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Abstract

Despite growing autonomous driving trend, human is still a major factor in the

current vehicle technology. Drivers have a great impact on both fuel economy and

accident prevention. Therefore, identification and evaluation of driving behaviors

are crucial to improve the performance, safety and energy management of vehicle

technologies, particularly for heavy-duty vehicles. In this thesis, several driving

behaviors with different acceleration and car following characteristics are gener-

ated on a realistic truck model in IPG’s TruckMaker simulation environment. A

Long Short Term Memory (LSTM) classifier is then utilized to recognize driving

behaviors. First, six drivers are defined based on their longitudinal and lateral

acceleration limits. The classifier is trained using driving signals acquired from

the simulated truck which follows an artificial training road with different trailer

loads. The training road is designed to cover possible road curves that can be

seen in highways. The model is tested with driving signals that are collected from

a realistic road using the same method. Then, three drivers (calm, normal and

aggressive) are defined based on their longitudinal acceleration profiles in car fol-

lowing and the classifier is trained and tested using driving signals of these drivers

in different traffic scenarios. Results show that the proposed LSTM classifier is

capable of successfully capturing the dynamic relations encoded in driving signals

and recognizing different driving behaviors in small time samples.
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ME, Master Tezi, 2019
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Özet

Araçlarda hızla büyüyen otonom sürüş eğilimine rağmen, insan mevcut araç teknolo-

jileri için hala oldukça önemli bir faktör. Sürücüler, araçların hem yakıt ekonomisi

hem de sürüş güvenliği üzerinde oldukça büyük bir etkiye sahip. Bu nedenle,

sürücü davranışlarının belirlenmesi ve değerlendirilmesi özellikle ağır vasıta araçlar

için mevcut araç teknolojilerinin performans, güvenlik ve verimliliklerinin geliştiril-

mesi açısından büyük önem taşıyor. Bu tez kapsamında, IPG’nin Truckmaker

simulasyon ortamında gerçekçi bir araç modeli kullanılarak, ivmelenme ve araç

takip karakteristikleri üzerinden çeşitli sürücü davranışları tasarlandı. Bu sürücü

davranışlarının tanınabilmesi amacıyla bir Uzun Kısa Vadeli Hafıza Ağları (LSTM)

sınıflandırıcısından yararlanıldı. İlk olarak, doğrusal, yanal ivmelenme limitleri

üzerinden altı farklı sürücü tanımlandı. Sınıflandırıcı, sürücülerin araç modelinin

5 farklı yük ile yapay bir yolu takibinden toplanan sürüş sinyalleri ile eğitildi.

Bahsedilen yol otobanlarda karşılaşılabilecek geometrileri kapsayacak şekilde tasar-

landı. Model, gerçekçi bir yol üzerinden aynı yöntemle toplanan veriler ile test

edildi. Sonrasında, araç takibindeki doğrusal ivmelenmeleri üzerinden üç sürücü

(sakin, normal, agresif) tanımlandı ve bu sürücülerin farklı trafik senaryolarındaki

sürüş sinyalleri ile sınıflandırıcının eğitimi ve testi gerçekleştirildi. Sınıflandırma

sonuçları kullanılan LSTM tabanlı yapının, farklı sürüş davranışlarını içeren sürüş

sinyallerinin dinamik ilişkilerini başarı ile yakalayabildiğini göstermiştir.
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Chapter 1

Introduction

Vehicles have affected the world in a significant manner. The automotive industry

has been the motive power of the economies of numerous countries. However,

as automobiles come into human life, many concerns have occurred namely safety

problems, excessive fuel consumption, noise and exhaust pollution and dependency

on vehicles [2]. With the advance in availability of the technology, safety and

efficiency related subjects have gained more attention.

Throughout the years, many systems are developed using proprioceptive and ex-

teroceptive sensors to enhance vehicles for safer, better, and more efficient driv-

ing. Not only proprioceptive sensor-based systems such as Anti-lock Braking Sys-

tem (ABS) and Electronic Stability Program (ESP), but also many exteroceptive

sensor-based systems such as Adaptive Cruise Control (ACC), Automatic Emer-

gency Braking (AEB), lane keeping assist (LKAS) became standard for most of

today’s vehicles [3]. These exteroceptive sensor based systems are named Ad-

vanced Driver Assistance Systems (ADAS). Researchers aim to improve current

ADAS technologies with a better understanding of driving behaviors.

1



Introduction 2

1.1 Motivation

Despite the growing intelligence and autonomy in vehicles, the driver is still a

major factor in vehicle technologies. Through years, drivers and driving behaviors

have been investigated for various vehicle applications. Reducing fuel consumption

and increasing safety are the main motivations in the majority of research.

Drivers have a dramatic effect on fuel efficiency. Especially for heavy-duty ve-

hicles, incorrect driving behaviors create more significant differences due to high

weights of these systems [4]. Based on the Liimatainen’s [1] proposed fuel econ-

omy quantification method, fuel economy variance in a set of bus drivers is almost

30%. Figure 1.1 shows fuel economy percentages of that driver set based on a ref-

erence consumption model, which is calculated considering road geometry, vehicle

type, and time of the day. Guo et al. [5] claimed that identifying and correct-

ing undesired driving behaviors using driving tips reduced fuel consumption by

25% of a commercial truck with 25 tons of gross combined weight (GCW). These

two studies show the importance of understanding driver factors to improve fuel

efficiency.

Figure 1.1: Fuel economy percentage for a set of bus drivers based on a
reference consumption value [1]

.
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Investigation of driving behaviors and a driver’s physical state are also essential

for road safety, considering 90% of the traffic accidents occur due to human errors

[6]. Researchers proposed several methods that analyze vehicle signals and visual

features of drivers to identify dangerous driving states such as fatigue, drunk,

drowsy [7–11]. In the last three decades, ADAS has become a prevalent research

field that aims to enhance road safety by assisting drivers during risky conditions.

Developing such systems based on various driving behaviors rather than a generic

driver type can increase the success of these systems on preventing accidents [12,

13].

1.2 Contributions of the Thesis

In this thesis, a dynamic classification algorithm based on Long Short Term Mem-

ory (LSTM) networks is designed for the identification of driving behaviors of a

truck driver. Acceleration and car following models are proposed using this LSTM

classifier with the purpose of driver evaluation. Inertial Measurement Unit (IMU)

and onboard sensor measurements are used in a time window to train and test

the models. All the vehicle signals are obtained from IPG’s TruckMaker simu-

lation software using a realistic model of a commercial truck. In the process of

generating driver models, the investigation of the driving signals of a real truck

driver is utilized. This investigation is performed using direct signal analysis and

histogram analysis methods.

For the acceleration model, six drivers are defined with setting longitudinal and

lateral acceleration limits and the maximum speed parameters. These drivers are

simulated on a unique training road and a realistic test road controlling the truck

model with varying trailer loads. With the proposed training road design, it is

aimed to cover possible horizontal and vertical curves that can be observed in a

highway. The classifier is trained with driving signals, specifically longitudinal

and lateral accelerations, engine and vehicle speeds, and the road geometry. For

car following model, three drivers are designed with particular aggression levels,
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based on acceleration and deceleration characteristics in traffic. The classifier is

trained with the inputs of vehicle signals, road geometry, and sensor signals, that

are simulated for different traffic profiles.

1.3 Outline of the Thesis

Chapter 2 presents a literature review in driving behavior classification method-

ologies and an overview of Artificial Neural Networks (ANNs), Recurrent Neural

Networks (RNNs), and Long Short Term Memory (LSTM) are introduced. Chap-

ter 3 is on the analysis of an sample driving sequence of a real truck driver. Addi-

tionally, the histogram map based representation of driving signals are presented.

Chapter 4 introduces the generation of driving data using IPG’s Truckmaker and

the modeling of a commercial truck for simulations. In Chapter 5, generation of

the acceleration model and the classification methodology are explained. Simula-

tion outputs and the classification results are provided for this model. In Chapter

6 car following model is explained with simulation outputs and classification re-

sults. Finally, conclusion of this thesis and possible future works are discussed in

Chapter 7.

1.4 Publications

• M.E. Mumcuoglu, G. Alcan, M. Unel, O. Cicek, M. Mutluergil, M. Yil-

maz, K. Koprubasi, “Driving Behavior Classification Using Long Short Term

Memory Networks,” 2019 International Conference of Electrical and Elec-

tronic Technologies for Automotive, Torino, IEEE, 2019



Chapter 2

Literature Survey and

Background

Chapter 2 reviews the proposed methodologies for driving behavior classification in

literature. Furthermore, a background on sequence classification using Recurrent

Neural Networks is presented.

2.1 Driving Behavior Classification Methods

This section highlights the various valuable inputs for the driving behavior classi-

fication and presents the direct and indirect methods in the literature.

2.1.1 Driving Signals

Different vehicle signals, captured from various sources, are used for driving style

recognition algorithms [14]. Longitudinal and angular velocities, accelerator and

brake pedal positions, accelerations, steering wheel angle and fuel consumption

are some of the well-known inputs for these algorithms [15–21]. Vehicle’s onboard

IMU [15], GPS [19], radar or LiDAR [21] senors are the main source for most

5
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of these signals. Using smartphone sensors is also an alternative and low-cost

solution for capturing these data [16–18].

RADAR

LiDAR

IMUGPS

GPSGYROSCOPE ACCELEROMETER

Figure 2.1: Signal sources for driving style recognition algorithms.

.

Different signals or signal combinations are more capable of distinguishing dif-

ferent driving behaviors. One of the approaches is identifying driving behaviors

based on the correlation between acceleration and the agression [18] or speed pro-

files and fuel consumption [19]. Another popular method is using the combination

of acceleration with vehicle speed [20]. Additionally, using longitudinal and lat-

eral accelerations together is also emphasized with their strength of capturing the

majority of driving behaviors [21].

2.1.2 Direct Methods

Driving characteristics recognition algorithms can be grouped into two approaches,

that are direct and indirect (model based) methods [22]. Direct methods directly

investigate driving signals, which are mentioned in the previous part, mostly us-

ing pattern recognition or data analysis methods, while indirect methods require

relevant driver models to extract and identify driving behaviors.
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Zhang et al. [23] suggested a technique for driving skill characterization using

three pattern recognition methods, which are decision three, multilayer perceptron-

artificial neural networks (MLP-ANN), and support vector machines (SVMs).

Higgs and Abbas [24] examined relationships between driving behaviors and driver’s

state based on clustering with eight state-action variables, such as longitudinal and

lateral accelerations, vehicle speed, and yaw angle. They segmented drivers into

different patterns for each cluster.

2.1.3 Indirect (Model-Based) Methods

A relevant driver model needs to be established for indirect (model-based) tech-

niques. This model should represent some of the fundamental driving behaviors of

real drivers, such as acceleration, car following, lane change, and braking. Several

stochastic process theories are utilized for driving behavior recognition problems.

Hidden Markov Model (HMM), which is the simplest form of dynamic Bayesian

networks, is commonly used to recognize driving behaviors [26, 27], and driver

states [25]. Gadepally et al. [26] considered vehicles as hybrid-state systems, and

used HMM to predict driver decisions in road intersections. ARX models are

also suitable for capturing dynamic behaviors. Sundbom et al. [28] proposed a

method to predict driving behaviors and classify them as aggressive or normal

driving using a probabilistic ARX model. Akita et al. [29] and Sekizawa et al.

[30] suggested stochastic switched-ARX (SS-ARX) to model the uncertainties of

driving behaviors.

2.2 Recurrent Neural Networks for Sequence Clas-

sification

This section presents a background for the Recurrent Neural Networks with their

strengths and challenges and a brief introduction to Long Short Term Memory

networks for sequence classification.
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2.2.1 Neural Networks

Larger supply of data and advances in technology in the recent years have brought

a remarkable interest in data science and machine learning. Data science tech-

niques are rapidly implemented in industry and it’s various applications have al-

lowed it to reach an enormous practical success. Nowadays, most learning models

are developed based on artificial neural networks (ANNs). With the ability to

learn without handmade rules, ANNs are adequate solutions for both supervised

and unsupervised machine learning problems [31].

A group of artificial neurons, named nodes, and links between these neurons like

synapses form an artificial neural network. In each neuron, an output value is

calculated with implementing an activation function to the weighted sum of its

input values. Sigmoid, tanh and rectified linear unit (ReLU) functions are the

most common activation functions. The activation function of output nodes is

determined based on the task. For a classification problem with K number of

classes, a softmax function is utilized in the output layer of K nodes. A sample

feedforward NN structure with a sigmoid activation function is presented in Figure

2.2.

x1 x2 x3 x4

∑
ƒ

Input

Hidden Layer

Output

Figure 2.2: An artificial neuron (left) and feedforward neural network (right).

The majority of Neural Networks transfer data only from input layer to output

layer, called feedforward NNs. This structure brings some limitations due to the

assumption of independence between input and output layers. The feedforward

NNs cannot meet the expectations when relations between samples exist as in
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sequential data. Developing these models to learn sequences is very important,

especially for the tasks where ANNs provide proper results.

2.2.2 Recurrent Neural Networks

Unlike ANNs, Recurrent Neural Networks are developed for sequence learning by

using the feedback. RNN cells have multidimensional hidden states with non-

linear dynamics [32]. States of each RNN cell are transferred to the next cell after

the sample is included in the calculations. These hidden states operate as memory

for the network and provide the ability to process the previous signals [33]. An

RNN can map an input and output sequence at a current timestep, to predict the

sequence in the next timestep.

An RNN is a supervised learning model, that consists of artificial neurons with

one or more feedback loops [34]. These loops form recurrent cycles over sequence

or time [35], as shown in Figure 2.3. To train an RNN in a supervised way, a

dataset is needed with inputs and targets. The loss is calculated between outputs

and targets. The aim is to minimize the loss with the optimization of the weights

of the RNN.

xt

ht

x0  

A A A AA

h0

x1

h1

x2

h2

xt

ht 

Figure 2.3: Recurrent structure of the RNNs.

The basic RNN structure has three layers, that are an input layer with N units, a

recurrent hidden layer with M units and an output layer with P units. The inputs

to input layer are a set of vectors through time t where xt = (x1, x2, ..., xN). The

connection between the input and the hidden units are calculated with a weight



Literature Survey and Background 10

matrix of WIH . The hidden units are connected to each other through time where

ht = (h1, h2, ..., hM). The hidden state, which is the memory of the network, is

defined as

ht = fH(wIHxt + wHHht−1 + bh) (2.1)

where fH() is the activation function, and bH is the bias vector of the hidden

layer. The connection between hidden and output units are computed with a

weight matrix of WHO. Finally the output layer yt = (y1, y2, ..., yP ) is calculated

as follows

yt = fo(wHOht + bo) (2.2)

where fO() is the activation function, and bo is the bias vector of the output units.

The calculations above are repeated over time for the sequential input-target pairs.

Some of the most popular activation functions are the sigmoid, tanh, and ReLU

for hidden layer activation function. For classification of the sequential data, the

softmax function is used as an activation function for the output layer.

As mentioned earlier, input (N) , hidden (M) and output (P) layer size of RNNs

can be different. Many applications have been utilized with the different mappings

between input and output layers such as one to one, many to one, one to many

and many to many which are shown in Figure 2.4.

One to one One to many Many to one Many to many Many to many

Figure 2.4: Input output mappings of RNNs

One to one mapping is the vanilla mode of processing from fixed-size input to

fixed-size output as in image classification task. One to many mapping is the

processing when a single or fixed-size input gives a sequence of outputs such as
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image captioning takes a picture and outputs a sentence of words. Many to one is

the mapping when a single output is generated for a sequence of input data such

as in proposed driving behavior classification problem. Finally, many to many

mapping is applied for sequential inputs and outputs are needed.

2.2.3 Long Short Term Memory Networks

The main advantage of RNNs over feedforward NNs is the ability to learn sequen-

tial data due to their memorization capability. However, the amount of memory

that can be used is limited for a standard RNN structure. The effect of an input

sample on the hidden layer decreases exponentially as new samples are processed,

which is called vanishing gradient problem [36–38]). Because of this problem,

RNNs cannot effectively learn a task when there is a distance of more than ten

timesteps between a relevant input and the target [37]. The vanishing gradient

problem is illustrated in Figure 2.5.

x0  

A A A A

h0

x1

h1

x2

h2

xt

ht 

Figure 2.5: Vanishing gradient problem of Recurrent Neural Networks.

Many efforts were made to tackle the vanishing gradients of RNNs. These included

using alternative algorithms to gradient descent e.g., simulated annealing and

discrete error propagation ([38]), hidden states with different time delays ([39–

41]) or time constants ([42]), hierarchical history compression ([43]). LSTM is

the best-known method, particularly designed to handle the vanishing gradient

problem.
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With LSTM networks, the structure of hidden units are modified as memory cells

with controlling the inputs and outputs of these units using gates. Gates of an

LSTM cell control the flow of the data to maintain the relevant memory obtained

from previous timesteps [44, 45]. However, the states of LSTM networks can grow

independently for continual sequences, and the network can not detect when a

memory becomes irrelevant. To solve this problem, the forget gate is proposed by

Gers et al. ([46]) that allows LSTM cells to learn to reset the memory at proper

times. An LSTM network using this structure can remember both long term and

short term memory at the same time.

With the aim of classification of different driving behaviors from driving signals, an

LSTM network with a many to one mapping between input and output sequences

is utilized. The used structure proposed by Hochreiter et al. [45] will be presented

in Chapter 5.



Chapter 3

Driving Behavior Analysis

of a Truck Driver

In this chapter, the investigation of driving signals of a real driver controlling

heavy-duty vehicle is presented using direct signal analysis and histogram analysis

methods. This investigation aims to build a basis for designing driver and vehicle

models that can represent the driving behaviors of real truck drivers.

3.1 Visual Investigation of the Vehicle Signals

The provided data is 11 minutes of a driving sequence that is collected from the

truck, with a total mass of 22 tons, that is modeled in Chapter 4. The initial

purpose of this data is to test the truck on a road that is more challenging than

a typical highway or freeway. However, with the changing geometry of the route,

dataset allows us to observe both some extremes and variance in driving signals

for our driving behavior analysis.

13
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Visual investigation IMU signals of a Tow Truck 

 

  

 

 

Figure 3.1: GPS (a), altitude (b) graphs of the example driving sequence.
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Visual investigation IMU signals of a Tow Truck 

 

  

 

 
 

Visual investigation IMU signals of a Tow Truck 

 

  

 

 

Figure 3.2: Driving signals of the example driving sequence.
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Figure 3.2) shows the complexity of the horizontal and vertical geometry of the

road with GPS and altitude signals. As a result of the vertical profile of the

road, the vehicle is operated either with high throttle positions or with no throttle

inputs in a significant portion of the data. However, even for these road conditions,

the driver rarely used full throttle to accelerate the vehicle. Additionally, the

driver affords to keep the vehicle end engine speeds steady especially during uphill

sections.
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Visual investigation IMU signals of a Tow Truck 

 

  

 

 
Figure 3.3: Driving signals of the example driving sequence.
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3.2 Histogram Map Visualization of the Vehicle

Signals

Histogram map of data highlights the density of the underlying patterns of signals.

For our case, it is used to present different driving behaviors of the truck driver

from the driving data, which are time-series signals of on-board vehicle sensors.

[5, 47] showed that throttle position - engine speed and engine percent torque -

engine speed maps provide a great representation of driver’s performance. Seven

histogram maps, including these two, are selected based on the relations between

the signals and driving behaviors.

 

 

 

Accelerator Pedal Position (%) vs Engine Speed (rpm) 
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Figure 3.4: GPS (a), altitude (b) graphs of Parts A, B, C of the example
driving sequence.

Existing driving data is divided into three 3.4 to analyze the changes in driving

behaviors based on longitudinal and lateral geometry of the road. Selected maps

for defined parts are presented in Figures 3.5 - 3.11) in which the driving behaviors,

observed for longer time or more frequently, are represented with brighter colors.

Part A Part B Part C
Slope Profile Uphill Uphill Downhill
Avr. Grade (%) 5 3.8 -8.9
Curvature Profile Curvy Less Curvy Curvy
Avr. Centeral Angle of
Left or Right Turns (0)

36.5 22.1 45.16

Table 3.1: Horizontal and vertical road profile of Parts A, B, C of the example
driving sequence.
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Some patterns are occurred in the upper portions of throttle - engine speed (TES)

maps of Part A and B due to the uphill profiles, while the bins are placed densely

at the bottom of the map of Part C due to the downhill road profile (Figure 3.5).  
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Figure 3.5: Accelerator pedal position (%) vs engine speed (rpm) maps.
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Additionally, a more dispersed pattern in TES map of Part A is observed due to

the higher curvature profile of the Part A. Similar observations can be made in

engine torque - engine speed maps ((Figure 3.6))
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Figure 3.6: Engine actual percent torque (%) vs engine speed (rpm) maps.
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In Part B driver was able to maintain narrower vehicle speed and engine speed

band due to the lower curvature, which can be labeled as a better driving.
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Figure 3.7: Accelerator pedal position (%) vs vehicle speed (km/h) maps.
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The linear pattern in throttle - pitch angle maps can be observed easily from Figure

3.8 due to the direct relation between slope and torque/throttle requirements.

Throttle patterns in negative slopes of Part B are can be undesirable but possible

in some of the road conditions.

 

Accelerator Pedal Position (%) vs Vehicle Pitch Angle (Slope) (%) 
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Accelerator Pedal Position (%) vs Vehicle Pitch Angle (Slope) (%) 

  

 

Part A

Ac
ce

le
ra

to
r P

ed
al

 P
os

iti
on

 (%
)

Vehicle Pitch Angle (Slope) (%)

Part B

Ac
ce

le
ra

to
r P

ed
al

 P
os

iti
on

 (%
)

Vehicle Pitch Angle (Slope) (%)
Part C

Ac
ce

le
ra

to
r P

ed
al

 P
os

iti
on

 (
%

)

Vehicle Pitch Angle (Slope) (%)
 

Accelerator Pedal Position (%) vs Vehicle Pitch Angle (Slope) (%) 
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Figure 3.8: Accelerator pedal position (%) vs vehicle pitch angle (%) maps.
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Acceleration signal of the driver, created with the derivative of the vehicle speed

signal, provides essential information about driving characteristics. Figure 3.9

shows that, our expert driver prefers to control the truck with smaller accelerations

in +0.05g,−0.15g longitudinal acceleration range for this difficult test road.
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Figure: IPG’s Truckmaker 
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Figure: IPG’s Truckmaker 
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Figure: IPG’s Truckmaker 

Figure 3.9: Acceleration (G) vs vehicle speed (km/h) maps.
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Finally, braking behaviors of the driver are analyzed in Figure 3.10, 3.11 with

acceleration histograms during regular braking and regular + retarder braking

events for the entire data. Retarder is a specific braking system for heavy-duty

vehicles to prevent damages in regular brake disks.

 

Braking Events - Acceleration [G] Maps 

  

 

Brake Events

Ac
ce

le
ra

tio
n 

(G
)

Engine Speed (rpm)

Brake Events

Ac
ce

le
ra

tio
n 

(G
)

Vehicle Speed (km/h)
Brake Events

Ac
ce

le
ra

tio
n 

(G
)

Vehicle Pitch Angle (Slope) (%)

 

Braking Events - Acceleration [G] Maps 
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Braking Events - Acceleration [G] Maps 
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Figure 3.10: Acceleration (G) maps for brake events.
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Acceleration maps of breaking events show that the driver was able to decelerate

without using brakes during the whole driving sequence and to use retarder braking

more frequently as expected from an expert driver.

 

 

 

 

Braking + Retarder Events - Acceleration [G] vs Engine Speed (rpm) Maps 
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Braking + Retarder Events - Acceleration [G] vs Engine Speed (rpm) Maps 
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Figure 3.11: Acceleration (G) maps for brake + retarder events.



Chapter 4

Data Generation

Driver classification problems of the acceleration and car following models detailed

in Chapters 5 - 6, driving data are needed to develop a learning algorithm. IPG’s

TruckMaker software [48] is utilized to generate the required driving data.
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Figure: IPG’s Truckmaker Figure 4.1: IPG’s TruckMaker, CarMaker, BikeMaker.

This software is also used by vehicle companies to model their prototype products.

In this section, the TruckMaker is represented. A reasonable model of a heavy-duty

vehicle is generated for further simulations.

24
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4.1 TruckMaker

TruckMaker is virtual testing software for heavy-duty vehicles made by IPG Auto-

motive. It allows users to generate realistic vehicle, driver, road, and traffic models

based on its built-in model database or design these models using an external com-

puting environment such as MATLAB Simulink or National Instruments LabView.

 

 

   

  

 

Figure: Fig. 1. X-Y-Z profile of an example road block. 

Figure 4.2: Vehicle, road, driver, traffic models of TruckMaker.

4.2 Generation of a Simulation Truck Model

To train and test driving behavior classification models with realistic driving sig-

nals of driver models, the model of a commercial truck is generated in Truckmaker.

Various physical and powertrain parameters of the truck and the trailer are used

to create the vehicle model. Creating training data using this driver model, will

allow us to test the algorithms directly using driving signals collected from the

original vehicle controlled by real drivers.

4.2.1 Physical Parameters

To be able to obtain a reliable model, some of the key properties are determined

that can represent the physical dynamics of the truck and the trailer. A standard
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European cab-over and a trailer model from the Truckmaker database are modified

using those key properties.

For the cab over model, the dimensional parameters such as the center of gravity

(COG), axle positions and main outer dimensions, the mass parameters such as

the kerb weights on the first and the second axles, and inertial parameters that

are Ixx, Iyy, Izz, Ixy, Ixz, Iyz are used. The key parameters are selected similarly

for the trailer model with respect to the hitch position. Additionally, aerodynamic

properties, such as frontal area and drag coefficient, are also considered for gen-

erated truck and trailer models. Selected parameters for both truck and trailer

models are shown in Figure 4.3.

A
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DC E

Axle 2Axle 1

Delta X

COG COG

Delta Z
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G H

Delta X
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Hitch

Figure 4.3: Physical parameters of the truck (Top) and trailer (Bottom).
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4.2.2 Powertrain

Acquiring a vehicle model with relevant powertrain parameters is essential for

proposed driving behavior classification models. The powertrain dynamics of the

truck is modeled considering three main components of the power flow, namely

engine, transmission, and differential, that can be seen in Figure 4.4.

Transmission DifferentialEngine

Engine Speed (rpm)

Power Flow

Tire Speed (rpm)

Engine Net Output Torque Map
Fuel Consumption Rate Map

Automatic Transmission
Upshift - Downshift Maps

Differential Parameters
Final Gear Ratio

Figure 4.4: Powertrain power flow.

To model the engine engine net torque and fuel consumption maps are used. These

maps provide engine net torque (Nm) and instantaneous fuel consumption (kg)

values for engine speed - throttle position points. The maps are presented in

Figure 4.5 with the parameters are scaled between 0 to 100 due to the presence of

classified information.

A 12 forward speed automatic transmission model is created for the truck model.

For each gear, a gear ratio, inertia, efficiency, an upshift and a downshift map of the

real vehicle are set in the simulation model. The transmission model automatically

switches between gears based on engine speed, throttle position using the upshift

and downshift maps of the active gear. Finally, the differential is modeled using

differential gear ratio (final drive ratio) and efficiency parameters.
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Chapter 5

Acceleration Model

This chapter introduces the methodology and testing results for the proposed

acceleration model. That includes the design of the driver, training/test road

models, generation and preparation of driving signals of those drivers, introducing

the LSTM based classification algorithm, and driver classification results.

5.1 Experiment Design

In this section, the methodology of designing drivers, with different acceleration

characteristics, is presented. To this end, an artificial training road and a test

road are generated for the acceleration model simulations.

5.1.1 Driver Design

In literature, it is known that acceleration signals can describe distinctive features

of different driving behaviors. T. Krotak and M. Simlova [49] showed that, different

driving behaviors of a beginner and an expert driver reflect on longitudinal -

lateral acceleration signals significantly. The analysis in Chapter 3 proved that

the acceleration behaviors of a single driver vary with changing road geometries.

In the light of this information, we developed the acceleration model using the

29
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driver model of IPG’s commercially available software TruckMaker [48] that is

parameterizable based on acceleration behaviors.

Figure 5.1: TruckMaker’s driver model.

The driver model of TruckMaker continuously generates target speeds with pre-

viewing the road curves to reach a cruising speed without exceeding certain accel-

eration limits. The model operates the vehicle at these target speeds using a PI

controller that generates throttle and brake outputs, like a real driver (Figure 5.1).

To mimic real driving behaviors, we set the values of five driver model parameters,

namely maximum longitudinal acceleration and deceleration (braking), maximum

lateral accelerations for left and right turns and the cruising speed.

Driver

Nım.

Speed Limit
Longitudinal Acc.

Limit Parameters

Lateral Acc.

Limit Parameters

Tx [km/h] ax t [m/sˆ2] ax b [m/sˆ2] ay l [m/sˆ2] ay r [m/sˆ2]

1 90 0.1 2.5 1.4 1.4

2 90 0.1 1.5 0.6 0.6

3 90 0.1 1.0 0.2 0.2

4 90 0.5 2.5 1.4 1.4

5 90 0.5 1.5 0.6 0.6

6 90 0.5 1.0 0.2 0.2

Table 5.1: Acceleration behavior model driver parameters

Six driver classes are designed for the simulations using the parameters given in

Table 5.1. First three drivers (Driver 1-3) have lower longitudinal acceleration
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limits than the last three drivers (Driver 4-6). Lateral acceleration and (braking)

deceleration limits are decreasing gradually from driver 1 to 3, or driver 4 to 6, in

each set (Figure 5.2).

Figure 5.2: Acceleration limit parameters of drivers 1-3 (Top), 4-6 (Bottom).

Drivers with the same lateral and different longitudinal acceleration limits are

named as differing classes (Driver 1-4, 2-5, 3-6) due to their similar behaviors in
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some conditions . Acceleration limits of all drivers are visualized in Figure 5.3.
 

 

 

 

Figure: Grade - centeral angle of horizontal curve covarage map for training and test roads. 

 

Figure: Driver acceleration limit parameters drivers 1-6. Figure 5.3: Acceleration limit parameters of drivers 1-6.

5.1.2 Training and Test Road Design

An artificial training road is designed to extract different longitudinal and lateral

acceleration behaviors of drivers using different road profiles. The aim is to train

the proposed classification algorithm with driving signals covering most of the

possible road geometries of a freeway or a rural highway.

To generate simulation routes systematically, the road block concept is generated.

A road block is designed to be 200 m length of an arc that is defined by 6 points

in 3D space. It represents a small portion of a road with constant grade and

horizontal curve profile (without superelevation). A road block has two parameters

which are grade of the road in percentage and central angle of the horizontal

curve in degrees. Several road blocks are sequentially added to form a complete

training/test road for simulations.
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Figure: Fig. 1. X-Y-Z profile of an example road block. Figure 5.4: X-Y-Z profile of an example road block.

The grade parameter represents uphill when it is positive and downhill when it is

negative. The central angle parameter represents a right-turn when it is positive,

a left-turn when it is negative, and a straight road when it is zero. An example of

a road block is presented in Figure 5.4.

In order to increase the modeling accuracy for different road types, the training

road is targeted to cover different combinations of grade – central angle parameters

in desired ranges. These ranges are determined based on the radius of the curvature

and the length of the grade [50].

Altitude and curvature profile of a road segment consists of two parts. In the first

part, road blocks with positive and negative grades are positioned next to each

other from lower slopes to higher slopes. This part composes different vertical

crest and sag curves. In the second part, there is one road block with 0 % grade in

after each uphill and downhill block (Figure 5.5, Z-Y profile). The same pattern

is used for horizontal curves with one central angle value in a segment (Figure

5.5, Y-X profile). The plain road blocks between curves will let driver models

accelerate starting from different speeds to reach their target speed.
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Figure: (a) Z-Y and (b) Y-X profiles of an example training road segment.  

 

 

Figure: (a) Z-Y and (b) Y-X profiles of an example training road segment. Figure 5.5: (Top) Z-Y and (Bottom) Y-X profiles of an example training road
segment.

To cover determined grade and centeral angle ranges, 8 road segments are se-

quentially added to form the complete training road. Each segment follows the

same grade and horizontal curve pattern with a different central angle value. The

segments are depicted in Figure 5.6 with different colors.
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Figure: (a) Z-Y profile and (b) Y-X profile of the training road. 
 

 

 

Figure: (a) Z-Y profile and (b) Y-X profile of the training road. Figure 5.6: (Top) Z-Y profile and (Bottom) Y-X profile of the training road.

The designed training road is 114.7 km that involves 8 road segments with 72 road

blocks in each. In this road, lower grade - centeral curve intersections are covered

more densely, since the existence of simultaneous sharp curvatures and high grades

in a highway is uncommon. Finally, an 8 km, smoother road is designed using road

blocks with arbitrary parameters to test the developed algorithm. Coverages of

the training and test roads are shown in Figure 5.7.
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Figure: Grade - centeral angle of horizontal curve covarage map for training and test roads. 

 

Figure: Driver acceleration limit parameters drivers 1-6. 

Figure 5.7: Grade - central angle coverage map for training and test roads.

5.2 Driver Classification

In this section, the data generation method and the LSTM based classification

algorithm are explained.

5.2.1 Data Generation for Acceleration Model

Driving data of the proposed drivers are produced using TruckMaker. Each driver

is simulated on both training and test roads using the vehicle model that is ex-

plained in Chapter 4 with five different trailer loads, i.e., 0, 5, 10, 15, 20 tones. In

total, 60 different driving data of six driver classes is recorded at 5 Hz.

 

5.3. Driver Classification 

 

 
 

 

Figure:  Classification model inputs. 

 

Figure:  Training and test accuracy graph for correct and differing classes. 

Figure 5.8: Classification model inputs.
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Longitudinal and lateral accelerations, engine and vehicle speeds, and pitch angle

of the vehicle have been selected as inputs to the proposed algorithm. 30 second

time-window (T) is shifted through all the driving data with the period of 15

seconds. The signals within the window are labeled with its driver number and

used as a sample for classification model (Figure 5.8).

5.2.2 Long Short Term Memory Network

In order to classify the driving behavior, the temporal relations of the selected

inputs are targeted to be explored. For this purpose, a type of recurrent neural

network called Long Short Term Memory (LSTM) [45] network is selected.

A typical LSTM neural network includes an input layer, a recurrent hidden layer

and an output layer. Different from classical neural networks, LSTM networks

have memory capabilities with three gates called: forget gate, update gate and

output gate (Figure 5.9).

tanh

Softmax

tanhForget 
Gate

Update
Gate

Output
Gate

LSTM Cellct-1
ct

yt

at

at-1

xt

rFt rUt rOt

Figure 5.9: LSTM structure.
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The gates in an LSTM structure are independent neural networks with the same

dimension and sigmoid activation functions. Input to these gates is the concatena-

tion of measurements (x(t)) and the output state of previous LSTM cell (a(t-1)).

In this study, measurements include the signals shown in Figure 5.8 for a time

period of T.

Forget gate adjust the information to discard from the cell, update gate and tanh

gate decide the values from the input to update the memory state (c(t)), and

output gate determines what to output based on input and memory of the cell. A

typical LSTM neural network can be implemented by the following equations

Γf = σ(Wf [ at−1, xt] + bf ) (5.1)

Γu = σ(Wu [ at−1, xt] + bu) (5.2)

c̃t = tanh (Wc [at−1, xt] + bc) (5.3)

Γo = σ(Wo [ at−1, xt] + bo) (5.4)

ct = Γu ∗ c̃t + Γf ∗ ct−1 (5.5)

at = Γo ∗ ct (5.6)

where Wf, Wu, Wc, Wo, Wr are the weight matrices and bf, bu, bc, bo, br are the

bias vectors of corresponding operations. At the end of the recurrent calculations

of 5.1 - 5.6 for a time period (T), the last output state (alast) is fed to the output

layer and employed in softmax function to find the probabilities for each class as

follows:

z = Walast + b (5.7)

softmax (Xi) =
exp(Xi)∑k
j=1 exp(Xj)

, i = 1, 2, . . . , k (5.8)

where W and b are the weight and the bias vectors in the output layer, and k is

the number of classes.
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5.3 Results

This section presents a comparison between the designed drivers based on their

simulation outputs and a discussion of the classification results in the light of this

driver comparison.

5.3.1 Driver Comparison

The effects of selected driver parameters can be easily observed from the signals

presented for different segments of the training road (Figure 5.10 - 5.11). For

instance, the lateral acceleration plot in Figure 5.10 shows that the Driver 1 re-

mains in the |ay| < 1.4m/s2 band while Driver 2 in |ay| < 0.6m/s2 and Driver 3

in |ay| < 0.1m/s2 during the whole trip. To obtain such conditions, these three

models operate with various speed profiles in different curves. Longitudinal ac-

celeration behaviors slightly vary between these models as expected. A similar

comparison could be made between the last three drivers.

It is also significant to compare the drivers with the same lateral acceleration limits.

In that sense, comparison of driving speed, longitudinal and lateral acceleration

signals for Driver 1- 4 is given in Figure 5.11. Driver 4 has operated with a higher

longitudinal acceleration profile than Driver 1, while the lateral acceleration profile

is almost the same. However, all driving signals of such driver couples overlap in

some cases that can be observed easier from the test road. We have named these

driver couples as “differing class” for further discussions, i.e., Driver 1-4, 2-5, 3-6.
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5.2. Simulations  

 

 

Figure: Simulation results. 

5.2. Simulations  

 

 

Figure: Simulation results. 

 

 

Figure: Simulation results. 

Figure 5.10: Driver comparison based on vehicle speed, longitudinal and lat-
eral acceleration signals acquired from the training road for drivers in the same

set (10 ton trailer load).
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Figure: Simulation results. 

 

 

Figure: Simulation results. 
 

 

Figure: Simulation results. Figure 5.11: Driver comparison based on vehicle speed, longitudinal and lat-
eral acceleration signals acquired from the training road for drivers in a differing

class (10 ton trailer load).
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Figure: Simulation results. 
 

 

Figure: Simulation results. 
 

 

Figure: Simulation results. Figure 5.12: Vehicle speed, Longitudinal and lateral acceleration signals of all
six drivers from the test road (10 ton trailer load).
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5.3.2 Classification Results

The proposed LSTM network structure is trained and tested with the driving

signals of drivers in a small time-window. Driving signals are collected using a

realistic truck model with five different trailer loads. The dynamics of the vehicle

change significantly based on the mass of the vehicle.
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Figure 5.13: Normalized confusion matrix of the training (Top) and the test
set (Bottom).

Experiments have shown that size of the window (T) considerably affect the clas-

sification results. When the T is too small, sample data become insufficient to

distinguish drivers. On the other hand, a large T lead to unrealistic signal forms



Acceleration Model 44

due to the repetitive nature of the training road. As a result, a 30 second window

is selected that provide decent amount of information about driving behaviors in

each sample. Additionally, shifting the window with the period of 15 seconds have

enhanced the training performance.

Classification accuracies of the training and the test sets are respectively 82.24 %

and 74.70 %. Confusion matrix of training and test roads (Figure 5.13) show that,

majority of the misclassifications made between differing classes. When differing

classes are assumed as correct outputs, the accuracy of training and test sets are

respectively, 93.1 % and 92.8 % (Figure 5.14). Although, a differing classification

cannot be labeled directly as a true output, there is a high chance that differing

classes behave the same in the majority of misclassified samples.

 

5.3. Driver Classification 

 

 
 

 

Figure:  Classification model inputs. 

 

Figure:  Training and test accuracy graph for correct and differing classes. Figure 5.14: Training and test accuracy graph for correct and differing classes.

Nevertheless, the classification results have proven that the proposed LSTM struc-

ture is effective at extracting dynamic driving behaviors of drivers in a time-

window.



Chapter 6

Car Following Model

The car following, which represents how a driver behaves while driving behind

another vehicle, forms the majority of urban driving situations. In general, this

characteristic of a driver is affected by two main categories that are personal

differences of drivers, such as age, gender, aggression, driving skill and vehicle

properties, and situational factors, such as driving time/day, weather and road

conditions, fatigue, stress, alcohol and drugs [51].

The differences between drivers create the variation in headway preference, which

is a measure of the distance between vehicles in time [52]. For instance, male

drivers choose lower headways than females [53] and aged drivers (59+) prefer

almost 25% higher headways than the normal age driver (23-37) [54].

In this chapter, the methodology and testing results for the proposed car follow-

ing model is presented. That includes the design of three drivers with different

aggression levels, generation and preparation of driving signals of those drivers,

and classification results.

45
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6.1 Experiment Design

This section presents the methodology of designing drivers, with different aggres-

sion levels based on their car following behaviors.

6.1.1 Driver Design

As a driver model, a target speed generator (TSG) is designed instead of Truck-

maker’s TSG based on the following distance for this car following model. Pro-

posed TSG algorithm generates target speeds for the truck depending on the dis-

tance and speed difference measurements and the vehicle speed signal. Distance

measurements are acquired from the radar sensor which is placed in front of the

truck model in the simulation environment. The PI controller of the TruckMaker

controls the truck with throttle and brake outputs as in previous acceleration

model 6.1.

 

 

Figure:  Anticipation model outline. 

Target Speed 
Generator

Figure 6.1: Car following model outline.

Four different driving modes are defined considering the aim of mimicing the driv-

ing behaviors of a real driver and simulating the truck model smoothly in data
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generation. First, a hysteresis thresholding perspective is applied to the selection

between driving modes. Two distance thresholds (λ1, λ2) determine the charac-

teristics of the designed drivers 6.2.

Figure 6.2: Hysteresis thresholding for the target speed generator.

The designed driving modes for TSG are named as follows;

• Mode 1: Accelerate

• Mode 2: Maintain current speed

• Mode 3: Deccelerate

• Mode 4: Stop

The first mode is designed for driver to accelerate with an independent speed profile

from the leading vehicle. The second mode is a transition mode for the driver

to prepare for leading vehicle’s next action. The third mode is the deceleration

(braking) process. During stops, sudden changes between mode 3 and 1 lead

oscillation due to the dynamics of heavy duty vehicle. The fourth mode aims to

prevent these oscillations from happening. The rules for mode selection based on

sensor measurements are given below.

• Mode 1: (λ2 < Distance) | ( 0 < speed difference )

• Mode 2: (λ1 < Distance < λ2 ) & (speed difference < 0)

• Mode 3: (Distance < λ1) & (speed difference < 0)

• Mode 4: (Distance < 10 m) & (V truck < 2 km/h)
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The proposed TSC generates different speed profiles based on equations 6.1 - 6.4

respectively for Mode 1-4.

Vtarget = b ∗ ta (6.1)

Vtarget = V −
truck (6.2)

4 = speed difference ∗ d

distance
Vtarget = V −

truck +4 (6.3)

Vtarget = 0 (6.4)

Three driver models are designed using the proposed target speed generator with

parameters given in Table 6.1. From driver 1-3, drivers chose higher accelerations

and speeds, lower distance thresholds which means late decelerating, and more

aggressive braking. Unlike the drivers defined in the chapter 5, defined drivers can

be labeled as calm, normal and aggressive respectively for drivers 1-3.

Driver

Num.

Mode Selection

Parameters

Mode 1 Param

(b ∗ ta)

Mode 3

Parameters

Threshold 1 Threshold 2 a b d

1 125 m 200 m 0.8 2.05 1.5

2 100 m 180 m 0.7 3.86 1.3

3 75 m 150 m 0.6 7.07 1.0

Table 6.1: Car following model driver parameters.

A speed profile using equation 6.1 is set for each driver for the acceleration behav-

iors of these drivers. These speed profiles allows drivers to use higher accelerations

in lower speeds which is necessary due to vehicle dynamics. Defined speed profiles

and resulting accelerations for drivers 1-3 are shown in Figure 6.3.
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Figure: Mode 1 speed and acceleration profiles. 
 

 

 

 

 

Figure: Mode 1 speed and acceleration profiles. Figure 6.3: Mode 1 speed (Top) and acceleration (Bottom) profiles of the
drivers 1-3.

6.2 Driver Classification

In this section, the data generation method for the car following model is presented.

6.2.1 Data Generation for Car Following Model

Driving signals of designed drivers are simulated using the same vehicle model

that is explained in Chapter 4 with 10 ton trailer load on a realistic road model.
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For both training and test simulations a leading vehicle speed profile is required

(Figure 6.1). Driver models control the vehicle vehicles based on their defined car

following characteristics.

 

 

Figure:  Following vehicle training speed and acceleration profiles. 

Leading Vehicle Speed Profile (Training) 

 

 

Figure:  Following vehicle training speed and acceleration profiles. 

Leading Vehicle Acceleration Profile (Training) 

 

Figure:  Following vehicle test speed and acceleration profiles. 

Leading Vehicle Speed Profile (Test) 

Leading Vehicle Acceleration Profile (Test) 

 

Figure:  Following vehicle test speed and acceleration profiles. 

Leading Vehicle Acceleration Profile (Test) 

Figure 6.4: Leading vehicle speed and acceleration profiles for the training
and test simulations.
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Two speed profiles for leading vehicles are designed to generate training and test

simulations. Speed profile for the training consists of braking events with varying

decelerations while the speed profile fot test consists of arbitrary braking events

Figure 6.4.

Longitudinal acceleration, vehicle speed, throttle position, pitch angle and distance

to forward vehicle signals of the truck model is selected for the car following

classification model. Classification samples are generated similarly to the previous

classification model (Figure 5.8) by shifting 12 second time-window (T) through

all driving data with the period of 6 seconds.

6.3 Results

This section presents a comparison between the designed drivers based on their

simulation outputs and a discussion of the classification results.

6.3.1 Driver Comparison

The average speed - total fuel consumption values acquired training and test sim-

ulations, presented in Table 6.2 provides a comprehensive comparison between the

drivers. Because car following is dependent on leading vehicle speed, driver mod-

els can only operate with similar average speeds. However, the aggression level of

drivers dramatically increases total fuel consumption.

Driver

Num.

Training Simulations Test Simulations

Average Speed

km/h

Fuel Consumption

L/100km

Average Speed

km/h

Fuel Consumption

L/100km

1 36.028 38.606 28.144 44.2962

2 36.107 41.500 28.284 44.6562

3 36.123 47.643 27.963 48.7414

Table 6.2: Driver comparison based on average speed and fuel consumption
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Figure 6.5 shows that from driver 1 to 3 higher throttle positions and lower follow-

ing distances are observed, as expected. Even though these aggressive behaviors

create instant higher speeds, they eventually lead lower average speeds due to more

frequent stops.

 

 

 

 

Figure:  Driver comparision. 

 

Figure:  Driver comparision. 

 

 

 

 

Figure:  Driver comparision. 

 

Figure:  Driver comparision. 

 

 

 

 

Figure:  Driver comparision. 

 

Figure:  Driver comparision. 
 

 

 

 

Figure:  Driver comparision. 

 

Figure:  Driver comparision. 

Figure 6.5: Driver comparison based on vehicle speed, throttle position, fol-
lowing distance and control mode selection signals acquired from the test road.
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6.3.2 Classification Results

The accuracy of 99.22% for the training, 76.96% for the test sets are achieved.

The common error is predicting an aggressive driver model with a less aggressive

one, that can be seen from the confusion matrix of test resutls (Figure 6.6).

Figure 6.6: Normalized confusion matrix of the training (Top) and the test
set (Bottom).



Chapter 7

Conclusion and Future Works

We have proposed a new method using a Long Short Term Memory (LSTM)

network with the aim of recognizing different driving behaviors in a small time

window. Different driving behaviors with different acceleration and car following

chacteristics are designed. First, six drivers are created based on longitudinal and

lateral accelerations using the driver model of IPG’s TruckMaker. Driving signals

of driver models are collected from a realistic truck model with varying carry loads

in Truckmaker. An artificial training road is designed to simulate possible road

geometries and to extract driving behaviors of designed driver models. The accu-

racy of the LSTM classifier achieved up to 93.1% and 82.3% in training and test

cases, respectively. For car following model, three drivers with different aggression

levels are created using an algorithm that mimics car following characteristics of

a driver with four driving modes. Driving signals of drivers are obtained as in the

acceleration model and labeled for a shorter time window. The classifier predicted

the car following behaviors with 99.2% training and 77.0% test accuracy.

Results show that the proposed LSTM classifier has the capability of capturing

dynamic relations of driving signals in a small time window. With the ability to

recognize driving behaviors, more customized Advanced Driver Assistance Systems

can be developed to enhance efficiency and the safety of vehicles.

54
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As future work, prediction errors of classification algorithms will be investigated

to improve driver designs. Developed models will be used to classify the driving

signals of actual drivers controlling the real truck.
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