
EFFICIENT AND SECURE SCHEMES FOR

PRIVATE FUNCTION EVALUATION

by

MUHAMMED ALİ BİNGÖL

Submitted to the Institute of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sabancı University

January 2019

c© Muhammed Ali Bingöl 2019

All Rights Reserved

ABSTRACT

EFFICIENT AND SECURE SCHEMES FOR

PRIVATE FUNCTION EVALUATION

MUHAMMED ALİ BİNGÖL

Ph.D. Dissertation, January 2019

Supervisor: Prof. Albert Levi

Keywords: Cryptographic Protocols, Private Function Evaluation, Secure

Computation, Communication and Computation Complexity, Security Analysis.

Development of computing devices with the proliferation of the Internet has prompted

enormous opportunities for cooperative computation. These computations could

occur between trusted or partially trusted partners, or even between competitors.

Secure multi-party computation (MPC) protocols allow two or more parties to col-

laborate and compute a public functionality using their private inputs without the

need for a trusted third-party. However, the generic solutions for MPC are not

adequate for some particular cases where the function itself is also sensitive and

required to be kept private. Private function evaluation (PFE) is a special case

of MPC, where the function to be computed is known by only one party. PFE is

useful in several real-life applications where an algorithm or a function itself needs

to remain secret for reasons such as protecting intellectual property or security clas-

sification level. Recently, designing efficient PFE protocols have been a challenging

and attractive task for cryptography researchers.

iv

In this dissertation, we mainly focus on improving two-party private function eval-

uation (2PFE) schemes. Our primary goal is enhancing the state-of-the-art by

designing secure and cost-efficient 2PFE protocols for both symmetric and asym-

metric cryptography based solutions. In this respect, we first aim to improve 2PFE

protocols based on (mostly) symmetric cryptographic primitives. We look back at

the seminal PFE framework presented by Mohassel and Sadeghian at Eurocrypt’13.

We show how to adapt and utilize the well-known half gates garbling technique (Za-

hur et al., Eurocrypt’15) to their constant round 2PFE scheme. Compared to their

scheme, our resulting optimization significantly improves both underlying oblivious

extended permutation (OEP) and secure 2-party computation (2PC) protocols, and

yields a more than 40% reduction in overall communication cost. We next propose

a novel and highly efficient 2PFE scheme based on the decisional Diffie-Hellman

(DDH) assumption. Our scheme consists of two protocols, one is utilized in the ini-

tial execution, and the other is in the subsequent runs. One of the novelties of our

scheme over the state-of-the-art is that it results in a significant cost reduction when

the same private function is evaluated more than once between the same or varying

parties. To the best of our knowledge, this is the most efficient and the first 2PFE

scheme that enjoys reusability feature. Our protocols achieve linear communication

and computation complexities, and a constant number of rounds which is at most

three (depending on the size of the inputs of the party that holds the function).

v

ÖZET

GİZLİ FONKSİYON DEĞERLENDİRME İÇİN

VERİMLİ VE GÜVENLİ ŞEMALAR

MUHAMMED ALİ BİNGÖL

Doktora Tezi, Ocak 2019

Danışman: Prof. Dr. Albert Levi

Anahtar Sözcükler: Kriptografik Protokoller, Gizli Fonksiyon Değerlendirme,

Güvenli Hesaplama, İletişim ve Hesaplama Karmaşıklığı, Güvenlik Analizi.

Hesaplama cihazlarının gelişmesi ve Internet’in yaygınlaşması ile birlikte işbirlikçi

hesaplama için büyük imkanlar doğmuştur. Bir fonksiyon veya algoritma üzerinde

ortak hesaplama ihtiyacı, birbirlerine güvenen, kısmen güvenen veya kesinlikle güven-

meyen taraflar arasında olabilmektedir. Literatürde güvenli çok taraflı hesaplama

(İng. multi-party computation - MPC) olarak bilinen protokoller, iki veya daha fazla

tarafın, güvenilir bir üçüncü tarafa ihtiyaç duymadan ortak bir fonksiyonu birlikte

hesaplamalarına imkan sağlar. Ancak MPC için önerilen genel çözümler, fonksiy-

onun kendisinin de hassas olduğu ve gizli tutulması gerektiği bazı özel durumlar için

yeterli değildir. Gizli fonksiyon değerlendirme (İng. private function evaluation -

PFE) fonksiyonun yalnızca bir tarafça bilinmesine imkan sağlayan özel bir MPC du-

rumuna karşılık gelir. PFE protokolleri, bir algoritma veya bir fonksiyonun gizlilik

vi

seviyesi veya fikri mülkiyeti gibi nedenlerle gizli kalmasını gerektiren çeşitli problem-

ler için çözüm sağlar. Son zamanlarda, verimli PFE protokollerinin tasarlanması,

kriptografi araştırmacıları için zorlayıcı ve ilgi çeken bir alan haline gelmiştir.

Bu tez çalışmasında iki taraflı gizli fonksiyon değerlendirme (İng. two-party

private function evaluation - 2PFE) protokollerinin geliştirilmesi hedeflenmiştir.

Öncelikli hedefimiz, simetrik ve asimetrik şifreleme kategorilerinde güvenli ve daha

verimli PFE protokolleri tasarlayarak literatürü bu alandaki çalışmalarımız ile geliştir-

mektir. Bu amaçla, ilk olarak simetrik kriptografik yapıtaşlarına dayalı 2PFE pro-

tokollerini geliştirmeyi amaçladık. Eurocrypt’13’te Mohassel ve Sadeghian tarafından

sunulan ve bu kategorideki en iyi sonuçlar ortaya koyan PFE protokolünü ele aldık.

İyi bilinen yarım kapılı karmaşık devreler tekniğininin (Zahur et al., Eurocrypt’15)

2PFE şemasına nasıl uyarlayıp kullanacağını gösterdik. Protokoleri karşılaştırdığımız-

da, sonuçta elde ettiğimiz optimizasyonumuz, hem kayıtsız genişletilmiş permütasyon

(İng. oblivious extended permutation - OEP) hem de güvenli iki taraflı hesaplama

(İng. two-party computation - 2PC) alt protokollerinin verimliliğini önemli ölçüde

iyileştirmiş ve iletişim maliyetinde % 40’ın üzerinde verimlilik sağlamıştır. Bunun

yanı sıra, kararsal Diffie-Hellman (İng. decisional Diffie-Hellman - DDH) varsayımına

dayanan yeni ve özgün 2PFE şeması önermekteyiz. Şemamız, literatürdeki çalışmaları

önemli ölçüde geliştirmekle birlikte yeniden kullanılabilirlik özelliğini sunarak son-

raki hesaplamalar için verimliliği oldukça arttırır. Önerdiğimiz şemamız iki pro-

tokolden oluşmaktadır, birincisi fonksiyonunun ilk defa uygulamasında, ikincisi ise

sonraki uygulamalarda kullanılır. Bildiğimiz kadarıyla, önermiş olduğumuz bu şema,

literatürdeki en verimli ve yeniden kullanılabilirlik özelliğine sahip ilk 2PFE tasarımı-

dır. Önermiş olduğumuz protokoller lineer iletişim ve hesaplama karmaşıklıklarına

sahipken protokollerin mesaj tur sayısı en fazla üçtür.

vii

to my beloved family

viii

ACKNOWLEDGMENTS

I wish to thank all people who have helped and inspired me during my Ph.D. study.

First of all, I would like to express my sincere gratitude to my dissertation advisor,

Prof. Albert Levi, for his endless support, worthwhile guidance and invaluable

patience throughout my Ph.D. studies. I am happy to have such a supportive

supervisor and it has been a privilege to study under his guidance. I would also

like to thank my dissertation committee members, Prof. Erkay Savaş and Prof.

Cem Güneri, for their supports and invaluable feedbacks starting from my thesis

proposal period. I am also indebted to the other members of my thesis jury, Assoc.

Prof. Mehmet Sabır Kiraz and Asst. Prof. Süleyman Kardaş, for reviewing my

dissertation and providing valuable suggestions and inquiries. Despite their busy

schedule, I really appreciate their agreement to be members of my committee and

letting my dissertation defense be a memorable moment.

I would like to thank to all my colleagues in TUBITAK BİLGEM, especially Soner

Ay, Dr. Şenol İşçi and Mehmet Emin Gönen for their strong friendship. My deeply

thanks to Atakan Arslan for his support and his great friendship over the years.

Also many thanks go to Osman Biçer and again Assoc. Prof. Mehmet Sabır Kiraz

for the brainstorming discussions lasting a whole day and invaluable contributions

to this work. I would like to extend my gratitude to all of my Sabancı University

professors and (past and present) friends & colleagues.

Last but not least my deepest gratitude goes to my wife Burcu, my kids Meryem &

Kerem, and my parents for their unflagging love, patience and support throughout

my life; this dissertation is basically impossible without them.

ix

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Organization . 6

2 BACKGROUND INFORMATION 7

2.1 Cryptographic Primitives . 7

2.1.1 Symmetric and Asymmetric Cryptosystems 7

2.1.2 Some Computational Problems 8

2.1.3 Hash Functions . 10

2.1.4 Elliptic Curve Cryptography 11

2.1.5 Homomorphic Encryption . 12

2.1.6 Oblivious Transfer Protocols 13

2.2 Basics of Secure Computation and Garbled Circuits 14

2.2.1 Yao’s Garbled Circuit . 16

2.2.2 Optimizations on Yao’s Scheme 17

2.2.3 Adversary Types . 23

3 RELATED WORKS 25

3.1 Universal Circuit Based PFE Solutions 26

3.2 Special Purpose PFE Solutions . 26

x

4 AN EFFICIENT 2-PARTY PRIVATE FUNCTION EVALUATION

PROTOCOL BASED ON HALF GATES 30

4.1 2-Party PFE Framework . 30

4.1.1 Context of CTH . 31

4.1.2 Mohassel and Sadeghian’s 2PFE scheme 37

4.2 Our Efficient 2-Party PFE Scheme 38

4.2.1 Use of 2-OEP protocol . 41

4.2.2 Our 2PC Garbling Scheme for 2PFE 42

4.3 Security of the proposed protocol . 45

4.3.1 Code based games and security notions 45

4.3.2 Security Proof . 47

4.4 Performance Comparison . 52

5 HIGHLY EFFICIENT AND REUSABLE PRIVATE FUNCTION

EVALUATION WITH LINEAR COMPLEXITY 56

5.1 Preliminaries . 56

5.1.1 Decisional Diffie-Hellman Assumption 57

5.1.2 Notations and Concept of 2PFE Framework 58

5.2 Our PFE Scheme . 60

5.2.1 The description of our InExe protocol 60

5.2.2 Optimization with reusability feature: Our (ReExe) protocol . 67

5.2.3 Executing with Various Party2s 69

5.3 Complexity Analysis . 71

5.3.1 Complexity of Our Scheme . 72

5.3.2 Comparison . 73

5.4 Security of Our Protocols . 78

6 CONCLUSIONS 85

xi

LIST OF TABLES

2.1 Garbling an odd gate using half gates technique [1]. 22

4.1 Party1 learns one of these rows according to his selection bits. 36

4.2 Party1 gets one of these rows by engaging in 1-out-of-4 OT with Party2. 37

4.3 Adapting half gates technique to our 2PFE for garbling an odd gate.

Here, α1, α2 and α3 define the gate type (e.g., α1 = 0, α2 = 0 and

α3 = 1 for a NAND gate, see Equation (2.2)). The token w0
c on the

output wire equals w0
Gc ⊕ w0

Ec ⊕ ψc. The three ciphertexts TGc, TEc,

and ψc are sent to Party1 for each gate. 41

4.4 Analysis of communication costs for 2PFE schemes (see Section 4.1.1

for details of transfers in the OSN phases). 53

4.5 Communication cost comparison of 2PFE schemes in terms of λ-bits. 54

5.1 Comparison of the existing 2PFE schemes in terms of overall commu-

nication (in bits) and online computation costs (in terms of symmetric-

key operations), offline computation costs (in terms of symmetric-key

operations), and the number of rounds. M , N , λ, and ρ denote the

number of outgoing wires (i.e., equal to n + g − m), the number of

incoming wires (i.e., N = 2g), the security parameter, and the com-

putation cost ratio, respectively. 72

5.2 Comparison of the existing 2PFE schemes in terms of overall com-

munication costs for various circuit sizes. Here we take N = 2M and

λ = 128. 74

xii

5.3 Our efficiency gain (in percentage) over existing 2PFE schemes in

terms of overall communication costs with respect to the number of

protocol runs. 77

xiii

LIST OF FIGURES

4.1 (a) A circuit representation Cf of a function f . (b) The mapping πf

of f . 32

4.2 The related switching network for the mapping πf in Figure 4.1. . . . 34

4.3 Components and high level procedures of our PFE protocol. The

private function f is only known to Party1. Party1 compiles f into a

Boolean circuit Cf , and extracts the mapping πf and the template of

private circuit C̃f . Party1 sends C̃f to Party2. Party1 randomly gener-

ates the vector T . Party2 randomly generates the vector W 0. They

engage in a 2-OEP protocol where Party2 learns S0 as the output.

With the knowledge of W 0, S0 and C̃f , Party2 garbles each gate and

sends the garbled circuit to Party1. With the knowledge of πf , C̃f , T ,

the garbled circuit and the garbled inputs, Party1 evaluates the whole

garbled circuit. 39

4.4 Our complete half gate based garbling scheme for 2PFE. GbNAND and

Gb∗NAND are the original half gate and our modified NAND garbling

procedures, respectively. A ‘hat ’ represents a sequence or a tuple, for

instance, F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .). 43

4.5 Modification of our garbling scheme in Figure 4.4 for achieving au-

thenticity (auth) property. 44

xiv

4.6 Components of and high level procedures of a OEP based Private

Function Evaluation scheme. The topology hiding of the function

f where Party1 is the evaluator and Party2 is the garbler: (1) The

private function f is only known by Party1. (2) Cf is the Boolean

circuit representation of f . (3) πf is the circuit mapping of f . (4)

The OEP protocol is mutually run where Party2 learns blinded strings.

(5) The blinded strings learnt by Party2. (6) Yao’s protocol with the

blinded strings. 44

4.7 Simulation based games for privacy, obliviousness and authenticity [2].

The function S is a simulator, and G denotes a garbling scheme. . . . 46

4.8 Part-A. The simulator for prv.simS security, and the hybrids used in

the proof. We obtain G2 by adding the statements within sharp corner

boxes to G1. The use of the statements within rounded-corner boxes

alters the procedures from garbling of non-output gate to garbling of

output gate. A ‘hat ’ represents a sequence or a tuple, for instance,

F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .). 48

4.9 Part-B. The simulator for prv.simS security, and the hybrids used in

the proof. A ‘hat ’ represents a sequence or a tuple, for instance,

F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .). (Please see Figure 4.8 for the

beginning of the figure.) . 49

4.10 The required modifications on Figure 4.8 in order to show auth property. 51

5.1 Sketch of our InExe 2PFE Protocol. ReuseTempf and T are stored

(if needed) for the later PFE runs by ReExe protocol. Note that in

case Party1 has inputs (x1) then OT protocol is required (to send the

corresponding garbled X1) which can be trivially combined with the

protocol rounds for minimization of the total number of rounds. . . . 61

5.2 Our Optimized InExe 2PFE Protocol via decomposition of offline/online

computations . 63

xv

5.3 Sketch of our ReExe protocol for the k-th execution (k > 1). The

number of rounds is equal to 1, or 2, or 3 depending on the input size

of Party1. 68

5.4 Our Optimized ReExe 2PFE Protocol that utilizes Reusable Mapping

Template . 70

5.5 Comparison of cumulative communication cost via normalized band-

width efficiency vs. number of PFE executions using a circuit 210

gates. 76

5.6 Comparison of cumulative communication cost via normalized band-

width efficiency vs. number of PFE executions using a circuit 230

gates. 76

xvi

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

CDH Computational Diffie-Hellman

CPU Central Processing Unit

CTH Circuit Topology Hiding

DDH Decisional Diffie-Hellman

DKC Dual-Key Cipher

DLP Discrete Logarithm Problem

DNA Deoxyribonucleic Acid

EC Elliptic Curve

ECC Elliptic Curve Cryptography

EP Extended Permutation

FHE Fully Homomorphic Encryption

gcd Greatest Common Divisor

GG Garbled Gate

GRR Garbled Row Reduction

H Hash Function

HE Homomorphic Encryption

xvii

lsb Least Significant Bit

MPC (Secure) Multi-Party Computation

NAND Not AND

NIST National Institute of Standards and Technology

NOR Not OR

NCE Normalized Cost Efficiency

OEP Oblivious Extended Permutation

OSN Oblivious Evaluation of Switching Network

OT Oblivious Transfer

PFE Private Function Evaluation

PGE Private Gate Evaluation

PHE Partially (Singly) Homomorphic Encryption

PN Permutation Network

PPT Probabilistic Polynomial Time

SHA Secure Hash Algorithm

SN Switching Network

SWHE Somewhat Homomorphic Encryption

XOR Exclusive OR

2PC Two-Party Computation

2PFE Two-Party Private Function Evaluation

xviii

LIST OF SYMBOLS

An Efficient 2PFE Protocol Based On Half Gates

(Chapter 4)

x1 Private input of Party1

x2 Private input of Party2

X1 Garbled version of x1

X2 Garbled version of x2

f The private function of Party1 to be evaluated

y The output of function f such that y = f(x1, x2)

Cf The Boolean circuit representation of function f

n Number of inputs of Cf

m Number of outputs of Cf

g Number of gates of Cf

λ Security parameter

Gi The i-th gate of circuit Cf

owi The ith outgoing wire

iwi The ith incoming wire

N Number of incoming wires (i.e., N = 2g)

xix

M Number of outgoing wires (i.e., M = n+ g −m)

OW Set of outgoing wires (ow1, . . . , own+g−m) which is the union

of the input wires of Cf and the output wires of its non-output

gates

IW Set of incoming wires (iw1, . . . , iw2g) which is the input wires

of each gate in the circuit (having N = 2g elements)

πf The private mapping from OW to IW

C̃f Template of Private Circuit

Y Garbled version of y

ρ Number of possible circuit topologies

w0
i , w

1
i The i-th garbled tokens for each owi ∈ OW corresponding to

FALSE and TRUE semantic values, respectively.

W Garbled vector set for outgoing wires

t0j , t
1
j Blinding strings for each iwj ∈ IW corresponding to FALSE

and TRUE semantic values, respectively.

T Blinding vector for incoming wires

σj the blinded strings for incoming wires such that [σj = wπ−1
f (j)⊕

tj] for j = 1, . . . , N

S SN’s blinded output vector for incoming wires

R Circuit-wise offset value

TG, TE Garbler’s and evaluator’s half gates, respectively

x̂ A ‘hat ’ represents a sequence or a tuple, for instance, x̂ =

(x1, x2, . . .)

F The garbled version of C̃f

xx

e Encoding information

d Decoding information

Gb Garble procedure: takes a function f and a security parameter

1λ as input and outputs (F ; e; d)

En Encode procedure: takes an input x and encoding information

e and outputs a garbled input X

Ev Evaluate procedure: takes a garbled circuit F and garbled

input X and outputs a garbled output Y .

De Decode procedure: takes a garbled output Y and decoding

information d and outputs a plain circuit-output y if the de-

coding successful, otherwise returns error

ev Evaluation function: used to check the correctness condition

such that ev(f, x) = De(d,Ev(F,En(e, x)))

Highly Efficient and Reusable PFE with Linear

Complexity (Chapter 5)

(The first nineteen symbols of Chapter 4 are common)

PubInfoCf Public information of the circuit Cf (i.e., (M,N,OW, IW, y))

G A cyclic group of a large prime order q ∈ O(λ)

Pi The i-th generator of the group G picked for outgoing wires

owi by Party2 where i = 1 . . .M

P Set of generators picked for outgoing wires (i.e., (P1, . . . , PM))

` Bit length of a group element

tj The j-th blinding strings where j = 1, . . . N

Qj The j-th group element generated for iwj by Party1 such that

Qj := tj · Pπ−1
f (j)

xxi

Q Set of group elements for wires (i.e., (Q1, . . . , QN))

ReuseTempf Reusable mapping template (i.e., (P ,Q))

α0, α1 Randomly chosen strings in Z∗q for the wires with semantic

values 0 and 1, respectively

W b
i The i-th group element computed as (W b

i ← αb · Pi) where

b = {0, 1}

Wb The ordered set of the group elements (W b
1 , . . . ,W

b
M)

V b
j The j-th group element computed as (V b

j ← αb ·Qj)

Vb The ordered set of the group elements (V b
1 , . . . , V

b
N)

Y b The ordered set of output values such that (yb1, . . . , y
b
m : ybi �R

{0, 1}`, i = 1, . . . ,m) where b = {0, 1}

xxii

Chapter 1

INTRODUCTION

Imagine that one invents a novel and practical algorithm capable of being directly

used to detect and identify criminals in crowds with a high degree of precision

based on information about their behaviors obtained from street video recordings.

It is obvious that this algorithm would be commercially valuable and that many

governmental organizations would like to use it. The inventor has the right to keep

the algorithm confidential, and to offer only its use for a certain fee since it is

his/her own intellectual property. On the other hand, governmental organizations

will generally be unwilling to reveal their records and databases to the parties to

whom they do not sufficiently trust. This is an example of the problem that two

parties would like to execute a common function with their private inputs and the

function is also a private input of one of the parties. Solution for this and such

real-life problems are addressed by Private Function Evaluation (PFE).

PFE is a special case of secure multi-party computation (MPC) in which n par-

ticipants jointly compute a function f on their private inputs x1, . . . , xn, and one (or

some) of the parties obtain the result f(x1, . . . , xn) while revealing nothing more to

the parties. The difference of PFE from the standard MPC setting is that here the

function f is also a private input of one of the participants1. A PFE solution would

1Note that PFE also covers the case where the party who owns the function does not have any
other private input.

1

be more useful than conventional MPC in various real-life applications, e.g., the ones

where the function itself contains private information, or reveals security weaknesses,

or the ones where service providers prefer hiding their function, or its specific imple-

mentation as their intellectual property, or the implementation of the function (say

Cf) is an intellectual proprietary albeit the function f is public [3–11]. Efficient and

practical PFE schemes are becoming increasingly important as many applications

require protection of their valuable assets such as private database management

systems [12], privacy-preserving intrusion detection system [13], privacy-preserving

checking for creditworthiness [7] and privacy preserving medical applications [11].

Therefore, the task of designing efficient custom PFE protocols for special or general

purposes is addressed in several papers in the literature [9, 14–21].

1.1 Motivation

The task of designing secure and efficient PFE protocols is becoming increasingly

important as many real-world applications require protection of their valuable assets.

For example, many software companies targeting the global market are extremely

concerned about illegal reproduction of their software products. Software obfusca-

tion methods usually prevent reverse engineering, but still allow direct copying of

programs. Another solution could be providing the software-as-a-service in the cloud

to eliminate the risk of exposure. However, this solution also causes another issue,

i.e., threatening the privacy of customer data, since computations need to take place

at the hands of software vendors. Fully homomorphic encryption (FHE) can also be

a potential solution to such problems [22, 23], but, unfortunately, it is still far from

being practical [24]. Another decent approach targeting those problems falls into

the category of PFE. Compared to FHE, PFE is currently much closer to practical

use. Moreover, in many occasions, PFE schemes are quite beneficial, including the

ones where a service provider may opt keeping the functionality and/or its specific

implementation confidential, and the ones where the disclosure of the function itself

2

means revelation of sensitive information, or causes a security weakness.

Moreover, Lipmaa et al. [25] and Sadeghian [26] mention this open problem:

“the various optimizations that are recently proposed for MPC [1,27,28] are making

general 2PC more practical and it is not obvious if their techniques can also be com-

bined with custom PFE solutions (which remains as an interesting open question)”

(see [26, p. 98] and [25, p. 2]). One of the aims of this dissertation is providing an

answer to this open question and come up with an efficient 2PFE protocol.

Furthermore, the current research goal for secure computation protocols (in-

cluding PFE) is efficient and practical solutions with low round, communication,

and computation complexities. Among these three measures, as also pointed out

by Beaver, Micali, and Rogaway, the number of rounds is the most valuable re-

source [29]. The other important research goal in this area is the minimization of

communication complexity. Since hardware trends show that computation power

progresses more rapidly compared to communication channels, the main bottleneck

for many applications will be the bandwidth usage.

1.2 Contributions

The results of this dissertation substantially improve the state-of-the-art by propos-

ing more efficient PFE schemes in both symmetric and asymmetric cryptography

categories. The major contributions of this thesis are summarized as follows:

We first focus on improving 2-party private function evaluation (2PFE) based on

symmetric cryptographic primitives. In this respect, we first revisit the state-of-the-

art Mohassel and Sadeghian’s PFE framework [17], then propose a more efficient

protocol (secure in the presence of semi-honest adversaries) by adapting the half

gates garbling optimization [1] to their 2PFE scheme. Note that in [30], Wang and

Malluhi mention that “free-XOR [27] and half gates [1] techniques cannot be used

to improve the efficiency of non-universal circuit based custom PFE protocols such

as Katz and Malka’s [9] and Mohassel and Sadeghian’s [17] works”. In contrast to

3

their claim, we adapt and utilize half gates approach to Mohassel and Sadeghian’s

and reduce the communication cost in a secure way. Our protocol in this category

achieves the following significant improvements in both OSN and 2PC phases:

1. Regarding the OSN phase: (1) We reduce the number of required OTs by

N = 2g. Concretely, the technique in [17] requires 2N log(N) + 1 OTs, while

our protocol requires 2N log(N) − N + 1 OTs. (2) Our protocol reduces the

data sizes entering the OSN protocol by a factor of two. This improvement

results in about 40% saving.

2. Regarding the 2PC phase, our scheme garbles each non-output gate (that does

not have any direct connection with output wires of the circuit) with only three

ciphertexts, and each output gate with only two ciphertexts.

Among the above improvements, the foremost gain comes from the reduction in

the input sizes of the OSN protocol. The overall communication cost of our scheme is

(6N log(N)+0.5N +3)λ bits2, which is a significant improvement compared to [17],

whose communication cost is (10N log(N) + 4N + 5)λ bits. This means more than

40% saving in bandwidth size (see Table 4.4 and Table 4.5). Also, the overall

computation cost is also slightly decreased while the number of rounds remains

unchanged. We show that our resulting 2PFE scheme is secure in the semi-honest

model.

We also propose a highly efficient 2PFE scheme for Boolean circuits based on the

DDH assumption which utilizes asymmetric cryptographic primitives. Our scheme

enjoys the cost reduction due to the reusability of tokens that will be used in the

2PC stage. This eliminates some of the computations and exchanged messages in

the subsequent executions for the same function. Therefore, one of the strongest

aspects of our proposed protocol is the remarkable cost reduction if the same function

is evaluated more than once (possibly on varying inputs). We highlight that such a

cost reduction is not applicable to the protocols of KM11 [9] and MS13 [17] since

2λ is the security parameter throughout this thesis.

4

they require running the whole protocol from scratch for each execution. In this

respect, we present two protocols of our scheme: (1) a protocol for initial executions

(InExe), (2) a resumption protocol for subsequent executions (ReExe). The former

protocol is utilized in the first evaluation of the function, while the latter one is

utilized in the second or later subsequent evaluations of the same function between

the two parties. We note that the latter protocol is more efficient than the former one

due to the fact that it benefits from the reusable tokens generated already in InExe

protocol. The latter case is likely to be encountered more frequently in practice,

compared to the cases where the function is evaluated just once between the two

given parties.

Our proposed protocols significantly enhance the state-of-the-art in terms of com-

munication cost. Compared to MS13-OSN [17], BBKL18 [20], and GKS17 [19] pro-

tocols, our scheme asymptotically reduces the communication cost. Namely, while

the asymptotic communication costs of those protocols are equal to O(g log(g)), our

scheme provides O(g) communication complexity where g is the number of gates. To

illustrate the significance of this asymptotic difference, for a thousand-gate circuit,

our cost reduction is about 94% over MS13-OSN, about 88% over BBKL18, and

about 68% over GKS17. For a billion-gate circuit, our cost reduction is about 98%

over MS13-OSN, about 96% over BBKL18, and about 89% over GKS17. The proto-

cols of MS13-HE, KM11-1st, KM11-2nd and ours has linear asymptotic complexity.

Thanks to the reusability feature, the advantage of our scheme becomes more con-

spicuous when the number of PFE execution is more than one. Namely, for two

executions our cost reduction is about 54% over KM11-1st, 30% over KM11-2nd,

and 20% over MS13-HE. For ten executions our cost reduction is about 63% over

KM11-1st, 44% over KM11-2nd, and 37% over MS13-HE. The number of rounds of

our InExe protocol is 3 and the number of rounds of our ReExe protocol is equal to

1, or 2, or 3 depending on the input string length of Party1 (i.e., owner of f)3. This

3If Party1 has x1 = ⊥, then the number of rounds is equal to 1. If Party1 has a non-empty input
x1 such that the OT extension is not applicable for its garbled input, then it is to 2. Otherwise,
the number of rounds is equal to 3.

5

also reflects the improvement of ReExe protocol over the existing 2PFE protocols in

terms of round complexity (see Table 5.1).

We also deal with the case that Party1 runs the 2PFE protocol for the same

private function with various Party2s separately. This is a common scenario where

Party1 may run a business with many customers for her algorithm/software. Triv-

ially, our ReExe protocol can be utilized between the same two parties in the second

and subsequent evaluations after the first evaluation. Instead of running the initial

execution protocol with each Party2, we propose a more efficient mechanism for the

generation of the reusable tokens by employing a threshold based system.

1.3 Organization

The organization of this dissertation is as follows: In Chapter 2, we give necessary

background information about cryptographic primitives and secure computation &

garbled circuits. In Chapter 3, we review the literature on existing PFE approaches.

In Chapter 4, we introduce our (mostly) symmetric-based 2PFE scheme. This chap-

ter provides the detailed explanation of our protocol then a simulation-based security

proof of our scheme in the semi-honest model. Also, the chapter covers an analy-

sis of our protocol in terms of communication and computation complexities and

comparison with the state-of-the-art. Chapter 5 presents our highly efficient mech-

anism for improving asymmetric cryptography based 2PFE schemes. We describe

our two new methods to achieve more efficient PFE between the two parties and

in the presence of multiple Party2s. Also, this chapter provides the complexities of

our resulting protocols and compares them with the existing state-of-the-art 2PFE

protocols. Finally, Chapter 6 concludes the dissertation and point out some future

works.

6

Chapter 2

BACKGROUND

INFORMATION

This chapter provides some background information on some general concepts and

definitions. We begin this chapter by defining some cryptographic primitives that

are used throughout this dissertation. Then we give a brief overview on basics

of secure computation, Yao’s garbled circuits and recent optimizations on Yao’s

scheme. Additional preliminaries and definitions, which are specific to some parts

of the dissertation, appear within the related chapters.

2.1 Cryptographic Primitives

In this section, we give definitions of some cryptographic primitives that are utilized

throughout this dissertation. Most of the definitions given in this section have

become standard, and are widely used in cryptography.

2.1.1 Symmetric and Asymmetric Cryptosystems

Definition 2.1.1. Cryptosystem. A cryptosystem is a quintuple (P , C,K, E ,D) with

the following properties:

7

1. Let P be the plaintext space, C be the ciphertext space, and K be the keyspace,

where P , C and K are finite sets.

2. Ek is an encryption function such that Ek : P ×K → C, and Dk is an encryp-

tion function such that Dk : C × K → P, where k ∈ K.

3. For each key ke ∈ K, there exists some key kd ∈ K such that for each plaintext

p ∈ P, Dkd(Eke(p)) = p.

A cryptosystem is said to be symmetric-key cryptosystem (or private-key cryp-

tosystem) if either of the following holds: (1) kd = ke or (2) kd can “easily” be

determined from ke. A cryptosystem is said to be asymmetric cryptosystem (or

public-key cryptosystem) if kd 6= ke and it is “computationally infeasible” to deter-

mine the private key kd from the corresponding public key ke.

2.1.2 Some Computational Problems

We now give some standard definitions of computational hardness and some as-

sumptions that are hitherto known as hard problems. A polynomial time Turing

machine is one which halts within p(|x|) steps on any input string x with length

|x| where p denotes some polynomials. A probabilistic Turing machine is allowed

to make random choices in its execution such that on each step it chooses the next

configuration randomly from the possible ones [31–33].

Definition 2.1.2. (Probabilistic Polynomial Time (PPT) Turing Machine.) A

Turing machine M is said to be a probabilistic polynomial time (PPT) Turing ma-

chine if it takes input x together with a string of random bits r and ∃c ∈ N such

that M(x, r) always halts in xc steps.

Definition 2.1.3. (Negligible Function.) A function ε(x) : N 7→ R is negligible if

and only if ∀c ∈ N, ∃x0 ∈ N such that ∀x ≥ x0

ε(x) <
1

xc
.

8

Let A be a PPT algorithm and ε(·) is a negligible function. A problem is said

to be “easy” if it can be solved by a PPT A with respect to the size of the input.

Let (G, ·) be a finite cyclic group G = 〈g〉 of order |G| and g is a generator.

For this given group the definitions of Discrete Logarithm Problem (DLP), Com-

putational Diffie-Hellman (CDH) Problem and Decisional Diffie-Hellman (DDH)

Problem are as follows.

Definition 2.1.4. (Discrete Logarithm Problem (DLP).) The DLP states that for

any PPT A, there exists a negligible function ε(·) such that given gx ∈ G, the

probability of finding x is

Pr[x← A(〈g〉 , g, gx)] ≤ ε(|G|).

Definition 2.1.5. (Computational Diffie-Hellman (CDH) Problem.) The CDH

problem states that for any PPT A, there exists a negligible function ε(·) such that

given gx, gy ∈ G the probability of finding gxy is

Pr[gxy ← A(〈g〉 , g, gx, gy)] ≤ ε(|G|).

Definition 2.1.6. (Decisional Diffie-Hellman (DDH) Problem.) The DDH problem

states that for any PPT A, there exists a negligible function ε(·) such that given

gx, gy ∈ G and χ, the probability of distinguishing gxy from a randomly chosen

element gr ∈ G is

∣∣∣∣Pr[β ← A(〈g〉 , g, gx, gy, χ)]− 1

2

∣∣∣∣ ≤ ε(|G|), where χ =

g
xy, if β = 0

gr, otherwise.

9

2.1.3 Hash Functions

A hash function is a deterministic mapping [34,35] defined as below.

Definition 2.1.7. (Hash Function.) A function H : {0, 1}∗ 7→ {0, 1}`, mapping

arbitrary-length bit strings to a fixed length `-bit strings is called a hash function,

where ` ∈ Z and ` ≥ 0. Function H is called a cryptographic hash function that

satisfies the following properties:

– Computability: For any given input x ∈ {0, 1}∗, y = H(x) is computed in

a polynomially bounded time.

– One-wayness: Given an `-bit string y, for any PPT A, there exist a negligible

function ε(·) such that

Pr[y ∈ {0, 1}`;x← A(1`, H, y) : H(x) = y] ≤ ε(`).

This property is also known as “pre-image resistance”.

– 2nd pre-image resistance: Given a bit string x, for any PPT A, there exist

a negligible function ε(·) such that

Pr[x1 ← {0, 1}∗; y1 = H(x1);x2 ← A(1`, H, y1) : x1 6= x2∧H(x1) = H(x2)] ≤ ε(`).

This property is also known as “weak collision resistance”.

– Collision resistance: For any PPT A, there exist a negligible function ε(·)

such that

Pr[(x1, x2)← A(1`, H) : x1 6= x2 ∧H(x1) = H(x2)] ≤ ε(`).

This property is also known as “strong collision resistance”.

10

In general, collision resistance (strong collision resistance) implies 2nd pre-image

resistance (weak collision resistance) but collision resistance need not imply one-

wayness [32,34,36,37]. We treat cryptographic hash functions as random oracles as

they satisfy the following definition.

Definition 2.1.8. (Random Oracles.) A function H : {0, 1}∗ 7→ {0, 1}` is said to

be a random oracle if given any PPT A, there exist a negligible function ε(·) such

that ∣∣∣∣Pr[β ← A(y)]− 1

2

∣∣∣∣ ≤ ε(`), where y =

H(x), if β = 0

r ∈ {0, 1}`, otherwise.

Namely, in the random oracle model, a cryptographic hash function H viewed

as a random oracle that responds to every query with a random response chosen

uniformly from {0, 1}` [38, 39].

2.1.4 Elliptic Curve Cryptography

Let Fp be a finite field with p > 3 a large prime. Also let E(Fp) = {(x, y) ∈ F2
p:

y2 = x3 + ax + b where a, b ∈ Fp with 4a3 + 27b2 6= 0 } ∪ {O}, where O denotes

the point at infinity. In general, for security purposes, the order of E(Fp) has a

large prime factor and a few other small factors, called cofactors. The order of

E(Fp) must be kq where q is a large prime, and k is the cofactor. Let G be a cyclic

subgroup of large prime order q of E(Fp). The security of the system is based on

the intractability of the discrete logarithm problem (DLP) in the subgroup G.

A base point (generator) of the group G can be found by first finding a random

element x0 ∈ Fp such that y2
0 = x3

0 + ax0 + b for some y0 ∈ Fp, then multiplying it

by the cofactor k as P := k · (x0, y0). Thanks to the Lagrange theorem, if P 6= O,

then it is a base point of order q. For the other generators of the group, just pick a

random element ri ∈ Z∗q, then Pi := ri · P is also another base point of the group G

(due to the fact that gcd(ri, q) = 1, ∀ri ∈ Z∗q) [40–44].

Throughout this dissertation, points on an elliptic curve are represented by cap-

ital letters while scalars are represented by lower-case letters.

11

2.1.5 Homomorphic Encryption

Homomorphic Encryption is a form of cryptosystem as defined below.

Definition 2.1.9. (Homomorphic Encryption.) The encryption algorithm E is ho-

momorphic if given any two encryptions E(p1) and E(p2), one can obtain E(p1 ?p2)

without decrypting the cyphertexts E(p1) and E(p2) for some operation “?” and

∀p1, p2 ∈ P.

In general, the operation ? is either addition or multiplication because these

operations are functionally complete sets over finite sets. Homomorphic encryption

systems are useful cryptographic tools since it allows operations on encrypted data

as if it had been performed on the plaintexts without the need for the decryption

key. Such cryptosystems have natural applications in privacy-preserving, secure

computations. The homomorphic encryption schemes can be addressed in three

categories with respect to the number of applicable operations on the encrypted

message: (i) Partially (singly) HE (PHE), (ii) somewhat HE (SWHE) and (iii)

fully HE (FHE) [45]. In PHE, only one type of operation is allowed without a

bound on the number of operation calls. In literature, there are many cryptosystems

that have PHE property or especially proposed to be so [46–58]. SWHE allows

both types of operations but with a limited number of times. The bound on the

number of operation is due to the fact that the noise grows much faster with the

number of operations. There are several works on SWHE, some of the important

ones are [59–63]. FHE allows all types of operations with an unlimited number of

times by handling the noise using the bootstrapping technique. The first reasonable

FHE scheme was introduced by Craig Gentry in 2009 [22, 23]. Although this was a

breakthrough, several works and implementations hitherto demonstrated that FHE

still needs significant improvement to be able to used in practice [64–71].

12

2.1.6 Oblivious Transfer Protocols

Oblivious Transfer (OT) protocol was primarily introduced by Rabin [72] and later

Even et al. [73] presented a 1-out-of-2 OT protocol. A 1-out-of-2 OT protocol takes

place between two participants: a sender S and a receiver R, where S’s input is

(m0,m1) and R’s input is b ∈ {0, 1}. The OT must guarantee that after protocol

executions S receives nothing about the selection bit, and R receives only (mb)

corresponds to his input and nothing about (m1−b). Crépeau [74] later showed that

Rabin’s OT essentially implies 1-out-of-2 OT. In another words, he showed that

using Rabin’s OT one can realize a 1-out-of-2 OT in polynomial number of steps.

We note that 1-out-of-2 OT can also be generalized to k-out-of-n OT protocol

where S has a set of values {x1, . . . , xm}, R has k selection indices. At the end of the

protocol, R only learns k of the S’s inputs according to his selection indices; whereas

S learns nothing. In the OT-hybrid model, the two parties are given access to the

ideal OT functionality (FOT) which implies a universally composable OT protocol.

Oblivious transfer is a critical underlying protocol used in many MPC constructions

which allows the evaluator to obtain garbled wire tokens corresponding to his/her

private inputs.

OT extension: OT extension is a way of obtaining many OTs from a few numbers

of OT runs and cheap symmetric cryptographic operations. Ishai et al. constructed

the first OT extension method [75], which reduces a given large number of required

OTs to a fixed size security parameter (say n). This is crucial in MPC implementa-

tions especially when the evaluator’s input size is too much.

A protocol for reducing m OTs to n OTs is as follows. Sender S’s inputs:

(x0
1, x

1
1), . . . , (x0

m, x
1
m) and receiver R’s input: σ = σ1, . . . , σm. The sender S samples

a random string s ∈ {0, 1}n; denote s = s1, . . . , sn. The receiver R samples n

random strings T1, . . . , Tn ∈ {0, 1}m. For i = 1, . . . , n, Now S and R run a new

sub-OT protocol as R plays the sender and inputs the pair (Ti, Ti ⊕ σ) and S plays

the receiver and inputs si. Denote the output of S by Qi (Qi = Ti if si = 0, and

13

Qi = Ti ⊕ σ if si = 1).

Let Q be the m × n matrix [Q1| · · · |Qn];Q(i) = ith row. Let T be the m × n

matrix [T1| · · · |Tn];T (i) = ith row. For i = 1, . . . ,m:

• S sends y0
i = x0

i ⊕H(i, Q(i)) and y1
i = x1

i ⊕H(i, Q(i)⊕ s).

• R outputs zi = yσii ⊕H(i, T (i)).

Later, several OT extension schemes based on [75] are proposed for improving

the efficiency [76,77].

2.2 Basics of Secure Computation and Garbled

Circuits

This section provides background information about secure computation and the

garbled circuit scheme for secure computation originally proposed by Yao and some

primitives for formal security analysis.

Secure computation protocols allow two or more mutually (possibly distrustful)

parties to collaborate and compute a public functionality using their private inputs.

Secure computation got a lot of attention in recent years due to its advantages for

cloud computing and secure outsourcing. Consider the following real-life problems.

• Alice wants to investigate her DNA because of her suspicious about an inher-

ent genetic disease. She is aware of a database (e.g. a cloud service) which

contains DNA sequences about numerous genetic diseases. Once Alice gets a

sample of her DNA sequence, she can make a query to the database, who will

then declare Alice the possible diagnosis. On the other hand, in case Alice is

concerned about her personal privacy, the above naive procedure is not appli-

cable because it does not prevent Alice’s private information both the query

(DNA information) and the result (diagnosis) [78]. The database query prob-

lem can also mandate that the server does not learn not only the user query but

14

also the answer to the query. Besides, the service may also need data privacy

due to accountability concerns. For instance, in case the service is charging for

answering each query, than he wants to make sure that no information other

then the answer to a single query is leaked at each transaction.

• The number of orbits around the Earth is nearly 7,000 spacecraft, orbital de-

bris larger than 10 centimeters are routinely tracked and their number exceeds

21,000. It is reasonable that competitor countries do not want to leak the

position information of their vital strategic satellite orbits. Besides, space

satellites are a huge investment and the owners would like to keep their satel-

lites alive in the space as long as possible. Satellites are able to approximate

their positions on the space. These data can be analyzed to predict collisions

and hopefully react to the more critical results. Once the satellite pairs with

a sufficiently high collision risk have been found, the satellite operators should

exchange more detailed information and determine if a collision is imminent

and decide if the trajectory of either object should be modified [79].

The common focus of the above-mentioned illustrations is the following: The

parties would like to execute a specific function on their confidential inputs, and

learn the output result, but neither party is permitting to reveal its own input. The

problem is how to handle such cooperative computation problems without revealing

the privacy of the party’s inputs and eliminate the need of a trusted third party.

Secure multi-party computation (MPC) is a strong candidate approach as a solution

to these problems. In order to that parties can obtain the output of a desired function

by engaging in a protocol where they exchange some messages. The ultimate aim

is that nothing is revealed aside from the output of the protocol as the value of the

function.

Other examples of such computations include real-life applications such as: vot-

ing over the Internet [80–83], electronic bidding [84,85], financial data analysis [86],

privacy preserving data mining [87,88] data sharing & analytics [89–91], blockchain

solutions [92–97], etc. For more reading on applications of MPC, we refer to [98–102].

15

In fact, there is no bound for the fields where MPC could be applied, and it can be

adopted in any relevant cases.

A secure two-party computation protocol allows two parties to compute a com-

mon function using their private inputs without leaking any information except the

output. The concept is appeared in the 1980-s by the seminal work of Andrew Yao,

but the original have been far too inefficient for practical use. The very classical

garbled circuit construction methods require four ciphertexts per gate, although a

quite large effort has been put into reducing this cost. The two-party MPC is an

important special case, which received a lot of targeted attention [98], and because

two-party protocols are often different from the generic n-party case (in terms of

protocol efficiency etc.), we use the abbreviation 2PC to emphasize this special case

as needed.

2.2.1 Yao’s Garbled Circuit

In 1980s Andrew Yao has shown that secure two-party protocols can be constructed

for any computable function [103,104]. In Yao’s protocol, the function is represented

as a Boolean circuit and it is quite efficient in terms of number of rounds, which is

constant. The original protocol is secure in the semi-honest adversary model.

In a nutshell, Yao’s garbled circuit protocol allows two parties (garbler and eval-

uator) having inputs x1 and x2 to evaluate a function f(x1, x2) without revealing

any information about their private inputs beyond the function output. The ba-

sic concept is that the garbler computes an encrypted form of the circuit Cf ; then

the evaluator obliviously obtains the output of Cf without retrieving any private

intermediate values.

Beginning with the Boolean circuit Cf (in which both parties agreed upon in

advance), the garbler associates two garbled tokens X0
i and X1

i for each wire i of

the circuit (X0
i corresponds to the semantic value 0 and X1

i to 1). Then, for each

two-fan-in and one-fan-out gate g of the circuit with input wires i, j and output wire

16

y, the garbler computes the following four ciphertexts for all inputs bi, bj ∈ {0, 1}.

Ency
X
bi
i ,X

bj
j

(
Xg(bi,bj)
y

)
(2.1)

This results in four random ordered ciphertexts that yield a garbled gate. In the

end, the collection of garbled gates constitutes the garbled circuit which is sent to

the evaluator.

In order to perform the garbled circuit evaluation, the evaluator needs the garbled

tokens (keys) corresponding to each party’s input wires. The garbler can simply send

(in plaintext form) the keys that correspond to her own inputs. For the evaluator’s

inputs, the parties should run an oblivious transfer (OT) protocol. In addition,

the garbler sends a mapping that reveals the resulting output-wire tokens to the

semantic output bits.

2.2.2 Optimizations on Yao’s Scheme

In the past, academicians had a various prediction regarding the applicability of

Yao’s scheme. In 1997, Goldwasser [105] states that: “The field of multi-party

computations is today where public-key cryptography was ten years ago, namely an

extremely powerful tool and rich theory whose real-life usage is at this time only

beginning but will become in the future an integral part of our computing reality”.

However, Goldreich [106] points out that using the solutions derived by general

results for the special case of multi-party computation could be impractical; special

solutions should be developed and tailored for special cases for efficiency reasons.

The past few years have seen much progress in constructing secure and efficient

secure multi-party schemes using garbled circuits. With the recent improvements,

the garbled circuit approach is now believed to be a feasible solution for real-life

secure computation problems.

17

Recently, several important optimizations have been proposed that improves

either the garbled circuit construction, or the computation of both the garbler and

the evaluator, or the bandwidth efficiency. Some of the major optimizations are point

and permute [107], free-XOR [27], garbled row reduction [84, 108], pipelining [109],

dual-key cipher [2], miniLEGO [110], fleXOR [28], and half gates technique [1].

All these optimizations mostly consider the semi-honest adversary model. With

the recent improvements, Yao’s protocol has now very impressive results in terms

of complexity and communication bandwidth requirements. We now give a brief

summary of some of the seminal ones.

Point and permute

The simple version of Yao’s method basically decrypts all ciphertexts which demand

on four decryptions per gate to evaluate the circuit. In [107], an elegant method is

introduced which reduces the circuit evaluator’s work from four decryptions to one.

In this method for each wire i, garbler chooses w0
i , w

1
i and a signal bit σi. The basic

intuition is that if σi equals 0, then write the ciphertexts that use w0
i first; otherwise,

write them second. The order of the ciphertexts for general σi and σj is as follows:

c0 = Ewσii

(
E
w
σj
j

(
w
g(σi,σj)
k ||σk ⊕ g(σi, σj)

))
c1 = Ewσii

(
E
w
σ̄j
j

(
w
g(σi,σ̄j)
k ||σk ⊕ g(σi, σ̄j)

))
c2 = E

w
σ̄i
i

(
E
w
σj
j

(
w
g(σ̄i,σj)
k ||σk ⊕ g(σ̄i, σj)

))
c3 = E

w
σ̄i
i

(
E
w
σ̄j
j

(
w
g(σ̄i,σ̄j)
k ||σk ⊕ g(σ̄i, σ̄j)

))
The evaluator uses these keys wσii ||φi and w

φj
j ||φj to decrypt the ciphertext at

that position φi, φj. By doing this evaluator will recover w
g(bi,bj)
k ||φk where φk =

σk ⊕ g(bi, bj) as desired.

18

Free-XOR

Kolesnikov and Schneider [27] present an influential approach that removes the need

of garbling XOR gates (so XOR gates become free, incurring no communication or

cryptographic operations). They proposed picking a global random value R and a

single random token w0
i for wire i, and setting the token for the complement one

as w1
i = w0

i ⊕ R. If k is the output wire of an XOR gate, then w0
k = w0

i ⊕ w0
j and

w1
k = w0

k ⊕R. On the both garbler and evaluator side the XOR operation is simple.

Consider an XOR gate with input wires i, j and output wire k and given input

garbled wire values wi and wj. We want to compute wk = wi⊕wj. Let wi = wαi and

wj = wβj . If α = β = 0 then wk = w0
i ⊕w0

j = w0
k = w0

i ⊕R⊕w0
j ⊕R = w0

k. Non-XOR

gates (such as AND, OR etc.) are computed as usual (with w1
k = w0

k ⊕R).

Free-XOR method remarkably reduces the complexity of the garbled circuits in

terms of both computation and communication and become a seminal work that

took a big step towards making MPC practical.

On the other hand, the security of Free-XOR method is questioned by Choi et

al. [111]. Kolesnikov and Schneider proved (somehow) security of their approach

in the random oracle model, and claimed that correlation robustness is sufficient for

their scheme. However, Choi et al. [111] showed that the free-XOR technique is

not secure based on correlation robustness alone and some form of circular security

is also needed. This work also demonstrates that correlation robustness is strictly

weaker than circular-correlation robustness that means weaker than also random

oracle model.

Garbled row reduction

From the end of the 90s, the focus mostly turns to reducing the bandwidth overhead

since it seems to be one of the most important bottlenecks for secure computation

protocols. Naor et al. [84] introduced two types of optimizations for row reductions in

a garbled scheme to reduce bandwidth consumption. These optimizations are later

formally described by Pinkas et all. [108]. Naor et al. [84] presented an optimization

19

for reducing the standard 4-ciphertext garbled gates to three ciphertexts. In this

optimization, one of the ciphertexts is fixed to an all-zeros bit string. Since one of

the rows is set to always consist of all-zeros, then it does not actually need to be

included in the garbled table. Result of decryption of this all-zeros row gives one of

the tokens.

Later Pinkas et al. in [108] proposed a technique to reduce the size of a garbled

table from four to three ciphertexts, thus saving 25% of network bandwidth. This

method is also known as the GRR3 method as it requires to send three ciphertexts

per gate in the communication channel. The method is as follows:

• Let i and j be the input wires and let k be the output wire

– Set (w
g(σi,σj)
k ||σk ⊕ g(σi, σj)) =: H(wσii ||w

σj
j)

– When using the free-XOR technique, set w1−b
k = wbk⊕R otherwise, choose

it at random.

– Construct ciphertexts c2, c3, c4 as usual

• When computing the gate:

– If both signal bits equal 0 (i.e., α⊕σj = β⊕σj = 0), then don’t decrypt;

just derive w
g(σi,σj)
k and σk ⊕ g(σi, σj) by computing H(wσii ||w

σj
j)

– Otherwise decrypt one of c2, c3, c4 as usual

In [108] another garbled row reduction variant called GRR2 is proposed for re-

ducing the bandwidth size to two ciphertexts per gate. GRR2 involves computing

polynomial interpolation and a modified version of secret sharing [112]. Therefore,

GRR2 is more costly than the standard PRF or hash function garbling. The perfor-

mance experiments in [108] also show that GRR2 is about three times slower than

the fastest experiment.

In general, GRR is a technique for reducing a standard garbled gate bandwidth

from a size of 4 ciphertexts down to either 3 or 2. However, Free-XOR is only

20

compatible with GRR3, but not with the more compressive GRR2 variant. The

underlying reason is that in the GRR2 method, both output wire labels (for 0 and

1) of a gate as fixed pseudorandom functions of the input wire labels. Therefore,

it is not always achievable to guarantee that the output wire labels are of the form

(C,C ⊕R) for the global R value of Free-XOR method.

FleXOR

In [28] Kolesnikov, Mohassel, and Rosulek introduced a generalization of free-XOR

technique called the flexible XOR, shortly fleXOR. In fleXOR technique, an XOR

gate can be garbled using 0, 1, or 2 ciphertexts, depending on the combinatorial

structure of the Boolean circuit and the circuit is complaint with GRR2 applied to

the AND gates. For circuits with many AND gates, this method results in smaller

circuits than with free-XOR. In other cases, free-XOR could be more preferable.

Therefore, the actual benefit of this method is strictly depending on the structure

of the Boolean circuit.

Considering the security of fleXOR, the circularity assumption can be removed

using this technique at some additional cost while the correlation robustness/related

key assumption remains.

Half gates technique

In [1], Zahur, Rosulek, and Evans propose an elegant and efficient garbling scheme

called half gates technique. Their garbling technique is currently known as the most

efficient optimization in terms of communication complexity compared to any prior

scheme. The idea behind the approach is to divide an AND gate into two half AND

gates for which one party knows one of the inputs.

This technique remains compatible with free-XOR [27] while also reducing the

ciphertext requirement for each odd gate1 to two. Here, we briefly describe the

1Odd and Even gates are fan-in-two logic gates. The former has an odd number of TRUE
outputs in its truth table; while the latter has an even number of those.

21

Table 2.1: Garbling an odd gate using half gates technique [1].

Garbler half gate (pb known to
the garbler)

Evaluator half gate (pb ⊕ vb known to
the evaluator)

Defines the half gate:
fG(va, pb) := (α1 ⊕ va)(α2 ⊕ pb)⊕ α3

Defines the half gate:
fE(va, vb ⊕ pb) := (α1 ⊕ va)(pb ⊕ vb)

Computes:
TGc ← H(w0

a)⊕H(w1
a)⊕ (pb ⊕ α2)R

w0
Gc ← H(wpaa)⊕ fG(pa, pb)R

Computes:
TEc ← H(w0

b)⊕H(w1
b)⊕ wα1

a

w0
Ec ← H(wpbb)

The garbler sends TGc. The garbler sends TEc.

garbling procedure of odd gates using the half gates technique and refer the reader

to [1] for further details and its security proof.

Any odd gate type can be written in the form of Equation (2.2) where α1, α2

and α3 define the gate type, e.g., setting α1 = 0, α2 = 0, α3 = 1 results in a NAND

gate [1]. Let vi denote the one-bit truth value on the ith wire in a circuit.

fGodd
(va, vb)→ (α1 ⊕ va) ∧ (α2 ⊕ vb)⊕ α3 (2.2)

The garbler garbles an odd gate by following the steps for both half gates in

Table 2.1. The tokens for FALSE and TRUE on the ith wire are denoted as w0
i

and wi, respectively. The global free-XOR offset is denoted as R. The garbler sets

R � {0, 1}λ−11 globally, and w0
i � {0, 1}λ and w1

i ← w0
i ⊕ R for each wire. We

have lsb(R) = 1 so that lsb(w0
i) 6= lsb(w1

i). w
b
Gc and wb

Ec denote the tokens for the

garbler and the evaluator half gate outputs for truth value b, respectively. TGc and

TEc denote the λ-bit strings needing to be sent for the garbler and evaluator half

gates, respectively.

Let wi be a token on ith wire obtained by the evaluator who does not know

its corresponding truth value vi. For the ith wire, let pi := lsb(w0
i), a value only

known to the garbler. If two symbols are appended, an AND operation is implied,

i.e., ab = a ∧ b. H : {0, 1}λ × Z → {0, 1}λ denotes a hash function with circular

correlation robustness for naturally derived keys2, having the security parameter λ.

2Circular correlation robustness for naturally derived keys is the security requirement for a

22

The token on the output wire of the odd gate for FALSE is w0
Gc ⊕ w0

Ec since

the output of the odd gate is an XOR of half gate outputs. The two ciphertexts

computed TGc and TEc are needed to be sent to the evaluator for each gate.

Half gate method presents the best known garbled circuit scheme in terms of

both communication and computation complexity comparing any prior scheme.

2.2.3 Adversary Types

In what follows, we briefly describe the types and intuition for the capabilities of

the semi-honest, covert, and malicious adversaries. For a more detailed discussion,

we refer to [88,113] and for formal definitions [114].

Malicious adversary

A malicious adversary is a kind of active attacker that can arbitrarily deviate from

specification of the protocol and utilizes any effective strategy to retrieve some ad-

ditional knowledge about the other parties private data and/or manipulate the out-

come of the computation. Since this is the strongest type of adversary model, in most

cases, protection against such attacks is excessive and expensive to achieve [115].

In literature, there exist many proposals to provide security malicious model such

as [116–122].

Covert adversary

A covert adversary is also a kind of active attacker that can arbitrarily deviate

from specification of the protocol. Covert adversary is very similar to malicious

adversary but it differs in the sense that the attacker can only be caught with a

given probability (e.g., 1/2) called as the deterrence factor [115,123,124].

suitable hash function used in half gates garbling. We refer the reader to [1] for its details.

23

Semi-honest adversary

A semi-honest adversary is a type of passive attacker that executes verbatim the

prescribed steps of the protocol but can record all the intermediate transactions and

make analysis in order to retrieve some additional knowledge about the other parties

private data. This class of attacker also known as honest-but-curious adversary [100,

114]. In fact, several MPC protocols and designs consider the semi-honest model

since this model is highly relevant for numerous real-world applications [84,109,125–

128].

24

Chapter 3

RELATED WORKS

In this chapter, we give an overview of the existing private function evaluation

protocols, especially for two parties. First proposed by Andrew Yao [103, 104],

secure two-party computation (2PC) comprises the techniques for joint evaluation of

a function by two parties on their respective secret inputs. In recent years, there has

been promising progress over the original Yao’s protocol [1, 27–29,84,108,129,130].

As a consequence of these improvements, secure computation techniques now have

promising results. 2PFE differs from the standard 2PC in that the latter involves

both parties evaluating a publicly known function on their private inputs, whereas

in the former, the function itself is also a private input. The 2PFE concept is first

appeared in [131, 132]. So far, there are basically two main approaches that PFE

solutions are built upon.

Several proposals in literature have aimed to design efficient special -purpose

and general -purpose PFE protocols. In what follows, we explore the fundamental

approaches on designing PFE solutions which can be classified as general purpose

(universal circuit based) and special purpose PFE protocols. The special purpose

protocols can be divided into two sub-categories (i) (mostly)1 symmetric-based, (ii)

asymmetric-based PFE solutions. We first begin with reviewing the general purpose

1The only asymmetric cryptographic structure is due to the OT operations of underlying 2PC,
therefore it can be considered as symmetric-based (see [19,26]).

25

universal circuit based PFE solutions. Next, we explore existing the special purpose

PFE solutions.

3.1 Universal Circuit Based PFE Solutions

The general-purpose PFE solutions reduce the universal circuit [133] based ap-

proach that works with any MPC protocol. The idea is that if the regular secure

computation techniques can be applied on a universal circuit, then a PFE scheme

can be obtained. The ideal functionality of MPC FUg for a universal circuit Ug

takes as input a certain sized (g) Boolean circuit representation Cf of the private

function f , and inputs of parties x1, . . . , xn (i.e., FUg(Cf , x1, . . . , xn)), and outputs

f(x1, . . . , xn). The works based on this approach mainly aim to reduce the size

of universal circuits, and to optimize their implementations using some MPC tech-

niques [14,15,18,19,25]. The early universal circuit based schemes result in massive

circuit sizes [14, 15, 133, 134], which was the root cause of their inefficiency. By the

recent works [18] and [19] the universal circuits approach becomes more practical but

the computation cost is still worse then the special purpose OSN (symmetric) based

protocols of [17,26] and the communication cost is worse than the asymmetric-based

protocols of [9, 17,21].

3.2 Special Purpose PFE Solutions

The second approach falls into designing special purpose PFE protocols which avoids

the use of universal circuits. Following this line of work, several PFE schemes have

been proposed [9, 16, 17, 20, 21, 26, 135]. An early attempt on this category is Paus,

Sadeghi, and Schneider’s work [16]. They introduce -what they called- a semi-private

function evaluation in which the type of the gates is a secret of one party, but the

circuit topology (i.e., the set of all connections of predecessors and successors of

each gate) is public to both parties. Due to the weaker assumption of semi-privacy,

26

their approach does not provide a complete PFE solution. A remarkable work

embracing this approach is singly homomorphic encryption based 2PFE scheme

of Katz and Malka (KM11) applied on Boolean circuits [9]. This work utilizes a

singly homomorphic scheme (e.g., ElGamal [50] or Paillier [55]) for the generation

of the two random tokens2 on each wire, later utilized in the 2PC stage. They first

propose a basic version of their protocol in [9, Sect. 3.1] (we call KM11-1st) and

for the efficiency concerns they propose a more efficient variant in [9, Sect. 3.2] (we

call KM11-2nd). Both schemes have only three rounds and provide O(g) asymptotic

complexity in terms of communication and computation, where g denotes the circuit

size. The latter one reduces the communication and offline computation complexity.

In [17], Mohassel and Sadeghian come up with a framework for PFE that includes

several schemes for different settings. They have proposed protocols for both arith-

metic and Boolean circuits. Their protocol for arithmetic circuits (based on partially

HE) has a number of rounds equal to the number of gates (see [17, p. 570]), whereas

the other PFE protocols for Boolean circuits have constant number of rounds. For

large circuits, the number of rounds will be a bottleneck3. For Boolean circuits, they

propose two types of protocols: one is based on partially HE (we call MS13-HE)

and the other one is based on oblivious evaluation of switching networks (we call

MS13-OSN). The MS13-OSN protocol of [17] is (mostly) based on symmetric cryp-

tographic primitives since the only asymmetric cryptographic structure is due to

the OT operations of underlying 2PC. Their proposals are essentially secure in the

semi-honest model and have later been extended to the malicious model by [135].

Even though MS13-OSN is efficient for small sized circuits, it is still inefficient

for large circuits due to its O(g log(g)) communication and computation complexi-

ties. It fails to outperform asymptotically linear communication and computation

2Throughout this dissertation, the term “token” stands for a random bit string generated for a
wire of the Boolean circuit, and has hidden semantics of either 0 or 1.

3We can intuitively say that as the latency between parties increases, so does the cost of each
additional communication round (we refer to [136] that backs up this discussion). A similar analysis
on trade-offs between Boolean and arithmetic circuit based protocols have also been addressed
in [137, p. 527].

27

complexities of [9]. On the other hand, MS13-HE provides linear communication

and computation complexities and slightly outperforms KM11-2nd. We remark that

to the best of our knowledge, a reusability feature cannot be adapted4 to protocols

proposed in [9] and [17].

The existing schemes based on asymmetric cryptographic primitives such as [9]

and partially HE based protocol of [17] are promising in terms of linear commu-

nication complexity. However, for some applications, protocols primarily based on

symmetric cryptography could be favorable.

Considering OSN based 2PFE scheme of [17], they split the PFE task into two

sub-functionalities: (1) Circuit topology hiding (CTH), (2) Private gate evalua-

tion (PGE). Briefly speaking, in CTH, a series of procedures is performed: First,

the function owner (say Party1) detaches the interconnections of the gates to ob-

tain single gates, and keeps the topological mapping of the circuit private. Second,

Party1 and the other party (say Party2) engage in an oblivious evaluation of switch-

ing network (OSN)5 protocol which consists of O(g log(g)) oblivious transfer (OT)

operations (throughout this dissertation, g denotes the number of gates, and log()

denotes the logarithm base 2). Next, in PGE, both parties engage in a Yao’s 2-party

computation (2PC) protocol [103, 138] where Party1 and Party2 play the evaluator

and the garbler roles, respectively. Each single gate is garbled into four ciphertexts.

By setting all gates as a single gate type (e.g., NAND or NOR), it is possible to avoid

the necessity of hiding the gate functionality [17].

4This is due to the fact that the blinding operations in these protocols are one-time pads (XOR
or cyclic addition), therefore, reusing the blinded values inevitably leaks information about the
truth values of intermediate wires.

5The OSN mechanism is introduced in [17] to achieve a solution for the oblivious extended
permutation (OEP) problem. OEP allows the oblivious transition of each masked gate output to
the input(s) of the next connected gate(s).

28

Recently, in [30], Wang and Malluhi attempt to improve the 2PFE scheme of

Mohassel and Sadeghian by removing only one ciphertext from each garbled gate in

the 2PC phase. However, the communication cost of the 2PC phase is quite lower

than that of the OSN phase, which means that their scheme reduces the overall cost

by less than 1%.

29

Chapter 4

AN EFFICIENT 2-PARTY
PRIVATE FUNCTION
EVALUATION PROTOCOL
BASED ON HALF GATES

In this chapter, we mainly focus on improving 2-party private function evaluation

(2PFE) based on (mostly) symmetric cryptographic primitives. This chapter is

based on our work published in The Computer Journal [20]. In Section 4.1, we first

give an introduction on 2PFE framework and scheme of [17] in detail. We formally

present our 2PFE scheme in Section 4.2. Section 4.3 provides a simulation-based

security proof of our 2PFE scheme in the semi-honest model. In Section 4.4, we

analyze our protocol in terms of communication and computation complexities and

compare it with 2PFE scheme in [17].

4.1 2-Party PFE Framework

In [17], Mohassel and Sadeghian introduce a generic PFE framework for Boolean and

arithmetic circuits. In this work, our focus is mainly on private function evaluation

based on Boolean circuits in 2-party setting (i.e., 2PFE). In order to achieve a secure

2PFE, Mohassel and Sadeghian show that hiding (i) the parties’ private inputs, (ii)

the topology of the circuit representation Cf , and (iii) the functionality of its gates

is required. The framework is not concerned with hiding the numbers of gates,

30

input/output wires and the type of the gates of the circuit. The complete task of

PFE is classified into two functionalities: (1) Circuit Topology Hiding (CTH), (2)

Private Gate Evaluation (PGE).

Throughout this thesis, the party who knows the private function is denoted by

Party1, plays the evaluator role in 2PC; whereas the other party is denoted by Party2

plays the garbler role in 2PC. In a nutshell, in CTH, Party1 extracts the topological

mapping πf (kept private) from the circuit representation Cf and converts the whole

circuit into a collection of single gates. Then Party1 and Party2 engage in an oblivious

evaluation of switching network (OSN) protocol where Party2 obliviously obtains

tokens on gate inputs. In PGE, a 2PC protocol is performed to obtain the final

output. In the rest of this section, we describe the notions related to CTH, and the

2PFE scheme proposed in [17].

4.1.1 Context of CTH

Let n and m denote the number of inputs and outputs of Cf , respectively. Let g be

the number of gates (size of circuit). OW : {ow1, . . . , own+g−m} denotes the set of

outgoing wires which is the union of the input wires of the circuit and the output

wires of its non-output gates (having M = n+g−m elements in total whose indices

are chosen randomly). Similarly, IW : {iw1, . . . , iw2g} denotes the set of incoming

wires which is the input wires of each gate in the circuit (having N = 2g elements

in total whose indices are chosen randomly).

The full description of the topology of a Boolean circuit Cf can be accomplished

by a mapping πf : OW→ IW. The mapping πf maps i to j (i.e., πf (i)→ j), if and

only if owi ∈ OW and iwj ∈ IW correspond to the same wire in the circuit Cf . Note

that the mapping πf is not a function if an outgoing wire corresponds to more than

one incoming wire, while its inverse π−1
f is always a function. Figure 4.1 shows an

example circuit Cf and its mapping πf .

31

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

1y

2y

1 1xow

 fCircuit C

(a)

1iw

4iw

5iw

6iw

7iw

(b)

4n 

2g m 

2 8g 

 fMapping 

2 2xow

3 3xow

4 4xow

5iw

6iw

8iw

7iw

2iw

3iw

8iw

1ow

2ow

3ow

4ow

5ow

6ow

Figure 4.1: (a) A circuit representation Cf of a function f . (b) The mapping πf of f .

From the inclusion-exclusion principle, we obtain Equation (4.1) that gives the

number of possible mappings for the given M and N values.

ρ =
M∑
i=0

(−1)i
(
M

i

)
(M − i)N (4.1)

In the context of CTH, ρ indicates the number of possible circuit topologies.

Thus, the security of CTH is proportional to ρ. In what follows, we describe the main

elements of CTH functionality whose essential target is the oblivious application of

the mapping πf .

Oblivious evaluation of mapping A mapping of the form π : {1, . . . , N} →

{1, . . . , N} is a permutation if it is a bijection. We next define the extended permu-

tation (EP) as follows:

Definition 4.1.1 (Extended permutation (EP)). Given the positive integers M and

N , a mapping π : {1, . . . ,M} → {1, . . . , N} is called an EP if for all y ∈ {1, . . . , N},

there exists a unique x ∈ {1, . . . ,M} such that π(x) = y, and its inverse π−1 :

{1, . . . , N} → {1, . . . ,M} is an onto function.

The ideal 2-party oblivious extended permutation (2-OEP) functionality is de-

fined as follows:

32

Definition 4.1.2 (2-OEP functionality). The first party Party1’s inputs are an EP

π : {1, . . . ,M} → {1, . . . , N}, and a blinding vector for incoming wires T := [tj �

{0, 1}λ] for j = 1, . . . , N . The other party Party2’s inputs are a vector for outgoing

wires W := [wi � {0, 1}λ] for i = 1, . . . ,M . In the end, Party2 learns S := [σj =

wπ−1
f (j) ⊕ tj] for j = 1, . . . , N while Party1 learns nothing.

We call any 2-party protocol construction realizing the 2-OEP functionality as

a 2-OEP protocol. Mohassel and Sadeghian have constructed a constant round 2-

OEP protocol by introducing the OSN structure. Since we also utilize their 2-OEP

protocol in our scheme, here we give some of its details. Mainly, they first construct

an extended permutation using switching networks, then provide a method using

OTs for oblivious evaluation of the resulting switching network. We refer our reader

to [17] for the security proof and application of this construction on various MPC

protocols.

EP construction from switching networks. Each 2-switch takes two λ-bit

strings and two selection bits as input, outputting two λ-bit strings [17]. Each of

the outputs may get the value of any of the input strings depending on the selection

bits. This means for input values (x0, x1), there are four different switch output

possibilities. The two selection bits s0 and s1 are used for determining the switch

output (y0, y1). In particular, the switch outputs y0 = xs0 , and y1 = xs1 .

Unlike 2-switches, 1-switches have only one selection bit s. For an input (x0, x1),

a 1-switch outputs one of the two possible outputs: (x0, x1) if s = 0, and (x1, x0)

otherwise.

Definition 4.1.3 (Switching Network (SN)). A switching network SN is a collection

of interconnected switches whose inputs are N λ-bit strings and a set of selection

bits of all switches, and whose outputs are N λ-bit strings.

The mapping π : {1, . . . , N} → {1, . . . , N} related to an SN (π(i) = j) implies

that when the SN is executed, the string on the output wire j gets the value of that

on the input wire i.

33

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1y

2y

1 1ow x

2 2ow x

3 3ow x

4 4ow x

8iw

 fCircuit C

(a)

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1ow
2ow

3ow

4ow

8iw

5ow

6ow

(b)

4n 

2g o 

CTH

2 8g 

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1y

2y

1 1ow x

2 2ow x

3 3ow x

4 4ow x

8iw

 fCircuit C

(a)

1iw

2iw

3iw

4iw

5iw

6iw

7iw

1ow
2ow

3ow

4ow

8iw

5ow

6ow

(b)

4n 

2g o 

2 8g 

 fMapping 

1ow

2ow

3ow

4ow
Dummy

Placement5ow

6ow

1D

1ow

2ow

3ow

4ow

5ow

6ow
2D

1D
1ow

2ow

3ow

4ow

5ow

6ow

1ow

5ow

Permutation
1ow

2ow

3ow
4ow

5ow

6ow

1ow

5ow2D

1G

2G

3G

4G

5ow

6ow

1iw

2iw

3iw

4iw

1y

2y

1 1xow

 fCircuit C

(a)

1iw

4iw

5iw

6iw

7iw

1ow

(b)

4n 

2g o 

2 8g 

 fMapping 

Dummy
Placement

1D 2D

1D

Permutation

2D

2 2xow

3 3xow

4 4xow

5iw

6iw

8iw

7iw

2ow

3ow

4ow

5ow

6ow

2iw

3iw

8iw

1ow

2ow

3ow

4ow

5ow

6ow

1ow

2ow

3ow

4ow

5ow

6ow

1ow

5ow

2ow

4ow

3ow

1ow

5ow

5ow

1ow

6ow

1ow

2ow

3ow

4ow

5ow

6ow

Figure 4.2: The related switching network for the mapping πf in Figure 4.1.

A permutation network PN is a special type of SN whose mapping is a permu-

tation of its inputs. In contrast to SNs, PNs composed of 1-switches. Waksman

proposes an efficient PN construction in [139]. Mainly, this work suggests that a PN

with N = 2κ inputs can be constructed with N log(N)−N +1 switches. In [17], the

authors propose the construction of an extended permutation by combining SNs and

PNs. However, extended permutations differ from SNs in that the number of their

inputs M and that of their outputs N need not be equal (M ≤ N). N−M additional

dummy inputs are added to the real inputs of an EP π : {1, . . . ,M} → {1, . . . , N}

in order to simulate it as an SN. The SN design for extended permutation is divided

into the following three components (see also Figure 4.2).

1. Dummy placement component. Dummy placement component takes N

input strings composing of real and dummy ones. For each real input that π

maps to k different outputs, the dummy-value placement component’s output

is the real string followed by k − 1 dummy strings.

2. Replication component. Replication component takes the output of the

dummy-value placement component as input. If a value is real, it goes un-

changed. If it is a dummy value, it is replaced by the real value which precedes

it. This can be computed by a series of N − 1 2-switches whose selection bits

(s0, s1) are either (0,0) or (0,1). If the selection bits are (0,0), that means x1

is dummy, and x0 goes both of the outputs. If they are (0,1), that means both

inputs are real, and both are kept on the outputs in the same order. At the

34

end of this step, all the dummy inputs are replaced by the necessary copies of

the real inputs.

3. Permutation component. Permutation component takes the output wires

of the replication component as input. It outputs a permutation of them so

that each string is placed on its final location according to the prescription of

mapping π.

An efficient implementation of both dummy placement and permutation blocks

is via the use of a Waksman permutation network. Combining these three compo-

nents, one gets a larger switching network, where the number of switches needed is

2(N log(N)−N + 1) +N − 1 = 2N log(N)−N + 1 [17]. The topology of the whole

switching network is the same for all N input EPs, and the selection bits specify the

input values appearing on the outputs.

Oblivious evaluation of switching network (OSN) construction We con-

tinue with describing Mohassel and Sadeghian’s method for oblivious evaluation of

switching networks using OTs.

Adapting the switching network construction to the 2-OEP functionality, Party1

produces the selection bits of the switching network using π, and has a blinding

vector T . Party2 has an input vector for outgoing wires W . In the end, Party2 learns

the switching network’s blinded output vector for incoming wires S, and Party1

learns ⊥. We describe the oblivious evaluation of one of its building block, i.e., a

single 2-switch u.

Let the input wires of the 2-switch be a and b, and its output wires be c and d.

Each of the four wires of the switch has a uniformly random string assigned by Party2

as her share of that wire in the preparation stage, namely, ra, rb, rc, rd � {0, 1}λ for

a, b, c, d, respectively. Party1 has the strings w1 ⊕ ra and w2 ⊕ rb as his shares for

the two input wires. The purpose is enabling Party1 to obtain his output shares

according to his selection bits. There are four possibilities for Party1’s output shares

depending on his selection bits s0u and s1u (see Table 4.1).

35

Table 4.1: Party1 learns one of these rows according to his selection bits.

(s0u,s1u) y0 y1

(0,0) w1 ⊕ rc w1 ⊕ rd
(0,1) w1 ⊕ rc w2 ⊕ rd
(1,0) w2 ⊕ rc w1 ⊕ rd
(1,1) w2 ⊕ rc w2 ⊕ rd

Party2 prepares a table with four rows using ra, rb, rc, rd (see Table 4.2). Party1

and Party2 engage in a 1-out-of-4 OT in which Party2 inputs the four rows that she

has prepared, and Party1 inputs his selection bits for the switch u. At the end, Party1

learns one of the rows as the output in the table. Assume that Party1’s selection

bits are (1,0). This means Party1 retrieves the third row, i.e., (rb ⊕ rc, ra ⊕ rd).

According to the his selection bits, Party1 XORs his input share w2⊕ rb with rb⊕ rc,

as well as his other input share w1 ⊕ ra with ra ⊕ rd, and obtains his output shares

w2 ⊕ rc and w1 ⊕ rd.

The oblivious evaluation of the entire SN for EP goes as follows. In an offline

stage, Party2 sets a uniformly random λ-bit string to each wire in the switching

network. Party2 blinds each element of her input vector W and the dummy strings

which she assigned for N −M inputs of the switching network with her correspond-

ing shares for input wires (an XOR operation is involved in each blinding). Party2

prepares tables for each switch in the switching network similar to Table 4.1 and

Table 4.2. However, both tables for each switch in this scenario have two rows

since each switch, in fact, has two possible outputs1. This means each switch in

the entire switching network can be evaluated running 1-out-of-2 OT. Moreover, the

construction permits parallel OT runs and or use of OT extension, resulting in a

constant round scheme. Party2 needs to send her blinded inputs to Party1, which can

be done during her turn in OT extension in order not to increase the round com-

plexity unnecessarily. Once Party1 gets Party2’s blinded inputs which are also his

input shares and the outputs of all OTs, he evaluates the entire switching network in

1For the 1-switches in dummy placement and permutation components, the first and second
rows of Table 4.1 and Table 4.2, and for 2-switches in replacement components, the second and
third rows of Table 4.1 and Table 4.2 are sufficient.

36

Table 4.2: Party1 gets one of these rows by engaging in 1-out-of-4 OT with Party2.

(s0u,s1u) Ω0 Ω1

(0,0) ra ⊕ rc ra ⊕ rd
(0,1) ra ⊕ rc rb ⊕ rd
(1,0) rb ⊕ rc ra ⊕ rd
(1,1) rb ⊕ rc rb ⊕ rd

topological order, obtaining his output shares. Party1 blinds his output shares with

corresponding elements of T (again, an XOR operation is involved in each blinding),

and sends the resulting vector to Party2. Party2 unblinds each element using her

shares for output wires and obtains the OEP output S. The extended permuta-

tion in this construction includes 2N log(N) − N + 1 switches in total, requiring

2N log(N)−N + 1 OTs for their oblivious evaluation.

4.1.2 Mohassel and Sadeghian’s 2PFE scheme

Here we provide an outline of Mohassel and Sadeghian’s 2PFE construction and

refer the reader to their work for detailed information and its security proof [17].

Their protocol is as follows. Party2 first randomly generates tokens w0
i , w

1
i � {0, 1}λ

for each owi ∈ OW corresponding to FALSE and TRUE, respectively. Party1 also

generates random blinding strings t0j , t
1
j � {0, 1}λ for each iwj ∈ IW. And then

Party1 and Party2 engage in OSN slightly modified from their 2-OEP protocol, where

at the end, Party2 learns [σ0
j = w0

π−1
f (j)
⊕ tbjj] and [σ1

j = w1
π−1
f (j)
⊕ tb̄jj]. Party2 garbles

each gate by encrypting the tokens w0
c , w

1
c on its outgoing wire with the blinded

strings σ0
a, σ

1
a, σ

0
b , σ

1
b on its incoming wires according to its truth table. Party2 sends

the garbled gates and her garbled input tokens to Party1. Party1 gets his garbled

input tokens using OT which can be done in an earlier stage together with other OTs

not to increase round complexity. Using the circuit mapping, his blinding strings,

the garbled gates and the garbled inputs Party1 evaluates the whole garbled circuit,

and obtains the tokens of output bits of f(x). In [17], a gate hiding mechanism is

not provided for 2PFE scheme but instead, all gates in the circuit are let to be only

a NAND gate.

37

Mohassel and Sadeghian’s scheme involves oblivious evaluation of a switching

network made of 2N log(N) + 1 switches. This is composed of an additional N

switches to the ones in their EP construction. The oblivious evaluation of this

switching network requires 2N log(N) + 1 OTs [17]. All of the OTs in the protocol

can be combined for just one invocation of OT extension. The overall computation

cost2 of [17] is about 6N log(N) + 2N + 12 symmetric-key cryptographic operations.

4.2 Our Efficient 2-Party PFE Scheme

In what follows, we describe our scheme in detail (see also Figure 4.3). In the

preparation stage, Party1 compiles the function into a Boolean circuit Cf consisting

of only NAND gates3, and extract the circuit mapping πf by randomly assigning

incoming and outgoing wire indices. Both parties need to have the pre-knowledge

of template of private circuit C̃f defined as follows:

Definition 4.2.1 (Template of Private Circuit (C̃f)). A template of private circuit

C̃f is some information about a circuit Cf which consists of: (1) the number of each

party’s input bits, (2) the number of output bits, (3) the total numbers of incoming

(N) and outgoing wires (M), (4) the incoming and outgoing wire indices which

belong to the same gates, (5) the outgoing wire indices corresponding to each parties

inputs, and (6) the incoming wire indices belonging to output gates.

We continue with describing the main parts of our scheme, namely 2-OEP and

2PC garbling protocols. The steps of our complete 2-party PFE protocol is provided

below:

Party1’s Input: A bit string x1 and a function f .

Party2’s Input: A bit string x2.

2In [18], the computation cost of [17] is also computed. We note that there is a minor typo
in [18, p. 723] i.e., the computation complexity of [17] should be 12g log(2g) + 4g + 12 instead of
12 log(2g) + 4g + 12 where N = 2g and g is the number of gates.

3Any functional-complete gate can be used to rule out the need for a gate hiding mechanism as
in [17].

38

generate the set:generate the set:

2-OEP Protocol

join 2-OEP protocol as

Sender

join 2-OEP protocol as

Receiver

receive:receive:

2PC Protocol

join 2PC protocol as

Garbler

join 2PC protocol as

Evaluator

f
synt

Cf

CTH
(π f

~
Cf

~
Cf

,)

keep π privatef

T :=[t {0,1}]j
λ

where j = 1,…, N where i = 1,…, M

W :=[w {0,1}]i

λ 0 0

^

S := [σ w Å t]jj
0 0 0

π (j)f
-1

Party
1

Party
2

Figure 4.3: Components and high level procedures of our PFE protocol. The private
function f is only known to Party1. Party1 compiles f into a Boolean circuit Cf , and
extracts the mapping πf and the template of private circuit C̃f . Party1 sends C̃f to Party2.
Party1 randomly generates the vector T . Party2 randomly generates the vector W 0. They
engage in a 2-OEP protocol where Party2 learns S0 as the output. With the knowledge
of W 0, S0 and C̃f , Party2 garbles each gate and sends the garbled circuit to Party1. With
the knowledge of πf , C̃f , T , the garbled circuit and the garbled inputs, Party1 evaluates
the whole garbled circuit.

Output: f(x1, x2).

Preparation:

1. Party1 compiles the private function f into a Boolean circuit Cf whose the

number of input bits, output bits, and gates are n, o, and g, respectively,

extracts the mapping πf by randomly assigning incoming and outgoing wire

indices, and prepare the template of private circuit C̃f .

2. Party1 sends C̃f to Party2.

39

3. Party2 randomly generates an λ-bit token w0
i � {0, 1}λ for FALSE on each

owi ∈ OW. This yields a total of M = n + g − o pairs. Moreover, Party2 sets

a vector W 0 := [w0
i] for i = 1, . . . ,M .

4. Party1 generates an λ-bit blinding string tj � {0, 1}λ for each iwj ∈ IW. He

sets those values to a blinding vector T := [tj] for j = 1, . . . , 2g.

2-OEP Protocol:

5. Party2 and Party1 engage in a 2-OEP protocol where Party1’s inputs are the

mapping πf and T , while Party2’s input is the vector W 0. At the end, Party2

learns the blinded string vector S0 := [σ0
j = wπ−1

f (j) ⊕ tj] for j = 1, . . . , N ,

while Party1 learns ⊥.

2PC Protocol (Party2 plays the garbler, and Party1 plays the evaluator):

6. Garbling: Party2 generates a secret λ-bit offset R � {0, 1}λ−11. Party2 sets

the token for TRUE on each owi as w1
i ← w0

i ⊕ R, and the blinded for TRUE

on each iwj as σ1
j ← σ0

j ⊕ R. Moreover, Party2 sets the sets W 1 := [w1
i] for

i = 1, . . . ,M and S1 := [σ1
j] for j = 1, . . . , N . With the knowledge of W 0, S0,

S1 and C̃f , Party2 garbles each odd gate using the Gb procedure in Figure 4.4,

resulting in three ciphertexts per non-output gate and two ciphertexts per

output gate. Party2 sends the garbled circuit F̂ and the tokens X̂2 for her

own inputs x2 to Party1. Party1 gets tokens X̂1 for his own input bits x1 from

Party2 using 1-out-of-2 OTs. (If OSN construction is used, these OTs can be

jointly executed with the ones for 2-OEP protocol in parallel and with just

one invocation of extended OT. For this setting, Party2 needs to pick R and

compute the tokens for TRUE on Party1’s input wires before 2-OEP protocol.)

7. Evaluating: With the knowledge of πf , T , F̂ and the garbled input X̂ =

(X̂1, X̂2), Party1 evaluates the whole garbled circuit in topological order. When

an outgoing wire i is mapped to an incoming wire j, the token wi is XORed

with tj to reach the blinded string σj. Party1 evaluates each garbled gate using

40

Table 4.3: Adapting half gates technique to our 2PFE for garbling an odd gate. Here,
α1, α2 and α3 define the gate type (e.g., α1 = 0, α2 = 0 and α3 = 1 for a NAND gate,
see Equation (2.2)). The token w0

c on the output wire equals w0
Gc ⊕ w0

Ec ⊕ ψc. The three
ciphertexts TGc, TEc, and ψc are sent to Party1 for each gate.

Garbler half gate (pb known to
the garbler)

Evaluator half gate (pb ⊕ vb known to
the evaluator)

Defines the half gate:
fG(va, pb) := (α1 ⊕ va)(α2 ⊕ pb)⊕ α3

Defines the half gate:
fE(va, vb ⊕ pb) := (α1 ⊕ va)(pb ⊕ vb)

Computes:
TGc ← H(σ0

a)⊕H(σ1
a)⊕ (pb ⊕ α2)R

w0
Gc ← H(σpaa)⊕ fG(pa, pb)R

Computes:
TEc ← H(σ0

b)⊕H(σ1
b)⊕ σα1

a

w0
Ec ← H(σpbb)

Defines the third ciphertext:

ψc := w0
Gc ⊕ w0

Ec ⊕ w0
c

Party2 sends TGc, TEc, and ψc.

the Ev procedure in Figure 4.4. At the end, Party1 obtains the tokens for

f(x1, x2).

4.2.1 Use of 2-OEP protocol

Let w0
i and w1

i be the tokens for FALSE and TRUE on the ith outgoing wire owi ∈ OW,

respectively, and R be the global free-XOR offset [27] throughout the circuit. Party2

sets w0
i � {0, 1}λ for each owi. The blinding string on the jth incoming wire

iwj ∈ IW is denoted as tj. Party1 sets tj � {0, 1}λ for each iwj. Party1 and Party2

engage in a 2-OEP protocol where Party1’s inputs are πf and a blinding vector for

incoming wires T := [tj] for j = 1, . . . , N , and Party2’s inputs is a token vector for

FALSE on outgoing wires W 0 := [w0
i] for i = 1, . . . ,M . At the end, Party2 learns the

vector of blinded strings for FALSE S0 := [σ0
j = wπ−1

f (j) ⊕ tj] for j = 1, . . . , N , while

Party1 learns ⊥.

Since our protocol allows all wires in the circuit to have the same offset R,

unlike [17], Party1 needs only a single blinding string tj for each wire, and Party2

does not need to input both tokens w0
i and w1

i to the 2-OEP protocol. This leads

to a considerable decrease in communication cost compared to [17], in which two

41

blinding strings t0j and t1j for each wire are used, and both w0
i and w1

i are inputs to

the OSN protocol (slightly modified 2-OEP protocol).

4.2.2 Our 2PC Garbling Scheme for 2PFE

This section presents our garbling scheme based on half gates technique [1]. Similar

to half gates technique, Party2 sets R � {0, 1}λ−11, w1
i ← w0

i ⊕ R for TRUE on

each owi, and σ1
j ← σ0

j ⊕ R for TRUE on each iwj. We have lsb(R) = 1 so that

lsb(w0
i) 6= lsb(w1

i), and lsb(σ0
j) 6= lsb(σ1

j). Party2 follows the steps in Table 4.3 in

order to garble each odd gate.

We now give some necessary notation as follows. Let w0
c and w1

c denote both

tokens on an outgoing wire, while σ0
a, σ

1
a, σ

0
b , σ

1
b denote the blinded strings on

incoming wires. Let also vj denote the one-bit truth value on the jth incoming

wire in a circuit. Further, wb
Gc and wb

Ec denote the tokens for the garbler and the

evaluator half gate outputs for truth value b, respectively. TGc and TEc denote the

λ-bit strings needed to be sent for the garbler and evaluator half gates, respectively.

ψc denotes the additional λ-bit string needed to be sent for carrying to the specific

output token. wi and σj are the token on the ith outgoing wire and the blinded

string on the jth incoming wire obtained by Party1 while evaluating the garbled

circuit, respectively. For the jth incoming wire, let pj := lsb(σ0
j) be a value only

known to Party2. If two symbols are appended, we imply an AND operation, i.e.,

ab = a ∧ b. H : {0, 1}λ × Z → {0, 1}λ denotes a hash function with circular

correlation robustness for naturally derived keys, having the security parameter λ.

We use a ‘hat ’ to represent a sequence or a tuple, for instance, F̂ = (F1, F2, . . .) or

ê = (e1, e2, . . .).

In accordance with the framework4 of [2], Figure 4.4 depicts our complete gar-

bling scheme, composed of the following procedures. The garble procedure Gb takes

4Bellare, Hoang, and Rogaway introduce the notion of a garbling scheme as a cryptographic
primitive. They also describe the procedures and security requirements of garbling schemes. We
refer the reader to [2,140] for details concerning definitions and introduction to the formal concepts
of garbling schemes.

42

proc Gb(1λ, C̃f , S0,W 0) : proc En(ê, x̂):

R � {0, 1}λ−1 1 for ei ∈ ê do

for iwj ∈ C̃f do Xi ← ei ⊕ xiR
σ1
j ← σ0

j ⊕R return X̂

for owi ∈ Inputs(C̃f) do
ei ← w0

i

for each gate G̃i∈C̃f do proc Ev(F̂ , X̂, πf , T):

{a, b} ← GateInputs(G̃i) put F̂ in topological order using πf
if G̃i is a non-output gate then for owi ∈ Inputs(F̂) and j = πf (i) do

(TGi , TEi , ψi)← Gb∗NAND(σ0
a, σ

0
b , w

0
i) σj ← Xi ⊕ tj

F non−out
i ← (TGi , TEi , ψi) for each gate G̃i {in topo. order} do

else {a, b} ← GateInputs(G̃i)
(TGi , TEi , Y

0
i)← GbNAND(σ0

a, σ
0
b) sa ← lsb(σa); sb ← lsb(σb)

F out
i ← (TGi , TEi) k ← NextIndex(); k′ ← NextIndex()
Y 1
i ← Y 0

i ⊕R (TGi , TEi , ψi)← F non−out
i

di ← lsb(Y 0
i) wGi ← H(σa, k)⊕ saTGi

end if if G̃i is a non-output gate then

return (F̂ , ê, d̂) wEi ← H(σb, k
′)⊕ sb(TEi ⊕ σa)

wi ← wGi ⊕ wEi ⊕ ψi
private proc Gb∗NAND(σ0

a, σ
0
b , w

0): for j = πf (i) do
pa ← lsb(σ0

a); pb ← lsb(σ0
b) σj ← wi ⊕ tj

k ← NextIndex(); k′ ← NextIndex() else
TG ← H(σ0

a, k)⊕H(σ1
a, k)⊕ pbR (TGi , TEi)← F out

i

w0
G ← H(σ0

a, k)⊕ paTG ⊕R wGi ← H(σa, k)⊕ saTGi
TE ← H(σ0

b , k
′)⊕H(σ1

b , k
′)⊕ σ0

a wEi ← H(σb, k
′)⊕ sb(TEi ⊕ σa)

w0
E ← H(σ0

b , k
′)⊕ pb(TE ⊕ σ0

a) wi ← wGi ⊕ wEi
ψ ← w0

G ⊕ w0
E ⊕ w0 Yi ← wi

return (TG, TE, ψ) end if

return Ŷ
private proc GbNAND(σ0

a, σ
0
b):

pa ← lsb(σ0
a); pb ← lsb(σ0

b)

k ← NextIndex(); k′ ← NextIndex() proc De(d̂, Ŷ):

TG ← H(σ0
a, k)⊕H(σ1

a, k)⊕ pbR for di ∈ d̂ do
w0
G ← H(σ0

a, k)⊕ paTG ⊕R yi ← di ⊕ lsb(Yi)
TE ← H(σ0

b , k
′)⊕H(σ1

b , k
′)⊕ σ0

a return ŷ
w0
E ← H(σ0

b , k
′)⊕ pb(TE ⊕ σ0

a)
Y 0 ← w0

G ⊕ w0
E

return (TG, TE, Y
0)

Figure 4.4: Our complete half gate based garbling scheme for 2PFE. GbNAND and Gb∗NAND

are the original half gate and our modified NAND garbling procedures, respectively. A
‘hat ’ represents a sequence or a tuple, for instance, F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .).

43

proc De(d̂, Ŷ):

for di ∈ d̂ do
{modify the antepenultimate line of Gb} k ← NextIndex(); parse (h0, h1)← di
k ← NextIndex(); di ← (H(Y 0

i , k), H(Y 1
i , k)) if H(Yi, k) = h0 then yi ← 0

else if H(Yi, k) = h1 then yi ← 1
else return ⊥

return ŷ

Figure 4.5: Modification of our garbling scheme in Figure 4.4 for achieving authenticity
(auth) property.

1λ, C̃f , S0 and W 0 as input, and outputs (F̂ , ê, d̂) where F̂ is the garbled version of

C̃f , ê is the encoding information, and d̂ is decoding information. Gb calls two private

gate garbling procedures: (1) Gb∗NAND garbles non-output NAND gates, and returns

(TG, TE, ψ), (2) GbNAND garbles output NAND gates, and returns (TG, TE, Y
0). En is

the encode algorithm that takes the plaintext input x̂ of the circuit and e as input,

and outputs a garbled input X̂. Ev is the evaluate procedure that takes the inputs

F̂ , X̂, πf and T , and outputs garbled output Ŷ . De is the decode algorithm that

takes Ŷ and d as input, and outputs the plaintext output ŷ of the circuit. Finally, ev

is an algorithm that is not needed for garbling but used for checking the correctness

condition such that De(d̂,Ev(F̂ ,En(ê, x̂))) = ev(f, x̂). In Figure 4.6, we extend the

garbling model of [2, 140] to be complied with our PFE scheme.

OEP

Synt

CTH

fC

f

W

T

Gb

ˆ
fC

S
e

Enx

EvX

T

F

De

Y y

d

f

f

Figure 4.6: Components of and high level procedures of a OEP based Private Function
Evaluation scheme. The topology hiding of the function f where Party1 is the evaluator
and Party2 is the garbler: (1) The private function f is only known by Party1. (2) Cf
is the Boolean circuit representation of f . (3) πf is the circuit mapping of f . (4) The
OEP protocol is mutually run where Party2 learns blinded strings. (5) The blinded strings
learnt by Party2. (6) Yao’s protocol with the blinded strings.

44

We highlight that an essential difference of our garbling scheme from the half

gates technique is that the former requires an additional ciphertext ψc per gate. This

is required because of the nature of 2PFE, in which the tokens on an outgoing wire

are predetermined and specified values, while in the in half gates they are indeed a

function of the input strings. Since in our scheme the output tokens of output gates

are not predetermined, these gates can be garbled with half gates technique. Each

output gate is then garbled with two ciphertexts. Note also that Party1 gets his own

garbled inputs by means of OT. This can also be done in an earlier stage together

with other OTs in the 2-OEP protocol (if OSN construction is used) in order not

to increase round complexity. For this setting, Party2 needs to pick R and compute

the tokens for TRUE on Party1’s input wires before 2-OEP protocol. This setting is

compatible with our protocol as well.

4.3 Security of the proposed protocol

In this section, we start by revisiting the code based games of [2] and security

notions of Choi et al. [111] and Zahur et al. [1] as preliminaries. We then provide

simulation-based security proof of our proposed protocol.

4.3.1 Code based games and security notions

Bellare, Hoang, and Rogaway introduce the notion of a garbling scheme as a cryp-

tographic primitive. We refer the reader to [2,140] for details concerning definitions

and a thorough introduction to the concepts of descriptive set theory.

Our work uses the prv.simS (privacy), obv.simS (obliviousness) and authS (au-

thenticity) security definitions of [2] depicted in Figure 4.7. Considering the prv.sim

and obv.sim games, the Initialize procedure randomly chooses β ← {0, 1}, then the

adversary makes a single call to the Garble procedure, and then the Finalize proce-

dure returns β
?
= β′, where β′ denotes the guess of the adversary. Regarding all

three games, the adversary is allowed to make a single call to the Garble procedure.

45

prv.simG,Φ,S : obv.simG,Φ,S : authG:
Garble(f, x): Garble(f, x): Garble(f, x):

if β = 0 if β = 0 (F, e, d)←Gb(1λ, f)
(F, e, d)←Gb(1λ, f) (F, e, d)←Gb(1λ, f) X ←En(e, x)
X ←En(e, x) X ←En(e, x) return (F,X)

else (F,X, d)← S(1λ, f(x),Φ(f)) else (F,X)← S(1λ,Φ(f)) Finalize(Y):

return (F,X, d) return (F,X) return De(d, Y) 6∈ {⊥, f(x)}

Figure 4.7: Simulation based games for privacy, obliviousness and authenticity [2]. The
function S is a simulator, and G denotes a garbling scheme.

For further information about the simulation-based games and related security prop-

erties, we refer the reader to [2]. The advantages of the corresponding adversary

classes are as follows:

Adv
prv.sim
G,Φ,S (A, λ) :=

∣∣∣∣Pr[prv.simAG,Φ,S(1λ) = 1]− 1

2

∣∣∣∣ (4.2)

Advobv.sim
G,Φ,S (A, λ) :=

∣∣∣∣Pr[obv.simAG,Φ,S(1λ) = 1]− 1

2

∣∣∣∣
Advauth

G (A, λ) := Pr[authAG(1λ) = 1]

In order to provide the security of a scheme, in each game, the adversary must

have a negligible advantage. We also utilize the following two oracle definitions

of [1].

• CircR(x, j, b) = H(x⊕R, j)⊕ bR where R ∈ {0, 1}λ−11

• Rand(x, j, b): A random function that gives λ-bit output.

Note that the adversary is only allowed to access the oracle CircR with legal

queries 5 in order to prevent the adversary from trivially obtaining R [111]. Fur-

thermore, we give the following definition for natural queries.

5A series of queries of the form (x, j, b) is legal if the verbatim value of (x, j) is never queried
with alternating values of b [111].

46

Definition 4.3.1. [1] If a series of queries of the form (x, j, b) to an oracle O

satisfies the following conditions

• we have i = q for the qth query,

• b ∈ {0, 1},

• x is naturally derived, i.e., it is obtained by one of these operations:

(a) x� {0, 1}k,

(b) x← x1 ⊕ x2, where x1 and x2 are naturally derived,

(c) x← H(x1, i) where x1 is naturally derived and i ∈ Z,

(d) x← O(x1, i, b) where x1 is naturally derived,

then these queries are natural.

If for all PPT adversaries A making legal and natural queries

∣∣∣ Pr
Rand

[ARand(1λ) = 1]− Pr
R

[ACircR(1λ) = 1]
∣∣∣ < ε

then H satisfies circular correlation robustness property for naturally derived keys,

where ε is negligible.

4.3.2 Security Proof

Our security proof is based on the security proofs provided in [9] and [1].

Theorem 4.3.1. If the following three conditions hold

– the 2-OEP protocol securely realizes ideal 2-OEP functionality in presence of

semi-honest adversaries,

– the hash function H has circular correlation robustness for naturally derived

keys,

47

proc S(1λ, C̃f , πf , T , ŷ) : private proc Sim∗NAND(σ0
a, σ

0
b , w

0): //
�� ��SimNAND(σ0

a, σ
0
b):

for owi ∈ OW ˜(Cf) do pa ← lsb(σ0
a); pb ← lsb(σ0

b)
w0
i � {0, 1}λ k ← NextIndex(); k′ ← NextIndex()

for iwj ∈ IW ˜(Cf) do TG ← H(σ0
a, k)⊕Rand(σ0

a, k, pb)
σ0
j ← wπ−1

f (j) ⊕ tj w0
G ← H(σ0

a, k)⊕ paTG
for owi ∈ Inputs ˜(Cf) do TE ← H(σ0

b , k
′)⊕Rand(σ0

b , k
′, 0)⊕ σ0

a

Xi ← w0
i w0

E ← H(σ0
b , k
′)⊕ pa(TE ⊕ σ0

a)

for each gate G̃i∈C̃f do ψ ← w0
G ⊕ w0

E ⊕ w0 //
�� ��Y 0 ← w0

G ⊕ w0
E

{a, b} ← GateInputs(G̃i) return (TG, TE, ψ) //
�� ��(TG, TE, Y

0)

if G̃i is a non-output gate then
(TGi , TEi , ψi)← Sim∗NAND(σ0

a, σ
0
b , w

0
i)

F non−out
i ← (TGi , TEi , ψi)

else
(TGi , TEi , Y

0
i)← SimNAND(σ0

a, σ
0
b)

F out
i ← (TGi , TEi)
di ← lsb(Y 0

i)⊕ yi
end if

return (F̂ , X̂, d̂)

proc GO1 (1λ, C̃f , πf , T , x̂): // GCircR2 private proc Sim∗ONAND1
(σvaa , σ

vb
b , w

vi
i , va, vb):

v̂ ← evalWires(C̃f , πf , x̂) //
�
�

�
�SimONAND1

(σvaa , σ
vb
b , va, vb):

for owi ∈ OW ˜(Cf) do sa ← lsb(σvaa); sb ← lsb(σvbb)

wvii � {0, 1}λ// wv̄ii ← wvii ⊕R k ← NextIndex(); k′ ← NextIndex()

for iwj ∈ IW ˜(Cf) do TG ← H(σvaa , k)⊕O(σvaa , k, vb ⊕ sb)
B := vπ−1

f (j) , σBj ← wB
π−1
f (j)
⊕ tj w

va(vb⊕sb)
G ← H(σvaa , k)⊕ saTG

for owi ∈ Inputs ˜(Cf) do TE ← H(σvbb , k
′)⊕O(σvbb , k

′, va)⊕ σvaa
Xi ← wvii wvasbE ← H(σvbb , k

′)⊕ sb(TE ⊕ σvaa)

for each gate G̃i∈C̃f do ψ ← w
va(vb⊕sb)
G ⊕ wvasbE ⊕ wvii

{a, b} ← GateInputs(G̃i) //

�
�

�
�Y ← w

va(vb⊕sb)
G ⊕ wvasbE

if G̃i is a non-output gate then return (TG, TE, ψ) //
�� ��(TG, TE, Y)

(TGi , TEi , ψi)← Sim∗ONAND1
(σvaa , σ

vb
b , w

vi
i , va, vb)

F non−out
i ← (TGi , TEi , ψi)

else private proc evalWires(C̃f , πf , x̂):

(TGi , TEi , Y
vi
i)← SimONAND1

(σvaa , σ
vb
b , va, vb) for iwj ∈ C̃f do vi ← xi

F out
i ← (TGi , TEi) for each gate G̃i∈C̃f do

Y v̄i
i ← Y vi

i ⊕R {a, b} ← GateInputs(G̃i)

di ← lsb(Y vi
i)⊕ vi vi ← NAND(va, vb)

end if return v̂

return (F̂ , X̂, d̂)

Figure 4.8: Part-A. The simulator for prv.simS security, and the hybrids used in the proof.
We obtain G2 by adding the statements within sharp corner boxes to G1. The use of the
statements within rounded-corner boxes alters the procedures from garbling of non-output
gate to garbling of output gate. A ‘hat ’ represents a sequence or a tuple, for instance,
F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .).

48

proc G3(1λ, C̃f , πf , T , x̂): private proc Sim∗NAND3
(σ0

a, σ
0
b , w

0):

R � {0, 1}λ−1 1 //
�� ��SimNAND3(σ

0
a, σ

0
b):

for owi ∈ OW ˜(Cf) do pa ← lsb(σ0
a); pb ← lsb(σ0

b)
w0
i � {0, 1}λ, w1

i ← w0
i ⊕R k ← NextIndex(); k′ ← NextIndex()

for iwj ∈ IW ˜(Cf) do TG ← H(σ0
a, k)⊕H(σ1

a, k)⊕ pbR
σ0
j ← wπ−1

f (j) ⊕ tj , σ1
j ← σ0

j ⊕R w0
G ← H(σ0

a, k)⊕ paTG ⊕R
for owi ∈ Inputs ˜(Cf) do TE ← H(σ0

b , k
′)⊕H(σ1

b , k
′)⊕ σ0

a

Xi ← wxii w0
E ← H(σ0

b , k
′)⊕ pb(TE ⊕ σ0

a)

for each gate G̃i∈C̃f do ψ ← w0
G ⊕ w0

E ⊕ w0

{a, b} ← GateInputs(G̃i) //
�� ��Y 0 ← w0

G ⊕ w0
E

if G̃i is a non-output gate then return (TG, TE, ψ) //
�� ��(TG, TE, Y

0)

(TGi , TEi , ψi)← Sim∗NAND3
(σ0

a, σ
0
b , w

0
i)

F non−out
i ← (TGi , TEi , ψi)

else
(TGi , TEi , Y

0
i)← SimNAND3(σ

0
a, σ

0
b)

F out
i ← (TGi , TEi)
Y 1
i ← Y 0

i ⊕R , di ← lsb(Y 0
i)

end if

return (F̂ , X̂, d̂)

Figure 4.9: Part-B. The simulator for prv.simS security, and the hybrids used in the proof.
A ‘hat ’ represents a sequence or a tuple, for instance, F̂ = (F1, F2, . . .) or ê = (e1, e2, . . .).
(Please see Figure 4.8 for the beginning of the figure.)

– the OT scheme for acquisition of Party1’s garbled input by Party2 securely real-

izes FOT functionality in the OT-hybrid model against semi-honest adversaries,

then our scheme is secure against semi-honest adversaries.

Proof. We prove the security of our scheme against the corruption of either party,

separately. First, consider the case that Party1 is corrupted. Since the ideal 2-OEP

functionality outputs ⊥ for Party1, and the transcripts received by Party1 during OT

reveals nothing other than Party1’s garbled input due to the ideal execution FOT in

the OT-hybrid model, we only need to prove that the 2PC phase does not give any

private information about Party2’s input to Party1. For any probabilistic polynomial

time adversary A1, controlling Party1 in the real world, we construct a simulation

game based on prv.sim game from [2] as follows. The simulation involves Initialize,

Garble, and Finalize procedures. The Initialize procedure picks a value β ← {0, 1}

randomly. Then, A1 makes a single call to the Garble procedure (see prv.sim game

of Figure 4.7). Note that S denotes the simulation function, and Gb denotes the

49

actual garbling (Figure 4.8 and 4.9 show the procedures for S). We highlight that

in our simulation, the side-information Φ(f) is replaced by (C̃f , πf , T) since they

are already known to Party1. Finally, in the Finalize(β′) procedure, A1 tries to make

a guess β′ for the value of β, and the procedure outputs β
?
= β′. We now prove that

the simulation function output (F̂ , X̂, d̂) is computationally indistinguishable from

(F,X, d) by using the chain of hybrids as follows (see also Figure 4.8 and 4.8).

1. S =c GRand1 : Since both generated (F̂ , X̂, d̂) outputs include uniformly random

values for components, their distributions are identical. More concretely, since

the truth values of wires vi’s are used only as a superscript for the tokens W vi

by G1, these W vi
i ’s could have been named W 0

i for all i values.

2. GRand1 =c GCircR1 : Only the oracle O changed from Rand to CircR. Due to our

assumption about the hash function, these two hybrids are computationally

indistinguishable.

3. GCircR1 =c GCircR2 : G2 is obtained by the addition of the statements within sharp

corner boxes to G1 in Figure 4.8. Here, the variable R in G2 refers to the R

of the oracle CircR. The only difference between the two hybrids is that some

extra values that are not used computed by G2 (those extra values will be used

in G3).

4. GCircR2 =c G3: G3 does not need to compute vi for non-input wires and to

randomly sample W vi
i , instead, it randomly samples W 0

i . Next, it sets W 1
i ←

W 0
i ⊕R instead of setting W v̄i

i ← W vi
i ⊕R. The algebraic relationships among

variables remain unchanged. The oracle calls are also expanded in SimAnd3 to

correspond to O = CircR.

Note that G3 computes (F̂ , X̂, d̂) as (F̂ , ê, d̂)← Gb(1λ, f); X̂ ← En(ê, x̂), which is

exactly how these values are computed in the real interaction in the prv.simS game.

Therefore, the advantage of A1 in the prv.sim game

Adv
prv.sim
G,S (A, λ) :=

∣∣∣∣Pr[prv.simAG,S(λ) = 1]− 1

2

∣∣∣∣
50

{replace the last three lines of S
with the following ones:}

k ← NextIndex(); r � {0, 1}λ
if yi = 0

then di ← (H(Y 0
i , k), r)

else di ← (r,H(Y 0
i , k))

end if

return (F̂ , X̂, d̂)

Figure 4.10: The required modifications on Figure 4.8 in order to show auth property.

is negligible. Hence, our scheme satisfies the security notion of prv.simS and obv.simS
6.

This proves that our scheme is secure against the corrupted Party1.

Second, consider the case that Party2 is corrupted. For any probabilistic polynomial-

time adversary A2, controlling Party2 during our protocol in the real world, we con-

struct a simulator S ′ that simulates A2’s view in the ideal world. S ′ runs A2 on

Party2’s input, and C̃f as follows.

1. S ′ asks A2 to generate Ŵ 0 := [ŵ0
i � {0, 1}λ] for each owi ∈ OW and receives

Ŵ 0.

2. S ′ then picks t̂j � {0, 1}λ for j = 1, . . . , N , and computes Ŝ0 = [σ̂j ←

ŵ0
π−1
f (j)
⊕ t̂j] and gives Ŝ0 to A2.

In the real execution of our protocol, Party2 receives only the message S0 in

Round 2 (apart from the exchanged messages during the OT protocol for Party1’s

garbled input). However, the transcripts received by Party2 during OT do not leak

any information to Party2 because of FOT in the OT-hybrid model. Due to one-

time pad security, in Party2’s view, the distributions of Ŝ0 and S0 are identical (i.e.,

UŜ0 ≈c US0). This concludes the security proof of our scheme.

6The proof for obv.simS differs from that of prv.simS only in that in obv.simS , the simulator

neither computes d̂, nor receives ŷ. So providing proof for prv.simS also implies proof for obc.simS .

51

In order to achieve the authenticity property (i.e., auth), it is required to show

that the probability of an adversary finding a set Ŷ ′ 6= Ev(F̂ , X̂) such that De(d̂, Ŷ ′) 6=

⊥ is negligible. In accordance with [1], our garbling scheme in Figure 4.4 can be mod-

ified as in Figure 4.5 to achieve authenticity property (i.e., the antepenultimate line

of Gb in Figure 4.4 can be modified as k ← NextIndex(); di ← (H(Y 0
i , k), H(Y 1

i , k)),

and De(d̂, Ŷ) procedure in Figure 4.4 can be modified as De(d̂, Ŷ) procedure in

Figure 4.5).

Theorem 4.3.2. Our modified scheme (see Figure 4.4 and Figure 4.5) satisfies

the security notion of auth with any H that has correlation robustness for naturally

derived keys.

Proof Sketch. We execute the simulator S (in Figures 4.8 and 4.9 with the modifica-

tions in Figure 4.10), and obtain (F̂ , X̂, d̂). Then, we hand (F̂ , X̂) to the adversary,

and receive Ŷ ′ from the adversary. After that, we run the decoding procedure (see

procedure De in Figure 4.5) on d̂ and the output of adversary Ŷ ′. If the result is

De(d̂, Ŷ ′) = ⊥, then the adversary fails, otherwise, it succeeds. The adversary can

win the game by guessing a correct value r with probability at most 1/2λ where λ is

the security parameter. The rest of the proof utilizes the same sequence of hybrids

in the proof of Theorem 5.1.

4.4 Performance Comparison

One of the primary objectives of the recent research on PFE is minimizing the

communication cost. This is due to the fact that historical developments in hardware

technology show us computing power advances faster than communication channels.

This is even more likely to be so in the near future, i.e., the main bottleneck for many

secure computation applications will not be the CPU load but be the bandwidth

constraints [28,108]. Therefore we are first interested in the problem of minimizing

the communication complexity.

52

Table 4.4: Analysis of communication costs for 2PFE schemes (see Section 4.1.1 for details
of transfers in the OSN phases).

MS’13 [17] Our Protocol

Num. of Strings Str. Length (bits) Num. of Strings Str. Length (bits)

OSN

Before OT Ext. Party2 → Party1 N 2λ N λ

During OT Ext.
Party1 → Party2 λ 2N log(N) + 1 λ 2N log(N)−N + 1

Party2 → Party1 4N log(N)−N + 2 2λ 4N log(N)− 2N + 2 λ

After OT Ext. Party1 → Party2 N 2λ N λ

2PC Garbled Circ. Party2 → Party1 2N λ 1.5N λ

TOTAL (bits) (10N log(N) + 4N + 5)λ (6N log(N) + 0.5N + 3)λ

In this section, we evaluate the performance of our protocol and compare it with

Mohassel and Sadeghian’s 2-party PFE scheme [17]. Without loss of generality, in

order for a fair comparison, we assume that the 2-OEP protocol of our scheme is

also realized by the OSN construction in [17], and that the OSN phases in both

protocols are optimized with the General OT extension scheme of Asharov, Lindell,

Schneider, and Zohner [77]. Similar results can be obtained by using other Ishai et

al. based OT extension schemes [75,76] as well.

Regarding the OSN phase, the total number of OTs in our 2PFE protocol is

2N log(N)−N + 1, while it is 2N log(N) + 1 in [17] (see Section 4.1.1). Moreover,

our protocol requires only one of the tokens on a wire entering the OSN phase, so the

size of the rows in Table 4.2 which enter each OT is reduced by a factor of two [17],

further resulting in a significant decrease in communication cost. Regarding the 2PC

phase, our scheme garbles each non-output gate with three ciphertexts, and each

output gate with two ciphertexts. This yields more than 25% reduction compared

to the same phase in the scheme in [17].

Table 4.4 shows the number of strings and their corresponding lengths sent in

each turn in both schemes (see also Section 4.1.1 for details of transfers in the OSN

phases). We omit the OTs for Party1’s garbled input, the transfers for decoding the

garbled output, and the base OTs in the OT extension scheme [77]. The strings sent

by Party2 during the OT extension in [17], in fact, consists of 4N log(N) − 2N + 2

of λ-bit stings and 2N λ-bit strings. The data sent by Party2 before OT extension

can also be sent during Party2’s turn in OT extension for saving in the number of

53

Table 4.5: Communication cost comparison of 2PFE schemes in terms of λ-bits.

Num. of MS’13 [17] Our Protocol Overall

Gates OSN Phase 2PC Phase Total OSN Phase 2PC Phase Total Reduction

28 47,109 1,024 48,133 27,139 768 27,907 42.0%

210 229,381 4,096 233,477 133,123 3,072 136,195 41.7%

212 1,081,349 16,384 1,097,733 630,787 12,288 643,075 41.4%

214 4,980,741 65,536 5,046,277 2,916,355 49,152 2,965,507 41.2%

216 22,544,389 262,144 22,806,533 13,238,275 196,608 13,434,883 41.1%

218 100,663,301 1,048,576 101,711,877 59,244,547 786,432 60,030,979 41.0%

220 444,596,229 4,194,304 448,790,533 262,144,003 3,145,728 265,289,731 40.9%

rounds. Table 4.5 reflects the communication cost reduction achieved by our 2PFE

protocol for the circuits with different number of gates.

Recently, in [30], Wang and Malluhi have attempted to improve the 2PFE scheme

in [17] by removing only one ciphertext from each garbled gate (in 2PC phase) while

retaining the cost of OSN phase unchanged. However, the influence of 2PC phase

in [17] on overall communication cost is quite low (see Table 4.5). Reducing the

bandwidth use in the 2PC phase by 25% only results in less than 1% reduction

in the total cost. For instance, given a circuit with 1024 gates, their optimization

reduces the communication cost of the 2PC phase from 4,096 λ-bit strings to 3,072

of them, while the OSN phase cost remains 229,38 λ-bits. Therefore, the overall

gain from their optimization for this setting is ∼0.4%.

Considering the computational complexity, although both schemes asymptoti-

cally require O(N log(N)) operations, our scheme achieves a linear time improve-

ment over [17]. More precisely, in the OSN phase, our scheme eliminates N oblivious

transfer (OT) operations. This results in a decrease of 2N symmetric encryptions

performed by Party2 (Party1’s computation cost remains the same in this phase).

Regarding the 2PC phase, our scheme requires one additional operation per gate

(during the Ev procedure). This yields additional 0.5N symmetric operations to be

performed by Party1 (Party2’s computation cost remains the same in this phase).

Therefore, our scheme reduces the overall computation cost by 1.5N symmetric op-

erations. The round complexity of our scheme does not differ from the 2PFE scheme

54

in [17]. Namely, both protocols consist of a constant-round OT extension scheme

in OSN phase, and our 2PC phase consists of the same number of rounds as in the

garbling scheme used in [17].

55

Chapter 5

HIGHLY EFFICIENT AND
REUSABLE PRIVATE
FUNCTION EVALUATION
WITH LINEAR COMPLEXITY

In this chapter, we propose a novel and highly efficient two-party private function

evaluation (2PFE) scheme for Boolean circuits based on the DDH assumption. Our

scheme enjoys the cost reduction due to the reusability of tokens that will be used in

the 2PC stage. This eliminates some of the computations and exchanged messages

in the subsequent executions for the same function and remarkably reduces the cost

for the cases the same function is evaluated more than once.

In Section 5.1, we give a preliminary background that is used throughout this

chapter. Section 5.2 presents the descriptions of our InExe and ReExe protocols,

and a method for the case where Party1 would like to execute 2PFE with various

Party2s separately. Section 5.3 provides the complexities of our resulting protocols,

and compare them with the existing state-of-the-art 2PFE protocols. In Section 5.4,

we formally prove the security of our protocols in the semi-honest model.

5.1 Preliminaries

This section provides some background information on the DDH assumption and

the state-of-the-art generic 2PFE framework.

56

5.1.1 Decisional Diffie-Hellman Assumption

The Decisional Diffie-Hellman (DDH) assumption for G provides that the following

two ensembles are computationally indistinguishable

{(P1, P2, a · P1, a · P2) : Pi ∈ G, a ∈R Z∗q} ≈c

{(P1, P2, a1 · P1, a2 · P2) : Pi ∈ G, a1, a2 ∈R Z∗q}.

where X ≈c Y denotes that the sets X and Y are computationally indistinguish-

able. The security of our protocols is based on the following lemma of Naor and

Reingold [141] providing a natural generalization of the DDH assumption for m > 2

generators.

Lemma 5.1.1 ([141]). Under the DDH assumption on G, for any positive integer

m,

{(P1, . . . , Pm, a · P1, . . . , a · Pm) : Pi ∈ G, a ∈R Z∗q} ≈c

{(P1, . . . , Pm, a1 · P1, . . . , am · Pm) : Pi ∈ G, a1, . . . , am ∈R Z∗q}.

There exist certain elliptic curve groups where the DDH assumption holds. We

refer the reader to [142, 143]. The main advantage of the elliptic curve DDH as-

sumption over the discrete logarithm based DDH assumption is that the discrete

logarithm DDH problem requires sub-exponential time [144] while the current best

algorithms known for solving the elliptic curve DDH problem requires exponential

time resulting in the same security with smaller key sizes. Therefore, in general,

the elliptic curve based systems are more practical than the classical discrete loga-

rithm systems since smaller parameters may be chosen to ensure the same level of

security. For example, for the 112-bit symmetric key security level, a 2048-bit large

prime number is required for a discrete logarithm group, whereas only a 224-bit

prime p is sufficient for a NIST-elliptic curve over Fp [145].

57

5.1.2 Notations and Concept of 2PFE Framework

In a two-party private function evaluation (2PFE) scheme, Party1 has a function

input f (compiled into a boolean circuit Cf) and optionally a private input bit

string x1, whereas Party2 has an input bit string x2. The parties aim to evaluate

f on x1 and x2 so that at least one of them would obtain the resulting f(x1, x2).

The recent 2PFE schemes [9,17] conform to a generic 2PFE framework (formalized

by [17]) that basically reduces the 2PFE problem to hiding both parties’ input

strings and topology of the circuit. The framework is not concerned with hiding the

gates since it allows only one type of gate in the circuit structure.

In a nutshell, the 2PFE framework is as follows. Before starting the 2PFE

protocol, Party1 compiles the function into a boolean circuit Cf consisting of only

one type of gates (e.g., NAND gates). During the protocol execution, Party1 and

Party2 first engage in a mapping evaluation protocol where Party2 obliviously obtains

the tokens on gate inputs, and then they mutually run a 2PC protocol where Party2

garbles each gate separately using those tokens, and Party1 evaluates the garbled

circuit. As a result, Party1 obtains the garbled tokens that map to the corresponding

outputs of the function (i.e., y = f(x1, x2)).

Let g, n, and m denote the number of gates (circuit size), the number of inputs,

and the number of outputs of Cf , respectively. Let OW = (ow1, . . . , own+g−m) denote

the set of outgoing wires that is the union of the input wires of the circuit and the

output wires of its non-output gates. Note that the total number of elements in OW

is M = n + g − m. Similarly, let IW = (iw1, . . . , iw2g) denote the set of incoming

wires that is the union of the input wires of each gate in the circuit. Note also that

the total number of elements in IW is N = 2g. Throughout this paper, M and

N denote the numbers of outgoing and incoming wires, respectively. Let πf be a

mapping such that j ← πf (i) if and only if owi ∈ OW and iwj ∈ IW correspond to

the same wire in the circuit Cf .

We define the public information of the circuit Cf as PubInfoCf which is com-

posed of: (1) the number of each party’s input bits, (2) the number of output bits,

58

(3) the total number of incoming wires N and that of outgoing wires M , (4) the

incoming and outgoing/output wire indices that belong to each gate, (5) the outgo-

ing wire indices corresponding to each party’s input bits. Note that, it is a common

assumption among PFE schemes [9, 17, 20] that both parties have pre-agreement

on the number of gates (g), the number of input wires (n), the number of output

wires (m), the number of input bits of Party1 (q). Both parties generate PubInfoCf

at the beginning of the protocol execution (without an additional round of commu-

nication). Namely, each party runs the following deterministic procedure to obtain

PubInfoCf on public input (g, n,m, q):

• Set N := 2g, M := n+ g −m.

• For i = 1, . . . , g, set iw2i−1 and iw2i as the incoming wires of the gate Gi.

• For i = 1, . . . , g −m, set owi as the outgoing wire of the gate Gi.

• For i = 1, . . . , q, set owg−m+i as the outgoing wire corresponding to Party1’s

i-th input bit.

• For i = 1, . . . , n − q, set owg−m+q+i as the outgoing wire corresponding to

Party2’s i-th input bit.

• For i = 1, . . . ,m, set the output wire yi as the output of Gg−m+i.

• Return PubInfoCf := (M,N,OW, IW, y).

Next, Party1 generates πf (i.e., the connection between incoming and outgoing

wire indices) using the following randomized procedure on input (Cf ,OW, IW).

• Randomly permute the indices 1, . . . , g−m, and assign it to an ordered set A.

• For i = 1, . . . , g − m, assign GA[i] to the i-th non-output gate in topological

order.

• For i = 1, . . . ,m, assign Gg−m+i to i-th output gate.

59

• Extract πf from Cf according to the connections between ows and iws.

• Return πf .

We next define as Reusable Mapping Template in which the efficiency of our

scheme mostly due to the reusability of this template.1

Definition 5.1.1 (Reusable Mapping Template). Let π−1
f (j) be the inverse mapping

of πf that denotes the index of the outgoing wire connected to iwj. A Reusable

Mapping Template is a set ReuseTempf := (P ,Q) such that P := (P1, . . . , PM)

where Pi is a generator of the group picked for owi by Party2 and Q := (Q1, . . . , QN)

where Qj := tj · Pπ−1
f (j) is a group element generated for iwj by Party1 for tj ∈R Z∗q,

i = 1, . . . ,M , and j = 1, . . . , N .

5.2 Our PFE Scheme

In this section, we first present our protocol for initial executions InExe which is

optimized by offline/online decomposition (Figure 5.1). We next introduce our ef-

ficient resumption protocol for subsequent executions ReExe (Figure 5.3). We then

propose an efficient method for executions with multiple Party2s.

5.2.1 The description of our InExe protocol

We now introduce our efficient InExe scheme that is optimized by carrying out some

of the computations in the off-line stage. In general, such precomputation tech-

niques enhance real-time performance at the cost of extra preliminary computations

and storage consumption. Besides, in today’s technological perspectives, memory

consumption is rarely considered to be a serious drawback since storage units are

abundant in many recent devices. We give the full protocol steps of our optimized

initial execution InExe protocol with a precomputation phase in Figure 5.2. Also,

1Although KM11 [9] also involves homomorphic encryption for token generation, it requires all
protocol steps to be repeated in each subsequent executions.

60

Party1 Party2

input: x1 ∈ {0, 1}∗, Cf , πf Pre-shared info: input: x2 ∈ {0, 1}∗

G, q, P,PubInfoCf

Offline

Pre-computation

Pick: α0, α1 ∈R Z∗q.

Generate: P := (P1, . . . , PM),

W0 := (W 0
i � α0 · Pi),

W1 := (W 1
i � α1 · Pi), i = 1, . . . ,M .

P←−−−−−−−
Generate: T := (t1, . . . , tN : tj ∈R Z∗q),

Q = (Qj ← tj · Pπ−1
f (j)), j = 1, . . . , N.

Keep: ReuseTempf := (P ,Q).

Q−−−−−−−→
Generate: V0 := (V 0

j � α0 ·Qj),

V1 := (V 1
j � α1 ·Qj), j = 1, . . . , N.

Keep: ReuseTempf := (P ,Q).

Pick: Y 0 := (y0
i �R {0, 1}`),

Y 1 := (y1
i �R {0, 1}`), i = 1, . . . ,m.

Run 2PC Protocol

Act as Evaluator Act as Garbler

F,X2←−−−−−−
Generate garbled circ. F by using

(W0,W1,V0,V1, Y 0, Y 1,PubInfoCf).

Using F,X1, X2, T, πf

obtain Y = f (x1, x2).

Figure 5.1: Sketch of our InExe 2PFE Protocol. ReuseTempf and T are stored (if needed)
for the later PFE runs by ReExe protocol. Note that in case Party1 has inputs (x1) then
OT protocol is required (to send the corresponding garbled X1) which can be trivially
combined with the protocol rounds for minimization of the total number of rounds.

Figure 5.1 depicts the protocol steps of our InExe protocol. The computations that

can be carried out in the precomputation phase include the generation of P , and

the computation of the sets W0 and W1 by Party2.

In accordance with the generic 2PFE framework, the description of our InExe is

as follows.

Inputs: Prior to the protocol execution, both parties should have a pre-agreement

on a cyclic group G of large prime order q ∈ O(λ) with a generator P and the

61

Our InExe Protocol: The procedures for the initial execution

Party1’s Input: x1 ∈ {0, 1}∗, a Boolean circuit Cf consisting of NAND gates
(compiled from the function f) and a mapping πf (extracted from Cf).
Party2’s Input: x2 ∈ {0, 1}∗.
Pre-shared Information: A group G of prime order q with a generator P and
PubInfoCf .
Output: f(x1, x2).

Precomputation phase

1. Party2 generates the set P of M random generators. It also picks α0, α1 ∈R
Z∗q, and prepares the group element setsW0 := (W 0

1 , . . . ,W
0
M : W 0

i � α0·Pi, i =
1, . . . ,M) for FALSEs andW1 := (W 1

1 , . . . ,W
1
M : W 1

i � α1 ·Pi, i = 1, . . . ,M) for
TRUEs, where Pi is the i-th element in P and each W b

i is a token for owi ∈ OW,
b ∈ {0, 1}. Party2 stores P , W0, W1, α0, and α1.

Online phase

Round 1:
2. Party2 sends P to Party1.

Round 2:
3. Party1 generates the blinding set T := (t1, . . . , tN : tj ∈R Z∗q, j = 1, . . . , N),
computes the set Q = (Q1, . . . , QN : Qj ← tj · Pπ−1

f (j), j = 1, . . . , N).

For the later PFE runs with the same function (if needed), Party1 stores
ReuseTempf := (P1, . . . , PM , Q1, . . . , QN) (see Figure 5.4 for the protocol of
subsequent executions (ReExe)). Party1 sends Q to Party2.

Round 3:

4. Party2 prepares the group element sets V0 := (V 0
1 , . . . , V

0
N : V 0

j � α0 ·Qj, j =
1, . . . , N) for FALSEs and V1 := (V 1

1 , . . . , V
1
N : V 1

j � α1 · Qj, j = 1, . . . , N) for
TRUEs for iwj ∈ IW. For the later PFE runs with the same function (if needed),
Party2 stores ReuseTempf = (P1, . . . , PM , Q1, . . . , QN). Next, Party2 picks two
random token sets for the output wires Y 0 := (y0

1, . . . , y
0
m : y0

i �R {0, 1}`, i =
1, . . . ,m) and Y 1 := (y1

1, . . . , y
1
m : y1

i �R {0, 1}`, i = 1, . . . ,m).

62

5. The 2PC protocol now starts from this stage where Party2 becomes the
garbler and Party1 becomes the evaluator. Using W0, W1, V0, V1, Y 0,
Y 1, and PubInfoCf , Party2 prepares the garbled circuit F by garbling each
gate as follows. Party2 prepares the following four ciphertexts to garble a
non-output NAND gate Ga whose incoming wires iwi and iwj, and outgo-
ing wire is owz: EncV 0

i ,V
0
j

(W 1
z), EncV 0

i ,V
1
j

(W 1
z), EncV 1

i ,V
0
j

(W 1
z), EncV 1

i ,V
1
j

(W 0
z).

Similarly, Party2 prepares the following four ciphertexts to garble an output
NAND gate Gb whose incoming wires iwi and iwj, and output wire index is z:
EncV 0

i ,V
0
j

(y1
z), EncV 0

i ,V
1
j

(y1
z), EncV 1

i ,V
0
j

(y1
z), EncV 1

i ,V
1
j

(y0
z). Each garbled gate GGa

is then composed of four `-bit ciphertexts and two log2(τ)-bit indices, I1
a and

I2
a (see Section 5.2.1 for garbling details). Party2 sends F and the garbled input
X2 for its own input x2 to Party1. Party1 also obtains the garbled input X1 for
its own input x1 from Party2 using parallel 1-out-of-2 OTs (or a more efficient
OT extension scheme).a

6. Using F , the garbled input X = (X1, X2), T , and πf , Party1 evaluates the
whole garbled circuit in topological order. If an outgoing wire owd is mapped
to an incoming wire iwe, then the group element Ve of the e-th incoming wire is
computed by the multiplication of the group element Wd of the d-th outgoing
wire with the blinding value te (i.e., if πf (d) = e, then Ve = te · Wd). Each
garbled gate GGa can be evaluated whenever both group elements (Vi, Vj) on
its incoming wires (iwi, iwj) are computed. To evaluate each GGa, Party1 first
computes H(Vi, Vj, gateID), and then XORs the ciphertext in the GGa pointed
by I1

a -th and I2
a -th bits of [H(Vi, Vj, gateID)]τ . In the end, Party1 obtains the

token set Y = (y1, . . . , ym) for the output bits f(x1, x2).

aNote that the OT protocol rounds can be combined with the former protocol rounds for
minimization of the overall rounds.

Figure 5.2: Our Optimized InExe 2PFE Protocol via decomposition of offline/online com-
putations

63

PubInfoCf on inputs (g, n,m, q). Each party has the following inputs: (1) Party1

holds a boolean circuit Cf consisting of only one type of gates (e.g., NAND gates)

and the corresponding mapping πf , and (possibly but not necessarily) his input x1

(2) Party2 holds his inputs x2.

Offline pre-computation phase: Party2 generates the set P of M random gen-

erators. It also picks α0, α1 ∈R Z∗q, and prepares the group element sets W0 :=

(W 0
1 , . . . ,W

0
M : W 0

i � α0 · Pi, i = 1, . . . ,M) for FALSEs and W1 := (W 1
1 , . . . ,W

1
M :

W 1
i � α1 ·Pi, i = 1, . . . ,M) for TRUEs, where Pi is the i-th element in P and each

W b
i is a token for owi ∈ OW, b ∈ {0, 1}. Party2 stores P , W0, W1, α0, and α1.

Online phase: Online phase consists of three rounds as follows.

Round 1: Party2 sends P to Party1.

Round 2: Party1 generates the blinding set T := (t1, . . . , tN : tj ∈R Z∗q, j =

1, . . . , N), computes the set Q = (Q1, . . . , QN : Qj ← tj · Pπ−1
f (j), j = 1, . . . , N),

where π−1
f (j) denotes the index of the outgoing wire connected to iwj. Party1 sends

Q to Party2. Now, both parties have the knowledge of the set ReuseTempf := (P ,Q).

For the later PFE runs with the same function (if needed), Party1 stores ReuseTempf

(see Figure 5.4 for the protocol of subsequent executions (ReExe)).

Party2 prepares the group element sets corresponding to iwj ∈ IW. The set V0 is

for FALSE, V1 is for TRUE semantic values.

V0 := (V 0
1 , . . . , V

0
N : V 0

j � α0 ·Qj, j = 1, . . . , N),

V1 := (V 1
1 , . . . , V

1
N : V 1

j � α1 ·Qj, j = 1, . . . , N).

Next, Party2 picks the following two randomly chosen ordered sets for output wires

of the circuit

Y 0 := (y0
1, . . . , y

0
m : y0

i �R {0, 1}`, i = 1, . . . ,m),

64

Y 1 := (y1
1, . . . , y

1
m : y1

i �R {0, 1}`, i = 1, . . . ,m),

where ` is the bit length of a group element (i.e., ` = dlog2(q)e). For the later PFE

runs with the same function (if needed), Party2 stores ReuseTempf .

Round 3: Now, both parties then engage in a 2PC protocol where Party2 and Party1

play the garbler and evaluator roles, respectively. Party2 garbles the whole circuit

by using W0, W1, V0, V1, Y 0, Y 1, and PubInfoCf . Note that in contrast to the

usual garbling in [9,17], in our garbling phase, Party2 has group elements instead of

random tokens. To use group elements as keys, we now define an instantiation of a

dual-key cipher (DKC) notion of [2] using a pseudorandom function as

EncP1,P2(m) := [H(P1, P2, gateID)]` ⊕m

where P1 and P2 are two group elements used as keys, m is the `-bit plaintext, gateID

is the index number of the gate, H : G×G× {0, 1}∗ → {0, 1}`+τ is a hash-function

(which we model as a random oracle), τ is an integer such that τ > 2 log2(4g) for

preventing collisions in the τ rightmost bits of hashes, and [H(X)]` denotes the

truncated hash value (of the message X) which is cropped to the ` leftmost bits of

H(X) for some X. Also, we denote [H(X)]τ for the truncated hash value (of the

message X) which is cropped to the τ rightmost bits of H(X) for some X. The

former truncated hash value is used for encryption, while the latter is utilized for

the point and permute optimization of Beaver et al. [29]. Note that the encryption

scheme Enc is based on the encryption scheme in [146] and differs from it only by

the utilization of group elements as keys.

Let Ga be a non-output NAND gate for some a ∈ {1, . . . , g}. Let also iwi, iwj be

the incoming wires and owz be the outgoing wire of Ga where i, j ∈ {1, . . . ,M} and

z ∈ {1, . . . , N}. To garble Ga, Party2 prepares the following four ciphertexts

ct1a := EncV 0
i ,V

0
j

(W 1
z), ct2a := EncV 0

i ,V
1
j

(W 1
z),

65

ct3a := EncV 1
i ,V

0
j

(W 1
z), ct4a := EncV 1

i ,V
1
j

(W 0
z)

where W 1
z and W 1

z are the `-bit string representations of the group elements. Sim-

ilarly, let Gb be an output NAND gate for some b ∈ {1, . . . , g}. Let also iwi, iwj be

the incoming wires and z be the output wire index of Gb where i, j ∈ {1, . . . ,M}

and z ∈ {1, . . . ,m}. To garble Gb, Party2 prepares the following four ciphertexts

ct1b := EncV 0
i ,V

0
j

(y1
z), ct

2
b := EncV 0

i ,V
1
j

(y1
z),

ct3b := EncV 1
i ,V

0
j

(y1
z), ct

4
b := EncV 1

i ,V
1
j

(y0
z).

For the point and permute optimization [29], for each gate Ga in the circuit,

Party2 picks random indices I1
a , I

2
a ∈ {1, . . . , τ} such that

{(X[I1
a],X[I2

a]), (Y[I1
a],Y[I2

a]), (Z[I1
a],Z[I2

a]), (T[I1
a],T[I2

a])} =

{(0, 0), (0, 1), (1, 0), (1, 1)}

where X = [H(V 0
i , V

0
j , gateID)]τ , Y = [H(V 0

i , V
1
j , gateID)]τ , Z = [H(V 1

i , V
0
j , gateID)]τ ,

T = [H(V 1
i , V

1
j , gateID)]τ , and S[I ia] denotes the I ia-th bit of the bit string S. We

denote each garbled gate GGa, which is then composed of four `-bit ciphertexts, ct1a,

ct2a, ct
3
a, and ct4a, and an index pair (I1

a , I
2
a). Note that the set of ciphertexts in the

GGa are ordered according to I1
a -th and I2

a -th bits of their corresponding X, Y, Z, and

T values. For example, let X = 011001 . . . 1, Y = 101111 . . . 0, Z = 110001 . . . 0, and

T = 010111 . . . 1. If (I1
a , I

2
a) = (1, 5) then (X[1],X[5]) = (0, 0), (Y[1],Y[5]) = (1, 1),

(Z[1],Z[5]) = (1, 0), (T[1],T[5]) = (0, 1), and therefore, we have GGa = (ct1a, ct4a,

ct3a, ct
2
a, (I1

a , I
2
a)). A trivial method for finding such a pair (I1

a , I
2
a) could be as fol-

lows. First, Party2 can find I1
a such that {X[I1

a],Y[I1
a],Z[I1

a],T[I1
a]} = {0, 0, 1, 1} with

probability of 6/16 in each trial. Then, I2
a could also be found with a probability

of 4/16 in each trial. Therefore, the expected number of trials to find a pair of

(I1
a , I

2
a) is 7. Party2 garbles all the gates of the circuit in the above-mentioned way,

and obtains the garbled circuit F . Party2 then sends F and its garbled input X2

66

(i.e., the Wi group elements for outgoing wires corresponding to x2) to Party1. As

usual, Party1 gets its own garbled input X1 (i.e., the Wi group elements for outgoing

wires corresponding to x1) from Party2 using oblivious transfers (OT) (or one invo-

cation of the OT extension schemes [75–77]). Note that this does not increase the

round complexity of our overall protocol, since the exchange messages needed for

OT rounds can be accompanied to the protocol rounds (i.e., the first round of OT

is sent with P message and the second one with Q and the third one with F,X2).

Using F , the garbled input X = (X1, X2), T , and πf , Party1 evaluates the

whole garbled circuit in topological order. If an outgoing wire owd is mapped to an

incoming wire iwe, then the group element Ve of the e-th incoming wire is computed

by the multiplication of the group element Wd of the d-th outgoing wire and the

blinding value te (i.e., if πf (d) = e, then Ve = te · Wd). Each garbled gate GGa

can be evaluated when both group elements (Vi, Vj) on its incoming wires (iwi,

iwj) are computed. To evaluate each GGa, Party1 first computes H(Vi, Vj, gateID),

and then XORs the ciphertext in the GGa pointed by I1
a -th and I2

a -th bits of the

H(Vi, Vj, gateID)τ . In the end, Party1 obtains the token set Y = (y1, . . . , ym) for the

output bits of the function y = f(x1, x2).

5.2.2 Optimization with reusability feature: Our (ReExe)

protocol

One of the novelties of our scheme over the state-of-the-art is that our scheme

results in a significant cost reduction when the same private function is evaluated

more than once between the same or varying evaluating parties. This feature is

quite beneficial in relevant real-life scenarios where individuals (or enterprises) can

mutually and continuously have a long-term business relationship instead of a single

deal. Note that such a cost reduction is not available in the protocols of KM11 [9]

and MS13 [17] since they require all token generation and 2PC procedures repeated

in all executions. However, our scheme involves ReuseTempf that is reusable for the

generation of tokens on incoming and outgoing wires. The reusability of ReuseTempf

67

incurs a massive reduction in protocol overhead since a large part of costs in existing

2PFE protocols [9, 17] results from the generation of these tokens.

Party1 Party2

input: x1,k ∈ {0, 1}∗, Cf , πf , T Pre-shared info: input: x2,k ∈ {0, 1}∗

G, q, P,PubInfoCf ,ReuseTempf

Offline

Pre-computation

Pick: α0,k, α1,k ∈R Z∗q.

Generate: W0
k := (W 0

i,k � α0,k · Pi),
W1

k := (W 1
i,k � α1,k · Pi), i = 1, . . . ,M .

V0
k := (V 0

j,k � α0,k ·Qj),

V1
k := (V 1

j,k � α1,k ·Qj), j = 1, . . . , N.

Pick: Y 0
k := (y0

i,k �R {0, 1}`),
Y 1
k := (y1

i,k �R {0, 1}`), i = 1, . . . ,m.

Generate garbled circ. Fk by using

(W0
k ,W1

k ,V0
k ,V1

k , Y
0
k , Y

1
k ,PubInfoCf).

Run 2PC Protocol

Act as Evaluator Act as Garbler

Fk, X2,k←−−−−−−−−−−−

Using Fk, X1,k, X2,k, T, πf OT (if needed)
←−−−−−−−−−−→

obtain Y = f (x1,k, x2,k).

Figure 5.3: Sketch of our ReExe protocol for the k-th execution (k > 1). The number of
rounds is equal to 1, or 2, or 3 depending on the input size of Party1.

Our ReExe protocol optimizes the baseline InExe scheme presented by utilizing

the Reusable Mapping Template ReuseTempf when the same private function is

evaluated more than once.

Figure 5.3 depicts the sketch of our optimized ReExe protocol and Figure 5.4

give the detailed protocol steps. In ReExe protocol most of the calculations are

performed in the offline pre-computation phase. For the k-th evaluation, Party2

picks α0,k, α1,k ∈R Z∗q values then prepares the sets W0
k , W1

k , V0
k , V1

k , Y 0
k and Y 1

k .

Then usingW0
k ,W1

k ,V0
k ,V1

k , Y
0
k , Y

1
k and PubInfoCf , Party2 prepares the garbled circuit

68

F as in the InExe protocol. The online phase then includes only the 2PC stage that

also runs the same way as in Section 5.2.1. During the evaluation procedure of the

2PC stage, Party1 always use the same T in all protocol runs.

The number of rounds is equal to 1, or 2, or 3 depending on the input string

length of Party1. Namely, if x1 = ⊥, then the number of rounds is equal to 1 (i.e.,

no rounds needed for OT). If Party1’s input bits are not many, it is more efficient to

use separate OTs for Party1’s input tokens in parallel instead of an OT extension

scheme. There exists OT schemes with 2 rounds (e.g., [147] and [148]). Hence,

this choice results in a PFE scheme with overall 2 rounds (i.e., one round is sent

accompanied by Fk, X2,k message and the other OT round is sent from Party1 to

Party2). If Party1’s input bits are many, then using an OT extension scheme is more

efficient. Note that Ishai based OT extension schemes are composed of O(λ) parallel

OTs (again can be realized by Naor and Pinkas’s OT [148]) and an additional round.

Similarly, this choice results in a PFE scheme with overall 3 rounds.

5.2.3 Executing with Various Party2s

In the previous section, we have addressed the case where the same two parties

would like to evaluate the same function multiple times. In this section, we deal

with the case that Party1 would like to run the 2PFE protocol for the same private

function with various Party2s separately. This is a relevant scenario where Party1

may run a business with many customers for her algorithm/software. Suppose that

a cryptological research institution invents a practical algorithm for breaking RSA.

Since such an algorithm would clearly attract a substantial demand, the institution

may prefer preserving the details of the algorithm selling only its use. On the other

hand, in many cases, the clients would not like to share the keys (i.e., private inputs)

with the institution. This is one of the several scenarios that a 2PFE protocol for

the same private function with various Party2s is suitable for.

First of all, we recall that the execution of our second protocol in Figure 5.3

requires the preknowledge of ReuseTempf := (P ,Q) by Party2 and the set T by

69

Our ReExe Protocol: The procedures for the k-th execution (k > 1)

Party1’s Input: x1,k ∈ {0, 1}∗, a Boolean circuit Cf consisting of NAND gates (compiled from
the function f), a mapping πf (extracted from Cf), and the blinding set T := (t1, . . . , tN :
tj ∈R Z∗q , j = 1, . . . , N).
Party2’s Input: x2,k ∈ {0, 1}∗.
Pre-shared Information: A cyclic group G of prime order q with a generator P , PubInfoCf

,
and ReuseTempf

a.
Output: f(x1,k, x2,k).

Precomputation phase of the k-th execution:

1. Party2 picks α0,k, α1,k ∈R Z∗q and prepares the group element setsW0
k := (W 0

1,k, . . . ,W
0
M,k :

W 0
i,k � α0,k ·Pi, i = 1, . . . ,M) for FALSEs andW1

k := (W 1
1,k, . . . ,W

1
M,k : W 1

i,k � α1,k ·Pi, i =

1, . . . ,M) for TRUEs for owi ∈ OW, and V0
k := (V 0

1,k, . . . , V
0
N,k : V 0

j,k � α0,k · Qj , j =

1, . . . , N) for FALSEs and V1
k := (V 1

1,k, . . . , V
1
N,k : V 1

j,k � α1,k · Qj , j = 1, . . . , N) for TRUEs
for iwj ∈ IW. Next, Party2 generates two random token sets for output wires of the circuit
Y 0
k := (y01,k, . . . , y

0
o,k : y0i,k �R {0, 1}`, i = 1, . . . ,m) and Y 1

k := (y11,k, . . . , y
1
o,k : y1i,k �R

{0, 1}`, i = 1, . . . ,m).

2. The 2PC protocol now starts from this stage where Party2 becomes the garbler and Party1
becomes the evaluator. Using W0

k , W1
k , V0

k , V1
k , Y 0

k , Y 1
k , and PubInfoCf

, Party2 prepares the
garbled circuit Fk by garbling each gate as follows. Party2 prepares the following four cipher-
texts to garble a non-output NAND gate Ga whose incoming wires are iwi and iwj , and out-

going wire is owz: EncV 0
i,k,V

0
j,k

(W 1
z,k), EncV 0

i,k,V
1
j,k

(W 1
z,k), EncV 1

i,k,V
0
j,k

(W 1
z,k), EncV 1

i ,V
1
j

(W 0
z,k).

Similarly, Party2 also prepares the following four ciphertexts to garble an output
NAND gate Gb whose incoming wires are iwi and iwj , and output wire index is z:
EncV 0

i,k,V
0
j,k

(y1z,k), EncV 0
i,k,V

1
j,k

(y1z,k), EncV 1
i,k,V

0
j,k

(y1z,k), EncV 1
i ,V

1
j

(y0z,k). Each garbled gate

GGa,k is then composed of four `-bit ciphertexts and two log2(τ)-bit bit indices, I1a,k and

I2a,k (see Section 5.2.1 for garbling details). Party2 stores Fk, W0
k , W1

k , Y 0
k , and Y 1

k .

Online phase of the k-th execution

Round 1:
3. Party2 sends Fk and the garbled input X2,k for its own input x2,k to Party1.

4. Party1 gets the garbled input X1,k for its own input x1,k from Party2 using parallel 1-out-of-2
OTs (or a more efficient OT extension scheme).

5. Using Fk, the garbled input Xk = (X1,k, X2,k), T , and πf , Party1 evaluates the whole
garbled circuit in topological order. If an outgoing wire owd is mapped to an incoming wire
iwe, then the group element Ve of the e-th incoming wire is computed by the multiplication of
the group element Wd of the d-th outgoing wire and the blinding value te (i.e., if πf (d) = e,
then Ve,k = te · Wd,k). Each garbled gate GGa,k can be evaluated whenever both group
elements (Vi,k, Vj,k) on its incoming wires (iwi, iwj) are computed. To evaluate each GGa,k,
Party1 first computes H(Vi,k, Vj,k, gateID), and then XORs the ciphertext in the GGa,k pointed
by I1a,k-th and I2a,k-th bits of [H(Vi,k, Vj,k, gateID)]τ . At the end, Party1 obtains the token set
Yk = (y1,k, . . . , yo,k) for the output bits f(x1,k, x2,k).

aReuseTempf is already computed in InExe as in Figure 5.2.

Figure 5.4: Our Optimized ReExe 2PFE Protocol that utilizes Reusable Mapping Template

70

Party1. Trivially, once ReuseTempf and T are produced during InExe with any Party2

as in our first protocol in Figure 5.1, then they can be stored, and our second protocol

can be made use of in the subsequent executions with the same Party2. We are here

interested in a more efficient mechanism running with various Party2s by eliminating

the costs of our first protocol for generating the preknowledge. The goal of this

mechanism is to generate the generator set P in such a way that Party1 does not

know the relation between any two of its elements. T and Q can be subsequently

computed, once the generator set P is given to Party1. In order to do so, we utilize

a distributed system2 based on a t-out-of-n threshold mechanism (fault tolerant

against arbitrary behaviour of up to t malicious and colluding authorities) which

takes (G, q, P,M) as input and outputs P .

In the offline stage of our new mechanism, the generator set P is generated by the

distributed authorities, and given to Party1. Next, Party1 computes the sets T and

ReuseTempf . It then publishes PubInfoCf and ReuseTempf so that any prospective k-

th party Party2,k can utilize them in a 2PFE protocol run. This offline stage is dealt

with only once, and its outputs (i.e., T and ReuseTempf) are used in the subsequent

executions. Note that the flow of re-executions for all Party2,ks is exactly the same

as our ReExe protocol. We would like to stress that the costs of any execution in our

new mechanism with a distributed system do not differ from the ReExe protocol.

5.3 Complexity Analysis

In this section, we first present the costs of our InExe and ReExe protocols in terms

of communication, online computation, and round complexities. We then compare

these protocols with the existing Boolean circuit based 2PFE schemes. M , N , λ,

and ρ denote the number of outgoing wires (i.e., equal to n + g −m), the number

of incoming wires (i.e., N = 2g), the security parameter, and the computation cost

2One can also suggest a single semi-trusted authority for generation of the generator set P.
However, the knowledge of the relations among the elements of P by a single party may violate
the privacy of inputs, and therefore, it is better to distribute the trust among multiple authorities.

71

ratio, respectively. For KM11 and MS13-HE, it is assumed that the elliptic curve

ElGamal is used for the singly homomorphic encryption schemes (as suggested in

their paper). Also, for KM11 and our protocols, we assume that each element of G

has a length ` = 2λ bits for λ-bit security. We ignore the small communication cost

of bit indices in garbled gates (2 × log2(τ) bits for each garbled gate) used for the

point and permute optimization.

Table 5.1: Comparison of the existing 2PFE schemes in terms of overall communication
(in bits) and online computation costs (in terms of symmetric-key operations), offline
computation costs (in terms of symmetric-key operations), and the number of rounds. M ,
N , λ, and ρ denote the number of outgoing wires (i.e., equal to n + g −m), the number
of incoming wires (i.e., N = 2g), the security parameter, and the computation cost ratio,
respectively.

Communication Online Comp. Offline Comp. Rounds

KM11-1st [9, Sec.3.1] (4M + 10N)λ (ρ+ 2.5)N 4(M +N)ρ 3

KM11-2nd [9, Sec.3.2] (2M + 7N)λ (ρ+ 2.5)N 2(M +N)ρ 3

MS13-OSN [17] (10N log2N + 4N + 5)λ 6N log2N + 2.5N + 3 O(λ) 6

MS13-HE [17] (2M + 6N)λ (ρ+ 2.5)N 2(M +N)ρ 3

GKS17 [19] (2N log2N)λ 0.7N log2N 2N log2N 3

BBKL18 [20] (6N log2N + 0.5N + 3)λ 6N log2N +N + 3 O(λ) 6

Our InExe Protocol (2M + 6N)λ (4ρ+ 2.5)N (3M − 1)ρ 3

Our ReExe Protocol 4Nλ (ρ+ 0.5)N 2(M +N)ρ+ 2 1 / 2 / 3

5.3.1 Complexity of Our Scheme

Communication cost: Considering our InExe protocol, the overall communica-

tion overhead is (2M + 6N)λ bits, composed of (i) the set P (M of 2λ-bit strings)

is sent by Party2 in Round 1, (ii) the set Q (N of 2λ-bit strings) is sent by Party1 in

Round 2, (iii) the garbled circuit (2N of 2λ-bit strings) is sent by Party2 in Round

3, where M is the number of outgoing wires and N is the number of incoming wires

(N = 2g). Considering our ReExe protocol, the use of ReuseTempf eliminates the

transmission of (2M+2N)λ bits (required for token generation). Therefore, in total

only 4Nλ bits (required for the garbled circuit) are transmitted.

72

Computation cost: In terms of online computation complexity, InExe protocol

requires 4N elliptic curve point multiplications, composed of (i) N operations by

Party1 in Round 2, (ii) 2N operations by Party2 in Round 3, (iii) N operations by

Party1 during the evaluation of the garbled circuit. There is also a relatively small

cost of 2.5N symmetric-key operations during the 2PC stage (composed of 2N op-

erations by Party2 for garbling and 0.5N operations by Party1 for evaluating). ReExe

protocol reduces the online computation costs to N elliptic curve point multiplica-

tions and 0.5N symmetric-key operations (carried out only by Party1). Note that

Beaver’s OT pre-computation technique [147] can be used for decomposing OT’s

for Party1’s input bits into online/offline stages. This eliminates online public-key

operations of OT by carrying out them offline.

Number of rounds: Our InExe protocol has 3 rounds. The number of rounds of

our ReExe protocol is equal to 1, or 2, or 3 depending on the input string length of

Party1. Namely, if Party1 has x1 = ⊥, then the number of rounds is equal to 1 (i.e.,

no rounds needed for OT). If Party1’s input bits are not many, it is more efficient to

use separate OTs for Party1’s input tokens in parallel instead of an OT extension

scheme. There exist OT schemes with 2 rounds (e.g., [147] and [148]). Hence, this

choice results in a PFE scheme with overall 2 rounds. If Party1’s input bits are

many, then using an OT extension scheme is more efficient. Note that Ishai based

OT extension schemes are composed of O(λ) parallel OTs (again can be realized by

Naor and Pinkas’s OT [148]) and an additional round. Similarly, this choice results

in a PFE scheme with overall 3 rounds.

5.3.2 Comparison

We now compare our 2PFE protocols with the state-of-the-art constant-round 2PFE

protocols. In our scheme, we utilize an EC cyclic group where the DDH assumption

holds for state-of-the-art efficiency. For [9], we take into account both protocols: (1)

their “C-PFE protocol” (see [9, Sect. 3.1], what we call KM11-1st) and (2) their

73

Table 5.2: Comparison of the existing 2PFE schemes in terms of overall communication
costs for various circuit sizes. Here we take N = 2M and λ = 128.

Number of Gates

210 215 220 225 230

KM11-1st [9, Sec.3.1] 0.38 MB 12.00 MB 0.38 GB 12.00 GB 384.00 GB

KM11-2nd [9, Sec.3.2] 0.25 MB 8.00 MB 0.25 GB 8.00 GB 256.00 GB

MS13-OSN [17] 3.56 MB 164.00 MB 6.69 GB 264.00 GB 10, 048.00 GB

MS13-HE [17] 0.22 MB 7.00 MB 0.22 GB 7.00 GB 224.00 GB

GKS17 [19] 0.68 MB 32.00 MB 1.31 GB 52.00 GB 1, 984.00 GB

BBKL18 [20] 1.89 MB 90.50 MB 3.77 GB 151.00 GB 5, 776.00 GB

Our InExe Protocol 0.22 MB 7.00 MB 0.22 GB 7.00 GB 224.00 GB

Our ReExe Protocol 0.13 MB 4.00 MB 0.13 GB 4.00 GB 128.00 GB

“A More Efficient Variant” (see [9, Sect. 3.2], what we call KM11-2nd). For a

fair comparison, we assume that the point and permute optimization [29] is directly

applied to the MS13 and KM11 protocols during the 2PC phase3. Regarding the HE

based schemes, for a fair comparison, we assume that EC-ElGamal is used. Also,

considering KM11 and our protocols, we assume that each element of G has a length

` = 2λ bits for a λ-bit security.

Table 5.1 compares the existing 2PFE schemes in terms of overall communication

cost, online/offline computation costs, and the number of rounds. We also provide

Table 5.2 that depicts a comparison in terms of overall communication costs for

various circuit sizes. In general, MS13-OSN, GKS17, BBKL18 performs O(NlogN),

whereas MS13-HE, KM11 and our protocols achieve linear complexity4. Note that

although the complexity of MS13-HE is same as our InExe protocol, for the later

executions our ReExe protocol enjoys a significant cost reduction due to the reusabil-

ity feature, which is not possible for MS13-HE and KM11 protocols. For all circuit

sizes, the communication costs of ReExe protocol are significantly lower than that

3In [17] and [9], for the 2PC phases, the authors do not suggest any optimization. However, a
point and permute optimization is available for both schemes.

4Note that M ≤ N , therefore O(M +N) = O(N)

74

of existing 2PFE protocols.

The advantage of our scheme becomes more pronounced when the number of

executions is more than one. To demonstrate this, we define the normalized cost

efficiency (NCE) function that takes a protocol (Proti), a circuit Cf and the number

of executions (k), then outputs an efficiency ratio wrt our scheme. The normalized

cost efficiency is calculated via dividing the cumulative communication cost of our

protocol by that of Proti. i.e.,

NCE(Proti, Cf , k) =
fc(InExe, Cf) + (k − 1)fc(ReExe, Cf)

kfc(Proti, Cf)
,

where fc is the cost function that outputs the communication cost value for a given

protocol and Cf .

Figure 5.5 and Figure 5.6 depict the normalized cost efficiency comparison of

the protocols for circuits with 210 and 230 gates, respectively. Also, without loss of

generality, we take N = 2M . Considering MS13-HE, although it performs the same

efficiency in the initial execution, after the second execution, its efficiency is about

0.8 (meaning that our protocol saves about 20% bandwidth as compared to MS13-

HE), and after ten executions it is about 0.63 (we achieve 37% saving). Moreover,

for two executions our cost reduction is about 54% over KM11-1st, 30% over KM11-

2nd. For ten executions our cost reduction is about 63% over KM11-1st, 44% over

KM11-2nd.

Figure 5.5 and Figure 5.6 shows how the normalized cost efficiency changes with

respect to circuit size. For the protocols that have linear complexity, the normalized

cost efficiency does not change as the number of gates increases. However, for

the protocols with O(N log N) complexity, their normalized efficiency dramatically

decreases. For instance, after two executions, our cost reduction is about 74% and

91% over GKS17; about 91% and 97% over BBKL18; and about 95% and 98% over

MS13-OSN for a thousand and a billion gate circuits, respectively. Table 5.3 depicts

our efficiency gain (in percentage) over existing 2PFE schemes in terms of overall

communication costs with respect to the number of protocol runs, in detail.

75

Number of protocol executions
1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

 e
ffi

ci
en

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
This work
MS13-HE
KM11-2nd
KM11-1st
GKS17
BBKL18
MS13-OSN

Figure 5.5: Comparison of cumulative communication cost via normalized bandwidth
efficiency vs. number of PFE executions using a circuit 210 gates.

Number of protocol executions
1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 c
om

m
un

ic
at

io
n

co
st

 e
ffi

ci
en

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
This work
MS13-HE
KM11-2nd
KM11-1st
GKS17
BBKL18
MS13-OSN

Figure 5.6: Comparison of cumulative communication cost via normalized bandwidth
efficiency vs. number of PFE executions using a circuit 230 gates.

76

Table 5.3: Our efficiency gain (in percentage) over existing 2PFE schemes in terms of overall communication costs with respect to the
number of protocol runs.

Existing No. of
Our Efficiency Gain (%)

Protocols Gates 1st run 2nd run 3rd run 4th run 5th run 6th run 7th run 8th run 9th run 10th run

MS13-HE [17]

Any

0 20.45 27.27 30.68 32.73 34.09 35.06 35.80 36.36 36.82

KM11-2nd [9] 12.00 30.00 36.00 39.00 40.80 42.00 42.86 43.50 44.00 44.40

KM11-1st [9] 42.11 53.95 57.89 59.87 61.05 61.84 62.41 62.83 63.16 63.42

GKS17 [19]

210

67.65 74.26 76.47 77.57 78.24 78.68 78.99 79.23 79.41 79.56

BBKL18 [20] 88.36 90.74 91.53 91.93 92.17 92.33 92.44 92.53 92.59 92.65

MS13-OSN [17] 93.82 95.08 95.51 95.72 95.84 95.93 95.99 96.03 96.07 96.10

GKS17 [19]

230

88.71 91.13 91.94 92.34 92.58 92.74 92.86 92.94 93.01 93.06

BBKL18 [20] 96.12 96.95 97.23 97.37 97.45 97.51 97.55 97.58 97.60 97.62

MS13-OSN [17] 97.77 98.25 98.41 98.49 98.54 98.57 98.59 98.61 98.62 98.63

77

For the computation costs, in order to compare symmetric-key and asymmetric-

key based operations, we define the computation cost ratio ρ as the cost of an

elliptic curve point multiplication divided by the cost of a symmetric-key operation

for the same security level. Note that the value of ρ depends upon several factors,

such as the software implementations, the symmetric-key encryption scheme, the

availability of short-cut algorithms, the type of chosen elliptic curve, the hardware

infrastructure, and the type of utilized processors. For example, according to [149],

in a setting where curve25519, and SHA256 are picked as the EC and the hash

function, respectively, and the operations take place on an Intel Xeon Processor

E3-1220 v6 (amd64, 4x3GHz), the value of ρ is roughly 130.

Among all protocols, our ReExe protocol performs the best result in terms of

round complexity. Namely, the number of rounds in ReExe is equal to 1 if Party1 has

x1 = ⊥, or 2 if Party1 has a non-empty input x1 in such that the OT extension is

not applicable to its garbled input, or 3 otherwise. Note that the arithmetic circuit

based protocol of [17] provides O(g) round complexity (see [17, p. 570])).

5.4 Security of Our Protocols

In this section, we give simulation-based security proofs of our InExe protocol in

Figure 5.1, ReExe protocol in Figure 5.3, and our mechanism with various Party2s

in Sect. 5.2.3 in accordance with the security proof of [9].

Theorem 5.4.1. If the following three conditions hold then the 2PFE protocol pro-

posed in Figure 5.1 is secure against semi-honest adversaries: (1) the DDH assump-

tion is hard in the cyclic group G, (2) the hash-function H : G × G × {0, 1}∗ →

{0, 1}`+τ involved in the instantiation of DKC scheme is modeled as a random ora-

cle, (3) the OT scheme securely realizes FOT functionality in the OT-hybrid model

against semi-honest adversaries.

Proof. First, consider the case that Party1 is corrupted. For any probabilistic polyno-

mial time adversary A1, controlling Party1 in the real world, we construct a simulator

78

S1 that simulates A1’s view in the ideal world. S1 runs A1 on Party1’s inputs, f and

x1, the function output token set Y = (y1, . . . , ym), the pre-shared group parameters,

and PubInfoCf as follows.

1. S1 generates the generator set P̃ := (P̃1, . . . , P̃M). S1 also prepares the group

element sets W̃0 := (W̃ 0
1 , . . . , W̃

0
M : W̃ 0

i � α̃0,i · P, α̃0,i ∈R Z∗q, i = 1, . . . ,M)

and W̃1 := (W̃ 1
1 , . . . , W̃

1
M : W̃ 1

i � α̃1,i · P, α̃1,i ∈R Z∗q, i = 1, . . . ,M). S1 gives

P̃ to A1.

2. S1 receives the blinding set T := (t1, . . . , tN : tj ∈R Z∗q, j = 1, . . . , N) from

A1, and prepares the sets Ṽ0 := (Ṽ 0
1 , . . . , Ṽ

0
N : Ṽ 0

j � tj · W̃ 0
π−1
f (j)

, j = 1, . . . , N)

and Ṽ1 := (Ṽ 1
1 , . . . , Ṽ

1
N : Ṽ 1

j � tj · W̃ 1
π−1
f (j)

, j = 1, . . . , N).

3. S1 prepares the garbled circuit F̃ by garbling each gate as follows. S1 garbles

each non-output NAND gate by encrypting only the group element for FALSE

on its outgoing wire with all four possible input token combinations (i.e., for

a gate whose incoming wires are iwi and iwj, outgoing wire is owz, S1 prepares

the following four ciphertexts: c̃t
1
a = EncṼ 0

i ,Ṽ
0
j

(W̃ 0
z), c̃t

2
a = EncṼ 0

i ,Ṽ
1
j

(W̃ 0
z),

c̃t
3
a = EncṼ 1

i ,Ṽ
0
j

(W̃ 0
z), c̃t

4
a = EncṼ 1

i ,Ṽ
1
j

(W̃ 0
z). To garble an output NAND gate

whose incoming wires are iwi and iwj, and output wire is z, S1 prepares the four

ciphertexts: c̃t
1
b = EncṼ 0

i ,V
0
j

(yz), c̃t
2
b = EncṼ 0

i ,Ṽ
1
j

(yz), c̃t
3
b = EncṼ 1

i ,Ṽ
0
j

(yz), c̃t
4
b =

EncṼ 1
i ,Ṽ

1
j

(yz). For each garbled gate G̃Ga, S1 then permutes c̃t
2
a, c̃t

3
a, c̃t

4
a, and

picks Ĩ1
a , Ĩ

2
a ∈R {1, . . . , τ}, and places c̃t

1
a in the order pointed by Ĩ1

a -th and

Ĩ2
a -th bits of [H(Ṽ 0

i , Ṽ
0
j , gateID)]τ among the other three ciphertexts. Each

garbled gate G̃Ga is then composed of four `-bit ciphertexts and two log2(τ)-

bit random values Ĩ1
a and Ĩ2

a .

4. S1 gives F̃ to A1 along with the simulated garbled input consisting of only the

group elements for FALSEs on both parties’ input wires X̃ = (X̃1, X̃2). This

completes our simulation.

In what follows, we prove that the information obtained by Party1 in the real

execution (P ,W , F) is identically distributed to (P̃ , W̃ , F̃), where for outgoing wires,

79

Party1 obtains the group elementsW = (W1, . . . ,WM) while A1 obtaining the group

elements W̃ = (W̃ 0
1 , . . . , W̃

0
M). We now show the computational indistinguishability

of (P ,W) and (P̃ , W̃) by utilizing Lemma 5.1.1, which ultimately ties the security

of our protocol to the DDH assumption. More concretely, we need to show

{(P1, . . . , PM ,W1, . . . ,WM)} ≈c {(P̃1, . . . , P̃M , W̃
0
1 , . . . , W̃

0
M)}

and

{(r1 · P, . . . , rM · P, αb1 · (r1 · P), . . . , αbM · (rM · P))} ≈c

{(r̃1 · P, . . . , r̃M · P, α̃0,1 · P, . . . , α̃0,M · P)}

where bi ∈ {0, 1} is the semantic value on owi and P̃i = r̃i · P . For the sake

of a simpler representation, we replace αbiri with rM+i, and α̃0,i with r̃M+i for

i = 1, . . . ,M . Note that (r1, . . . , r2M) is not identically distributed to (r̃1, . . . , r̃2M),

while it is only sufficient to show that

{(r1 · P, . . . , r2M · P)} ≈c {(r̃1 · P, . . . , r̃2M · P)}.

For this purpose, we generate a new set R := (R1, . . . , R2M) by picking 2M random

generators. Hence, we now need to show

{(R1, . . . , R2M , r1 · P, . . . , r2M · P)} ≈c {(R1, . . . , R2M , r̃1 · P, . . . , r̃2M · P)}

Thanks to Lemma 5.1.1 and the underlying DDH assumption, we have both

{(R1, . . . , R2M , γ ·R1, . . . , γ ·R2M)} ≈c {(R1, . . . , R2M , r1 · P, . . . , r2M · P)}

and

{(R1, . . . , R2M , γ ·R1, . . . , γ ·R2M)} ≈c {(R1, . . . , R2M , r̃1 · P, . . . , r̃2M · P)}

80

where γ ∈R Z∗q. Hence, the following sets are computationally indistinguishable

{(r1 · P, . . . , r2M · P)} ≈c {(r̃1 · P, . . . , r̃2M · P)}

which effectively concludes the proof for {(P ,W)} ≈c {(P̃ , W̃)}. Furthermore,

since the same values in T are used among the outgoing wire tokens and incoming

wire tokens in both the real and the ideal executions, we have {(P ,W ,V)} ≈c
{(P̃ , W̃ , Ṽ)} where for each incoming wire V = (V1, . . . , VN) is the set of tokens

obtained by Party1 and Ṽ = (Ṽ 0
1 , . . . , Ṽ

0
N) is the set of tokens obtained by A1. In

contrast to [9], it is relatively simple to prove the computational indistinguishability

of F and F̃ in our scheme since we use a hash function modeled as a random oracle

during garbling. Once the distribution of four hash outputs for each gate (in the real

and ideal executions) are proven to be computationally indistinguishable random

values, outputs of our instantiation of DKC is also proven to be computationally

indistinguishable. This results in the computational indistinguishability of each

garbled gate GGa and G̃Ga, and eventually computational indistinguishability of F

and F̃ . For a gate whose incoming wires are iwi and iwj, in the real execution, we

have four hash outputs involved in the garbling as follows:

H(V 0
i , V

0
j , gateID), H(V 0

i , V
1
j , gateID),

H(V 1
i , V

0
j , gateID), H(V 1

i , V
1
j , gateID).

Similarly, for each gate, in the ideal execution, we have the following four hash

outputs in the garbling as follows:

H(Ṽ 0
i , Ṽ

0
j , gateID), H(Ṽ 0

i , Ṽ
1
j , gateID),

H(Ṽ 1
i , Ṽ

0
j , gateID), H(Ṽ 1

i , Ṽ
1
j , gateID).

Since in Party1’s view, resulting from the indistinguishability of V and Ṽ , the hash

81

inputs are computationally indistinguishable, and therefore, the hash outputs are

computationally indistinguishable random values. This completes the proof for

{(P ,W , F)} ≈c {(P̃ , W̃ , F̃)}.

We now consider the case that Party2 is corrupted. For any probabilistic polynomial-

time adversary A2, controlling Party2 during our first protocol in the real world, we

construct a simulator S2 that simulates A2’s view in the ideal world. S2 runs A2 on

Party2’s input, and the pre-shared group parameters, and PubInfoCf as follows.

1. S2 asks A2 to generate P̃ � Init(G, q, P,M) and receives P̃ .

2. S2 then picks t̃j ∈R Z∗q for j = 1, . . . , N , and computes Q̃j � t̃j · P which are

now random group elements in G. S2 assigns Q̃ = (Q̃1, . . . , Q̃N), and gives Q̃

to A2. This completes our simulation.

In the real execution of our protocol, Party2 receives only the message Q :=

(Q1, . . . , QN : Qj � tj ·Pπ−1
f (j), j = 1, . . . , N) in Round 2 (apart from the exchanged

messages during the OT protocol for Party1’s garbled input). However, the tran-

scripts received by Party2 during the OT do not leak any information to Party2

because of the ideal execution of FOT in the OT-hybrid model. Due to the DDH as-

sumption, in Party2’s view, the distributions of Q̃ and Q are identical (i.e., Q̃ ≈c Q).

This concludes the proof for the InExe protocol.

Theorem 5.4.2. If the 2PFE protocol proposed in Figure 5.1 is secure against semi-

honest adversaries (i.e., the three conditions in Theorem 5.4.1 are satisfied), then the

2PFE protocol proposed in Figure 5.3 is also secure against semi-honest adversaries.

Sketch. The main difference of the ReExe protocol from the first one is the utiliza-

tion of ReuseTempf . Therefore, the proof will be complete once we show that the

utilization of the sets W0
k , W1

k , V0
k , and W1

k computed from the same ReuseTempf

in the k-th execution gives Party1 no advantage in deducing Party2’s inputs.

We now show that in Party1’s view, (Wk,Vk,Wk+1,Vk+1) in two consecutive real

executions are computationally indistinguishable from (W̃1, Ṽ1, W̃2, Ṽ2) where W̃1 :=

82

(W̃1,1, . . . , W̃M,1 : W̃i,1 = q̃i,1 · P, q̃i,1 ∈R Z∗q, i = 1, . . . ,M), Ṽ1 := (Ṽ1,1, . . . , ṼN,1 :

Ṽj,1 � tj · W̃π−1
f (j),1, j = 1, . . . , N), W̃2 := (W̃1,2, . . . , W̃M,2 : W̃i,2 = q̃i,2 · P, q̃i,2 ∈R

Z∗q, i = 1, . . . ,M), and Ṽ2 := (Ṽ1,2, . . . , ṼN,2 : Ṽj,2 � tj · W̃π−1
f (j),2, j = 1, . . . , N).

More concretely, we have

{((1, k), . . . , (M,k), t1 · (π−1
f (1), k), . . . , tN · (π−1

f (N), k),

(1, k + 1), . . . , (M,k + 1), t1 · (π−1
f (1), k + 1), . . . , tN · (π−1

f (N), k + 1))}

≈c {(q̃1,1 · P, . . . , q̃M,1 · P, t1 · (q̃π−1
f (1),1 · P),

. . . , tN · (q̃π−1
f (N),1 · P), q̃1,2 · P, . . . , q̃M,2 · P,

t1 · (q̃π−1
f (1),2 · P), . . . , tN · (q̃π−1

f (N),2 · P))}

where (i, j) is the abbreviation for αbi,j ,j · Pi, and bi,k ∈ {0, 1} is the semantic bit

value of owi in the k-th execution. The proof of their indistinguishability relies on

the same flow as the proof of Theorem 5.4.1, which depends on Lemma 5.1.1 and

ultimately on the DDH assumption.

Theorem 5.4.3. If the threshold system is secure against malicious adversaries at

most t−1 of whom are allowed to collude, and the 2PFE protocol proposed in Figure

5.3 is secure against semi-honest adversaries; then our mechanism with various

Party2s in Sect. 5.2.3 is also secure against semi-honest adversaries.

Sketch. First, Party1’s view in the 2PFE mechanism is equivalent to the one in the

protocol in Figure 5.3. Observe that the generator set is generated by the distributed

system and the tokens (that are used in the preparation of the garbled input Xk

and the garbled circuit Fk) are computed from α0,k or α1,k in each evaluation as

in Figure 5.3. Therefore, the 2PFE mechanism prevents Party1 from deducing any

information about Party2,k’s input. Second, Party2,ks cannot obtain any information

about Party1’s input in none of the executions since the OT outputs are only obtained

83

by Party1 due the FOT functionality in the OT-hybrid model. Also, due to Theorem

5.4.1, no one can obtain information about πf from the ReuseTempf . Moreover, any

Party2,k has a negligible advantage on distinguishing the exchanged messages in an

evaluation between Party1 and Party2,l from a random string due to the underlying

DDH assumption for l 6= k. More concretely, the tokens (that are used in the

preparation of Party2,l’s garbled input X2,l and the garbled circuit Fl) are computed

by multiplying the elements of the ReuseTempf with the private values α0,l or α1,l

of Party2,l.

84

Chapter 6

CONCLUSIONS

In this dissertation, we studied the problem of the private function evaluation. Pri-

vate function evaluation (PFE) is a special case of secure multi-party computation

(MPC), where the function to be computed is known by only one party. PFE is

useful in several real-life applications where an algorithm or a function itself needs

to remain secret for reasons such as protecting intellectual property or security clas-

sification level.

One of the primary objectives of the recent research on MPC, and specifically

PFE, is minimizing the communication cost. This is due to the fact that historical

developments in hardware technology show us computing power advances faster than

communication channels. This is even more likely to be so in the near future, i.e.,

the main bottleneck for many secure computation applications will not be the CPU

load but be the bandwidth constraints [28, 108]. Motivated by this, we are mainly

interested in reducing the communication complexity of the 2PFE protocols.

We first proposed an efficient and secure protocol for 2PFE based on (mostly)

symmetric cryptography primitives. In this respect, we proposed an efficient proto-

col by adapting the state-of-the-art half gates garbling optimization [1] to Mohassel

and Sadeghian’s 2PFE scheme [17] 2PFE scheme. Our optimization achieves a

remarkable advantage over [17] in both OSN and 2PC phases in terms of communi-

cation complexity. In particular, in the OSN phase, our protocol reduces the number

85

of required OTs and data sizes entering the protocol. In 2PC phase, our half gate

based scheme garbles each non-output gate with three ciphertexts, and each output

gate with two ciphertexts. All in all, our protocol improves the state-of-the-art by

saving more than 40% of the overall communication cost.

Next, we have proposed a secure and highly efficient 2PFE scheme for Boolean

circuits based on the DDH assumption. Our scheme consists of two protocols: (1) a

protocol for initial executions (InExe), (2) a resumption protocol (ReExe) for subse-

quent executions. The latter protocol is more efficient due to the fact that it benefits

from the reusable tokens generated already in the former one. One of the novelties

of our scheme over the state-of-the-art is that our scheme results in a significant

cost reduction when the same private function is evaluated more than once between

the same or varying evaluating parties. This feature is quite beneficial in relevant

real-life scenarios where individuals (or enterprises) can mutually and continuously

have a long-term business relationship instead of a single deal. Note that such a

cost reduction is not available in the protocols of KM11 [9] and MS13 [17] since they

require all token generation and 2PC procedures repeated in all executions. How-

ever, our scheme involves ReuseTempf that is reusable for the generation of tokens

on incoming and outgoing wires. The reusability of ReuseTempf incurs a massive

reduction in protocol overhead since a large part of costs in existing 2PFE proto-

cols [9,17] results from the generation of these tokens. Our protocols achieve linear

communication and computation complexities and a constant number of rounds

which is at most three. To the best of our knowledge, this is the first and most

efficient 2PFE scheme that enjoys a reusability feature.

Comparing the existing protocols, our scheme asymptotically reduces the com-

munication cost compared to MS13-OSN [17], BBKL18 [20], and GKS17 [19] pro-

tocols (i.e., from O(g log(g)) to O(g) where g is the number of gates). For instance,

for a billion-gate circuit, our cost reduction is about 98% over MS13-OSN, about

96% over BBKL18, and about 89% over GKS17. Comparing with the protocols that

have linear complexity, for ten executions (regardless of the number of gates) our

86

cost reduction is about 63% over KM11-1st, 44% over KM11-2nd, and 37% over

MS13-HE.

We also propose a solution for the case that Party1 runs the 2PFE protocol for

the same private function with various Party2s separately. This is a common scenario

where Party1 may run a business with many customers for her algorithm/software.

Instead of running InExe protocol with each Party2, we have proposed a more efficient

mechanism for the generation of the reusable tokens by utilizing a threshold based

system.

After all, we hope that our work sheds light on the future researches and leads to

more practical PFE constructions. In accordance with this goal, we conclude with

the following open questions:

1. Although the 2-OEP protocol in [17], which we utilize in our protocol, is quite

efficient for many circuit sizes, fails to be so in large-sized circuits due to its

O(g log(g)) complexity. This fact arises the following question: Can we have

a symmetric cryptography based 2-OEP protocol that has linear asymptotic

complexity while also being efficient in small circuit sizes?

2. Our and existing 2PFE protocols permit only one gate functionality (e.g.,

NAND or NOR) in a Boolean circuit. This yields another important future

challenge: Can we have a gate hiding mechanism in 2PFE schemes permitting

the use of various gates in logic circuit representations?

87

BIBLIOGRAPHY

[1] S. Zahur, M. Rosulek, and D. Evans, “Two halves make a whole: Reducing
data transfer in garbled circuits using half gates,” in Proceedings of the Ad-
vances in Cryptology - EUROCRYPT 2015, (Sofia, Bulgaria), pp. 220–250,
Springer, Berlin Heidelberg, 26 - 30 April 2015.

[2] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of garbled circuits,”
in Proceedings of the ACM Conference on Computer and Communications
Security (CCS’12), (Raleigh, North Carolina, USA), pp. 784–796, ACM, NY,
USA, 16-18 October 2012.

[3] C. Cachin, J. Camenisch, J. Kilian, and J. Müller, “One-round secure com-
putation and secure autonomous mobile agents,” in Proceedings of the 27th
International Colloquium on Automata, Languages and Programming, ICALP
’00, (London, UK, UK), pp. 512–523, Springer-Verlag, 2000.

[4] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld, and R. N. Wright,
“Selective private function evaluation with applications to private statistics,”
in Proceedings of the Twentieth Annual ACM Symposium on Principles of
Distributed Computing, PODC ’01, (New York, NY, USA), pp. 293–304, ACM,
2001.

[5] Y.-C. Chang and C.-J. Lu, “Oblivious polynomial evaluation and oblivious
neural learning,” in Proceedings of the 7th International Conference on the
Theory and Application of Cryptology and Information Security: Advances
in Cryptology, ASIACRYPT ’01, (Berlin, Heidelberg), pp. 369–384, Springer-
Verlag, 2001.

[6] K. Frikken, M. Atallah, and J. Li, “Hidden access control policies with hidden
credentials,” in Proceedings of the 2004 ACM Workshop on Privacy in the
Electronic Society, WPES ’04, (New York, NY, USA), pp. 27–27, ACM, 2004.

[7] K. Frikken, M. Atallah, and C. Zhang, “Privacy-preserving credit checking,”
in Proceedings of the 6th ACM Conference on Electronic Commerce, (EC’05),
(Vancouver, BC, Canada), pp. 147–154, ACM, New York, 05-08 June 2005.

88

[8] K. B. Frikken, J. Li, and M. J. Atallah, “Trust negotiation with hidden creden-
tials, hidden policies, and policy cycles,” in In Proceedings of the 13th Annual
Network and Distributed System Security Symposium (NDSS, pp. 157–172,
2006.

[9] J. Katz and L. Malka, “Constant-round private function evaluation with linear
complexity,” in Proceedings of the Advances in Cryptology – ASIACRYPT
2011, (Seoul, South Korea), pp. 556–571, Springer, Berlin, Heidelberg, 4-8
December 2011.

[10] J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-preserving
remote diagnostics,” in Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, (New York, NY, USA), pp. 498–507,
ACM, 2007.

[11] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schnei-
der, “Secure evaluation of private linear branching programs with medical
applications,” in Proceedings of the 14th European Conference on Research
in Computer Security (ESORICS’09), (Saint-Malo, France), pp. 424–439,
Springer-Verlag, Berlin, Heidelberg, 21-23 September 2009.

[12] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George,
A. Keromytis, and S. Bellovin, “Blind Seer: A scalable private DBMS,” in
Proceedings of IEEE Symposium on Security and Privacy (SP’14), (San Jose,
CA), pp. 359–374, IEEE Computer Society, Washington, DC, 18-21 May 2014.

[13] S. Niksefat, B. Sadeghiyan, P. Mohassel, and S. S. Sadeghian, “ZIDS: A
privacy-preserving intrusion detection system using secure two-party compu-
tation protocols,” Comp. J., vol. 57, no. 4, pp. 494–509, 2014.

[14] V. Kolesnikov and T. Schneider, “A practical universal circuit construction
and secure evaluation of private functions,” in Proceedings of the Finan-
cial Cryptography and Data Security (FC’08), (Cozumel, Mexico), pp. 83–97,
Springer-Verlag Berlin Heidelberg, 28-31 January 2008.

[15] A.-R. Sadeghi and T. Schneider, “Generalized universal circuits for secure eval-
uation of private functions with application to data classification,” in Proceed-
ings of the Information Security and Cryptology (ICISC’08), (Seoul, Korea),
pp. 336–353, Springer-Verlag, Berlin, Heidelberg, 3-5 December 2009.

[16] A. Paus, A.-R. Sadeghi, and T. Schneider, “Practical secure evaluation of semi-
private functions,” in Proceedings of the Applied Cryptography and Network Se-
curity (ACNS’09), (Paris-Rocquencourt, France), pp. 89–106, Springer-Verlag
Berlin, Heidelberg, 2-5 June 2009.

89

[17] P. Mohassel and S. Sadeghian, “How to hide circuits in mpc an efficient frame-
work for private function evaluation,” in Proceedings of the Advances in Cryp-
tology – EUROCRYPT 2013, (Athens, Greece), pp. 557–574, Springer, Berlin,
Heidelberg, 26-30 May 2013.

[18] Á. Kiss and T. Schneider, “Valiant’s universal circuit is practical,” in Advances
in Cryptology – EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Aus-
tria, May 8-12, 2016, Proceedings, Part I, (Berlin, Heidelberg), pp. 699–728,
Springer Berlin Heidelberg, 2016.

[19] D. Günther, Á. Kiss, and T. Schneider, “More efficient universal circuit con-
structions,” in Proceedings of the Advances in Cryptology – ASIACRYPT 2017,
(Hong Kong, China), pp. 443–470, Springer-Verlag Berlin, Heidelberg, 3-7 De-
cember 2017.

[20] M. A. Bingöl, O. Biçer, M. S. Kiraz, and A. Levi, “An efficient 2-party pri-
vate function evaluation protocol based on half gates,” The Computer Jour-
nal, no. bxy136, 2018. Available at http://dx.doi.org/10.1093/comjnl/

bxy136.

[21] O. Bicer, M. A. Bingöl, M. S. Kiraz, and A. Levi, “Highly efficient and
reusable private function evaluation with linear complexity.” Cryptology
ePrint Archive, Report 2018/515, 2018. Available at https://eprint.iacr.
org/2018/515.

[22] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, STOC
’09, (New York, NY, USA), pp. 169–178, ACM, 2009.

[23] C. Gentry, A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford
University, Stanford, CA, USA, Available at http://crypto.stanford.edu/craig,
2009.

[24] S. Halevi and V. Shoup, “Bootstrapping for helib,” in Advances in Cryptology
– EUROCRYPT 2015: 34th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part I, (Berlin, Heidelberg), pp. 641–670, Springer Berlin
Heidelberg, 2015.

[25] H. Lipmaa, P. Mohassel, and S. Sadeghian, “Valiant’s universal circuit: Im-
provements, implementation, and applications.” Cryptology ePrint Archive,
Report 2016/017, 2016. http://eprint.iacr.org/2016/017.

[26] S. Sadeghian, New Techniques for Private Function Evaluation. PhD thesis,
University of Calgary, 2015. https://prism.ucalgary.ca/handle/11023/

2657.

90

http://dx.doi.org/10.1093/comjnl/bxy136
http://dx.doi.org/10.1093/comjnl/bxy136
https://eprint.iacr.org/2018/515
https://eprint.iacr.org/2018/515
http://eprint.iacr.org/2016/017
https://prism.ucalgary.ca/handle/11023/2657
https://prism.ucalgary.ca/handle/11023/2657

[27] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR gates
and applications,” in International Colloquium on Automata, Languages, and
Programming (ICALP’08), (Reykjavik, Iceland), pp. 486–498, Springer Berlin,
Heidelberg, 06-13 July 2008.

[28] V. Kolesnikov, P. Mohassel, and M. Rosulek, “FleXOR: Flexible garbling for
XOR gates that beats free-XOR,” in Advances in Cryptology CRYPTO 2014
(J. Garay and R. Gennaro, eds.), vol. 8617 of Lecture Notes in Computer
Science, pp. 440–457, Springer Berlin Heidelberg, 2014.

[29] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure proto-
cols,” in Proceedings of the Twenty-second Annual ACM Symposium on Theory
of Computing, STOC ’90, pp. 503–513, ACM, 1990.

[30] Y. Wang and Q. m. Malluhi, “Reducing garbled circuit size while preserv-
ing circuit gate privacy.” Cryptology ePrint Archive, Report 2017/041, 2017.
http://eprint.iacr.org/2017/041.

[31] J. T. Gill, III, “Computational complexity of probabilistic turing machines,”
in Proceedings of the Sixth Annual ACM Symposium on Theory of Computing,
STOC ’74, (New York, NY, USA), pp. 91–95, ACM, 1974.

[32] B. Schoenmakers, “Lecture notes cryptographic protocols.” Department of
Mathematics and Computer Science, Technical University of Eindhoven,
version 1.32, February 2018. https://www.win.tue.nl/~berry/2WC13/

LectureNotes.pdf.

[33] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC, 2nd ed., 2014.

[34] R. C. Merkle, “One way hash functions and DES,” in Proceedings on Advances
in Cryptology, CRYPTO ’89, (New York, NY, USA), pp. 428–446, Springer-
Verlag New York, Inc., 1989.

[35] M. Naor and M. Yung, “Universal one-way hash functions and their crypto-
graphic applications,” in Proceedings of the Twenty-first Annual ACM Sympo-
sium on Theory of Computing, STOC ’89, (New York, NY, USA), pp. 33–43,
ACM, 1989.

[36] I. B. Damg̊ard, “A design principle for hash functions,” in Advances in Cryptol-
ogy — CRYPTO’ 89 Proceedings (G. Brassard, ed.), (New York, NY), pp. 416–
427, Springer New York, 1990.

[37] X. Lai and J. L. Massey, “Hash functions based on block ciphers,” in Advances
in Cryptology — EUROCRYPT’ 92 (R. A. Rueppel, ed.), (Berlin, Heidelberg),
pp. 55–70, Springer Berlin Heidelberg, 1992.

91

http://eprint.iacr.org/2017/041
https://www.win.tue.nl/~berry/2WC13/LectureNotes.pdf
https://www.win.tue.nl/~berry/2WC13/LectureNotes.pdf

[38] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodology,
revisited,” J. ACM, vol. 51, pp. 557–594, July 2004.

[39] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for
designing efficient protocols,” in Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, (New York, NY, USA),
pp. 62–73, ACM, 1993.

[40] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, pp. 203–209, Jan. 1987.

[41] V. S. Miller, “Use of elliptic curves in cryptography,” in Lecture Notes in
Computer Sciences; 218 on Advances in cryptology—CRYPTO 85, (Berlin,
Heidelberg), pp. 417–426, Springer-Verlag, 1986.

[42] H. W. Lenstra Jr., “Factoring integers with elliptic curves,” Annals of Math-
ematics, vol. 126, no. 3, pp. 649–6733, 1987.

[43] J. Silverman, The Arithmetic of Elliptic Curves. Graduate Texts in Mathe-
matics, Springer New York, 2009.

[44] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Ver-
cauteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second
Edition. Chapman & Hall/CRC, 2nd ed., 2012.

[45] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomor-
phic encryption schemes: Theory and implementation,” ACM Comput. Surv.,
vol. 51, pp. 79:1–79:35, July 2018.

[46] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, pp. 120–
126, Feb. 1978.

[47] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy homo-
morphisms,” Foundations of Secure Computation, vol. 4, no. 11, pp. 169–177,
1978.

[48] S. Goldwasser and S. Micali, “Probabilistic encryption & how to play
mental poker keeping secret all partial information,” in Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, STOC ’82,
(New York, NY, USA), pp. 365–377, ACM, 1982.

[49] E. F. Brickell and Y. Yacobi, “On privacy homomorphisms,” in Proceedings of
the 6th Annual International Conference on Theory and Application of Cryp-
tographic Techniques, EUROCRYPT’87, (Berlin, Heidelberg), pp. 117–125,
Springer-Verlag, 1988.

92

[50] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Trans. Inf. Theor., vol. 31, pp. 469–472, September
1985.

[51] T. El Gamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” in Proceedings of the Advances in Cryptology – CRYPTO
1984, (Santa Barbara, California, USA), pp. 10–18, Springer-Verlag Berlin,
Heidelberg, 19-22 August 1984.

[52] J. B. Clarkson, “Dense probabilistic encryption,” in In Proceedings of the
Workshop on Selected Areas of Cryptography, pp. 120–128, 1994.

[53] D. Naccache and J. Stern, “A new public key cryptosystem based on higher
residues,” in Proceedings of the 5th ACM Conference on Computer and Com-
munications Security, CCS ’98, (New York, NY, USA), pp. 59–66, ACM, 1998.

[54] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure as
factoring,” in Advances in Cryptology — EUROCRYPT’98 (K. Nyberg, ed.),
(Berlin, Heidelberg), pp. 308–318, Springer Berlin Heidelberg, 1998.

[55] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology — EUROCRYPT ’99: International Con-
ference on the Theory and Application of Cryptographic Techniques Prague,
Czech Republic, May 2–6, 1999 Proceedings (J. Stern, ed.), (Berlin, Heidel-
berg), pp. 223–238, Springer Berlin Heidelberg, 1999.

[56] I. Damg̊ard and M. Jurik, “A generalisation, a simplification and some ap-
plications of paillier’s probabilistic public-key system,” in Proceedings of the
4th International Workshop on Practice and Theory in Public Key Cryptog-
raphy: Public Key Cryptography, PKC ’01, (London, UK, UK), pp. 119–136,
Springer-Verlag, 2001.

[57] A. Kawachi, K. Tanaka, and K. Xagawa, “Multi-bit cryptosystems based on
lattice problems,” in Proceedings of the 10th International Conference on Prac-
tice and Theory in Public-key Cryptography, PKC’07, (Berlin, Heidelberg),
pp. 315–329, Springer-Verlag, 2007.

[58] L. Fousse, P. Lafourcade, and M. Alnuaimi, “Benaloh’s dense probabilistic en-
cryption revisited,” in Progress in Cryptology – AFRICACRYPT 2011 (A. Ni-
taj and D. Pointcheval, eds.), (Berlin, Heidelberg), pp. 348–362, Springer
Berlin Heidelberg, 2011.

[59] M. Fellows and N. Koblitz, “Combinatorial cryptosystems galore!,” in Pro-
ceedings of the Second International Symposium on Finite Fields, Las Vegas,
Nevada, August, 1993, vol. 168 of Contemporary Mathematics, p. 5161, Amer-
ican Mathematical Society, 1994.

93

[60] T. Sander, A. Young, and M. Yung, “Non-interactive cryptocomputing for
nc1,” in Proceedings of the 40th Annual Symposium on Foundations of Com-
puter Science, FOCS ’99, (Washington, DC, USA), pp. 554–566, IEEE Com-
puter Society, 1999.

[61] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-dnf formulas on cipher-
texts,” in Proceedings of the Second International Conference on Theory of
Cryptography, TCC’05, (Berlin, Heidelberg), pp. 325–341, Springer-Verlag,
2005.

[62] Y. Ishai and A. Paskin, “Evaluating branching programs on encrypted data,”
in Proceedings of the 4th Conference on Theory of Cryptography, TCC’07,
(Berlin, Heidelberg), pp. 575–594, Springer-Verlag, 2007.

[63] C. A. Melchor, P. Gaborit, and J. Herranz, “Additively homomorphic en-
cryption with d-operand multiplications,” in Proceedings of the 30th Annual
Conference on Advances in Cryptology, CRYPTO’10, (Berlin, Heidelberg),
pp. 138–154, Springer-Verlag, 2010.

[64] C. Gentry, “Toward basing fully homomorphic encryption on worst-case hard-
ness,” in Proceedings of the 30th Annual Conference on Advances in Cryptol-
ogy, CRYPTO’10, (Berlin, Heidelberg), pp. 116–137, Springer-Verlag, 2010.

[65] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with rela-
tively small key and ciphertext sizes,” in Proceedings of the 13th International
Conference on Practice and Theory in Public Key Cryptography, PKC’10,
(Berlin, Heidelberg), pp. 420–443, Springer-Verlag, 2010.

[66] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic encryp-
tion scheme,” in Proceedings of the 30th Annual International Conference on
Theory and Applications of Cryptographic Techniques: Advances in Cryptol-
ogy, EUROCRYPT’11, (Berlin, Heidelberg), pp. 129–148, Springer-Verlag,
2011.

[67] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi, “Fully homomorphic
encryption over the integers with shorter public keys,” in Proceedings of the
31st Annual Conference on Advances in Cryptology, CRYPTO’11, (Berlin,
Heidelberg), pp. 487–504, Springer-Verlag, 2011.

[68] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the aes
circuit,” in Proceedings of the 32Nd Annual Cryptology Conference on Ad-
vances in Cryptology — CRYPTO 2012 - Volume 7417, (Berlin, Heidelberg),
pp. 850–867, Springer-Verlag, 2012.

[69] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” in Proceedings of the 3rd Innovations in

94

Theoretical Computer Science Conference, ITCS ’12, (New York, NY, USA),
pp. 309–325, ACM, 2012.

[70] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomor-
phic encryption without bootstrapping,” ACM Trans. Comput. Theory, vol. 6,
pp. 13:1–13:36, July 2014.

[71] Y. Doröz, E. Öztürk, E. Savaş, and B. Sunar, “Accelerating ltv based homo-
morphic encryption in reconfigurable hardware,” in Cryptographic Hardware
and Embedded Systems – CHES 2015 (T. Güneysu and H. Handschuh, eds.),
(Berlin, Heidelberg), pp. 185–204, Springer Berlin Heidelberg, 2015.

[72] M. O. Rabin, “How to exchange secrets with oblivious transfer.” Harvard
University Technical Report. Available at Cryptology ePrint Archive, Report
2005/187, 1981. http://eprint.iacr.org/2005/187.

[73] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing
contracts,” Commun. ACM, vol. 28, pp. 637–647, jun 1985.

[74] C. Crépeau, “Equivalence between two flavours of oblivious transfers,” in
Proceedings of the Advances in Cryptology – CRYPTO 1987, pp. 350–354,
Springer-Verlag, 1987.

[75] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious transfers
efficiently,” in Proceedings of the Advances in Cryptology – CRYPTO 2003,
pp. 145–161, Santa Barbara, CA, USA: Springer, Berlin, Heidelberg, 17-21
August 2003.

[76] V. Kolesnikov and R. Kumaresan, “Improved OT extension for transferring
short secrets,” in Proceedings of the Advances in Cryptology - CRYPTO 2013,
(Santa Barbara, CA, USA), pp. 54–70, Springer, Berlin, Heidelberg, 18-12
August 2013.

[77] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner, “More efficient oblivious
transfer and extensions for faster secure computation,” in Proceedings of the
ACM Computer and Communications Security Conference (CCS ’13), (Berlin,
Germany), pp. 535–548, ACM, NY, USA, 4-8 November 2013.

[78] W. Du and M. J. Atallah, “Secure Multi-party Computation Problems and
Their Applications: A Review and Open Problems,” in Proceedings of the
2001 Workshop on New Security Paradigms, NSPW ’01, (New York, NY,
USA), pp. 13–22, ACM, 2001.

[79] L. Kamm and J. Willemson, “Secure floating point arithmetic and private
satellite collision analysis,” International Journal of Information Security,
pp. 1–18, 2014.

95

http://eprint.iacr.org/2005/187

[80] R. Küsters, T. Truderung, and A. Vogt, “A game-based definition of coercion
resistance and its applications,” J. Comput. Secur., vol. 20, pp. 709–764, Nov.
2012.

[81] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally ef-
ficient multi-authority election scheme,” in Proceedings of the 16th Annual
International Conference on Theory and Application of Cryptographic Tech-
niques, EUROCRYPT’97, (Berlin, Heidelberg), pp. 103–118, Springer-Verlag,
1997.

[82] S. Kardas, M. S. Kiraz, M. A. Bingöl, and F. Birinci, “Norwegian internet
voting protocol revisited: ballot box and receipt generator are allowed to col-
lude,” Security and Communication Networks, vol. 9, no. 18, pp. 5051–5063,
2016.

[83] P. S. Naidu, R. Kharat, R. Tekade, P. Mendhe, and V. Magade, “E-voting
system using visual cryptography amp;amp; secure multi-party computation,”
in 2016 International Conference on Computing Communication Control and
automation (ICCUBEA), pp. 1–4, Aug 2016.

[84] M. Naor, B. Pinkas, and R. Sumner, “Privacy preserving auctions and mecha-
nism design,” in Proceedings of the ACM Conference on Electronic Commerce
(EC’99), (Denver, Colorado, USA), pp. 129–139, ACM Press, NY, USA, 3-5
November 1999.

[85] P. Bogetoft, D. L. Christensen, I. Damg̊ard, M. Geisler, T. Jakob-
sen, M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter,
M. Schwartzbach, and T. Toft, “Financial cryptography and data security,”
ch. Secure Multiparty Computation Goes Live, pp. 325–343, Berlin, Heidel-
berg: Springer-Verlag, 2009.

[86] D. Bogdanov, R. Talviste, and J. Willemson, “Deploying secure multi-party
computation for financial data analysis,” in Financial Cryptography and Data
Security (A. D. Keromytis, ed.), (Berlin, Heidelberg), pp. 57–64, Springer
Berlin Heidelberg, 2012.

[87] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Proceedings of
the 20th Annual International Cryptology Conference on Advances in Cryp-
tology, CRYPTO ’00, (London, UK, UK), pp. 36–54, Springer-Verlag, 2000.

[88] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining,” The Journal of Privacy and Confidentiality, vol. 1,
no. 1, pp. 59–98, 2009.

[89] D. Bogdanov, “How to securely perform computations on secret-shared data,”
Master’s thesis, University of Tartu, Estonia, 2007. https://cyber.ee/

research/theses/dan_bogdanov_msc.pdf.

96

https://cyber.ee/research/theses/dan_bogdanov_msc.pdf
https://cyber.ee/research/theses/dan_bogdanov_msc.pdf

[90] D. Bogdanov, Sharemind: Programmable secure computations with practical
applications. PhD thesis, University of Tartu, Estonia, 2013.

[91] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for fast
privacy-preserving computations,” in Proceedings of the 13th European Sym-
posium on Research in Computer Security: Computer Security, ESORICS ’08,
(Berlin, Heidelberg), pp. 192–206, Springer-Verlag, 2008.

[92] D. C. Snchez, “Raziel: Private and verifiable smart contracts on blockchains.”
Cryptology ePrint Archive, Report 2017/878, 2017. https://eprint.iacr.

org/2017/878.

[93] F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on hyper-
ledger fabric with secure multiparty computation,” in 2018 IEEE International
Conference on Cloud Engineering (IC2E), pp. 357–363, April 2018.

[94] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably
secure proof-of-stake blockchain protocol.” Cryptology ePrint Archive, Report
2016/889, 2016. https://eprint.iacr.org/2016/889.

[95] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle, “Coin-
Party: Secure multi-party mixing of bitcoins,” in Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, CODASPY ’15,
(New York, NY, USA), pp. 75–86, ACM, 2015.

[96] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas, “Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availability,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’18, (New York, NY, USA), pp. 913–930, ACM,
2018.

[97] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Secure
multiparty computations on bitcoin,” Commun. ACM, vol. 59, pp. 76–84, Mar.
2016.

[98] V. K. David Evans and M. Rosulek, A Pragmatic Introduction to Secure Multi-
Party Computation. NOW Publishers, 1st ed., 2018.

[99] O. Bicer, “Efficiency optimizations on yaos garbled circuits and their
practical applications,” Master’s thesis, Istanbul Sehir University, Turkey,
2017. http://earsiv.sehir.edu.tr:8080/xmlui/bitstream/handle/

11498/39690/000130184002.pdf?sequence=1.

[100] T. Schneider, Engineering Secure Two-Party Computation Protocols – Ad-
vances in Design, Optimization, and Applications of Efficient Secure Function
Evaluation. PhD thesis, Ruhr-University Bochum, Germany, Information Sci-
ences, 2011. Available at http://thomaschneider.de/papers/S11Thesis.

pdf.

97

https://eprint.iacr.org/2017/878
https://eprint.iacr.org/2017/878
https://eprint.iacr.org/2016/889
http://earsiv.sehir.edu.tr:8080/xmlui/bitstream/handle/11498/39690/000130184002.pdf?sequence=1
http://earsiv.sehir.edu.tr:8080/xmlui/bitstream/handle/11498/39690/000130184002.pdf?sequence=1
http://thomaschneider.de/papers/S11Thesis.pdf
http://thomaschneider.de/papers/S11Thesis.pdf

[101] D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter,
N. P. Smart, and R. N. Wright, “From keys to databases - real-world ap-
plications of secure multi-party computation,” Comput. J., vol. 61, no. 12,
pp. 1749–1771, 2018.

[102] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay—a Secure Two-party
Computation System,” in Proceedings of the 13th Conference on USENIX
Security Symposium, (Berkeley, CA, USA), pp. 287–302, USENIX Association,
2004.

[103] A. C. Yao, “Protocols for secure computations,” in Proceedings of the 23rd An-
nual Symposium on Foundations of Computer Science (SFCS’82), (Chicago,
IL), pp. 160–164, IEEE Computer Society, Washington, DC, USA, 3-5 Novem-
ber 1982.

[104] A. C. Yao, “How to generate and exchange secrets,” in Foundations of Com-
puter Science, 1986., 27th Annual Symposium on, pp. 162–167, Oct 1986.

[105] S. Goldwasser, “Multi-Party Computations: Past and Present,” in Proceed-
ings of the Sixteenth Annual ACM Symposium on Principles of Distributed
Computing, Santa Barbara, California, USA, August 21-24, 1997, pp. 1–6,
1997.

[106] O. Goldreich, “Secure multi-party computation (working draft),” 2005.

[107] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of secure
protocols,” in Proceedings of the ACM Symposium on Theory of Computing
(STOC’90), (Baltimore, Maryland, USA), pp. 503–513, ACM, NY, USA, 13-
16 May 1990.

[108] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams, “Secure two-party
computation is practical,” in Proceedings of the Advances in Cryptology – ASI-
ACRYPT 2009, (Tokyo, Japan), pp. 250–267, Springer-Verlag Berlin, Heidel-
berg, 6-10 December 2009.

[109] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party compu-
tation using garbled circuits,” in Proceedings of the 20th USENIX Conference
on Security (SEC’11), (San Francisco, CA), pp. 35–50, USENIX Association
Berkeley, CA, USA, 8-12 August 2011.

[110] T. Frederiksen, T. Jakobsen, J. Nielsen, P. Nordholt, and C. Orlandi, “Mini-
LEGO: Efficient Secure Two-Party Computation from General Assumptions,”
in Advances in Cryptology EUROCRYPT 2013, vol. 7881 of Lecture Notes in
Computer Science, pp. 537–556, Springer Berlin Heidelberg, 2013.

[111] S. G. Choi, J. Katz, R. Kumaresan, and H.-S. Zhou, “On the security of
the “Free-XOR” technique,” in Proceedings of the Theory of Cryptography

98

Conference (TCC’12), (Taormina, Sicily, Italy), pp. 39–53, Springer-Verlag
Berlin, Heidelberg, 12-19 March 2012.

[112] A. Shamir, “How to Share a Secret,” Commun. ACM, vol. 22, no. 11, pp. 612–
613, 1979.

[113] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “From dust to dawn: Practi-
cally efficient two-party secure function evaluation protocols and their modular
design,” 2010.

[114] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applications.
New York, NY, USA: Cambridge University Press, 2004.

[115] Y. Aumann and Y. Lindell, “Security against covert adversaries: Efficient
protocols for realistic adversaries,” J. Cryptol., vol. 23, no. 2, pp. 281–343,
2010.

[116] abhi shelat and C. hao Shen, “Two-output secure computation with malicious
adversaries,” in Advances in Cryptology EUROCRYPT 2011, vol. 6632 of
LNCS, pp. 386–405, Springer Berlin Heidelberg, 2011.

[117] Y. Lindell and B. Pinkas, “An efficient protocol for secure two-party compu-
tation in the presence of malicious adversaries,” in Advances in Cryptology -
EUROCRYPT 2007, vol. 4515 of LNCS, pp. 52–78, Springer Berlin Heidel-
berg, 2007.

[118] Y. Lindell and B. Pinkas, “An Efficient Protocol for Secure Two-Party Com-
putation in the Presence of Malicious Adversaries,” in Advances in Cryptology
Eurocrypt 2007, vol. 4515 of LNCS, pp. 52–78, Springer-Verlag, 2007.

[119] M. S. Kiraz and B. Schoenmakers, “A protocol issue for the malicious case of
yaos garbled circuit construction,” in In Proceedings of 27th Symposium on
Information Theory in the Benelux, pp. 283–290, 2006.

[120] M. S. Kiraz, Secure and Fair Two-Party Computation. PhD thesis, Eind-
hoven University of Technology, Netherlands, 2008. Available at http:

//alexandria.tue.nl/extra2/200811317.pdf.

[121] M. S. Kiraz and B. Schoenmakers, “An efficient protocol for fair secure two-
party computation,” in Proceedings of the 2008 The Cryptopgraphers’ Track
at the RSA Conference on Topics in Cryptology, CT-RSA’08, (Berlin, Heidel-
berg), pp. 88–105, Springer-Verlag, 2008.

[122] Y. Lindell, B. Pinkas, and N. Smart, “Implementing two-party computation
efficiently with security against malicious adversaries,” in Security and Cryp-
tography for Networks, vol. 5229 of LNCS, pp. 2–20, Springer Berlin Heidel-
berg, 2008.

99

http://alexandria.tue.nl/extra2/200811317.pdf.
http://alexandria.tue.nl/extra2/200811317.pdf.

[123] V. Goyal, P. Mohassel, and A. Smith, “Efficient two party and multi party
computation against covert adversaries,” in Proceedings of the Theory and Ap-
plications of Cryptographic Techniques 27th Annual International Conference
on Advances in Cryptology, EUROCRYPT’08, (Berlin, Heidelberg), pp. 289–
306, Springer-Verlag, 2008.

[124] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure mpc for dishonest majority – or: Breaking the spdz
limits,” in Computer Security – ESORICS 2013 (J. Crampton, S. Jajodia, and
K. Mayes, eds.), (Berlin, Heidelberg), pp. 1–18, Springer Berlin Heidelberg,
2013.

[125] M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schnei-
der, “Secure evaluation of private linear branching programs with medical
applications,” in Computer Security – ESORICS 2009: 14th European Sym-
posium on Research in Computer Security, Saint-Malo, France, September
21-23, 2009. Proceedings, (Berlin, Heidelberg), pp. 424–439, Springer Berlin
Heidelberg, 2009.

[126] D. K. Altop, M. A. Bingöl, A. Levi, and E. Savas, “DKEM: secure and efficient
distributed key establishment protocol for wireless mesh networks,” Ad Hoc
Networks, vol. 54, pp. 53–68, 2017.

[127] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and T. Toft,
“Privacy-preserving face recognition,” in Proceedings of the 9th International
Symposium on Privacy Enhancing Technologies, PETS ’09, (Berlin, Heidel-
berg), pp. 235–253, Springer-Verlag, 2009.

[128] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-preserving
face recognition,” in Proceedings of the 12th International Conference on Infor-
mation Security and Cryptology, ICISC’09, (Berlin, Heidelberg), pp. 229–244,
Springer-Verlag, 2010.

[129] C. Kempka, R. Kikuchi, and K. Suzuki, “How to circumvent the two-ciphertext
lower bound for linear garbling schemes,” in Advances in Cryptology – ASI-
ACRYPT 2016: 22nd International Conference on the Theory and Applica-
tion of Cryptology and Information Security, Hanoi, Vietnam, December 4-8,
2016, Proceedings, Part II, (Berlin, Heidelberg), pp. 967–997, Springer Berlin
Heidelberg, 2016.

[130] M. Ball, T. Malkin, and M. Rosulek, “Garbling gadgets for boolean and arith-
metic circuits,” in Proceedings of the ACM SIGSAC Conference on Com-
puter and Communications Security (CCS’16), (Vienna, Austria), pp. 565–
577, ACM, NY, USA, 24-28 October 2016.

100

[131] M. Abadi, J. Feigenbaum, and J. Kilian, “On hiding information from an
oracle,” in Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, STOC ’87, pp. 195–203, ACM, 1987.

[132] M. Abadi and J. Feigenbaum, “Secure circuit evaluation,” Journal of Cryptol-
ogy, vol. 2, pp. 1–12, Feb 1990.

[133] L. G. Valiant, “Universal Circuits (Preliminary Report),” in Proceedings of
the ACM Symposium on Theory of Computing (STOC’76), (Hershey, Penn-
sylvania, USA), pp. 196–203, ACM New York, NY, USA, 3-5 May 1976.

[134] T. Schneider, “Practical secure function evaluation,” Master’s thesis,
Friedrich-Alexander University Erlangen-Nürnberg, Germany, February 27,
2008. http://thomaschneider.de/papers/S08Thesis.pdf.

[135] P. Mohassel, S. Sadeghian, and N. P. Smart, “Actively secure private func-
tion evaluation,” in Proceedings of the Advances in Cryptology – ASIACRYPT
2014, (Kaoshiung, Taiwan), pp. 486–505, Springer Berlin, Heidelberg, 7-11
December 2014.

[136] T. Schneider and M. Zohner, “GMW vs. Yao? Efficient Secure Two-Party
Computation with Low Depth Circuits,” in Financial Cryptography and Data
Security: 17th International Conference, FC 2013, Okinawa, Japan, April 1-
5, 2013, Revised Selected Papers (A.-R. Sadeghi, ed.), (Berlin, Heidelberg),
pp. 275–292, Springer Berlin Heidelberg, 2013.

[137] S. G. Choi, J. Katz, A. J. Malozemoff, and V. Zikas, “Efficient three-party
computation from cut-and-choose,” in Advances in Cryptology – CRYPTO
2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August
17-21, 2014, Proceedings, Part II (J. A. Garay and R. Gennaro, eds.), (Berlin,
Heidelberg), pp. 513–530, Springer Berlin Heidelberg, 2014.

[138] Y. Lindell and B. Pinkas, “A proof of security of Yao’s protocol for two-party
computation,” Journal of Cryptology, vol. 22, no. 2, pp. 161–188, 2009.

[139] A. Waksman, “A permutation network,” Journal of the ACM, vol. 15, pp. 159–
163, Jan. 1968.

[140] V. T. Hoang, Foundations of Garbled Circuits. PhD thesis, University of
California Davis, 2013.

[141] M. Naor and O. Reingold, “Number-theoretic constructions of efficient pseudo-
random functions,” J. ACM, vol. 51, pp. 231–262, Mar. 2004.

[142] D. Boneh, “The decision diffie-hellman problem,” in Algorithmic Number The-
ory: Third International Symposiun, ANTS-III Portland, Oregon, USA, June
21–25, 1998 Proceedings, (Berlin, Heidelberg), pp. 48–63, Springer Berlin Hei-
delberg, 1998.

101

http://thomaschneider.de/papers/S08Thesis.pdf

[143] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryp-
tography. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003.

[144] A. K. Lenstra and E. R. Verheul, “Selecting cryptographic key sizes,” Journal
of Cryptology, vol. 14, no. 4, pp. 255–293, 2001.

[145] D. Giry, “Keylength – cryptographic key length recommendation,” 2016.
http://www.keylength.com/ (accessed on 2017-05-17).

[146] Y. Lindell, B. Pinkas, and N. Smart, “Implementing two-party computation
efficiently with security against malicious adversaries,” in Security and Cryp-
tography for Networks: 6th International Conference, SCN 2008, Amalfi, Italy,
September 10-12, 2008. Proceedings, (Berlin, Heidelberg), pp. 2–20, Springer
Berlin Heidelberg, 2008.

[147] D. Beaver, “Precomputing Oblivious Transfer,” in Proceedings of the 15th
Annual International Cryptology Conference on Advances in Cryptology,
CRYPTO ’95, (London, UK, UK), pp. 97–109, Springer-Verlag, 1995.

[148] M. Naor and B. Pinkas, “Efficient oblivious transfer protocols,” in Proceedings
of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’01, (Philadelphia, PA, USA), pp. 448–457, Society for Industrial and Applied
Mathematics, 2001.

[149] ECRYPT-II and Vampire, “eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems,” 2018. http://http://bench.cr.yp.to/ (accessed on
2018-01-22).

102

http://www.keylength.com/
http://http://bench.cr.yp.to/

	INTRODUCTION
	Motivation
	Contributions
	Organization

	BACKGROUND INFORMATION
	Cryptographic Primitives
	Symmetric and Asymmetric Cryptosystems
	Some Computational Problems
	Hash Functions
	Elliptic Curve Cryptography
	Homomorphic Encryption
	Oblivious Transfer Protocols

	Basics of Secure Computation and Garbled Circuits
	Yao's Garbled Circuit
	Optimizations on Yao's Scheme
	Adversary Types

	RELATED WORKS
	Universal Circuit Based PFE Solutions
	Special Purpose PFE Solutions

	AN EFFICIENT 2-PARTY PRIVATE FUNCTION EVALUATION PROTOCOL BASED ON HALF GATES
	2-Party PFE Framework
	Context of CTH
	Mohassel and Sadeghian's 2PFE scheme

	Our Efficient 2-Party PFE Scheme
	Use of 2-OEP protocol
	Our 2PC Garbling Scheme for 2PFE

	Security of the proposed protocol
	Code based games and security notions
	Security Proof

	Performance Comparison

	HIGHLY EFFICIENT AND REUSABLE PRIVATE FUNCTION EVALUATION WITH LINEAR COMPLEXITY
	Preliminaries
	Decisional Diffie-Hellman Assumption
	Notations and Concept of 2PFE Framework

	Our PFE Scheme
	The description of our InExe protocol
	Optimization with reusability feature: Our (ReExe) protocol
	Executing with Various Party2s

	Complexity Analysis
	Complexity of Our Scheme
	Comparison

	Security of Our Protocols

	CONCLUSIONS

