor

Algorithm 8: Adaptive Metropolis algorithm

Input: initial parameter, coavariance, mean and scaling factor of the
random walk Metropolis θ0, µ0,Σ0, s0

Output: updated covariance matrix Σ
for iteration i = 1, 2, . . . do

Sample a proposal value θ′i+1 ∼ q(θ′|θi−1) = N (θi−1, si−1Σi−1) from the
random walk metropolis proposal and compute the average acceptance
rate ᾱ

Update the covariance

log(si+1) = log(si−1) + λi+1(ᾱ− α∗)

µi+1 = µi−1 + λi+1(θ′i+1 − µi−1)

Σi+1 = Σi + λi+1

(
(θ′i+1 − µi−1)T (θ′i+1 − µi−1)− Σi−1

)
end
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s for the covariance matrix is taken to be 2.38/
√
dx, to enforce it to a logical one at

the first iterations of the adaptation it is suggested to modify accordingly, as well.

The algorithm implies that starting with large Σ0 will result in large acceptance

ratio and the other way around which reflects the fact that the learning convergence

for the covariance parameters would be slow when using a constant scaling factor.

For a comprehensive study related to the different adaptive MCMC algorithms refer

to Andrieu and Thoms (2008). In the context of high-dimensioanl state spaces, the

effectiveness of the covariance matrix Σ in the performance of the MCMC algorithm

is constrained by its computational complexity. To put it better, optimizing and

upgrading the covariance matrix in a sequential manner can cause computational

load as shown by Nishihara et al. (2014). Consequently, the urge for comprehensive

research in generating more sophisticated algorithms about the covariance matrix

adaptation for the MCMC method is strong to enhance its productivity.



Chapter 5

Numerical Simulations

Summary : In this Chapter first we will contribute to the concept of the

fuzzy control by using the PG RL algorithms in order to tune the scaling factors

of fuzzy controllers. In the second part the proposed MCMC algorithm will be

implemented on a nonlinear model of an Inverted pendulum in a continuous MDP

framework. In this direction, a linear feedback control is used to stabilize the inverted

pendulum in the upright position. To exhibit the efficiency of the proposed MCMC

algorithm it will be compared with the discussed PG RL algorithms in chapter

3. The outcomes show that proposed MCMC algorithm either outperforms the

performance of that of PG methods both in convergence and time-response or can

have a similar performance. And finally, in the last part of this chapter, proposed

MCMC algorithm will be applied on a nonlinear model of a 2-Degree of Freedom

(DoF) robotic manipulator to perform a reference trajectory tracking control. The

results obtained, will be compared with a gradient based Adaptive PD method and

eNAC algorithm.

51
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5.1 Tuning Fuzzy Logic Controllers (FLC) by

Using PG RL Algorithms

The early successful implementations of FLCs has been completed by Mamdani

(1974). Their promising results has turned them into an option to classical control

methods. FLCs have the advantage of consolidating expert knowledge into the clas-

sical control problems in order to deal with complex control problems. The most

well-known category of FLCs are Proportional Integral Derivative (PID) controllers.

Other than the current established gain tuning algorithms, various tuning method-

ologies based on optimization for both traditional and FLCs can be exemplified, such

as Big Bang-Big Crunch (BB-BC) applied by Wang and Kumbasar (2018), Genetic

Algorithm studied in Ko et al. (2006) and ant colony used in Duan et al. (2006).

The present part dedicates its emphasis to explore the possibility of applying

PG RL algorithms discussed in section 3.2 on FLCs, due to the fact that their con-

tribution in this domain have not been remarkably considered. Although there exist

some works related to gain tuning of the FLCs, for example, Boubertakh et al. (2010)

Aghaei et al. (2015) and some which improve the quality of Q-learning algorithm by

fuzzy logic such as Busoniu et al. (2010), these attempts mostly focus on discrete

state spaces. Instead, we utilize PG RL techniques to tune the parameters of the

FLCs. This is helpful in the light of the fact that value function based RL methods

(such as Q-learning) need to construct a look-up table for each individual state-

action pair which is prohibitively difficult in state-spaces with large dimensions and

demands using appropriate function approximators to establish a mapping between

states. Without loss of generality, the employed PG RL algorithms, minimize the

expected cumulative return of the learning algorithm, which evaluates the precision

of the step response of a closed loop system with a fuzzy controller, and succeeds in

finding the optimal gain values of the FLC. The obtained closed loop time response

quality satisfies the aimed specifications, as shown by our simulations.
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5.1.1 Structure of the fuzzy controller

The general form of a fuzzy rule, which is designed by an expert to control the

system, is identified by defining the output for some specific inputs as

If x1 is A1 . . . xn is An then O is B

in which xi, are crisp inputs, Ai are fuzzy sets and O is the output of the system

located at point B. This rule in general consists of two parts, the If part is called

premise and then part is called consequent. Each rule has a degree of firing which

signifies its applicability as:

νk =
n∏
k=1

νAk (5.1)

here νk is the firing strength of the kth rule and whenever νk > 0 its corresponding

rule is activated. Considering the current situation of the system, the decision

making part tries to find the set of rules which are activated at that time. For our

setting the inputs to the FLC are taken as the state error and its derivative (e, ė).

The output of the fuzzy rule is control signal. The fuzzy inputs for the FLC rules

can have Triangular, Gaussian or Trapezoidal forms with some linguistic variables

to distinguish the range of applicability of each set from others. The output of the

system can also be either a fuzzy set or a singleton. This output needs to be a crisp

value so a mechanism called as defuzzification is used to convert the fuzzy inputs

to numeric values (methods such as center of gravity, weighted mean). It has been

shown that for a FLC with a product-sum inference, center of gravity defuzzification

and triangular uniformly distributed Membership Functions (MF) for the input fuzzy

sets, the output can be computed as:

U = A+ Pkee+Dkdė (5.2)
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where ke and kd are the gains for error and its derivative. For more details about the

derivation and the A, P and D components refer to Qiao and Mizumoto (1996). The

system to be controlled is an inverted pendulum which its equations are explicitly

given in section 5.2.1; see Dann et al. (2014). The goal is to control the angle of

the pendulum and its angular velocity (φ, φ̇). The governing rules (consisting of a

total of 9 rules) which display how to best control this system under the fuzzy logic

framework is given in Table. 5.1, where N , Z and P terms stand for Negative, Zero

and Positive linguistic terms, respectively. For each of the error, error derivative

e/ė derivative of error

error N Z P

N C1 C1 C0

Z C1 C0 C−1

P C0 C−1 C−1

Table 5.1: Symmetrical rule-base of a FLC for controlling the inverted pendu-
lum.

and output of the system three symmetrical triangular MFs are used as illustrated

in Fig. 5.1. The universe of discourses of the input MFs are as:

EN = −π
2
, EP =

π

2
, DN = −π

4
, DP =

π

4

and for the output MF these values are defined as following:

uN = −20, uC−1 = −10, uC0 = 0, uC1 = 10, uP = 20

The crisp control output value is calculated by using the center of gravity method

which is:

u =

∑M
i=1 bi

∫
νi∑M

i=1

∫
νi

(5.3)

where bi is the center of the MF in the consequent part of the ith rule and M is the

total number of rules.
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Figure 5.1: FLC Membership functions for the input-output.

5.1.2 PG RL settings

Tuning the scaling gains of the PD-type FLC will be performed by eNAC and

GPOMDP RL algorithms discussed earlier. The output signal of the PD-type FLC

which will be applied to the plant (here inverted pendulum) can be written as:

U = A+ Pkee+Dkdė+ ε (5.4)

in which ε is a zero mean white Gaussian noise as ε ∼ N (0, σ2) and applied to

the control signal during the learning process to ensure the stochastic nature of the

policy. Throughout the testing policy, this value would be zero (deterministic). The

objective of the control problem is to tune the parameter vector θ = [ke kd]. The

parametric policy πθ is selected to be a Gaussian one with standard deviation σπθ :

πθ(a|s) =
1

σπθ
√

2π
exp

(
−(U − θs)2

2σ2
πθ

)
(5.5)

where s is the continuous state of the systems as the error for the angle φ and its

velocity φ̇ i.e., s = [e ė]T . U is given by equation (5.4). After determining the

policy, it is required to compute the gradient of the logarithm of the parameterized

policy with respect to the given parameters θ, in order to approximate ∇θJ(θ). This
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is done by taking the derivative from πθ as following:

∇θ log πθ(a|s) =
a− θs
σ2
πθ

s (5.6)

If one considers learning σπθ as well, then taking gradient of πθ will be performed

with respect to σπθ as:

∇σπθ
log πθ(a|s) =

(a− θs)2 − σ2
πθ

σ3
πθ

(5.7)

note that in our simulations for the sake of simplicity, σπθ is considered as a constant

value of 2, therefore we have just made use of equation (5.6).

For the reward function, two general structures are assumed where we call the

first one as interval based reward and the second one as absolute value reward and

define them in the following:

r(s, a) =

0, −8◦ ≤ φ ≤ 8◦

−10, otherwise.

(5.8)

r = −wφ|φref − φ| − wφ̇|φ̇ref − φ̇| − wa|a|. (5.9)

where φref and φ̇ref are the desired pendulum angles and angular velocity (for the

stabilization issue, the desired corresponding values for these variables are zero).

The assigned weights for the vertical angle (pendulum), angular velocity and force

applied to the horizontal cart are wφ, wφ̇ and wa, respectively. We took these values

to be wφ = 3, wφ̇ = 0.85 and wa = 0.1. Note that in equation (5.9), in case of

failure (angle is out of its accepted range), the simulation will stop and the agent

will be assigned a negative value of −1000. During the simulations, the discounted

factor γ = 0.9 and the nonlinear model of the inverted pendulum is simulated with

the Fourth-Order Runge-Kutta method in MATLAB. Number of episodes for the

REINFORCE, eNAC and GPOMDP algorithms is selected to be 100 where in each
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episode the inverted pendulum is run for 10s with a sampling time of 0.01s. To

measure the performance of each learning algorithm, they have been tested and

averaged over 20 experiments in which REINFORCE algorithm could only manage

to get an optimal solution for the parameter vector θ under the absolute value reward

function with σπθ = 0.001, and thus we only considered its resulting time response

figure.

The average return plots for the eNAc and GPOMDP algorithms are covered

in Fig. 5.2 which are normalized in the range [0, 1] to capture a justified comparison

between both rewards. It should be noted that the difference in the ranges of the

horizontal axis is due to the fact that the GOPMDP algorithm converges almost six

times earlier than the convergence iteration of the eNAC.

Figure 5.2: Normalized average return for eNAC and GPOMDP.
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According to Fig. 5.2, although GPOMDP’s convergence speed is higher than

eNAC, an overall observation of the time response in Fig. 5.3 and Fig. 5.4, suggests

that, eNAC resulted in better time response specifications than GPOMDP. The fast

convergence of the GPOMDP algorithm is because of falling in the local optimum,

while eNAC with Absolute value reward attempted to skip the local solution for the

parameter vector and finally came up with a promising one. The higher standard

deviation in the performance of the eNAC algorithm reveals that behavior of the

performed 20 simulations are not very similar to each other. Considering φ in Fig.

5.3, eNAC algorithm with the Absolute value reward excels its counterpart in closed

loop time response by rejecting overshoot in the response. For the Interval based

reward, settling time is less than that of Absolute value reward but it shows almost

a small undershoot. Similarly, for the angular velocity φ̇, eNAC with the Absolute

value reward exhibits better performance in case of rejecting overshoot (while it

bears an undershoot) and for the Interval based reward, the settling time is less. It

is clear from Fig. 5.4 that GPOMDP with the Absolute value reward demonstrates

a better settling time by almost three times less than that of Interval based reward

for both φ and φ̇.
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Figure 5.3: Closed loop responses for eNAC algorithm.

Since eNAC algorithm had an early settling time in the closed loop responses,

the range of the horizontal axis in its corresponding time domain responses is con-

sidered to be less than the other two algorithms. Therefore, for a better illustration

of the time domain plots their horizontal axis is taken to be in different ranges.
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Figure 5.4: Closed loop responses for GPOMDP algorithm.
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Figure 5.5: Closed loop responses for REINFORCE algorithm.

Finally, Fig. 5.5 displays the time responses of the REINFORCE algorithm

with the Absolute value reward (the only successful reward with σπθ = 0.001) and by

looking at this figure it is apparent that the total time response of it is inferior to the

other PG algorithms by inheriting a large settling time. Note that, illustrated time

responses are all one sample representative closed loop response for each individual

algorithm.
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5.2 Application of MCMC Method to a Nonlinear

Model of an Inverted Pendulum

Given a nonlinear model of a continuous MDP which is here an Inverted Pen-

dulum, objective is the stabilization problem of the Inverted Pendulum. To tackle

this issue, a linear feedback controller with some controller gains corresponding to

a state will be considered. The available gain tuning methods based on learning

frameworks use gradient calculations to gradually update these gains either analyt-

ically or using system’s trajectory information. In contrast to them, we handle the

problem by taking a Bayesian inference approach which relies on MCMC sampling

methods. The motivation originates from the PG RL setting where the goal is to

search for optimal control policy parameters by maximizing the expected value of

the immediate rewards during a given time horizon. The problem emerges when

the evaluation of this expected return becomes a matter of challenge due to the

intractability of the resulting integral calculation. To tackle this concern, we extend

it to the parameter estimation in the Bayesian framework and build a posterior

distribution with respect to the unknown parameters which is proportional to the

expected returns. Consequently, rather than dealing directly with the expected re-

turn, we target the posterior distribution and attempt to draw samples (unknown

policy parameters) from. This method essentially entails a PMMH algorithm which

employs SMC (particle filtering) throughout its iterations.

5.2.1 The inverted pendulum model

The state space of the inverted pendulum comprises of four continuous elements

as angle, angular velocity, position and velocity of the classical cart-pole system i.e.

st = (φt, φ̇t, pt, ṗt). The action space a ∈ A is of one dimensional and continuous.

As a result of applying the action (control signal) a to the pendulum at state s =
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(φ, φ̇, p, ṗ), the nonlinear dynamics of the system are represented by the following

equations:

φ̈ =
−3mlφ̇2 sinφ cosφ+ 6(M +m)g sinφ− 6(a− bφ̇) cosφ

4l(M +m)− 3ml cosφ
(5.10a)

p̈ =
−2mlφ̇2 sinφ+ 3mg sinφ cosφ+ 4a− 4bφ̇

4(M +m)− 3m cosφ
(5.10b)

where the parameter setting for the model of the system is summarized in table 5.2.

The control aim to satisfy is to take the pendulum in the upright situation and

Table 5.2: Parameter setting for the inverted pendulum model

m Mass of the Pole (kg) 0.5

M Mass of the Cart (kg) 0.5

g Gravitational Constant (m/s2) 9.81

b Friction Coefficient (N/m× s) 0.1

l Length of The Pole (m) 0.6

bring the cart to the origin from a given random state. Given a state st at time t,

the action at is taken from a stochastic policy as Gaussian density N (θT st, σ
2) with

mean θT st and variance σ2 such that the conditional distribution of the action is,

hθ(a|s) =
1√

2πσ2
exp

{
−(a− θT s)2

2σ2

}
. (5.11)

Assuming a constant variance, the goal of policy search is to learn the parameter

vector θ.
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5.2.2 Reward structure and parameter setting

for the algorithms

The performance of the proposed MCMC algorithm will be compared with

algorithms discussed in Chapter 3, eNAC, REINFORCE and GPOMDP. For all the

simulations, two different reward functions are used. The first reward function which

we call an Interval based reward is a delayed reward expressed as:

r(a, s) =

0, −12◦ ≤ φ ≤ 12◦, and − 1.5 m ≤ p ≤ 1.5 m

−10, otherwise.

(5.12)

The second one is a quadratic reward function defined in the following form:

r(a, s) = −sTQs− ca2 (5.13)

where Q is a positive definite matrix and c is a positive constant value. For this

experiment Q is a diagonal matrix denoted as diag([12, 1.25, 2, 0.25]T ) and c = 0.01.

Selection of these values depend on the perceived importance of each state and is

used to balance the contributions of the state and action to the reward function.

Discounted value for the return function R is γ = 0.99. The length of simulations for

all of them is n = 1000 time steps with a 0.01s sampling time. While the learning

is in progress, the action is treated as a noisy one with an additive white Gaussian

noise with a variance of σ2 = 4; but, for testing the quality of the obtained policy,

it is treated as a deterministic one which is noise-free.

PG algorithms (eNAC, REINFORCE and GPOMDP) run for 500 iterations

with H = 100 episodes at each iteration to get an estimation of the policy parameter

gradient. For the MCMC method in Algorithm 6, 50000 iterations are run, with

N = 1 particle for each iteration. This choice of the number of iterations for the

compared algorithms guarantees an equal computational load for them.
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For the MCMC parameter updates, a Gaussian random walk is taken as a

proposal density q(θ′|θ) = N (θ′; θ,Σq), where Σq is a diagonal covariance matrix

with diag([10, 1, 1, 1]T ). The uninformative prior distribution for parameter θ is a

normal distribution N (0, 103I4) where I4 is a 4×4 identity matrix. The importance

of the choice of Σq for an amenable performance of the MCMC algorithm will be

discussed in the upcoming sections where two different values (small and large) for

Σq will be considered to observe how this selection can affect the algorithm.

5.2.3 Assess the proposed MCMC and PG algorithms with

respect to different reward functions

Here, the comparison is made using the reward given in equation (5.12). The

related policy parameter evolution plots (trace plots) are depicted in Fig. 5.6. It

is obvious from the figure that, the PG methods are point-wise estimators which

converge to optimal points in the parameter space, whereas the proposed MCMC

algorithm targets the posterior distribution π(θ) and produces samples distributed

according to this target distribution in a fashion that spaces with high expected

rewards have been investigated. This phenomenon can be better understood form

Fig. 5.7 where their histograms are given. To have an insight about the quality of

the convergence speed of the compared algorithms, a set of simulations composed

of 5 runs are carried out and approximated expected returns of them are averaged.

Then, the performance of the MCMC is computed as the logarithm of the expected

returns as log Ĵ(θ). Resulting convergence plot is illustrated in Fig. 5.8 where the

shaded areas reveal the standard deviation over the 5 runs.
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Figure 5.6: Trace plots for MCMC and gradient based algorithms - Interval
based reward

According to Fig. 5.8, performance plot in MCMC has converged rapidly in

contrast to PG algorithms (Note the different horizontal axis ranges, by up to two

orders of magnitude). It should be pointed out that J(θ) is assumed to be different

from that of PG algorithms (for MCMC with an exponential utility function U(x) =

exp(x) and for PG methods a linear utility function U(x) = x), which indicates the

difference between the y-axes values for MCMC and PG methods. And finally,

for the interval valued reward case, to capture an idea about the resulting time

response quality by using the learned policy parameters, Integral Absolute Error
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Figure 5.7: Histograms of MCMC policy parameter estimates - Interval based
reward

(IAE) containing φt, pt and at has been measured.

IAE =

∫ ∞
0

|et|dt (5.14)

where et implies the resulting error between the desired values of φt, pt and at and

their actual values in the feedback control. As mentioned earlier since PG algorithms

are point-wise estimators, in calculation of IAE term we used the parameters θ which

are learned at the final iteration, whereas for MCMC method, it is averaged over

the last quarter of the overall 50000 iterations, specifying that an approximation

for the mean value of the target distribution πn(θ) is considered. In Fig. 5.9 a test

trial with the obtained policy parameters is shown for the time response of the given

algorithms. Considering the IAE term, proposed MCMC algorithm performs better

than GPOMDP and REINFORCE in the time domain but on the other hand, it

can not defeat eNAC when an Interval based reward function is used.
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Figure 5.8: Performance comparison with respect to convergence - Interval based
reward
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Figure 5.9: A sample time response for stabilization of the Cart-Pole - Interval
based reward
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In the next part, the interval based reward function has been substituted with

a quadratic one given in (5.13) and the simulations repeated. The reason for us-

ing a quadratic reward is that they are broadly utilized in learning the behavior

of the dynamic systems. Likewise, the trace plots for MCMC and PG algorithms

are depicted in Fig. 5.10, histograms for the generated samples from the posterior

target distribution according to MCMC algorithm are presented in Fig. 5.11, ap-

proximated expected total rewards are given in Fig 5.12, and at last, a test trial

displaying the time response specifications for the compared methods are provided

in Fig. 5.13. It is worth noting that, for the quadratic reward case REINFORCE

algorithm could not handle the problem of estimating a proper optimal solution for

the policy parameters and due to this fact it is eliminated from the results. Similar

to the conclusions derived from the interval based reward figures, the same inter-

pretation is also valid for the quadratic reward, except as it is obvious from Fig.

5.13, MCMC outperformed eNAC and GPOMDP in terms of the IAE for the time

responses. The control performance in terms of IAE is summarized in Table 5.3.

Note that horizontal axes in part (a) for both Fig. 5.8 and Fig. 5.12 are in the

same scale as other parts of these figures, however for a plain demonstration of the

convergence of the performance plots of MCMC in the early stages of the iterations,

we magnified the initial portion of the horizontal axes. Note that the type of the

reward function affects the quality of the time responses of the control system. For

instance, it is observed from Fig. 5.9 and Fig. 5.13 (where the former uses an

interval based reward and the latter uses a quadratic one) that the employing a

quadratic reward enhances the performance of the control time responses in terms

of IAE by suppressing overshoots and decreasing the settling time since it presents

better information to the agent about its performance.



Chapter 5 Numerical Simulations 70

Simulation time ×10
7

0 1 2 3 4 5

P
a
r
a
m
e
t
e
r
V
a
lu
e
s

-10

0

10

20

30

40

θ1

θ2

θ3

θ4

(a) eNAC

Simulation time ×10
7

0 1 2 3 4 5

P
a
r
a
m
e
t
e
r
V
a
lu
e
s

-10

0

10

20

30

40

θ1

θ2

θ3

θ4

(b) GPOMDP

Simulation time ×10
7

0 1 2 3 4 5

P
a
r
a
m
e
t
e
r
V
a
lu
e
s

-20

0

20

40

60

80

100

120

140
θ1

θ2

θ3

θ4

(c) MCMC,

Figure 5.10: Trace plots for MCMC and gradient based algorithms - Quadratic
reward

Table 5.3: Performance of the proposed MCMC algorithm in comparison to PG
methods in terms of IAE.

IAE for given methods

Reward Type MCMC eNAC GPOMDP REINFORCE

Interval based 1256.1368 821.7421 2210.0986 2349.0957

Quadratic 378.1922 418.8248 454.8195 NA(*)

(*)For Quadratic reward, REINFORCE did not converge to an optimal solution.
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Figure 5.11: Histograms of policy parameter estimates for MCMC - Quadratic
reward
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Figure 5.12: Performance comparison with respect to convergence - Quadratic
reward
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Figure 5.13: A sample time response for stabilization of the Cart-Pole -
Quadratic reward

5.2.4 MCMC performance regarding adjustable parameters

In order to have an insight about how the performance of the proposed MCMC

algorithm can be modified with some tunable parameters such as number of particles

in the SMC or covariance matrix of the proposal distribution, we have done two more

experiments which show the effects of these elements.
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5.2.4.1 MCMC performance using different number of particles

All the previous results for the parameter estimation of the control policy have

done considering the number of particle in the SMC algorithm as one i.e., Np = 1.

One alternative for boosting the performance of the MCMC algorithm is to use

SMC with number of particles more than one. For this situation, simulations based

on number of particles as Np = 10 and Np = 100 are carried under a quadratic

reward function. The trace plots, overall return and learned policy parameters as

histograms are represented in Fig. 5.14, 5.15 and 5.16, respectively. It is obvious

from the generated results that for Np = 100 MCMC algorithm turns out to have

smoother histogram distributions. Despite this, convergence of the algorithm gets

slow for Np = 100 owing to a ten-fold growth in calculation time for each iteration,

as it can be observed from Fig. 5.15.
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Figure 5.14: Parameter update for MCMC with quadratic rewards regarding
different number of particles
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Figure 5.15: Performance for MCMC with quadratic rewards regarding different
number of particles

5.2.4.2 MCMC performance using different proposal covariance Σq and

action variance σ2

Samples drawn from the posterior distribution π(θ) using the MCMC algorithm

should be in such a way that they mix well so that they do not stick to their previous

values. Particularly, the choice of a suitable proposal variance Σq to guarantee well-

mixing is important. Small values of this quantity Σq will cause samples which are

closely correlated, thus mixing so slowly. On the other hand, large values for Σq

makes the chain susceptible to remember its older parameters via dismissing the

newly proposed ones. Moreover, the role of the action variance (as a Gaussian white

noise) will be inspected. In the following, this situation will be clarified through

simulations. As before, the quadratic reward function has been used. We take some

test values for the tuple (σ,Σq) and consider their probable combinations:

• σ1 = 2.5, σ2 = 1.5 and

• Σq1 = diag([100, 10, 10, 10]), Σq2 = diag([1, 0.1, 0.1, 0.1])
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Figure 5.16: Histogram of the estimated parameters for MCMC with quadratic
rewards regarding different number of particles
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Obtained simulation results due to the above mentioned sets are shown in Fig.

5.17 and Fig. 5.18. If one compares the trace plots of these figures with that of

given in Fig. 5.10(c), it is seen that a suitable selection of Σq in a way that it is

neither very large nor very small, just like Fig. 5.10(c), leads to a well-mixed sample

trace where it converges to the true target distribution. To be specific, part (a) of

Fig. 5.17 and Fig. 5.18 imply that the large values for Σq may cause the rejection of

the proposed candidate parameters for the policy and the provided samples would

be reluctant to adopt new parameters. Similarly, in part (b) of these figures, the

generated samples have a tendency to mix slow and therefore are highly correlated

due to small Σq.

It is also notable that, in spite of poor choices of Σq, the proposed MCMC

algorithm still can get an estimate for the policy parameter and manages to converge.

The convergence performance plots for these cases are illustrated in parts (c) and

(d) of Fig. 5.17 and Fig. 5.18.

Lastly, the drawn conclusions are valid for the selected values of the action

noise σ, meaning that the proposed MCMC algorithm entails a certain degree of

robustness. But not to forget that, large values for the action noise are not tolerable

since they may cause the system to become unstable despite an acceptable policy.
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(a) Trace plots generated with a large Σq (b) Trace plots generated with a small Σq

(c) Performance of the MCMC with a large Σq (d) Performance of the MCMC with a small Σq

Figure 5.17: Trace plots and average returns for MCMC using both small and
large values of Σq with the quadratic reward when σ = 2.5

5.3 Trajectory Control of a Robotic Manipulator

via Bayesian MCMC Method

In this section the focus is on the policy search concept based on the simplified

version of the Bayesian MCMC algorithm. By the term simplified, we mean that

the general form of the proposed MCMC algorithm, which uses particle filters in
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its iterations, is modified to a formation which is amenable for applying to real-

time physical systems by excluding the particle filters from its structure. Although

here we intend to demonstrate the outcomes of a simulation based comparative

study between eNAC, gradient based Adaptive PD and MCMC algorithms, later

we will use this simplified version of the MCMC algorithm to perform a real-time

experiment.

(a) Trace plots generated with a large Σq (b) Trace plots generated with a small Σq

(c) Performance of the MCMC with a large Σq (d) Performance of the MCMC with a small Σq

Figure 5.18: Trace plots and average return for MCMC using small and large
values of Σq with the quadratic reward when σ = 1.5
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Therefore, our goal is to verify the algorithm on the simulation environment

and then validate it on physical systems. The system of our interest is a 2-Degree of

Freedom (DoF) planar manipulator which is composed of nonlinear dynamics. Since

we have already covered the subjects related to PG RL and Bayesian MCMC, we

commence with a brief description of the Adaptive PD method, then give a model of

the 2-DoF planar manipulator and conclude this section by expressing the obtained

results.

5.3.1 Gradient based Adaptive PD method

Steepest descent methods (gradient descent) can be considered as a well-known

optimization approach for dealing with dynamical systems. Despite this fact, these

methods might not be an appropriate alternative for systems with complex dynam-

ics. The reason is that they are bound to fall in local optimal points. Moreover,

their performance can be highly affected by poor choices of the initial parameters

which are going to be updated by gradient rules. Nevertheless, some successful ap-

plications of these methods to the dynamical systems can be found, for example

WANG et al. (2007) and Liu (2007). The control problem for our setting is to follow

a given reference trajectory. Here, the cost function of the adaptive PD algorithm

can be constructed as:

J =
1

2

(
eTe
)

(5.15)

where e stands for the error between the given reference signal and the actual tra-

jectory. Based on the gradient descent, parameter update rule is

θ(t+1) = θ(t) − η∇θg
(t) (5.16)

where g(t) is the control signal in each time step and η is a learning rate. The

Pseudo-code of the adaptive gradient based PD algorithm for our system is given in
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Algorithm 9.

Algorithm 9: Pseudo-code for adaptive PD

Input: Number of time steps n, initial controller gain vector θ(0), values for
the stopping criteria(δ, ε), step size for the gradient rule η = 0.001

Output: Control signal g, θ(t)

for t = 1, 2, . . . do
Step 1: Calculate gradient vector of the control signal ∇θg

(t)

Step 2: Calculate new controller gain θ(t+1) = θ(t) − η∇θg
(t)

Step 3: Calculate new control signal g
Step 4: Calculate stopping critaria
if | J (t+1) − J (t) |< ε then

terminate algorithm, return g, θ
end

if | e(t+1) − e(t) |< δ then
terminate algorithm, return g, θ

end

end

5.3.2 Structure of the two link planar manipulator

The two link planar manipulator’s mechanism, which is generally known as

Pantograph, is shown in Fig. 5.19. It consists of five links: the fixed link N which

its length can be neglected and symmetric links l1, l2 and l3, l4 (l1 = l2, l3 = l4).

The links l1 and l2 are actuated with torques τ1 and τ2 generated by two motors

connected to these links. The end-effector is located at the conjunction of l3 and

l4 and is denoted as point Q. Controlled system outputs are xQ and yQ position of

end-effector with respect to center of workspace (cw), which is an origin point for

initialization of the system. Control inputs of the system are τ2 and τ1. Generally

speaking, equation of motion for a mechanical system can be described by Lagrangian

equations as:
d

dt

∂L

∂q̇i

− ∂L

∂qi

= τ i (5.17)
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Here L is the Lagrangian function which is the difference between the kinetic K and

potential energy P as L = K−P , τi is the torque and qi is the angle with respect to

the x coordinate. A complete modeling procedure and derivation of the equations

for the planar manipulator can be reached in Yu (2006).

Figure 5.19: schematic representation of the planar manipulator

The main objective here is to learn an optimal control policy which enables

the system to track a desired trajectory. In this direction a PD control is used.

The given reference signal is assumed to be a circular one with a radius of 20 mm.

The error signal is defined as the difference between the desired path and the actual

output trajectory. So our policy is composed of the parameters of the PD controller

in the x− y direction:

θ =
[
kdx kpx kdy kpy

]
For the eNAC algorithm, the action is drawn from a stochastic policy which is here

a Gaussian distribution as N (θT s, σ2) where the state of the system s is (e, ė) in the

x− y axis.
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5.3.3 Numerical quantities of the compared algorithms

for simulations

For MCMC and eNAC algorithms a quadratic reward function is hired as fol-

lowing:

r(a, s) =

−s
TQs− Ca2, −150mm ≤ x ≤ 150mm, and − 25 mm ≤ y ≤ 70 mm

−108, otherwise; (Applied just for MCMC)

(5.18)

where Q = diag([1, 1000, 5, 1000]) and C = diag([10−5, 10−5]) are weight matrices for

the states and actions. Discounted factor for the return function is γ = 0.99. The

proposal distribution for the MCMC algorithm is a zero mean Gaussian N (θ′; θ,Σq)

with the covariance matrix Σq = diag([1, 20, 1, 20]). The uninformative prior dis-

tribution over parameters is µ(θ) = N (0, diag([500, 10000, 500, 10000])). For the

eNAC algorithm parameterized policy is also assumed to be a Gaussian one with

σ = 158. The simulation duration of system is 5s with a sampling rate of 0.001s.

Number of iterations for the eNAC is 3000 including 15 episodes for each of them.

For the MCMC, we iterate the algorithm for 5000 iterations but since the trend of

the trace plots does not change, similar to eNAC, we illustrated the results up to

3000th iteration. By looking at Fig. 5.20 and Fig. 5.21, where the convergence of

the MCMC and eNAC are shown based on total expected reward, it is observed that

MCMC’s performance goes beyond that of eNAC owing to its successful convergence

happening near the 100th iteration, while eNAC succeeded it around the 1500th it-

eration. Note that the convergence plots are obtained by averaging the results over

5 different experiments.

The trace plots of the learned parameters for MCMC, eNAC and Adaptive

PD are depicted in figures 5.22, 5.23 and 5.24, respectively. As mentioned earlier,

obtained parameter vector from eNAC and Adaptive PD approaches an optimal
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point at the end of iterations, but for the MCMC it expresses a distribution where

one can draw parameters from. For our case, we consider the mean of the last

quarter of the learned samples. In Table. 5.4 these parameter values are given. To

get an idea of the drawn samples (last quarter) as policy parameters, a histogram

representation is shown in Fig. 5.25.

Figure 5.20: MCMC average return for 2-D manipulator.
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Figure 5.22: Trace plots for MCMC, 2-D manipulator

Figure 5.21: eNAC average return for 2-D manipulator.
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Figure 5.23: Trace plots for eNAC, 2-D manipulator

Figure 5.24: Trace plots for adaptive PD, 2-D manipulator

Table 5.4: Policy parameters learned for the 2-DoF planar manipulator.

θ1 θ2 θ3 θ4

MCMC 149.37 955.15 185.78 722.95

eNAC 65.00 4.16 100.77 221.62

Adaptive PD 129.41 531.18 146.92 745.77
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Figure 5.25: Histograms of policy parameter estimates for MCMC (last quarter).

For comparing the performance of the algorithms in the time response, their

trajectory for the error in x−y axis by using the learned parameters are demonstrated

in figures 5.26 and 5.27 where in both x and y domains MCMC inherits the best

performance (least error) in contrast to the other two. It is also seen that its behavior

is very similar to Adaptive PD in the y axis. The main reason for comparing our

method with Adaptive PD, which is a famous classical control method, is to verify

MCMC’s validity. To distinguish between the given algorithms from the error point

of view, Integral Absolute Error (IAE) has been used as a metric and summarized

in Table 5.5. Finallly, both the circular reference and the actual trajectory for the

given algorithms are shown in Fig. 5.28.
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Figure 5.26: Error trajectory in the x-axis.

Figure 5.27: Error trajectory in the y-axis.

Table 5.5: IAE comparison for the given algorithms.

MCMC eNAC Adaptive PD

IAE 0.2457 mm 0.7454 mm 0.2842 mm
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Figure 5.28: Circular reference and actual trajectory.

5.4 Policy Search for the Control Problem of a

Ballbot via an Adaptive MCMC Algorithm

The main concept of a Ballbot system which its physical model is shown in

Fig. 5.29 is similar to the inverted pendulum where a body is driven on a rolling

ball. The ball itself is rotated by three motors mounted on the body. The model of

the Ballbot system includes various set of nonlinear ordinary differential equations

and composed of thousands of terms. Considering this higly nonlinear model, our

aim is to stabilize the body of the system on the moving ball. To capture this

control goal, a linear quadratic regulator (LQR) feedback controller is used. But

the challenge here is that to be able to use an LQR controller the system is required

to be linearized. Our attempt is to deal with the nonlinear model of the Ballbot

system while using a feedback controller. For this purpose, we will apply an Adaptive

MCMC algorithm to learn the gains of the feedback controller. We extend the idea
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of the MCMC algorithm to an Adaptive form due to the fact that the number of

the gain parameters to be learned are high.

Since the derivations of the equations of motion for the Ballbot system is out

of the scope of this thesis, we just refer the readers to some successful works focused

on modeling the system such as Bonci (2016), and Fankhauser and Gwerder (2010).

Figure 5.29: Model of a Ballbot system.

5.4.1 Parameter settings for the simulations

The model of the ballbot system that we have used in our simulations composed

of ten continuous state spaces but the states that we are going to control are the

angle of the body in the y and x directions and their velocities which are respectively

denoted as (φ1, φ
.

1, φ3, φ
.

3). The action space is three dimensional and continuous

which consists of torques for three motors (τ1, τ2, τ3). To stabilize the system we use
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a feedback controller with 30 gain parameters which are going to be learned by the

proposed Adaptive MCMC algorithm. The corresponding parameter gain matrix

for the feedback controller is as following where the index i and j signify the actions

and states, respectively.

θi,j =


k1,1 k1,2 k1,3 k1,4 k1,5 k1,6 k1,7 k1,8 k1,9 k1,10

k2,1 k2,2 k2,3 k2,4 k2,5 k2,6 k2,7 k2,8 k2,9 k2,10

k3,1 k3,2 k3,3 k3,4 k3,5 k3,6 k3,7 k3,8 k3,9 k3,10



For the Adaptive MCMC algorithm a quadratic reward function is used as:

r(a, s) =

−s
TQs− Ca2, −20◦ ≤ φ1, φ3 ≤ 20◦,

−108, otherwise;

(5.19)

The weight matrix for the states is a positive definite one with ten elements in its di-

agonal as Q = diag([1000, 50, 100, 50, 20, 10, 20, 10, 20, 10]) and C = 0.001 for each el-

ement of action space. The discounted factor for the return function is γ = 0.99. For

the Adaptive MCMC, the covariance matrix Σq of the proposal distribution which

is a zero mean Gaussian N (θ′; θ,Σq), is considered to be fixed for 5000 iterations as

pre-run, where a total of 50, 000 iterations is run. After a pre-run is completed the

covariance matrix of the proposal distribution is modified accordingly. We iterate

the learning procedure for our simulations with a run of the Ballbot system for 5s

with a time step of 0.01s. For a successful sample run, the trace plot of the last

quarter of the learned parameters is shown in Fig. 5.30 where the first four at the

top left correspond to our targeted states.
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Figure 5.30: Trace plots of the adaptive MCMC for the Ballbot system.

To have a deeper insight of the quality of the learned parameters, we draw their

histograms for the first four parameters and give them in Fig. 5.31. Furthermore,

the aimed learned parameters as the angles of the body with respect to their angular

velocities are presented as learned policies in Fig. 5.32 and Fig. 5.33.



Chapter 5 Numerical Simulations 92

(a) Histograms for φ1 and φ
.
1

(b) Histograms for φ3 and φ
.
3

Figure 5.31: Histograms of the adaptive MCMC for Ballbot system.
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Figure 5.32: Learned policy (θ1, θ2) with adaptive MCMC for the Ballbot sys-
tem.

Figure 5.33: Learned policy (θ3, θ4) with adaptive MCMC for the Ballbot sys-
tem.
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The performance of the adaptive MCMC algorithm in terms of convergence is

depicted in Fig. 5.34 in a logarithmic scale. For the time responses we have used the

learned policy parameters to simulate a sample run of 10s for the Ballbot system.

Their results for stabilization problem of the body of the Ballbot in the vertical

position are shown in Fig. 5.36. The resulted torque profile for the motors which

cause the ball to roll, is given in Fig. 5.35. It should be noted that for a better

representation of the torque behavior we considered the first 1s of the simulation

time.

Figure 5.34: Expected return of the adaptive MCMC for Ballbot system.

Figure 5.35: Time responses for the torque profiles of the adaptive MCMC for
Ballbot system.
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(a) Time response for φ1 (b) Time response for φ3

(c) Time response for φ
.
1 (d) Time response for φ

.
3

Figure 5.36: Time responses of the adaptive MCMC for Ballbot system.



Chapter 6

Experimental Results

Summary : The present chapter is intended to make the available gap between

the theory and application and contribute to the verification of the proposed MCMC

algorithm for policy search by carrying out real-time experiments on a physical

system. An empirical assessment of the proposed algorithm will be performed on

a 2-DoF planar manipulator setup the model of which was used for simulations in

Section 5.3 . The control problem involves following a circular reference in the x− y

direction. For this purpose, the proposed MCMC algorithm will be manipulated

and simplified in a way that it is suitable for real-time applications by excluding the

resampling part in the framework of the algorithm. Taking into account the real-

time experiments, it must be remembered that the Bayesian RL and specifically

MCMC is still much in its infancy. In fact, the majority of the beneficial real-time

implementations of RL do not belong to the Bayesian learning category and thus

we will try to contribute to this part.

96
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6.1 Physical setup of the planar manipulator

Since modeling and control of the kinematics and dynamics of the 2-DoF planar

manipulator is out of the scope of this thesis, we refer the readers to some works

which have extensively went through this topic such as Yu (2006), Campion et al.

(2005) and Unal et al. (2008). The physical model is shown in Fig. 6.1 where the

parallel arms are used to apply the required force for the translation of the end-

effector, while they are built in a way that have low friction. The movement occurs

by a capstan drive which is located at the base joints and enables the user to apply

large torques regardless of the erosion. Two motors engaged in the body of the

planar manipulator run it so that the end-effector can be controlled. Linear current

drivers were designed and built to transfer the power to the motors. The position

of the motors are measured precisely thanks to the high-resolution optical encoders.

The control process of the overall system is done under a PC implementation of the

VDAQ Hardware-In-the-Loop (HIL) control board which has the ability to utilize

the MATLAB simulink’s real-time kernels. A representation of the 2-Dof planar

manipulator as a linkage systems is illustrated in Fig. 5.19.

6.2 Policy search with modified MCMC algorithm

As previously discussed, Algorithms 6 and 7 are using particle filters in their

iterations and need to simultaneously propagate different samples which is suitable

for simulation environment. To make them fit for real applications, which being

in different states at an individual time step t is not possible, the sampling and

resampling parts of these algorithms are excluded. This is equivalent to the situation

where just one particle filter is hired in their structure. The resulting modified

MCMC algorithms are then given in Algorithm 10 and Algorithm 11.
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Figure 6.1: Physical setup for the two link manipulator.

Algorithm 10: PMMH for RL

Input: Iteration numbers m, initial guess of parameter and estimate of
expected cost (θ(0), Ĵ (0)), proposal distribution q(θ′|θ)

Output: Parameter samples θ(m), m = 1, 2, . . .
for m = 1, 2, . . . do

Given θ(m−1) = θ and Ĵ (m−1) = Ĵ , draw a candidate value from the
proposal distribution θ′ ∼ q(θ′|θ).

Implement Algorithm 11 to get an unbiased estimate Ĵ ′ of J(θ′)
Accept the proposed parameter and set θ(m) = θ′ and Ĵ (m) = Ĵ ′ with
probability min{1, ρ̂(θ, θ′)} where

ρ̂(θ, θ′) =
q(θ|θ′)
q(θ′|θ)

µ(θ′)

µ(θ)

Ĵ ′

Ĵ
,

otherwise reject the proposal and set θ(m) = θ and Ĵ (m) = Ĵ .
end
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Algorithm 11: Modified SMC algorithm for an unbiased estimate of J(θ)

Input: Policy θ, time steps n, discount factor γ for RL

Output: Unbiased estimate of J as Ĵ

Start with Ĵ0 = 1.

for t = 1, . . . , n do

Draw sample trajectories from the transition density xt ∼ pθ(xt|θ)

Calculate the non-negative reward as Wt = exp {r(xt) γt−1}.

Update the estimate: Ĵt = Ĵt−1 ×Wt

return Ĵ .

end

6.3 Trajectory control and experimental results

The classical industrial robotic controllers which are normally designed for usual

predefined tasks need to be substituted with intelligent ones, which are capable

of making decisions based on data driven techniques, to best adopt to their most

recent environment. They should have the potential to learn and perform different

specific tasks with varying environments. Incorporating learning mechanisms in

the standard stabilizing feedback control strategies can be an alternative for this.

Trajectory control of a robotic manipulator, which enforces the system to track

a given path precisely, can be achieved by utilizing policy search algorithms for

feedback stabilization controllers. The reference tracking task here is to learn an

optimal policy which enables the robot to follow a circular trajectory in the x − y

axis. Therefore, the goal is to minimize the corresponding errors in both x and y

axes. The state space of 2-DoF planar manipulator is formalized as a function of
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Figure 6.2: Learning paradigm for the trajectory control of the 2-DoF manipu-
lator.

the end-effector position error and its derivative (velocity) as:

st =


xref − x

yref − y

ẋref − ẋ

ẏref − ẏ

 =


ex

ey

ėx

ėy



In order to use PD as the controller for our desired trajectory tracking, a

computed-torque method has been employed to linearize the feedback. Jacobian

and forward kinematics for the 2-DoF manipulator provides an opportunity to take

advantage of the computed-torque technique. As it can be seen from the trajectory

control schematic of the system in Fig. 6.2, the motor driver receives current through

multiplying the resulted torque from the Jacobian by the inverse of motor torque

coefficient as its input to operate. The inputs and outputs to the MCMC learn-

ing mechanism are motor torques (τ1, τ2) and position of the end-effector (xQ, yQ),

respectively.
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Gains of the PD controller comprises the parameter vector to be learned by the

modified MCMC algorithm as:

θ =
[
kpx kpy kdx kdy

]T

Reward function for the learning structure is taken as equation (6.1) in which

Q ∈ R4×4 and C ∈ R2×2 are chosen to beQ = diag([50, 50, 0.5, 0.5]), C = diag([0.01, 0.01]).

r(a, s) =

−s
TQs− Ca2, −110mm ≤ x ≤ 110mm, and − 170 mm ≤ y ≤ 330 mm

−108, otherwise

(6.1)

The value of the discounted factor for the multiplicative total reward is γ = 0.99

and each iteration of the MCMC lasts for 5s with a 0.001s sampling time except

in the situation where the agent leaves its allowable region and a failure hap-

pens (experiment time will be less than 5s). In each iteration of the MCMC,

the end-effector required to be calibrated meaning that it has to be located in the

initial point cw = (0, 225.14) where the joint angles q2 = π/6 and q1 = 5π/6.

The whole procedure of the experiment for policy search has been planned to be

900 iterations. In the experiments in 200th iteration the optimal policy parame-

ters were completely obtained. For the policy update by proposal distribution, a

Gaussian Random Walk (GRW) is used where its covariance matrix is selected as

Σq = diag([0.001, 0.001, 0.0001, 0.0001]). A zero mean Gaussian distribution with

a covariance of Σµ(θ) = diag([1.2, 1.2, 0.006, 0.006]) is assigned for the prior density

over parameter vector θ .

To capture the idea of the learning procedure for the robotic manipulator sys-

tem, a video demonstration can be reached in our Youtube channel in OnatSU.
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Trace plot and improvement of the return function during learning are both

depicted in Fig. 6.3. From the figure, it is observed that the trend of the learned

parameter trace for kdx and kdy are almost similar. The learned parameter vector

for the PD controller is:

θ =
[
kpx = 0.1285, kpy = 0.534, kdx = 0.0013, kdy = 0.000125

]T

Figure 6.3: Trace plots and average return for physical setup of robotic manip-
ulator: Left: Trace plots. Right: Total return

The position error of the reference trajectory for both x and y axes are shown

in Fig. 6.4.
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Figure 6.4: Position error for physical setup of robotic manipulator: Left: error
in x−axis. Right: error in y−axis.

The resulting torques generated by the motors are represented in Fig. 6.5. As

it is observed from Fig. 6.4 and Fig. 6.5, the learning controller experiences an

unpleasant oscillatory behavior or jitters with high frequencies which is caused by

the measurement noise or an uncertainty in the planar’s system such as the inherited

internal velocity controller. To eliminate this problem one can use a low-pass filter in

the joint-space measurements but it will add undesired delays to the time response

of the overall system. Because of this fact, we did not use it in our experiments.
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Figure 6.5: Torque profiles generated by motors.

Finally, in Fig. 6.6 trajectory of the desired circular reference and actual one

are depicted. To have a precision measurement degree of the proposed learning algo-

rithm, Root Mean Square Error (RMSE) has been used for our trajectory tracking

task which is equal to 4.88 mm. (for 5s planar draws the circular trajectory two

times).
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Figure 6.6: Desired reference and actual trajectory.



Chapter 7

Conclusions

Summary : In the presented thesis, we developed an offline SMC-based policy

search algorithm according to the RL framework for the continuous high dimensional

state spaces in the robotics domain. In the following we summarize the overall

concept and contributions of the thesis and discuss the possible future work.

7.1 Thesis Focus

In the first part of the available thesis we explored the possibility of using PG

RL algorithms on FLCs, owing to the fact that their contribution in this domain

have not been remarkably considered. Although there exist some related attempts

on either gain tuning of the FLCs or some which improve the quality of Q-learning

algorithm in RL by fuzzy logic, these works mostly concentrate on discrete state

spaces. Compared to them, we employ PG RL techniques to tune the parameters

of the FLCs in the continuous state and action spaces where the need for the ap-

proximation of the value functions is alleviated. This part is also contributed to the

hand-tuning challenges of FLC gains via applying a learning mechanism.

106
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As a second contribution, a new gradient-free algorithm based on MCMC for

the policy search problem in continuous state spaces, is proposed. These algorithms

are best applicable for sampling from complicated distributions, when an analytic

computation is hard to reach. The uniqueness of our proposed algorithm is based

on the formulation of the policy search problem in a Bayesian framework where the

expected total reward, is established by the product of exponential rewards and is

treated as a likelihood function. We propose to use the risk-sensitivity idea in the

structure of the reward function to facilitate the application of SMC algorithm in the

iterations of the MCMC. Incorporating an uninformative prior density with a risk-

sensitive cost function results in a posterior distribution for the policy distribution.

Then one can use the proposed MCMC algorithm to identify promising areas for

the optimal policy parameters. Considering the weaknesses of the gradient based

approaches in RL, we can summarize the benefits of the proposed MCMC algorithm

as following:

• The proposed MCMC is a gradient-free algorithm based on the estimates of

the expected risk sensitive total reward. This specification makes Its structure

easy to implement and therefore, lessens the computation complexity.

• Since the samples drawn by the MCMC algorithm from the posterior density

are used to seek the high probable areas of the optimal policy parameters, it

is less probable to get trapped in local solutions.

• We have compared our proposed MCMC algorithm with PG RL ones and

showed by our simulations that it is superior to the gradient based algorithms

both in terms of control time response and convergence.

• The proposed MCMC algorithm is contributed to both the statistical learning

and robotics where it is capable of parameter learning of the controllers and the

model of the system at the same time by using sampling methods in Bayesian
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statistics. It is also able to deal with uncertainties by incorporating some

uninformative prior densities on the policy parameters.

As a third contribution, we have developed a policy search algorithm which can

be reformulated and be suitable for dealing with high-dimensional state spaces. In

this direction, we modified our MCMC algorithm to an adaptive form where it has

the ability to change the covariance matrix of the proposal Gaussian distribution

for the parameter update rule. This is essential especially when the hand-tuning of

these covariance matrices are costly for high-dimensional parameter spaces.

As the last contribution by considering the fact that the Bayesian MCMC learn-

ing methods are in their first stages of progress in real-time applications, we made

a bridge between theory and application by carrying out experimental evaluations

of the proposed MCMC algorithm on a 2-DoF robotic manipulator. Our problem

was a trajectory control task in which the robotic manipulator was responsible for

tracking a given circular reference precisely.

7.2 Future Works

One of the limitations of the proposed MCMC algorithm is that statistically for

a better convergence of the algorithm more iterations of learning need to be done.

This is challenging specially in real-time complex robotic applications. As a result,

it would be more beneficial, if we could decrease the dependency of our algorithm

to iterations by incorporating some a-priori knowledge to the learning algorithm for

a fast convergence.

Since our method is an offline policy search method, one of the extensions of it

would be an online parameter update scheme during the time steps of each learning

iteration. Another modification can happen for the structure of the reward function
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where for our case we used a multiplicative reward to take the advantage of SMC

approach. Since in real-time implementations we can not use particle filters, Instead

likewise to the general setting of the RL paradigm, we can employ an additive reward

function.

For the A-MCMC algorithm, we could not manage to perform the algorithm on

a physical system and our experiments were limited to simulation environments on

a nonlinear model of a Ballbot system. Therefore, to demonstrate that our claims

about the proposed A-MCMC algorithm is valid in real-time as well, we could carry

its corresponding real-time evaluations.

In this thesis we used our algorithm for the parameter estimation of the con-

trollers. To extend its depth of application, we could employ it on the problem of

model learning of an unknown system. Although there have been some efforts in

model learning problem by using gradient-based methods in the literature, it would

be an effective gradient-free method in the model learning domain.
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