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STRATEJİK TAKSİMATIN ÖNLENMESİ UZERİNE
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Özet

Seçim bölgelerinin yeniden belirlenmesi problemi çeşitli ülkelerin üzerinde durduğu
bir konu olarak literatürde yer almaktadır. Belirli bir partiye veya gruba siyasi avantaj
sağlanılacak şekilde seçim bölge sınırlarının belirlenmesi pratiği stratejik taksimat olarak
bilinmektedir ve seçim sonuçlarını doğrudan etkilemektedir. Bu tez dahilinde, seçim
bölgelerinin yeniden belirlenmesi probleminin ne kadar suistimale açık olduğu gösterilm-
eye çalışılmıştır. Dar-bölge ve daratılmış-bölge seçim sistemleri için 2 farklı matematiksel
model geliştirilmiş ve İstanbul ilçeleri üzerinde matematiksel modeller sınanmıştır.

Matematiksel modeller sadece kısıtlı sayıda birimin yer aldığı uygulamalarda çalışabil-
mektedir. Bu dezavantajı ortadan kaldırabilmek adına tabu arama algoritması isimli meta
sezgisel algoritma geliştirilmiş ve İstanbul'un Asya kıtasında yer alan tüm mahallelerin
dikkate alındığı bir problem bu algoritma ile çözdürülmüştür. Sonuçların görsel olarak
yorumlanabilmesi için gerekli haritalar oluşturulmuştur.
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Abstract

The significance of the political districting also known as redistricting has been rec-
ognized by several countries across the world since electoral district boundaries can be
manipulated for a political gain. This manipulation practice is known as gerrymandering
and has serious influences on the results of an election. In this thesis, we tried to show
how easy policymakers can misuse the redistricting practice to gain a political advantage
such as increasing the number of their representatives in the parliament. Two differ-
ent mathematical models have been developed for different types of election systems.
Single-member district electoral system in which the only representative can be elected
from each electoral district is one of them. Every county in İstanbul has been tried to be
divided into their single-member districts considering the total number of representatives
of the county. In addition to the first model, another formulation has been developed to
also cover the multi-member district systems.

The main drawback of the mathematical models is that they are only working on
the small cases in terms of the total number of political units. Tabu search algorithm
has been developed to answer the cases that cannot be classified as small. The required
algorithm steps such as initialization, neighborhood change structure etc. are explained
in detail. The results of the mathematical models and the algorithm have been achieved
and visualized aesthetically.
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Chapter 1

INTRODUCTION

”Parliamentary democracy is a democratic form of government in which a party or a
coalition of parties with the highest number of representatives in the legislature forms
the government”(Britannica, 2019). The term of electoral district is related to this type of
democracy and refers to a territorial subdivision for electing representatives to a legislative
body. In other words, the residents in each electoral district are permitted to elect one or
some of the candidates participated in the election of their district. There are different
types of electoral districts in terms of the maximum number of candidates that represent
their district in the parliament. The single-member electoral district, for instance, is one
type of it. The term single-member refers to the case when only one representative who
can be elected from an electoral district. The single-member electoral district is also
known as the single-winner electoral system. The rule of winner-takes-all is in use for
single-member electoral district systems. The multi-member electoral district is another
type. In a multi-member district, more than one representatives can be elected pursuant
to the proportion of the total votes of each candidate. Deciding on the type of electoral
system has the potential to change the final total number of representatives of each party
in the legislature. The advantages or disadvantages of these electoral systems are beyond
the scope of this thesis.

In this thesis, the political districting problem which is abbreviated as PD for both of
the electoral systems will be studied. PD problem is a specific version of the districting
problem in which the aim is to aggregate the areal units into the set of districts with respect
to an objective and subject to certain constraints on the zones. The design of districts for
schools, social facilities, and sales/service territory are examples of other types of district-
ing problems, also known as the zone design problem. Political districting consists of the
partitioning of areal units, generally administrative units such as neighborhoods, into a
prespecified number of districts that satisfy some criteria (Bacao et al., 2005). Population
equality, for example, is one of the most common criteria for the redistricting problem.
Contiguity and the shapes of each district are other important criteria for redistricting.
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A major consideration during the redistricting is preventing the gerrymandering that
can be defined as a practice that involves manipulating the electoral district borders in
favor of a particular party or group. The term gerrymander is used for the first time in
Boston Gazette on 26 March 1812 to draw attention to an electoral district plan that has a
salamander-shaped district prepared by the governor of Massachusetts Allbright Gerry in
1812. The caricature depicted the salamander shape redistricting plan is shown in Figure
1.1.

Figure 1.1: A caricature depicted the salamander-shaped district plan

One can easily claim that selecting districting criteria is the most important step of the
redistricting problem since the resulting plan is determined by the chosen criteria. Dis-
tricting criteria will be mentioned in Chapter 2 in detail. The other important factor of
the problem is the geographical and demographic data. Here geographical data refers to
the shape of each political unit that is assigned to an electoral district by combining each
other. On the other hand, the term of demographic data refers to the population of the po-
litical units or a proportion of an ethnic group in the population. We used each indivisible
political unit's spatial data, the population, and voting shares of available parties in the
past elections and referendum as input.

1.1 Overview

This thesis provides a real-life application example with numerical experiments for the
redistricting of electoral districts in İstanbul. Turkey was in the process of modifying its
election system when we started this thesis. Currently, the multi-member electoral district
is in use in Turkey. Policy makers work on a change to the single-member district for the
electoral system. Motivated by this, we aim to partition the territory into a certain number
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of zones while satisfying some districting criteria. At first, a mathematical model with an
objective function that maximizes the total number of representatives of a particular party
while satisfying the districting criteria has been developed. We tried to obtain more than
one redistricting plans that satisfy the required districting criteria. One of the major aims
of this thesis is obtaining some redistricting plans in which a party can be represented by
different number of representatives. For example, a party can dominate the other parties
in a district according to a redistricting plan. Changing the boundries, this dominance can
be reversed. The fair representation is beside the point we emphasize. However, utilizing
the data excluding the total votes for each party in each neighborhood, a new study related
to the fair representation can be achieved.

Secondly, the first formulation is enhanced to also answer for the multi-member dis-
trict electoral system. Even though this electoral system is currently in use, a hybrid ver-
sion of it could be an alternative for the policymakers according to the newspaper news.
Existing electoral districts are planning to be divided into subdistricts in which a prespeci-
fied number of representatives can be elected. The difference between the single-member
district and multi-member based hybrid electoral district is this prespecified number. In
single-member version, the value must be equal to one. However, the value can be more
than one and can differ between the subdistricts in another intended system. Note that,
the number of representatives of each party will be allocated according to the D'Hondt
method that will be mentioned in the further sections in detail.

Some applications cannot be solved by using these aforementioned formulations and
we need some heuristics approaches. In this thesis, we have developed a Tabu Search
algorithm that is known as a metaheuristic algorithm to also consider the cases that cannot
be solved the exact approaches.

The mathematical models are originated from an exact approach to solve the PD prob-
lem in the literature (Nemoto and Hotta, 2003). The original formulation is minimizing
the difference between the maximum and minimum population of the districts. The con-
tiguity of the districts is satisfied by the corresponding constraints in the model directly.
Taking into consideration the thesis objectives and the available mathematical model,
we came up with a new formulation whose objective is maximizing the total number of
representatives of a particular party while satisfying some criteria. Two models are still
satisfying the contiguity of the districts criterion. One important difference between these
models is that the population equality of the districts is enforced by the objective function
in the original model, however, this criterion can be handled by the constraints that need
a new parameter.

Another important contribution is that we also have a formulation for multi-member
district electoral systems. The allocation of the representatives must be handled by the
mathematical model for the multi-member district. The structure of the constraints related
to the finding the number of representatives according to their total votes is generalized in
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the second model. We do not encounter the approach we use in the formulation in the PD
literature.

Lastly, there is no known study on the political districting problem in Turkey in the
literature. The problem has been mostly studied in the United States of America because
of the regulations. We can claim that this thesis is the first scientific study on a PD problem
in Turkey considering the mathematical models and the algorithms we developed.

The rest of the thesis is organized as follows. In Chapter 2, the districting criteria are
introduced in detail. In Chapter 3, we present a comprehensive summary of the related lit-
erature. Details of the developed mathematical models are given in Chapter 4. In Chapter
5, we give the details of the algorithm we use. Chapter 6 is reserved for the computational
results. Lastly, in Chapter 7, we conclude the study with the discussion of the results and
future study.
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Chapter 2

DISTRICTING CRITERIA

2.1 Population Equality

In the redistricting process, equal populated districts are one of the most looked for out-
comes since it’s related to the one-person-one-vote. The main reason to utilize such a cri-
terion is to maintain that each citizen is represented in the legislature with equal weight.
An exact equality cannot be satisified in every case; however, the values should be close
enough to an average population value.

Technically speaking, the population of the determined districts must be in a narrow
allowable range. The size of this range can be prespecified using some parameter values.
For example, one can request that the population value of each district must be greater
than 95 percent of the average population and less than 105 percent of the average popu-
lation. ±5 percent allowable deviation is used in this example. There are several metrics
to measure the quality of a district in terms of population equality in Bozkaya (1999).
General idea behind the approaches is similar. Some of the metrics are below. The main
aim of these metrics is that determining how the population values of each district are
different from each other. Mathematically, let n denote the number of districts, sj popu-
lation of district j, smin population of the smallest district, smax population of the largest
district, s̄ is the average population which can be calculated

∑
j sj/n and β the allowable

percentage deviation from s̄.

• Mean absolute deviation:
∑

j |sj − s|/n

• Mean squared deviation:
∑

j |sj − s̄|2/n

• Maximum absolute deviation: maxj|sj − s̄|

• Extreme deviation: (smax − smin)/s̄

• Extreme ratio: smax/smin
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In this thesis, we check the population values of each district one by one in the formu-
lation. One of the metrics above can be utilized in a fitness function of a metaheuristic.
Alternatively, an allowable percentage deviation can be used to control whether a district
violates the population equality criterion or not. For such an approach, we only need the
values of β, s̄ and the population of the considered district. Note that, the population
equality is one of the constraints in the formulation. In tabu search algorithm, this cri-
terion is controlled in each iteration to determine whether a candidate solution will be
eliminated or not.

2.2 Contiguity

The second criterion is the contiguity of the districts. A district is said to be contiguous
if every part of the district is reachable from every other part without crossing the district
boundary (Grofman, 1985). Contiguity is directly related to the feasibility of the solution.
Consider a district in which a political unit has a connection with none of the other units.
This kind of redistricting would be worse than the gerrymandering problem. That is to
say, even if the shape of the districts is not proper, each unit in a district must be connected
to each other somehow.

2.3 Compactness

The third criterion is the compactness. This term is defined as firmly put together, joined,
or integrated; predominantly formed or filled in Dictionary (2019). The term can be
understood better by using some visual materials since the term is ambiguous. In Figure
2.1 some district plans with more and less compactness are illustrated. In Niemi et al.

(1990); Young (1988) some of the compactness measures are introduced. Each of them
is developed heuristically since there is no exact score for the compactness criterion. The
main idea behind the metrics for the compactness is similar. We are trying to figure out
how close a geometric shape is to an ideal compact shape. Here the ideality assumption
can differ among the compactness measurements.
Different measurements of a geometric shape can be used to calculate its compactness
score. For example, the area and perimeter of the geometric shape are some of them and
denoted by A and P . In Figure 2.2 illustrations of the scores are provided.
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Figure 2.1: Illustration of more and less compact districts

2.3.1 Polsby-Popper Measure

This measurement type is introduced in Polsby and Popper (1991). The main assumption
of this method is that an ideal district should be a circle. The formula for the Polsby-
Popper measure is below. This value is equal to one when the geometric shape is a circle.
In other cases, the value is smaller than one.

4πA/P 2 (2.1)

2.3.2 Convex Hull Measure

One of the compactness measurements is convex hull measure. The convex hull of a
geometric object can be defined as the smallest convex set which covers the object. In the
redistricting context, the geometric object refers to the spatial object. We need two areas
to calculate the convex hull compactness measure; the area of the spatial object (district)
and the area of the convex hull of this spatial object. The ratio of the first measurement
to the second one is called convex hull score. Note that the area of the convex hull is
equal to or greater than the area of the spatial object since the convex hull must enclose
the geometric shape which can be a concave shape. That is to say, convex hull measure
value can be in between 0 and 1 including 1. Let Ach denote the area of the convex hull
of a geometric shape. The convex hull score is calculated as follows:

A/Ach (2.2)
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2.3.3 Reock Score Measure

Reock score is one of the area dispersion measure for compactness and the ratio of the
area of the district to the area of the smallest circle that encloses the district (Corcoran and
Saxe, 2014). Let Asc denote the area of the smallest circle that covers the district, then the
required score is calculated as follows:

A/Asc (2.3)

(a) The Polsby-Popper mea-
sure

(b) Convex hull measure (c) Reock score measure

(d) Schwartzberg measure (e) Length Width measure (f) X-symmetry measure

Figure 2.2: Compactness measures

2.3.4 Schwartzberg Measure

In Schwartzberg (1965), Schwartzberg score is defined as the ratio of the perimeter of a
district to the perimeter of a circle having the same area with the district. The score is
calculated as follows:

P/
√

4πA (2.4)
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2.3.5 Length Width Measure

In order to calculate this compactness metric, we need to form a rectangle which touches
the district on all four sides and covers the district such that the ratio of the length of the
rectangle to the width of it maximum (Young, 1988).

2.3.6 X-symmetry Measure

The ratio of the total intersection area of the shape of district and its reflection across
the x-axis to the area of the district. Let Ai denote the intersection area. The score is
calculated as follows:

Ai/A (2.5)

9



Chapter 3

LITERATURE REVIEW

There are several mathematical and numerical approaches to solve the PD problem in the
literature. Integer programming, set partitioning, implicit enumeration and local search
methods are some of these approaches. In Nygreen (1988), the first three approaches
are compared on an application that covers a PD problem in Wales. In Ricca and Sime-
one (2008), four local search metaheuristics that are descent, tabu search, old bachelor
acceptance, and simulated annealing are compared. According to the paper, different al-
gorithms yield the best results for different criteria. For example, the simulated annealing
algorithm performs the best result for the population equality criterion.
The desired outputs of an automated redistricting practise were explained for the first time
in Vickrey (1961). In this short paper, gerrymandering is explained and illustrated with
a small example. 1960s new computational technology was applied on the redistricting
problem. The author aimed to answer how a redistricting process must be executed be-
fore proposing a greedy approach, multi kernel growth, as the solution of the problem.
The process should be completely mechanical, and no one can predict in any detail the
outcome of the process according to the author. Besides these questions and solution
techniques, why we need such a process is explained in detail.

Even though the problem began with Vickrey's work, the first mathematical model
was introduced in Hess et al. (1965) for the problem. Their claim was that a technique
that is rapid and nonpartisan is needed for PD problem. The authors developed an integer
programming model which is basically for a warehouse allocation problem minimizing
the assignment cost in terms of distance between the centers and unit territories. However,
at the time computational power was limited to solve even small cases. A heuristic algo-
rithm which considers the criteria of population deviation, compactness and contiguity
was needed. In the case of a tie in terms of given measures, a simple algorithmic ap-
proach was used in this article. However, they stated that more sophisticated approaches
may be developed. In this work, contiguity is not an explicit constraint in the mathemat-
ical model and heuristic approach. The authors couldn't use the mathematical model to
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attain results due to the size of the problem and computational power at that time. In
the heuristic approach, the contiguity constraint is satisfied by eliminating noncontiguous
solutions. In the mathematical model below, I is the set of units and xij is the binary
decision variable, which is 1 if the jth unit is assigned to the ith center. |I| units are tried
to be divided into |H| districts. Here H is the set of districts we are trying to obtain. a
and b represent the minimum and maximum allowable district populations, respectively,
as a percent of the average district population. dij is the euclidean distance between ith

and jth units. sj denotes the population of the jth unit. The case of the value of variable
xjj is equal to 1 indicates that jth unit is the center of a district. Note that ∀i, j ∈ I for all
of these parameters and variables.

min
∑
i∈I

∑
j∈I

d2
ijsjxij (3.1)

s.t.∑
i∈I

xij = 1,∀j ∈ I (3.2)

∑
j∈I

xjj = |H| (3.3)

as̄xjj ≤
∑
i∈I

xijpi ≤ bs̄xjj, ∀j ∈ I (3.4)

xij ∈ {0, 1}, ∀i, j ∈ I (3.5)

In this formulation, the objective function is used to measure the compactness of the
districts while the population equality criterion is taken into account by using constraints
3.4. These constraints also enforce that no basic unit can be assigned a unit which is the
center of a district. Constraints 3.2 ensure that each unit is assigned to only one district.
The prespecified number of districts is forced by the constraint 3.3.

The first exact approach for the solution of PD problem was developed in Garfinkel
and Nemhauser (1970). This approach has two phases. In the first phase, the authors
aim to attain all possible feasible district plans. In the second phase, a mathematical pro-
gramming problem is solved to determine the best districts among the feasible solutions.
The problem solved in this step is a version of the set-covering problem. A problem with
37 political units that need to be divided into 7 electoral districts is solved by using this
two-phase exact approach. However, they found that an application with 55 political units
cannot be solved.

In Nemoto and Hotta (2003), an exact approach was introduced, and the redistricting
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problem was reformulated in terms of network flows. First, the authors represent the
problem as a graph. G=(I,A) denotes a contiguity graph with a set of nodes I and set
of arcs between the nodes A. Here the political units and adjacency of the units are
represented by the nodes and arcs in the graph respectively. After this representation,
the authors developed a new network which is originated from the first one; T = (Ī , Ā).
According to this network, each arc connecting node i and node j in G is replaced by the
pair of arcs (i, j) and (j, i); n copies of this graph are formed, and node i in the hth copy
of the graph is denoted by whi ; ∀i ∈ I , ∀h ∈ H . Note thatH denotes the set of districts; in
other words, the copies of graph. In addition, |H|, which is equal to n, source-nodes and
|I| sink-nodes a.k.a tail-nodes are introduced. Each source-node sh, ∀h ∈ H is connected
to all the nodes of the hth copy of the graph with an arc (sh, whi ) ∀i ∈ I , while for each
sink-node ti, ∀i ∈ I there exists an arc (whi , ti), ∀h ∈ H . After introducing the additional
nodes and arcs, Ī covers source-nodes (sh), sink-nodes (ti) and the nodes in the copies
of the graph (whi ); ∀i ∈ I , ∀h ∈ H . Ā covers the arcs between the source-nodes and
the nodes of the copies of the graph (sh, whi ), the arcs between the nodes whi and whj ,
and lastly the arcs between the nodes of the copies of the graph and sink-nodes (whi , ti);
∀i, j ∈ I , ∀h ∈ H . The criteria of the contiguity and population equality are considered
in the model.

min u− l (3.6)

s.t.

l ≤
∑
i∈I

pixih ≤ u,∀h ∈ H (3.7)

∑
i∈I

yih = 1,∀h ∈ H (3.8)

f(sh, whi ) = Fyih,∀i ∈ I,∀h ∈ H (3.9)∑
a∈δ−(wh

i )

f(a) =
∑

a∈δ+(wh
i )

f(a), ∀i ∈ I,∀h ∈ H (3.10)

∑
a∈δ−(wh

i )

f(a) ≤ Fxih,∀i ∈ I,∀h ∈ H (3.11)

xih ≤ f(whi , ti),∀i ∈ I,∀h ∈ H (3.12)∑
h∈H

xih = 1,∀i ∈ I (3.13)
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f(a) ≥ 0,∀a ∈ Ā (3.14)

u, l ≥ 0 (3.15)

xih, yih ∈ {0, 1}, ∀h ∈ H,∀i ∈ I (3.16)

The objective function of the formulation minimizes the maximum population difference
between the districts. The objective function is directly related to the constraints 3.7.
In these constraints, the model provides the maximum and minimum populations of the
generated districts which are used in the objective function. Each source node must be
assigned to one of the districts in the constraints 3.8. In 3.9, the flow amount from each
source node to the nodes in the original problem must be equal to a predetermined value
if the corresponding arc is used. The total flow on the entering arcs must be equal to the
total flow on the leaving arcs for each node according to the contraints 3.10. In 3.11, if
node i is not assigned to district h, then the total flow on entering arcs to this unit must be
zero. If the flow between node whi and tail node ti is zero, then the node (unit) i cannot
be assigned to the district h according to the constraints 3.12. Each unit must be assigned
to a district, in other words, each node must be used in one of the districts (graph copies)
3.13. The constraints 3.14 and 3.15 enforce that the flow on arcs, u, and l values are
nonnegative. The last constraints are for defining the domains of the decision variables.

In the early 1990s, several types of metaheuristic algorithms came into use for the
redistricting problem. In Browdy (1990), the simulated annealing algorithm has been
used. A generic version of the simulated annealing algorithm is given in Algorithm 1
at the end of this chapter. The paper states that the PD problem can be modeled as a
constrained optimization problem with some constraints for contiguity, population equity,
and compactness. However, this problem cannot be solved using an exact approach and
the constraints must be relaxed. The formulation is relaxed by constituting an objective
that covers the aforementioned constraints with their weights. They call this equation as
energy and tried to minimize this energy value using the simulated annealing algorithm. In
order to choose the appropriate weights, the study did not provide any particular method.
Decision makers can choose the required values for the weights depending on the case
they handled according to the author.

Tabu search heuristic algorithm was also used in the literature (Bozkaya et al., 2003).
Some additional criteria such as socio-economic homogeneity and similarity to the ex-
isting plan. The political districting problem was formed a multi-objective optimization
problem by using the weigths for each criterion. A tabu search with an adaptive memory
structure was used in the study. The results of the city of Edmonton were provided using
a geographical information system software.
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Genetic algorithm with different encodings has been extensively used in the litera-
ture for the redistricting (Forman and Yue, 2003; Bacao et al., 2005; Liu et al., 2016;
Vanneschi et al., 2017). The problem is modeled as a multiobjective optimization model
since the nature of the redistricting involves the multiple criteria. The fitness function
of the algorithm covers the compactness measure and population equality. The solu-
tions that have noncontiguous districts are eliminated if the fitness function only covers
the compactness and population equality. However, the contiguity criterion takes part in
the fitness function in Forman and Yue (2003). In this paper, the shape fitness function
modifies the Schwarzberg measure to take into consideration the contiguity criterion by
multiplying this value one plus the number of excess discontiguous pieces found in the
district weighted by a parameter.

Different types of encodings are used for the genetic algorithm in the PD literature.
A TSP-based encoding has been used in Forman and Yue (2003). As in the TSP, a single
chromosome covers each unit. The step of transforming the chromosome to the district
plans is called the conversion. At the conversion step, the algorithm starts with the first
gene and travels along the chromosome summing the populations until some threshold
population is met. A small example can be found in Figure 3.1.

(a) 3x3 territory (b) an example of chromosome

Figure 3.1: A small example of TSP-based choromosome

The unit or track populations is given in the subscripts. An example of the TSP-based
choromosome is also given. The 9 tracks are divided into 3 districts using the mentioned
procedure in Figure 3.2.
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(a) Assignment of the tracks also known as
units

(b) The result
redistricting
plan

Figure 3.2: The redistricting plan of the given choromosome

In Bacao et al. (2005), two different encoding schemes are proposed. The first one
considers the political unit as a centroid. Another encoding scheme consists of the co-
ordinates value of a political unit. Length of the first encoding is half of the second one
since any coordinate can be represented by longitude and latitude values. At first, the
algorithm chooses the centroid, after this step, the nearest political units are assigned to
this centroid. Encoding scheme is similar to the k-means practice which usually used in
machine learning community (Hartigan and Wong, 1979).

In Liu et al. (2016) a computational approach utilizing the parallel high-performance
computing for the PD problem has been developed. They used the evolutionary algorithm
since they have a proper structure for parallelization. The encoding scheme is different
from the other papers. The main reason to choose a special encoding scheme is that
the authors would like to use the advent of parallel computational power. The length of
each chromosome is the number of total political units. Each gene represents the district
to which corresponding political unit is assigned. They used two different initialization
approaches that have similar steps. The fitness function of the algorithm covers the pop-
ulation equality and compactness criteria. At each iteration, the solutions are checked
whether the solution is contiguous or not. They compare their results to the BARD redis-
tricting software (Altman and McDonald, 2011) in which Simulated Annealing, Greedy,
Tabu search and GRASP techniques can be utilized.

In Vanneschi et al. (2017), a genetic algorithm with variable neighborhood search
was proposed. They used a hybrid algorithm that combines the NSGA-II technique with
a variable neighborhood search algorithm. The encoding scheme is the same with the one
in Liu et al. (2016). They compared their results with the outputs of the techniques such
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as graph partitioning, simulated annealing, genetic algorithm, and constrained polygonal
spatial clustering.

Artificial Bee Colony(ABC) algorithm was used for the PD problem in Rincón-Garcı́a
et al. (2015) as another example of metaheuristics. They used a weight aggregation func-
tion strategy to handle the multi-objective nature of the problem. The function covers
the compactness and population equality measures of the districts associated with their
weights. Because of the multi-objective nature of the problem, they run the model 990
times and results are evaluated by using the Pareto sorting procedure in order to decide
on the weight parameters values. The authors compared the ABC algorithm with the
simulated annealing algorithm and their computational experiments showed that the ABC
algorithm produces better quality and efficient solutions than the simulated annealing al-
gorithm .

Algorithm 1 Simulated Annealing
1: s← initialSolution
2: bestSolution← s
3: t← maxTemperature
4: while t > minTemperature do
5: iter ← 0
6: while t < maxIterations do
7: s′ ← select a random solution s′ ∈ N(s)
8: ∆← f(s′)− f(s)
9: if ∆ < 0 then

10: s← s′

11: if f(s′) < f(bestSolution) then
12: bestSolution← s′

13: end if
14: end if
15: if rand(0, 1) < e−∆/t then
16: s← s′

17: end if
18: iter ← iter + 1
19: end while
20: t← t(1− α)
21: end while
22: return bestSolution
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Chapter 4

MODELING

In this chapter, we present the details of the two parts of the study. In Section 4.1, the first
part, the details of the mathematical model for single-member district, which corresponds
to a model for single-member district election system provided. For this part, we also
present the notation used in the mathematical model. In Section 4.2, mathematical model
for single-member district is generalized. The first mathematical model can work on a
system in which only one representative can be elected in each electoral district. However,
the mathematical model in Section 4.2 allows that more than one representative can be
elected in each electoral district. The second model is more complex than the first one in
terms of the total number of variables and constraints. The formulations are originated
from a mathematical model in Nemoto and Hotta (2003) and modified for our purposes.
The required definitions had been provided in Chapter 3. However, the definitions are
also given in this chapter for the sake of completeness.

4.1 Mathematical Formulation for the Single-Member District

G=(I,A) denotes a contiguity graph with a set of nodes I and set of arcs between the
nodes A. Here the political units and adjacency of the units are represented by the nodes
and arcs in the graph respectively. After this representation, the authors developed a new
network which is originated from the first one; T = (Ī , Ā). According to this network,
each arc connecting node i and node j in G is replaced by the pair of arcs (i, j) and (j,
i); n copies of this graph are formed, and node i in the hth copy of the graph is denoted
by whi ; ∀i ∈ I , ∀h ∈ H . Note that H denotes the set of districts; in other words, the
copies of graph. In addition, |H|, which is equal to n, source-nodes and |I| sink-nodes
a.k.a tail-nodes are introduced. Each source-node sh, ∀h ∈ H is connected to all the
nodes of the hth copy of the graph with an arc (sh, whi ) ∀i ∈ I , while for each sink-node
ti, ∀i ∈ I there exists an arc (whi , ti), ∀h ∈ H . After introducing the additional nodes and
arcs, Ī covers source-nodes (sh), sink-nodes (ti) and the nodes in the copies of the graph
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(whi ); ∀i ∈ I , ∀h ∈ H . Ā covers the arcs between the source-nodes and the nodes of the
copies of the graph (sh, whi ), the arcs between the nodes whi and whj , and lastly the arcs
between the nodes of the copies of the graph and sink-nodes (whi , ti); ∀i, j ∈ I , ∀h ∈ H .
The objective function of this model is modified. The sets and parameters are provided in
Table 4.1. The required decision variables are introduced in Table 4.2.

Table 4.1: Sets and parameters for the first formulation

H set of the districts or copies of graph
I set of the political units
P set of the parties
C set of units that cannot take part of the same district for the compactness
Ā set of the arcs between the pair of nodes (sh, whi ), (whi , w

h
j ), and (whi , ti);

∀i, j ∈ I , ∀h ∈ H, i 6= j
δ−(whi ) the set of arcs entering node whi ; ∀i ∈ I , ∀h ∈ H
δ+(whi ) the set of arcs leaving node whi ; ∀i ∈ I , ∀h ∈ H
vki the number votes that party k has in unit i; ∀k ∈ P , ∀i ∈ I
si number of voters in unit i; ∀i ∈ I
ρ the party chosen
s̄ the average number of voters
β the allowable percentage deviation from the average number voters
M A sufficiently big value
F the volume of the flow from each source

Table 4.2: Decision variables for the first formulation

xih binary decision variable indicating if unit i is assigned to district h
∀i ∈ I , ∀h ∈ H

f(a) the volume of the flow on arc a; ∀a ∈ Ā
yih binary decision variable indicating if the hth copy of G the flow

enters through node i; ∀i ∈ I , ∀h ∈ H
ckh binary decision variable indicating the party k wins in district h; ∀k ∈ P , ∀h ∈ H
th the number of voters in district h; ∀h ∈ H
okh auxiliary variable which shows the total votes of each party k in each district h

∀k ∈ P , ∀h ∈ H
zkph binary decision variable for the comparing of total votes of party k

and p in district h; ∀k, p ∈ P, ∀h ∈ H, k 6= p

max
∑
h∈H

cρh (4.1)

s.t.∑
h∈H

xih = 1, ∀i ∈ I (4.2)
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∑
i∈I

xihvki = okh, ∀k ∈ P, ∀h ∈ H (4.3)

oph − okh +Mzkph ≥ 0, ∀k, p ∈ P, ∀h ∈ H, k 6= p (4.4)∑
p∈P,p6=k

zkph − |P |+ 2 ≤ ckh, ∀h ∈ H, ∀k ∈ P (4.5)

∑
k∈P

ckh = 1, ∀h ∈ H (4.6)

∑
i∈I

xihsi = th, ∀h ∈ H (4.7)

th ≤ s̄(1 + β), ∀h ∈ H (4.8)

th ≥ s̄(1− β), ∀h ∈ H (4.9)∑
i∈I

yih = 1, ∀h ∈ H (4.10)

f(sh, whi ) = Fyih, ∀i ∈ I, ∀h ∈ H (4.11)∑
a∈δ−(wh

i )

f(a) =
∑

a∈δ+(wh
i )

f(a), ∀i ∈ I, ∀h ∈ H (4.12)

∑
a∈δ−(wh

i )

f(a) ≤ Fxih, ∀i ∈ I, ∀h ∈ H (4.13)

xih ≤ f(whi , ti), ∀i ∈ I, ∀h ∈ H (4.14)

xih + xjh ≤ 1, ∀h ∈ H, ∀(i, j) ∈ C (4.15)

f(a) ≥ 0; okh ≥ 0, ∀a ∈ Ā;∀h ∈ H, ∀k ∈ P (4.16)

xih, yih, ckh, zkph ∈ {0, 1}, ∀h ∈ H, ∀i ∈ I, ∀k, p ∈ P, k 6= p (4.17)

In the objective function, the number of representatives of a particular party is max-
imized. Each unit must be assigned to a district in the constraints 4.2. The number of
representatives of each party from each district is calculated by using the constraints from
4.3 to 4.6. The total number of votes of each party in each district is calculated in 4.3.
The constraints with the number 4.4 are utilized to find the number representatives of each
party by considering the total number of votes of each party. In order to find the winner
party in each district, at first we compare the total votes of a pair of party and keep the
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result information that can be 0 or 1, then we determine which party dominates the others
using the information from the constraints 4.4. This determination part is in 4.5. The
mentioned information is kept in the variable oph ∀p ∈ P, ∀h ∈ H . In 4.6, the constraints
enforce that only one candidate or party can be elected in each district. Calculation of
the population of each district is in the constraints 4.7. The constraints of 4.8 and 4.9
are developed for the population equality criterion. The rest of the mathematical model
is originated from the aforementioned article. Each source node must be assigned to one
of the districts 4.10. The flow amount from each source node to the nodes we have in
the original problem must be equal to a predetermined value if the corresponding arc is
used 4.11. The total amount of flow on entering arcs must be equal to the total amount of
flow on leaving arcs for each node 4.12. In 4.13, if node i is not assigned to unit h, then
the total flow on entering arcs to this unit must be zero. If the flow between node whi and
tail node ti is zero, then the node (unit) i cannot be assigned to the district h according
to the constraints 4.14. Some predetermined units cannot be assigned to a same district
in order to attain more compact results in the constraints 4.15. This constraint can be
deleted according to the circumstance. The constraints of 4.16 are for nonnegativity. The
last constraints are for defining the domains of the decision variables.

4.2 Mathematical Formulation for the Multi-Member District

The formulation above considers only the single-member district system. Multi-member
case is also developed to have a more generic formulation. The single-member district
problems can be solved using the formulation given in this section. The difference be-
tween two formulations is that the contraints from 4.4 to 4.6 in the first formulation are
modified to the constraints that are from 4.22 to 4.26 in the second formulation. Calcu-
lating the number of representatives of each party in each district is handled by this group
of constraints in both models. Second approach is more sophisticated than the first one.
D'Hondt method is utilized for the allocation of the number of representations of each
party according to its vote proportion in each district. The reader should check the men-
tioned allocation method to comprehend the constraints from 4.22 to 4.26 in the second
formulation. The additional sets and parameters are provided in Table 4.3. The additional
decision variables are introduced in Table 4.4.

Table 4.3: Additional sets and parameters for the second formulation

J the set of denominators(number of representatives)
M1 A sufficiently big value for the difference of total votes
M2 A sufficiently big value for number of representatives and parties
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Table 4.4: Additional decision variables for the second formulation

ckh number of representatives of party k gained in district h; ∀k ∈ P , ∀h ∈ H
okjh auxiliary variable which is derived from the okh

∀k ∈ P , ∀j ∈ J,∀h ∈ H
ekjh binary decision variable if party k’s denominator j does not have

enough vote for a representative in district h; ∀k ∈ P, ∀j ∈ J, ∀h ∈ H
zpkjdh binary decision variable for the comparison of the votes

∀k, p ∈ P, ∀j, d ∈ J, ∀h ∈ H, (k 6= p, d 6= j)

max
∑
h∈H

cρh (4.18)

s.t.∑
h∈H

xih = 1, ∀i ∈ I (4.19)

∑
i∈I

xihvki = oph, ∀p ∈ P, ∀h ∈ H (4.20)

opjh = oph/j, ∀p ∈ P, ∀j ∈ J, ∀h ∈ H (4.21)

opjh − okdh +M1zpkjdh ≥ 0, ∀k, p ∈ P, ∀j, d ∈ J, ∀h ∈ H, (p 6= k, j 6= d) (4.22)∑
k∈P

∑
d∈J

zpkjdh − |J |+ 1 ≤M2epjh, ∀h ∈ H, ∀p ∈ P, ∀j ∈ J, (p 6= k, j 6= d) (4.23)

∑
p∈P

∑
j∈J

epjh = |J ||P | − |J |, ∀h ∈ H (4.24)

cph = |J | −
∑
j∈J

epjh, ∀p ∈ P, ∀h ∈ H (4.25)

∑
i∈I

xihsi = th, ∀h ∈ H (4.26)

th ≤ s̄(1 + β), ∀h ∈ H (4.27)

th ≥ s̄(1− β), ∀h ∈ H (4.28)∑
i∈I

yih = 1, ∀h ∈ H (4.29)

f(sh, whi ) = Fyih, ∀i ∈ I, ∀h ∈ H (4.30)
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∑
a∈δ−(wh

i )

f(a) =
∑

a∈δ+(wh
i )

f(a), ∀i ∈ I, ∀h ∈ H (4.31)

∑
a∈δ−(wh

i )

f(a) ≤ Fxih, ∀i ∈ I, ∀h ∈ H (4.32)

xih ≤ f(whi , ti), ∀i ∈ I, ∀h ∈ H (4.33)

xih + xjh ≤ 1, ∀h ∈ H, ∀(i, j) ∈ C (4.34)

f(a) ≥ 0, ∀a ∈ Ā (4.35)

xih, yih, zpkjdh, ekjh ∈ {0, 1}, ∀h ∈ H, ∀i ∈ I, ∀k, p ∈ P, ∀j, d ∈ J (4.36)

In the objective function, the number of representatives of a particular party is max-
imized. Each unit must be assigned to a district 4.19. The number of representatives of
each party in each district is calculated by using the constraints from 4.20 to 4.25. In
4.20 the total number of votes for each party in each district is calculated. The constraints
with number 4.21 are for comparison. Only the information of total votes of each party in
each district is not sufficient to determine the total number of representatives of each party
elected in each district for multi-member district. According to the D'Hondt method, we
also need to calculate the half of the total votes of each party, one third of it and so on.
At the end, we are going to compare the values as much the multiplication of the number
of total representatives can be elected and total number of available parties. In 4.21 we
are calculating these values. The working principle of the constraints 4.22 is similar to
4.4 and keeps the comparison information bu using the z variable with 5 indices. Using
the constraints 4.23 and 4.24 we are ordering all the values we found from 4.21. Note
that, right hand side value of 4.24 is equal to a value that is the difference between the
number of alternatives and the number of representatives. In other words, we are trying
to determine which values are the smallest ones. Total number of representatives of each
party elected in each district is calculated by summing the each party s e columns and sub-
tract this value from the total number of representatives can be elected. The constraints
from 4.26 to 4.28 are related to the population equality criterion. The rest of the mathe-
matical model is originated from Nemoto and Hotta (2003) and explained in the previous
formulation in detail.
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Chapter 5

TABU SEARCH ALGORITHM

The Section 5.1 covers an algorithm that is used to solve the cases which cannot be solved
by an exact approach. We used the Tabu Search Heuristic algorithm that is commonly
used in the literature for different types of problems such as vehicle routing (Barbarosoglu
and Ozgur, 1999) and scheduling (Dell’Amico and Trubian, 1993). The pseudocode of
the algorithm is provided in Algorithm 2.

5.1 Tabu Search Algorithm

Algorithm 2 Tabu Search Algorithm
1: Input: TabuListsize
2: Output: Sbest
3: TabuList← Ø
4: Sbest ← InitializationFunction()
5: while ¬StopCondition() do
6: CandidateList← Ø
7: for all SCandidate ∈ SBestneighborhood do
8: if ¬ContainsAnyFeatures(SCandidate, TabuList) then
9: CandidateList← SCandidate

10: end if
11: end for
12: SCandidate ← ChooseBestCandidate(CandidateList)
13: if ObjectiveV alue(SCandidate) ≥ ObjectiveV alue(SBest) then
14: SBest ← SCandidateList
15: TabuList← FeaturesDifferences(SCandidate, SBest)
16: while size(TabuList) > TabuListsize do
17: DeleteFeature(TabuList)
18: end while
19: end if
20: end while
21: return SBest
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In the algorithm, StopCondition() is the maximum number iteration. The first step in
the while loop is determining the candidate solutions using the neighborhood structure.
ContainsAnyFeatures() checks whether the candidates are in the tabu list or not. The
ones that are in the tabu list are eliminated. One of the most important function in the
algorithm is ChooseBestCandidate (CandidateList). The input of this function is the
candidate solutions. We need to find the best solution at each iteration. The quality
of each solution is calculated using the Pareto optimality structure. The reason to use
such an approach is the nature of the problem we have. We are trying to maximize the
number of representatives of a particular party and the compactness of each district while
satisfying the population equality constraint. Note that if a candidate is not satisfying the
contiguity and population equality criteria, then it should be eliminated before checking
the tabu list. After all, we only have two performance measures to be maximized; the
number of representatives of a party we choose and the shape quality of the districts.

In practice, we realized that the number of representatives of a particular party can be
increased steadily in the long run by considering the difference between the total votes of
the party in the objective and the total votes of the party which has the greatest proportion
of the votes. If these parties are the same, then we are interested in the difference between
the votes of that party and the one which has the second most vote percentage. Assume
that we have 2 parties; A and B and we are trying to maximize the total number of rep-
resentatives of the party A. We know that two districts can be changed in each candidate
solution. Before a change, assume that A has 3 and 7 total number of votes in two districts
which are D1 and D2. On the other hand, B has 10 and 2 in these districts respectively.
In this case, A and B are in a tie. A and B win a representative in D2 and D1 respectively.
After the change, the numbers are updated as 5(D1)-5(D2) for A and 8(D1)-4(D2) for
B. They still have a tie; however, something important changed. If we are interested in
A, then we are trying to increase its total votes in each district while decreasing the total
votes of other parties. The problem is the total number of votes of the parties in all dis-
tricts are limited. We need to find a new approach to use our votes efficiently. In the most
desired case, the total votes of A should not be extremely bigger than the others. The case
5(A)-4(B) is more desired than 7(A)-2(B) according to this reasoning.

The function ChooseBestCandidate (CandidateList) has a prioritization structure.
At first, we are eliminating the ones that have the smaller number of representatives than
the current solution. After this step, if no candidate is available, the algorithm would
choose two new adjacent districts to be changed. If the number of candidate solutions
is more than one , we need to check the compactness scores and the difference scores of
each candidate by using the Pareto Optimality notion. In this step, we are trying to find
a set of candidate solutions which dominate the rest strictly. For example, a candidate
with (0.5,3) scores is strictly dominated by a solution with (0.6,1) scores. The first value
indicates the compactness value and the second one is for the difference value. Note that
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we are aiming to increase the compactness value and to decrease the difference value of
each district. We can still have more than one candidate solution after using the Pareto
Optimality. This can be seen as a disadvantage in the algorithm; however, we used this
case to change the primary objective of the algorithm. For example, we can choose the
most compact solution of the Pareto set if we need more compact results at the end. On
the other hand, we can choose the one that has the least difference value if the total number
of representatives is more important than the compactness.

5.1.1 Initialization Function

We used a three step initialization approach to have the required initial solutions effi-
ciently. At the first step, a random unit is chosen as the seed of the district and extended
this district by adjoining to seed one of its adjacent units. The district is complete when-
ever its population attains the average population value or when no adjacent units are
available. There are three possible cases after assigning all the existing units. The to-
tal number of districts can be lower than the desired value, equal to the value or greater
than the value. If the number of districts is lower than the desired value, the algorithm
gradually increases it by iteratively splitting the most populated district into two, while
preserving contiguity. If the number of districts is greater than the desired value, which
happens almost all the time, the algorithm reduces it by iteratively merging the least pop-
ulated district with its least populated neighbor.

After these two steps, one more step is added to the initialization procedure to have
feasible solutions. Population equality constraint cannot be achieved after the first two
steps. In order to satisfy this equality, a unit which is in a highly- populated district is
assigned to a district which is neighbor and least populated. We are trying to minimize
the variance of population values of all districts by using the third initialization step.

5.1.2 Neighborhood Structure

Two different neighborhood structures are utilized in the algorithm. All changes are be-
tween two neighboor districts. In the first one, one of the adjacent units between two
districts is assigned to the neighbor district. The structure is shown in Figure 5.1. There
are two adjacent districts that are colorized by black and gray. In the first example, the
unit number 6 is assigned to the gray district. Unit number 2 is assigned to the black
district in the second example.
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(a) Initial Position (b) First example (c) Second example

Figure 5.1: Neighborhood change assignment based

Another neighborhood structure is swap-based. We are still interested in the adjacent
units between two districts. These are unit number 1, 3, 4, 6 and 2, 11, 12 as it has
been mentioned in the previous move and shown in Figure 5.2. One of each unit from
two districts is assigned to the opposite district. For example unit number 6 and 12 are
swapped in the second picture of Figure 5.2. As might be expected, some of changes are
infeasible solutions. An example of the infeasible changes is shown in the last picture. In
the algorithm, a contiguity control approach is used to eliminate these infeasible moves.
Note that, the gray district is still contiguous. Both of the districts must be contiguous to
accept a candidate solution for the next step in the algorithm.

(a) Initial Position (b) An example of feasible
change

(c) An example of infeasible
change

Figure 5.2: Neighborhood change swap based

26



Chapter 6

COMPUTATIONAL RESULTS

The required election data to test our formulations and the algorithm is downloaded from
the Turkish Statistical Institute's website. Some previous elections' data are downloaded
such as June 2015, November 2015 elections and April 2017 referendum. In the datasets
of elections, we limited the number of parties as 5. The name of the parties are as follows.

• Justice and Development Party

• Nationalist Movement Party

• People's Democratic Party

• Republican People's Party

• Other Parties

In the referendum dataset we have only two options, total number of people that voted
as Yes and voted as No. The computational experiments presented in this chapter are
conducted on a workstation with Intel i5-5200U CPU @ 2.2 GHz and 4GB RAM running
on Windows 10 operating system. The solution of the mathematical models are provided
by using the IBM ILOG CPLEX Optimization Studio. R programming language with a
software version 3.2.3 is used to implement the tabu search algorithm and for visualization
of the results.

6.1 Mathematical Formulation Results

November 2015 election results are used in order to test the first mathematical model.
There are 39 counties in İstanbul and each of them has different number of neighborhoods.
A specific party, in general JDP or RPP, dominates the rest in most of the counties. In
other words, a party has the largest proportion of the votes in all of the neighborhoods
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in a county. Such cases are not considered. We also eliminate the counties with just
one representative since we cannot divide this county into more than one district. In
Figure 6.1, two districting plans are provided. In the first districting plan, JDP and RPP
win 2 representatives each considering the November 2015 elections. On the other hand,
JDP wins 4 representatives and number of representative of RPP is 0 in the second plan.
The compactness criterion is not used in the mathematical model. However, the results
seem compact and can be applied easily. Another metrics are provided in Table 6.1. The
population of the districts are close to each other in the table. Note that, the standart
deviation of the population values of the last row is larger than the values which are in the
first and second row since we use a higher β value in that run.

(a) Results when RPP in the objective (b) Results when JDP in the objective

Figure 6.1: Model results for Üsküdar

Table 6.1: The results of several runs for Üsküdar

Number
of

units

Number
of Dis-
tricts

β The
party

Obj.
Value

pop for
D1

pop for
D2

pop for
D3

pop for
D4

33 4 0.1 JDP 4 85634 93315 90761 85588

33 4 0.1 RPP 2 93261 91717 89082 81238

33 4 0.2 RPP 2 93055 89243 101393 71607

28



6.1.1 Results for the Counties in Asia

There are 14 counties including Adalar in the Asia side of İstanbul. The number of neigh-
borhoods and representatives of these counties can differ. The results of several runs
are provided in Table 6.2. The last column is a measure for the population equality cri-
terion. Note that each of these values is smaller than the corresponding β value. The
measurement is the maximum deviation percentage from the average population value of
the considered county. Üsküdar belongs to this table; however, we show its values in a
different table for pointing out.

Table 6.2: The results of several runs for the Asian Counties

County
Name

Number
of Units

Number
of

Districts

β The party Objective
Value

pop.
equality
measure

Ataşehir 17 2 0.1 JDP 2 0.066

Ataşehir 17 2 0.2 JDP 2 0.066

Ataşehir 17 2 0.1 RPP 1 0.005

Ataşehir 17 2 0.2 RPP 1 0.005

Ataşehir 17 2 0.3 RPP 1 0.206

Ataşehir 17 3 0.1 JDP 3 0.04

Ataşehir 17 3 0.1 RPP 1 0.018

Ataşehir 17 3 0.25 RPP 2 0.208

Çekmeköy 21 2 0.1 JDP 2 0.084

Kadıköy 21 3 0.1 RPP 3 0.086

Kartal 20 3 0.1 JDP 3 0.088

Kartal 20 3 0.4 RPP 1 0.391

Maltepe 18 3 0.1 JDP 2 0.072

Maltepe 18 3 0.15 RPP 2 0.107

Maltepe 18 3 0.2 RPP 3 0.187

Sancaktepe 19 3 0.1 JDP 3 0.097

Sancaktepe 19 3 0.1 RPP 1 0.075

Sultanbeyli 15 3 0.05 JDP 3 0.017

Ümraniye 35 5 0.05 JDP 5 0.044
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6.1.2 Results for the Counties in Europe

There are 25 counties in the European side of the İstanbul. A party dominates the other
parties in most of the counties. The results are available for 6 counties. We used a rela-
tively high β value for some of the runs such as the first row in the table Table 6.3. In the
last 3 rows, the reader can check the results of Sarıyer county for its interesting results.
The objective function can be changed depending on the party in the objective while sat-
isfying the population equality contraint with a relatively small β.

Table 6.3: The results of several runs for the European Counties

County
Name

Number
of Units

Number
of

Districts

β The party Objective
Value

pop.
equality
measure

Avcılar 10 3 0.1 JDP 2 0.081

Avcılar 10 3 0.25 RPP 2 0.242

B.evler 11 4 0.15 JDP 4 0.142

B.evler 11 4 0.15 RPP 1 0.144

Basakşehir 10 3 0.1 JDP 3 0.035

Basakşehir 10 3 0.1 RPP 1 0.082

Fatih 57 4 0.2 RPP 1 0.174

Fatih 57 3 0.25 RPP 1 0.149

Kçekmece 21 5 0.2 JDP 5 0.168

Kçekmece 21 5 0.2 RPP 1 0.169

Sarıyer 38 2 0.05 JDP 2 0.016

Sarıyer 38 2 0.1 JDP 2 0.061

Sarıyer 38 2 0.05 RPP 1 0.031

Sarıyer 38 2 0.1 RPP 1 0.064

6.1.3 Tabu Search Algorithm Results

What would be the results if we ignore the current boundries of the counties? In such case
we have 359 counties in Asia side and the problem cannot be solved using the mathemat-
ical formulation. In this part, we tried to divide the Asia into 31 districts that is the total
number of representatives can be elected in all counties located in Asia. We have three
alternative datasets to utilize in the algorithm. We choose the referendum dataset since
the algorithm could not be used with November 2015 election dataset. Population values
are extremely high in some regions such as Kadıköy, Üsküdar comparing with Şile. This
case caused some problems in the initialization step and later steps. Some approaches can
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be used to prevent such problems; ignoring the counties that are populated low or chang-
ing the population values in an attempt to have almost equally populated neighborhoods.
Second approach is used in this thesis.

In Figure 6.2, an initial solution is visualized on a map. The average compactness
value of the districts in this plan is 0.3038. The compactness measure we take into con-
sideration is convex-hull approach. When the algorithm is started for 2000 iterations, the
result in Figure 6.3 has been achieved. The number of districts is increased from 12 to
17 for No objective. The average compactness score of the new districting plan is 0.3602.
Improvement in the compactness can be detected visually in the maps we provided. 0.15
is used for β value in the algorithm. The elapsed time is approximately 72 minutes. Note
that, after about 1200 iterations, we could not achive any improvement on the number of
districts in which No alternative dominates the Yes. The size of the tabu list is set to 20,
50 and 100, however, we have almost identical solutions at the end. In this solution, tabu
list size 50 is used.

We also set the Yes option to the objective and achieved some succesfull results. The
objective is increased from 16 to 20 in this setting and the average compactness is in-
creased from 0.3911 to 0.4120. The reason to have an initial solution with a high average
compact score is that we use some of the results for initialization. In Figure 6.4, the initial
solution for Yes objective can be seen and the results of the algorithm is shown in Figure
6.5. Same parameter setting is used for this run.
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Chapter 7

CONCLUSION

The main motivation to study the political districting problem for a master thesis is that
topical issues and their possible reflections on the future. Manipulation of the political
districts in favor of a particular party and unfair representation are some of the issues
we aim to show in this thesis. Unfortunately, we could not provide a plan for how a
redistricting should be made, in other words, we could not present a districting plan which
is represented all the people in a district fairly. Since we have limited time and would like
to emphasize on some other related topics in the thesis, the fair representation could not
be studied.

Gathering the required election, referendum data and preprocessing of them was time-
consuming. In addition to the election and referendum data, the spatial data for visualiza-
tion is obtained from several sources partially. Almost half of the spatial data is consti-
tuted manually for visual representation of the results.

Several exact approaches are tested to obtain feasible solutions. The model in Nemoto
and Hotta (2003) provides the satisfying results in terms of the objective function value
and the elapsed time. The calculation of the number of representatives part of the formu-
lation is combined with the original model.. In addition to this model, another calculation
approach is developed for multi-member district problems.

The results of the mathematical models demonstrate that territory can be partitioned
in a way that a party can gain a political advantage. In Üsküdar scenario, we verify this
claim by showing the feasible alternatives with the different number of representatives.
The number of these alternatives can be extended simply by using the mathematical model
we proposed. One of the drawbacks of the formulation is that the compactness criterion
is not used. However, an approach can be developed to also use this criterion such as not
allowing to assign two units which are far from each other into the same district. After the
results we have by using the mathematical formulation without the compactness criterion,
we realized that we do not need such approach for the cases we are interested in.

For further studies, the mathematical model can be developed to avoid the prespecified

36



population equality parameter. One approach is to have a multilinear objective function
which covers all the criteria we mentioned including the total number of representatives
of a particular party. A problem arising from this development can be determining the
coefficients of the criteria in the objective. These values can be tuned according to the
results of the formulation or changed depending on the needs of the decision maker.
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Chapter 8

Appendix

Figure 8.1: Asia map that shows the current counties
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Figure 8.2: Europe map that shows the current counties
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