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ABSTRACT
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Mechatronics Engineering, M.Sc. Thesis, July 2019

Thesis Advisor: Assoc. Prof. Dr. Volkan Patoğlu

Keywords: Physical human-robot interaction, series elastic actuation, frequency

domain passivity, coupled stability, impedance control, haptic rendering

Regulating the mechanical interaction between robot and environment is a funda-
mentally important problem in robotics. Many applications such as manipulation
and assembly tasks necessitate interaction control. Applications in which the robots
are expected to collaborate and share the workspace with humans also require in-
teraction control. Therefore, interaction controllers are quintessential to physical
human-robot interaction (pHRI) applications.

Passivity paradigm provides powerful design tools to ensure the safety of interaction.
It relies on the idea that passive systems do not generate energy that can poten-
tially destabilize the system. Thus, coupled stability is guaranteed if the controller
and the environment are passive. Fortunately, passive environments constitute an
extensive and useful set, including all combinations of linear or nonlinear masses,
springs, and dampers. Moreover, a human operator may also be treated as a pas-
sive network element. Passivity paradigm is appealing for pHRI applications as it
ensures stability robustness and provides ease-of-control design. However, passivity
is a conservative framework which imposes stringent limits on control gains that
deteriorate the performance. Therefore, it is of paramount importance to obtain the
most relaxed passivity bounds for the control design problem.

Series Elastic Actuation (SEA) has become prevalent in pHRI applications as it
provides considerable advantages over traditional stiff actuators in terms of stability
robustness and fidelity of force control, thanks to deliberately introduced compliance
between the actuator and the load. Several impedance control architectures have
been proposed for SEA. Among the alternatives, the cascaded controller with an
inner-most velocity loop, an intermediate torque loop and an outer-most impedance
loop is particularly favoured for its simplicity, robustness, and performance.



In this thesis, we derive the necessary and sufficient conditions to ensure the passiv-
ity of the cascade-controller architecture for rendering two classical linear impedance
models of null impedance and pure spring. Based on the newly established passiv-
ity conditions, we provide non-conservative design guidelines to haptically display
free-space and virtual spring while ensuring coupled stability, thus the safety of inter-
action. We demonstrate the validity of these conditions through simulation studies
as well as physical experiments.

We demonstrate the importance of including physical damping in the actuator model
during derivation of passivity conditions, when integral controllers are utilized. We
note the unintuitive adversary effect of actuator damping on system passivity. More
precisely, we establish that the damping term imposes an extra bound on controller
gains to preserve passivity.

We further study an extension to the cascaded SEA control architecture and discover
that series elastic damping actuation (SEDA) can passively render impedances that
are out of the range of SEA. In particular, we demonstrate that SEDA can passively
render Voigt model and impedances higher than the physical spring-damper pair in
SEDA. The mathematical analyses of SEDA are verified through simulations.
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Robot ve çevre arasındaki mekanik etkileşimi düzenlemek, robot biliminde önemli
bir problemdir. Manipülasyon ve montaj işleri gibi birçok uygulama etkileşim kon-
trolcüsü gerektirir. Robotların insanlarla birlikte çalışması ve çalışma alanını paylaşması
gereken uygulamalarda da etkileşim kontrolcüsü gereklidir. Bu nedenle etkileşim
kontrolcüleri fiziksel insan-robot etkileşimi (fİRE) uygulamaları için fevkalade önemlidir.

Pasiflik paradigması etkileşimin güvenliğini sağlamak için güçlü tasarım araçları
sunar. Bu paradigma pasif sistemlerin enerji üretme potansiyeline sahip olmadığı
esasına dayanır. Bu nedenle kontrolcü ve etkileştiği ortam pasif ise bileşke kararlılık
garanti edilebilir. Neyse ki pasif ortamlar kütlelerin, yayların ve sönümleyecilerin
doğrusal veya doğrusal olmayan tüm kombinasyonlarını içeren kapsamlı ve kullanışlı
bir küme oluşturur. Ayrıca insan operatörler de pasif bir ağ elemanı olarak in-
celenebilir. Pasiflik paradigması, gürbüz kararlılık ve kontrolcü tasarım kolaylığı
sağladığından fİRE uygulamaları için caziptir. Bununla birlikte, pasiflik kontrolcüye
performansı düşüren katı sınırlamalar getirdiği için kısıtlayıcı bir paradigmadır. Bu
nedenle kontrolcü tasarımı için en geniş pasiflik sınırlarını elde etmek çok önemlidir.

Seri elastik eyleme (SEE) fİRE uygulamaları için önemli avantajlar sağladığından
yaygınlaşmıştır. SEE, eyleyici ve yük arasına bilinçli olarak esneklik eklemek suretiyle
geleneksel eyleyicilere göre daha kaliteli kuvvet kontrolü ve gürbüz kararlılık sağlar.
Literatürde SEE için çeşitli empedans kontrol mimarileri sunulmuştur. Bu alter-
natifler arasında en içte hareket kontrolcüsü, ortada kuvvet kontrolcüsü ve en dışta
empedans kontrolcüsünden oluşan kademeli kontrol mimarisi basitlik, gürbüzlük ve
performans açısından cazip ve yaygındır.

Bu tezde, iki klasik doğrusal empedans modeli olan sıfır empedans ve saf yayı
kademeli SEE empedans kontrol mimarisi ile pasif olarak gerçeklemek için gerekli ve
yeterli koşulları türettik. Yeni bulduğumuz pasiflik koşullarına dayanarak kısıtlayıcı



olmayan kontrolcü tasarım yönergeleri sunduk. Bu yönergeler haptik olarak boş
uzay ve sanal yay gerçeklerken bileşke kararlılığı ve dolayısıyla etkileşim güvenliğini
korumaktadır. Bu pasiflik koşullarının doğruluğunu bilgisayar benzetimleri ve fizik-
sel deneyler ile gösterdik.

İntegral denetleyicilerinin kullanıldığı mimarilerde pasiflik koşulları türetilirken fizik-
sel sönümleyecinin eyleyici modeline dahil edilmesinin önemini de ayrıca gösterdik.
Sönümleyicinin pasiflik sınırlarına fazladan bir kısıtlama getirdiğini saptadık. Böylece
eyleyici sönümlemesinin sistemin pasifliğine sezgisel olmayan olumsuz etkisini vur-
guladık .

SEE yapısına ek olarak seri elastik sönümlenmiş eylemeyi (SESE) inceledik ve kademeli
SEE’nin pasif olarak gerçekleyemediği empedansları kademeli SESE’nin gerçekleyebildiğini
gösterdik. Özellikle SESE’nin Voigt modeli ve hatta fiziksel yay-sönümleyici çiftinden
daha sert empedansları pasif olarak gerçekleyebildiğini matematiksel analizler ve
benzetimler ile doğruladık.



� Aileme, dostlarıma ve ilk bilim adamı
El-Hasan İbn-i Heysem’e �
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Chapter 1

Introduction

1.1 Motivation

Ensuring natural and safe physical human-robot interactions (pHRI) is an active

research area, since such interactions form the basis of successful applications in

many areas, including service, surgical, assistive, and rehabilitation robotics. Safety

of interaction requires the impedance characteristics of the robot at the interaction

port to be controlled precisely [15]. Along these lines, many robot designs and

several impedance control [29] schemes have been proposed.

Many successful applications rely on open-loop force/impedance control to avoid the

use of force sensors. In these approaches, the motor torques/impedances are directly

mapped to the end-effector forces/impedance. The performance of open-loop control

approaches relies on the transparency of the mechanical design. In particular, the

mechanical design of the robot needs to have high stiffness, low inertia, and high

passive backdrivability to ensure good performance by minimizing parasitic forces.

Optimization techniques exist to help design robots with high transparency [26, 59].

However, the design of highly transparent robots become quite challenging, even
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infeasible, as high force/impedance levels are necessitated, since backdrivable high

torque/power density actuators are not available.

Many robotic systems rely on closed-loop force control to compensate for para-

sitic forces originating from the mechanical design. However, the performance of

closed-loop force controllers suffers from an inherent limitation imposed by the non-

collocation of sensors and actuators. In particular, given that a force sensor needs

to be attached to the interaction port, there always exists inevitable compliance

between the actuators and the force sensor. This non-collocation results in a fun-

damental performance limitation for the controller, by introducing an upper bound

on the loop gain of the closed-loop force-controlled system. Above this limit, the

closed-loop system becomes unstable [3, 18].

When traditional force sensors with high stiffness are employed in the control loop,

the stable loop gain of the system is mostly allocated for the force sensing element,

and this significantly limits the upper bound available for the controller gains to

achieve fast response and good robustness properties from the controlled system.

Consequently, such force control architectures typically rely on high quality actua-

tors/power transmission elements to avoid hard-to-model parasitic effects, such as

friction and torque ripple, since these parasitic forces may not be effectively com-

pensated by robust controllers based on aggressive force-feedback controller gains.

Series elastic actuation (SEA) trades-off force-control bandwidth for force/impedance

rendering fidelity, by introducing highly compliant force sensing elements into the

closed-loop force control architecture [30, 44]. By decreasing the force sensor stiff-

ness, it allows higher force controller gains to be utilized for responsive and robust

force-controllers. SEA can effectively mask the inertia of the actuator side from the

interaction port, featuring favorable output impedance characteristics that is safe for

human interaction over the entire frequency spectrum. In particular, by modulat-

ing its output impedance to a desired level, SEA can ensure active backdrivability,
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within the force control bandwidth of the device, through closed-loop impedance

control of high power density actuators. For the frequencies over its control band-

width, the apparent impedance of the system is limited by the inherent compliance

of the force sensing element that acts as a physical filter against impacts, impulsive

loads, and high frequency disturbances [30, 44, 46, 51].

SEA is also preferred, since the cost of SEA robotic devices can be made significantly

(about an order of magnitude) lower than traditional force sensor based implementa-

tions, as successfully demonstrated by the commercial Baxter robot [1]. In particu-

lar, since the orders of magnitude more compliant force sensing elements in SEA ex-

perience significantly larger deflections with respect to commercial force sensors, reg-

ular position sensors, such as optical encoders, can be employed to measure these de-

flections, enabling the implementation of low-cost digital force sensing elements that

do not require signal conditioning. Furthermore, since the robustness properties of

the force controllers enable SEA to effectively compensate for parasitic forces, lower

cost components can be utilized as actuators/power transmission elements in the im-

plementation of SEA. To date, a large number of SEA designs have been developed

for a wide range of applications [9, 19, 20, 35, 37, 42, 44, 46, 48, 50, 52, 62, 66, 68].

The main disadvantage of SEA is the significantly decreased closed-loop bandwidth

caused by the increase of the sensor compliance [44]. The determination of appro-

priate stiffness of the compliant element is an important aspect of SEA designs,

where a compromise solution needs to be reached between force control fidelity and

closed-loop control bandwidth. In particular, higher compliance can increase the

force sensing resolution, while higher stiffness can improve the control bandwidth of

the system. Possible oscillations of the end-effector, especially when SEA is not in

contact, and the potential energy storage of the elastic element may pose as other

challenges of SEA designs, depending on the application.
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SEA is a multi-domain concept whose performance synergistically depends on the

design of both the plant and the controller [31, 32]. The high performance controller

design for SEA to be used in pHRI has further challenges, since ensuring safety of

interactions is an imperative design requirement that dominates the design process.

In particular, the safety of interaction requires coupled stability of the controlled

SEA together with the human operator. However, the presence of a human operator

in the control loop significantly complicates the stability analysis, since a compre-

hensive model for human dynamics is not available. Particularly, human dynamics

is nonlinear, time and configuration-dependent. Contact interactions with the envi-

ronment pose similar challenges, since the impedance of the contact environment is,

in general, nonlinear and uncertain.

The coupled stability analysis of the pHRI system in the absence of human and

environment model is commonly conducted using the frequency domain passivity

framework [13, 14]. This approach assumes that the human operator is cooperative

and does not intentionally generate energy to destabilize the system, that is, the

intentional part of human inputs are state independent while the unintentional parts

are passive by nature. Under this assumption, the human can be treated as a passive

network element in the closed-loop analysis, and coupled stability can be concluded

through passivity arguments [28]. Similarly, non-animated environments are also

passive. Therefore, coupled stability of the overall system can be concluded, if the

closed-loop SEA with its controller can be guaranteed to be passive [12]. Passivity

framework is advantageous as it provides robust stability for a large range of human

and environment models. However, non-passive systems are not always unstable [6]

and the passivity is a relatively conservative condition that imposes strict constraints

on the controller gains to degrade the system performance.

It is well-established that ensuring passivity adversely affects the transparency [36],

and this trade-off brings a challenge in the design of high-performance controllers

that can ensure coupled stability. The trade-off between stability and transparency [16,

4



21, 24], as well as the factors affecting the transparency have been investigated in the

literature [27, 49, 55]. While keeping coupled stability intact, a controller allowing

better compromise between transparency and robust stability is desirable [49].
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1.2 Contributions

In this thesis, we analyze the well-known cascaded control architecture for impedance

controlled series elastic actuation with an inner-most velocity loop, an intermediate

torque loop, and an outer-most impedance loop whose effectiveness was reported in

earlier studies. This cascaded architecture is also termed as velocity sourced SEA.

We utilize the frequency domain passivity framework to ensure the coupled stability

of the system when interacting with a human operator or a passive environment.

This framework provides a mathematical guarantee for the safety of interaction.

Contributions of the thesis may be summarized as follows:

• We derive the necessary and sufficient conditions for the passivity of haptic

rendering of null impedance and pure spring with the velocity sourced SEA

scheme and non-negative control gains. Based on the newly established passiv-

ity bounds, we provide non-conservative design guidelines to haptically display

free-space and virtual springs.

• Our results rigorously extend the earlier reported sufficiency conditions on the

passivity of this particular SEA scheme and provide the least conservative

range for passively renderable impedances. Since passivity is a conservative

paradigm that imposes stringent limits on control gains which degrade the

performance, it is of paramount importance to come up with the most relaxed

passivity conditions to allow flexibility in controller gain selection to maximize

the performance.

• Our results remark the importance of including physical damping in the ac-

tuator model for passivity analysis, especially when integrators are utilized.

Earlier works in the literature tend to model the motor side of the SEA as

pure inertia, thus disregard the damping term, which is always present for

6



any physical system. This is due to the presumption that additional damping

would never violate passivity due to its dissipative nature. Hence, the passiv-

ity bounds derived for the simplified SEA model was intuitively expected to

extend to the realistic scenario where physical damping is also present. We

rigorously rebut this conjecture and prove that the damping term introduces

an extra passivity bound on control gains.

• Through the derivation of necessary and sufficient conditions, we have es-

tablished the need for an integrator in the inner velocity loop to be able to

passively render a virtual spring.

• We analyze haptic impedance rendering of series elastic damping actuation

(SEDA) which has a linear spring-damper in parallel as the compliant force-

sensing element. We demonstrate its capability of passively rendering Voigt

model, which is a parallel spring-damper. This is a useful extension to velocity

sourced SEA as it was early proven that the cascaded control of SEA cannot

render Voigt body passively.

• We prove that SEDA can passively render higher virtual impedances than

the physical impedance of the compliant element. The maximum passively

renderable stiffness is bounded from above by the stiffness of the physical

spring employed in the regular SEA. However, rendering fidelity of SEDA is

low for null impedances and pure springs as the physical damping starts to

dominate the interaction at relatively low frequencies.
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1.3 Outline

The rest of the thesis is organized as follows.

Chapter 2 reviews the related work and emphasizes the contributions of this paper

in comparison to the related works.

Chapter 3 presents the preliminaries to build the necessary background for the prob-

lem of coupled stability, the concept of SEA in force control, and the frequency

domain passivity framework for linear 1-port networks.

Chapter 4 explains the controlled system considered in this study and lists the under-

lying assumptions together with their justification. It also derives the necessary and

sufficient conditions for passivity while rendering null impedance and pure springs.

Chapter 5 systematically studies the rendering performance with respect to the

controller gains via simulation.It also provides detalied controller design guidelines.

Experimental verification with a series elastic actuated brake pedal is performed in

Chapter 6.

Chapter 7 scrutinizes SEDA as a possible extension to SEA and presents discussion

about potential benefits and drawbacks.

Chapter 8 concludes the paper and discusses the future research directions.
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Chapter 2

Literature Review

In this section, we review related works on force/impedance controlled SEA and

explain how our work extends the earlier studies.

The notion of intentionally introduced compliance between the actuator and the end

effector for force controlled robotic joints has been first proposed in [30]. Later, the

term “series elastic actuator” (SEA) was coined for this force control scheme and

passivity analysis was conducted for the first time in [44] which has popularized the

concept among roboticists. A minor difference between the implementations in [30]

and in [44] is that the former performs subtraction on the position measurements

of the motor and the end effector to obtain the spring deflection while the latter

directly measures it to reduce the noise in measurements.

The SEA controller in [44] is based on a single force-control loop, where the actuator

is torque controlled based on the deflection feedback from the compliant element.

Similarly, a PID controller with feed-forward acceleration terms to compensate the

actuator inertia has been proposed in [46]. These early strategies rely on low-pass

filters instead of pure integrators to preserve passivity, at the expense of allowing

steady state errors under constant disturbances.
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Other control techniques for SEA include disturbance observer based force con-

trollers [35, 43] and controllers based on high order derivatives [2]. While linear

models are most widely adapted for force/torque control of SEAs, there also exist

some nonlinear control strategies [7, 33, 41, 63].

A fundamentally different architecture based on cascaded control loops has also

first been proposed in [30] and later rediscovered in [45, 67]. In this approach, an

inner-loop controls the velocity of the actuator, rendering the system into an “ideal”

motion source, while an outer-loop controls the interaction force based on the de-

flection feedback from the compliant element. Wyeth called this approach velocity-

sourced SEA [67], emphasizing that most of the earlier work considered the motor

as a torque source rather than a velocity source. Wyeth’s implementation slightly

differs from [30] and [45] in that he utilizes noncollated sensor measurements (i.e.,

the deflection of the spring) in the control loop while the others use the collocated

measurements (i.e., the position of the motor). This particular strategy allows for

the use of integrators; thus the closed-loop controlled system can effectively coun-

teract constant disturbances at the steady state. This architecture also allows for

utilization of well-established robust motion controllers for the inner-loop to coun-

teract parasitic effects of friction and stiction. Furthermore, the controller can be

tuned easily without the need for precise actuator dynamics. The cascaded control

approach has been widely utilized in various applications [9, 19, 37, 42, 48, 52, 56, 62].

Using the cascaded control architecture, Vallery et al. derived and experimentally

verified sufficient conditions to ensure passivity of the impedance rendering, for the

case of zero reference torque [60]. They have suggested simple yet quite conservative

guidelines: select a proportional velocity gain that is greater than the motor inertia,

and select integrator gains that are less than the half of the corresponding propor-

tional gains. In their later work, Vallery et al. conducted a theoretical analysis

and an experimental study for pure spring rendering [61]. In this work, it has been
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proven that, for the cascaded control architecture, the passively renderable virtual

stiffness is bounded by the stiffness of physical spring employed in the SEA.

For a variety of viscoelastic virtual impedance models, Tagliamonte et al. performed

a theoretical analysis using the cascaded control architecture, but also including the

damping coefficient in the actuator dynamics [54]. In this work, they have proposed

less conservative sufficient conditions to ensure passivity with properly selected con-

troller gains, for the cases of null impedance and pure spring rendering. They have

also demonstrated that the Voigt model, that is, linear spring and damping elements

in parallel connection, cannot be passively rendered using the cascaded control ar-

chitecture.

Recently, Fiorini et al. surveyed different impedance and admittance control archi-

tectures for SEA and summarized sufficient conditions for passive impedance ren-

dering with basic impedance control, velocity-sourced impedance control, collocated

admittance control and collocated impedance control architectures [8]. This study

concludes that similar bounds on passively renderable impedances exist for all four

control architectures and these limits can be extended, if ideal acceleration feedback

can be used to predict and cancel out the influence of load dynamics. Noise and

bandwidth restrictions of acceleration signals and potential overestimation of feed-

forward signals resulting in feedback inversion are important practical challenges

that have limited the adaptation of the acceleration-based control approach since

initially proposed in [44, 46].

This work builds upon earlier works on passivity of velocity-sourced impedance

control of series elastic actuators [54, 60, 61] and extends their results by providing

the necessary and sufficient conditions to ensure passive rendering of null impedance

and pure springs. Our results not only provide rigourous sufficiency proofs, but also

relax the earlier established bounds by extending the range of impedances that

can be passively rendered via cascaded control architecture. Based on the newly
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established necessary and sufficient conditions, design guidelines are provided to

select controller gains to reach optimal performance while maintaining passivity.

Furthermore, our results prove the necessity of a second bound on the integral gains

due to existence of physical damping in the system. This bound has been overlooked

in the literature [60, 61], as it is counter-intuitive for additional dissipation to result

in more strict conditions on controller gains. However, this bound is crucial in

practice, as it is imposed due to inevitable physical dissipation of the actuator; hence,

cannot be safely neglected, if integral controllers are used in both inner motion

and intermediate torque control loops. We also remark that the damping term

counterintuitively reduces the Z-width of the system, that is, the dynamic range of

passively renderable impedances, as also reported in [54].
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Chapter 3

Preliminaries

In this chapter, the reader will be provided with the preliminary information for the

forthcoming analyses. In particular, the frequency domain passivity framework will

be motivated within the context of pHRI following the introduction of the problem

of coupled stability. Finally, this chapter concludes with the linear time-invariant

model of uncontrolled series elastic actuation.

3.1 Passivity Framework as a Solution to the Prob-

lem of Coupled Stability

Stability is an imperative criterion for any control system to maintain the safety of

operation. The stability of any LTI system can easily be assessed with the Routh-

Hurwitz criterion. Therefore, it is easy to tune the control parameters to ensure the

stability of an LTI system. However, when two systems that are stable in isolation

are coupled to each other, there is no guarantee that the coupled system will also

be stable. This makes the control design problem challenging when the controlled
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system needs to interact with an environment whose dynamics are unknown (e.g.,

human). This is known as the problem of coupled stability.

Intuitively, a system is said to be passive if and only if the total energy stored in the

system is greater than or equal to total energy supplied out to the environment at

any time instant. The coupled stability is guaranteed for any two passive (regardless

of linearity and shift invariance) and detectable system. Since the detectability

condition is satisfied in most cases, passivity is an appealing paradigm for stability

robustness.

Theorem 1 (Passivity of a linear 1-port network [15]). An LTI and single-input

single-output (SISO) system, whose transfer function is denoted as H(s) is passive

if and only if the following conditions hold:

(i) H(s) must have all its poles in the open left half plane.

(ii) Re{H(jw)} ≥ 0 for all w ∈ (−∞,∞) for which jw is not a pole of H(s).

(iii) Poles on the imaginary axis are allowed only if they are simple and have positive

real residues.

Condition (i) implies (isolated) stability, but all three conditions are required to be

simultaneously satisfied for passivity.

In this section, we presented an informal definition of passivity and motivated the

usage of passivity framework for pHRI applications. We also provided a mathemati-

cal definition for the frequency domain passivity of LTI SISO systems. More general

definitions are available in the literature but beyond the scope of our study.
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3.2 Uncontrolled Series Elastic Actuation

Figure 3.1 depicts the model of a 1-DOF linear SEA. In particular, the motor side

consists of a linear mass-damper and connects to the load (i.e., the end-effector) via

a linear spring of stiffness K. Fm represents the forces exerted on the motor and Fh

represents the forces exerted on the end-effector by the human operator. The inertia

of the motor side is denoted as M while the inertia of load side is denoted as m which

is typically orders of magnitude smaller than M. xm denotes the position of the motor

while xe is the end-effector position. Assuming a rigid contact between the human

operator and the end-effector, we obtain the following relationship xe = xh, where

xh is the exogenous input to the system by the user interaction. The equations of

motion for this simple system read as follows:

Fm = Mẍm + bẋ+K(xm − xe) (3.1)

Fh = Zeẋe −K(xm − xe) (3.2)

Fs = K(xm − xe) (3.3)

where Ze represents the overall impedance of the load side and Fs is the force on

the spring. The control diagram of the uncontrolled SEA plant may be obtained as

in Figure 3.2 after taking the Laplace transform of the equations above and simple

algebraic manipulations.

Figure 3.1: Mechanical schematics of a series elastic actuator

15



Figure 3.2: Block diagram of an uncontrolled series elastic actuator

The delibaretly introduced complaince between the motor and the end-effector cre-

ates a natural feedback loop as can be seen figure 3.2. Note that the signals depicted

in this block diagram are all physical.

It takes a simple step to build a force-controlled SEA from the uncontrolled SEA

plant. In particular, an outer force controller (typically a PI compensator) is added

to the system. The output force can easily be estimated by the product K∆x and

fed back to create a closed-loop system.

Similarly, to build an impedance-controlled SEA, an outer impedance loop through

position feedback is closed around the force-controlled SEA. Note that in this case,

the purpose of the outermost loop is to regulate the output impedance seen from the

human side. It achieves its goal by creating reference signals to the force controller

to render a desired virtual environment.

3.3 Impedance as a Quantitative Measure of Me-

chanical Interaction

This section gives the mathematical definition of the impedance operator to quan-

tify the interaction between the robot and environment. In particular, mechanical

impedance (denoted as Z) is a dynamic operator (not necessarily linear) that maps
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an input velocity to an output force as a function of time at the interaction port. An

interaction port is the interface where the energy exchange with the environment (or

another controlled system) takes place. The energy exchange is quantified in terms

of the conjugate flow and effort variables such that P = F Tv, where F is a vector of

forces along different degrees of freedom, v is the corresponding velocity vector and

P is the power flow between robot and environment. The mechanical impedance

seen from the robot side at the interaction port is also termed as the driving point

impedance.

Impedance may conveniently be represented in the Laplace domain by a transfer

function Z(s) for LTI 1-port systems. For LTI n-port systems, impedance may be

represented as a matrix of transfer functions. Since our analysis will be restricted to

an LTI single degree-of-freedom SEA, the output impedance (or the driving point

impedance) function can be expressed as Z(s) = F (s)
V (s)

. For instance, the impedance

of a mass-spring-damper is equal to Z(s) = ms+ b+K/s, where m is the inertia of

the mass, b is the damping coefficient, and K is the spring stiffness.
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Chapter 4

Passivity Analysis of Impedance

Controlled Velocity Sourced SEA

This chapter rigorously derives the necessary and sufficient conditions for passivity

when rendering null impedance and pure springs with velocity-sourced SEA.

4.1 System Description

Figure 4.1 depicts the block diagram of velocity-sourced impedance control for SEA.

In particular, the cascaded controller is implemented with an inner motion control

loop to render the system into an ideal motion source, and the outer force/torque

s Z (s)d
 m 1 

 J s + b  
1 
s K 

 θ 

endθ
 endω  h =   ω

 mωω mτd dτ SEAτ
--

-

Series Elastic Actuator

+

τh+ τh*

+

User

1 
s 

Torque
Controller End

Motion
Controller

Pm+ 

Im
 s Pt+ 

It
 s 

Impedance
Controller

Zd
-

θd

Figure 4.1: Velocity-force cascaded control of a series elastic actuator
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control loop generates references for the motion control loop such that the spring

deflection is kept at the desired level to match the reference force. The interaction

torque is measured through the linear spring troque that is proportional to the

difference between motor position θm and end-effector position θend. The interaction

forces τSEA and τh are denoted with thick lines.

Note that, the physical spring torque acts as a disturbance to the motion controller

while the measured torque (denoted with a thin line) is fedback to the outer torque

controller. τh represents the unintentional torques from the human which are inher-

ently passive. τ ∗h represents the intentional torques which are state-independent and

do not affect the coupled stability.

The dynamics of the SEA model consist of actuator inertia J , viscous friction b,

and the linear spring constant K. PI controllers are employed for both velocity and

torque control loops. At the outermost loop, an impedance controller is employed

to generate references to the torque controller depending on the desired impedance

Zd to be displayed around the equilibrium position of the virtual environment θd.

Some simplifying assumptions are considered while developing the SEA model and

its control architecture, as in [54]. These assumptions include:

• To develop a linear time-invariant (LTI) model, nonlinear effects like stic-

tion, backlash and motor saturation are neglected. In the literature, it has

been demonstrated that the cascaded force-velocity control scheme can effec-

tively overcome the problems of stiction and backlash [50, 67]. If the motor

is operated within its linear range, then the other nonlinear effects like motor

saturation also vanish.

• The overall inertia and damping of the SEA are considered to be on the motor

side. The inertia of the load is not included in the analysis, since the load

inertia does not contribute to the passivity conditions.
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• Electrical dynamics of the system is neglected based on the commonly em-

ployed assumption that electrical time constant of the system is orders of

magnitude faster than the mechanical time constant.

• It is assumed that motor velocity signal is available with a negligible delay.

This assumption is realistic for electronically commuted motors furnished with

Hall effect sensors. Furthermore, for motors furnished with high-resolution en-

coders, differentiation filters running at high sampling frequencies (commonly

on hardware) can be employed to result in real-time estimation of velocity

signals with very small delay, within the bandwidth of interest.

• Without loss of generality, for simplicity of analysis, zero reference trajectory

is assumed for the equilibrium position (i.e. θd = 0) and transmission ratios

are set to unity.

Conventionally, the output impedance Zout of the closed loop system is defined at its

output port as the relationship between the conjugate variables ωend(s) and τSEA(s)

as

Zout = −τSEA(s)

ωend(s)
= − τSEA(s)

sθend(s)
(4.1)

The minus sign comes from the convention that the output torque (i.e., torque on the

spring) is taken positive when the spring is in compression. The following analysis is

performed based on Eqn. (4.1) as it defines the relationship at the interaction port

of the human/environment and the end-effector of SEA.

4.2 Passivity Analysis

The necessary and sufficient conditions for the passivity of the system depicted in

Figure 4.1 for positive system parameters and control gains are derived by using

Theorem 1 in Section 3.1.
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4.2.1 Null Impedance Rendering

Let us first analyse the case of null impedance (i.e Zd=0), which also corresponds to

the special case where the outer-most impedance loop is cancelled and zero set-point

reference signal is fed to the torque controller (i.e τ d = 0). This particular case is

interesting as it is commonly employed to ensure the active backdrivability of SEA.

From Eqn. (4.1), the output impedance is expressed as

Znull
out =

K s (J s2 + (Pm + b) s+ Im)

DZ(s)
(4.2)

where

DZ(s) = Js4 + (Pm + b)s3 + (K + γ)s2 + αKs+KImIt (4.3)

with α = Pm It + Pt Im and γ = K Pm Pt + Im.

Let us determine the controller gains that guarantee passivity. Naturally, the pa-

rameters J and b that capture the motor dynamics and the spring constant K are

always positive. It is established in classical control theory that if any one of the

coefficients of the characteristic equation is non-positive in the presence of at least

one positive coefficient, then the system is unstable [40]. Along these lines, we also

assume that all controller gains are selected as positive. This selection satisfies the

necessary condition for the stability of the system.

The method of Hurwitz determinants or Routh’s stability criterion can be used to

assess the stability of a system, which is the first condition for it to be passive. The

Routh array of a fourth order system with a characteristic equation of the form

a0s
4 + a1s

3 + a2s
3 + a3s+ a4 reads as
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a0 a2 a4

a1 a3 0

(a1a2 − a0a3)/a1 a4 0

(a1a2a3 − a21a4 − a0a23)/(a1a2 − a0a3) 0 0

a4 0 0

It follows from the Routh array that the following two inequalities need to be satisfied

to ensure stability.

a1a2 − a0a3 > 0 (4.4)

a1a2a3 − a0a23 − a4a21 > 0 (4.5)

Note that if Eqn. (4.5) is satisfied, then Eqn. (4.4) is also met, as can be proven by

multiplying Eqn. (4.4) with a3, and noting that Eqn. (4.5) ensures that a1 a2 a3 −

a0 a
2
3 > a4 a

2
1 > 0. Hence, if we define a variable as ξ := a1a2a3 − a0a

2
3 − a4a

2
1

the system is stable if and only if ξ > 0. The value of ξ in terms of our system

parameters reads as

ξ = αK (Pm + b)(K + γ)−K Im It (Pm + b)2 − J K2 α2 (4.6)

The inequality ξ > 0 represents Condition (i) of Theorem 1 for passivity. As for

Condition (ii), we have to assess the positive-realness of Znull
out (jw). It is relatively

involved to examine the positive-realness of a complex fraction directly. Along these

lines, we use a polynomial that provides us with the same information about the

sign of the real part of Znull
out (jw). There are multiple ways to obtain this polynomial

[25]. For completeness of the presentation, below we provide one way to calculate

this polynomial with the proof.

Proposition 1. For ease of notation, denote the frequency response of a SISO LTI

system as H(jw) = num(jw)/den(jw). Then, sign(Re{H(jw)}) = sign(P (w)) for
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any value of w for which den(jw) 6= 0, where sign(·) represents the signum function

and P (w) is a polynomial defined as P (w) = Re{num(jw)den(−jw)} =
∑

i di w
i.

Proof. Multiply numerator and denominator of H(jw) with the complex conjugate

of the denominator as

H(jw) =
num(jw)

den(jw)
=

num(jw)den(−jw)

den(jw)den(−jw)
=

num(jw)

|den(jw)|2

Since the denominator of the resulting fraction is never negative and is zero only

when den(jw) is zero, we conclude that the proposition holds.

Consequently, P (w) ≥ 0 is a necessary and sufficient test to ensure Condition (ii)

for passivity. For the system described by Eqn. (4.2), P (w) evaluates to

P (w) = d2w
2 + d4w

4 (4.7)

where the coefficients are defined as

d2 = K2(PtI
2
m − bItIm) (4.8)

d4 = K2(Pm + b+ PtP
2
m + bPtPm − Jα) (4.9)

It will be proven that d2 ≥ 0 ∧ d4 ≥ 0 is a necessary and sufficient condition to

ensure P (w) ≥ 0 for ∀w ∈ R

Proof. Sufficiency. Since there are only even powers of w in P (w), the image of

P (w) is non-negative if all coefficients are also non-negative.

Proof. Necessity. Rearrange Eqn. (4.7) as P (w) = w2 (d2 + d4 w
2). Then, P (w) ≥ 0

for w ∈ (−∞,∞) if and only if d2 + d4 w
2 ≥ 0. The roots to this simple quadratic

expression (i.e., d2 + d4 w
2) are equal to ±

√
−d2/d4.
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If the signs of d2 and d4 agree, there is no real root to this expression, meaning

that its graph never crosses the horizontal axis. Thus, if d2 and d4 are positive,

then the graph has to lie above the abscissa for all w values. On the other hand, if

the coefficients have opposite sign, there will be two real roots forcing the parabola

to cross the abscissa and go below zero. In this case, P (w) is negative for w ∈

(−
√
−d2/d4,

√
−d2/d4).

Finally, in the extreme case where either coefficient is zero the other coefficient must

be greater than or equal to zero for P (w) to be non-negative.

Thus, P (w) ≥ 0 ⇐⇒ d2 ≥ 0 ∧ d4 ≥ 0. Consequently, the necessary and suf-

ficient conditions for the passivity of the system whose closed-loop impedance is

characterized by Eqn. (4.2) can be expressed as follows:

ξ = K[α(Pm + b)(K + γ)− ImIt(Pm + b)2 − JKα2] > 0 (4.10)

d2 = K2 [Im(PtIm − bIt)] ≥ 0 (4.11)

d4 = K2 [(Pm + b)(1 + Pm Pt)− Jα)] ≥ 0 (4.12)

Proposition 2. The necessary and sufficient conditions to passively render zero

impedance (or equivalently zero force/torque) for the cascaded controlled SEA shown

in Figure 4.1 with positive control gains are as follows:

[
J <

(Pm + b)(1 + Pm Pt)

Pm It + Pt Im
∧ b ≤ Pt Im

It

]
(4.13)

∨[
J ≤ (Pm + b)(1 + Pm Pt)

Pm It + Pt Im
∧ b < Pt Im

It

]
(4.14)
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In the sequel, step-by-step proof is provided.

Lemma 4.1. (d2 ≥ 0 ∧ d4 > 0) ∨ (d2 > 0 ∧ d4 ≥ 0) =⇒ ξ > 0

This statement implies that the Inequality (4.10) does not add extra restriction to

the system of inequalities composed of Eqns. (4.10), (4.11) and (4.12), except that

d2 and d4 cannot be zero simultaneously. In other words, d2 and d4 are non-negative,

but only one of them can be zero at a time. Otherwise, the system is unstable.

The lemma contains two statements that are connected with the logical or operator.

To facilitate understanding the discussion, the proof will be subdivided into these

two parts.

Proof. Part I: (d2 ≥ 0 ∧ d4 > 0). Inequality (4.11) dictates an upper bound on

b. According to Eqn. (4.11), the maximum value for the motor damping without

violating passivity with the given controller gains can be computed as

b ≤ Pt Im
It

= bmax (4.15)

Inequality (4.12) dictates an upper bound on J . According to Eqn. (4.12), the

maximum value for the motor inertia without violating passivity with the given

controller gains can be computed as

J ≤ (Pm + b)(1 + Pm Pt)

Pm It + Pt Im
= Jnull

max (4.16)

Now, assume the control gains are selected so that the motor inertia is less than its

maximum allowable value. In other words, J = Jnull
max − ε where 0 < ε < Jnull

max. This

selection entails d4 > 0. After substituting this value of J in Eqn. (4.6), ξ becomes

ξ = ε K2 α2 +K Im (Pm + b) (Pt Im − b It) (4.17)
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Here, only the last term can make the expression negative, but this is avoided when

Eqn. (4.15) is met. Thus, we conclude that d2 ≥ 0 ∧ d4 > 0 =⇒ ξ > 0.

Proof. Part II: (d2 > 0 ∧ d4 ≥ 0). Assume the control gains are selected so that

the motor inertia takes its maximum allowable value that is, J = Jnull
max. Substituting

this value of J into Eqn. (4.6) yields the following expression.

ξ = K Im (Pm + b) (Pt Im − b It) (4.18)

Clearly, ξ is positive if J ≤ Jnull
max and b < bmax. Thus, passivity is ensured when

d2 > 0 and d4 ≥ 0. However, when J = Jnull
max and b = bmax the value of ξ evaluates

to zero, which implies instability. Thereby, the system is not stable when d2 = 0

and d4 = 0.

Consequently, (d2 ≥ 0 ∧ d4 > 0) ∨ (d2 > 0 ∧ d4 ≥ 0) constitutes the most general

solution set that solves Eqns. (4.10), (4.11) and (4.12) concurrently, unless negative

system parameters or controller gains are allowed. This concludes the proof of

Proposition 2.
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4.2.2 Pure Spring Rendering

In this section, we analyze the case where a virtual spring of stiffness Kd is displayed.

When Zd is set to Kd, the output impedance Zspr
out reads as

Zspr
out = K

Js4 + (Pm + b)s3 + δs2 + αKds+KdImIt
sDZ(s)

(4.19)

where δ = Pm Pt Kd + Im. The remaining intermediate parameters are the same as

in the case of null impedance. Only a single pole located at the origin is added to

the characteristic equation in Eqn. (4.3). Note that, this does not cause a violation

of Condition (iii), since the pole on the imaginary axis is simple and have a positive

residue as shown below.

Res
s=0

Zspr
out = lim

s→0
s Zspr

out =
K2

d

K
> 0

Therefore, Eqn. (4.10) for stability must also be adopted here.

The nonzero coefficients of P (w) for this system are as follows:

d4 = K[(K −Kd)β − αKKd] (4.20)

d6 = K[(K −Kd)η +K(Pm + b)] (4.21)

where β = PtI
2
m − bImIt and η = P 2

mPt + PmPtb− Jα .

Note that, P (w) ≥ 0 ⇐⇒ d4 ≥ 0 ∧ d6 ≥ 0 as can be proven by rearranging P (w)

as w4(d4 + d6w
2) and following the same reasoning as in the previous case. Thus,

the necessary and sufficient conditions for the passivity of system whose closed-loop
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impedance is characterized by Eqn. (4.19) are as follows

ξ = K[α(Pm + b)(K + γ)− ImIt(Pm + b)2 − JKα2] > 0

d4 = K[(K −Kd)β − αKKd] ≥ 0 (4.22)

d6 = K[(K −Kd)η +K(Pm + b)] ≥ 0 (4.23)

Eqns. (4.22) and (4.23) stipulate some bounds on the renderable virtual stiffness.

From Eqn. (4.22), we get the following upper bound for the renderable stiffness if

β + αK is positive.

Kd ≤ K
β

β + αK
< K (4.24)

Inequality (4.24) puts an upper bound on the physical damping. If β is negative, but

β + αK is positive, then Eqn. (4.24) states that one cannot render a spring of any

stiffness, since the maximum value for Kd would be a negative number. To ensure

that β > 0, we need to employ the same bound on damping found in Eqn. (4.15).

However, particular attention must be paid when β+αK is negative (in which case

β is automatically negative). In this case, the controlled system becomes unstable as

will be shown later. For the time being, we continue the analysis with the assumption

of positive β (and hence positive β + αK).

From Eqn. (4.23), we get the following upper bound for the renderable stiffness.

Kd ≤ K
η + Pm + b

η
(4.25)

Clearly, the value of Kd that satisfies Eqn. (4.24) also satisfies the less constraining

inequality in Eqn. (4.25). Inequality in Eqn. (4.24) shows that if passivity is desired

under the cascaded control architecture, the rendered stiffness must be strictly less

than the stiffness of the physical spring employed in the SEA plant, which was

originally reported in [61] excluding the damping term. Thus, the maximum value

of the desired stiffness can be set to
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Kmax
d = K

β

β + αK

= K
PtI

2
m − bImIt

PtI2m − bImIt +K(PmIt + PtIm)
(4.26)

Proposition 3. The necessary and sufficient conditions to passively render a virtual

spring for the system in Fig. 4.1 with positive control gains are

[
J<

(Pm + b)(∆K Pm Pt +K)

α∆K
∧ b < Pt Im

It
∧Kd≤ Kmax

d

]
(4.27)

∨[
J≤(Pm + b)(∆K Pm Pt +K)

α∆K
∧ b < Pt Im

It
∧Kd< Kmax

d

]
(4.28)

where ∆K := K −Kd and Kmax
d is as in Eqn. (4.26).

Proof. From Eqn. (4.21),

d6 = ∆K(Pm + b)(∆K Pm Pt +K)−∆K J α ≥ 0 (4.29)

Eqn. (4.29) introduces an upper bound on the motor inertia J as

J ≤ (Pm + b)(∆K Pm Pt +K)

α∆K
= Jspr

max (4.30)

Note that Jspr
max is not only a function of control gains, but also a function of the

desired stiffness Kd to be rendered. If we set Kd to its maximum allowable value

given in Eqn. (4.26), Jspr
max reads as

Jspr
max =

(Pm + b)(PtI
2
m + αK(1 + PmPt)− bImIt)

α2K
(4.31)
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Substituting Eqn. (4.31) into Eqn. (4.6) yields ξ = 0, which implies instability.

Hence, when d4 and d6 are simultaneously zero, the system is not stable. Following

the similar arguments as in the null impedance case, it can be proven that (d4 ≥

0 ∧ d6 > 0) ∨ (d4 > 0 ∧ d6 ≥ 0) =⇒ ξ > 0; hence, the conditions in Eqn. (4.27) or

Eqn. (4.28) hold.

Now let us analyse the case when β + αK < 0 for completeness. In this case,

Eqn. (4.24) modifies to

Kd ≥ K
β

β + αK
> 0 (4.32)

Here, Eqn. (4.32) introduces a lower bound on the renderable stiffness. In other

words, following inequalities must satisfied to ensure d4 ≥ 0 ∧ d6 ≥ 0.

K
β

β + αK
≤ Kd ≤ K

η + Pm + b

η
(4.33)

However, considering Eqns. (4.30) and (4.6), Kd values in this range will result in

ξ ≤ 0 which implies instability.

Remark 4.2.

- While deriving the passivity conditions, positive controller gains are consid-

ered, since negative gains are hardly used in practice and make the analysis

much harder to follow.

- It should be pointed out that the integral gains Im and It may assume zero

values. A naive interpretation of Proposition 2 might lead to a misconclusion

that passivity is lost when no velocity integral gain is employed (i.e., Im = 0),

since there will always be some damping b present in the plant. However,

since these conditions are derived for positive control gains, the analysis needs
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to be extended to include zero gains. In particular, each integrator increases

the degree of the system by one. In the case of null impedance, when no

integrators are employed (i.e., Im = It = 0), the output impedance is a second

order system that is unconditionally passive.

- In the case of a pure spring, when Im = 0, the system cannot passively render

a virtual spring of any stiffness. This is surprising in that usually integrators

are known to jeopardize passivity, but in this case, a minimum amount of

integral gain is necessary to render an impedance passively. When only It = 0,

Proposition 3 remains valid.

- Note that null impedance is mathematically equivalent to zero virtual stiffness.

Consequently, if Kd is set to zero, Proposition 3 reduces to Proposition 2.

- Table 4.1 reports the necessary and sufficient conditions for ensuring passivity

when null impedance is rendered with only one integral gain. Note that, the

direct dependence on b for passivity vanishes in these cases.

Table 4.1: The necessary and sufficient conditions for passivity when one inte-
grator gain is set to zero

Im = 0 J < Jnull
max|Im=0

It = 0 J ≤ Jnull
max|It=0
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4.3 Discussion

In this chapter, we have rigorously derived the necessary and sufficient conditions to

passively render two widely adopted impedance models of zero impedance and pure

stiffness under the prominent cascaded velocity-force control architecture. These

results provide the least conservative bounds for all positive controller gains.

In particular, Tables 4.2 and 4.3 report the passivity bounds for the system model

in Figure 1 for rendering a null impedance and a virtual spring, respectively. The

notations used in [54, 60, 61] are mapped to ours to enable easier comparisons. Note

that results provided in [54, 60, 61] are sufficient, but not necessary conditions. In

particular, the bounds reported in [60, 61] are quite conservative. While the bounds

provided in [54] relax the previously established passivity constraints [60, 61], these

bounds still remain conservative.

The difference between the conditions reported in [54] and our results are relatively

small for null impedance rendering case, while it becomes more pronounced for pure

spring rendering case. In particular, for null impedance rendering case, the bound

on inertia is relaxed by a factor of (1 + 1/(PmIt)), while the bound on b stays the

same. However, the necessity of the bound on b was proven for the first time in the

present work. This allowed us to remark the unexpected adversary effect of physical

Table 4.2: Design Guidelines for Rendering Null Impedance

Vallery et al. [60, 61] Pm > J ∧ Pm > 2Im ∧ Pt > 2It

Accoto et al. [54] J <
(Pm+b)(Pm Pt)
Pm It+Pt Im

∧ b < PtIm
It

Ours J <
(Pm+b)(1+ Pm Pt)

Pm It+Pt Im
∧ b < PtIm

It
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Table 4.3: Design Guidelines for Rendering Virtual Spring

Vallery et al. [60, 61] Pm > J ∧ Pm > 2Im ∧ Pt > 2It ∧Kd < Kmax
d |b=0

Accoto et al. [54] J <
(Pm+b)(Pm Pt)
Pm It+Pt Im

∧ b < PtIm
It
∧Kd < Kmax

d

Ours J <
(Pm+b)(∆K Pm Pt+K)

∆K (Pm It+Pt Im) ∧ b < PtIm
It
∧Kd < Kmax

d (Eqn. (4.26))

damping on system passivity, as it unintuitively implies that too much dissipation

may violate passivity.

For the spring rendering case, the bound on J is relaxed by a factor of 1+(K/(PmPt∆K)),

where ∆K , K − Kd. Hence, the smaller ∆K (i.e., the stiffer virtual spring ren-

dered), the less strict the bound on J becomes. Finally, the bound on Kd and b

remain the same as it has been reported in the literature [54]. Note that the pres-

ence of damping not only imposes an additional passivity constraint but also reduces

the K-width of the system (i.e., Kmax
d ). This has been reported through an inequal-

ity plot that shows the inverse relationship between the actuator damping b and the

normalized maximum renderable stiffness Kmax
d /K [54].

To maximize the K-width of the system, the velocity integral gain Im needs to be

maximized. Our least conservative bounds allow Im to attain its maximum value

without violating passivity; thus, enlarge the K-width of the system to its theoretical

limit.

Another important finding of this study reveals that the presence of damping ne-

cessitates an extra passivity constraint. If the actuator is modeled as pure inertia,

that is, b = 0, the condition in Proposition 2 reduces to

Jnull
max <

Pm(1 + PmPt)

PmIt + PtIm
(4.34)
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Hence, when physical damping is neglected in the system model such that the actu-

ator is modeled as pure inertia, a necessary condition for passivity is missed. This

result is counterintuitive in that increasing damping is typically expected to result

in less conservative passivity conditions due to its dissipative nature. However, this

intuition fails in the presence of integral controllers and introduction of physical

actuator damping into the system model imposes an additional constraint to en-

sure passivity, instead of relaxing passivity conditions. Therefore, physical damping

should not be neglected in the passivity analysis, especially if integrators are utilized.

This result surprisingly demonstrates the adversary effect of physical damping on

passivity.

To emphasize this fact, a numerical example is provided. Assume we have the SEA

plant as given in Table 5.1. Two controllers are suggested: The first controller has

been tuned according to Proposition 2, while the second controller has been tuned

according to Eqn. (4.34). The numerical values for the control parameters used in

the simulation are reported in Table 4.4. In Chapter V, we show that larger It

gains provide better rendering performance for null impedance. Hence, the largest

possible values of It with a small safety margin have been chosen for both systems.

Note that when the damping is included in the actuator model, the upper bound

for It dramatically decreases because of the additional constraint introduced due to

the presence of damping.

Figure 4.2 presents the Bode plots of these two systems. Note that, both systems

are theoretically passive according to their respective actuator models that are with

Table 4.4

Control Gain First Controller Second Controller
Pm 20 Nm s/rad 20 Nm s/rad
Pt 5 rad/(s Nm) 5 rad/(s Nm)
Im 10 Nm/rad 10 Nm/rad
It 15 rad/(s2 Nm) 80 rad/(s2 Nm)
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and without damping. However, to test the controllers, damping is included in the

simulated actuator model of both systems, since some level of dissipation is always

present in physical systems.

Clearly, the second controller outperforms the first one, but at the expense of pas-

sivity. Simulation results indicate that the phase of the second controller passes 90◦

for a range of low frequencies and goes up to 93.5◦. This result serves as a counter-

example for the commonly employed assumption that neglecting damping results in

more conservative passivity conditions.
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Figure 4.2: The effect of actuator damping on system passivity

In fact, similar counter-examples that falsify the presumption that an addition of

damping relaxes the passivity bounds have also been noted in the literature. In

particular, a numerical parameter space search was used in [17] to analyse the pas-

sivity of Natural Admittance Control [38] and an adversary relationship between the
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integral control gain and the virtual damping parameters in the presence of physical

damping has been noted. Similarly, in [65], the need for verifying passivity at the

upper and lower bounds on the damping parameter has been advocated within the

concept of bounded impedance passivity. Our results are in good agreement with

these earlier observations and rigorously support them by proving the necessity of

bounds on integral gains when physical damping of the system is included in the

system model.
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Chapter 5

Analysis of Rendering Fidelity

In this chapter, the effect of the controller gains on the system response is analyzed

through a systematic set of simulations. Visualization of passivity through Bode

plots is convenient since the passivity of linear one-port systems is strictly a phase

condition. More precisely, the phase of the system is restricted to the interval

[−90◦, 90◦] at all frequencies.

Since PI controllers are employed for both the inner velocity and the outer torque

control loops, there are four controller parameters to choose namely, Pm, Pt, Im, and

It. Firstly, Bode plots are drawn with respect to the changes in a certain controller

gain, (e.g., Pm) while keeping the other three gains constant to analyze the effect

of each individual parameter on the system behaviour. Next, design guidelines

are outlined to choose the controller gains that render the system passive, while

exhibiting good performance for haptic impedance rendering. The realistic values

for the SEA plant parameters used in all simulations are reported in Table 5.1.

Table 5.1: Physical parameters considered for the SEA plant

Mechanical Parameters of SEA
J 0.2 Nm/(s2rad)
b 3 Nms/rad
K 250 Nm/rad
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5.1 Effects of Controller Gains on Null Impedance

Rendering

In this section, we analyze the effect of each controller gain in the case of null

impedance rendering. For each simulation, we start with a base case scenario with

certain controller gains reported in Table 5.2. Then, we increase each gain individ-

ually to see its effect on the system response through Bode plots.

It is observed that the system behaviour may be grouped into three phases. In

the first phase, where the input frequency has a low value, the system displays the

characteristics of a pure inertia. In the second phase, where the input frequency has

an intermediate value, viscous damping behaviour is observed. In the third phase,

where the input frequency has a high value, the system response reduces to that of

the physical spring employed in the SEA plant. As argued earlier, this is due to

the fact that the compliance between the actuator and the load acts as a physical

filter against high-frequency force components, which provides safety and robustness

against unexpected collisions and impacts.

Figure 5.1 shows the effect of the velocity proportional gain Pm on the system

response. Plots are constructed with different controller gains of Pm, and the legend

indicates the gain values used during the simulation. The frequency response of the

physical spring employed in the SEA (labeled as K) was also included in the plots to

show that at higher frequencies the system response converges to that of the physical

spring.

Table 5.2: Nominal controller gains to render null impedance

Controller Gains
Pm 20 Nm s/rad
Pt 5 rad/(s Nm)
Im 10 Nm/rad
It 5 rad/(s2 Nm)
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Figure 5.1: Null impedance rendering with various velocity proportional gains

Plots indicate that Pm has no significant effect in the first phase (i.e., the iner-

tial zone), but it helps to smooth out the transition from the second phase to the

third phase by decreasing the resonant peak at the corresponding cut-off frequency.

Theoretically, there exists no upper bound on Pm that violates passivity. However,

a practical bound is likely to be imposed by physical bandwidth limitation of the

actuator.

Figure 5.2 shows the effect of the velocity integral gain Im. Plots indicate that Im

has a negligible effect on the overall system response. On the other hand, increasing

Im is useful to preserve passivity against the actuator damping bound (i.e., bmax),

but too much increase may jeopardize passivity by violating the actuator inertia

bound (i.e., Jmax), as can be seen from Proposition 2.
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Figure 5.2: Null impedance rendering with various velocity integral gains (Im)
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Figure 5.3: Null impedance rendering with various torque proportional gains Pt
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Figure 5.3 shows the effect of the torque proportional gain Pt. Plots indicate that

larger values of Pt shrink the inertial zone, which may not be favorable. On the other

hand, since the system reaches the damping zone earlier, the apparent impedance

stays lower for larger Pt, as can be inspected from the magnitude plots. Hence, the

selection of Pt involves a trade-off between the control bandwidth and transparency

performance. If the operating frequency of the application is low, then Pt may be

chosen high.

Figure 5.4 shows the effect of the torque integral gain It. Plots indicate that an

increase in It dramatically improves system performance, since not only the inertial

zone gets enlarged, but also the apparent inertia is lowered. However, there exists

an upper bound on It due to the passivity conditions given in Proposition 2.
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5.1.1 Design Guidelines for Null Impedance Rendering

The analysis shows that the outer torque controller is the main determinant of per-

formance during null impedance rendering. Increasing It results in better rendering

performance by reducing the apparent inertia, as well as widening the inertial zone.

While the analysis indicates that the inner velocity controller does not have a sig-

nificant effect on system response, in practice a fast and robust controller is still

desirable to render the actuator as an ideal motion generator under unmodelled

parasitic forces.

As It gets larger, which is desired for better performance, passivity is at stake as

can be seen from Eqn. (4.15). Hence, relatively aggressive gain values for Pm and Im

are recommended to design a robust inner motion controller, as well as to preserve

passivity without sacrificing good null impedance rendering performance.

5.2 Effects of Controller Gains on Pure Stiffness

Rendering

In this section, we analyze the effect of each controller gain while rendering a virtual

spring, using a similar approach as in Section 5.1.

Once again, it is observed that the overall behaviour of the system may be grouped

into three phases. In the first phase, the virtual stiffness of the desired value is

successfully displayed. In the second phase, damping behaviour is observed. In

the third phase, as expected, the system behaviour reduces to that of the physical

spring employed in the SEA. The numerical values for system parameters used in

simulations are reported in Table 5.3.
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Table 5.3: Nominal controller gains to render a pure spring

System parameters
Pm 20 Nm s/rad
Pt 30 rad/(s Nm)
Im 100 Nm/rad
It 5 rad/(s2 Nm)
Kd 50 Nm/rad

Figure 5.5 shows the effect of the velocity proportional gain Pm. Plots indicate that

Pm does not have a significant effect in the first phase, but high values of Pm lower

the resonant peaks that occur at the phase transitions. Theoretically, there exists

no upper bound on Pm that causes violation of passivity.
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Figure 5.5: Pure spring rendering with various velocity proportional gains Pm

Figure 5.6 shows the effect of the velocity integral gain Im. Plots indicate that Im

does not have a significant effect on the overall system response. However, it is the
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Figure 5.6: Pure spring rendering with various velocity integral gains Im

most critical parameter to determine the maximum renderable stiffness Kdmax . It

can be seen from Eqn. (4.26) that Kdmax → K as Im →∞. For any other controller

gain, this limit goes to a value less than the physical stiffness K of SEA.

Figure 5.7 shows the effect of the torque proportional gain Pt. Plots indicate that

increasing Pt provides better performance, since the desired stiffness is successfully

rendered for a wider frequency range. However, on the downside, it also increases

the resonant peaks at the phase transitions.

Figure 5.8 shows the effect of the torque integral gain It. Plots indicate that it does

not significantly affect the system response. Moreover, large values of It jeopardize

passivity, as can be seen from Proposition 3. If It is set to zero, the value of Im

must be set to Im ≥ KKd/∆K, in order to be able to display desired stiffness Kd,

as can be seen from Eqn. (4.24). Along these lines, while it is theoretically alluring

to set It to zero, while a small It may be preffered in practical implementations to

eliminate steady-state errors.
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Figure 5.7: Virtual spring rendering with various torque proportional gains Pt
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5.2.1 Design Guidelines for Pure Stiffness Rendering

The analysis indicates that Pt is the main determinant of the performance during

pure stiffness rendering, since the frequency up to which the desired stiffness is

successfully displayed is directly related to Pt. On the other hand, a sufficiently

large value of Im must be employed to ensure that desired stiffness can be passively

rendered. Hence, Im plays a crucial role in determining the K-width of the system.

A high value of Pm is also preferred as it smoothens the transitions between phases.

Furthermore, an increase in Pm helps to preserve passivity according to Proposi-

tion 3.

It does not have a significant effect on rendering performance. Moreover, it has an

adverse effect on preserving passivity. A small value of It may be injected into the

system to eliminate the steady state errors due to constant disturbances, such as

parasitic forces due to stiction. Pure P control may be applied at the outer torque

controller, if the system does not suffer from undesirable steady-state response.
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5.3 Overall Design Guidelines

Many applications in pHRI require frequent switching between active backdrivabil-

ity (null impedance rendering) and virtual fixtures (pure spring rendering), such as

haptic virtual environments that contain a unilateral constraint [58]. Hence, it is

desirable to determine a single set of controller gains that ensures passivity for both

impedance models. Fortunately, the passivity bounds on controller gains for both

impedances are not in conflict. Hence, to design a passive controller that performs

well for both impedances, the bounds provided in Proposition 2 and 3 can be used to

adjust the controller gains sufficiently high to meet the specifications of the applica-

tion without jeopardizing passivity. More precisely, we must set relatively high gains

for the inner loop to make it an ideal motion source that rejects interaction distur-

bances effectively. Note that, robust velocity control requires orders of magnitude

high integral gain as it corresponds to proportional gain in position level. Hence,

it is a good practice to start with tuning the inner loop gains to get an adequate

velocity controller.
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Chapter 6

Experimental Validation

This chapter presents the experimental verification of the impedance control of ve-

locity sourced SEA. The experimental setup utilized is an SEA brake pedal proposed

in [10]. Figure 6.1 depicts this mechanical design. Leaf springs are arranged to form

a complaint cross-flexure joint. The deflection of the springs is measured by a linear

encoder for force estimation. Hall effect sensors on the rotor provides high fidelity

motor velocity measurements. The SEA device is controlled in real-time with a

sampling rate of 1000 Hz. The inner motion control loop is implemented in the

hardware of the motor drivers and runs at 10 kHz.

Figure 6.1: Experimental setup: SEA brake pedal
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6.1 System Identification

We have derived non-conservative passive controller design guidelines in Chapter 4.

We have shown that the actuator inertia and damping, as well as the complaince

of the spring limit the control gains to obey passivity. Proper selection of control

gains necessitates the identification of the physical system parameters. While the

inertia of the actuator and the complaince of the spring may be derived from the

first principles, system identification must be performed to estimate the effective

damping of the system.

We have performed closed-loop system identification for the system containing the

inner motion loop whose block diagram is depicted in Figure 6.2. It is white box

modelling since we fully know the structure of the controlled plant. We only need to

determine the numerical values of J and b parameters. The motion controller gains

Pm and Im are tuned to meet the performance criteria for robust motion control;

hence predetermined. The physical spring torque τs acts a disturbance to the system.

However, it is safe to neglect it since the motion controller is tuned to reject these

disturbance forces robustly. Furthermore, the feedforward compensation of this

interaction force is common in control of SEAs. Along these lines, no exogenous

input is applied to induce the spring deflections. Under these modeling assumptions,

the transfer function from the commanded velocity to measured velocity reads as

ωm

ωd

=
Pm s+ Im

J s2 + (Pm + b)s+ Im
(6.1)

Figure 6.2: Closed loop motion controlled system
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We excite the system using two different chirp signals with frequencies ranging up

to 10 Hz and 5 Hz, respectively. We use the first excitation signal for estimation and

the second one for validation. We utilize Matlab’s System Identification Toolboxr

to fit an LTI model to the experimental data. In particular, a transfer function with

1 zero and 2 poles is fit by fixing the position of the zero to Pm/Im = 0.0167 thanks

to our prior knowledge of the motion controller gains. The estimated closed-loop

transfer function reads as

TCL(s) =
0.0841s+ 5.036

0.0033s2 + 0.2503s+ 5.036
(6.2)

The goodness of fit is 95% in terms of the normalized root mean square error

(NRMSE). This model together with the experimental data are plotted in Figure 6.3.
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Figure 6.3: Experimental and simulated model output during system identifi-
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The main advantage of the velocity-force cascade control of SEA lies on the idea

of robust inner motion loop to effectively attenuate disturbances and suppress the

actuator dynamics in low frequencies. In fact, as seen in Figure 6.4, the closed-

loop transfer function of motion controlled SEA can be modeled as a first order low

pass filter. This approximation is especially valid for frequencies below the actuator

bandwidth.

Figure 6.4 reports the Bode plots of the closed-loop identified system in Eqn. (6.2)

and a reduced model which is evaluated as TCL(s) = 30/(s+30). Clearly, first order

ideal low-pass filter model of the closed-loop motion controlled system is a valid

approximation within the bandwidth of the system.
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Thanks to this model reduction, simpler passivity analysis becomes viable. However,

the conditions we have derived in Chapter 4 are more generic, since they also account

for the actuator inertia and damping.

Until now, we have discussed the procedure of characterizing the actuator dynamics.

The characterization of the spring compliance is straightforward. In particular,

we applied static torques by putting known weights on the load side of the SEA

and measured the corresponding deflections. Table 6.1. reports the experimentally

identified plant parameters.

Table 6.1: Identified parameters of the SEA brake pedal

Description Symbol Value
Inertia of the actuator J 0.0033 Nm/(s2rad)
Damping of the actuator b 0.1662 Nm.s/rad
Stiffness of the complaint element K 360 Nm/rad
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6.2 Torque Controller Tuning

This section presents the experimental procedure used to tune the force/torque

controller employed in a velocity-sourced SEA. Note that, we have already tuned the

inner motion controller gains during closed-loop system identification. Impedance

control requires an accurate force controller. Thereby, it is required to tune the outer

torque control gains to meet the performance criteria without violating passivity.

Table 6.2 reports the control gains used throughout the experiments. They are valid

for the rest of the chapter unless otherwise stated.

Table 6.2: Control parameters of the SEA plant for haptic impedance rendering

Description Symbol Value
Proportional velocity gain Pm 0.5 Nm/rad
Integral velocity gain Im 50.35 Nm.s/rad
Proportional torque gain Pt 0.1 rad/(sNm)
Integral torque gain It 0.05 rad/(s2Nm)
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Figure 6.5 reports the torque tracking performance of the SEA plant for a chirp

reference signal up to 4 Hz with 2 Nm peak-to-peak amplitude. The normalized

MRS error for this experiment stays under 5 %.
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Figure 6.6: Set-point torque tracking reference tracking performance for 1 Nm,
2 Nm and 3 Nm

Figure 6.6 reports the control performance to a set of set-point reference torque

values of 1 Nm, 2 Nm and 3 Nm. The steady state error is practically zero. The

rise time is less than 100 ms. The settling time is less than 200 ms. Thus, we use

the control gains summarized in Table 6.2 for the rest of experiments.
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6.3 Impedance Rendering Performance

This section presents the performance evaluation of the device for haptic impedance

rendering. Pure springs and null impedance are displayed. These two simple linear

models serve as the basic building blocks for a large variety of virtual environments.

6.3.1 Pure Spring Rendering

Two virtual springs were displayed with stifness values of 20 Nm/rad and 40 Nm/rad

for evaluation. We applied static torques with known values on the end-effector

and measured the corresponding rotor displacements. Figure 6.7 reports the torque-

deflection data from these measurements. Best linear fits agree with the commanded

stiffness values with less than 0.05% NMRSE.
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Figure 6.7: Experimental verification of rendering two virtual torsional springs
with 20 Nm/rad and 40 Nm/rad stiffness
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The SEA device is designed to interact with humans. Thereby, we also need to

evaluate the impedance rendering performance when dynamic loads are applied to

the device by the human operator. The load torques exerted by the human user are

estimated through the measurements of spring deflections.

Figure 6.8 reports results from the interaction of the human subject with a relatively

hard torsional virtual spring. More precisely, the virtual spring has stiffness value

of 40 Nm/rad. The device safely delivers the required torques to display the desired

virtual environment to the user. The desired torque reference is computed by the

outermost impedance controller. NMRSE value for this experiment is reported as

3.3% where the range of the output torques is used for normalization.
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Figure 6.8: Human subject interacting with a hard virtual wall
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Figure 6.9 reports the interaction of the human subject with a relatively soft torsional

virtual spring with stiffness value of 20 Nm/rad. This time the NMRSE is reported

as 5.8%. The relatively high error when rendering soft stiffness is due to the physical

bandwidth limitation of inner motion loop. In particular, since the user can cause

much larger deflections with softer virtual environments, the actuator cannot move

fast enough to compensate for these large deflections in a timely manner.
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Figure 6.9: Human subject interacting with a soft virtual wall

6.3.2 Null Impedance Rendering

This section presents the performance evaluation of the device for displaying null

impedance or equivalently, providing active backdrivability. The device is enforced

57



to seem transparent to the human user by minimizing the reflected output impedance

of the SEA device.

We perform two sets of experiments. In the first case, the subject directly interacts

with the device when it is operating at the null impedance mode. In the second

case, the subject pushes the pedal with a potato chip. Figure 6.10 reports the

measured output torques in these experiments. In particular, the maximum output

torque is less than 1.5 Nm in magnitude when the subject directly interacts with

the device and even lesser when the pedal is pushed with a chip without breaking it.

Note that, faster interactions result in lower active backdrivability due to actuator

bandwidth limitations. Even though ideally the output torque should be zero, 1.5

Nm is acceptable as the maximum output torque capability of the device is 40 Nm,

indicating a parasitic torque of 3.75%.
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Figure 6.10: Human subject interacting with the device when it renders null
impedance
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6.4 Experimental Verification of Passivity Bounds

Experimental verification of system passivity through Bode plots might not be feasi-

ble at all times due to the challenges of experimentally obtaining the system phase.

Luckily, there are alternative interpretations for passivity. In particular, a pas-

sive system must hold the coupled stability property when coupled to an arbitrary

passive environment. The most destabilizing passive environments for 1-port LTI

systems are pure springs and inertias as they contribute 90◦ phase to the system

[15]. Thereby, the system passivity may be investigated by analyzing the interac-

tions with these most destabilizing environments. Passivity is concluded if and only

if there exists no set of springs or inertias that destabilize the system. This is a useful

result as it is practically impossible to search for all possible passive environments

with different mass-spring-damper combinations. It can be verified that pure inertia

is the most destabilizing environment for SEA [53].

The coupled stability of the SEA plant when coupled to an environment with admit-

tance Ye(s) can be analysed by applying Routh-Hurwitz criterion on the numerator

of 1+Zout(s)Ye(s). The environment dynamics must be expressed as an admittance

due to the causality principle. The admittance of a pure inertia is expressed as

Ye(s) = 1/Je s, where Je is inertia value of the environment.

Along these lines, the characteristic equation of the coupled system that determines

the stability reads as

JJes
6 + Je(Pm + b)s5 + (ImJe + JK + JeK + JeKPmPt)s

4+

(Kb+KPm + ItJeKPm + ImJeKPt)s
3 + (ImK + ImItJeK +KKdPmPt)s

2+

(ItKKdPm + ImKKdPt)s+ ImItKKd = 0
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If we render a pure spring with a stiffness value of 40 Nm/rad according to the

control gains specified in Table 6.2, numerical analyses indicate that there exists no

inertia that destabilizes the system, since passivity is preserved. However, if we set It

as 0.6rad/(s2Nm), we violate passivity. In this case, numerical investigation reveals

that the critical inertia value to destabilize the system is equal 5.75 Nm/(s2 rad).

In other words, the system can safely interact with inertias which are less than this

threshold. However, instability occurs when the environment inertia exceeds this

value.

We have experimentally verified these predictions about coupled stability. In par-

ticular, we have constructed passivity region plots over two controller gains while

keeping the rest of the parameters fixed. These plots resemble to K-B plots of haptic

devices [64]. We have chosen 3 passive and 3 non-passive pairs of control gains that

are within the vicinity of the passivity boundary to validate the theoritical passivity

bounds.

Figure 6.11 presents the Pt − It plot of the passivity region. In particular, we fix

the Pt gain and select two It gains to make the system passive and non-passive,

respectively. We observe that all the passive controllers stably interact with the

environment such that there exists no inertia value that can destabilize the system.

On the other hand, active controllers remain stable only for inertia values up to a

certain threshold that depends on the system parameters.

Figure 6.12 presents the Kd − It plot of the passivity region. This time, It gains

are adjusted to obtain passive and non-passive systems for fixed Kd values. This

set of experiments also agree with our predictions. Consequently, our experiments

serve as a validation of the passivity bounds we have derived in Chapter 4, and the

modelling assumptions considered during the derivations.
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Figure 6.11: Pt-It plot for experimentally testing coupled stability
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Figure 6.12: Kd-It plot for experimentally testing coupled stability
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Chapter 7

Series Elastic Damping Actuation

(SEDA)

This chapter present a useful extension to impedance controlled SEA. We analyze

the case where a linear parallel spring-damper is attached as the compliant force-

sensing element in SEA. Even though there has been investigations of series damping

actuation (SDA) [11] and series elastic damping actuation (SEDA) [34, 39] in the

literature, to the best of authors knowledge, SEDA has not been studied with the

velocity-force cascaded control architecture.
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7.1 Impedance Control of Velocity Sourced

Series Elastic Damping Actuation (SEDA)

Figure 7.1 depicts the block diagram of impedance control of velocity sourced SEDA.

Here, the complaint force sensing element is a Voigt body (i.e., parallel spring-

damper pair) with stiffness K and damping b. Note that the estimated (or measured)

torque τEST does not exactly match with the actual output torque τSEA. This

assumption is due to the practical challenges of estimating the deflection velocity

∆θ̇, which renders it infeasible for most cases.

Figure 7.1: Velocity-force cascaded control of a series damping elastic actuator

In the previous chapters, we have demonstrated that the interaction with the envi-

ronment acts as a disturbance to the inner motion loop. However, this can also be

aided by feedforward compensation of measured interaction forces. Here, we assume

that the interaction forces are eliminated in a feedforward manner and are negligi-

ble within the physical bandwidth of the actuator. Consequently, the inner loop is

modeled as an ideal first order low pass filter with cut-off frequency wc. In this case,

the output impedance reads as:

Zout =
K + bs

s

s3 + wcs
2 + PtwcZds+ ItwcZd

s3 + wcs2 + PtwcKs+ ItwcK
(7.1)

Routh array analysis yields the following necessary and sufficient condition for the

stability of the transfer function in Eqn. (7.1):

It < Ptwc (7.2)
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Thereby, Eqn. (7.2) is a necessary condition for passivity which imposes an upper

bound on the torque integral gain.

Now, let us set the virtual environment as the Voigt model such that Zd = Kd+Bds.

If we analyze the positive-realness as in Chapter 4, we obtain P (w) =
∑4

n=1 d2nw
2n

where

d8 = b (7.3)

d6 = wc [bwc + bwcPtBd −KPt(Bd + b)− b(KdPt +BdIt)] (7.4)

d4 = wc [(ItKKd − ItK2) + wc(KPt(αb+ β)− ItKdb− αK − Itβb)] (7.5)

d2 = w2
cI

2
tK(Kdb+BdK) (7.6)

with α = BdIt +KdPt and β = K(1 +BdPt).

The necessary and sufficient conditions to ensure P (w) ≥ 0 may be derived us-

ing Sturm’s theorem. However, the polynomial P (w) is quite complex with many

parameters which renders it infeasible to obtain an analytical close form solution.

Along these lines, we seek a sufficient condition. An obvious solution is to set all

coefficients of P (w) positive. Since d2 and d8 are already positive, we only need to

ensure d4 > 0 ∧ d6 > 0.

According to this analysis, wc can assume any positive value without jeopardizing

passivity. It also determines the Z-width of the system by introducing limitations on

Kd and Bd. It is bounded from above by the product Ptwc due to Eqn. (7.2). Numer-

ical simulations along with the above listed bounds indicate that with the proposed

SEDA controller, it is possible to render impedances higher than the impedance of

the physical spring-damper. In particular, d4 and d6 may be positive even when

Kd > K ∨Bd > b so long as wc is set sufficiently large.
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In the following simulations, we use the plant and controller parameters listed in

Table 7.1.

Table 7.1: Simulation parameters for SEDA rendering Voigt model

Description Symbol Value
Stiffness of the complaint element K 500 Nm/rad
Damping of the complaint element b 100 Nm.s/rad
Cut-off frequency of the motion loop wc 10 Hz
Proportional torque gain Pt 20 rad/(sNm)
Integral torque gain It 5 rad/(s2Nm)

Figure 7.2 reports the Bode plot when the virtual environment impedance is chosen

twice of the physical compliance, such that Kd = 2K = 1000 Nm/rad and Bd =

2b = 200Nms/rad. Passivity is preserved in this case. This example demonstrates

the capability of SEDA to render impedances higher than the impedance of the

physical force-sensing element.
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Figure 7.2: High impedance rendering with series elastic damping actuator
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Figure 7.3 reports the Bode plots when the virtual environment impedance is chosen

half of the physical compliance such that Kd = K/2 = 250Nm/rad and Bd = b/2 =

50Nm.s/rad. Passivity is preserved in this case, as well.
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Figure 7.3: Low impedance rendering with series elastic damping actuator

7.1.1 Rendering Null Impedance

In this section, we analyze rendering null impedance (i.e., Zd = 0) with velocity-

sourced SEDA. Eqn. (7.2) is also a necessary condition for this case. For the

passivity analysis, the coefficients of the polynomial P (w) are modified as follows:

d6 = b (7.7)

d4 = wcb(wc −KPt) (7.8)

d2 = K2Ptw
2
c − ItKwc(K + wcb) (7.9)
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Similar to the previous case, d2 > 0 ∧ d4 > 0 ∧ d6 > 0 is a sufficient condition for

passivity. From Eqn. (7.8) we can derive the following lower bound for the cut-off

frequency of inner motion loop: wc > KPt. However, this bound is hard to satisfy

as it requires either a very large wc or very low K and Pt values. Eqn. (7.13) hints

at the negative effects of It on passivity. Hence, we will set it to zero for the rest of

the analyses and simulations in this chapter. Note that, now the lower bound on wc

becomes a necessary and sufficient condition for passivity.

Along these lines, we perform a simulation using parameters given in Table 7.1.,

except for It which is set to zero. The system cannot render null impedance passively

unless wc is set unreasonably high, such as 104 Hz, as seen in Figure 7.4.
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Figure 7.4: Null impedance rendering with series elastic damping actuator
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7.1.2 Rendering Pure Springs

In this section, we analyze rendering pure springs (i.e., Bd = 0) with velocity-sourced

SEDA when no integrator is employed in the outer force loop (i.e., It = 0). Eqn.

(7.2) is also a necessary condition for this case. However, the coefficients of the

polynomial P (w) are modified as follows:

d6 = b (7.10)

d4 = wc b (wc −K Pt −Kd Pt) (7.11)

d2 = w2
c K Pt (K −Kd +Kd Pt b) (7.12)

The sufficiency bounds do not provide meaningful bound on Kd. However, numerical

simulations show that Kd can assume larger values than K, provided that wc is

sufficiently large to preserve passivity. In other words, the introduction of physical

damping into SEA makes it possible to passively render virtual springs stiffer than

the physical spring so long as the motion control bandwidth of system wc can be

kept sufficiently high.
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Figure 7.5 presents the Bode plot of the SEDA rendering a pure spring with 530Nm/rad

stiffness. The control gains and plant parameters are the same as in the case of null

impedance. The system is passive since the phase varies between −90◦ and 0◦. The

damping of the force sensing element dominates the system at higher frequencies.

This example serves as a proof of high stiffness rendering capability of SEDA.
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Figure 7.6: Pure spring rendering with series elastic damping actuator

Figure 7.6 reports the Bode plot of rendering virtual walls of stifness values of

470Nm/rad and 430Nm/rad. We observe that the system remains passive for

Kd = 470Nm/rad, but violates passivity for a relatively softer virtual wall with

stifness of Kd = 430Nm/rad. It indicates that SEDA cannot render soft walls

passively. Also, we notice that the system quickly deviates from the ideal spring

behavior for relatively low frequencies, as can be observed in Figure 7.5 and 7.6.

More precisely, the phase of the system is far from −90◦ at 1 rad/s. Since humans

are capable of easily generating motions at these frequency levels, the operational

bandwidth of the system is not acceptable for accurately rendering pure springs.

69



In particular, it is desirable to stay as close as possible to negative 90 degrees phase

up to frequency levels of at least 5 Hz so that the parasitic damping effect is not felt

by the user during interactions. Thus, we conclude that since the damping effect

dominates the dynamics starting from low frequencies, SEDA does not provide high

rendering fidelity for applications that require rendering pure springs.
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Chapter 8

Conclusions and Future Work

We have presented the necessary and sufficient conditions to ensure the passivity

of cascade-control of SEA for rendering null impedance and pure stiffness models.

These conditions extend the sufficiency condition reported in the literature [54, 60,

61] and relaxing these bounds, serve as the least conservative bounds on renderable

impedances under the frequency domain passivity paradigm. Our results also prove

the necessity of a counter-intuitive second bound on integral gains, that has been

neglected in the literature. This bound is crucial as it is imposed due to inevitable

physical damping of the actuator; hence, cannot be safely neglected if integral con-

troller is used in both the inner and the intermediate control loops.

While the necessary and sufficient conditions provide the least conservative bounds

within the frequency domain passivity paradigm, they may still be conservative.

Along these lines, less conservative paradigms, such as time domain passivity [23,

47], complementary stability [5], bounded-impedance absolute stability [22, 65],

fractional-order passivity [4, 57] may be utilized to achieve better performance while

still ensuring coupled stability of interaction. However, even though they are rela-

tively conservative, frequency domain passivity conditions are valuable as they are
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known to provide a fundamental understanding of the underlying trade-offs govern-

ing the dynamics of the closed-loop system.

We have experimentally evaluated the effectiveness of velocity sourced SEA and

presented detailed design guidelines for haptic rendering of null impedance and pure

springs. These two classical linear models serve as the building block of large variety

of virtual environments.

We have also studied series elastic damping actuation (SEDA) as an extension to

SEA and demonstrated that Voigt body, which is another interesting linear model,

can passively be rendered with SEDA. Moreover, SEDA can also passively display

environments with even higher impedances than physical impedance of the complaint

force-sensing element. On the other hand, its rendering fidelity is low for pure spring

and null impedance models. Considering these pros and cons, variable damping

SEDA may be a promising scheme that significantly increases the Z-width of SEA

haptic devices.
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