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Abstract

In this thesis, we touched upon the concept of convexity which is one of the essential

topics in optimization. There exist many real world problems that mathematically mod-

elling these problems and trying to solve them are the focus point of many researchers.

Many algorithms are proposed for solving such problems. Almost all proposed methods

are very efficient when the modelled problems are convex. Therefore, convexity plays

an important role in solving those problems. There are many techniques that researchers

use to convert a non-convex model to a convex one. Also, most of the algorithms that

are suggested for solving non-convex problems try to utilize the notions of convexity in

their procedures. In this work, we begin with important definitions and topics regarding

convex sets and function. Next, we will introduce optimization problems in general, then,

we will discuss convex optimization problems and give important definitions in relation

with the topic. Furthermore, we will touch upon Linear Programming which is one of the

most famous and useful cases of Convex Optimization problems. Finally, we will discuss

the Generalized Inequalities and their application in vector optimization problems.

Keywords: Convexity, Convex Sets, Convex Functions, Convex Optimization, Linear

Programming, Vector Optimization.
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DIŞBÜKEY OPTİMİZASYONUNA GİRİŞ

Neda Tanoumand

Matematik Yüksek Lisansı

Tez Danışmanı: Nihat Gökhan Göğüş

Özet

Bu tez çalışmasında, optimizasyondaki en temel konulardan biri olan dışbükeylik

kavramına değinilmiştir. Gerçek dünya problemlerinin matematiksel olarak modellen-

mesi ve çözümü birçok araştırmacının odak noktası olmuştur. Bu tür problemleri çözmek

için birçok algoritma önerilmiştir. Modellenen problemler dışbükey olduğunda hemen

hemen tüm önerilen yöntemler çok etkilidir. Bu nedenle, dışbükeylik bu problemleri

çözmede önemli bir rol oynamaktadır. Araştırmacıların dışbükey olmayan bir modeli

dışbükey bir modele dönüştürmek için kullandıkları birçok teknik vardır. Ayrıca, dışbükey

olmayan problemleri çözmek için önerilen algoritmaların çoğu, dışbükeylik kavramlarını

prosedürlerinde kullanmaya çalışmaktadır. Bu çalışmaya dışbükey kümeler ve fonksiy-

onlarla ilgili önemli tanımlar ve konularla başlanacaktır. Daha sonra genel olarak opti-

mizasyon problemleri tanıtılıp, dışbükey optimizasyon problemleri tartışılacak ve konuyla

ilgili önemli tanımlamalar yapılacaktır. Ayrıca, en ünlü ve faydalı dışbükey optimiza-

syon problemlerinden biri olan Doğrusal Programlamaya da değinilecektir. Son olarak,

Genelleştirilmiş Eşitsizlikleri ve bunların vektör optimizasyon problemlerindeki uygula-

maları tartışılacaktır.

Anahtar Kelimeler: Dışbükeylik, Dışbükey Kümeler, Dışbükey Fonksiyonlar, Dışbükey

Optimizasyon, Doğrusal Programlama, Vektör Optimizasyon.
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1 Preliminaries (convex sets and convex functions)

In this chapter we begin by presenting basic definitions regarding convex sets and convex

functions. Next, some important examples of convex sets which are used frequently in

optimization area are provided. Additionally, we investigate some operations that pre-

serve the convexity of sets and functions. Finally, we introduce the concept of cones and

generalized inequalities and provide the definition of convex functions with respect to the

generalized inequalities.

1.1 Convex sets and related definitions

Definition 1.1. A set C ⊆ IRn is convex, if the line segment joining two distinct points

in the set lies completely in C. Mathematically speaking, the set C is convex if for

x1, x2 ∈ C and any 0 ≤ θ ≤ 1, we have θx1 + (1− θ)x2 ∈ C.

Figure 1.1: Examples of convex and non-convex sets

In Figure 1.1 we can see simple examples of a convex set on the left and a non-convex

set on the right. The line joining each two points in the convex sets lies completely in the

set; however, as we can see in the right figure, in non-convex sets a line segment joining

arbitrary two points of the set does not completely lie in the set.
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Definition 1.2. A convex combination of set of points x1, ..., xk ∈ IRn is a point θ1x1 +

...+ θkxk where θ1 + ...+ θk = 1 and θi ≥ 0 for i = 1, ..., k.

Theorem 1.1. A set C ⊆ IRn is convex if and only if it contains all convex combinations

of its points.

Proof. We use induction in k. Suppose (Pk) is the statement: ”x1, ..., xk ∈ C, θ1, ..., θk ≥

0,
∑k

j=1 θj = 1 implies
∑k

j=1 θjxj ∈ C”.

Suppose C is convex. This means (P2) is true. Suppose (Pk) is true. We want to prove

(Pk+1).

Let x1, ..., xk, xk+1 ∈ C, θ1, ..., θk, θk+1 ≥ 0, and
∑k+1

j=1 θj = 1. We have to show that∑k+1
j=1 θjxj ∈ C.

Let βk = θ1 + ... + θk. If β = 0 then θj = 0 for all j = 1, ..., k, θk+1 = 1, the

statement trivially holds. We may assume that βk > 0. Since θ1
βk

+ ... + θk
βk

= 1, by

induction hypothesis (Pk),
∑k

j=1
θj
βk
xj ∈ C. Notice that βk + θk+1 = 1. Since C is

convex

βk[
θ1
βk
x1 + ...+

θk
βk
xk] + θk+1xk+1 ∈ C.

The proof of the converse part follows immediately from the definition of convex

sets.

Theorem 1.2. Let {Cα}α∈I be a family of convex sets in IRn. Then, C = ∩α∈ICα is

convex.

Proof. Let x1, x2 ∈ C, θ1, θ2 ≥ 0 such that θ1+θ2 = 1. Then for each α ∈ I , x1, x2 ∈ Cα,

hence, θ1x1 + θ2x2 ∈ Cα for each α ∈ I . That is, θ1x1 + θ2x2 ∈ C.

Definition 1.3. Let S ⊆ IRn be any set, the set of all convex combinations of the points

in S is called convex hull of S and denoted by conv S:

conv S = {θ1x1 + ...+ θkxk| xi ∈ S, θi ≥ 0, i = 1, ..., k, θ1 + ...+ θk = 1}.

In Figure 1.2, the right figure illustrates the convex hull of a kidney shaped non-convex

set and the left one shows the convex hull of set of distinct points which create a pentagon.
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Figure 1.2: Examples of convex hulls of non-convex sets

Corollary 1.1. convS is the smallest convex set that contains S. Equivalently, convS is

the intersection of all convex sets containing S.

Proof. Clearly, S ⊂ convS. Let C be an arbitrary convex set so that S ⊂ C. By Theorem

1.1, any convex combination of the points in S is contained in C, that is convS ⊂ C.

To prove the second statement, let’s define

F = {C : C is convex, S ⊂ C}.

Let C̃ = ∩C∈FC. By Theorem 1.2, C̃ is convex. Since S ⊂ C̃. By the first statement,

convS ⊂ C̃. Also, convS ∈ F . Therefore, convS = C̃.

Cones

Definition 1.4. A set C ⊆ IRn is called a cone, if θx ∈ C for every x ∈ C and θ ∈ IR+.

Definition 1.5. A set C is called a convex cone, if it is a convex set and it satisfies the

properties of a cone. (i.e. for all x1, x2 ∈ C and θ1, θ2 ∈ IR+, θ1x1 + θ2x2 ∈ C).

Definition 1.6. Let x1, ..., xk ∈ IRn and θ1, ..., θk ∈ IR+. The point θ1x1 + ... + θkxk is

called conic combination of xi’s.

Definition 1.7. Let C ⊆ IRn be a set. The set of all conic combination of the points in C

is called conic hull of the set C.

{θ1x1 + ...+ θkxk| xi ∈ C, θi ≥ 0, i = 1, ..., k}.

Note that conic hull of set C is the smallest convex cone that contains C.

The Figure 1.3 illustrates the smallest cone created by x1, x2 ∈ IR2. In other words,

the cone contains all points of the form λ1x1 + λ2x2, where λ1, λ2 ≥ 0. The point

3



Figure 1.3: The smallest cone created by two points x1, x2 ∈ IR2

λ1 = λ2 = 0 corresponds to the apex of the cone which is 0. This cone is the subset of all

cones that contain x1 and x2.

Figure 1.4: Conic hulls of two non-convex sets

In Figure 1.4, we can see the conic hull of a kidney shaped non-convex set and conic

hull of the set of points.

1.1.1 Some important examples of Convex sets

In this section we will discuss some examples of convex sets that are frequently used in

the optimization problems.

• Hyperplanes and halfspaces

Hyperplane is the solution set of a group of linear equations. The set can be shown

as following:
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{x | aTx = b }

where a ∈ IRn, a 6= 0, and b ∈ IR. This set geometrically can be interpreted as the

set of points with the same inner product to a given vector a.

Theorem 1.3. Hyperplanes are convex sets.

Proof. Let a ∈ IRn, a 6= 0, and b ∈ IR define the following hyperplane:

H = {x | aTx = b }

.

We want to show that H contains the convex combination of its points. Suppose

x1, x2 ∈ H (i.e. aTx1 = b and aTx2 = b) and 0 ≤ λ ≤ 1.

aT (λx1 + (1− λ)x2) = λaTx1 + (1− λ)aTx2 = λb+ (1− λ)b = b

This means that λx1 + (1− λ)x2 ∈ H and consequently the set H is convex.

Any hyperplane divides the space (i.e. IRn) into two halfspaces that can be shown

as following:

{x | aTx ≤ b } and {x | aTx ≥ b }

where a ∈ IRn, a 6= 0, and b ∈ IR. The halfspace can be interpreted as the solution

set of linear inequalities.

Theorem 1.4. Halfspaces are convex sets.

Proof. The proof is analogous to the proof given for convexity of hyperplanes. Let

K = {x | aTx ≤ b } be the halfspace defined by a ∈ IRn, a 6= 0, and b ∈ IR.

We want to show that K contains the convex combination of its points. Suppose

x1, x2 ∈ K (i.e. aTx1 ≤ b and aTx2 ≤ b) and 0 ≤ λ ≤ 1.

aT (λx1 + (1− λ)x2) = λaTx1 + (1− λ)aTx2 ≤ λb+ (1− λ)b = b

5



aT (λx1 + (1− λ)x2) ≤ b

This means that λx1+(1−λ)x2 ∈ K and consequently the halfspace K is convex.

It can be easily shown that the halfspace {x | aTx ≥ b } is also a convex set.

Figure 1.5: Hyperplane defined by aTx = b

Figure 1.5 illustrates the hyperplane defined by aTx = b in IR2. The hyperplane

creates two halfspaces as aTx ≥ b and aTx ≤ b.

We will use the convexity of hyperplanes and halfspaces in the upcoming chapters.

• Euclidean balls

We can define a Euclidean ball in IRn using the definition of Euclidean norm. Let

u ∈ IRn be a vector, Euclidean norm is denoted by ‖.‖2 and can be defined as

‖u‖2 = (uTu)1/2. Using this definition, Euclidean ball with center xc ∈ IRn and

radius r ∈ IR+ is as following:

B(xc, r) = {x | ‖x− xc‖2 ≤ r} = {x | (x− xc)T (x− xc) ≤ r2}

A Euclidean ball can be interpreted as the set of points that their distance to xc is

less than or equal to r ≥ 0.

Theorem 1.5. A Euclidean ball is a convex set.

6



Proof. Let’s denote the Euclidean ball with center xc ∈ IRn and radius r ∈ IR+ by

B(xc, r). Suppose x1, x2 ∈ B(xc, r) (i.e. ‖x1 − xc‖2 ≤ r and ‖x2 − xc‖2 ≤ r) and

0 ≤ λ ≤ 1. We want to explore whether the point λx1 + (1 − λ)x2 belongs to the

ball B(xc, r) or not.

‖λx1 + (1− λ)x2 − xc‖2 = ‖λ(x1 − xc) + (1− λ)(x2 − xc)‖2

≤ λ‖x1 − xc‖2 + (1− λ)‖x2 − xc‖2

≤ r.

Note that in the above proof we used the triangular inequality for Euclidean norm.

• Polyhedra

A polyhedra is the intersection of finite number of halfspaces and hyperplanes. In

other words, it is the solution set of linear equalities and inequalities which can be

illustrated as following:

P = {x | aTi x ≤ bi, i = 1, ...,m, cTj x = dj, j = 1, ..., p}.

A polyhedra can be shown in the compact form as following:

P = {x | Ax � b, Cx = d}

where A ∈ IRm×n, b ∈ IRm, C ∈ IRp×n, and d ∈ IRp. We denote vector inequality

or componentwise inequality with � symbol.

Theorem 1.6. A polyhedra is a convex set.

Proof. Prove of this theorem follows immediately from Theorem 1.2 as a polyhedra

is an intersection of finite number of convex sets.

Definition 1.8. A bounded polyhedra is called polytope.

• The positive semi-definite cone

7



Definition 1.9. Let A ∈ IRn×n be a symmetric matrix. The matrix A is called

positive semi-definite if for any x ∈ IRn we have xTAx ≥ 0. It is called positive

definite if for any x ∈ IRn we have xTAx > 0. We denote the set of n×n symmetric

matrices by Sn and the set of symmetric n × n positive semi-definite matrices by

Sn+:

Sn = {X ∈ IRn×n |X = XT},

Sn+ = {X ∈ Sn |X � 0}

Theorem 1.7. The set of symmetric positive semi-definite matrices, Sn+, is a convex

cone.

Proof. Let’s first show that Sn+ is a cone. Suppose A ∈ Sn+ and θ ∈ IR+. From the

definition of positive semi-definiteness we have for any x ∈ IRn we have xTAx ≥ 0.

Then xT θAx ≥ 0 which implies that θA ∈ Sn+. This proves that Sn+ is a cone.

Now let’s investigate the convexity of Sn+. Suppose A,B ∈ Sn+ and θ1, θ2 ∈ IR+,

then for any x ∈ IRn:

xT (θ1A+ θ2B)x = θ1x
TAx+ θ2x

TBx ≥ 0

which implies that θ1A + θ2B is a positive semi-definite matrix (i.e. θ1A + θ2B ∈

Sn+).

1.1.2 Operations that preserve convexity of sets

In this section we will discuss two operations that does not change the convexity of sets.

• Intersection

Theorem 1.8. Let A,B ⊆ IRn be two convex sets. Then A ∩B is a convex set.

Proof. A more general case of this theorem is stated in Theorem 1.2.

• Affine functions

8



Definition 1.10. Let L : IRn → IRm be a function. We say that L is a linear

function, if

– for any vector x, y ∈ IRn, L(x+ y) = L(x) + L(y), and

– for any x ∈ IRn and α ∈ IR, L(αx) = αL(x).

Definition 1.11. Let f : IRn → IRm be a function. We say that the function f is

affine, if there exist a linear function L : IRn → IRm and a vector b ∈ IRm such that

f can be written as f(x) = L(x) + b.

Theorem 1.9. Let S ⊆ IRn be a convex set and f : S → IRm be an affine function.

The image of S under f is a convex set.

Proof. Let’s define the image of a set S under the affine function f as following:

f(S) = {f(x) | x ∈ S}

Since, the function f is an affine function, there exist a linear function L : S → IRm

and a vector b ∈ IRm such that f(x) = L(x) + b.

Suppose y1, y2 ∈ f(S) are two points in the image set and 0 ≤ λ ≤ 1. We

explore whether the convex combination of two points are in the image set or not

(i.e. λy1 + (1− λ)y2 ∈ f(S)).

Since, y1, y2 ∈ f(S), there exist x1, x2 ∈ S such that f(x1) = y1 and f(x2) = y2.

Then,

λy1 + (1− λ)y2 = λf(x1) + (1− λ)f(x2)

= λ(L(x1) + b) + (1− λ)(L(x2) + b)

= (λL(x1) + (1− λ)L(x2)) + b

= L(λx1 + (1− λ)x2) + b

= f(λx1 + (1− λ)x2)

Since, S is a convex set and x1, x2 ∈ S, then for any 0 ≤ λ ≤ 1 the point λx1 +

9



(1−λ)x2 ∈ S. Therefore, f(λx1+(1−λ)x2) ∈ f(S) and λy1+(1−λ)y2 ∈ f(S)

which proves the convexity of the image set.

Remark. Let S ⊆ IRn be a convex set. Then the images of S under translation,

scaling, and projection are convex sets.

Theorem 1.10. Let A,B ⊆ IRn be two convex sets. Then, the set A + B = {a +

b | a ∈ A , b ∈ B} is convex.

Proof. Let y1, y2 ∈ A + B. Then, there exists a1, a2 ∈ A and b1, b2 ∈ B such that

y1 = a1+b1 and y2 = a2+b2. Let λ ∈ [0, 1], we want to show that λy1+(1−λ)y2 ∈

A+B.

λy1 + (1− λ)y2 = λ(a1 + b1) + (1− λ)(a2 + b2)

= [λa1 + (1− λ)a2] + [λb1 + (1− λ)b2]

SinceA andB are convex sets, hence, λa1+(1−λ)a2 ∈ A and λb1+(1−λ)b2 ∈ B.

This proves that λy1 + (1− λ)y2 ∈ A+B.

Theorem 1.11. Let A,B ⊆ IRn be two convex sets. Then, the set A × B =

{(a, b) | a ∈ A , b ∈ B} is convex.

Proof. Let y1, y2 ∈ A × B. Then, there exists a1, a2 ∈ A and b1, b2 ∈ B such that

y1 = (a1, b1) and y2 = (a2, b2). Let λ ∈ [0, 1], we want to show that λy1 + (1 −

λ)y2 ∈ A×B.

λy1 + (1− λ)y2 = λ(a1, b1) + (1− λ)(a2, b2)

= (λa1 + (1− λ)a2, λb1 + (1− λ)b2)

SinceA andB are convex sets, hence, λa1+(1−λ)a2 ∈ A and λb1+(1−λ)b2 ∈ B.

This proves that λy1 + (1− λ)y2 ∈ A×B.

10



1.1.3 Proper Cones and Generalized Inequalities

Definition 1.12. Let K ⊆ IRn be a cone. We call K a proper cone if:

• K is a convex cone.

• K is a closed cone.

• The interior if K is nonempty. In other words, K is solid.

• No line is contained in K (i.e. if x ∈ K and −x ∈ K then x = 0). In other words,

K is pointed.

Definition 1.13. ≤ is a partial ordering on a set S if ∀x, y ∈ S,

1. x ≤ x,

2. x ≤ y, y ≤ x implies x = y,

3. x ≤ y, y ≤ z implies x ≤ z.

A proper coneK ⊂ IRn can be utilized to define a partial ordering in IRn. Generalized

inequality can be defined as following:

x �K y ⇐⇒ y − x ∈ K

Additionally, a strict partial ordering can be defined as following:

x ≺K y ⇐⇒ y − x ∈ int K

where x, y ∈ IRn.

1.1.4 Properties of Generalized inequalities

Generalized inequality �K satisfies many of the properties of standard ordering in IR:

• if x �K y and u �K v, then x+u �K y+v (i.e. generalized inequality is preserved

under addition),

• if x �K y and y �K z, then x �K z (i.e. generalized inequality is transitive),

11



• if x �K y and α ∈ IR+, then αx �K αy (i.e. generalized inequality is preserved

under nonnegative scaling),

• x �K x (i.e. generalized inequality is reflexive),

• if x �K y and y �K x, then x = y (i.e. generalized inequality is antisymmetric),

• if xi �K yi for i = 1, 2, ..., xi → x, and yi → y as i → ∞, then x �K y (i.e.

generalized inequality is preserved under limit).

Also, note that there are some properties for strict partial ordering,≺K , which are

similar to that of strict standard ordering in IR.

1.1.5 Minimum and minimal elements

Generalized inequalities and standard ordering in IR share some properties which are

mentioned in the previous section. However, there is an important property that holds for

standard ordering, but it does not hold for generalized inequalities. In IR all points are

comparable that is if x, y ∈ IR then either x ≤ y or y ≤ x holds. This property is not

true for the case when we use generalized inequalities. This means that there are some

points that are not comparable. To elucidate the concept let us investigate an example.

Let’s consider IR2
+ as a proper cone, x = [2 5], and y = [5 1]. Then, neither x �IR2

+
y

holds nor y �IR2
+
x. This means that two points x and y are not comparable with respect

to generalized inequality �IR2
+

.

Since generalized inequalities affect the comparability of points, the concepts of min-

imum elements and minimal elements are more complex.

Definition 1.14. Let S ⊆ IRn be a set and K ⊂ IRn be a proper cone. The point x ∈ S is

the minimum element of S with respect to generalized inequality �K , if for every y ∈ S

we have x �K y.

Definition 1.15. Minimum element (alternative definition) Let S ⊆ IRn be a set and

K ⊂ IRn be a proper cone. Let us x + K = {x + y : y ∈ K} denote the set of all

points which are comparable to x and are greater than or equal to x with respect to the

generalized inequality �K . The point x is the minimum element of the set S if

S ⊆ x+K
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Figure 1.6: A set which has a minimum element

Figure 1.6 illustrates a set S1 that has a minimum element x1 in IR2 with respect to

IR2
+. As it is shown in the figure, the set S1 is the subset of x1 +K which is shaded in the

figure.

Theorem 1.12. Minimum element (if it exists) is unique.

Proof. Let K be a proper cone, and S be a convex set. Suppose, x1, x2 ∈ S be two

minimum elements of S with respect to a generalized inequality �K . Then,

x1 �K x2, and x2 �K x1,

hence, x1 = x2.

Definition 1.16. Let S ⊆ IRn be a set and K ⊂ IRn be a proper cone. The point x ∈ S is

the minimal element of S with respect to generalized inequality�K , if for y ∈ S, y �K x

only if y = x. In other words, the point y ∈ S is either incomparable with x or x �K y.

Definition 1.17. Minimal element (alternative definition) Let S ⊆ IRn be a set and

K ⊂ IRn be a proper cone. Let x −K = {x − y : y ∈ K} denote the set of all points

which are comparable to x and are less than or equal to x with respect to the generalized

inequality �K . The point x is a minimal element of the set S if

(x−K) ∩ S = {x}

The Figure 1.7 shows that the only point in the intersection of S2 and x2 − K is x2.

Therefore, the point x2 is minimal point of S2. Clearly, a minimal element is not unique.

As it can be seen from the figure, all points on the edge of S2 that contains x2 are minimal
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Figure 1.7: The point x2 is the minimal point of the set S2

elements. The set S2 does not contain any element that satisfies the definition of minimum

element. Hence, it does not contain any minimum elements.

Note that the concepts of maximum element and maximal element can be defined in

the similar way.

1.2 Convex Functions and Related Definitions

Definition 1.18. Let f : IRn → IR be a function and domf denote the domain of it.

The function f is convex if its domain is a convex set and for every x, y ∈ domf , and

0 ≤ θ ≤ 1:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (1)

The geometric interpretation of inequality (1) is that the line segment joining two

points (x, f(x)) and (y, f(y)) lies above the graph of the function f .

Figure 1.8: Graph of a convex function
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The Figure 1.8 pictures a convex function in IR2. As it is illustrated, the line segment

joining any two points on the graph lies above it.

Definition 1.19. Let f : IRn → IR be a function and domf denote the domain of it. The

function f is concave if its domain is a convex set and −f is a convex function.

Theorem 1.13. Let f : IRn → IR be a function and domf denote its domain. The function

f is convex if and only if for all x ∈ domf and for all v the function g(t) = f(x+ tv) is a

convex function on its domain (i.e. {t | x+ tv ∈ domf }).

Proof. Suppose f : IRn → IR be a convex function and t1, t2 ∈ domg. Then, for every v

and 0 ≤ θ ≤ 1 we have the following relations:

g(θt1 + (1− θ)t2) = f(x+ (θt1 + (1− θ)t2)v)

= f((θ + 1− θ)x+ (θt1 + (1− θ)t2)v)

= f(θ(x+ t1v) + (1− θ)(x+ t2v))

≤ θf(x+ t1v) + (1− θ)f(x+ t2v))

= θg(t1) + (1− θ)g(t2))

which proves the convexity of g(t). To prove the converse, suppose g : IR → IR be

a convex function on its domain. Since dom g is a convex set, one can conclude that

domf is also a convex set. Let x, r, s ∈ domf , since domf is convex, there exist v and

t1, t2 ∈ dom g such that r = x+ t1v and s = x+ t2v. Then, for every 0 ≤ θ ≤ 1 we have

the following relations:

f(θr + (1− θ)s) = f(θ(x+ t1v) + (1− θ)(x+ t2v))

= g(θt1 + (1− θ)t2)

≤ θg(t1) + (1− θ)g(t2))

≤ θf(x+ t1v) + (1− θ)f(x+ t2v))

= θf(r) + (1− θ)f(s))

which proves the convexity of f(x).
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Note that the above theorem implies that a convex function is convex on all lines that

intersects with its domain. Since there is an if and only if condition in the theorem, the

reverse of the previous statement is also true.

Definition 1.20. Let f : IRn → IR be a function. Then, the gradient of function f is

denoted by∇f(x) and defined as following:

∇f(x) =
[
∂f

∂x1
(x), ...,

∂f

∂xn
(x)

]
.

Theorem 1.14. First-order condition Let f be a differentiable function over its domain.

The function f is convex if and only if for every x, y ∈ domf we have

f(y) ≥ f(x) +∇f(x)T (y − x) (2)

Proof. Let’s first consider a convex function f : IR→ IR. The theorem can be expressed

as f is convex if and only if for all x and y in domf

f(y) ≥ f(x) + f(x)′(y − x) (3)

Consider two points x, y ∈ domf , then since the domain of f is a convex function

(1− t)x+ ty ∈ domf for all values of 0 < t ≤ 1. Based on the convexity of f we have:

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

.

Let’s divide both sides with by t and rearrange the inequality, then we have

f(y) ≥ f(x) +
f((1− t)x+ ty)− f(x)

t

we can replace (1− t)x+ ty by x+ t(y − x) and obtain

f(y) ≥ f(x) +
f(x+ t(y − x))− f(x)

t

now, let’s take the limit as t→ 0 then we will obtain
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f(y) ≥ f(x) + (y − x)f ′(x)

For proving the converse, let f be a function that satisfies inequality (3) for all x, y ∈

domf . Let’s take a point z = θx+ (1− θ)y for 0 ≤ θ ≤ 1 and x 6= y. Now we apply the

inequality (3) for x and z

f(x) ≥ f(z) + f ′(z)(x− z)

multiplying the above inequality by θ and replacing x− z by (1− θ)(x− y) we have

θf(x) ≥ θf(z) + θ(1− θ)f ′(z)(x− y) (4)

Now let’s apply the inequality (3) for y and z

f(y) ≥ f(z) + f ′(z)(y − z)

multiplying the above inequality by (1− θ) and replacing y − z by θ(y − x) we have

(1− θ)f(y) ≥ (1− θ)f(z) + θ(1− θ)f ′(z)(y − x) (5)

summing two inequalities (4) and (5) we obtain

θf(x) + (1− θ)f(y) ≥ f(z)

which proves the convexity of f .

Now using the previous part, we want to prove the theorem for a function f : IRn →

IR. Let’s define a function g(t) = f(ty + (1 − t)x) for x, y ∈ IRn and 0 ≤ t ≤ 1 where

g′(t) = ∇f(ty + (1− t)x)T (y − x).

First let’s consider that f is a convex function. The function g is a composition of a

convex function with an affine function, so, it is also convex. Since g : IR → IR we can

use the above mentioned results and obtain g(1) ≥ g(0) + g′(0) or equivalently

f(y) ≥ f(x) +∇f(x)T (y − x).

To prove the converse of the theorem, let’s assume that the inequality (2) holds for
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every x, y ∈ domf . Also let ty + (1 − t)x ∈ domf and t̃y + (1 − t̃)x ∈ domf for

0 ≤ t, t̃ ≤ 1. Using the inequality we have

f(ty + (1− t)x) ≥ f(t̃y + (1− t̃)x) +∇f(t̃y + (1− t̃)x)T (y − x)(t− t̃)

this inequality corresponds to g(t) ≥ g(t̃)+ g′(t̃)(t− t̃) which shows the convexity of

g and consequently the convexity of f .

The inequality (2) states that tangent line at any point x ∈ domf is always a global

underestimator for a convex function f . Also, the inequality illustrates that a point x

is a global minimizer of a convex function f , if ∇f(x) = 0, since, for all y ∈ domf

f(y) ≥ f(x).

Definition 1.21. Let f : IRn → IR be a function. Then, the hessian of function f is an

n× n matrix that is denoted by∇2f(x) and defined as following:

∇2f(x) =

[
∂2f

∂xj∂xk
(x)

]
j,k=1,...,n

.

Theorem 1.15. Second-order conditions Let S ⊆ IRn be an open convex set and f : S →

IR be a twice differentiable function at each point of its domain (i.e. Hessian or second

order derivative exists at every point). Then, the function f is convex if and only if for all

x ∈ S Hessian is positive semi-definite (∇2f(x) � 0).

Proof. Let’s first consider n = 1 and S ⊆ IR. Also, let f : S → IR is a convex function

and x, y ∈ S with y > x. Using Theorem 1.14 we have the following inequalities:

f(y) ≥ f(x) + f
′
(x)(y − x) (6)

f(x) ≥ f(y) + f
′
(y)(x− y) (7)

The above inequalities yields the following one:

f
′
(x)(y − x) ≤ f(y)− f(x) ≤ f

′
(y)(y − x)
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which means that

f
′
(x)(y − x) ≤ f

′
(y)(y − x)

If we subtract left term from the right one and dividing the resulting term by (y − x)2

we will obtain the following inequality:

f
′
(y)− f ′

(x)

y − x
≥ 0

.

Now if we take the limit y → x, we will have f ′′
(x) ≥ 0.

To prove the converse direction, suppose f ′′
(z) ≥ 0 for all z ∈ domf . Let x, y ∈

domf and x < y. Then we have the following inequality:

∫ y

x

f
′′
(z)(y − z)dz ≥ 0

If we solve the above integral using integration by part, we will have the following

results:

∫ y

x

f
′′
(z)(y − z)dz = (f

′
(z)(y − z))|z=yz=x +

∫ y

x

f
′
(z)dz

= −f ′
(x)(y − x) + f(y)− f(x),

The above results implies that f(y) ≥ f(x)+f
′
(x)(y−x) which based on the Theorem

1.14 shows that f is a convex function.

To prove the general case where n > 1, we use Theorem 1.13. Based on the theorem,

f is a convex function on its domain if and only if the function g(t) = f(x0 + tv) is

convex on its domain. Based on our proof for n = 1, one can conclude that g(t) is convex

if and only if g′′
(t) ≥ 0 for all v ∈ IRn,t ∈ dom g, and x0 ∈ domf which means that

g
′′
(t) = vT∇2f(x0 + tv)v ≥ 0

The inequality illustrates that Hessian is positive semi-definite (∇2f(x) � 0 for all

x ∈domf ). Therefore, it is necessary and sufficient condition for a convex function f to
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have a positive semi-definite Hessian in every point of its domain.

Sublevel sets

Definition 1.22. Let f : IRn → IR be a function and Cα be a set that is defined as

Cα = {x ∈ domf | f(x) ≤ α}.

The set Cα is called α-sublevel set of function f .

Theorem 1.16. Let α ∈ IR and f : IRn → IR be a convex function. Then, for all values

of α, sublevel sets of f are convex.

Proof. Let’s fix α ∈ IR and define Cα as sublevel set of f . Suppose, 0 ≤ θ ≤ 1 and

x, y ∈ Cα (i.e. f(x) ≤ α and f(y) ≤ α). Then, using the convexity of f , we have

following relations:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

≤ θα + (1− θ)α = α

which implies that θx+ (1− θ)y ∈ Cα and Cα is a convex set.

1.2.1 Operations that preserve the convexity of a function

In this section we will discuss a number of operations which do not affect the convexity of

functions. To get the complete list of such operations and more details interested readers

are referred to [1].

• Composition with an affine function

Theorem 1.17. Let f : IRn → IR be a convex function. Let A ∈ IRn×m and b ∈ IRn

so that we can define a new function g(x) as follows:

g(x) = f(Ax+ b),
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where g : IRm → IR with domg = {x | Ax+ b ∈ domf}. If f is a convex function,

then g is a convex function.

Proof. Let’s first examine whether domain of g is a convex set or not. The set is the

intersection of hyperplane defined by A ∈ IRn×m and b ∈ IRn with domain of f .

Hyperplanes are convex sets. Domain of f is also a convex set, since, the function

f is a convex function. Additionally, intersection preserves the convexity of sets.

Therefore, one can conclude that the domain of g is a convex set.

Now, let λ ∈ [0, 1] and x1, x2 ∈ domg so that

g(x1) = f(Ax1 + b), g(x2) = f(Ax2 + b)

Then, using the convexity of f we have the following results:

g(λx1 + (1− λ)x2) = f(A(λx1 + (1− λ)x2) + b)

= f(λ(Ax1 + b) + (1− λ)(Ax2 + b))

≤ λf(Ax1 + b) + (1− λ)f(Ax2 + b)

= λg(x1) + (1− λ)g(x2),

which shows the convexity of g(x).

• Pointwise maximum and supremum

Theorem 1.18. Let f1, f2 : IRn → IR be to convex functions with domain domf1

and domf2, respectively. Let f be a pointwise maximum function of f1 and f2 as

follows:

f(x) = max{f1(x), f2(x)},

with domain, domf = domf1∩ domf2. The function f is a convex function.

Proof. Since, domf1 and domf2 are convex sets and intersection preserves convex-

ity of sets, domf is a convex set. Let 0 ≤ λ ≤ 1 and x, y ∈ domf . Also, without
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loss of generality, suppose that f(λx+(1−λ)y) = f1(λx+(1−λ)y). Then, using

the convexity of f1 we have the followings:

f(λx+ (1− λ)y) = f1(λx+ (1− λ)y)

≤ λf1(x) + (1− λ)f1(y)

≤ λmax{f1(x), f2(x)}+ (1− λ)max{f1(y), f2(y)}

= λf(x) + (1− λ)f(y),

The above inequalities together with the convexity of domf prove the convexity of

the function f .

Note that the above theorem can be extended as follows. If the functions f1, ..., fm

are convex function. Their pointwise maximum function f

f(x) = max{f1(x), ..., fm(x)},

is a convex function. The prove follows the similar direction as in the previous

theorem.

The pointwise maximum can be extended to the pointwise supremum of an infinite

set of convex functions. In the next theorem we will present the extended case.

Theorem 1.19. LetA be any set with infinite number of elements and f : IRn×A→

IR be a function so that f(x, y) is a convex function in x for every y ∈ A. Suppose

g : IRn → IR is a function as follows:

g(x) = sup
y∈A

f(x, y)

where domg = {x | (x, y) ∈ domf for all y ∈ A, supy∈A f(x, y) < ∞}. The

function g(x) which is a pointwise supremum over an infinite set of convex functions

is a convex function.
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Proof. From the definition of domg one can conclude that it is a convex set. Let

x1, x2 ∈domg and 0 ≤ λ ≤ 1, then we have

g(λx1 + (1− λ)x2) = sup
y∈A

f(λx1 + (1− λ)x2, y)

≤ sup
y∈A

λf(x1, y) + (1− λ)f(x2, y)

≤ λ sup
y∈A

f(x1, y) + (1− λ) sup
y∈A

f(x2, y)

= λg(x1) + (1− λ)g(x2)

which proves the convexity of the function g(x).

• Minimization

Theorem 1.20. Suppose C ⊆ IRm be a convex nonempty set and f : IRn×m → IR

be a convex function. Let g(x) = infy∈C f(x, y) be a function that g(x) > −∞

for all x. Then the function g is a convex function in its domain (i.e. domg =

{x | (x, y) ∈ domf for some y ∈ C} ).

Proof. Let x1, x2 ∈ domg and ε > 0. There exist y1, y2 ∈ C such that f(xi, yi) ≤

g(xi) + ε for i = 1, 2. Suppose 0 ≤ λ ≤ 1; then we have:

g(λx1 + (1− λ)x2) = inf
y∈C

f(λx1 + (1− λ)x2, y)

≤ f(λx1 + (1− λ)x2, λy1 + (1− λ)y2)

≤ λf(x1, y1) + (1− λ)f(x2, y2)

≤ λg(x1) + (1− λ)g(x2) + ε.

Since the above inequalities are true for any ε > 0, we have the following results:

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2).
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• Composition

Let f : IRn → IR be a function that is the composition of two functions h : IRk →

IR and g : IRn → IRk where f(x) = h(g(x)) : IRn → IR and domf = {x ∈

domg | g(x) ∈ domh}. In this section we will discuss the conditions on h and g

that guarantee the convexity or concavity of f .

For the simplicity we assume n = 1. For more general case, n > 1, one can use

Theorem 1.13 and its implication. The theorem states that it is enough to show the

convexity of f on an arbitrary line which intersects with domf .

We start with considering k = 1 (i.e. h : IR → IR and g : IR → IR). Let’s assume

that h and g are twice differentiable functions. With those conditions, the function

f(x) = h(g(x)) is convex if f ′′
(x) ≥ 0 for all x ∈ IR. Now taking the second

derivative from f will yield the following equation:

f
′′
(x) = h

′′
(g(x))g

′
(x)2 + h

′
(g(x))g

′′
(x). (8)

The conditions that make f ′′ ≥ 0 (f ′′ ≤ 0) are the ones that make each term of

the equation (8) non-negative (non-positive). From the equation (8) the following

results can be obtained:

– if h is a convex and non-decreasing function (i.e. h
′′ ≥ 0 and h′ ≥ 0, respec-

tively) and g is a convex function (i.e. g
′′ ≥ 0), then f is a convex function

(i.e. f
′′ ≥ 0),

– if h is a convex and non-increasing function (i.e. h
′′ ≥ 0 and h′ ≤ 0, respec-

tively) and g is a concave function (i.e. g
′′ ≤ 0), then f is a convex function

(i.e. f
′′ ≥ 0),

– if h is a concave and non-decreasing function (i.e. h
′′ ≤ 0 and h

′ ≥ 0,

respectively) and g is a concave function (i.e. g
′′ ≤ 0), then f is a concave

function (i.e. f
′′ ≤ 0),

– if h is a concave and non-increasing function (i.e. h
′′ ≤ 0 and h′ ≤ 0, respec-

tively) and g is a convex function (i.e. g
′′ ≥ 0), then f is a concave function

(i.e. f
′′ ≤ 0).
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Now let’s consider more general case, k > 1. Suppose h : IRk → IR, g : IRn → IRk,

and gi : IRn → IR for i = 1, ..., k be twice differentiable functions. Then, the

function f : IRn → IR can be illustrated as following:

f(x) = h(g(x)) = h(g1(x), ..., gk(x)).

Again in this case, without loss of generality we consider n = 1 and domg = IR and

domh = IRk. To investigate the conditions that guarantee the convexity/concavity

of f , let’s take its second derivative:

f
′′
(x) = g

′
(x)T∇2h(g(x))g

′
(x) + ∇h(g(x))Tg′′

(x), (9)

From equation (9), one can obtain the following conditions to guarantee the con-

vexity or concavity of f :

– if h is a convex and non-decreasing in each argument (i.e. ∇2h(g(x)) ≥ 0 and

∇h(gi(x)) ≥ 0 for all i = 1, ..., k, respectively), and gi’s are convex functions

(i.e. g
′′
i ≥ 0, and g′′ ≥ 0), then f is a convex function (i.e. f

′′ ≥ 0),

– if h is a convex and non-increasing in each argument (i.e. ∇2h(g(x)) ≥ 0

and ∇h(gi(x)) ≤ 0 for all i = 1, ..., k, respectively), and gi’s are concave

functions (i.e. g
′′
i ≤ 0, and g′′ ≤ 0), then f is a convex function (i.e. f

′′ ≥ 0),

– if h is a concave and non-decreasing in each argument (i.e. ∇2h(g(x)) ≤ 0

and ∇h(gi(x)) ≥ 0 for all i = 1, ..., k, respectively), and gi’s are concave

functions (i.e. g
′′
i ≤ 0, and g′′ ≤ 0), then f is a concave function (i.e. f

′′ ≤ 0).

Note that we discussed the conditions that are valid when both h and g are twice

differentiable functions. For exploring the conditions in more general setting where h and

g might not be differentiable, the extended-value functions must be defined. This concept

is not included in this work. Interested readers can be referred to [1].

1.2.2 Convexity with respect to generalized inequality

Definition 1.23. Let K ⊆ IRm be a proper cone and�K be the associated generalized in-

equality. The function f : IRn → IRm is convex with respect to the generalized inequality
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or it is called K-convex if for all x, y ∈ domf , and 0 ≤ λ ≤ 1, we have

f(λx+ (1− λ)y) �K λf(x) + (1− λ)f(y). (10)

The function is called strictly K-convex if for all x 6= y ∈ domf and 0 ≤ λ ≤ 1 we

have:

f(λx+ (1− λ)y) ≺K λf(x) + (1− λ)f(y). (11)

The generalized inequalities and the related concepts are mostly utilized in vector

optimization that we will discuss later.
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2 Optimization problems

2.1 Basic Terminology

Let fi : IRn → IR, i = 0, ...,m and hj : IRn → IR, j = 1, ..., p be functions and let’s

define the set D as following:

D =
m⋂
i=0

domfi(x) ∩
p⋂
i=1

domhj(x)

where domfi(x) and domhj(x) are domains of the mentioned functions. If we define

the set C as

C = {x ∈ D|fi(x) ≤ 0, i = 1, ...,m, hj(x) = 0, j = 1, ..., p}

then the optimization problem is the problem of finding x ∈ C which minimizes the

function f0(z). An optimization problem can be formulated as following:

minimize f0(z)

subject to fi(z) ≤ 0 i = 1, ...,m

hj(z) = 0 j = 1, ..., p

(12)

where z is the optimization variable and f0 : IRn → IR is the objective function

of the problem. The inequalities fi(x) ≤ 0 are called inequality constraints and the

equalities hj(x) = 0 are equality constraints. If an optimization problem does not have

any constraints then the problem (12) is called unconstrained.

Any point x ∈ C is called a feasible point, so the set C can be considered as the

collection of feasible points and it is called the feasible set. The problem (12) is feasible

if the set C contains at least one point and it is infeasible if the set C is empty. The

inequality constraint fi(x) ≤ 0 is called active at a feasible point x if fi(x) = 0 and it is
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called inactive if fi(x) < 0.

When the problem (12) has a solution at a point x ∈ C, the value of the objective

function at x is called the optimal value. Let p∗ denote the optimal value. By definition

p∗ = inf{f0(x)|x ∈ C}

where p∗ can take the values ±∞. When the problem is infeasible, then by definition

we set p∗ = ∞. The problem (12) is unbounded below if there are some feasible points

xk ∈ C such that f0(xk)→ −∞ as k →∞. In this case p∗ = −∞.

Optimal and locally optimal points

If the problem (12) is feasible and there exists x∗ ∈ C such that f0(x∗) = p∗ then x∗

is an optimal point for problem (12).

A feasible point x ∈ C is called locally optimal if there exists R > 0 such that x

solves the following optimization problem with variable z:

minimize f0(z)

subject to fi(z) ≤ 0 i = 1, ...,m

hj(z) = 0 j = 1, ..., p

‖z − x‖2 ≤ R

which means that the feasible point x is the minimizer of f0 over the neighbourhood

points. To distinguish between local optimal and optimal points the term ”global optimal”

sometimes is used.

Maximization problems

The maximization problem

maximize f0(x)

subject to fi(x) ≤ 0 i = 1, ...,m

hj(x) = 0 j = 1, ..., p

(13)

is equivalent to the problem of minimizing −f0(x) over the same feasible region.

Therefore, for solving maximization problems we can convert them to an equivalent min-

imization problem and solve them.
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2.2 Equivalent Problems

Two optimization problems are equivalent if from solution of one of them we can find the

solution of the other one easily. In this part we will discuss some techniques for obtaining

equivalent problems.

• Scaling

We can obtain the equivalent of the standard optimization problem (12) by scaling

the objective function and inequality constraints by a positive scalar and equality

constraints by a non-zero scalar. Let αi > 0 for i = 0, ...,m and βj 6= 0 for

j = 1, ..., p be scalars. The equivalent problem can be written as following:

minimize f̃(x) = α0f0(x)

subject to f̃i(x) = αifi(x) ≤ 0 i = 1, ...,m

h̃j(x) = βjhj(x) = 0 j = 1, ..., p

(14)

Since the scaling of inequality constraints are made by positive scalars and scaling

of equality constraints are made by non-zero scalars the feasible region of problem

(14) and problem (12) are the same. Also, the optimal solution for one of the

problems is also an optimal point for another one since the scaling of the objective

function is made by a positive scalar. Note that although the feasible region and the

optimal solution of two problems are the same, two problems are not the same since

their objective functions and constraints are different. Two problems are the same

if αi = 1 for i = 0, ...,m and βj = 1 for j = 1, ..., p, otherwise they are equivalent.

• Change of variables

Another form of obtaining an equivalent problem is to substitute the original deci-

sion variable with a new one. For this purpose, let φ : IRn → IRn be a one-to-one

function such that range of φ be the subset of the domain of the optimization prob-

lem (i.e. Range(φ) ⊆ D). Then the new decision variable can be defined as z

such that x = φ(z). The equivalent problem with new decision variable z can be

formulated as following:
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minimize f̃0(z)

subject to f̃i(z) ≤ 0 i = 1, ...,m

h̃j(z) = 0 j = 1, ..., p

(15)

where f̃i(z) = fi(φ(z)) for i = 0, ...,m and h̃j(z) = hj(φ(z)) for j = 1, ..., p. If x

is a solution for problem (12) then z = φ−1(x) is a solution for the problem (15).

Also, if z is the solution for problem (15) then x = φ(z) is the solution for problem

(12). In this case, two problems are equivalent with change of variable.

• Transformations of objective and constraint functions

Consider the following problem:

minimize f̃0(x)

subject to f̃i(x) ≤ 0 i = 1, ...,m

h̃j(x) = 0 j = 1, ..., p

(16)

where the functions f̃i and h̃j are defined as composition of functions. Letψi : IR→

IR be a function such that f̃i = ψi(fi(x)) for i = 0, ...,m and h̃j = ψm+j(hj(x)) for

j = 1, ..., p. The problems (16) and (12) are equivalent if the functions ψi satisfy

the following conditions:

– ψ0 is a monotone increasing function,

– ψi(u) ≤ 0 for i = 1, ...,m if and only if u ≤ 0,

– ψi(u) = 0 for i = m+ 1, ..., p if and only if u ≤ 0

Consequently, the feasible region and the optimal set of the problem (16) is the

same as the feasible and optimal set of problem (12). Note that the scaling method,

discussed above, is a special case of obtaining equivalent problem by transforming

objective and constraint functions where all ψis are linear.

• Slack variables

One common way to obtain an equivalent problem is to use slack variables to

change inequality constraints into equality ones. We introduce new variables s1, ..., sm ≥

30



0 so that fi(x) + si = 0 for every i = 1, ...,m, and x ∈ C. Using this fact we can

obtain an equivalent problem as following:

minimize f0(x)

subject to si ≥ 0, i = 1, ...,m

fi(x) + si = 0 i = 1, ...,m

hj(x) = 0 j = 1, ..., p

(17)

where the variables x ∈ IRn and s ∈ IRm. The variables si that is used to replace in-

equality constraints with equality and non-negativity constraints are slack variables.

The problem (17) has n+m decision variables, m inequality (non-negativity) con-

straints, and m+ p equality constraints.

Note that if the feasible (optimal) solution of problem (17) is (x, s) then x is a

feasible (optimal) solution for the original problem (12). The converse is also true.

If x is a feasible (optimal) solution for problem (12), then the solution (x, s) where

si = −fi(x) for i = 1, ...,m is feasible (optimal) for the problem (17).

• Eliminating equality constraints

Recall the equality constraints of an optimization problem (12):

hj(x) = 0, j = 1, ..., p,

For eliminating equality constraints we need a function φ : IRk → IRn such that x

satisfies the above equality if and only if there exists z ∈ IRk such that x = φ(z).

In other words, the solution set of the equality constraints can be parametrized by

variable z ∈ IRk. Then the equivalent optimization problem can be formulated as

following:

minimize f̃0(z) = f0(φ(z))

subject to f̃i(z) = fi(φ(z)) ≤ 0 i = 1, ...,m
(18)

where z ∈ IRk is the decision variable. The equivalent problem has no equality

and m inequality constraints. Note that if x is the optimal solution for the problem

(12), then any z that satisfies x = φ(z) is the optimal solution for the equivalent
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problem. Since x is a feasible solution for problem (12), there exists at least one

such z. Converse of this statement is also true. If z is an optimal solution for the

equivalent problem, then x = φ(z) is an optimal solution for the problem (12).

• Eliminating linear equality constraints

Let’s suppose that the equality constraints are linear of the form Ax = b and the

solution set of them are not empty which otherwise the problem is infeasible. Let’s

F ∈ IRn×k be any full rank matrix such that R(F ) = N(A) and x0 be any solution

of the equality constraints. Then the general solutions of Ax = b can be written as

Fz + x0 where z ∈ IRk. Then we can substitute the general solution form in the

problem (12) and eliminate the equality constraints. The equivalent problem can be

formulated as following:

minimize f0(Fz + x0)

subject to fi(Fz + x0) ≤ 0 i = 1, ...,m
(19)

The equivalent problem with z ∈ IRk as decision variable hasm inequality and zero

equality constraints. Additionally, the new problem has rank of A fewer decision

variables, since from rank-nullity theorem we have k = n− rank(A).

• Introducing equality constraints

In this part we will discuss the method which is the converse of the above mentioned

technique. In the problems that the objective and inequality constraint functions are

in the form of composition of the functions with affine functions this method can

be implemented to tackle the complexity of the problem. Consider the following

problem:

minimize f0(A0x+ b0)

subject to fi(Aix+ bi) ≤ 0 i = 1, ...,m

hj(x) = 0, j = 1, ..., p,

(20)

where x ∈ IRn, Ai ∈ IRki×n, fi : IRki → IR, and Aix + bi are affine functions. In

order to obtain the equivalent of the above problem new decision variable yi ∈ IRki

such that yi = Aix+ bi for i = 0, ...,m can be introduced. The equivalent problem
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can be formulated as following:

minimize f0(y0)

subject to fi(yi) ≤ 0 i = 1, ...,m

yi = Aix+ bi, i = 0, ...,m

hj(x) = 0, j = 1, ..., p,

(21)

where y0 ∈ IRk0 , . . . , ym ∈ IRkm . Therefore, the equivalent problem has k0 + ...+

km new decision variables and new equality constraints in addition to the decision

variables and constraints of the original problem (20).

• Optimizing over some variables

It is always true that in problems with more than one decision variables, we can min-

imize the problem in terms of one variable and then minimize the resulted problem

in terms of other ones. Therefore, the fact

inf
x,y
f(x, y) = inf

x
f̃(x)

where f̃(x) = infy f(x, y) can be used to obtain an equivalent problem is some

specific problems.

Suppose that x ∈ IRn can be partitioned into x1 ∈ IRn1 and x2 ∈ IRn2 so that

x = (x1, x2) and n1+n2 = n. Consider an optimization problem that the constraint

functions depends on only x1 or x2:

minimize f0(x1, x2)

subject to fi(x1) ≤ 0 i = 1, ...,m1

f̃i(x2) ≤ 0, i = 1, ...,m2.

(22)

In order to obtain an equivalent problem, the problem first is minimized in terms of

one of the decision variables. Here we first implement the optimization on x2. For

this purpose the new objective function f̃0 is defined as following:

f̃0(x1) = inf{f0(x1, z) | f̃i(z) ≤ 0, i = 1, ...,m2}
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Using the new objective function, the equivalent problem of (22) can be formulated

as following:

minimize f̃0(x1)

subject to fi(x1) ≤ 0 i = 1, ...,m1.
(23)

• Epigraph problem form

Let X ⊆ IRn be the domain of a function f : X → [−∞,+∞]. Then, the epigraph

of the function f is a set that is subset of IRn+1 and defined as following:

epi(f) = {(x, t) | x ∈ X, t ∈ IR, f(x) ≤ t}.

The epigraph form of an optimization problem (12) is as following:

minimize t

subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p,

(24)

where t ∈ IR and x ∈ IRn are the decision variables. Geometrically, the problem

(24) can be described as minimizing the decision variable t over the epigraph of

the function f0 such that the constraints on x are satisfied. As an example, let us

consider an optimization problem that minimizes the function that is illustrated in

Figure 2.1. The problem is to minimize f0(x) over its domain. The epigraph form

problem is to find the lowest point in the epigraph of f0(x). Therefore, the point

(x∗, t∗) is the optimal point.

Note that the optimization problems (12) and (24) are equivalent. We note that

(x∗, t∗) is the optimal solution of the problem (24) if and only if x∗ is the optimal

solution of the original problem (12) where t∗ = f0(x
∗).
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Figure 2.1: Geometric interpretation of epigraph form of an optimization problem

35



3 Convex Optimization

3.1 Convex optimization problems

A convex optimization problem can be formulated as following:

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, ..,m

aTj x = bj j = 1, .., p

(25)

where f0, .., fm are convex functions. Convex optimization problem requires three

additional conditions in comparison with problem (12):

• the objective function is convex,

• the inequality constraint functions must be convex,

• the equality constraint functions hj(x) = aTj x− bj must be affine.

The domain of problem (25) which is D =
⋂m
i=0 domfi is a convex set. Also, the

inequality constraints are sublevel sets of convex function (i.e. {x|fi(x) ≤ 0}). Since by

Theorem 1.16 the sublevel set of convex functions are convex and intersection of convex

sets yields a convex set, we can conclude that the set created by inequality constraints is

convex. Furthermore, since the equality constraints are affine the set created by intersec-

tion of them is the intersection of hyperplanes {x|aTj x = bj} which is also a convex set.

Finally, the feasible set of problem (25) is the intersection of set D, sublevel sets, and

hyperplanes which therefore is a convex set. We can conclude that a convex optimization

problem is a problem of minimizing a convex function over a convex set.

Concave maximization problem
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The problem below is called convex optimization problem if the objective function

is a concave function, inequality constraint functions are convex, and equality constraint

functions are affine.

maximize f0(x)

subject to fi(x) ≤ 0 i = 1, ..,m

aTj x = bj j = 1, .., p

(26)

This problem can be solved by the minimizing −f0(x) (which is a convex function)

over the same feasible region.

3.2 Local and global optima

Theorem 3.1. Any feasible point that is local optimal for a convex optimization problem

is also global optimal.

Proof. To prove this property, let us assume that x is a locally optimal point for problem

(25) that is for some R > 0 we have

f0(x) = inf{f0(z)|z is feasible, ‖z − x‖2 ≤ R}

Let us on the contrary suppose that x is not globally optimal. This means that there

exists a feasible y such that ‖y − x‖2 > R and f0(y) < f0(x). Let t be the point between

x and y such that

t = (1− θ)x+ θy

for θ = R
2‖y−x‖2 . Then using this value for θ, we have ‖t − x‖2 = R/2 < R which

means that t is in the neighborhood of x and by our assumption f0(x) ≤ f0(t). However,

using the convexity of the function f0:

f0(t) ≤ (1− θ)f0(x) + θf0(y) < (1− θ)f0(x) + θf0(x) = f0(x)

which contradicts with our assumption. Therefore, x is globally optimal and f0(x) ≤

f0(y) for all feasible y.
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3.3 An optimality criterion for differentiable convex function

In this section, we will discuss optimality condition for convex function and prove this

property by using Theorem 1.14 which states First-order condition for being a convex

function.

Theorem 3.2. optimality condition LetX be the feasible set of convex optimization prob-

lem (25), a point x is optimal if and only if x ∈ X and

∇f0(x)T (y − x) ≥ 0 for all y ∈ X (27)

Proof. Let’s first suppose that x is an optimal point and the condition (27) does not hold

for x that is there exist some y ∈ X such that

∇f0(x)T (y − x) < 0.

We want to show that this condition contradicts with the optimality of x in its neigh-

bourhood. Let us consider z(t) = ty + (1 − t)x for t ∈ [0, 1]. Since the feasible set is

a convex set z(t) is feasible. We want to show that for small value of t the point x is not

optimal. To show this we look at the derivative of f0 in z(t)

d

dt
f0(z(t))|t=0 = ∇f0(x)T (y − x) < 0

This means that f0 is decreasing at z(t) for small values of t. Therefore f0(z(t)) <

f0(x) which contradicts with our assumption that x is an optimal point.

Conversely, let x ∈ X which satisfies (27), and since f0 is a convex function then,

based on Theorem 1.14, it satisfies the first-order condition of convex functions for y ∈

domf0 (i.e. f(y) ≥ f(x) + ∇f(x)T (y − x)). Therefore, f0(y) ≥ f0(x) for y ∈ domf0

which proves the optimality of x.

Example 3.1. Unconstrained problems We want to obtain the optimality criteria for

an unconstrained optimization problem using condition (27). In this case the feasibility

condition simply reduces to x ∈ domf0. Let x be an optimal point for our problem. Then

we have∇f0(x)T (y − x) ≥ 0 for all feasible y.
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The function f0 is a differentiable function; therefore, its domain is an open set. This

means that for every feasible x there exists r > 0 such thatB(x, r) = {z | ‖x−z‖ ≤ r} ⊆

domf0 (i.e. an open ball containing points which are feasible for the problem). If we

define a point y = x− t∇f0(x), for small and positive amounts of t we have y ∈ B which

implies such y is a feasible point.

Thus, the optimality condition can be modified as following:

∇f0(x)T (y − x) = −t‖∇f0(x)‖22 ≥ 0

the above condition implies that

∇f0(x) = 0. (28)

Therefore, the optimality condition (27) reduces to (28).

Every solution to the equality (28) is a minimizer of f0. On the other hand, if the

equation does not have any solution, then there does not exist any optimal solutions.

Example 3.2. Problems with equality constraints Consider an optimization problem with

only equality constraints

minimize f0(x)

subject to Ax = b

where A ∈ IRp×n. Let’s assume that the problem is feasible (i.e. the feasible set is

non-empty). For a feasible point x the optimality condition is as following

∇f0(x)T (y − x) ≥ 0

for all y satisfying Ay = b. The feasible region in this problem is affine, so, there

exists ν ∈ N(A) so that y can be written as y = x + ν. The optimality condition can be

modified as following

∇f0(x)Tν ≥ 0 for all ν ∈ N(A)

For ν ∈ N(A) we have −ν ∈ N(A), so, −∇f0(x)Tν ≥ 0 which implies that

∇f0(x)Tν = 0 for all ν ∈ N(A). This means that ∇f0(x)⊥N(A) and using the fact
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that N(A)⊥ = R(AT ), the optimality condition can be reduced to ∇f0(x) ∈ R(AT ).

Which means that there exists u ∈ Rp so that

∇f0(x) + ATu = 0 (29)

To show the fact thatN(A)⊥ = R(AT ), let x ∈ N(A) which means that Ax = 0. This

equation means that x⊥{row space of A} and consequently x⊥{column space (range) of AT}.

Since this is true for all x ∈ N(A), we have N(A)⊥R(AT ).

Conversely, let y ∈ R(AT ) (i.e. there exists x such that y = ATx) and z ∈ N(A) (i.e.

Az = 0). Then, we have

yT z = (ATx)T z = (xTA)z = xT (Az) = 0.

Since this is true for every y ∈ R(AT ), we have R(AT )⊥N(A). Consequently,

R(AT ) = N(A)⊥.

Example 3.3. Minimization over the nonnegative orthant Consider the following opti-

mization problem which is minimization of a convex function over nonnegative orthant

that is the only constraints are nonnegativity constraints:

minimize f0(x)

subject to x � 0
(30)

Recall the optimality condition (27) which will be modified for problem (30) as fol-

lowing:

x � 0, ∇f0(x)T (y − x) ≥ 0 for all y � 0. (31)

Since the condition ∇f0(x)Ty − ∇f0(x)Tx ≥ 0 must be true for all y ≥ 0, some

conditions on∇f0(x) and −∇f0(x)Tx are required to be specified.

First we need the first term, ∇f0(x)Ty, to be bounded below (i.e. nonnegative) for

y ≥ 0. So, ∇f0(x)T � 0. Then, we need −∇f0(x)Tx ≥ 0, where x ≥ 0 and ∇f0(x)T �

0. This only happens when ∇f0(x)Tx = 0, that is
∑n

i=1(∇f0(x))ixi = 0. Each term

in the summation is the product of nonnegative numbers; therefore, for the summation be

equal to zero, each term must be equal to zero ((∇f0(x))ixi = 0 for i = 1, ..., n).
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Finally the optimality condition for an optimization of a convex function over nonneg-

ative orthant can be illustrated as following:

x � 0, ∇f0(x) � 0, xi(∇f0(x))i = 0, i = 1, ..., n. (32)

The last condition means that the set of indices corresponding to non-zero elements in

two vectors, x and∇f0(x) have no intersections. This property is called complementarity,

the set are indices are complement to each other.

3.4 Equivalent convex problems

In this section we investigate the transformations that preserve convexity. We want to

know whether the transformations that yield equivalent optimization problems preserve

the convexity property of the original problem or not.

• Eliminating equality constraints

Recall the procedure of eliminating equality constraint form an optimization prob-

lem in section 2.2. For a convex optimization problem the equality constraints are

affine and of the form Ax = b. Let x0 be a solution for this system of equations

and F be a matrix that its range is equal to the nullity of A. Then, the equiva-

lent optimization problem which contains no equality constraints is formulated as

following:

minimize f0(Fz + x0)

subject to fi(Fz + x0) ≤ 0, i = 1, ...,m.

Note that in the problem (3.4) the objective function and the inequality constraint

functions are composition of a convex function and an affine function, Such a com-

position does not destroy the convexity of the problem. Therefore, eliminating the

equality constraints in a convex optimization problem preserves convexity of the

problem.

• Introducing equality constraints

In section 2.2 we discussed the instruction to introduce new equality constraints

to the problem when the objective and constraint functions are the composition of
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a convex function with an affine function. The resulted equivalent problem for-

mulated as 21. If the new introduced constraints are linear, then, the convexity of

the problem is not affected. In other words, introducing equality constraints to the

problem preserves the convexity as long as the new constraints are linear.

• Slack variables

Introducing slack variables changes the inequality constraints into equality ones

(fi(x) ≤ 0 becomes fi(x) + si = 0). Since in the convex optimization problem

the equality constraints must be affine, the convexity of the problem is preserved

as long as fi(x) is a linear function. Therefore, adding slack variables to the linear

inequality constraints does not affect the convexity of the problem.

• Epigraph form

Recall the epigraph form of a convex optimization problem with variables (x, t),

minimize t

subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1, ...,m

hj(x) = 0, j = 1, ..., p,

Note that the objective function of the epigraph form problem is linear in terms of t,

the inequality constraint function f0(x)− t is convex function of (x, t). Therefore,

the epigraph form of a convex optimization problem is also convex.

• Minimizing over some variables

In section 2.2 we followed an instruction to obtain an equivalent problem by min-

imization over a decision variable. In problem (22), if the objective function is

jointly convex in (x1, x2), and inequality constraint functions are convex, then

equivalent problem (23) is a convex optimization problem. This claim is valid since

based on Theorem 1.20 minimization of a convex function over a variable preserves

convexity.
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4 Linear Programming and Applications

4.1 Linear optimization problems

The problem (25) is called linear program (LP) when the objective function and the con-

straints are linear (or affine) functions. We can formulate a general linear program as

following:

minimize cTx+ d

subject to Gx � h

Ax = b

(33)

where G ∈ IRm×n and A ∈ IRp×n. Note that the inequality sign means component-

wise and the decision variables are unrestricted in sign which means that they can be any

number. Since the feasible region of an LP is intersection of half-spaces and hyperplanes,

it is a polyhedron. Therefore, an LP can be interpreted geometrically as the minimization

of an linear cost function over a polyhedron.

Inequality and Standard form of an LP

An LP with only inequalities is called inequality form LP and is formulated as follow-

ing:

minimize cTx

subject to Gx � h
(34)

An LP in standard form is the minimization of an affine function over the intersection

of non-negative orthant IRn
+ = {x ∈ IRn : x � 0} and a feasible hyperplane {x : Ax =

b}. An LP in standard form can be shown as following:
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minimize cTx

subject to Ax = b

x � 0

(35)

where the only inequality is non-negativity of decision variables which means that

every component of decision variable must be non-negative.

These two forms of LP are very common and are used in designing the algorithm for

solving LPs.

Converting LPs to standard form

To convert an LP (33) to standard form we can define slack variables s and add to the

inequality constraint in order to convert it to equality constraint. Then, we can define two

non-negative new decision variables x+ and x− such that x = x+−x− in order to get rid of

unrestricted variables and have non-negativity constraint. After introducing new decision

variables and substituting them in the LP (33) we obtain the following formulation:

minimize cTx+ − cTx− + d

subject to Gx+ −Gx− + s = h

Ax+ − Ax− = b

x+, x−, s � 0

(36)

the above formulation is called an LP in standard form.

Equivalence of an general LP and standard form LP

Now let us analyze the equivalence of both formulations (33) and (36). Let x be a

feasible solution for problem (33). Then let’s define s, x+ and x− as following:

x+i = max{0, xi} for all i = 1, .., n

x−i = max{0,−xi} for all i = 1, .., n

and let s = h−Gx. These new variables are non-negative and feasible for the problem

(36). Also the objective function of problem (36) can be calculated using the solution of

problem (33) as following:

cTx+ − cTx− + d = cT (x+ − x−) + d = cTx+ d
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Conversely, let s, x+ and x− be feasible solution for the problem (36), then let x be

defined as x = x+ − x−, then x will be a feasible solution for problem (33) with the

following objective function value:

cTx+ d = cTx+ − cTx− + d = cT (x+ − x−) + d

From these two observations, we can conclude that the optimal objective value of the

both problems are equal. Also, from feasible solution of one of them we can obtain a

feasible solution for another one. Therefore, both problems (33) and (36) are equivalent

and every LP in general form can be converted to an LP in standard form.

Note that the concept of linear programming and its applications in operations re-

search is very extensive. For more information on this topic interested readers can be

referred to [2].

4.2 Applications of Linear Programming

In this section we will discuss some important applications of linear programming in

Operations Research.

- Diet problem

Diet problem is one of the earliest optimization problems that were suggested and

modelled by linear programming. The problem initially was suggested by George Stigler

as the problem of deciding the amount of foods that should be take by a normal person.

The amount of intake must satisfy the recommended dietary allowance for some nutrients

with a minimum cost [3].

In order to model this problem for a single person and for a single day, let F and N

denote the set of foods and nutrients, respectively. Let Fmini and Fmaxi denote the

minimum and maximum number of food i ∈ F that a person can eat in a day. Also, let

Nminj and Nmaxj denote the minimum and maximum amount of nutrient j ∈ N that

a person is daily allowed to take. Let aij denote the amount of nutrient j ∈ N in food

i ∈ F which has a cost of ci.

The problem is to choose the best combination of foods that minimizes the total cost

and satisfies nutrient constraints and the constraints regarding number of foods. We define

decision variable xi as the number of food i ∈ F to be consumed. The problem can be

45



mathematically modelled as following:

minimize
∑
i∈F

cixi

subject to
∑
i∈F

aijxi ≥ Nminj ∀j ∈ N

∑
i∈F

aijxi ≤ Nmaxj, ∀j ∈ N

xi ≥ Fmini, ∀i ∈ F

xi ≤ Fmaxi, ∀i ∈ F

This simple problem has been the focus point of researchers for many years. They

modified this problem and introduced much challenging problems. For example in one

of the latest studies, the author suggests a different objective function for Diet problem.

In the study, the objective function is considered as minimization of amount of Glycemic

Load (GL) in the foods that a person will take. They also proposed that the GL amounts

of foods can only be estimated and cannot be measured accurately. Therefore, the amount

of GL in foods are uncertain and the problem can be considered as stochastic optimization

[4].

- Assignment problem

In Assignment Problem, we have n jobs to be done by machines. There are m ma-

chines that each have different capacities. The problem is to assign each job to a machine

by considering the capacity of the machines. Optimization problem is to do this assign-

ment with minimum cost. For mathematical formulation, let I and J denote the set of

machines and jobs, respectively. Let ui denote the capacity of machine i ∈ I . The assign-

ment of job j ∈ J to machine i ∈ I consumes dij units of machine i’s capacity and costs

cij . In order to formulate this optimization problem, we define xij as the decision variable

of the problem. If job j ∈ J is assigned to a machine i ∈ I then variable xij takes value

of 1 and otherwise it is zero. The Assignment problem can be model as following:
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minimize
m∑
i=1

n∑
j=1

cijxij (37)

subject to
m∑
i=1

xij = 1, ∀j = 1, ..., n, (38)

n∑
j=1

dijxij ≤ ui, ∀i = 1, ...,m, (39)

xij ∈ {0, 1}, ∀i = 1, ...,m, ∀j = 1, ..., n (40)

The objective function in above model is to minimize the total cost of assignment.

Constraint (38) ensures that each job is assigned to exactly one machine and constraint

(39) ensures that the total capacity consumption of the jobs that are assigned to specific

machine is less than the capacity of that machine. Finally, in the model we have the

constraints regarding possible values for xij [5].

This problem can be used in different settings. In [6], the authors considered the

assignment problem under uncertainties where the capacities of the machines are random.

The authors also proposed an efficient solution methodology for solving new model.

This problems is a well-known optimization problem that have many application ar-

eas. The assignment problem can be modified to be applied to assignment of air-planes to

flight legs by considering the appropriate scheduling of the flight legs [7].

Assignment problem is also very useful in scheduling and assignment of operating

rooms in hospitals. In such problems, there are limited number of operating rooms and

specialists that must share the room during different time slots. Assigning each specialist

to an operating room by considering the availibility of the rooms is a challenging prob-

lem [8]. Another version of this problem is to assign patients to operating rooms by

considering the availability of the rooms and urgency state of patients [9] [10]. For more

information about application of assignment problems in operating rooms scheduling an

interested reader can be referred to [11].

- Location-Allocation problem

In Location-Allocation problems, we have a set of destinations which have fixed and

known locations and demand for a specific material. The problem is to determine the

number, location, and size (capacity) of resource points that can serve the destinations
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in an optimal way. The objective is to minimize the cost of shipment between resource

points and destinations. Common application areas are determination of warehouses, dis-

tribution centers, and production facilities [12]. Besides, the most important application

of this problems is determination of emergency response points in the cases of disas-

ter. This problem is applicable for determining location of emergency response facilities

and allocation of medical resources to those facilities after earthquake and other disasters.

There are many researchers who work on post disaster allocation problems by considering

various constraints and different settings [13] [14] [15].

The Location-Allocation problem is a kind of challenging and complicated optimiza-

tion problem. The mathematical modelling of this problem is too complicated to be dis-

cussed in our work. Interested readers can be referred to [16] for mathematical modelling

and detailed information regarding this problem.

- Transportation problem

Let’s assume that there are m origins and n destination points. Each origin i has ai

amount of a commodity and each destination j has dj amount of demand for that com-

modity. The Transportation Problem is the problem of deciding how much commodity

must be shipped from each origin to destination points to meet the demands with mini-

mum cost. Let I and J be the set of origins and destinations, respectively. Let cij be the

transportation cost between origin i ∈ I and destination j ∈ J . The decision variable

xij is to decide how much commodity must be shipped from origin i ∈ I to destination

j ∈ J . The Transportation problem can be modelled as following:

minimize
m∑
i=1

n∑
j=1

cijxij (41)

subject to
m∑
i=1

xij = dj, ∀j ∈ J (42)

n∑
j=1

xij = ai, ∀i ∈ I (43)

xij ≥ 0, ∀i ∈ I, ∀j ∈ J (44)

In the model the objective function is to minimize the total transportation cost. Con-

straint (42) ensures that the demand in each destination point will be met and constraint
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(43) ensures that the total commodity shipped from each origin is equal to the amount of

the commodity that exist there. In some cases, researchers prefer to use ≥ in constraint

(42) and ≤ in constraint (43) instead of equality signs.

Transportation problem can be adapted to many settings. In some cases the researchers

consider the problem as multi-objective problem. Minimization of distance, cost, and time

can be considered as objective functions. In multi-objective case, the authors considers the

combination of different objective functions and try to find the best solutions with respect

to those objectives [17] [18]. There are some studies in which the authors consider the

problem in uncertain setting [19]. In [20], the transportation cost, demands and the

amount of a commodity in each origin are considered as uncertain parameters.
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5 Generalized case and vector optimization

5.1 Generalized inequality constraints

Convex optimization problem with generalized inequality constraints can be formulated

as following:

minimize f0(x)

subject to fi(x) ≤Ki
0, i = 1, ..,m

Ax = b

(45)

where f0 : IRn → IR is the objective function, Ki ⊆ IRki are proper cones. and

fi : IRn → IRki are Ki − convex constraint functions. Convex optimization problem

with generalized inequality constraints is the general case of the problem (25) where the

inequality constraint functions are vector valued and the inequalities are general inequal-

ities.

Many general properties of convex optimization problems are also true for convex

optimization problems with general inequality constraints. The following properties are

some of those:

• All sets including the set of feasible points, the set of optimal points, and all sublevel

sets are convex.

• Any local optimal point for problem (45) is a global optimal point.

• The optimality condition given in Theorem 27 holds for convex optimization prob-

lem with general inequality constraints without any change.
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5.2 Conic form problems

Conic form problems(or cone programs) are simple type convex optimization problems

with generalized inequality constraints. This kind of problems have a linear objective

function and affine inequality and equality constraint functions. Cone programs can be

formulated as following:

minimize cTx

subject to Fx+ g �K 0

Ax = b

(46)

Since the inequality constraint function is affine, it is a K-convex function. Therefore,

the set of feasible points is a convex set. This form of problems are generalization of

linear problems that the componentwise inequality is substituted by a generalized linear

inequality. If K is replaced by a nonnegative orthant, then the cone programs are con-

verted to linear programs. The conic form problem in standard form can be formulated as

following:

minimize cTx

subject to x �K 0

Ax = b

(47)

5.3 Vector optimization

In section (5.1) we investigated the types of problems where inequality constraint func-

tions can take vector values. In this section we analyze one kind of problems in which the

objective function can take vector values. In such problems the comparison of two points

are different from aforementioned problem types. Since the objective function values are

vectors, we need a cone to define the a generalized inequality for comparison of those val-

ues. Therefore, the minimization of objective function should be considered with respect

to a proper cone. The vector optimization problem can be formulated as following:

minimize (with respect to K) f0(x)

subject to fi(x) ≤ 0, i = 1, ..,m

hj(x) = 0 j = 1, .., p.

(48)
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where x ∈ IRn is the decision variable and f0 : IRn → IRq is the vector valued

objective function. Here the proper cone K ⊆ IRq is used for comparison of the objective

functions. Note that the only difference between standard optimization problem (12) and

vector optimization problem (48) is that the objective function in the former takes scalar

values and the comparison is the regular comparison between scalar values; whereas in

later one it takes values in IRq and for comparison purpose a proper cone K is specified.

Let us assume that x and y are two feasible point for the problem (48) and f0(x) and

f0(y) are respective objective function values. We say that ”x is better than y” when

f0(x) �K f0(y), that is two objective values are compared with respect to a general

inequality specified by the proper cone K. Note that the two objective values need not

to be comparable with each other. There might be a case that neither f0(x) �K f0(y)

nor f0(y) �K f0(x). In this case, we say ”they are not comparable”. This happens when

f0(x) is better than f0(y) in one coordinate and worse in another one. Note that this

cannot happen in the scalar case.

The problem (48) is called convex vector optimization problem when the objective

function is a K-convex function, inequality constraint functions are convex, and equality

constraint functions are affine.

5.4 Optimal points and values

In this section we first consider the case in which all objective values are comparable.

Let us D be the domain of an optimization problem and let O be the set of achievable

objective values which is defined as following:

O = {f0(x)|∃x ∈ D, fi(x) ≤ 0, i = 1, ..,m, hj(x) = 0, j = 1, .., p}

where O ⊆ IRq. In problem (48), if there exists a feasible point x that f0(x) ≤K f0(y)

for all feasible point y, then x is an optimal point for the problem and f0(x) is called the

optimal value. This means that f0(x) is comparable to all achievable objective values and

it is better than or equal to all of them.

Optimality condition for a vector optimization problem is as following. Let f0(x)+K

be the set of all values that are worse than or equal to f0(x). Then a point x∗ is optimal

for problem (48) if and only if
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O ⊆ f0(x
∗) +K (49)

This condition means that every achievable value for the problem is worse than or

equal to the optimal value. Note that in the special cases of the vector optimization prob-

lem there exists an optimal point and corresponding optimal value; however, this is not

the case for the most vector optimization problems. Figure 5.1 illustrates an example in

IR2. The set O is the set of all achievable values and f0(x∗) is the optimal value of the

example. If we consider K = IR2
+ as a cone, then f0(x∗) + K can be illustrated as the

lightly shaded region in the figure. As it can be observed from the figure,O ⊆ f0(x
∗)+K.

Figure 5.1: An example of a problem in IR2 which has an optimal point and optimal
values

5.5 Pareto optimal points and values

In the most cases of vector optimization problem, the set of achievable objective values

does not have a minimum value i.e. the problem does not have an optimal point and

optimal value. In this case, we investigate the minimal points of the set. If x is a feasible

point for a vector optimization problem and f0(x) is the minimal element of the set of

achievable objective values, then the point x is called Pareto optimal (or efficient) and

f0(x) is called Pareto optimal value.

The feasible point x is Pareto optimal if f0(y) ≤K f0(x) implies f0(y) = f0(x) for

any feasible point y. This means that any achievable value either is worse than f0(x) or
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it is not comparable to it. In other words, if x is a Pareto optimal point, then any feasible

point y that has the objective value better than or equal to x, has the objective value equal

to f0(x).

The condition for a feasible point x to be a Pareto optimal point is as following. Let

f0(x)−K be the set of all values that are better than or equal to f0(x). Then the feasible

point x is a Pareto optimal point for problem (48) if and only if

O ∩ (f0(x)−K) = {f0(x)} (50)

The condition means that f0(x) is the only achievable value that is better than or

equal to itself. Figure 5.2 illustrates an example of a problem in IR2 with cone K = IR2
+

which does not have any optimal points and values but has many Pareto optimal points

and values. The set O is the set of all achievable values and all points in the boundary

of O which are on the darkened curve are Pareto optimal values. As an illustration, the

point f0(xpo) is a Pareto optimal value and xpo is a Pareto optimal point. Note that the

cone which is lightly shaded in the figure is f0(xpo)−K. Therefore, the condition (50) is

satisfied for the point xpo.

Figure 5.2: An example of a problem in IR2 which has many Pareto optimal points and
values

Note that a vector optimization problem might have many Pareto optimal points and

values.

Theorem 5.1. Let P denotes the set of Pareto optimal values and O be the set of achiev-

able objective values for a vector optimization problem. Then, P lies on the boundary of

the set O, i.e. P ⊆ O ∩ bd O.
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Proof. The proof comes from the definition of Pareto optimal point and value. We know

that for a feasible point x to be a Pareto optimal point

O ∩ (f0(x)−K) = {f0(x)}

Now let’s consider p ∈ P be a Pareto optimal value corresponding to a Pareto optimal

point x (i.e. f0(x) = p). Let us on the contrary assume that p ∈ int O. In this case, the

condition stated will not be satisfied. That is O ∩ (f0(x) − K) 6= {f0(x)}. Therefore,

for p to be a Pareto optimal value, it must lie on the boundary of the achievable objective

values O.
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