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Abstract—Researchers in the automotive industry aim to 
enhance the performance, safety and energy management of 
intelligent vehicles with driver assistance systems. The 
performance of such systems can be improved with a better 
understanding of driving behaviors.  In this paper, a driving 
behavior recognition algorithm is developed with a Long Short 
Term Memory (LSTM) Network using driver models of IPG’s 
TruckMaker. Six driver models are designed based on 
longitudinal and lateral acceleration limits. The proposed 
algorithm is trained with driving signals of those drivers 
controlling a realistic truck model with five different trailer 
loads on an artificial training road. This training road is 
designed to cover possible road curves that can be seen in 
freeways and rural highways. Finally, the algorithm is tested 
with driving signals that are collected with the same method on 
a realistic road. Results show that the LSTM structure has a 
substantial capability to recognize dynamic relations between 
driving signals even in small time periods. 

Keywords—Driver behaviors, classification, intelligent 
vehicles, LSTM networks, acceleration behavior 

I. INTRODUCTION 
As the world goes into the direction of intelligent and 

autonomous vehicles, human is still an essential part of the 
current vehicle technology. Human drivers and their behaviors 
have been studied through years for different vehicle 
applications. Improving fuel/power efficiency of a vehicle is 
the primary motivation in the majority of those studies. 
Incorrect driving behaviors lead to dramatic fuel/power 
consumption changes especially for high loaded vehicles such 
as heavy-duty trucks [1]. Guo et al. [2] claimed that fuel 
consumption of a 25 tons GCW commercial truck dropped 25 
% by detecting and fixing those driving behaviors with some 
driving tips. Driving characteristics and a driver’s physical 
state plays a vital role also in road safety. Researchers and 
industry have developed a lot of different methods that 
investigate driving behaviors and visual features of drivers to 
detect risky driver states (e.g., fatigue, drunk, drowsy) [3]. 
Advanced driver assistance systems (ADAS) is a popular field 
of research that aims to improve the safety and efficiency of 
vehicles with assisting drivers during specific events. 
Designing such systems based on driver characteristics, rather 
than generic driver models, may increase the performance of 
the system for different drivers [4-5]. 

Nevertheless, recognition of different driving behaviors in 
different conditions is necessary to accomplish performance, 
safety, and fuel/power economy improvements. Various 
driving signals and classification methods are used for driving 
style recognition algorithms [6].  Longitudinal – lateral 
acceleration, vehicle speed, fuel consumption, throttle 
position, brake pressure, distance to forward vehicle are some 
of the highly preferred signals as an input for such algorithms 

[7-11]. Those signals characterize driving behaviors well, in 
different situations. They can be acquired with high sensitivity 
from the vehicle’s onboard IMU [7], GPS [8] and 
Radar/LiDAR [9] sensors. With existing technology, 
collecting some of those signals using a smartphone sensor is 
also a popular and reliable alternative to be used in such 
algorithms [10,11]. 

Fundamentally, driving characteristics are extracted with 
two different methodologies i.e., direct methods and indirect 
(model-based) methods [12]. For recognition purposes, direct 
methods directly analyze driving signals, generally using 
pattern recognition or data analysis techniques. On the other 
hand, indirect (model-based) methods need to define a driver 
model to identify driving behaviors.  

Zhang et al. [13] proposed a direct driving skill 
characterization method from the perspective of pattern 
recognition. Their algorithm includes multilayer perceptron-
artificial neural networks (MLP-ANN), decision tree, and 
support vector machines. Wang and Xi [12] also proposed a 
combine k-means clustering-support vector machines (kMC-
SVM) algorithm as a direct pattern recognition method for 
Driving Styles. Saleh et al. [14] used many-to-one recurrent 
neural networks (RNN) to classify drivers into normal, 
aggressive and drowsy. Hidden Markow Model (HMM) 
networks as a stochastic process are widely used for modeling 
driving behaviors [15]. Those models can determine relations 
between observations and behaviors dynamically. [16] 
proposed a probabilistic autoregressive exogenous (ARX) 
model to classify drivers current driving style.  

In this paper, we propose a dynamic algorithm with a Long 
Short Term Memory (LSTM) classifier to identify driver 
models that are designed based on longitudinal and lateral 
acceleration limits. Six driver models are generated in the 
simulation environment without labeling specifically (i.e., 
aggressive, moderate, smooth) to mimic real driving 
behaviors in different road conditions. An LSTM structure is 
trained with driving signals of those drivers in a small time-
window. The signals are generated using a realistic truck 
model with five different trailer loads on an artificial training 
road. Longitudinal and lateral acceleration, engine and vehicle 
speed, throttle position and pitch angle signals of the vehicle 
are selected as classification model inputs to train the model 
with driving outputs as a reaction to the road geometry. LSTM 
structure have successfully recognized driving behaviors in 
small time samples. 

The remaining of this paper is organized as follows, in the 
Section II, the design of experiment is explained with the 
discussion of the road and driver models. The methodology of 
the data generation, classification algorithm and the structure 
of the used LSTM network are presented in the Section III. 



Results are discussed in the Section IV. Finally, conclusions 
are provided in the Section V. 

II. EXPERIMENT DESIGN 
In this section, the methodology of training and test road 

designs and driver models are discussed. The road and the 
driver models are used in driving simulations to acquire the 
data for classification, which is explained in a further section. 

A. Training & Test Road Design 
In this paper, an artificial training road is designed to 

extract the driving behaviors of a driver model as responses to 
different road profiles.  It is aimed to train the proposed 
algorithm with driving signals covering most of the possible 
road geometries of a freeway or a rural highway. 

 
Fig. 1. X-Y-Z profile of an example road block. 

To generate simulation routes systematically, the road 
block concept is generated. A road block is designed to be 200 
m length of an arc that is defined by 6 points in 3D space. It 
represents a small portion of a road with constant grade and 
horizontal curve profile (without superelevation). A road 
block has two parameters which are grade of the road in 
percentage and central angle of the horizontal curve in 
degrees. Several road blocks are aligned to form a complete 
training/test road for simulations.  

 
Fig. 2. (a) Z-Y profile and (b) Y-X profile of the training road. 

The grade parameter represents uphill when it is positive 
and downhill when it is negative. The central angle parameter 
represents a right-turn when it is positive, a left-turn when it 
is negative, and a straight road when it is zero. An example of 
a road block is presented in Fig. 1. 

In order to increase the modeling accuracy for different 
road types, the training road is targeted to cover different 
combinations of grade – central angle parameters in desired 
ranges. Those ranges are determined based on the radius of the 
curvature and the length of the grade [17]. To cover 
determined ranges, 8 road segments are designed. Segments 
follow the same grade and horizontal curve pattern with a 
different central angle value and depicted in Fig. 2 with 
different colors.  

Altitude and curvature profile of a road segment consists 
of two parts. In the first part, road blocks with positive and 
negative grades are positioned next to each other from lower 
slopes to higher slopes. This part composes different vertical 
crest and sag curves. In the second part, there is one road block 
with 0 % grade in after each uphill and downhill block (Fig. 
3, Z-Y profile). The same pattern is used for horizontal curves 
with one central angle value in a segment (Fig. 3, Y-X profile). 
The plain road blocks between curves will let driver models 
accelerate starting from different speeds to reach their target 
speed.

 
Fig. 3. (a) Z-Y and (b) Y-X profiles of an example training road segment. 

The designed training road is 114.7 km, that involves 8 
road segments with 72 road blocks in each. In this road, lower 
grade - centeral curve intersections are covered more densely, 
since the existence of simultaneous sharp curvatures and high 
grades in a highway is uncommon.  Finally, an 8 km, smoother 
road is designed using road blocks with arbitrary parameters 
to test the developed algorithm.  Coverages of the training and 
test roads are shown in Fig. 4. 

 

Fig. 4. Grade - centeral angle of horizontal curve covarage map for training 
and test roads. 
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B. Driver Design 
 In literature, it is known that acceleration signals can 
describe distinctive features of different driving behaviors. T. 
Krotak and M. Simlova [18] showed that, different driving 
behaviors of a beginner and an expert driver reflect on 
longitudinal - lateral acceleration signals significantly. In the 
light of this information, we develop our algorithm using the 
driver model of IPG’s commercially available software 
TruckMaker [19] that is parameterizable based on 
acceleration behaviors.  

 
Fig. 5. Driver acceleration limit parameters. 

 The driver model of TruckMaker continuously generates 
target speeds with previewing the road curves to reach a 
cruising speed without exceeding certain acceleration limits. 
The model operates the vehicle at those target speeds using a 
PI controller that generates throttle and brake outputs, as a real 
driver. To mimic real driving behaviors, we set five of the 
driver model parameters i.e., maximum longitudinal 
acceleration and deceleration (braking), maximum lateral 
accelerations for left and right turns and the cruising speed.  

TABLE I.  DRIVER PARAMETERS 

Driver 
Num. 

Speed 
limit 

Longitudinal acc. 
limit 

parameters 

Lateral acc. limit 
parameters 

Tx  
[hph] 

ax_t 
[m/s2] 

ax_b 
[m/s2] 

ay_l 
[m/s2] 

ay_r 
[m/s2] 

1 90 0.1 2.5 1.4 1.4 

2 90 0.1 1.5 0.6 0.6 

3 90 0.1 1.0 0.2 0.2 

4 90 0.5 2.5 1.4 1.4 

5 90 0.5 1.5 0.6 0.6 

6 90 0.5 1.0 0.2 0.2 

 Six driver classes are designed for the simulations using 
the parameters given in Table I. First three drivers (Driver 1-
3) have lower longitudinal acceleration limits than the last 
three drivers (Driver 4-6). Lateral acceleration and (braking) 
deceleration limits are decreasing gradually (from driver 1 to 
3, or driver 4 to 6) in each set. Drivers with the same lateral 
and different longitudinal acceleration limits are named as 
differing classes due to their similar behaviors in some 
conditions. Acceleration limits of drivers are visualized in  
Fig. 5.  

III. DRIVER CLASSIFICATION 

A. Data generation  
Driving data for the proposed classification algorithm is 

generated using IPG’s TruckMaker vehicle dynamics 
simulation software. For our task, an accurate physical model 
of a commercial Ford Truck is created using the real 
parameters and properties of the vehicle, i.e., engine, 
powertrain, transmission parameters, and mass, inertia, 
dimensional properties. Each driver is simulated on both 
training and test roads using the vehicle model with 5 
different trailer loads, i.e., 0, 5, 10, 15, 20 tones. In total, 60 
different driving data of six driver classes is recorded at 5 Hz. 

 
Fig. 6. Classification model inputs. 

Longitudinal and lateral accelerations, engine and vehicle 
speeds, and pitch angle of the vehicle have been selected as 
inputs to the proposed algorithm. 30 second time-window (T) 
is shifted through all the driving data with the period of 15 
seconds. The signals within the window are labeled with its 
driver number and used as a sample for classification model 
(Fig. 6).  

B. LSTM Networks 
In order to classify the driving behavior, the temporal 

relations of the selected inputs are targeted to be explored. For 
this purpose, a type of recurrent neural network called Long 
Short Term Memory (LSTM) [20] network is selected.  

A typical LSTM neural network includes an input layer, a 
recurrent hidden layer and an output layer. Different from 
classical neural networks, LSTM networks have memory 
capabilities with three gates called: forget gate, update gate 
and output gate (Fig. 7). 

 

Fig. 7. Long short term memory network structure. 

The gates in an LSTM structure are independent neural 
networks with the same dimension and sigmoid activation 
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functions. Input to these gates is the concatenation of 
measurements (x<t>) and the output state of previous LSTM 
cell (a<t-1>). In this study, measurements include the signals 
shown in Fig. 6 for a time period of T. 

Forget gate adjust the information to discard from the cell, 
update gate and tanh gate decide the values from the input to 
update the memory state (c<t>), and output gate determines 
what to output based on input and memory of the cell. A 
typical LSTM neural network can be implemented by the 
following equations 

 𝛤𝛤𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑓𝑓[ 𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑓𝑓)  (1) 

 𝛤𝛤𝑢𝑢 = 𝜎𝜎(𝑊𝑊𝑢𝑢[ 𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑢𝑢)  (2) 

 �̃�𝑐<𝑡𝑡> = tanh(𝑊𝑊𝑐𝑐[𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑐𝑐)  (3) 

 𝛤𝛤𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜[ 𝑎𝑎<𝑡𝑡−1>, 𝑥𝑥<𝑡𝑡>] + 𝑏𝑏𝑜𝑜)  (4) 

 𝑐𝑐<𝑡𝑡> =  𝛤𝛤𝑢𝑢 ∗ �̃�𝑐<𝑡𝑡> + 𝛤𝛤𝑓𝑓 ∗ 𝑐𝑐<𝑡𝑡−1>  (5) 

 𝑎𝑎<𝑡𝑡> = 𝛤𝛤𝑜𝑜 ∗ 𝑐𝑐<𝑡𝑡>  (6) 

where Wf, Wu, Wc, Wo, Wr are the weight matrices and bf, bu, 
bc, bo, br are the bias vectors of corresponding operations. 

 At the end of the recurrent calculations of (1)-(6) for a time 
period (T), the last output state (a<last>) is fed to the output 
layer and employed in softmax function to find the 
probabilities for each class as follows: 

 𝑧𝑧 = 𝑊𝑊𝑎𝑎<𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡> + 𝑏𝑏 (7) 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑥𝑥(𝑋𝑋𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑋𝑋𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑋𝑋𝑗𝑗)𝑘𝑘
𝑗𝑗=1

  (8) 

 𝑖𝑖 = 1,2, … ,𝑘𝑘   

where W and b are the weight and the bias vectors in the output 
layer, and k is the number of classes. 

IV. RESULTS 
In this section, driving behaviors of designed driver 

models are compared using speed and acceleration signals of 
simulation outputs. Results of the proposed LSTM network 
based classification algorithm and related discussions are also 
provided. 

 

 
(a)   

 
(b)   

Fig. 8. Driver comparison based on vehicle speed, longitudinal and lateral acceleration signals from the training road (10 tons of trailer load). 
(a) Drivers in the same set. (b) Drivers in a differing class.  

 
(a) (b) (c) 

Fig. 9. (a) Vehicle speed, (b) Longitudinal, (c) lateral acceleration signals of all six drivers from the test road (10 tons of trailer load). 
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A. Driver Comparison 
The effects of selected driver parameters can be easily 

observed from the signals presented for different segments of 
the training road (Fig. 8). For instance, the lateral acceleration 
plot in Fig. 8 (a) shows that the Driver 1 remains in the | ay | < 
1.4 m/s2 band while Driver 2 in | ay | < 0.6 m/s2 and Driver 3 
in | ay | < 0.1 m/s2 during the whole trip. To obtain such 
conditions, those three models operate with various speed 
profiles in different curves. Longitudinal acceleration 
behaviors slightly vary between these models as expected. A 
similar comparison could be made between the last three 
drivers. 

 It is also significant to compare the drivers with the same 
lateral acceleration limits. In that sense, comparison of driving 
speed, longitudinal and lateral acceleration signals for Driver 
1- 4 is given in Fig. 8 (b). Driver 4 has operated with a higher 
longitudinal acceleration profile than Driver 1, while the 
lateral acceleration profile is almost the same. However, all 
driving signals of such driver couples overlap in some cases 
that can be observed easier from the test road. We have named 
those driver couples as “differing class” for further 
discussions, i.e., Driver 1-4, 2-5, 3-6. 

B. Classification Results 
 The proposed LSTM network structure is trained and 
tested with the driving signals of drivers in a small time-
window. Those driving signals are collected using a realistic 
truck model with five different trailer loads. The dynamics of 
the vehicle change significantly based on the mass of the 
vehicle. 

 Experiments have shown that size of the window (T) 
considerably affect the classification results. When the T is too 
small, sample data become insufficient to distinguish drivers. 
On the other hand, a large T lead to unrealistic signal forms 
due to the repetitive nature of the training road. As a result, a 
30 second window is selected that provide decent amount of 
information about driving behaviors in each sample. 
Additionally, shifting the window with the period of 15 
seconds have enhanced the training performance. 

 
Fig. 10. Normalized confusion matrix of the training (a) and the test set (b). 

 Classification accuracies of the training and the test sets 
are respectively 82.24 % and 74.70 %. Confusion matrix of 
training and test roads (Fig. 10) show that, majority of the 
misclassifications made between differing classes. When 
differing classes are assumed as correct outputs, the accuracy 
of training and test sets are respectively, 93.1 % and 92.8 % 
(Fig. 11). Although, a differing classification cannot be 

labeled directly as a true output, there is a high chance that 
differing classes behave the same in the majority of 
misclassified samples.  

 

Fig. 11. Training and test accuracy graph for correct and differing classes. 

Nevertheless, the classification results have proven that 
the proposed LSTM structure is effective at extracting 
dynamic driving behaviors of drivers in a limited time-
window. 

V. CONCLUSION 
We have now proposed a new method using a Long Short 

Term Memory (LSTM) structure, with the aim of the 
recognition of different driving behaviors in small time 
periods. Six driver models are designed based on longitudinal 
and lateral acceleration using the driver model of IPG’s 
TruckMaker. Driving signals of those driver models are 
generated using a realistic truck model with varying carry 
loads. An artificial training road is designed to simulate 
possible road geometries and to learn driving behaviors of 
designed driver models. Additionally, with such design we 
can analyze driving signals (e.g., longitudinal - lateral 
accelerations, fuel consumption) as driver response to 
different road geometries.   

Results show that the LSTM structure has the capability of 
recognizing dynamic relations of driving signals even in small 
time periods. With the improved ability of the current 
simulation technology, the proposed algorithm can be adapted 
to different vehicles with high sensitivity. The proposed 
algorithm can recognize driving behaviors of real drivers 
dynamically in discreate time that can be used to enhance the 
performance of an ADAS system.  

As future work, prediction errors and differing 
classifications will be investigated to improve road and driver 
designs. The designed algorithm will be tested on real drivers. 
Current driver models will be extended based on different 
driving behaviors, e.g. traffic or car-following behaviors. 
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