
METHODS FOR FINDING THE SOURCES OF LEAKAGE IN

CACHE-TIMING ATTACKS AND REMOVING THE PROFILING

PHASE

by

ALİ CAN ATICI

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Sabancı University

December 2018

c© Ali Can ATICI 2018

All Rights Reserved

ABSTRACT

METHODS FOR FINDING THE SOURCES OF LEAKAGE IN

CACHE-TIMING ATTACKS AND REMOVING THE PROFILING

PHASE

ALİ CAN ATICI

Ph.D. Dissertation, December 2018

Supervisor: Prof. Erkay Savaş

Keywords: Side-Channel Analysis, Leakage Sources, Hardware Performance Counters,

Cache-Timing Attacks, Cache Modeling, Profiling Phase

Cryptographic algorithms are widely used in daily life in order to ensure data confiden-

tiality and privacy. These algorithms are extensively analyzed by scientists against a the-

oretical deficiency. However, these theoretically verified algorithms could still posses

security risks if they are not cautiously implemented. Side-channel analysis can infer the

secret key by using the information leakage due to implementation flaws. One of the

most studied side-channel attack is the Bernstein’s cache-timing attack. This attack owes

its reputation to its ability to succeed without a spy process, which is needed to create

intentional cache contentions in other cache attacks. However, the exact leakage sources

of the Bernstein’s attack remained uncertain to a large extent. Moreover, the need for an

identical target system to perform its profiling phase makes the attack unrealistic for real

world computing platforms. In this dissertation we address these two problems. Firstly,

we propose a methodology to reveal the exact sources of the information leakage. The

iv

proposed methodology makes use of hardware performance counters to count the number

of cache misses, to which the code blocks in the program are subject. Our methodol-

ogy can help the developers analyze their implementations and fix their code in the early

phases of the development. Secondly, we present an approach to extract simplified cache

timing-behavior models analytically and propose to use these generated models instead of

a profiling phase. The fact that the attack can be accomplished without a profiling phase

will lead the attack to be considered a more realistic threat than the attack originally pro-

posed by Bernstein. We believe that, this improved version of the attack will encourage

the cryptographic system designers to take further precautions against the attack.

v

ÖZET

ÖNBELLEK-ZAMANLAMA SALDIRILARINDA SIZINTI

KAYNAKLARINI BULMAK VE AYRIMLAMA FAZINI

KALDIRMAK İÇİN METOTLAR

ALİ CAN ATICI

Doktora Tezi, Aralık 2018

Danışman: Prof. Dr. Erkay Savaş

Anahtar Sözcükler: Yan-Kanal Analizi, Sızıntı Kaynakları, Donanım Performans

Sayaçları, Önbellek-Zamanlama Saldırıları, Önbellek Modelleme, Ayrımlama Fazı

Kriptografik algoritmalar günlük hayatımızda yaygın olarak kullanılmaktadır. Bu algorit-

malar, olası açıklara karşı, biliminsanlari tarafından matematiksel olarak analiz edilmek-

tedir. Bu algoritmalar matematiksel olarak doğrulanmış olmalarına rağmen, özenli bir

şekilde gerçeklenmezlerse, güvenlik riskleri barındırmaya devam edebilirler. Yan-kanal

analizi ile gerçekleme hatalarından kaynaklı bilgi sızıntıları kullanılarak gizli anahtar elde

edilebilmektedir. En çok çalışılmış yan-kanal ataklarından birisi Bernstein’ın atağıdır.

Bu atak, başarılı sonuçlar elde etmek için kasıtlı olarak önbellek çakışmaları yaratan

bir casus sürece ihtiyaç duymaması ile bilinmektedir. Bununla birlikte, atağı başarıya

ulaştıran sızıntı kaynakları net bir şekilde ortaya çıkarılamamıştır. Ayrıca ayrımlama fazı

için, hedef sistemin bire bir kopyasına ihtiyaç duyması atağın gerçek hayattaki uygulan-

abilirliği üzerinde soru işaretleri uyandırmıştır. Bu tezde, bu iki sorun üzerinde çalışmalar

vi

yapılmıştır. İlk olarak, bilgi sızıntısının kesin kaynağını bulmak için bir metodoloji öneri-

yoruz. Önerilen metodoloji, program içerisindeki kod bloklarının maruz kaldığı önbellek

ıskalarını, donanım performans sayaçları ile saymaya dayanmaktadır. Program geliş-

tiricileri, metodolojimizi kullanarak kodlarını analiz edebilir ve olası hataları erken bir

aşamada düzeltebilirler. İkinci olarak, önbellek zaman-davranışı modellerini analitik o-

larak çıkarmaya yarayan bir yaklaşım sunuyor ve oluşturulan bu modelleri ayrımlama

fazı yerine kullanmayı öneriyoruz. Saldırının bir ayrımlama aşaması olmadan gerçek-

leştirilebilmesinin, saldırının daha gerçekçi bir tehdit olarak görülmesini sağlayacağını

ve kriptografik sistem tasarımcılarını, atağa karşı ek önlemler almaya teşvik edeceğini

düşünüyoruz.

vii

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Erkay Savaş for his valuable sup-

port and guidance throughout my studies. This thesis would not be written without his

encouragement. I would also like to thank Cemal Yılmaz for his guidance and valuable

contributions to this thesis. I am also grateful to the other members of the jury, Prof. Dr.

Albert Levi, Asst. Prof. Murat Kaya and Asst. Prof. Cengiz Örencik, for reviewing my

dissertation and providing valuable suggestions.

The last but not least, I would like to thank my wife for her continuous support during

my thesis studies.

viii

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Motivation . 2

1.2 Contributions . 3

1.3 Outline . 4

2 RELATED WORK 5

3 PRELIMINARIES 9

3.1 CPU Caches . 9

3.2 Hardware Performance Counters (HPCs) 13

3.3 Advanced Encryption Standard (AES) 14

3.4 Bernstein’s Cache-Timing Attack . 18

3.5 Applying Bernstein’s Cache-Timing Attack to the Last Round of AES . . 22

4 ISOLATING the LEAKAGE SOURCES in CACHE-TIMING ATTACKS 26

4.1 Approach . 27

4.2 Case Study . 29

4.2.1 Analyzing External Entities . 30

4.2.2 Analyzing Internal Entities . 31

4.3 Discussion . 37

4.4 Chapter Summary . 38

ix

5 REMOVING the PROFILING PHASE in CACHE-TIMING ATTACKS 40

5.1 Analysis of the Profiling Phase . 41

5.2 Simplified Cache Timing Model . 46

5.3 Practical Application of The Proposed Methodology and Validation Results 50

5.3.1 Cache Timing Attacks without a Profiling Phase 50

5.3.2 Experimental Results . 55

5.4 Discussion . 58

5.5 Chapter Summary . 60

6 CONCLUSIONS and FUTURE WORK 62

6.1 Future Directions . 63

x

LIST OF TABLES

3.1 Memory hierarchy access times . 9

3.2 Correlation phase results for the example data set 21

3.3 Last round attack correlation phase results for the example data set 25

4.1 Results obtained from the last-round Bernstein attack. 31

5.1 Attack results without profiling phase 56

xi

LIST OF FIGURES

3.1 An example of a memory system . 10

3.2 Cache fields for a direct mapped cache 11

3.3 Basic direct mapped cache architecture 11

3.4 Direct mapped cache address mapping example 12

3.5 AES input, state and output transition 14

3.6 AES rounds . 15

3.7 AES SubBytes operation . 16

3.8 AES ShiftRows operation . 16

3.9 AES MixColumns operation . 17

3.10 Table-based AES implementation . 17

3.11 Example byte model obtained after the profiling phase 19

3.12 Example byte model obtained after the attack phase 20

3.13 Example byte model obtained after the correlation phase 20

3.14 Example T4 output byte model obtained after the profiling phase 23

3.15 Example T4 output byte model obtained after the attack phase 24

3.16 Example T4 output byte model obtained after the correlation phase 24

4.1 L1 data cache misses in the original AES server 33

4.2 Comparing the effect of ENCRYPT and MOCK ENCRYPT on the L1

cache misses observed in RECEIVE and SEND 34

4.3 Comparing the effect of RECEIVE/MOC RECEIVE and SEND/MOCK SEND

on the L1 cache misses observed in ENCRYPT 36

xii

5.1 Example profiling phase cache timing-behavior, bytes 0-7 42

5.2 Example profiling phase cache timing-behavior, bytes 8-15 43

5.3 Example profiling phase byte 10 and byte 12 model 44

5.4 Example cache timing-behavior model 50

5.5 Calculated profiling phase model vs. measured profiling phase model . . 54

xiii

LIST OF ALGORITHMS

1 AES server . 32

2 AES server with MOCK ENCRYPT . 34

3 AES server with MOCK RECEIVE and MOCK SEND 35

4 Attack with profiling phase . 45

5 Modeling the cache timing-behavior . 49

6 Obtaining a cache contention set . 52

7 Searching for cache timing-behavior model 53

xiv

Chapter 1

INTRODUCTION

Cryptography, the art of protecting secrets, has been being used for centuries. Even

though it might be considered as an art in its early ages, it has been being studied as a

science for more than half a century. Thus, the science of cryptography has advanced

tremendously since the era of simple ciphers. Now, the modern cryptography, rises upon

complex mathematical foundations.

The desire to conceal secrets from other people has led to the rise of a counter-desire:

breaking the secret messages. Thus, in modern cryptographic studies, the cryptographic

algorithm design and the cryptanalysis (i.e. breaking the ciphers) have developed in con-

stant interaction with each other. New encryption techniques have stimulated the efforts to

find new cryptoanalytical methods to break the ciphers and obtain the secret messages; the

new cryptanalytical methods are, in turn, considered to design new algorithms that with-

stand them. In the early times of cryptanalysis, researchers were relying exclusively on

the mathematical analysis of cryptographic algorithms in order to find theoretical weak-

nesses to break the ciphers. However, in 1996 Kocher [1] introduced a new type of attack,

which uses the timing measurements taken during the execution of the private key op-

erations on a real hardware. His attack leveraged an implementation flaw instead of a

theoretical weakness of the underlying mathematical algorithm. And he was able to break

the cipher. With his study, Kocher introduced a new field in cryptanalysis: side-channel

analysis (or side-channel attacks).

1

Cryptographic algorithms that are secure against known theoretical attacks can still

be vulnerable to side-channel analysis if they are not cautiously implemented. Execution

time, power consumption, electromagnetic emission, execution footprints in the micro-

architectural structure of underlying microprocessor, etc. can be used as side-channel

information [1–4]. In unprotected cryptographic implementations, the secret key directly

affects the emitted side-channel information. Thus, observations made on these leaked

data can eventually lead to the revelation of the secret key.

1.1 Motivation

Side-channel attacks, which exploit the fact that micro-architectural resources, such as

cache memory and branch prediction unit, are shared, are widely studied in the litera-

ture [4–7]. The cache access patterns of cryptographic programs are exploited by the

cache-based side-channel attacks. These attacks typically operate by inferring if a cache

access is a hit or a miss, or if a certain cache line is accessed or not, mostly by measuring

the access time. If the inference is accurate, the access patterns can be associated with

im/probable key guesses to infer the secret key or to reduce the size of the key space.

The majority of the cache attacks rely on the so-called cache cleaning operation exe-

cuted by a spy process, which can be detected easily [8] that evicts all or a part of data of

cryptographic process from the cache before the start of an encryption operation. Bern-

stein’s attack [9], which can be categorized as a timing-based attack is the only exception.

Bernstein’s attack is applied in a client-server setting. The attack tries to infer the secret

key, which resides in a server that employs a software implementation of the Advanced

Encryption Standard (AES) [10] to encrypt incoming messages, by using the variations

in the encryption times of randomly generated messages.

The attack consists of two main phases. In the first phase, known as the profiling

phase, which is run on an identical platform to the target with a known key, a statistical

model is extracted depending on the timing variations of the encryptions. The second

(attack) phase extracts a similar model on the target machine, where the secret key is

2

unknown, and correlates these two obtained models to make inferences about the secret

key, i.e. reduces the key space for a feasible exhaustive search. In his experiments,

Bernstein runs the attack on an AES server locally and reduces the key space considerably

after measuring the execution times for 230 sample plaintexts. In [11], Neve explains the

reasons that lead the Bernstein’s attack to success. The most interesting point in the

attack is that it does not need a spy process. An intrinsic flaw in the implementation of

AES server naturally causes cache contentions (i.e. eviction of the cache lines used by the

AES server), which in turn makes the attack possible.

Bernstein’s original attack is very interesting and needs for further study to understand

its main cause and remedy the implementation accordingly. Bernstein’s attack is powerful

because it does not count on any spy process; yet it is also weak as it needs an identical

target machine to perform its profiling phase. It is powerful, but the sources of the internal

leakage is neither understood nor investigated well, which may pose a risk for the similar

systems that can have the same leakage sources. It is weak, since obtaining an exact

replication of the target system and emulating all its machine specific cache effects can be

very difficult if not impossible. This dissertation aims to investigate and produce solutions

on these two open areas: i.e. (i) to devise a methodology to find the internal leakage

sources, (ii) to remove the profiling phase to make the attack more realistic.

1.2 Contributions

This thesis presents two novel solutions which address the open areas of the Bernstein’s

cache-timing attack. The first solution presents a methodology to find the code blocks

that are in contention with each other by using Hardware Performance Counters (HPC).

And the second solution proposes a new methodology to model the cache timing-behavior

of an application, where the inferred cache timing-behavior model is used to remove the

profiling phase of the Bernstein’s cache-timing attack.

The major contributions of this thesis are summarized as follows:

• We propose to use the HPCs in order to count the L1 data cache misses and to

3

use this information the detect which code blocks are in contention with each other

(Section 4.1).

• We demonstrate by experiments that the proposed methodology is able to find the

colliding code blocks (Section 4.2.2).

• We propose a methodology to model the cache timing-behavior of an application.

The proposed method does not need to know all the architectural properties of the

underlying system. Only the cache line size is enough to extract the proposed model

(Section 5.2).

• We utilize the proposed cache timing-behavior model to remove the profiling phase

of the Bernstein’s attack, which makes the attack more realistic for the real comput-

ing platforms (Section 5.3.1).

• We validate the proposed model by conducting Bernstein’s cache-timing attack suc-

cessfully without a profiling phase (Section 5.3.2).

1.3 Outline

The organization of this thesis is as follows: Chapter 2 presents the related work on cache-

timing attacks; Chapter 3 provides the background information on AES, Bernstein’s at-

tack, a variation of Bernstein’s attack on the last round of AES, CPU caches and HPCs;

Chapter 4 outlines our methodology to find the colliding code blocks of a program that

cause leakage and presents the experimental results; Chapter 5 explains how we extracted

a cache timing-behavior model from the cache line size, how this model is used to remove

the profiling phase of the Bernstein’s attack and presents the validation results; Chapter 6

concludes the thesis.

4

Chapter 2

RELATED WORK

In the literature there are many works that use the shared micro-architectural resources

as side-channels. In [4, 12] Aciicmez et al. leverage the branch prediction unit to infer

the secret keys. Again, Aciicmez et al. show that the instruction cache can also be used

as a side-channel to obtain the secret keys [13–15]. Side-channel attacks which exploit

the data caches are also widely studied in the literature [5, 9, 16–24]. In this thesis we

focus on the data cache based side-channel attacks. The first notions on data cache based

side-channel attacks are reported in [1] and [25]. In [1], Kocher states that cryptographic

applications may take different times for varying inputs. He also explains that the reasons

behind these variations include cache hits, performance optimizations etc. He performs a

timing attack against private key operations and remarks that the tables used in the imple-

mentations of algorithms such as Blowfish [26], SEAL [27] and DES [28] can produce

timing variations due to cache hits and misses. Kelsey et al. [25] propose a timing attack

against IDEA [29] and state that ciphers such as Blowfish [26] and CAST [30] can be

vulnerable to cache attacks due to their large S-boxes.

Cache-based side-channel attacks can be divided into three main categories: i) access-

driven, ii) trace-driven and iii) time-driven cache attacks. Access-driven attacks exploit

the information as to whether a cache line (or set) is accessed (or not) during a cryp-

tographic operation to infer the secret key. In an access-driven attack, the adversary is

generally assumed to be able to run a so-called spy process to generate intentional cache

5

conflicts with the cryptographic application to obtain the cache access patterns of the lat-

ter. In their proposed approach [16], Tromer et al. employ a spy process to determine

the cache lines/sets that are used by a cryptographic application in a known plaintext

and/or ciphertext setup. In the attack Tromer et al. describe two cases: synchronous and

asynchronous. In the synchronous case, the attacker is capable of starting an encryption

operation at will and he has two different measurement methodologies to detect the col-

liding cache lines: Evict+Time and Prime+Probe. By using Evict+Time, the attacker first

starts an encryption operation, then accesses to some specific memory addresses (i.e. AES

table addresses) to cause evictions and finally starts another encryption and measures the

execution time. Here the first encryption brings the AES tables into the cache, the mem-

ory access in the second step causes evictions if the same cache lines are used by the two

processes and the final step extracts which cache lines are accessed since the execution

time is directly effected by the cache hits and misses. The Prime+Probe method works

in a different way. The attacker first accesses to every memory location of the AES tables

to bring them into the cache. Then he triggers an encryption and afterwards he performs

another memory access. Again by measuring its memory access times he deduces which

cache lines are accessed by the cryptographic process. In the synchronous attack, they

show that the full AES key is recoverable after 300 encryptions on a Athlon 64 system by

Prime+Probe measurements. The asynchronous attack has extra limitations, such that the

spy process is not allowed to interact with the target process. Thus, the attacker will not be

able to trigger an encryption. The attack is conducted only with the memory access pat-

terns of the spy process. The attacker accesses to a set of memory blocks repeatedly and

measures the access times. If the spy process conflicts with the target process, memory

access will be longer than usual. This timing information is used to detect the conflicting

cache lines and to conduct the attack. In the asynchronous case, one minute of monitoring

of encryption operations with the same secret key reveals 45.7 bits of the AES key.

Trace-driven cache attacks (i.e., the second category of attacks) were, on the other

hand, first introduced in [5]. In these attacks, it is assumed that the adversary has full

control over the target device and that she can determine whether a particular cache access

6

is a miss or hit during the cryptographic operation by monitoring electro-magnetic or

power emissions of the cryptographic device. Thus, theoretically the attacker will obtain

a trace of cache access outcomes during the cryptographic operation. In a simulation

of the attack reported in [5], 210 encryptions are performed to collect traces and then an

offline analysis phase is run with a computational complexity of around 232 steps. As

a result, it was shown that a 56-bit DES key actually provides only 32-bit key security

if the attack is successfully applied. Trace-driven attacks are also investigated in detail

in [20, 31, 32].

In the last category of cache attacks, time-driven attacks measure the execution time of

a cryptographic operation and exploit the timing variations in different runs with different

plaintexts. The assumption is that the execution time of the operation is heavily affected

by the memory access times due to cache misses. Thus, the variations in different runs of

the cryptographic operation occur because of different number of cache hits and misses

that are dependent on the secret keys and the plaintext. This dependency can be exploited

to extract the secret key. In [18] Tsunoo et al. use the time variations that occur during

encryptions due to the cache misses as a result of s-box table lookup operations. They

propose two methods to infer the secret key: non-elimination table attack and elimination

table attack. In the non-elimination attack, by using the shorter encryption timings the

probable key guesses are extracted and a search for the secret key is executed. However,

in the elimination attack, they use the longer encryption timings to guess the improbable

keys and they reduce the size of the key space to search. When they apply the elimination

table attack approach on DES algorithm, they show that the algorithm is broken after 223

known plaintexts. They also state a success rate greater than 90% after 224 operations.

Bernstein’s attack, which is the main focus of this thesis, is also a time-driven at-

tack. Neve gives an explanation as to why Bernstein’s attack works [11]. Neve examines

the behavior of the cache accesses during the AES encryption process and observes that

variations in AES execution times are due to deterministic and naturally occurring sys-

tem dependent cache evictions. However, Neve does not identify the exact root cause

creating these cache contentions. In this thesis, we take one step further and propose a

7

methodology to discover which process(es) or code segments cause these deterministic

and system dependent cache evictions [33]. Bernstein’s attack is a profiled timing attack.

In the literature there are works that aim to improve the profiling phase and chose the best

attack strategy by mathematical analysis [34]. But, to the best of our knowledge, there

are no studies that try to execute the profiling phase analytically without performing any

physical measurements. As a part of this thesis, we present a methodology to extract the

profiling phase model analytically and propose conducting Bernstein’s attack with these

analytically extracted models [35].

8

Chapter 3

PRELIMINARIES

In this chapter, we provide the necessary background information about the basic proper-

ties of CPU caches and hardware performance counters, the details of the AES algorithm

and its table based implementation, how the original Bernstein attack is conducted and,

how we modified the Bernstein attack for the last round of the AES algorithm.

3.1 CPU Caches

In today’s modern processors, the memory system itself is a hierarchy of memories, where

each level in the hierarchy has different speeds of access times. The memory hierarchy is

mainly comprised of registers, several levels of cache, main memory and secondary mem-

ory. The memory access times of these different levels are summarized in Table 3.1 [36].

Table 3.1: Memory hierarchy access times

Memory level Access time

Register 0.3ns - 2ns

Level 1 cache 3ns - 8ns

Level 2 cache 6ns - 10ns

Main memory 10ns - 70ns

Fixed rigid disk 3ms - 15ms

As seen from the Table 3.1, the closer the memory to the processor, the faster it is.

Faster memory means more advanced technology, thus being more costly. Because of the

9

cost, the size of the memory gets smaller, as it comes closer to the processor.

In this memory hierarchy, cache is a fast and small memory, which stores the data that

the processor uses and will probably use again in the near future. Figure 3.1 shows an

example of memory hierarchy which has two levels of cache [37]. A data item requested

by the CPU is searched first in the topmost (level 1) and also the fastest cache level; and

in case it is not found therein, the next level in the hierarchy is tried. If the data is found in

a cache level, it is a cache hit for this level of the cache hierarchy. Any data item missing

in a level leads to a cache miss which in turn results in a delay in the access time as the

next levels need to be accessed.

Figure 3.1: An example of a memory system

Processors tend to execute the codes sequentially, which means after executing in-

struction x, most probably instruction x+ 1 will be executed. The same rationale is valid

also for the data. In a typical program flow, data is accessed sequentially most of the time

(e.g. arrays). Also, in a program, same variables are used again and again. This situation

is called as principle of locality and can be examined under three categories:

• Temporal locality: Used variables tend to be used again.

• Spatial locality: Data is accessed sequentially as in arrays.

• Sequential locality: Most of the time instructions are fetched sequentially.

Thus, according to the spatial locality, if we fetch a piece of data from memory, most

likely the processor will also need the data which is adjacent to the formerly fetched data.

So, when a miss occurs in the cache, not only the missing data is fetched, an entire block

which contains the missing data is fetched to the cache. The fetched block is accommo-

10

dated in a cache line. A cache line size is usually a multiple of the CPU word length and

therefore it is dependent on the architecture of the underlying platform. A typical cache

line size in modern computers is 64 B.

A typical cache consists of sets, where each set contains one or more cache lines.

The method of placing a data in the memory to a cache location is called mapping [38].

Mapping is done according to some specific address bits and each address maps to a

single set. We can name three groups of caches: (i) direct mapped cache, (ii) N-way set

associative cache, (i) fully associative cache.

In a direct mapped cache, each set contains one cache line. Figure 3.2 shows which

fields of the address is used to map the cache location.

Figure 3.2: Cache fields for a direct mapped cache

The cache fields in Figure 3.2 belong to a 32-bit processor, which has an 8-set direct

mapped cache, where each cache line is one word. The least significant two bits deter-

mine the byte offset in the relevant word. The following three bits are used to select the

cache line that will accommodate the main memory data. Since different addresses map

to a single cache line, the actual data address must be also kept. Thus, the remaining

significant bits are also stored in the cache as tag to indicate the real address of the data in

the cache line. Figure 3.3 depicts the basic architecture of an 8-set direct mapped cache.

Figure 3.3: Basic direct mapped cache architecture

11

If any two physical addresses map to the same cache location, a cache conflict occurs

and the data currently resides in the cache is evicted. In the case of direct mapped caches,

since there is only one cache line in a set, two addresses that map to the same cache set

always cause a conflict. Figure 3.4 shows an example of how the physical addresses are

mapped to a direct cache.

Figure 3.4: Direct mapped cache address mapping example

However, the situation is different in N-way set associative caches. In this cache archi-

tecture each set has N cache lines and an address that maps to a set can be accommodated

in any one of these cache lines. Hence, this architecture reduces the number of cache

misses. Similarly, a fully associative cache is a B-way associative cache, where B is the

number of total cache lines in the cache. Further information about the cache architectures

and operating principles can be found in [36–38].

12

3.2 Hardware Performance Counters (HPCs)

Hardware performance counters are hardware-resident counters that record various events

occurring on a processor. Today’s general-purpose CPUs include a fair number of such

counters, which are capable of recording events, such as the number of instructions exe-

cuted, the number of branches taken, the number of cache hits and misses experienced,

etc [39, 40].

Hardware performance counters are mainly used for software profiling. Engineers

use them to improve the performance of their software. The actual hardware performance

counter numbers in a CPU varies among the vendors and varies even in the different mod-

els by the same vendor. For example, Intel CPU families support a set of architectural

and non-architectural performance events [39]. Non-architectural events are model spe-

cific and not compatible among the CPU families. However, architectural events are same

among the CPU families and they provide a uniformity in different classes of CPUs. The

required information about the hardware performance counters of a specific processor can

easily be found among the documentation of the relevant CPU.

Even though not all the HPCs are same, their working principle is similar. Hardware

performance counters are by default inactivated. To activate them, a code indicating the

type of event to be counted and the physical counter to be used for counting is written to

a register and then the CPU is instructed to start the counting process. There are often

a number of physical counters present in a CPU and these counters can individually be

paired with any event known to the CPU. Once activated, hardware counters count the

events of interest during program executions and store the counts in a set of special pur-

pose registers. These registers can then be programmatically read and reset, and hardware

counters can be deactivated as needed. In most cases, kernel must be patched to access

these counters and privileged user rights are required to program the performance counter

control registers. However, there are many libraries such as PAPI [41] that provide a

simple interface to program and read the performance counters.

Hardware performance counters have been traditionally used (i) for performance de-

bugging to identify hotspots in the program code [42], (ii) for functional correctness de-

13

bugging, where they serve as an abstraction mechanism [43–45], and (iii) for carrying out

side channel attacks [24]. This work differs in that we use hardware performance counters

to identify the sources of cache contentions, as well.

3.3 Advanced Encryption Standard (AES)

AES [10] is a symmetric-key block cipher algorithm. AES is announced by the U.S.

National Institute of Standards and Technology (NIST) as FIPS PUB 197 in 2001. The

original algorithm, which was submitted to the AES competition, is called Rijndael. The

AES standard is a variant of the Rijndael algorithm which has a fixed block length of 128

bits. To provide different security levels, AES can work with key sizes of 128, 192 or 256

bits. It accepts plaintext inputs as blocks of 128 bits and outputs 128 bits ciphertexts for

each input block.

AES operates on a 4×4 matrix of bytes which is called as the state. Before beginning

of the encryption or decryption, the input is copied to the state matrix, computations are

performed on this state matrix and in the end, the result is copied to the output array. This

process is depicted in Figure 3.5.

Figure 3.5: AES input, state and output transition

AES computations are done in rounds. The number of rounds depends on the key

size. AES has 10, 12 and 14 rounds for the key sizes 128, 192 and 256, respectively.

Every round uses a different 128-bit round key which is generated from the master key

according to the AES key expansion algorithm.

AES starts encryption with an initial AddRoundKey operation and each following

round consists of the SubBytes, ShiftRows, MixColumns and AddRoundKey

14

operations in the given order. However, the last round of the AES does not involve the

MixColumns operation. AES performs decryption by computing the inverse operations

in the reversed order (note that all round operations in AES algorithm are reversible).

AES rounds are shown in Figure 3.6. In the figure Nr denotes the number of rounds.

Figure 3.6: AES rounds

AddRoundKey operation performs bitwise XOR between the bytes of the state and

the bytes of the round key. SubBytes provides a non-linear substitution of the state

bytes. Each byte of the state is replaced with another byte according to a nonlinear trans-

15

formation that is derived from the Rijndael S-Box. SubBytes operation is depicted in

Figure 3.7.

Figure 3.7: AES SubBytes operation

ShiftRows operation cyclic left shifts each row by a predefined offset. Row num-

ber 0 is not shifted, row number 1 is shifted once, row number 2 is shifted twice and

row number 3 is shifted three times. Figure 3.8 shows how the state changes after the

ShiftRows operation.

Figure 3.8: AES ShiftRows operation

MixColumns performs a linear transformation on the columns of the state. Each

column of the state constitutes a polynomial over GF (28) and a modular polynomial mul-

tiplication is executed between each column and the fixed polynomial a(x) = {03}x3 +

{01}x2+{01}x+{02} in modulo x4+1. Figure 3.9 shows the MixColumns operation.

The straightforward AES implementations perform all the round computations se-

quentially. However, AES can be implemented faster on platforms which have a 32-bit

or larger word size. Instead of calculating each round operation separately, SubBytes,

16

Figure 3.9: AES MixColumns operation

ShiftRows and MixColumns operations can be combined in a lookup table, which is

named as AES T-table. In such an implementation, except for the last round, four tables

(T0, T1, T2, T3) are needed where each table has 256 entries of 32-bit entry size. Thus,

each table requires 1024 bytes and in total four tables require 4 KB in the memory. Since

the last round does not perform MixColums operation another table (T4) is needed.

One table with 256 entries of 32-bit entry size suffices to implement the last round. With

this implementation, one round can be computed by 16 table lookups and 12 32-bit XOR

operations, followed by the four 32-bit XOR operations of the AddRoundKey step. Fig-

ure 3.10 depicts how next state si+1 is computed from current state si and T-tables. The

only difference in the last round is the usage of T4 table instead of T0, T1, T2 and T3.

Figure 3.10: Table-based AES implementation

17

3.4 Bernstein’s Cache-Timing Attack

Bernstein presents a cache based timing attack, which targets the lookup table based

OpenSSL implementation of AES [9]. In his attack, he aims the first AddRoundKey

operation of the AES encryption. He exploits the timing differences of the AES execution

times that are caused by the T-table accesses. He claims that the T-table lookup indexes

k[j] ⊕ p[j], where j = 0, 1, . . . , 15, k denotes the first round key bytes and p denotes the

plaintext bytes, affect the table access time and this time is highly correlated with the AES

execution time.

In his attack he defines two different roles: an AES server which is the victim of the

attack, and an AES client, which is the adversary applying the attack. The AES server

waits for the incoming encryption requests from the network. When a request is received,

it encrypts the message and sends back the ciphertext. The AES client sends randomly

generated messages to the server and gets the corresponding ciphertext and the elapsed

timing. After gathering sufficient number of timing measurements, the client performs

a statistical computation and obtains the secret key. The attack consists of four phases:

profiling, attack, correlation and key search.

In the profiling phase, the attacker uses an AES server, which is identical to the target

server, to encrypt a large number of randomly generated plaintexts with a known key. In

the first round of AES, the indexes to the lookup tables are computed as s0i = pi ⊕ k0
i ,

where pi and k0
i are ith bytes of the plaintext and the first round key, respectively, and

i = 0, 1, . . . , 15. The attacker obtains the execution time of each encryption and saves it

along with the indexes. The attacker stores the average timing information for each byte

and each value of that byte in a two dimensional array t[16][256]. The attacker also keeps

track of the overall average execution time. At the end of the profiling phase, the attacker

computes a model for each byte. This model basically shows the timing difference of

the average individual byte execution time from the overall average execution time. Fig-

ure 3.11 shows such a model. In the figure, x-axis shows all the possible values from 0

to 255 that a byte can take and y-axis gives the timing difference according to the overall

mean execution time. At the end of the profiling phase, a total of sixteen models, one for

18

each byte, are constructed.

Figure 3.11: Example byte model obtained after the profiling phase

In the attack phase, the same operation is repeated, but this time on the target AES

server using an unknown key. In the attack phase, the key is not known therefore, for each

access in the first round, the timing profiles are constructed according to the plaintext

values p′i instead of lookup table indexes s0
′

i = p
′

i ⊕ k0′

i . Again, the attacker obtains

the execution time of each encryption and saves it along with the indexes (i.e. this time

plaintext byte values). The attacker stores the average timing information for each byte

and each value of that byte in another two dimensional array t′[16][256]. The model

obtained after the attack step is shown in Figure 3.12.

Figure 3.12 belongs to the same byte model as in Figure 3.11. As can be seen from

the figure, since the secret key is not known, it looks like a scrambled model and does not

provide any useful information.

Correlation phase is executed after the attack phase. In this phase, for each model

found in the attack phase all possible key byte values are tried and a timing profile of

indexes (s0
′

i = p
′

i ⊕ k0
i) are obtained for each key candidate where i = 0, 1, . . . , 15 and

ki = 0, 1, . . . , 255. Then, each of the timing models in the attack phase is correlated

with the timing model obtained in the profiling phase. The key byte candidates are sorted

in a decreasing order according to their correlation scores. Also a selection threshold is

19

Figure 3.12: Example byte model obtained after the attack phase

applied on the correlation results of the key byte candidates. Hence, only the most prob-

able key candidates appear on the results. In summary, correlation phase tries to find the

model which is the closest to the profiling phase model by trying all the possible byte

values. Figure 3.13 shows the model, which belongs to byte 15, that gives the highest cor-

relation for the attack phase byte model depicted in Figure 3.12. One can easily notice the

resemblance between Figure 3.11 and Figure 3.13 which is consistent with the obtained

high correlation value.

Figure 3.13: Example byte model obtained after the correlation phase

20

Table 3.2 also gives the correlation results for the example data used in Figures 3.11

and 3.12, where the secret key is: {ce fb 74 0a a9 55 d3 1d ed 29 81 4c 25 72 5b 93}. In

Table 3.2 first column denotes the number of possible values, second column denotes the

byte number of the key and the last column denotes the possible values for that key byte

in the descending order.

Table 3.2: Correlation phase results for the example data set

240 00 f8 ff fa f9 fc fd fb fe e3 e7 e2 e1 e0 e6 e4 81 ... (ce at rank 66)

255 01 bc bd bb b8 ba a5 bf a2 a7 be a6 e0 e3 a0 b9 e5 ... (fb at rank 57)

016 02 37 32 31 34 35 36 33 30 2c 2f 2d 2b 2e 29 28 2a (missing 74)

016 03 0e 0b 0f 09 0a 0c 08 0d 13 12 17 14 10 11 15 16

016 04 b6 b0 b3 b7 b5 b2 b1 a9 af aa ac b4 a8 ae ab ad

096 05 4e 4d 51 48 4a 4c 53 49 4b 56 55 4f 54 50 57 52 ...

001 06 d3

016 07 1c 1d 1a 19 1f 18 1b 1e 07 00 04 06 03 01 02 05

119 08 ee eb ed ec e8 e9 ea ef f5 f0 f3 f6 f2 f1 f7 f4 ...

256 09 34 32 37 36 33 7d 31 0f 63 35 7a 30 66 78 65 0d ... (29 at rank 50)

008 10 81 87 83 84 86 82 80 85

017 11 4e 4c 4b 49 4d 4a 48 4f 50 56 57 51 54 53 52 55 ...

080 12 26 23 21 24 27 20 22 25 3f 3e 3c 3d 39 38 3b 3a ...

110 13 73 71 77 75 70 72 76 74 33 37 31 34 35 32 36 30 ...

001 14 5b

008 15 96 93 94 92 91 90 97 95

Finally, the key search phase simply performs a brute force key search on the remain-

ing key space, using a known plaintext and ciphertext pair.

In Bernstein’s attack, the profiling phase tries to model the cache timing-behavior of

the target system. The attack needs no spy process to artificially evict cache lines holding

lookup table entries, but rather relies on naturally occurring evictions, if any. Also, no

specific knowledge about the target system is required, since the attack needs nothing

other than the timing information. Thus, Bernstein’s attack is generic and can be applied

to all similar systems. For more information about the attack, the interested reader can

profitably refer to [9, 11].

21

3.5 Applying Bernstein’s Cache-Timing Attack to the Last

Round of AES

Bernstein’s original attack can recover at most half of the 128-bit AES key (when 64 B

cache blocks are used) since only the upper nibble of each key byte is used to determine

the cache set that holds the corresponding entry. Neve [11] demonstrated that the other

half of the secret key can be obtained if the Bernstein’s attack is combined with a similar

attack targeting the second round. However, the version of the AES algorithm used in both

works [9,11] (OpenSSL v0.9.7a) allows an easier attack on the last round of AES that has

the potential of recovering the entire key. Similar to the original Bernstein attack, the AES

client (i.e. adversary) performs the profiling, attack, correlation and key search phases by

aiming the last round table lookup operations. This new improved attack allowed us to

recover 128-bits of the key in some cases.

The profiling phase is executed with a known key, similarly as in the original attack

case. AES client sends randomly chosen plaintexts and receives the resulting ciphertext

and the timing measurement data. During the last round of the AES [10], a separate table,

namely T4, which basically implements the AES SubBytes operation in the last round,

is used. The number of cache hits and misses that occur during the accesses to this table

affect the overall execution time of the encryption. The outputs of T4 lookup operations

(i.e., T4[s9i] where s9i is the lookup index of round 10 and i = 0, 1, . . . , 15) are used as

indexes to obtain the aforementioned statistical byte models. In the profiling phase, the

outputs of T4 lookups used in the last round can be computed using the formula

InvShiftRows(ci ⊕ k10

i), (3.1)

where ci and k10
i stand for the ith bytes of the ciphertext and the 10th round key, respec-

tively, and i = 0, 1, . . . , 15. As both the key and the ciphertext are known in the profiling

phase, we can obtain a timing profile based on the output values of T4 lookup operations.

As a result, we obtain a total of 16 timing profiles for T4 lookup operations in the last

22

round, in each of which 256 average execution times of AES are stored. Namely, timing

profiles can be represented as an array of T p
i [256] where i is the order of the T4 access and

i = 0, 1, . . . , 15. An example byte model obtained after this phase is given in Figure 3.14.

Figure 3.14: Example T4 output byte model obtained after the profiling phase

After the profiling phase, the attack phase is executed similarly. In this phase, the se-

cret round key byte k̃10
i is unknown, hence we obtain one timing profile for each candidate

of the corresponding key byte using the following equation

InvShiftRows(c′i), (3.2)

where c′i stands for the ith bytes of the ciphertext. Thus, at the end of attack phase we

obtain a timing profile, namely the array T̃ a
i [256]. Figure 3.15 shows an example byte

model of an attack phase data.

In the correlation phase, for each T4 output byte model, all possible timing pro-

files, namely T a
i,k[256], are constructed by using InvShiftRows(c′i ⊕ k), where k =

0, 1, . . . , 255. Then, the timing profiles in the attack phase T a
i,k are correlated to the tim-

ing model of the profiling phase T p
i . The key value k yielding the highest correlation is

chosen as the most likely candidate for the key byte k̃10
i . The operation is repeated 16

times for each byte of the round key used in the last round, i.e., k̃10
0 , . . ., k̃10

15 . Figure 3.16

23

Figure 3.15: Example T4 output byte model obtained after the attack phase

shows the model, which belongs to byte 1, that gives the highest correlation for the attack

phase byte model depicted in Figure 3.15.

Figure 3.16: Example T4 output byte model obtained after the correlation phase

After the correlation phase, a brute force key search is applied to fully recover the

key. Table 3.3 presents the correlation results for the example data used in Figures 3.14

and 3.15, where the secret key is: {2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c}

and the last round key is: {d0 14 f9 a8 c9 ee 25 89 e1 3f 0c c8 b6 63 0c a6}. Again, in

Table 3.3 first column denotes the number of possible values, second column denotes the

24

byte number of the key and the last column denotes the possible values for that key byte

in the descending order.

Table 3.3: Last round attack correlation phase results for the example data set

001 00 d0

001 01 14

001 02 f9

001 03 a8

001 04 c9

001 05 ee

001 06 25

001 07 89

001 08 e1

001 09 3f

001 10 0c

001 11 c8

256 12 71 70 36 2e 33 cb 62 fc 60 ea ... (b6 at rank 251)

256 13 04 59 a5 2f ef a3 63 ...

256 14 ea 23 25 16 67 77 ae 67 8d 33 14 dc 0c ...

256 15 fb 84 f3 78 cc 3f 01 5b 82 a6 ...

An important point to note here is that, since timing profiles are extracted according

to the T4 outputs and every bit of the 10th round key is used to infer the T4 outputs (i.e.

every bit affects the relevant byte model), the last round attack can reveal the entire key

as opposed to the half of the key in the first round attack.

25

Chapter 4

ISOLATING the LEAKAGE

SOURCES in CACHE-TIMING

ATTACKS

Bernstein [9], exploits the differences between the encryption times of randomly gener-

ated messages to extract secret keys processed by an OpenSSL implementation of AES

(Advanced Encryption Standard [10]). Neve [11] demonstrates that the exploitable timing

differences in the Bernstein’s attack occur due to some conflicting L1 data cache accesses

with the AES cache accesses, causing some table entries used by AES to be evicted from

the cache, e.g., messages that experience cache misses take longer to encrypt than those

messages that don’t experience any cache misses.

An important observation we make in the Bernstein’s attack is that, unlike many other

side channel attacks, in which the attack is performed by using a spy process that in-

tentionally creates cache contentions, the Bernstein’s attack operates without using any

spy processes. This observation strongly suggests that the cache contentions exploited

in the Bernstein’s attack are unintentionally caused by some entities in the cryptographic

system. We value this observation, because such inadvertent contentions should be con-

sidered as a flaw in the implementation of cryptographic systems. This, consequently,

necessitates a software analysis framework to identify the primary sources of these con-

26

tentions and check the effectiveness of proposed countermeasures, to further improve the

reliability of cryptographic applications.

In this chapter, we present an approach to identify code segments in cryptographic

applications that are unintentionally in cache contentions with each other, thus leaking

information that can be exploited in side-channel attacks to extract secret keys. This is

important because locating the sources of information leakage in software implementation

of cryptographic applications provides developers an invaluable opportunity to fix them,

thus prevent side-channel attacks. An integral part of the proposed approach is to quantify

the contentions in cache memory. For that we use hardware performance counters to count

the number of misses occurring in cache memory. We furthermore evaluate our approach

by conducting a series of experiments on the well-known Bernstein’s attack. The results

of these experiments demonstrate, (to the best of our knowledge) for the first time, that

the part of the OS kernel that handles socket communications is in cache contention with

the AES encryption code and that these contentions are the primary source of information

leakage, making the Bernstein’s attack a success.

The remainder of the chapter is organized as follows: Section 4.1 introduces the pro-

posed approach; Section 4.2 presents a case study in which we applied the proposed

approach to the Bernstein’s attack; Section 4.3 discusses the current state of the work and

provides ideas for future work; Section 4.4 provides concluding remarks on the chapter.

4.1 Approach

We, in particular, present an approach to detect code segments in cryptographic algo-

rithms, which are in cache contention with each other, thus possibly leaking information

that can be exploited in cache-based side-channel attacks to extract secret keys. This is

important because locating the root causes of information leakage in software implemen-

tation of cryptographic applications provides developers an invaluable opportunity to fix

them, thus prevent side-channel attacks.

In this work we divide a cryptographic application under analysis into a set of non-

27

overlapping code blocks.

Definition 1 A code block is a code segment that takes a number of inputs and produces

a number of outputs. Any data, which is not locally defined in a code block, but accessed

from inside the block, is considered to be an input to the code block. Furthermore, any

program state update made inside a code block, which is visible outside the block (includ-

ing the side effects), is considered to be an output of the code block.

In theory, a code block is in cache contention with another code block, when one block

evicts at least one cache line used by the other block. One way to detect contentions is to

use a cache simulator to determine such cache evictions. However, developing cache sim-

ulators is a non-trivial task as one may need to simulate a large portion of the underlying

hardware platform, including the CPU and the RAM. Furthermore, it is often undesirable

(if not infeasible) to execute an application together with its environment, such as the

underlying OS, in a hardware simulator due to the runtime overhead introduced by the

simulator.

We, therefore, developed an approach to empirically (i.e., via conducting experiments)

determine code blocks that are in cache contention with each other. In this approach, to

determine whether a code block A causes cache contentions in another code block B in

program P , we first replace A in P with a mock code block A′. The output is a new

program P ′.

The mock block A′ is constructed by using a simple capture-reply approach. In the

capture mode, the original program P is fed with a set of concrete inputs I , the program

executions are monitored, and the inputs to A together with the respective outputs of A

are captured and recorded. In the reply mode, i.e., in P ′, the mock code block A′ mimics

the behavior of the original code block A by simply replying pre-recorded outputs for the

respective inputs, without performing any actual computations.

We, then, feed P and P ′ with I and measure the number of cache misses experienced

by B in both programs.

Definition 2 In the original program P , the code block A is considered to be in con-

28

tention with the code block B, if one can find a set of program inputs I such that the

number of cache misses experienced by B in P ′ is statistically significantly less than that

of experienced by B in P ; computing the same output in A in a different way significantly

reduces the cache misses observed in B.

Note that the same approach can readily be applicable to determine the contentions

between two sets of code blocks.

To count the number of cache misses occurring in a code block, we use hardware

performance counters. One challenge we encountered when first using hardware perfor-

mance counters for this purpose was that the counters do not distinguish between the in-

structions issued by different processes. To deal with this, we used a kernel driver, called

perfctr (http://linux.softpedia.com), which implements virtual hardware counters that

can track hardware events on a per-process basis.

At a high level we count cache misses occurring in a code block as follows: 1) a hard-

ware performance counter that counts L1 data cache misses is activated at the beginning

of a program execution, 2) the value of the counter is read before and after the execution

of the block and the difference is attributed to the block, and 3) the counter is deactivated

at the end of the execution. If the code block is executed more than once, the number of

cache misses are aggregated over all the executions.

4.2 Case Study

We evaluated the proposed approach by conducting a series of experiments. In these

experiments, we applied the approach on the Bernstein’s AES server to determine the

code blocks in the server that cause cache contentions with the AES round tables, thus

making the Bernstein’s attack a success.

An important observation we make in the Bernstein’s attack is that, unlike many other

side channel attacks in which the attack is performed by using a spy process that inten-

tionally creates cache contentions, the Bernstein’s attack operates without using any spy

process. This observation strongly suggests that the cache contentions in the AES server

29

are unintentionally caused by some entities in the system.

We distinguish between two types of entities: external entities and internal entities.

External entities are those entities that the AES server has no control over, such as the

CPU architecture of the underlying platform and the other processes sharing the same

hardware and software resources with the AES server. Internal entities, on the other hand,

refer to those entities employed by the AES server, such as the server source code and the

libraries used by the server.

4.2.1 Analyzing External Entities

In our case study, we first evaluated the effects of external entities on the success of cache-

based side-channel attacks. To this end, we conducted a series of experiments, in which

we carried out a slight variation of the Bernstein’s attack, called the last-round Bernstein

attack. This attack variation uses the same AES server and the same AES client as with

the original Bernstein’s attack. The only difference is that the last-round attack targets

the last round of AES, rather than the first round of AES as is the case in the original

Bernstein’s attack.

We conducted the last-round attack on different hardware and software platforms with

varying client-server deployment configurations. In each experiment setup, to carry out

the attack, the malicious AES client used 230 randomly generated messages, each of which

was of size 600 bytes. The AES server, in turn, used the OpenSSL v0.9.7a (Feb 19, 2003)

implementation of AES with a 128-bit secret key, the same implementation used by the

original Bernstein’s attack (http://www.openssl.org/source/), for the encryptions.

Table 4.1 presents the results we obtained. In this table, the first two columns depict

the CPU and the operating system used in the attacks, respectively. The third column

depicts the deployment configuration of the AES client and server, i.e., whether the client

and the server are on the same core or they are on different cores. In the experiment

platforms, each core had its separate L1 data cache.

For each setup, we carried out many experiments. For each key byte, the attack pro-

duced a set of candidate key values, prioritized by their likelihood. The cross product of

30

Table 4.1: Results obtained from the last-round Bernstein attack.

AES Client-Server Size of the Reduced

Processor Operating System Deployment Configuration Key Space

Intel Pentium P6200 Ubuntu 3.0.0-12 kernel same core 232

Intel Pentium P6200 Ubuntu 3.0.0-17 kernel different cores 249

Intel Core 2 Duo P8400 Ubuntu 3.0.0-12 kernel same core 1

Intel Core 2 Duo P8400 Ubuntu 3.0.0-17 kernel different cores 224

Intel Xeon E5405 CentOS 2.6.18 kernel same core 234

Intel Xeon E5405 CentOS 2.6.18 kernel different cores 251

the candidate sets for all the key bytes constitutes the reduced key space that needs to be

exhaustively searched for full key extraction.

The last column in Table 4.1 presents the average size of the reduced key spaces

obtained at the end of the attacks. We first observed that the secret key was always in

the reduced key space. We then observed that in all the experiment setup, the size of the

reduced key space was in feasible bounds for an exhaustive search [33].

We, therefore, reached the conclusion that the attack succeeded in extracting the full

key, regardless of the underlying hardware and software platforms, and the client-server

deployment configurations. This result strongly suggests that the unintentional cache

contentions that make the attack a success, are caused primarily internally by the AES

server. We reached this conclusion by noting that varying the external entities did not

render the attack useless.

4.2.2 Analyzing Internal Entities

We then focused on the implementation of the AES server and applied our approach

to identify the code segments in the server source code that can potentially cause the

unintentional cache contentions with the AES round tables.

To perform the analysis, we divided the server code depicted in Algorithm 1 into 3

code blocks, namely RECEIVE, ENCRYPT, and SEND, each containing a single source

code line. Note that the details of the actual server code are abstracted away in Algo-

rithm 1 for the sake of the discussion. However, in the experiments, we used the actual

source code of the Bernstein’s AES server.

31

Algorithm 1 AES server

1: while true do

2: Message m← receive()

3: Message c← encrypt(m, key)

4: send(c)

5: end while

Our first goal was to quantify the extent to which each code block suffers from cache

misses. This is important because we use the original AES server code as our control

group and the outcomes obtained from it as the basis for comparison.

To this end, we randomly generated 10, 000 messages for encryption, each of which

is of size 600 bytes. In the experiments, these messages were always used in the same

order for encryption, i.e., in the order they were generated. Furthermore, the first 1, 000

messages were used to warm up the AES server, where no measurements were made. In

the remainder of the chapter, these messages are referred to as the test suite.

We then executed our test suite on the AES server; the AES client sent every message

included in the test suite one after another to the AES server for encryption. All the

experiments reported in this section were carried out on an Intel Xeon E5405 platform

with 4 GB of RAM, running CentOS with kernel v2.6.18. Furthermore, the server and

the client (when present) were executed on two different cores each having its separate

L1 data cache.

For each message received at the server, we counted the number of cache misses

experienced by each of the code blocks. Figure 4.1 visualizes the data we obtained. In

this figure, the horizontal axis denotes the code blocks and the vertical axis denotes the

number of L1 data cache misses observed in the blocks. Furthermore, the total cache

miss counts are itemized to reflect the misses observed in the OS kernel space and in the

user space. Each box in the figure illustrates the distribution of miss counts obtained in

the respective scenario. The lower and upper bar of a box represents the first and third

quartiles and the horizontal bar inside represents the median value.

We observed that RECEIVE and SEND code blocks experienced significantly more

32

L1 Data Cache Misses in the Code Blocks

Code Block

N
u

m
b

e
r

o
f

L
1

 D
a

ta
 C

a
c
h

e
 M

is
s
e

s

0

20

40

60

80

100

120

kernel space

RECEIVE ENCRYPT SEND

user space

RECEIVE ENCRYPT SEND

total

RECEIVE ENCRYPT SEND

Figure 4.1: L1 data cache misses in the original AES server [33]

cache misses in the kernel space than in the user space, while ENCRYPT was experiencing

significantly more misses in the user space than in the kernel space. The average number

of cache misses in RECEIVE, SEND, and ENCRYPT were about 36, 24, and 0.01 in the

kernel space and about 1.7, 0.2, and 24 in the user space, respectively.

As socket communications are mostly handled by the kernel, it is possible for RE-

CEIVE and SEND to have more cache misses in the kernel. Furthermore, as AES encryp-

tion code runs in the user space for the most part, it is possible for ENCRYPT to have

more cache misses in the user space. However, if the cache misses observed in the kernel

space and in the user space are correlated, then it strongly suggests that the kernel is in

contention with the (user space) AES encryption code.

To check for correlations, we first replaced the ENCRYPT code block in the AES

33

Algorithm 2 AES server with MOCK ENCRYPT

1: while true do

2: Message m← receive()

3: Message c← mockEncrypt(m, key)

4: send(c)

5: end while

server with a MOCK ENCRYPT block as in Algorithm 2.

Given a message for encryption, MOCK ENCRYPT simply returns the pre-recorded

ciphertext of the message without performing any encryption. The rest of the AES server

code was not changed. We then executed our test suite with the modified AES server, i.e.,

the AES client sent the messages in the test suite one at a time to the server for encryption.

Comparing the Effect of ENCRYPT and MOCK_ENCRYPT

on the Cache Misses Observed in RECEIVE and SEND

AES Server

N
u

m
b

e
r

o
f

L
1

 D
a

ta
 C

a
c
h

e
 M

is
s
e

s

20

40

60

80

100

120

RECEIVE

with ENCRYPT with MOCK_ENCRYPT

SEND

with ENCRYPT with MOCK_ENCRYPT

Figure 4.2: Comparing the effect of ENCRYPT and MOCK ENCRYPT on the L1 cache

misses observed in RECEIVE and SEND [33]

Figure 4.2 compares the number of cache misses experienced by the RECEIVE and

34

SEND code blocks in the original server and in the modified server. We observed that

using MOCK ENCRYPT reduced the number of L1 data cache misses observed in RE-

CEIVE and SEND by 31% and 63% on average, respectively, compared to that of using

the original code block ENCRYPT. Kruskal-Wallis test revealed that these differences

were statistically significant with a p-value of less than 2.2e-16, suggesting that the AES

encryption code is in contention with the kernel.

In an additional experiment, rather than replacing the code block ENCRYPT with a

mock block, we replaced the RECEIVE and SEND code blocks with their mock blocks,

namely MOCK RECEIVE and MOCK SEND, and kept the original ENCRYPT block as

in Algorithm 3. MOCK RECEIVE simply replays the pre-recorded messages arriving at

the AES server without creating a network socket. Note that the AES client is not used

in this setup, thus no messages are exchanged over the network. As there is no client to

reply to, MOCK SEND does not perform any operation.

Algorithm 3 AES server with MOCK RECEIVE and MOCK SEND

1: while true do

2: Message m← mockReceive()

3: Message c← encrypt(m, key)

4: mockSend(c)

5: end while

Figure 4.3 depicts the results we obtained. We observed that removing the socket

communications reduced the average number of L1 data cache misses observed in the

AES encryption code by 83%. The reduction was statistically significant with a p-value

of less than 2.2e-16.

To validate our results, we carried out the attack, this time without using any network

sockets. To this end, we combined the source code of the AES client and the AES server in

a single stand-alone application and removed all the code segments responsible for socket

communications. That is, the attack code directly called the AES encryption function,

instead of sending and receiving packages over the network. As is the case with the

experiments reported in Section 4.2.1, we used 230 randomly generated messages of 600

35

Comparing the Effect of RECEIVE/MOC_RECEIVE and SEND/MOCK_SEND

on the L1 Cache Misses Observed in ENCRYPT

AES Server

N
u

m
b

e
r

o
f

L
1

 D
a

ta
 C

a
c
h

e
 M

is
s
e

s

0

20

40

60

80

with RECEIVE and SEND with MOCK_RECEIVE and MOC_SEND

Figure 4.3: Comparing the effect of RECEIVE/MOC RECEIVE and SEND/MOCK SEND

on the L1 cache misses observed in ENCRYPT [33]

bytes each in the attack. Furthermore, the attack was repeated 5 times.

At the end of the attacks, the size of the reduced key space was 2107 on average. As it

is not feasible to exhaustively search this space, the attack failed to extract the secret key

in the experiment setup used in the study. For comparison, in the same experiment setup

and with the socket communications are in place, the size of the reduced key space was

251 in the worst case (Table 4.1).

We also observe that, although the attack failed when the socket communications were

removed from the source code, the attack was still be able to reduce the key space from

2128 to 2107. This can point to the presence of other unintentional cache contentions, which

requires further analysis.

36

With all these in mind, the results of our experiments strongly suggest that the part of

the OS kernel that handles socket communications is in cache contention with the AES

encryption code and that these contentions are the primary source of information leakage,

making the Bernstein’s attack a success.

4.3 Discussion

In this chapter, we used the proposed approach to determine code segments that are in

cache contention with each other. All empirical studies suffer from threats to their internal

and external validity. One potential threat is that we have only studied one cryptographic

system, namely the Bernstein’s AES server with the OpenSSL implementation of AES.

This may impact the generality of our results. However, this cryptographic system has

been extensively used in other related works in the literature [11,16,22,31,46–55], which

emphasizes the importance and impact of the work. A related issue is that the code blocks

used in the experiments were relatively simple code blocks with well-defined code and

functionality boundaries. While these issues pose no theoretical problems, we need to

apply our approach to larger, more realistic scenarios in future work to understand how

well it scales.

Moreover, the proposed approach can readily be applicable to determine contentions

between code segments on any types of hardware and software resources as long as the

contentions can be quantified. To this end, we believe that using hardware performance

counters is a perfect match as they enable us to quantify contentions on almost all hard-

ware resources, such as CPUs, CPU pipelines, instruction and data caches, branch pre-

diction/target buffers, TLBs, RAMs, memory buses, and I/O buses. Aciicmez et al., for

instance, describe micro-architectural side-channel attacks that exploit contentions on in-

struction cache and branch prediction/target buffers [12,15]. Both attacks rely on the fact

that contentions on these resources, increase the execution time of cryptographic applica-

tions. Although the contentions leveraged in these attacks are intentionally introduced by

a spy process, unintentional contentions on these micro-architectural resources can also

37

be exploited in a similar way. We conjecture that the proposed approach can be used to

isolate such unintentional contentions on instruction cache and branch prediction/target

buffers, thus further improve the reliability of cryptographic applications.

Another interesting avenue for future work is to fully automate the proposed approach.

In the experiments, although the mock code blocks were created automatically, we man-

ually decided on the combinations of mock and actual code blocks to be tested. One

challenge towards fully automating the proposed approach is to automatically select the

combinations in such a way that the choice of combinations does not introduce any bias

in the analysis.

A related concern is how best to divide the code base into code blocks. As this division

is application-specific, one way to address this concern is to provide developers with tools

that enable them to annotate the code blocks in programs’ source code. Another way is

to automatically perform the division at a given granularity level, such as at the level of

functions, classes, and libraries, as is the case in performance profiling tools.

4.4 Chapter Summary

Many modern CPUs contain hardware performance counters (HPCs) in their architecture.

These HPCs allow us to count many specific run-time events such as, the number of

instructions executed, the number of branches taken, the number of cache hits and misses.

Even though these counters are mainly purposed to be used in performance profiling, they

can be also used to conduct side channel attacks [24]. In this chapter, we presented a novel

usage of HPCs that allows us to detect the source of information leakage. The proposed

approach is able to detect code segments in cryptographic applications that are in cache

contentions with each other, thus leaking information that can be exploited in cache-based

side-channel attacks to extract secret keys.

In order to evaluate the approach, we conducted a series of experiments by using the

well-known Bernstein’s attack. The results of these experiments helped in pinpointing

the primary source of the exploitable side channel in the Bernstein’s AES server. To be

38

more specific, to the best of our knowledge, we demonstrated for the first time, that the

part of the OS kernel that handles socket communications is in cache contention with the

AES encryption code and that these contentions are the primary source of information

leakage, making the Bernstein’s attack a success [33]. In Section 4.2.2, to further validate

our results, we removed the socket communication from the code and observed that the

attack is not feasible anymore.

It is inevitable for a cryptographic processes not to share or to share hardware and

software resources of the underlying platform (i.e. personal computers, workstations, and

servers), on which they run. It is also known that the shared resources may cause an infor-

mation leakage which enables side-channel attacks. Thus, the way the cryptographic pro-

cesses are written requires utmost care and attention to prevent such attacks. We believe

that, the proposed approach can help developers to write more secure programs by pro-

viding them valuable analysis data regarding the possible information leakage sources.

39

Chapter 5

REMOVING the PROFILING PHASE

in CACHE-TIMING ATTACKS

In the case of cache attacks, as mentioned in Chapter 2, a profiling phase and/or a spy

process is essential in order to conduct a successful attack. The strength of Bernstein’s

timing attack comes from the fact that it does not require a spy process. As we have shown

in Chapter 4, it depends on the naturally occurring cache contentions between the code

blocks. Albeit it does not need a spy process, a major drawback of Bernstein’s attack is

the necessity of having a computer system which is identical to the target system as the

profiling phase of the attack needs to construct a model of the cache timing-behavior of

the latter. Exact replication of the target system, with running processes on it, with the

same input-output events and all its machine specific cache effects can be very difficult,

which causes the attack to be considered unrealistic in many contexts [16, 21].

In this chapter we propose a methodology, based on hypothetical modeling of the

cache timing-behavior of a computer system and demonstrate that the Bernstein’s attack

successfully recovers the key using one of the models that best represents its cache timing-

behavior. In our hypothetical modeling approach, all possible cache timing-behaviors of

a computer system are analytically extracted and the one that gives the highest correlation

to the measured attack data is chosen to be used in the cache-timing attack. This approach

eliminates the need of a profiling phase (i.e. the need for an identical target machine),

40

which makes the attack more realistic and feasible in practice.

The rest of the chapter is organized as follows: Section 5.1 discusses the details of

the profiling phase; Section 5.2 outlines our proposed approach; Section 5.3 explains how

we conduct the Bernstein’s attack without the profiling phase in order to validate our

hypothetical modeling methodology; Section 5.4 discusses the importance and validity of

the results in the context of recent studies; Section 5.5 concludes the chapter.

5.1 Analysis of the Profiling Phase

In Chapter 3, we outline the cache-timing attack of Bernstein briefly and then explain a

modified version of the attack which focuses on the final round, instead of the first round

of AES. Both attacks need a profiling phase. It is now crucial to understand what we

achieve after the profiling phase is successfully applied. In [11] and in Chapter 4 the

sources of the unintentional collisions in cache lines holding the AES lookup tables are

investigated. These unintentional collisions cause variations in access times due to cache

misses. The profiling phase helps to obtain data cache timing-behavior of AES process

by registering the variations in cache line access times. In this section we will further

investigate the profiling phase of the last round attack.

Cache timing-behavior of an AES process can be expressed as a timing model for each

of 16 T4 accesses in the last round. Since we know the secret key in the profiling phase,

the timing model for the ith access in the last round is simply a histogram of the devia-

tion of average execution times of an AES encryption indexed by output bytes of T4 as

computed in Equation 3.1. Figure 5.1 and Figure 5.2 shows such a cache timing-behavior

model where the figures depict the models of bytes 0-7 and bytes 8-15 respectively.

The profiling phase data used in the Figures 5.1 and 5.2 are collected from a com-

puting platform with Intel Pentium P6200 CPU running Ubuntu 3.0.0-12 kernel. In these

figures, the inverse s-box operation is also applied to the models to enhance visual clarity,

hence the x-axis shows the byte indexes (s9i) used in accesses to table T4.

41

Figure 5.1: Example profiling phase cache timing-behavior, bytes 0-7

In Figures 5.1 and 5.2, the mean value is the average execution time of the all encryp-

tion operations. One can notice that the timing measurements are either above or below

the average execution time. Here, the measurements above the average are attributed to

cache misses in the corresponding cache lines due to the extra time required to fetch the

missing data from the main memory. Similarly, the measurements below the average are

attributed to cache hits in the corresponding cache lines.

42

Figure 5.2: Example profiling phase cache timing-behavior, bytes 8-15

Furthermore, if all the 16 byte models are examined, it is seen that the execution times

tend to remain above or below the average line for a group of consecutive index values.

This particular pattern can be observed in Figure 5.3 in more detail.

Figure 5.3 just zooms in the models of byte 10 and byte 12 in the Figure 5.2. The

observed pattern is explained by the fact that a cache line holds 16 of the T4 entries; thus

a collision in a cache line will naturally affect the access times of 16 entries due to the

principle of locality.

In Figure 5.3, we also see a symmetry between the two models. They actually suggest

that the same group of consecutive indexes (i.e. cache lines) behave the same way while

43

(a) Byte 10 Model

(b) Byte 12 Model

Figure 5.3: Example profiling phase byte 10 and byte 12 model

accessing table T4 (i.e. all hits or all misses). Since these models belong to two different

T4 lookup accesses, it is quite normal to see such a symmetry. An important point to

note here is that the indexes that experience collisions does not change between different

bytes (i.e. always the same indexes cause misses or hits). This observation suggests that

the cache lines which are in contention does not change throughout the execution of the

program. Cache conflicts are consistently occur on the same group of cache lines.

To summarize, at the end of the profiling phase, we obtain a timing model T p
i for

44

the ith access in the last round, which is just an array of 256 values where each value

represents the deviation from the average of the total execution times of AES.

In the attack phase, the timing measurements are obtained, grouped and averaged

depending on the values of the ciphertext byte involved in ith output of the T4 lookup

operation, as the corresponding key byte value is unknown. The result is cache timing-

behavior model T̃ a
i , which is again an array of 256 values where each value represents

the deviation. Then, the two timing models, namely T p
i and T̃ a

i are correlated. As T p
i is

indexed by T4 output values and T̃ a
i by ciphertext byte values, we transform the latter into

256 timing models, T a
i,k indexed by the T4 output values by applying an exhaustive search

on the key space of k ∈ [0, 255]. Actual correlations are computed between T p
i and T a

i,k,

and the key values with low correlations are eliminated. The remaining keys, sorted from

highest to lowest correlation, are expected to be few resulting in a significant reduction in

the key space if the attack is successful. The essential steps of the last round attack with

profiling phase are given in Algorithm 4, where T p = ∪15i=0T
p
i and T a = ∪15

i=0T̃
a
i are the

sets of timing models in the profiling and attack phases, respectively.

Algorithm 4 Attack with profiling phase

Require: T p and T a

Ensure: KR: Ordered reduced key space

1: K ← ∅

2: KR ← ∅

3: for i = 0 to 15 do

4: for k = 0 to 255 do

5: T a
i,k ← Transform(T̃ a

i , k)

6: γ ← Correlate(T a
i,k, T

p
i)

7: ν ← Variance(T a
i,k, T

p
i)

8: K[i]← K[i] ∪ (k, γ, ν)

9: end for

10: K[i]← Sort(K[i]) ⊲ Descending on γ

11: δ ← Threshold(K[i])

12: KR[i]← Reduce(K[i], δ)

13: end for

45

The last round attack can reveal the entire key, although it still needs a profiling phase.

We already mentioned that it is not an easy task for an attacker to setup an identical

platform and to run the profiling phase. To increase the feasibility and applicability of the

attack, we present a novel methodology which needs neither an identical target system

nor a profiling phase. We use hypothetical modeling to obtain the timing-behavior of the

cache and need only the size of the lookup tables and the cache line size of the computing

platform. The details are provided in the following sections.

5.2 Simplified Cache Timing Model

In this section we introduce a methodology to model the timing characteristics of the data

cache for a running program on a CPU. Highly complex and optimized cache implemen-

tations and lack of details thereof, render an accurate modeling of cache timing-behavior

an involved task. The used models in the cache-timing attack are, in fact, based on the

time variations in the access times of cache lines/sets. Indeed, every memory access re-

sults in accessing a cache line or set whether it is a cache hit or miss. Therefore, a simple

model that is based on variations in cache line/set access times can be used to capture

the cache timing-behavior. The proposed methodology does not aim to capture all the

complicated structural properties of a modern cache. On the contrary, it aims to extract

a generic cache timing-behavior model based on a simplified set of assumptions. The

proposed model requires minimum knowledge (i.e. cache line size) about the target sys-

tem. Although the timing model is obtained using simplified assumptions, it is shown by

our experimental results that it can still be used effectively to conduct successful attacks.

This implies that our simplified model can be extended and improved to cover real-world

computing platforms. Next, we provide a more formal explanation of our model for data

cache timing-behavior:

Definition 3 Data in the data cache of a CPU are composed of individual bytes. Data can

be a complex structure or a simple array. Either way, elements of data are individually

accessible by data indexes. An AES lookup table is an example for data, where an index

46

is an 8-bit number.

Assumption 1 Data in the cache are aligned and occupy a number of consecutive cache

lines (unfragmented). The first byte of data is always placed in a new cache line.

Assumption 2 The direct-mapping is used as a cache placement strategy, where a single

cache line can be considered as a cache set. While the exact location of data is unknown

and not needed, relative locations of its elements and the number of cache lines they

occupy can be easily obtained under Assumption 1.

Assumption 3 Parts of data, essentially a sequence of bytes, can be accessed simply by

indexing. Each index value points to an equal number of bytes.

Assumption 4 Data are the relevant part of the code that cause cache hits/misses when

accessed. Accessing data in the cache (i.e. a cache hit) and data not in the cache (i.e. a

cache miss), take t and (t+∆), respectively, and we always have ∆ > 0.

Assumption 5 Cache collisions may occur between two different programs, or within the

same program; i.e. data sharing the same cache lines/sets can evict each other. During

the run of a program, collisions occur always on the same cache lines/sets.

Assumption 6 A cache collision in a cache line evicts the entire block from the cache

and brings a new block from the memory.

Assumption 7 During a single run of a program, data are accessed only once, which

means the program observes only one hit or one miss during the run.

Assumption 8 A program’s execution time varies with its input depending on the cache

hits and misses occurred during its execution. The execution times of a program in the

presence of hits and misses are th and tm, respectively. And th and tm have equal proba-

bility to occur.

Based on these assumptions, we obtain several immediate results, captured as propo-

sitions.

47

Proposition 1 Following Assumption 1 and Assumption 3, the total number of cache lines

occupied by data can be calculated as

n =

⌈

|data|

b

⌉

, (5.1)

where |data| and b stand for the number of bytes in data and in a cache line, respectively.

Proposition 2 Following Assumptions 4, 7 and 8, we can approximate th, tm and ta of a

program with

th = t+ tf , (5.2)

tm = (t+∆) + tf , (5.3)

ta = (th + tm)/2, (5.4)

where ta is the average execution time of a program, tf is the execution time of instructions

that do not require memory access. As ∆ > 0, we have th < ta < tm. This result implies

that a particular execution time of a program will tend to be higher than the average

execution time of that program (ta) , when the program accesses the cache lines that are

subject to collisions, and vice versa.

Proposition 3 Let the cache line index range [c1, c2], where c2 > c1 and c1, c2 ≥ 0,

represent the indexes where cache lines are in collision. Taking the Assumptions 2, 5,

and 6 into account, we can calculate the range of data indexes which maps to the colliding

cache lines. Let κ denotes the number of bytes accessed by each data index. Then, all data

indexes within the following range are mapped to the cache lines which are in collision:

Ic =

[

c1 · b

κ
,
c2 · b

κ
+

b

κ
− 1

]

. (5.5)

Here, the cache line and data indexes starts from 0 (i.e. first b bytes of the data reside in

the 0th cache line, second b bytes reside in the 1st cache line, etc.).

Based on these assumptions and propositions, an algorithm can be given to extract a

48

timing model of the cache memory. Algorithm 5 describes the steps to obtain a model for

a given data.

Algorithm 5 Modeling the cache timing-behavior

Require: data, m, Sc, b, κ

Ensure: T : Cache timing-behavior model

1: Ic = MissDataIndex(Sc, b, κ) ⊲ (Proposition 3)

2: for s = 0 to m− 1 do ⊲ for each data index

3: if s ∈ Ic then

4: T [s] = 1

5: else

6: T [s] = −1

7: end if

8: end for

In Algorithm 5, m is the number of indexes that are used to access data parts of κ

bytes, b is the number of bytes in one cache line, and Sc denotes the subset of cache lines

subject to collisions (i.e. contention set). The algorithm returns a timing model T , where

each value of the index used to access data is matched with a timing value. Line 1 of

Algorithm 5 calculates the set of data indexes which results in cache misses and Line 3

of Algorithm 5 checks whether a data index is in set Ic. In the case the referenced index

causes a miss, the access to the corresponding data part will take longer. In this model we

assume ta = 0, th = −1 and tm = 1 for simplicity.

Example 1 Suppose that data is an array of 80 bytes and each data index points to 2

bytes in the memory. If the cache block size is b = 8, then data will use m = 40 indexes

and fits in 10 cache lines. Further assume that cache line indexes [2, 3] and [6, 8] are in

the contention set. Then using Preposition 3, we can find which data indexes will cause

a cache miss. If we use Algorithm 5, our model will have a total of 40 indexes and the

indexes in ranges [8, 15] and [24, 35] will have the value of 1, while the rest of the indexes

will have the value of −1 as illustrated in Figure 5.4.

When Figures 5.3 and 5.4 are compared, one can easily see the similarity between

the patterns in the execution times in the actual and the simplified timing models. In the

49

Figure 5.4: Example cache timing-behavior model

timing models obtained in the profiling phase of the Bernstein’s attack, table T4 is data

and lookup bytes are the indexes as defined by the terminology introduced in Section 5.2.

The measured timing values in the profiling phase of the Bernstein’s attack are noisy

and obtained by averaging excessively many AES execution times. All the same, the

simplified timing model captures essentially the same behavior.

5.3 Practical Application of The Proposed Methodology

and Validation Results

In this section, we give a formal description of the non-profiled Bernstein attack, which

we use to validate our hypothetical modeling methodology and present our experimental

results.

5.3.1 Cache Timing Attacks without a Profiling Phase

In order for an attacker to model the cache timing-behavior of the server in the profiling

phase, the attacker must produce an identical system the cache timing-behavior of which

must exactly be the same as the target computer. Exact replication of the target system,

50

with running processes on it, with the same input output events and all its machine specific

cache effects can be very difficult, if not impossible. This is a major drawback in the

Bernstein’s original cache-timing attack, which is also mentioned in [21] and [16]. Using

hypothetical modeling as suggested here, however, eliminates the need for an identical

system, hence the profiling phase. The attack without the profiling phase needs only

the knowledge of the cache line size of the target computer and the size of the lookup

tables. A typical cache line size is 64 B in majority of contemporary computers and the

AES lookup tables and their sizes can be obtained by examining the source code of the

implementation.

Since we perform the last round attack, the data is table T4 of 1024 B, which is used

only in the last round of AES encryption. It has 256 indexes and each index is used

to access a 4 B entry. As all our target platforms have cache line sizes of 64 B, table T4

occupies 16 cache lines. The correct timing model of the cache can be obtained only if we

know the cache lines subject to eviction due to collisions. However, without an identical

computer system on which AES runs with a known key, we infer no information about

the contention set and therefore the cache timing-behavior cannot be obtained. On the

other hand, in our simplified approach, we have only a total of 216 simplified models as

T4 occupies 16 cache lines. Thus, a brute-force approach, based on trying all simplified

models exhaustively, is feasible.

To form our simplified models we need to find the cache contention sets. As there are

216 simplified models (i.e. 216 cache configurations of hits and misses), we can use 16-bit

integers that take values in [0, 216 − 1] to represent these models. For instance, the index

value of 0x7FFF in hexadecimal representation indicates that the first cache line is in the

contention set assuming that each bit of an index stands for a cache line and the bit value

of 0 indicates a collision in the corresponding cache line. Algorithm 6 explains how the

cache contention sets are derived. It takes an index and iterates through its bits starting

from the rightmost bit, which corresponds to the last cache line.

51

Algorithm 6 Obtaining a cache contention set

Require:

l : index of simplified cache timing model

n : number of cache lines occupied by data

Ensure: SC : Cache contention set for index l

1: SC ← ∅

2: for i = n− 1 to 0 do

3: if (l mod 2 == 0) then

4: SC ← SC ∪ i

5: end if

6: l ← l/2

7: end for

Finally, Algorithm 7 gives us the most possible cache timing-behavior model given

the timing measurement data from the attack phase (i.e. T a).

Algorithm 7 iterates through all simplified cache timing models; it first finds the cor-

responding contention set in line 3, then calculates the corresponding simplified model in

line 5, and applies the AES s-box operation on the model in lines 6-10 since we perform

the last round attack using the outputs of table T4. Then the attack phase in Algorithm 4

is applied to find the size of the reduced key space in line 12. The sizes of the reduced key

space for simplified models are saved as described in line 13. Finally, they are sorted from

smallest to largest (line 15) and the simplified model with the smallest reduced key space

size is chosen as the most probable cache timing-behavior model (line 16). As the Bern-

stein attack tends to calculate higher correlation values for the simplified models which

are closer to the measurements in the attack phase, and higher correlations yield smaller

reduced key space sizes, we propose to select the model with the smallest reduced key

space. Once we obtain the model, we can run Algorithm 4 and find the key bytes.

In order to test Algorithm 7, we ran it for the example data set in Figures 5.1, 5.2 and

5.3 and obtained the index 14433 as the most probable cache timing model. When we plot

this model, we obtain Figure 5.5. A closer look at Figure 5.5 reveals that our simplified

model (Figure 5.5b) resembles to the real model (Figure 5.5a) previously depicted in

52

Algorithm 7 Searching for cache timing-behavior model

Require:

T4 : Lookup table

m : Index count of T4

κ : Size of each T4 entry in number of bytes

b : Size of each cache line in number of bytes

T a : Timing model in attack phase

n : Number of cache lines occupied by T4

δ : Correlation threshold

Ensure: T̃ h: Correct cache timing-behavior model

1: M← ∅

2: for l = 0 to 2n − 1 do

3: SC ← Algorithm 6(l, n)

4: for j = 0 to 15 do

5: T h
l [j][:]← Algorithm 5(T4,m,SC , b, κ)

6: for i = 0 to 255 do

7: x← AES-sbox(i)

8: T h
tmp[j][x]← T

h
l [j][i]

9: end for

10: T h
l [j][:]← T

h
tmp[j][:]

11: end for

12: KR ← Algorithm 4(T h
l , T

a)

13: M←M∪ (T h
l , |KR|)

14: end for

15: M← Sort(M) ⊲ Ascending on |KR|

16: T̃ h ←M[0][0]

Figure 5.3b.

An important point to note here is that, in Algorithm 7, we assume that all the lookup

index bytes will have the same timing model. Actually this is not always the case. In

Section 5.1 we mention that a cache timing model actually gives us the cache lines which

are in contention, thus a model can take two forms as seen in Figure 5.3. Thus, for the

indexes used in lookup operations where the real model is the symmetric of our simplified

53

(a) Measured model (Figure 5.3b)

(b) Calculated model

Figure 5.5: Calculated profiling phase model vs. measured profiling phase model

model, the correct key value will tend to appear in the bottom of the sorted list of reduced

key spaces. The problem can be solved with a small modification in Algorithm 4. In

Algorithm 4, key guesses are sorted depending on their correlation values, which can

be positive or negative. The key value with the maximum correlation becomes the most

possible candidate. In case of a symmetry between the real and the simplified model, this

correlation grows in the negative direction for the correct key guesses. Thus, if we take

the absolute values of the correlations before sorting, the correct key byte will appear in

54

the first ranks in the sorted list.

5.3.2 Experimental Results

We used the same data set used in Chapter 4 for our experiments. It is important to

remind that, we executed the last round attack with and without a profiling phase on

various software and hardware setups with different client-server deployment configura-

tions. Each attack is conducted by the AES client with 230 randomly generated messages,

where the size of each message is 600 B. The target of the attack, the AES server, runs the

table-based OpenSSL (v0.9.7a) implementation of AES, which is employed originally by

Bernstein in his attack, to encrypt the incoming messages. In the attacks with a profiling

phase, two separate measurements are used (i.e. profiling and attack phase measurements)

while in the attacks without a profiling phase only attack phase measurements are used.

The attacks generated a candidate set for each key byte value, which are sorted by their

likelihood. By multiplying the sizes of the candidate sets we obtain the reduced key space

size for the whole AES key, which necessitated exhaustive search.

For each attack setup, we conducted a number of attacks and calculated the average of

the results. In the Table 5.1 we prefer to list only the average values after we conducted

a number of attacks for each case as enumerating the results of each attack individually

would result in a table which is difficult to interpret. Furthermore, in some of our setups,

we observed large discrepancies between the best and worst case results, which we think

would misguide the reader. In the first three columns of the Table 5.1, the attack configu-

rations (i.e. the CPU type, operating system and the client-server deployment setup) are

given. The fourth and fifth columns present the average sizes of the reduced key spaces

obtained after the last round attack with a profiling phase and without a profiling phase,

respectively.

55

Table 5.1: Attack results without profiling phase

Operating AES Client-Server Reduced Key Space Reduced Key Space

Processor System Deployment Configuration with a Profiling Phase without a Profiling Phase

Intel Pentium P6200 Ubuntu 3.0.0-12 kernel same core 232 232

Intel Pentium P6200 Ubuntu 3.0.0-17 kernel different cores 249 237

Intel Core 2 Duo P8400 Ubuntu 3.0.0-12 kernel same core 1 212

Intel Core 2 Duo P8400 Ubuntu 3.0.0-17 kernel different cores 224 229

Intel Xeon E5405 CentOS 2.6.18 kernel same core 234 219

Intel Xeon E5405 CentOS 2.6.18 kernel different cores 251 216

5
6

In our experiments, we always found the unknown AES key in the reduced key space.

We also observed that for all of the attack configurations the sizes of the reduced key

spaces were always within feasible limits for an exhaustive search. An in-depth analy-

sis of the results further reveals that the attack performed better in the majority of the

cases when the client and server were located in the same core. Since cache collisions are

caused by the program itself and by other programs sharing the same cache lines, when

the two programs reside in the same core, more cache collisions occur and the attack per-

forms better. The results also show that the performance of the proposed attack without

a profiling phase is comparable to that of the original attack. We further observed perfor-

mance gains in some of the cases, specifically in rows 2, 5, and 6. If we check the sizes of

the “reduced key space with a profiling phase” in these rows, we see that they are larger

compared to the rest of the results. This implies that the profiling and/or attack phase

measurements are noisy and this situation degrades the performance of the attack with a

profiling phase. However, when we apply our proposed approach on these cases, we ob-

serve a performance gain. This gain is possibly due to the fact that our simplified models

are noise free and specifically selected for the attack phase data. Thus, we can claim that

our proposed methodology gives better results under noisy conditions. Our results show

that performance of the proposed attack varies in the experiment setups (i.e. it increases,

decreases and stays same in comparison with the attack with profiling phase). We should

note that no correlations are observed between these test setups. The performance of the

attack depends solely on the configuration of underlying software and hardware platform

during execution of the attack.

Furthermore, we also tried a more realistic setup where we measured the execution

timings from the client side. In this setup we used a PC which hosts two separate In-

tel Xeon E5405 CPUs, where AES server and client run on separate CPUs. Since both

programs run on the same PC, we minimize the effects of network delay on the measure-

ments. In the classical attack (i.e. using both profiling and attack phases) we reduced

the key space to 267 from 2128 with 234 measurements, while the non-profiled attack re-

duced the key space to 260 with 234 measurements. These results demonstrate that our

57

methodology can also be used in multi-processor and multi-core platforms. This finding

is especially important in cloud computing environments as different virtual machines can

be co-located in different cores of the same computer.

5.4 Discussion

In this chapter we experimentally showed that it is possible to conduct successful cache-

timing attacks with the proposed simplified model. On the other hand, how such success-

ful results are achieved with this simplified model may not be obvious. If the assumptions

captured all the structural properties of a cache (which is most probably not possible), our

model could mimic exactly the same behavior of a cache and we would possibly need

fewer number of measurements to conduct a successful attack. However, in our experi-

ments without a profiling phase, we used 230 measurements, which is the same number

that we used in the attack with a profiling phase. This high number of measurements is

required in order to compensate for the unknown architectural and behavioral complexi-

ties of cache memory hierarchy, which cannot be fully captured by our simplified set of

assumptions. For example, in Assumption 2, what would happen if we assumed the cache

were 4-way set associative? There would not be any cache evictions in a related AES

table until the relevant cache line in the set were accessed by the process. However, the

experiments show that cache evictions eventually occur. Thus, we would just need to wait

until a cache eviction occurs, which means taking more measurements. Consequently,

we compensate for the deficiencies due to the simplifications of the cache behavior by

increasing the measurement count and using statistical techniques.

A further improvement introduced by this new method is that it does not need the

modification of the address space layout randomization (ASLR) flag as mentioned in [33].

The ASLR technique randomizes the address space of the executables, stack, heap, and

the libraries. Since the original Bernstein’s attack needs two separate runs (i.e. profiling

and attack phase), the address spaces may be different at each run due to ASLR. Thus, the

timing models of these two phases may not correlate and the attack may fail. However, in

58

our methodology there is no need for a separate profiling phase that may cause a mismatch

between profiling and attack phase timing models. Consequently, this result demonstrates

that the use of ASLR is not an effective countermeasure against the cache attack.

The applicability of the proposed attack on CPUs that are from different vendors is

an important topic that needs further investigation, but during our research we did not

have the opportunity to conduct the attack on CPUs from different vendors. Nevertheless,

in modern CPUs cache architectures share common characteristics, such as multilevel

cache hierarchies and moving of data in blocks in case of cache conflicts. Furthermore,

in [46, 47], the authors implement Bernstein’s attack on ARM CPU and, in [31, 48–50],

the authors successfully apply known cache attacks on embedded ARM CPU platforms.

We think that these publications and the similarities of the modern cache architectures

provide strong evidence that our attack would also work on different CPU platforms.

It may be argued that the table-based AES implementation is outdated and many im-

provements, such as AES-New Instructions (NI) support and side-channel resistant imple-

mentations have been added to the OpenSSL library since then. Nevertheless, we think,

as many others in the scientific community, that vulnerabilities enabling cache attacks are

important artifacts that require further study. Therefore, in this study we investigated the

feasibility of an improved attack based on a generalized cache timing-behavior modeling

approach, and in order to verify our claims we used this specific implementation as a test

bed since it is easier to observe leakages, which simplifies the verification process. In

addition, there have been many recent works based on this table-based AES implemen-

tation. In [46, 47], Spreitzer et al. perform Bernstein’s cache-timing attack on modern

ARM CPU architectures, demonstrating that it is possible to perform this attack on ARM

architectures. In [31, 48–50], several authors conduct other known cache attacks such

as prime+probe, flush+reload, evict+reload, flush+flush, cache access pattern, and cache

collision attacks, which show these attacks are also applicable on embedded platforms.

In [51, 52], Gulmezoglu et al. conduct successful flush+reload and prime+probe cache

attacks on cross-virtual machine (VM) environments. In [55], Irazoqui et al. show it is

possible to successfully conduct Bernstein’s cache-timing attack on Xen and VMware by

59

using popular crypto libraries. Again Irazoqui et al. show in [53, 54] that it is possi-

ble to perform flush+reload and prime+probe cache attacks on virtualized environments.

In [56], Weiß et al. perform Bernstein’s cache-timing attack on a virtualization environ-

ment, which runs on an ARM CPU platform. In a recent research that claims a novel

attack [57], the stalling delay caused by cache bank conflicts is exploited to infer the se-

cret key. In [58], Moghimi et al. conduct a cache attack on a Software Guard eXtensions

(SGX) [59] supported Intel platform with different AES implementations. In [60], the au-

thors provide improvements over existing cache attacks and provide experimental results.

In [61], the authors show a cross processor cache attack that targets high efficiency CPU

interconnects. Moreover, in [23, 62], the authors share their findings on cache attacks ex-

perimented on general purpose CPUs. All of the works mentioned above share a common

point, which is that they all use the same or similar table-based AES implementations.

5.5 Chapter Summary

Bernstein’s cache-timing attack has been widely studied in the literature. The reason

behind its attraction is that the attack does not need a spy process like the other cache-

timing attacks. However, the attack still has a major drawback: It needs a profiling phase

where an identical target system is a necessity. In this chapter, we provide a solution

to this problem. We present a methodology to extract a simplified model of the cache

timing-behavior of a computer, which eliminates the need for a profiling phase [35].

In the presented methodology, the cache is partitioned into two sets of cache lines: the

cache lines in one set take longer to access due to persistent collisions and those in the

other that are faster to access as the collisions in them are absent, few or sporadic. The

simplified model can be extracted with two easily obtainable information: Cache-line size

and the size of the sensitive data that causes cache conflicts.

Furthermore, we also present a variant of Bernstein’s cache-timing attack without

a profiling phase on the last round of AES and demonstrate that it can be successfully

applied in many experimental settings. The implementation results demonstrate that the

60

method can be used to extract realistic timing models and the non-profiled attack has a

comparable performance to the original attack with a profiling phase.

The proposed methodology can also be applied on other CPU architectures and on

other cryptographic algorithms, as long as cache conflicts (e.g. cache misses) occur on

sensitive data (e.g. AES lookup tables), which leaks information about the secret key.

In summary, the new method allows to apply Bernstein’s attack in a more realistic and

practical context by eliminating the profiling phase and its associated difficulties.

61

Chapter 6

CONCLUSIONS and FUTURE WORK

Throughout the history, sharing of sensitive information securely has been of great impor-

tance for human beings, governments, armies and corporations, etc. People developed a

multitude of methods to hide the secret information from their adversaries. These efforts

gave rise to the science of cryptography. Many mathematical algorithms were developed

to encrypt sensitive information. And these algorithms were mathematically analyzed to

be proven secure. However, side channel analysis changed the game. It showed that math-

ematical robustness is not enough. To be truly secure, cryptographic algorithms should

also be implemented securely. Bernstein’s cache-timing attack is one of the most studied

side channel attacks, which uses the timing information as a side channel. Bernstein’s

attack drew a great amount of attention, due to the fact that it does not need a spy process

to create cache conflicts. The attack works thanks to some internal cache conflicts within

a program. There are studies which showed that the L1 data cache conflicts allow the

Bernstein’s attack to be successful, even though there has not been a study in the litera-

ture to provide an in-depth analysis to find out the main source of the information leakage.

Moreover, the attack had one drawback, that it needs an identical target machine to per-

form its profiling phase. This requirement caused the attack to be considered unrealistic.

In this dissertation we provide solutions to these problems.

To address the former problem, we propose to use hardware performance counters

to quantify the cache misses as a result of cache conflicts within the code blocks in a

62

program. The proposed approach divides the program into code blocks. Just before the

beginning and right after the end of each code block, L1 data cache miss counter is read.

The difference of the two values gives the number of cache misses that the code block

observed. Then, a code block (e.g. B) is replaced with its mockup counterpart (e.g. B
′

)

to see the code block’s effect on the other code blocks. If the other code blocks observe

fewer number of misses when B
′

is in the program, then we deduce that B causes cache

conflicts on the other code blocks. By using our proposed approach, we showed that

the socket communication code blocks cause cache conflicts on the AES encryption code

block. In order to further validate our approach, we removed the socket communication

from the program and conducted Bernstein’s attack. In the end, we could not get any

meaningful results from the attack, which is due to the removal of the contention sources.

We believe that the proposed approach can be used by the developers to produce more

robust implementations for the cryptographic algorithms.

Secondly, we propose a methodology to eliminate the requirement of the profiling

phase in Bernstein’s attack. In our methodology we propose to use simplified cache

timing-behavior models instead of a profiling phase. The simplified models can be con-

structed using few generic and easily obtainable information about the target system such

as cache line size. Furthermore, we used the simplified models in order to conduct the

Bernstein’s attack without a profiling phase. The improved attack, exhaustively tries all

the possible simplified models and choses the best one to use in the attack. Experimental

results showed that the attack without the profiling phase has comparable performance to

the original attack with the profiling phase. By removing the profiling phase of the Bern-

stein’s attack, we are able to demonstrate that the attack can be applied in a more realistic

setting increasing its importance.

6.1 Future Directions

The experiments which we performed for isolating the leakage sources were conducted

on relatively simple code blocks. This work can be extended to more complex programs

63

to evaluate the approach on real life scenarios. Moreover, automating the code block

selection at a predefined granularity level would be an interesting topic to study. We

believe that the proposed methodology is a valuable tool to detect code blocks which are

in contention with cryptographic code blocks handling secret information. It, therefore,

can be used as a part of a secure software generation toolset in order to analyze the critical

code blocks against possible information leaks.

The improved cache-timing attack was experimented on general purpose CPUs. As

future study, this work can be extended on embedded platforms as well as multi-tenant

cloud computing environments. Moreover, evaluating the applicability of the improved

attack on other table-based cryptographic algorithms would be an other interesting topic

to study. Our improvements on the Bernstein’s attack made it easily applicable for real

life systems. Thus, apart from attacking cryptographic systems, the improved attack can

be used to investigate possible vulnerabilities of cryptographic systems. And depending

on the assessment results, administrators of such systems can take required actions.

64

BIBLIOGRAPHY

[1] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems,” in Proceedings of the 16th Annual International Cryptology

Conference on Advances in Cryptology, CRYPTO ’96, (London, UK), pp. 104–113,

Springer-Verlag, 1996.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in

Cryptology - CRYPTO ’99, 19th Annual International Cryptology Conference, Santa

Barbara, California, USA, August 15-19, 1999, Proceedings, pp. 388–397, 1999.

[3] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete re-

sults,” in Cryptographic Hardware and Embedded Systems — CHES 2001 (Ç. K.

Koç, D. Naccache, and C. Paar, eds.), (Berlin, Heidelberg), pp. 251–261, Springer

Berlin Heidelberg, 2001.

[4] O. Aciiçmez, Ç. K. Koç, and J. Seifert, “Predicting secret keys via branch predic-

tion,” in Topics in Cryptology - CT-RSA 2007, The Cryptographers’ Track at the

RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007, Proceedings,

pp. 225–242, 2007.

[5] D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel,”

Tech. Rep. CSTR-02-03, Department of Computer Science,University of Bristol,

June 2002.

[6] K. Mowery, S. Keelveedhi, and H. Shacham, “Are aes x86 cache timing attacks still

feasible?,” in Proceedings of the 2012 ACM Workshop on Cloud computing security

workshop, CCSW ’12, (New York, NY, USA), pp. 19–24, ACM, 2012.

[7] C. Rebeiro and D. Mukhopadhyay, “Micro-architectural analysis of time-driven

cache attacks: Quest for the ideal implementation,” IEEE Trans. Computers, vol. 64,

no. 3, pp. 778–790, 2015.

[8] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-based side-

channel attacks using hardware performance counters,” Appl. Soft Comput., vol. 49,

pp. 1162–1174, Dec. 2016.

[9] D. J. Bernstein, “Cache Timing Attacks on AES.” http://cr.yp.to/antiforgery

/cachetiming-20050414.pdf, 2005. Last accessed on October, 2018.

65

[10] “AES Standard.” http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf, 2001.

Last accessed on October, 2018.

[11] M. Neve, Cache-based Vulnerabilities and SPAM analysis. PhD thesis, Universite

catholique de Louvain, 2006.

[12] O. Aciiçmez, S. Gueron, and J. Seifert, “New branch prediction vulnerabilities in

openssl and necessary software countermeasures,” in Cryptography and Coding,

11th IMA International Conference, Cirencester, UK, December 18-20, 2007, Pro-

ceedings, pp. 185–203, 2007.

[13] O. Aciiçmez, “Yet another microarchitectural attack: : exploiting i-cache,” in Pro-

ceedings of the 2007 ACM workshop on Computer Security Architecture, CSAW

2007, Fairfax, VA, USA, November 2, 2007, pp. 11–18, 2007.

[14] O. Aciiçmez and W. Schindler, “A vulnerability in RSA implementations due to

instruction cache analysis and its demonstration on openssl,” in Topics in Cryptol-

ogy - CT-RSA 2008, The Cryptographers’ Track at the RSA Conference 2008, San

Francisco, CA, USA, April 8-11, 2008. Proceedings, pp. 256–273, 2008.

[15] O. Aciiçmez, B. B. Brumley, and P. Grabher, “New results on instruction cache

attacks,” in Cryptographic Hardware and Embedded Systems, CHES 2010, 12th In-

ternational Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings,

pp. 110–124, 2010.

[16] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient cache attacks on aes, and coun-

termeasures,” Journal of Cryptology, vol. 23, no. 1, pp. 37–71, 2009.

[17] K. Tiri, O. Aciiçmez, M. Neve, and F. Andersen, “An analytical model for time-

driven cache attacks,” in Fast Software Encryption, 14th International Workshop,

FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers,

pp. 399–413, 2007.

[18] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeria, and H. Miyauchi, “Cryptanalysis of

DES Implemented on Computers with Cache,” in CHES 2003 LNCS (C.D. Walter

et al., ed.), vol. 2279, pp. 62–76, 2003.

[19] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, and G. Palermo, “AES power

attack based on induced cache miss and countermeasure,” in International Sympo-

sium on Information Technology: Coding and Computing (ITCC 2005), Volume 1,

4-6 April 2005, Las Vegas, Nevada, USA, pp. 586–591, 2005.

[20] O. Aciiçmez and Ç. K. Koç, “Trace-driven cache attacks on AES (short paper),”

in Information and Communications Security, 8th International Conference, ICICS

2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings, pp. 112–121, 2006.

[21] J. Bonneau and I. Mironov, “Cache-Collison Timing Attacks Against AES,” in

CHES 2006 LNCS (L. Goubuin and M. Matsui, ed.), vol. 4249, pp. 201–215, 2006.

66

[22] O. Aciiçmez, W. Schindler, and Ç. K. Koç, “Cache based remote timing attack on

the AES,” in Topics in Cryptology - CT-RSA 2007, The Cryptographers’ Track at the

RSA Conference 2007, San Francisco, CA, USA, February 5-9, 2007, Proceedings,

pp. 271–286, 2007.

[23] C. Rebeiro, M. Mondal, and D. Mukhopadhyay, “Pinpointing cache timing at-

tacks on aes,” in VLSI Design, 2010. VLSID ’10. 23rd International Conference

on, pp. 306–311, January 2010.

[24] L. Uhsadel, A. Georges, and I. Verbauwhede, “Exploiting hardware performance

counters,” in Fault Diagnosis and Tolerance in Cryptography, 2008. FDTC ’08. 5th

Workshop on, pp. 59–67, August 2008.

[25] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel cryptanalysis of prod-

uct ciphers,” J. Comput. Secur., vol. 8, no. 2,3, pp. 141–158, 2000.

[26] B. Schneier, “Description of a new variable-length key, 64-bit block cipher (blow-

fish),” in Fast Software Encryption (R. Anderson, ed.), (Berlin, Heidelberg),

pp. 191–204, Springer Berlin Heidelberg, 1994.

[27] P. Rogaway and D. Coppersmith, “A software-optimized encryption algorithm,”

in Fast Software Encryption (R. Anderson, ed.), (Berlin, Heidelberg), pp. 56–63,

Springer Berlin Heidelberg, 1993.

[28] “Data Encryption Standard.” https://csrc.nist.gov/csrc/media/publications/fips/46/3

/archive/1999-10-25/documents/fips46-3.pdf, 1977. Last accessed on October,

2018.

[29] X. Lai, J. L. Massey, and S. Murphy, “Markov ciphers and differential cryptanaly-

sis,” in Advances in Cryptology — EUROCRYPT ’91 (D. W. Davies, ed.), (Berlin,

Heidelberg), pp. 17–38, Springer Berlin Heidelberg, 1991.

[30] C. M. Adams, “Constructing symmetric ciphers using the cast design procedure,”

Designs, Codes and Cryptography, vol. 12, pp. 283–316, Nov 1997.

[31] J.-F. Gallais, I. Kizhvatov, and M. Tunstall, “Improved trace-driven cache-collision

attacks against embedded aes implementations,” in Information Security Applica-

tions (Y. Chung and M. Yung, eds.), (Berlin, Heidelberg), pp. 243–257, Springer

Berlin Heidelberg, 2011.

[32] X. jie ZHAO and T. WANG, “Improved cache trace attack on aes and clefia by

considering cache miss and s-box misalignment,” 2010. zhaoxinjieem@163.com

14645 received 2 Feb 2010, last revised 5 Feb 2010.

[33] A. C. Atici, C. Yilmaz, and E. Savas, “An approach for isolating the sources of infor-

mation leakage exploited in cache-based side-channel attacks,” in Seventh Interna-

tional Conference on Software Security and Reliability, SERE 2013, Gaithersburg,

Maryland, USA, 18-20 June 2013 - Companion Volume, pp. 74–83, 2013.

67

[34] C. Rebeiro and D. Mukhopadhyay, “Boosting profiled cache timing attacks with

A priori analysis,” IEEE Trans. Information Forensics and Security, vol. 7, no. 6,

pp. 1900–1905, 2012.

[35] A. C. Atici, C. Yilmaz, and E. Savas, “Cache-timing attacks without a profiling

phase,” Turkish Journal of Electrical Engineering & Computer Sciences, vol. 26,

pp. 1953–1966, 2018.

[36] L. Null and J. Lobur, The Essentials of Computer Organization and Architecture.

Jones & Bartlett Learning, 5 ed., 2018.

[37] G. Blanchet and B. Dupouy, Computer Architecture. John Wiley & Sons, Incorpo-

rated, 1 ed., 2013.

[38] D. Harris and S. Harris, Digital Design and Computer Architecture. Morgan Kauf-

mann, 2 ed., 2012.

[39] “Intel 64 and IA-32 Architectures Software Developer’s Man-

ual Volume 3B: System Programming Guide, Part 2.”

https://software.intel.com/sites/default/files/managed/7c/f1/253669-sdm-vol-

3b.pdf, 2018. Last accessed on October, 2018.

[40] “Preliminary Processor Programming Reference (PPR)

for AMD Family 17h Models 00h-0Fh Processors.”

https://www.amd.com/system/files/TechDocs/54945 PPR Family 17h Models 00h-

0Fh.pdf, 2017. Last accessed on October, 2018.

[41] “Performance Application Programming Interface (PAPI).” http://icl.utk.edu/papi/,

Last accessed on October, 2018.

[42] N. Smeds, “Openmp application tuning using hardware performance counters,” in

Proceedings of the OpenMP applications and tools 2003 international conference

on OpenMP shared memory parallel programming, WOMPAT’03, (Berlin, Heidel-

berg), pp. 260–270, Springer-Verlag, 2003.

[43] C. Yilmaz and A. Porter, “Combining hardware and software instrumentation to

classify program executions,” in Proceedings of the eighteenth ACM SIGSOFT inter-

national symposium on Foundations of software engineering, FSE ’10, (New York,

NY, USA), pp. 67–76, 2010.

[44] C. Yilmaz, “Using hardware performance counters for fault localization,” in Pro-

ceedings of International Conference on the Advances in System Testing and Vali-

dation Lifecycle, VALID ’10, pp. 87–92, 2010.

[45] B. Ozcelik, K. Kalkan, and C. Yilmaz, “An approach for classifying program fail-

ures,” in Proceedings of International Conference on the Advances in System Testing

and Validation Lifecycle, VALID ’10, pp. 93–98, 2010.

68

[46] R. Spreitzer and B. Gérard, “Towards more practical time-driven cache attacks,” in

Information Security Theory and Practice. Securing the Internet of Things - 8th IFIP

WG 11.2 International Workshop, WISTP 2014, Heraklion, Crete, Greece, June 30

- July 2, 2014. Proceedings, pp. 24–39, 2014.

[47] R. Spreitzer and T. Plos, “On the applicability of time-driven cache attacks on mobile

devices,” in NSS, vol. 7873 of Lecture Notes in Computer Science, pp. 656–662,

Springer, 2013.

[48] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armageddon: Cache

attacks on mobile devices,” in USENIX Security Symposium, pp. 549–564, USENIX

Association, 2016.

[49] R. Spreitzer and T. Plos, “Cache-access pattern attack on disaligned AES t-tables,” in

COSADE, vol. 7864 of Lecture Notes in Computer Science, pp. 200–214, Springer,

2013.

[50] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differential cache-collision

timing attacks on AES with applications to embedded cpus,” in Topics in Cryptol-

ogy - CT-RSA 2010, The Cryptographers’ Track at the RSA Conference 2010, San

Francisco, CA, USA, March 1-5, 2010. Proceedings, pp. 235–251, 2010.

[51] B. Gülmezoglu, M. S. Inci, G. I. Apecechea, T. Eisenbarth, and B. Sunar, “A faster

and more realistic flush+reload attack on AES,” in Constructive Side-Channel Anal-

ysis and Secure Design - 6th International Workshop, COSADE 2015, Berlin, Ger-

many, April 13-14, 2015. Revised Selected Papers, pp. 111–126, 2015.

[52] B. Gülmezoglu, M. S. Inci, G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross-vm

cache attacks on AES,” IEEE Trans. Multi-Scale Computing Systems, vol. 2, no. 3,

pp. 211–222, 2016.

[53] G. I. Apecechea, T. Eisenbarth, and B. Sunar, “S$a: A shared cache attack that

works across cores and defies VM sandboxing - and its application to AES,” in 2015

IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,

2015, pp. 591–604, 2015.

[54] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! A fast,

cross-vm attack on AES,” in Research in Attacks, Intrusions and Defenses - 17th In-

ternational Symposium, RAID 2014, Gothenburg, Sweden, September 17-19, 2014.

Proceedings, pp. 299–319, 2014.

[55] G. I. Apecechea, M. S. Inci, T. Eisenbarth, and B. Sunar, “Fine grain cross-vm

attacks on xen and vmware,” in 2014 IEEE Fourth International Conference on

Big Data and Cloud Computing, BDCloud 2014, Sydney, Australia, December 3-

5, 2014, pp. 737–744, 2014.

69

[56] M. Weiß, B. Heinz, and F. Stumpf, “A cache timing attack on AES in virtualization

environments,” in Financial Cryptography, vol. 7397 of Lecture Notes in Computer

Science, pp. 314–328, Springer, 2012.

[57] Z. H. Jiang and Y. Fei, “A novel cache bank timing attack,” in 2017 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pp. 139–146, Nov

2017.

[58] G. Irazoqui, T. Eisenbarth, and B. Sunar, “MASCAT: preventing microarchitectural

attacks before distribution,” in Proceedings of the Eighth ACM Conference on Data

and Application Security and Privacy, CODASPY 2018, Tempe, AZ, USA, March

19-21, 2018, pp. 377–388, 2018.

[59] “Software Guard eXtensions (SGX).” https://software.intel.com/en-us/sgx, Last ac-

cessed on October, 2018.

[60] A. C., R. P. Giri, and B. L. Menezes, “Highly efficient algorithms for AES key

retrieval in cache access attacks,” in IEEE European Symposium on Security and

Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, pp. 261–275,

2016.

[61] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache attacks,” in Pro-

ceedings of the 11th ACM on Asia Conference on Computer and Communications

Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, pp. 353–364, 2016.

[62] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games - bringing access-based

cache attacks on AES to practice,” in 32nd IEEE Symposium on Security and Pri-

vacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA, pp. 490–505, 2011.

70

	INTRODUCTION
	Motivation
	Contributions
	Outline

	RELATED WORK
	PRELIMINARIES
	CPU Caches
	Hardware Performance Counters (HPCs)
	Advanced Encryption Standard (AES)
	Bernstein's Cache-Timing Attack
	Applying Bernstein's Cache-Timing Attack to the Last Round of AES

	ISOLATING the LEAKAGE SOURCES in CACHE-TIMING ATTACKS
	Approach
	Case Study
	Analyzing External Entities
	Analyzing Internal Entities

	Discussion
	Chapter Summary

	REMOVING the PROFILING PHASE in CACHE-TIMING ATTACKS
	Analysis of the Profiling Phase
	Simplified Cache Timing Model
	Practical Application of The Proposed Methodology and Validation Results
	Cache Timing Attacks without a Profiling Phase
	Experimental Results

	Discussion
	Chapter Summary

	CONCLUSIONS and FUTURE WORK
	Future Directions

