
PhD DISSERTATION

Hybrid Conditional Planning

for Service Robotics

by

Ahmed Nouman

Submitted to the Graduate School of Sabancı University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Sabancı University

January, 2019

ii

c© Ahmed Nouman, 2018

All Rights Reserved

Hybrid Conditional Planning for Service Robotics

Ahmed Nouman

Mechatronics Engineering, Doctor of Philosophy, 2019

Thesis Advisors: Assoc. Prof. Volkan Patoğlu, Assoc. Prof. Esra Erdem

Patoğlu

Keywords: Planning under incomplete knowledge and partial observability,
Conditional planning, Hybrid planning, Motion planning, Task planning,

Plan execution monitoring, Cognitive robotics, Action languages

Abstract

Planning is an indispensable ability for intelligent service robots ope-
rating in unstructured environments. Given service robots commonly have
incomplete knowledge about and partial observability of handle such uncer-
tainty. Moreover, the plans they compute should be feasible for real-world
execution.

Conditional planning is concerned with reaching goals from an initial
state, in the presence of incomplete knowledge and partial observability; by
utilizing sensing actions. Since all contingencies are considered in advance, a
conditional plan is essentially a tree of actions where the root represents the
initial state, leaves represent goal states, and each branch of the tree from
the root to a leaf represents a possible execution of (deterministic) actuation
actions and (non-deterministic) sensing actions to reach a goal state. Hybrid
conditional planning extends conditional planning further by integrating low-
level feasibility checks into executability conditions of actuation actions in
conditional plans.

We introduce a parallel offline algorithm called HCPlan, for computing
hybrid conditional plans in robotics applications. HCPlan relies on mo-
deling actuation actions and sensing actions in the causality-based action
description language C+, and computation of the branches of a conditional
plan in parallel using a SAT solver. In particular, thanks to external atoms,
continuous feasibility checks (such as collision and reachability checks) are
embedded into causal laws representing actuation actions and sensing acti-
ons; and thus each branch of a hybrid conditional plan describes a feasible
execution of actions to reach their goals. Utilizing causal laws that describe

iv

non-deterministic effects of actions, sensing actions can be explicitly forma-
lized; and thus each branch of a conditional plan can be computed without
necessitating an ordering of sensing actions in advance.

Furthermore, we introduce two different extensions of our hybrid con-
ditional planner HCPlan: HCPlan-Anytime and HCPlan-Reactive.
HCPlan-Anytime computes a partial hybrid conditional plan within a gi-
ven time, by generating the branches with respect to their probability of
execution. HCPlan-Reactive computes a hybrid conditional plan with a
receding horizon. These extensions trade-off completeness of hybrid condi-
tional plans for improved computation time, and provide useful important
variations towards real-time use of the hybrid conditional planning.

We develop comprehensive benchmarks for service robotics domain and
evaluate our approach over these benchmarks with extensive experiments
in terms of computational efficiency and plan quality. We compare HCPlan
with other related conditional planners and approaches. We further demonst-
rate the usefulness of our approach in service robotics applications through
dynamic simulations and physical implementations.

v

Hizmet Robotları için Melez Koşullu Planlama

Ahmed Nouman

Mekatronik Mühendisliği, Doktora, 2019

Tez Danışmanları: Doç. Dr. Volkan Patoğlu, Doç. Dr. Esra Erdem Patoğlu

Keywords: Eksik bilgi ve kısmi gözlemlenebilirlik altında planlama,
Koşullu planlama, Melez planlama, Hareket planlaması, Görev planlaması,

İcra takibi, Bilişsel robotik, Eylem dilleri

Abstract

Planlama, yapılandırılmamış ortamlarda çalışan akıllı servis robotları için
vazgeçilmez bir özelliktir. Hizmet robotları, çevrelerini genelde kısmi olarak
gözlemleyebilirler ve çevreleri hakkında eksik bilgiye sahiptirler. Otonom hiz-
met robotları, gerçek dünyada uygulanabilir planlar oluşturabilmek için, ek-
sik bilgiyi, kısmi gözlemlenebilirliği ve geometrik uygulanabilirlik kriterlerini
hesaba katabilen, klasik planlamanın ötesinde, bilişsel yeteneklerle donatıl-
malıdır.

Koşullu planlama, eksik bilginin ve algılama eylemlerinin varlığında, baş-
langıç durumundan hedeflere ulaşmayı amaçlar. Çevrimdışı koşullu bir planda
tüm olasılıklar önceden değerlendirilir; koşullu bir plan, kökün başlangıçtaki
durumu, yaprakların hedef durumlarını temsil ettiği ve kökten yaprağa her bir
dalın muhtemel bir plan uygulamasını temsil ettiği, deterministik harekete
geçirme eylemleri ve deterministik olmayan algılama eylemlerinden oluşan
bir ağaçtır. Melez koşullu planlama, fiziksel uygulanabilirlik kontrollerini de
koşullu planlamaya entegre eder.

Bu tezde, robot uygulamalarına yönelik melez koşullu planlama için yeni
bir paralel çevrimdışı algoritma (HCPlan) öneriyoruz. HCPlan, harekete
geçirme ve algılama eylemlerinin nedensellik temelli eylem tanım dili C+’ta
modellenmesine ve koşullu planı oluşturan ağacın her bir dalının bir SAT çö-
zücü kullanarak paralel olarak hesaplanmasına dayanır. Robotun eylemleri-
nin sürekli uzayda uygulanabilirliğinine ait testler (çarpışma ve ulaşılabilirlik
testleri gibi) harici atomlar kullanarak nedensel kurallara entegre edilmekte
ve böylece melez koşullu planın her bir dalı, hedef durumlara ulaşmak için
uygulanabilir bir eylem sıralamasını ve icrasını temsil etmektedir. Önerilen
yaklaşımda algılama eylemlerinin deterministik olmayan etkilerini nedensel

vi

kurallar ile formal olarak biçimlendirmekte, böylece koşullu planın her bir
dalı, algılama eylemlerinin önceden sıralanması gerekmeksizin hesaplanabil-
mektedir.

Bu tezde ayrıca, melez koşullu planlama algoritmamızın iki farklı uzan-
tısını sunuyoruz: HCPlan-Anytime ve HCPlan-Reactive. HCPlan-
Anytime, ayrılan süre içerisinde melez koşullu plana ait dallardan icra sı-
rasında en olası olanları önceliklendirerek kısmi melez koşullu plan hesap-
layabilmektedir. HCPlan-Reactive uzaklaşan bir ufka dair melez koşullu
planlar hesaplar. Bu uzantılar, daha verimli hesaplama süresi için melez ko-
şullu planların tamlığından ödün vermekte, melez koşullu planlamanın gerçek
zamanlı kullanımına yönelik önemli seçenekler sunmaktadır.

Değerlendirme için, HCPlan’ı diğer ilgili koşullu planlayıcılar ve yakla-
şımlarla karşılaştırmalarını sunuyor, hizmet robotiği için kapsamlı kıyaslama
senaryoları önerip, bu senaryolar üzerinde deneylerle yaklaşımımızın hesap-
lama verimliliğini ve plan kalitesini değerlendiriyoruz. Ayrıca, yaklaşımımızın
servis robotik uygulamalarındaki başarımını dinamik simülasyonlar ve fizik-
sel uygulamalar ile gösteriyoruz.

vii

Acknowledgements

I would first like to thank my thesis advisors Assoc. Prof. Dr. Volkan
Patoğlu and Assoc. Prof. Dr. Esra Erdem Patoğlu at Sabanci University.
They consistently steered me in the right the direction whenever they thought
I needed it. I would also like to thank my jury members for their useful input.

Also, I would like to acknowledge my friends Arsalan Javeed, Damien
Jade Duff, and Amir Sultan; my brother Faseeh Ahmad who were with me in
my hard times and always encouraged me.

Finally, I must express very profound gratitude to my parents, my son
Eesa Ahmed, and my partner Zarkhania Javed for providing me with unfa-
iling support and continuous encouragement throughout my years of study
and through the process of researching and writing this thesis. This accomp-
lishment would not have been possible without them. Thank you :)

viii

Contents

1 Introduction 1

1.1 Problem statement . 3

1.2 Overview of our approach . 5

1.3 Dissertation contributions . 6

1.4 Overview of dissertation . 8

2 Literature Review 9

2.1 Plan execution monitoring . 9

2.2 Planning under incomplete knowledge 12

2.2.1 Policy generations . 12

2.2.2 Conditional planning 12

2.3 Hybrid planning approaches 16

2.4 Novelties in our approach . 17

3 Action Descriptions Language C+ 19

3.1 Language of C+ . 19

4 Hybrid Conditional Planning Framework 25

4.1 Hybrid conditional plan . 26

4.2 Formal definition of actuation and sensing actions 28

4.2.1 Describing actuation actions 28

4.2.2 Describing sensing actions 29

4.3 Feasibility checks integration 31

4.4 Planning problem . 36

4.5 Computation of hybrid conditional plans 37

4.6 Novelties in our framework . 41

ix

5 Anytime and Reactive Hybrid Conditional Planning 45

5.1 Anytime hybrid conditional planning 45

5.2 Reactive hybrid conditional planning 51

6 Benchmark Domains 56

6.1 Mobile manipulation benchmark 56

6.2 Navigation benchmark . 60

6.3 Manipulation benchmark . 62

7 Experimental Evaluation 66

7.1 Experimentation setup . 66

7.2 HCPlan results for benchmark domains 67

7.3 Parallel computation of branches 70

7.4 Re-use of saved branches . 72

7.5 Integration of feasibility checks 74

7.6 Comparison between plan execution monitoring and HCPlan 76

7.7 Comparison between HCP-ASP and HCPlan 81

7.8 Comparison between HCPlan and HCPlan-Anytime . . . 84

7.9 Comparison between HCPlan and HCPlan-Reactive . . . 89

7.10 Comparison between plan execution monitoring and HCPlan-

Reactive . 94

8 Execution of Hybrid Conditional Plans 98

8.1 Dynamic simulation . 98

8.2 Physical execution . 103

9 Conclusions 109

x

List of Figures

1.1 A service robot setting up kitchen table. 3

1.2 A sample model of a conditional plan. 4

2.1 A simple plan execution monitor system 11

4.1 A sample hybrid conditional plan. 27

4.2 A bi-manual robots wants to pick up a bowl with one of its

manipulator. 32

4.3 An infeasible hybrid conditional plans generated without fea-

sibility checks integration. Red boxes show infeasible actions. . 35

4.4 A feasible hybrid conditional plans generated with feasibility

checks integration. 35

5.1 Generation of a partial hybrid conditional plan using HCPlan-

Anytime. 47

5.2 Generation of a partial hybrid conditional plan using HCPlan-

Reactive. 52

6.1 An image showing a kitchen environment where a mobile ma-

nipulation is trying to set up the kitchen table. 57

6.2 An image showing an office floor environment where a couple

of mobile service robots are trying to serve beverages to the

people. 61

6.3 An image showing a laboratory cleaning environment where a

service robot is cleaning the laboratory table. 64

7.1 Plot showing the percentage of successful execution of branches

without feasibility checks integration for the kitchen table set-

ting benchmark. 75

xi

7.2 An anytime hybrid conditional partial plan computed for an

instance of the kitchen table setting benchmark where x is ‘70’. 88

7.3 A reactive hybrid conditional partial plan computed for an

instance of the kitchen table setting benchmark where reactive

depth threshold Dth is set to ‘5’. 93

8.1 A hybrid conditional plan for an instance of kitchen table set-

ting benchmark instance using a single arm mobile manipula-

tor robot. 99

8.2 Dynamic simulation showing the robot setting up the kitchen

table for ‘soup’. 102

8.3 A hybrid conditional plan for an instance of the kitchen ta-

ble setting benchmark instance using a bi-manual manipulator

robot. 104

8.4 Physical execution showing the robot setting up the kitchen

table for ‘soup’. 106

8.5 Physical execution showing the robot setting up the kitchen

table for ‘pizza’. 108

xii

List of Tables

2.1 A comparison between state of the art conditional planners. . 16

3.1 Causal laws and some useful abbreviations in the action de-

scription language C+. 24

4.1 A summary of robot databases in OpenRAVE. 34

4.2 Input symbols used in algorithms. 38

6.1 Kitchen table setting benchmark domain description. 58

6.2 Office beverages serving benchmark domain description. 63

6.3 Laboratory table cleaning benchmark domain description. . . 65

7.1 HCPlan results for the kitchen table setting benchmark with

feasibility checks integrated. 68

7.2 HCPlan results for the office beverages serving benchmark

with feasibility checks integrated. 69

7.3 HCPlan results for the laboratory cleaning benchmark with

feasibility checks integrated. 69

7.4 Effect of parallel computation of branches for HCPlan for

kitchen table setting benchmark. 71

7.5 Statistics for re-use of the computed branches in the kitchen

table setting benchmark. 73

7.6 Comparison between the computed plans using plan execu-

tion monitoring with sensing after every ‘3’ steps and hybrid

conditional planning for the kitchen table setting benchmark. . 78

7.7 Comparison between the computed plans using plan execu-

tion monitoring with sensing after every ‘5’ steps and hybrid

conditional planning for the kitchen table setting benchmark. . 79

xiii

7.8 Comparison between HCP-ASP and HCPlan using the plans

generated for the kitchen table setting benchmark domain. . . 82

7.9 Comparison between the complete plans computed with HC-

Plan and 70% of the partial plans computed with HCPlan-

Anytime for the kitchen table setting benchmark. 86

7.10 Comparison between the complete plans computed with HC-

Plan and 95% of the partial plans computed with HCPlan-

Anytime for the kitchen table setting benchmark. 87

7.11 Comparison between the complete plans computed with HC-

Plan and the partial plans computed using HCPlan-Reactive

with reactive depth threshold Dth of ‘3’, for the kitchen table

setting benchmark. 90

7.12 Comparison between the complete plans computed with HC-

Plan and the partial plans computed using HCPlan-Reactive

with reactive depth threshold Dth of ‘5’, for the kitchen table

setting benchmark. 91

7.13 Comparison between plan execution monitoring and HCPlan-

Reactive with the sensing step/adaptive depth threshold of

‘3’ for the kitchen table setting domain. 95

7.14 Comparison between plan execution monitoring and HCPlan-

Reactive with the sensing step/adaptive depth threshold of

‘5’ for the kitchen table setting domain. 96

xiv

List of Algorithms

1 hybrid_conditional_plan(D,P , S) 37

2 create_branch(P,H, S) 39

3 traverse&grow_tree(D,P , root,H, S,K) 40

4 update_queue(root,Q,K) 40

5 hybrid_conditional_plan_anytime(D,P , SP ,%TD) . . 47

6 create_branch_anytime(P,H, SP) 48

7 grow_tree_anytime(D,P , root, Sp,K,%TD) 49

8 update_queue_anytime(root,QP ,K) 50

9 plan&execute_hcplan_reactive(D,P , S,Dth) 53

10 hybrid_conditional_plan_reactive(D,P , S,Dth) . . . 53

11 grow_tree_reactive(D,P , root, S,K, Dth) 54

12 update_queue_reactive(root,Q,K, Dth) 54

13 execute_plan_reactive(root) 55

xv

Chapter I

1 Introduction

Planning is the art and practice of thinking before acting [1]. Automated

planning, sometimes referred simply as planning, is a branch of artificial in-

telligence that concerns with the realization of strategies or action sequences

by intelligent agents to complete some task. Formally, given a world model,

an initial world state, and the desired goal conditions, planning problem is

finding the (best) course of actions that transform the world from the initial

state to a state where the goal conditions hold. In known environments with

available models, planning can be done offline. Solutions can be found and

evaluated prior to execution. In partial observable environments, however,

the strategy often needs to be revised online and the models/policies must be

adapted. Plan execution monitoring is an example of such approaches that

utilizes online sensing with classical planning to compute solutions. Classi-

cal planning assumes complete knowledge and full observability about the

environment, and its complexity is NP-complete for polynomially bounded

plans [2].

As an alternative to plan execution monitoring, conditional planning is

focused on finding solutions from the initial state to goals, in the presence

of incomplete knowledge and sensing actions [3, 4, 5, 6, 7]. Conditional

planning considers all contingencies during the planning phase to compute a

conditional plan, which is essentially a tree of sensing and actuation actions,

where the root represents the initial state, leaves represent goal states, and

each branch of the tree from the root to a leaf represents a possible sequence of

actions to reach a goal state. Computing conditional plan is an intractable

problem; for polynomially bounded plans with partial observability, it is

PSPACE-complete [8].

Conditional planning computes valid plans in the presence of incom-

plete knowledge and partial observability, however, computation of valid

conditional plans does not guarantee successful plan execution in real-life

robotic applications. In robotic applications, the computed conditional

plans have to be executed by robots that are capable of navigation and

manipulation tasks. This necessitates integration of low-level feasibility

checks (such as collision, force closure, and reachability checks) into high-

level planning domains. The integration of low-level feasibility checks

into high-level planning techniques comes under hybrid planning frame-

work [9, 10, 11, 12, 13, 14, 15, 16, 17, 6, 7, 18, 19] and ensures that the

computed plan is not just valid, but feasible as well. This, however, is a

challenging problem, since feasibility checks are performed over continuous

spaces of robotic configurations whereas high-level planning is done over dis-

crete representations of the world.

In this dissertation, we present a formal framework that utilizes condi-

tional and hybrid planning approaches to handle problems involving planning

under incomplete knowledge and partial observability. In Section 1.1, we

introduce the problem and its challenges. Section 1.2 provides a brief intro-

duction to our framework. In Section 1.3, we discuss the main contributions

of this dissertation, while Section 1.4 presents dissertation overview.

2

Figure 1.1: A service robot setting up kitchen table.

1.1 Problem statement

In order to present the problem of planning under incomplete knowledge and

partial observability, let us consider a complex service robotic scenario where

a mobile manipulation robot needs to set up the kitchen table as shown in

Figure 1.1. The robot can navigate around the environment, picking and

placing objects as required. Kitchenware, such as mugs, spoons, knives,

plates may be found in cabinets or may be left on other flat surfaces, such as

countertops or shelves. Also, there is a kitchen table, where the robot needs

to place proper kitchenware complying with table setting etiquette.

In order to complete the task of setting up the kitchen table, the robot

needs to compute a sequence of manipulation and navigation actions that

lead to a state where the table is set. However, in this scenarios, the robot

does not have full observability of environment, for example, the location of

the bowl may be unknown, the cleanliness of fork may not be known or even

the robot may be unaware of the type of the food for which it needs to set

3

Figure 1.2: A sample model of a conditional plan.

up the kitchen table. The robot needs to plan under incomplete knowledge

about the initial state and thus conventional classical planning techniques

cannot be used to solve this problem. Therefore, in order to solve such

a task, we need to look beyond classical planning approaches and provide

solutions that can handle incomplete knowledge and partial observability.

Furthermore, the proposed solutions are to be executed by the robot. This

has its own challenges, for example, the proposed solution must make sure

that the robot does not collide with the environment or it grasps the objects

properly so they do not fall during manipulation. Thus, the solutions should

be valid as well as feasible with respect to robots, making them utilizable in

real-world applications.

4

1.2 Overview of our approach

Our approach extends hybrid planning beyond classical planning, to condi-

tional planning, which allows for dealing with incomplete knowledge due to

partial observability at the time of planning. In conditional planning, sens-

ing actions are considered as a part of planning [3, 4, 5, 6, 7]; according

to the possible outcomes of sensing actions, different conditional plans are

computed. Therefore, a conditional plan looks like a tree of actions, where

branching occurs at vertices that characterize sensing actions ; other vertices

characterize actuation actions as shown in Figure 1.2. For instance, in the

example above, the possibility of a plate being dirty can be considered as part

of conditional planning and a sensing action to check the cleanliness of the

plate may be computed as a part of the conditional plan. While executing

such a conditional plan, according to the outcome of the sensing action (e.g.,

computed using a perception algorithm), if the plate is detected to be clean

then the robot puts it on the table; otherwise, the robot first cleans the plate

and then puts it on the table. No replanning is needed for this contingency

since the robot plans for the sensing actions as required and knows what to

do with each possible outcome of a sensing action. Moreover, we integrate

low-level feasible checks as executability conditions of actions to prevent in-

feasible actions from being part of a computed conditional plan. This makes

computed plans feasible for robots to be executed in real-world applications.

5

1.3 Dissertation contributions

The summary of the main contributions of this dissertation are listed below:

• A parallel hybrid conditional planning framework:

1. We have provided formal definitions of sensing and actuation ac-

tions to formalize service robotic domains.

2. We have proposed a novel algorithm for parallel computation of

hybrid conditional plans for service robotic domains.

3. We have implemented the planner HCPlan that provides the

realization of the hybrid conditional planning algorithm.

4. We have implemented a parallel version of HCPlan that utilizes

parallel computation of branches to compute conditional plans

faster.

• Extensions of the planner, HCPlan:

1. We have extended the conditional planning algorithm to enable

the computation of partial conditional plans as an anytime algo-

rithm.

2. We have implemented HCPlan-Anytime, the anytime version

of the planner HCPlan.

3. We have extended the conditional planning towards a reactive

approach to computing partial conditional plans.

4. We have implemented HCPlan-Reactive, the reactive version

of the planner HCPlan.

6

• Service robotics benchmarks for planning under incomplete knowledge

and partial observability:

1. We have introduced benchmark domains for real-world service

robotic applications involving manipulation and navigation tasks

under incomplete knowledge and partial observability.

2. We have developed planning instances for the benchmark domains.

Also, we provide a mechanism to create new instances.

3. We have implemented feasibility checks for the benchmark do-

mains.

• Experimental evaluation of HCPlan, HCPlan-Anytime, and

HCPlan-Reactive:

1. We have completed a comprehensive experimental evaluation of

HCPlan using the benchmark domains.

2. We have implemented a plan execution monitoring algorithm and

compared its performance with HCPlan for the benchmark do-

mains.

3. We have provided a comparison between an alternate parallel hy-

brid conditional planner HCP-ASP for the benchmark domains.

4. We have completed an experimental evaluation of HCPlan-

Anytime for the benchmark domains along with a comparison

of the results with HCPlan.

5. We have completed an experimental evaluation of HCPlan-

Reactive for the benchmark domains along with a comparison

of the results with HCPlan and plan execution monitoring.

7

1.4 Overview of dissertation

• Chapter 2 provides a literature review about the state of the art ap-

proaches that plan under incomplete knowledge and partial observabil-

ity.

• Chapter 3 presents a brief overview of action description language C+,

the input language of our hybrid conditional planning framework.

• Chapter 4 describes our parallel hybrid conditional planning frame-

work.

• Chapter 5 describes anytime and reactive parallel hybrid conditional

planners as extensions to our planner, HCPlan.

• Chapter 6 describes service robotic benchmarks for planning under in-

complete knowledge and partial observability.

• Chapter 7 discusses the experimental evaluation of our hybrid condi-

tional planning framework for the benchmark domains along with a

comparison to the other state of the art approaches.

• Chapter 8 provides dynamic simulation and physical execution of plans

computed with our approach for real-world service robotic scenarios.

• Chapter 9 provides concluding remarks about the dissertation along

with ongoing work.

8

Chapter II

2 Literature Review

This dissertation focuses on planning under incomplete knowledge and partial

observability. In the literature, we can find attempts to solve the problem

using plan execution monitoring, policy generation, and conditional plan-

ning. In Section 2.2, we discuss the attempts in the literature to solve the

problem. Furthermore, while dealing with robotics applications, integration

of feasibility checks are important to ensure plan feasibility. Integration of

these checks in task planning come under the name of hybrid planning and

Section 2.3 describes recent work about these approaches.

2.1 Plan execution monitoring

Planning is a model-based approach to action selection where different types

of models are used to make precise the different types of agents, environments,

and controllers [20, 21]. Classical planning is the simplest form of planning,

concerned with the achievement of goals in a deterministic environment where

the initial state is completely known [22]. Classical planning assumes the

model of the world to be finite, discrete and deterministic.

In order to operate in real-world applications where the environment is

dynamic and unpredictable, the assumptions about the deterministic model

9

of the world have to be modified. Furthermore, in such dynamic and unpre-

dictable environment, the agents need the ability to detect if the execution

has proceeded as planned and when it does not, use that information to come

up with some new strategy to complete the task. An execution monitoring

system allows the robot to identify such failures, classify them and update

the robot plan, such that it can recover from such failures. Bjäreland [23]

defines an execution monitoring system as:

"Execution monitoring is an agent’s process of identifying discrepancies

between observations of the actual world and the predictions and expectations

derived from its representation of the world, classifying such discrepancies,

and recovering from them."

Plan execution monitoring combines classical planning with execution

monitoring approaches to plan, execute, and monitor the plans in real-world

applications. Plan execution monitoring utilizes online sensing to help the

agents recover from failures that may occur during the execution of the plan.

These failures may occur due to partial observability and incomplete knowl-

edge about the environment.

Working of an execution monitoring system

A plan execution monitoring approach consists of numerous sub-modules and

Figure 2.1 shows the structure of a basic approach.

• Model describes the abstract image of the world that can be used for

planning.

• Observations are taken in response to active sensing requests or be

delivered to the passive agent at a certain frequency. Typically, these

10

Figure 2.1: A simple plan execution monitor system

observations do not reveal the complete state of the world.

• Diagnosis is the task of estimating the actual state of the environment

and determining a sequence of events that produced it, based on the

model. State estimation is typically focused on detecting the discrep-

ancies between what was predicted by the model and what was actually

observed in the real world.

• State evaluation determines whether in the estimated state, the validity

and/or optimality of the current plan is preserved or not. It evaluates

the relevance of the discovered and diagnosed discrepancy between the

prediction and the estimated state, to decide whether any kind of re-

planning is required or advisable.

SHAKEY was one of the earliest robotic systems that used planning based

on STRIPS language [24] and execution monitoring system PLANEX[25] in

order to execute plans on a real-world environment. Since then a lot of

plan execution monitoring approaches have been developed and applied to

domestic service robotics systems [26, 27, 28, 29, 30, 31, 32, 33, 34]. Fur-

thermore, plan execution monitoring is a broad research topic and the reader

is encouraged to read [35, 36] for detailed surveys on the topic for robotic

applications.

11

2.2 Planning under incomplete knowledge

Work on planning under incomplete knowledge and partial observability can

be divided into three main categories: plan execution monitoring, policy

generation, and conditional planning. We discuss each one of them in the

following sections.

2.2.1 Policy generations

Partially observable markov decision processes (POMDPs) have been studied

to generate policies for solving planning under partial observability [37, 38,

39, 40]. Policy generation focuses on maximizing some reward functions

and generates a policy (condition-action pairs) over a finite or an infinite

horizon. The complexity of policy generation is undecidable [41, 42]. Unlike

POMDPs, conditional planning focuses on the computation of plans (tree of

actions) that are guaranteed to reach goal states. Conditional plans are more

suitable for execution by an intelligent agent since they provide the complete

sequence of actions from initial state to goal states along with steps where

sensing should be performed. Moreover, the agent does not have to maintain

its belief states in a compiled form and this is why sometimes policies are

transformed into conditional plans [43].

2.2.2 Conditional planning

Conditional planning allows us to compute plans in the presence of uncer-

tainties that arise due to partial observability and lack of complete knowledge

at the time of planning. In conditional planning, sensing actions are consid-

ered as part of planning [3, 4, 5, 6, 7], and therefore, conditional plan can be

viewed as a tree of (deterministic) actuation actions and (non-deterministic)

12

sensing actions. For instance, in kitchen table setting scenario introduced in

Section 1.1, the possibility of a plate being dirty can be considered as part

of conditional planning and a sensing action to check the cleanliness of the

plate may be computed as a part of the conditional plan.

Computing conditional plans is one of the hardest planning prob-

lems [44, 45]. Indeed plan existence for conditional planning is 2 − EXP -

complete [46, 47]. Even for polynomially bounded plans with limited number

of sensing actions, the complexity of the problem is ΣP
2 -complete [8]. Despite

such a high complexity associated with their computation, we still see a

variety of work on conditional planning that has led to some online condi-

tional planners, such as CLG [48], K-Planner [49], SDR [50], HCP [51] and

CPOR [52], and offline conditional planners, such as Contingent-FF [53],

POND [54], PKS [55, 56], CLG (offline version), ASCP [57], DNFct [58],

PO-PRP [43], HCPlan [6] and HCP-ASP [7].

Online conditional planners use online sensing to compute plans, therefore

they do not need to handle a potentially exponential number of contingen-

cies during the planning phase. This typically results in less computation

and planning time compared to offline approaches. However, since computed

plans are not complete with respect to contingencies, they may suffer from

failures to reach the goal state. Offline conditional plan, on the other hand,

constructs a plan which is complete with respect to contingencies consid-

ered during planning phase [6, 7]. Such plans can be represented as trees

where special vertices are included for different outcomes of sensing and each

branch represents a possible way of reaching a goal state from the incom-

plete initial state under different outcomes of sensing. The work on offline

conditional planning can further be divided into two groups: Search-based

13

offline conditional planning approaches view the conditional planning prob-

lem as a non-deterministic search problem in belief space and build planners

(e.g., as in Contingent-FF, PKS, POND, HCP) utilizing search algorithms

(e.g., forward search, heuristic search) to compute solutions. Compilation-

based offline conditional planning approaches compile the conditional plan-

ning problem into many planning problems in state space and utilize con-

formant or classical planning approaches to compute solutions (e.g., as in

CLG, DNFct, PO-PRP, HCP-ASP). In that sense, our planner HCPlan is

offline compilation-based; we utilize action-language based classical planning

framework CCalc [59] to solve conditional planning problems.

For a better comparison, let us give some more details about these related

offline compilation-based approaches. The main idea behind most of the

compilation-based algorithms [48, 60, 22] is to compute parts of branches

(i.e., sequences of actuation actions between pairs of closest sensing actions)

by using classical planners; and then combine them into a tree. Firstly,

these algorithms need to decide on the order of the sensing actions along the

branches; various sorts of heuristics are used to decide for the next sensing

action. Then, for every two closest sensing actions a and b on a branch, these

algorithms try to compute a sequence of actuation actions using a classical

planner. For that, they need to specify the planning problem: what is the

initial state? what are the goals? To overcome these difficulties, the related

approaches introduce preconditions for each sensing action; in this way, the

goals can be specified in terms of the preconditions of the sensing action b.

As for the initial state, these approaches consider all possible initial states

and try to find a conformant plan by transforming the conformant planning

problem into a classical planning problem. Recall that conformant planning

14

considers incomplete initial state and no observability, and its aim is to find

an action sequence that reaches the goal for every possible initial state [61].

Therefore, the size of the generated classical planning problem obtained from

these approaches and the time required to compute a solution is very large.

Furthermore, a solution may not exist for the conformant planning problem.

Different from most of the offline compilation-based planners (except

HCP-ASP), our approach is: parallel in sense that it computes dif-

ferent branches of conditional plans simultaneously, hybrid in the spirit

of [10, 11, 12, 13, 14]; motivated by robotics applications, our approach em-

beds feasibility checks (e.g., collision checks, reachability checks, graspability

checks) into conditional planning. Moreover, it models multi-valued sensing

actions as non-deterministic actions (so ordering of sensing actions and solv-

ing conformant planning problems are not needed), it uses non-monotonic

default constructs to represent non-occurrences of sensing actions and it al-

lows for concurrency of actuation actions. Figure 2.1 compares our planner

to different conditional planning approaches in the literature.

HCPlan has similarities with HCP-ASP: they both compute hybrid

conditional plans, utilize parallel computation of branches, implement reuse

of plans to speed up plan computation, use non-monotonic default constructs

to represent non-occurrences of sensing actions and model sensing actions as

non-deterministic actions. Both, do not need to decide on the order of sensing

actions in advance. On the other hand, HCP-ASP utilizes answer set pro-

gramming (ASP) [62] with Clingo [63], while HCPlan utilizes CCalc [59]

with action language C+ [64] and SAT solvers. The output of HCP-ASP is

directed acyclic graphs and/or trees whereas, HCPlan computes trees. Fur-

thermore, HCPlan has a novel extension where it computes partial hybrid

15

Table 2.1: A comparison between state of the art conditional planners.
Name Approach Hybrid Parallel Mode Language (variant)

HCP search-based no no online PDDL
CPOR search-based no no online PDDL

Contingent-FF search-based no no offline STRIPS
POND search-based no no offline PPDDL
PKS search-based yes no offline STRIPS
ASCP search-based no no offline Ac

K/ASP
DNFct compilation-based no no offline PDDL
CLG compilation-based no no offline/online PDDL

K-Planner compilation-based no no online STRIPS
SDR compilation-based no no online PDDL

PO-PRP compilation-based no no offline PDDL/STRIPS
HCP-ASP compilation-based yes yes offline ASP
HCPlan compilation-based yes yes offline/online C+

conditional plans based on anytime and reactive (semi-online) planning.

2.3 Hybrid planning approaches

Hybrid planning involves the integration of high-level task planning tech-

niques with low-level planning approaches like motion planning, geometric

planning etc [65, 66, 67, 68, 69, 70, 71]. Hybrid planning is studied a lot in

literature especially for planning systems involving robots since computation

of valid and feasible plan is required for smooth execution. Recent work on

hybrid planning can be divided into three main categories as follow:

1. Modifications/introductions of search algorithms for motion/task plan-

ning [67, 72, 12, 14, 73, 13].

2. Integration in formal methods [11, 74].

3. Modification in representation of domains [75, 10, 9, 17, 7].

Our hybrid conditional framework is similar to the last group since we

16

integrate feasibility checks in action descriptions via external atoms (in the

spirit of semantic attachments in theorem proving [76]) without having to

modify the classical planners or motion planners. The reader is encouraged

to read the recent studies [14, 17] that describe surveying and empirically

analyzing some of these approaches.

2.4 Novelties in our approach

We propose a novel parallel hybrid conditional planning framework for ser-

vice robotic applications. Our approach is offline and compilation-based,

similar to [7, 48, 60, 22], where parts of branches (i.e., sequences of actu-

ation actions between pairs of closest sensing actions) are computed using

classical planners, and combined into a tree. From the perspective of model-

ing, our approach is different from other offline compilation-based approaches

except [7] in following ways:

1. Our approach capitalizes on a non-monotonic logical representation,

where defaults are used to describe occurrences (and non-occurrences)

of sensing actions, eliminating the need to decide on the order of sens-

ing actions in advance (before conditional planning) or separate their

computation from that of the actuation actions. While computing a

hybrid conditional plan, our approach also plans for the sensing actions

required to reach the goal.

2. Our approach represents sensing actions as non-deterministic actions,

eliminating the need for conformant planning.

3. Our conditional planner is hybrid, that is, low-level feasibility checks

(e.g., the existence of collision-free trajectories, reachability checks,

17

graspability checks) are integrated into action descriptions to ensure

that the computed plans are physically executable.

4. Our conditional planner is parallel and utilizes parallel computation of

branches to compute plans faster.

5. Our approach utilizes re-usability of previously computed branches to

reduce computational work and planning time.

18

Chapter III

3 Action Descriptions Language C+

CCalc [59] is a knowledge representation and automated reasoning system

that utilizes SAT solvers to compute plans for a planning system. The idea of

CCalc is to represent domain description in the form of causal laws in action

language C+ [64] along with a planning problem and compute an action plan

that satisfies the goal state.

3.1 Language of C+

We start with a set of symbols, called constants; each constant e is asso-

ciated with a non-empty finite set Dom(e) of symbols. The constants are

divided into two types: fluent constants and action constants. An atom is an

expression of the form e = v where e is a constant and v ∈ Dom(e). We use

e (respectively, ¬e) instead of e = true (respectively, e = false). A formula

is a propositional combination of atoms. A fluent formula (respectively, an

action formula) is a formula such that all constants appearing in it are fluent

(respectively, action) constants.

19

Causal laws

The action description language C+ consists of three kinds of expressions

(called causal laws):

1. static laws of the form:

caused F if G

where F and G are fluent formulas.

2. action dynamic laws of the form:

caused F if G

where F is an action formula and G is a formula.

3. fluent dynamic laws of the form:

caused F if G after H

where F and G are fluent formulas, and H is a formula.

Static laws represent causal dependencies between fluents in the same state

while action dynamic laws express causal dependencies between concurrently

executed actions. Fluent dynamic laws are the most important element of

the language, because they can be used to describe direct effects of actions.

Moreover, an action description is represented by a set of causal laws.

20

Commonsense law of inertia

We can represent the commonsense law of inertia for a simple fluent literal

F with the expression:

inertial F

which stands for fluent dynamic law:

caused F if F after F

Exogeneity of actions

We can express that an action fluent F is exogenous (i.e., the causes of

the occurrence or non-occurrence of the action F is not given in the action

domain description) by:

exogenous F

which stands for

caused F if F

caused ¬F if ¬F

21

State constraints

We can constraint the occurence of a fluent F by the expression:

constraint ¬F

which stands for:

caused ⊥ if F

Defaults

We can express the occurrences (and non-occurrences) of a fluent F at each

state by the expression:

default F

which stands for:

caused F if F

Preconditions of actions

Preconditions G of an action fluent F can be expressed as follow:

nonexecutable F if ¬G

22

which stands for:

caused ⊥ if > after F ∧ ¬G

Effects of deterministic and non-deterministic actions

Direct effects G of a deterministic action fluent F can be expressed as follow:

F causes G

which stands for:

caused G if > after F

Direct effects G of a non-deterministic action fluent F can be expressed as

follow:

F may cause G

which stands for:

caused G if G after F

Conditional effects of actions

Effects of an action can be “conditional” i.e. they may be caused by executing

the action in some states, but not in others. Conditional effectsG of an action

23

fluent F under the conditions H can be expressed as follow:

F causes G if H

which stands for:

caused G if > after F ∧ H

The meaning of an action description can be described by a transition

system—a directed graph whose nodes are characterized by the values of

fluents and whose edges correspond to the actions that are executed. Table

3.1 summaries causal laws in action description language C+.

Table 3.1: Causal laws and some useful abbreviations in the action description
language C+.

Static causal laws: caused F if G
Dynamic causal laws: caused F if G after H

Descriptions Abbreviations Causal Laws

Inertia holds for a property F inertial F caused F if F after F
Exogeneity of actions an action F exogenous F caused F if F & caused ¬F if ¬F
No state satisfies property F constraint ¬F caused ⊥ if F
By default, property F holds at every state default F caused F if F
Action F has preconditions G nonexecutable F if ¬G caused ⊥ if > after F ∧ ¬G
Action F has a direct effect G F causes G caused G if > after F
Action F has a direct effect G under conditions H F causes G if H caused G if > after F ∧H
Sensing action F a has direct effect G F may cause G caused G if G after F
Sensing action F has a direct effect G under conditions H F may cause G if H caused G if G after F ∧H

24

Chapter IV

4 Hybrid Conditional Planning Framework

In this Chapter, we discuss our planning framework to solve the problem of

planning under incomplete knowledge and partial observability. Motivated

by service robotics applications where planning needs to be done under par-

tial observability, we introduce a generic hybrid conditional planning ap-

proach. Our framework includes a parallel offline compilation-based hybrid

conditional planner that requires domain description to be expressed in the

language of C+.

In Section 4.1, we describe the mathematical definition of a hybrid con-

ditional plan. Section 4.2 provides formalization of actuation and sensing

actions in action description language C+. Section 4.3 discusses integra-

tion of feasibility checks in C+. Section 4.4 discuss the planning problem to

compute a hybrid sequential plan which serves as a single branch for hybrid

conditional plans. Section 4.5 describes our algorithm to generate hybrid

conditional plans and we conclude the chapter by discussing the novelties of

our framework in Section 4.6.

25

4.1 Hybrid conditional plan

A hybrid conditional plan can be characterized as a labeled directed tree

whose vertices, edges, labels are defined as follows. A sample tree that char-

acterizes a hybrid conditional plan is presented in Figure 4.1.

Vertices

The set V = Va∪Vs of vertices consists of two types of vertices. The vertices

in Va characterize hybrid actuation actions (e.g., the robot’s move, pick,

place, clean actions integrated with feasibility checks); these actions “change

the state of the world” when they are executed (e.g., the location/status of

the robot/object changes). The vertices in Vs characterize sensing actions

or information gathering actions in general (e.g., checking whether a plate

is clean or not, asking whether the user wants soup or pizza, checking the

location of an object); these actions do not change the state of the world,

but only “mental states of the robot” when they are executed (e.g., the robot

learns and knows that the plate is clean, and what the user wants). We

call the vertices in Va as actuation vertices and the vertices in Vs as sensing

vertices. The leaves of the tree are in Va.

Edges

The set E of edges between vertices in V characterizes the order of actions: an

edge (x, y) expresses that the action denoted by the vertex x is to be executed

before the action denoted by y. Each vertex in Va has at most one outgoing

edge based on the assumption that the actuation actions are deterministic.

Each vertex in Vs has at least two outgoing edges. Each sensing action may

26

Figure 4.1: A sample hybrid conditional plan.

lead to different outcomes/observations (e.g., checking the cleanliness of a

plate may lead to the observation that the plate is dirty or clean). Then,

depending on the observation, each edge from a vertex in Vs may lead to a

different actuation action (e.g., if the plate is observed to be clean then the

robot places it on the table; otherwise, it washes the plate).

Labels

Let us denote by Es the set of outgoing edges from vertices in Vs. Then a

labeling function maps every edge (x, y) in Es by a possible outcome of the

sensing action characterized by the vertex x.

27

4.2 Formal definition of actuation and sensing actions

Consider a robotic action domain, with a set of actuation actions and a set of

sensing actions, where few properties are known while others are not known

to the robot. For instance, in the kitchen table setting example, introduced

in Section 1.1, the robot knows its location, whereas the locations of some

objects in the kitchen and whether they are clean or dirty may be unknown

to the robot. We describe the actuation and sensing actions by formulas in a

non-monotonic formalism framework. The objective of the framework is to

compute a sequential plan for a planning problem that contains both sorts of

actions to reach the goal. In addition to the validity of the plan, the robotic

actions need to be feasible to ensure smooth plan execution in real-world

scenarios. We formalize both sorts of actions in action description language

C+ [64], where actions and change are described by causal laws.

4.2.1 Describing actuation actions

We assume that actuation actions are deterministic i.e. the outcome of an

actuation action is known while planning. The preconditions and effects

of the actuation actions can be described by formulas in C+, as shown in

Table 3.1. For instance, the effect of action pick_up(O1,M1) representing

picking up an object O1 with a manipulator M1 can be described by the

following formula:

pick_up(O1 ,M1) causes objAt(O1) = M1

which expresses that, after the robot picks up the object O1 with the manip-

ulator M1, the new location of the object O1 becomes M1 which refers to

28

robot manipulator hand. A precondition of this action, that the robot has

to be near the location of the object O1 to grasp it, can be expressed by the

formula:
nonexecutable pick_up(O1 ,M1)

if robAt = L1 , objAt(O1) = L2 ,L1 6= L2

External computations (e.g., feasibility checks) can be embedded as exe-

cutability conditions of actuation actions using external atoms as discussed

in Section 4.3. Moreover, it is possible to model actuation actions as non-

deterministic actions. This can be done by removing the assumption about

their outcomes being deterministic and modeling them as non-deterministic

actions similar to sensing actions discussed in Section 4.2.2.

4.2.2 Describing sensing actions

Now, let us consider some properties of the domain that are not fully ob-

servable. For instance, dirtiness/cleanliness of all objects may not be fully

observable; so the robot is unaware of them. To learn about the cleanliness

of an object, the robot has to inspect the object; but this may be possible

only during execution of the conditional plan when the robot can navigate

near it and manipulate the object. Likewise, the robot may not know the

location of every object. To learn about the location of an object, it may

need to search for it by looking at the possible locations of the object, but

this is also possible only during the execution of the plan. Similarly, when

the robot is about to set up the table for lunch, it may not know whether the

person wants to have soup or pizza etc. Therefore, in order to learn about

the person’s wishes, it has to ask the person, once again during the execu-

tion of the plan. All the examples above are sensing actions that change the

29

knowledge of the robot, but not the state of the world. We provide a formal

way to describe these sensing actions using expressive of action language C+.

We represent the effect of sensing action as non-deterministic by using may

cause construct provided by C+. The preconditions and effects of a sensing

action about checking the cleanliness of an object can be formalized as:

nonexecutable check_is_clean(T1)

if isClean(T1) 6= unkown

check_is_clean(T1) may cause isClean(T1) = C1

if isClean(T1) = unknown

We introduce a new construct determines in C+ to formally represent sensing

actions as non-deterministic action:

A determines F if G

where A is a sensing action, F is fluent whose value is unknown and can

be determined by sensing action A, and G are the preconditions of A. This

construct stands for a following set of formulas:

nonexecutable A if ¬G

A may cause F = v if G

where v is a valid outcome of fluent F . Therefore, above sensing action for

checking cleanliness of an object can be represented as follow:

check_is_clean(T1) determines isClean(T1) = C1

if isClean(T1) = unkown

30

and by execution of this sensing action check_is_clean(T1) its outcome C1,

either yes or no, is determined.

4.3 Feasibility checks integration

Hybrid planning approaches, where task planning is integrated with low-level

feasibility checks [9, 10, 11, 12, 13, 14] ensure plan feasibility along with com-

putation of valid plans. Planning framework of CCalc allows integration of

external computations like feasibility checks in the formulas of the language

of C+. In order to describe the working and integration of these feasibility

checks, let us consider an example where a bi-manual service robot needs to

navigate around a kitchen environment and manipulate kitchenware. Sup-

pose the computed plan involves picking up a bowl as shown in Figure 4.2.

During the execution of this manipulation action, the robot needs to make

sure that it does not collide with the environment and cause harm to itself or

environment and grasps the bowl properly so it does not fall during execution

etc. These situations are very common in robotics environments and han-

dling such cases is critical to ensure feasible execution of plans. The idea is

to compute a plan that only has feasible actions and ensuring this will result

in the computed plan being valid and feasible in real-world applications.

CCalc provides a construct where to allow integration of external com-

putations like feasibility checks in action domain descriptions. We integrate

feasibility checks as preconditions of actions. For example, in example of

picking up a bowl considered above, a precondition for pick_up action can

31

Figure 4.2: A bi-manual robots wants to pick up a bowl with one of its
manipulator.

be added as:
nonexecutable pick_up(T1 ,M1)

if objAt(T1) = L1 , robAt = L1

where unPickable(T1 ,M1 ,L1)

where T1 is an object to grasp, M1 represents a robot manipulator, L1 is

location of object, and unPickable is an external atom, which represents the

outcome of some external computations (i.e. feasibility check for picking up

an object in this case).

In order to perform these external computations (i.e. feasibility checks),

we first model the environment and robot in simulation environment of

OpenRAVE [77]. OpenRAVE provides an environment for testing, devel-

oping, and deploying motion planning algorithms in real-world robotics appli-

cations. The OpenRAVE environment can generate some useful databases

32

for a robot and Table 4.1 gives a brief overview of these databases. The robot

first checks for candidate grasps for an object (e.g bowl in this case), accord-

ing to robot gripper and geometry of the object, using grasping database.

Next, these candidate grasps are checked for collisions with the environment

and remaining feasible grasps are noted. As the robot is mobile and needs

to navigate while performing manipulation tasks, we need to find some suit-

able robot base configuration so that it can reach the object and utilize one

of the feasible grasps for manipulation purposes. Therefore, some candidate

collision-free robot base configurations are sampled and for each of these con-

figurations, each of the feasible grasps is checked for a successful grasping of

the bowl using a robotic manipulator. This is done by using inversekine-

matics, convexdecomposition, inversereachability and kinematicreachability

databases provide by the OpenRAVE simulation environment. It is im-

portant to note that during this whole process, the robot needs to perform

collision checks, reachability checks, and graspability checks. A successful

solution consists of a valid feasible grasp, a robot base configuration, and a

trajectory for a robot manipulator. These solutions are saved so that they can

be utilized during plan execution by the robot. If a solution cannot be found

in the given amount of time, the action is termed as infeasible (although a

solution may still exist it was not found due to probabilistically complete

nature of sample-based motion planners), and the outcome of these external

computation returns “False”. Thus, the robot knows that preconditions for

that action were not met (i.e. the action is not feasible). Similarly, other

objects are also checked for feasibility and the outcomes of these external

computations are saved in a lookup table to be used by the robot later. It is

important to mention here that all these computations are performed prior

33

Table 4.1: A summary of robot databases in OpenRAVE.
Database Description

convexdecomposition Gives convex decomposition of link geometry of the robot.
grasping Simulate grasping of objects and computing force closure

metrics.
inversekinematics Manages compiled inverse kinematics solutions for robots

using ikfast.
inversereachability Gives inverse reachability space of manipulators.
kinematicreachability Gives 6D kinematic reachability space of a robot’s manipu-

lators.

to the planning phase and robot utilizes them in the planning framework

to compute plans that include feasible actions only and thus, ensure plan

feasibility in real-world applications.

In order to emphasize the importance of these feasibility checks, let us

consider a conditional plan with and without them. Since each branch of a

conditional plan depicts a possible execution of actuation/sensing actions to

reach a goal, it is essential that these actions are checked against relevant fea-

sibility constraints in real-world applications. In robotics applications, these

constraints are required for collision-free navigation and reachable/graspable

manipulation, as depicted in Figure 4.3 and Figure 4.4 with two conditional

plans computed for a robotics scenario, where two bi-manual mobile manip-

ulators are responsible for setting up a kitchen table. It is quite obvious that

the plans generated are different from each other. Also, it is important to

note that none of the branches of the non-hybrid plan (Figure 4.3) is exe-

cutable in real world and therefore whole conditional plan is infeasible, since

the actuation actions (denoted red) are not feasible; whereas every branch of

the hybrid plan (Figure 4.4) is feasible in the real world.

34

3, check_is_clean(spoon1)

4, go(robA,faucet),go(robB,table)

yes

10, go(robA,faucet),go(robB,faucet)

no

1, go(robB,cabA)

2, pick(robA,waterGlass1),pick(robB,spoon1)

5, clean(robA,waterGlass1),place(robB,table) 11, clean(robA,waterGlass1)

6, go(robA,table),go(robB,cabB) 12, go(robA,table),clean(robB,spoon1)

7, place(robA,table),pick(robB,bowl1) 13, place(robA,table),go(robB,table)

8, go(robB,table) 14, go(robA,cabB),place(robB,table)

9, go(robB,table) 15, pick(robA,bowl1)

16, go(robA,table)

17, place(robA,table)

Figure 4.3: An infeasible hybrid conditional plans generated without feasi-
bility checks integration. Red boxes show infeasible actions.

3, check_is_clean(spoon1)

4, clean(robA,waterGlass1),go(robB,table)

yes

15, clean(robA,waterGlass1),go(robB,faucet)

no

6, check_loc(bowl2)

7, place(robA,table),go(robB,cabA)

cabinetA

11, place(robA,table),go(robB,cabB)

cabinetB

18, check_loc(bowl2)

19, go(robA,cabA),place(robB,table)

cabinetA

23, go(robA,cabB),place(robB,table)

cabinetB

1, pick(robA,waterGlass1),go(robB,cabA)

2, go(robA,faucet),pick(robB,spoon1)

5, go(robA,table),place(robB,table) 16, go(robA,table),clean(robB,spoon1)

17, place(robA,table),go(robB,table)

8, pick(robB,bowl2) 12, pick(robB,bowl2)

9, go(robB,table) 13, go(robB,table) 20, pick(robA,bowl2) 24, pick(robA,bowl2)

10, place(robB,table) 14, place(robB,table) 21, go(robA,table) 25, go(robA,table)

22, place(robA,table) 26, place(robA,table)

Figure 4.4: A feasible hybrid conditional plans generated with feasibility
checks integration.

35

4.4 Planning problem

Once the domain description containing all the actuation actions along with

the integration of feasibility checks using external atoms and sensing actions

have been formalized, we define a planning problem describing initial state

and goal states, and ask the planner for a plan of length k. The initial state

is a conjunction of fluents that may be known or unknown during planning.

The keyword unknown is used to represent fluents which are not known. For

example, in planning problem below, the location of plate and cleanliness of

water glass is not known to the robot at the initial state.

robAt = table holds at 0 ∧

objAt(waterGlass) = shelfA holds at 0 ∧

objAt(plate) = unknown holds at 0 ∧

isClean(plate) = yes holds at 0 ∧

isClean(waterGlass) = unknown holds at 0 ∧ . . .∧

tableSet holds at k.

Using the planning framework of CCalc, we compute a hybrid sequential

plan of length k, which consists of a sequence of actuation and sensing ac-

tions that reaches a goal. By iterating over k = 0, 1, . . . ,maxstep, CCalc

guarantees to find the plan with the shortest length. Along with the compu-

tation of plan, it also reports plan history which contains state information

at each step.

36

4.5 Computation of hybrid conditional plans

Once we have domain description and a planning problem, we can compute

a hybrid sequential plan, that represents an action plan of actuation actions

and sensing action to reach a goal state, as discussed in Section 4.4. Now, we

discuss a conditional planning algorithm that can perform these computa-

tions in parallel to compute a hybrid conditional plan. A hybrid conditional

plan is represented by a tree (each branch represents a hybrid sequential plan)

where each branch from the root to leaves represents a unique way of reach-

ing goals under different contingencies. Algorithm 1, 2, 3 and 4 summarizes

our parallel conditional planning approach and in order to understand the

notation used in algorithms, Table 4.2 describes the input symbols used in

them.

Algorithm 1 hybrid_conditional_plan(D,P , S)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A conditional plan, specified by its root root, if one exists; other-

wise, failure.
// Compute a hybrid sequential plan P of length n with history H.

1: exists_P, P,H ← hybrid_sequential_plan(D,P)
2: if not exists_P then
3: return failure

// Construct an initial branch B of the tree from the root root to leaf
(represented by P [0] and P [n] respectively).

4: root← create_branch(P,H, S)
// Add new sub-branches to initial branch of the tree, in parallel.

5: root← traverse&grow_tree(D,P , root,H, S,K)
6: return root

Our algorithm first computes a hybrid sequential plan by assigning non-

deterministic outcomes for sensing actions and this plan serves as the initial

branch for the hybrid conditional plan. Next, for all the sensing actions

37

Table 4.2: Input symbols used in algorithms.
Symbols Description

D Robotic action domain description
P Planning problem with an initial state and goals
S Set of all possible sensing actions in D, each sensing action sA tupled with

a set OsA

OsA Set of all possible outcomes of a sensing action sA
Sp Set of all possible sensing actions in D, each sensing action sA tupled with

a set PsA

PsA Set of tuples 〈o, p〉 where o is outcome while p represents probability for
each outcome of a sensing action sA

P Hybrid sequential plan of length n (P [i] denotes the i’th action)
H History H of hybrid sequential plan P that contains information about each

state (H[i] represents information about state when the action P [i] occurs)
B Branch or sub-branch of a hybrid conditional plan
I Initial state of a planning problem P

root Root of a plan
K Lookup table with each entry of form 〈node, o, plan〉 where node is a sens-

ing node, o is outcome of node and plan represents root node of com-
puted/saved sub-branch B

Q Queue of tasks in which each task is given as a tuple 〈node, o〉 where node is
a sensing node and o represents outcome of node for which new plan needs
to be computed

QP Priority queue of tasks in which each task is given as a tuple (p, 〈node, o〉)
where node is a sensing node, o represents outcome of node for which new
sub-branch B needs to be computed and p represents probability of the root
of B

%TC Percentage that represents current computation level of a hybrid conditional
plan using HCPlan-Anytime

%TD Percentage that represents threshold level for computation of a hybrid con-
ditional plan using HCPlan-Anytime

Dth is threshold for depth until which all sensing nodes will be expanded from the
current node in each itteration of planning during computation of a hybrid
conditional plan using HCPlan-Reactive

Bexec is the branch executed by the robot in computation of a partial hybrid con-
ditional plan using HCPlan-Reactive

38

Algorithm 2 create_branch(P,H, S)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A branch or sub-branch B of the hybrid conditional plan denoted

by its root node root.
1: for i = 0 . . . n− 1 do
2: initialize node . create a node for P [i]
3: if i 6= n− 1 then
4: initialize child . create a node for P [i + 1]
5: node.children.append(child) . link parent to child
6: if P [i] ∈ S then . is node a sensing action?
7: node.sensing = True

8: if node.parent.sensing = True then . is parent a sensing action?
9: sA = node.parent

10: os ← current outcome of sA in H[i] ∩OsA

11: node.edge_label = os . label the edge
12: if i == 0 then . is node root?
13: root = node
14: node.depth = node.parent.depth + 1
15: node.state = H[i]

16: return root

39

Algorithm 3 traverse&grow_tree(D,P , root,H, S,K)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A conditional plan in the form of a tree, specified by its root root.
1: initialize Q . create a queue of tasks
2: Q ← update_queue(root,Q,K) . update queue
3: while not Q.empty do
4: do in parallel for 〈node, o〉 ← dequeue(Q)
5: I = node.state . get state information
6: I ′ ← modify I according to new outcome o
7: P ′ ← modify P with new initial state I ′

8: exists_P, P,H ← hybrid_sequential_plan(D,P ′)
9: if exists_P then

10: new_child← create_branch(P,H, S)
11: new_child.edge_label = o
12: Q ← update_queue(new_child,Q,K)
13: node.children.append(new_child)
14: Add (〈node, o, new_child〉) to K
15: return root

Algorithm 4 update_queue(root,Q,K)

Input: See Table 4.2 for descriptions of input symbols above.
Output: Updated task queue Q.
1: node = root
2: while node.children do
3: if node.sensing = True then . if node is a sensing action?
4: sA = node.name
5: oA = node.children.edge_label . get outcome of sensing action
6: for o = OsA \ {oA} do . for all other outcomes
7: if 〈node, o〉 6∈ K then . if not in lookup table
8: enqueue(Q,〈node, o〉) . Update Q with new task
9: node = node.children

10: return Q

40

in this branch, the other valid possible outcomes of each sensing action are

identified and appended as tuples in a task queue to be computed. Now,

for each of these tasks, new hybrid sequential plans are computed in parallel

and appended as branches/sub-branches to the initial branch of the hybrid

conditional plan with proper labels. Each of these branches is further checked

for new tasks. The process continues until we get a hybrid conditional plan

which is complete with respect to all the contingencies that were considered

during its computation. The computed hybrid conditional plan is represented

as a tree of sensing and actuation actions.

In the end, if the computed hybrid conditional plan has a maximum

branching factor b and the maximum depth d, the conditional plan has at

most bd leaves. Therefore, our hybrid conditional planner calls the hybrid

sequential planner CCalc at most bd times. The planning framework is

generic and applicable to any action domain description involving actuation

and sensing actions.

4.6 Novelties in our framework

The novelties of our hybrid conditional planning framework are due to how

we address the problems taking advantage of the expressive formalisms. In-

stead of the PDDL-based classical planners [78, 79, 80] used in the related

work, we use an action language based planner CCalc and capitalize on the

expressiveness of this planner.

41

Defaults to represent occurrences of sensing actions

One can express the defaults in the input language of CCalc since it is based

on non-monotonic logic. Defaults are useful, for instance, when the agents

do not have complete information about where the objects are exactly but

have some commonsense knowledge about their whereabouts. For instance,

a robot may not know where every single book in the house is but it may

know that “by default, books are in the bookcase.” If later the robot finds

a book on the table, then this observation does not cause an inconsistency

with its knowledge base. Instead, this observation is treated as an exception

to what is expected by default. Note that such exceptions cannot be handled

in formalisms/planners based on monotonic logic, such as PDDL.

We utilize defaults for conditional planning by explicitly formalizing that

“by default, no sensing is done.” In this way, the computation of a plan in-

cludes sensing actions as needed. If the robot, later on, performs a relevant

sensing action in the plan, then the robot knows that the “sensing is per-

formed” and no inconsistency is caused. In this way, the robot does not have

to decide in advance the order of sensing actions and computes a single plan

that consists of actuation and sensing actions.

Modeling sensing actions with non-deterministic effects

Sensing actions have non-deterministic outcomes and it is difficult to formal-

ize non-deterministic actions in many planning languages. Due to this dif-

ficulty, instead of formalizing sensing actions explicitly as non-deterministic

actions, the related work computes conformant plans of actuation actions

between every two closest sensing actions on a branch of a conditional plan.

42

We model sensing actions as non-deterministic exogenous actions in the

input language of CCalc. We also model preconditions of sensing actions

(e.g., a robot can check whether a plate is clean or dirty only if it is holding

the plate close by), and explicitly represent what is unknown (e.g., it is

unknown that the plate is clean). When a possible outcome of a sensing

action is non-deterministically determined, what is unknown becomes known

to the robot. In this way, branches of a conditional plan (i.e., sequences of

actuation actions and sensing actions) from an (incomplete) state to a goal

state can be computed using CCalc; and the planner does not have to solve

conformant planning problems to construct a conditional plan.

Hybrid planning

Unlike the other conditional planning approaches in literature except [7, 56],

our approach is hybrid in the spirit of [9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19]: motivated by robotics applications, our approach embeds feasibility

checks (e.g., collision checks, reachability checks, graspability checks) into

conditional planning. We explicitly embed feasibility checks into descriptions

of actuation/sensing actions, thanks to external atoms. In this way, infeasible

conditional plans (i.e., conditional plans where some actuation actions cannot

be physically executed according to the feasibility checks) are eliminated as

early as possible.

Parallel computation

Our conditional planning algorithm incrementally builds a conditional plan

by computing its branches and attaching the sister branches in parallel. None

43

of the other conditional planning approaches except [7] computes conditional

plan in a parallel manner.

Plan Re-use

Our conditional planning algorithm saves each solution of a query to the

CCalc planner in a database and utilizes plan re-use to reduce computa-

tional work and planning time.

44

Chapter V

5 Anytime and Reactive Hybrid Conditional

Planning

In Chapter 4, we discussed the hybrid conditional planning framework and

how it can be used to compute hybrid conditional plans. In this chapter,

we go further and discuss the variations of HCPlan. Hybrid conditional

plans are computed offline and can typically take considerable computational

time even with the utilization of parallel processing of branches. In Sec-

tion 5.1, we introduce a probabilistic framework for hybrid conditional plan-

ning, HCPlan-Anytime. In Section 5.2, we introduce HCPlan-Reactive

which is a semi-online variation of HCPlan that utilizes beneficial features

from plan execution monitoring.

5.1 Anytime hybrid conditional planning

The planner HCPlan introduced in Chapter 4 uses conditional planning

with the integration of feasibility checks to generate hybrid conditional plans

(trees) of sensing and actuation actions. Hybrid conditional plans consider

all possible contingencies at the initial state and computed plans that are

complete with respect to the contingencies considered during planning [6, 7].

In applications where the number of contingencies becomes really large, com-

45

putation of such complete hybrid conditional plans can take a considerable

amount of time. One solution to this problem can be to compute partial con-

ditional plans that consider not all, but a limited number of contingencies

for plan computation. However, this should be done in a way that the most

relevant contingencies are kept while contingencies which are least probable

are removed. Therefore, by removing computation of less probable branches,

the planning time needed for computation of plan can be reduced. It is im-

portant to note that plans computed in this way consider a reduced number

of offline contingencies and in case of a contingency not considered during

planning, some kind of recovery mechanism such as execution monitoring has

to be implemented. The idea is to reduced offline planning time for compu-

tation of conditional plans and in case of plan failure during execution, they

can be addressed with online re-planning.

We introduce a novel hybrid conditional planner HCPlan-Anytime that

computes partial hybrid conditional plans based on the idea discussed above.

Another useful feature of the planner is that it can be interrupted at any

given time, and it will still return a valid partial conditional plan that had

been computed until then. This can be very beneficial for some service

robotic applications, where plan execution and planning can be performed

simultaneously and failures during the execution can be monitored with re-

planning.

Anytime algorithms are defined as algorithms that return some answer

for any allocation of computation time, and are expected to return better an-

swers when given more time [81, 82, 83]. In that spirit, HCPlan-Anytime

is anytime. Figure 5.1 shows generation of a partial hybrid conditional plan

computed using HCPlan-Anytime.

46

Figure 5.1: Generation of a partial hybrid conditional plan using HCPlan-
Anytime.

Algorithm 5 hybrid_conditional_plan_anytime(D,P , SP ,%TD)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A partial conditional plan, specified by its root root, if one exists;

otherwise, failure.
// Compute a hybrid sequential plan P of length n with history H.

1: exists_P, P,H ← hybrid_sequential_plan(D,P)
2: if not exists_P then
3: return failure

// Construct an initial branch B of the tree from the root root to leaf
(represented by P [0] and P [n] respectively).

4: root← create_branch_anytime(P,H, SP)
// Add new sub-branches to initial branch of the tree, in parallel.

5: root← grow_tree_anytime(D,P , root, Sp,K,%TD)
6: return root

47

Algorithm 6 create_branch_anytime(P,H, SP)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A branch or sub-branch B of the hybrid conditional plan denoted

by its root node root.
1: for i = 0 . . . n− 1 do
2: initialize node . create a node for P [i]
3: if i 6= n− 1 then
4: initialize child . create a node for P [i + 1]
5: node.children.append(child) . link parent to child
6: node.probability = node.parent.probability

7: if P [i] ∈ SP then . is node a sensing action?
8: node.sensing = True

9: if node.parent.sensing = True then . is parent a sensing action?
10: sA = node.parent
11: os ← current outcome of sA in H[i] ∩ PsA

12: pos ← probability of os in PsA . get probability of outcome
13: node.edge_label = os . label the edge
14: node.probability = node.parent.probability ∗ pos . update rule
15: if i == 0 then . is node root?
16: root = node
17: node.depth = node.parent.depth + 1
18: node.state = H[i]

19: return root

48

Algorithm 7 grow_tree_anytime(D,P , root, Sp,K,%TD)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A conditional plan in the form of a tree, specified by its root root.
1: %TC = root.get_leaf().probability . initialize %TC

2: initialize QP . create a priority queue of tasks
3: QP ← update_queue_anytime(root,QP ,K)
4: while not QP .empty do
5: do in parallel for (p, 〈node, o〉)← dequeue(QP)
6: I = node.state . get state information
7: I ′ ← modify I according to new outcome o
8: P ′ ← modify P with new initial state I ′

9: exists_P, P,H ← hybrid_sequential_plan(D,P ′)
10: if exists_P then
11: Set probability of P [0] = p
12: new_child← create_branch_anytime(P,H, Sp)
13: new_child.edge_label = o
14: Add 〈node, o, new_child〉 to K
15: QP ← update_queue_anytime(new_child,QP ,K)
16: node.children.append(new_child)
17: %TC += new_child.get_leaf().probability . update %TC

18: if %TC ≥ %TD then . is %tree desired reached?
19: return root
20: if interruption == True then . if interruption occurs?
21: return root
22: return root

49

Algorithm 8 update_queue_anytime(root,QP ,K)

Input: See Table 4.2 for descriptions of input symbols above.
Output: Updated task priority queue QP .
1: node = root
2: while node.children do
3: if node.sensing = True then . if node is a sensing action?
4: sA = node.name
5: oA = node.children.edge_label . get outcome of sensing action
6: pA = node.probability . get probability of node
7: for o = OsA \ {oA} do . for all other outcomes
8: po ← probability of o in PsA . get probability of outcome
9: p = pA ∗ po . update probability

10: if 〈node, o〉 6∈ K then . if not in lookup table
11: enqueue(QP ,(p, 〈node, o〉)) . Update QP with new task
12: node = node.children
13: return QP

Algorithms 5, 6, 7, and 8 describe the working of HCPlan-Anytime to

compute partial hybrid conditional plans. It utilizes probabilities in addition

to outcomes of sensing actions in order to compute partial plans. Normally,

the probability of a parent and child is same, except in case of a parent being

a sensing action where following probability rule is applied:

pchild = pparent ∗ poutcome

where pchild is the probability of child, pparent is the probability of parent,

and poutcome is the probability for the current outcome of sensing action that

parent represents. A priority queue is utilized to give priority to the compu-

tation of more probable branches. %TD represents an upper bound for the

percentage of partial plan to be computed while %TC represents actual per-

centage of plan computed. As the planner is anytime, it can be interrupted

at any instance and will give a valid partial plan computed until that time.

50

Note that if outcomes of all sensing actions are equiprobable and a complete

plan is computed using HCPlan-Anytime, the resultant hybrid conditional

plan is similar to that obtained from HCPlan.

5.2 Reactive hybrid conditional planning

Online conditional planners use online sensing to compute plans, therefore

they do not need to handle a potentially exponential number of contingencies

during the planning phase. This typically results in less computation and

planning time compared to offline conditional planning approaches. However,

since a limited number of contingencies are considered, they may suffer from

failures to reach the goal state. Offline conditional plan, on the other hand,

constructs a plan which is complete with respect to contingencies considered

during planning phase [6, 7]. These computations of conditional plans can,

however, take a significant amount of time and plan execution cannot start

until the plans have been computed.

We propose a novel semi-online extension to our hybrid conditional plan-

ner HCPlan that computes partial conditional plans until a predefined

depth. We call the new semi-online hybrid conditional planner HCPlan-

Reactive. The planner takes care of not only planning but also the execu-

tion of plans. The execution of a plan can start as soon as the first partial

plan is computed and failures during execution can be addressed with re-

planning. This approach reduces the offline planning time by computing

partial plans and therefore, execution can start earlier. The computation of

a partial plan with HCPlan-Reactive is shown in Figure 5.2.

Algorithms 9, 10, 11, 12, and 13 describes the generation and exe-

cution of partial plans using hybrid conditional reactive planner HCPlan-

51

Figure 5.2: Generation of a partial hybrid conditional plan using HCPlan-
Reactive.

Reactive. Note that HCPlan-Reactive is a semi-online hybrid parallel

conditional planner that resembles HCPlan and plan execution monitoring.

If the reactive depth threshold for plan computation is set to a number equal

or more than the length of maximum branch plan computed with HCPlan,

than HCPlan-Reactive behaves like a complete offline planner similar to

HCPlan and the tree computed will be similar to the one generated by

HCPlan. On the other hand, if the reactive depth threshold is set to one,

the planner tends to behave more like an online planner and resembles the

plan execution monitoring approach. However, the plan will still be a tree

of sensing and actuation actions unlike the one returned by plan execution

monitoring.

52

Algorithm 9 plan&execute_hcplan_reactive(D,P , S,Dth)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A partial conditional plan, specified by its root root and branch

executed by the robot in plan Bexec.
// A partial conditional plan expanded till reactive depth Dth, specified
by its root root.

1: root← hybrid_conditional_plan_reactive(D,P , S,Dth)
// execute the plan and in case of unknown outcome of sensing, re-plan.

2: root, Bexec ← execute_plan_reactive(root)
3: return root, Bexec

Algorithm 10 hybrid_conditional_plan_reactive(D,P , S,Dth)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A partial conditional plan, specified by its root root, if one exists;

otherwise, failure.
// Compute a hybrid sequential plan P of length n with history H.

1: exists_P, P,H ← hybrid_sequential_plan(D,P)
2: if not exists_P then
3: return failure

// Construct an initial branch B of the tree from the root root to leaf
(represented by P [0] and P [n] respectively).

4: root← create_branch(P,H, S)
// Add new sub-branches to initial branch of the tree, in parallel.

5: root← grow_tree_reactive(D,P , root, S,K, Dth)
6: return root

53

Algorithm 11 grow_tree_reactive(D,P , root, S,K, Dth)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A conditional plan in the form of a tree, specified by its root root.
1: initialize Q . create a queue of tasks
2: Q ← update_queue_reactive(root,Q,K, Dth) . update queue
3: while not Q.empty do
4: do in parallel for 〈node, o〉 ← dequeue(Q)
5: I = node.state . get state information
6: I ′ ← modify I according to new outcome o
7: P ′ ← modify P with new initial state I ′

8: exists_P, P,H ← hybrid_sequential_plan(D,P ′)
9: if exists_P then

10: new_child← create_branch(P,H, S)
11: new_child.edge_label = o
12: Q ← update_queue_reactive(new_child,Q,K, Dth)
13: node.children.append(new_child)
14: Add (〈node, o, new_child〉) to K
15: return root

Algorithm 12 update_queue_reactive(root,Q,K, Dth)

Input: See Table 4.2 for descriptions of input symbols above.
Output: Updated task queue Q.
1: node = root
2: while node.children & node.depth ≤ Dth do . check till Dth only
3: if node.sensing = True then . if node is a sensing action?
4: sA = node.name
5: oA = node.children.edge_label . get outcome of sensing action
6: for o = OsA \ {oA} do . for all other outcomes
7: if 〈node, o〉 6∈ K then . if not in lookup table
8: enqueue(Q,〈node, o〉) . update Q with new task
9: node = node.children

10: return Q

54

Algorithm 13 execute_plan_reactive(root)

Input: See Table 4.2 for descriptions of input symbols above.
Output: A partial conditional plan, specified by its root root and branch

executed by the robot in plan Bexec.
1: node = root
2: while node.children do
3: if not node.sensing then . is an actuation action?
4: execute_action(node)
5: else . is node a sensing action?
6: oA ← sense_outcome(node)
7: if oA /∈ node.children.edge_labels then . is unknown?
8: Dth += node.depth . modify reactive depth Dth

9: node← grow_tree_reactive(D,P , node, S,K, Dth)
10: node = node.get_child(oA) . get child with outcome oA
11: else
12: node = node.get_child(oA)

13: execute_action(node)

14: Bexec = node.get_path() . get executed branch
15: return root, Bexec

55

Chapter VI

6 Benchmark Domains

In order to demonstrate the feasibility of our approach, we consider three

complex service robotics domains that involve manipulation and navigation

tasks. In Section 6.1, we consider a mobile manipulation benchmark, followed

by a navigation and manipulation benchmark, in Section 6.2 and Section 6.3

respectively, that serve as the platform to evaluate our hybrid conditional

framework and compare it with other approaches in the literature.

6.1 Mobile manipulation benchmark

In a mobile manipulation benchmark, we consider a service robot that can

navigate around the environment performing manipulation tasks. To demon-

strate such a scenario, we consider a bi-manual mobile manipulator that is

responsible for setting up a kitchen table, as depicted in Figure 6.1. The mo-

bile manipulator can navigate around the kitchen to pick up and place objects

as long as collision-free trajectories exist. Kitchenware, such as mugs, spoons,

knives, plates may be found in the cabinets or may be left on other flat sur-

faces, such as the countertops or shelves. In the kitchen, there also exists a

faucet to clean the kitchenware as required. Finally, there is a kitchen table,

where the proper kitchenware must be placed on to comply with table setting

etiquette.

56

Figure 6.1: An image showing a kitchen environment where a mobile manip-
ulation is trying to set up the kitchen table.

For the kitchen table set up benchmark, four actuation actions are consid-

ered in the domain: goto, pick_up, place_on and clean. Note that, in hybrid

planning, the feasibility of these actions needs to be checked. A probabilistic

motion planner (based on OMPL [84]) is used to implement the precondi-

tion of goto action, while reachability, graspability and collision checks (based

on OpenRAVE [77]) are implemented as the preconditions of pick_up and

place_on actions.

Note that the environment is not completely observable during the plan-

ning. Three types of possible sources of uncertainties are considered in this

domain. First, the person might have different food preferences (e.g., soup,

pizza, salad), which can only be revealed when directly communicated with

the user during the plan execution; that is, this information is not available

for the planning ahead of time. This uncertainty directly affects the plan, as

the kitchenware to be placed on table varies based on the type of the meal

57

Table 6.1: Kitchen table setting benchmark domain description.
Fluents Description

foodIs represents the food requested
robotAt represents a robot location
objectAt represents an object location
isClean represents if an object is clean or not

Sensing actions Description

check_food_type checks the type of food required
check_loc checks the location of an object
check_is_clean checks if an object is clean or not

Actuation actions Description Feasibility checks

goto robot navigates to a location collision
pick_up robot picks object in hand collision, reachability, graspability
place_on robot places object at a location collision, reachability
clean robot cleans object in hand collision

(e.g., spoon and bowl are required for having soup, while they are irrelevant

for eating pizza). Second, the locations of the kitchenware are uncertain and

might not be known by the robot during the planning phase. These locations

can be reliably gathered only if the robot actively searches for these objects

when it needs to use them. Third, the cleanliness/dirtiness of the objects

may not be known for sure.

Along these lines, three sensing actions for information gathering are con-

sidered in the domain: check_food_type, check_loc and check_is_clean.

The first action check_food_type is used to determine the type of food the

user desires. The sensing action check_loc is utilized to resolve the uncer-

tainty of the locations of kitchenware. Finally, check_is_clean is introduced

to determine the cleanliness of kitchenware. Table 6.1 shows the kitchen table

setting benchmark domain description.

In order to perform an experimental evaluation of this benchmark do-

58

main, we created 25 benchmark instances by varying the initial setting for

possible uncertainty about the environment. In Table 6.1, we show that the

initial state consists of four types of fluents. foodIs represent the requested

food and maybe unknown at the initial state. We consider three possible

values for this fluent. robotAt represent the robot location and is known at

all the states. objectAt represent the location of objects out of five possible

locations and isClean is a boolean fluent that represent the objects cleanli-

ness. Both of these fluents may be unknown at the initial state. Along with

these fluent, we consider 14 objects in the kitchen table setting domain de-

scription. Therefore, an initial state in the worst-case, can have a maximum

of 29 unknown fluents (14 for objectAt, 14 for isClean and 1 for foodIs).

We introduce a parameter %Degincomplete that describe the degree of in-

complete knowledge about the initial state during the planning phase. It

describes the percentage of unknown fluents in the instances compared to the

worst-case instance where all the 29 fluents are unknown. The benchmark

instances are arranged in ascending order of %Degincomplete. It is important

to note that the same value of %Degincomplete for the instances does not mean

that these instances have the same initial state since different fluents may be

unknown.

59

6.2 Navigation benchmark

In order to demonstrate a navigation based benchmark domain, we consider

mobile service robots in an office floor environment as shown in Figure 6.2.

The environment consists of locations such as offices, a storeroom, a common

room, and a kitchen. People can be working in their offices, watching TV

in the common room, having a snack in the kitchen or anywhere else on the

office floor. We consider a couple of mobile robots that can navigate around

the office floor, asking and serving drinks to the people. The robots can

interact with the people in order to serve them drinks. Moreover, the person

can simply request nothing to drink in which case the robot does not need

to serve anything to the person. Each robot has a couple of slots to hold the

beverages (i.e each robot can hold a maximum of two units of beverages).

This condition is necessary to ensure smooth navigation of the robot while

holding the beverages. The robots do not have any manipulators and are

dependent upon the humans to mount and unmount the beverages to/from

it. The robots share the same knowledge among them, that is, if one robot

identifies the location of a person, the others also know this automatically

or similarly if one robot takes an order, the other robots know it as well

and can serve the ordered beverage to the specific person. Finally, the goal

of this benchmark domain is that the robots should navigate around the

environment, identifying the location of all the people, ask them for the

drinks they require and finally serve them with the requested drinks until all

people have been served.

For this benchmark, five fluents are considered in the domain:

robotAt, personAt, drinkInHand, requestedDrink and isServed. In

order to perform navigation tasks, the robot has an actuation ac-

60

Figure 6.2: An image showing an office floor environment where a couple of
mobile service robots are trying to serve beverages to the people.

61

tion goto. Along with this actuation action, we also consider

two sensing actions: check_requested_drink and check_if_person_at.

check_requested_drink asks the person about the type of drink a person

wants. As preconditions for this sensing action, we consider that the robot

should know the location of the person and the robot has to be near the

person to perform this sensing action. The outcome of this sensing action

is either none in which case the robot considers that the person has been

served or the person may ask for a specific drink,such as cola or water. In

the latter case, the robot needs to fetch the drink and fulfill the order re-

quested by the person to complete the goal. check_if_person_at is about

looking around in the vicinity of the robot’s location and identify if a spe-

cific person is present near or not. As a precondition for this sensing action,

the robot should be located at the checking location. The outcome of this

sensing action is either yes or no. Table 6.2 describes the office beverages

serving domain description. In order to perform an experimental evaluation

of this benchmark domain, we created 15 benchmark instances by varying

the initial setting for possible uncertainty about the environment.

6.3 Manipulation benchmark

In order to demonstrate a manipulation based benchmark domain, we con-

sider a safety critical benchmark domain in the form of a typical laboratory

environment as shown in Figure 6.3. The environment consists of a lab-

oratory table and some laboratory equipment, such as beakers, flasks, and

measuring cylinders. People come to the laboratory setup to perform some

experiments. There is a stationary bi-manual manipulator in the environ-

ment whose purpose is to clean the environment after the person has com-

62

Table 6.2: Office beverages serving benchmark domain description.
Fluents Description

robotAt represents the location of a robot
personAt represents the location of a person
drinkInHand represents the drink in hand
requestedDrink represents the requested drink
isServed represents if a person is served or not

Sensing actions Description

check_requested_drink checks the type of drink requested
check_if_person_at checks if a person is at the location

Actuation actions Description Feasibility checks

goto robot navigates to a location collision

pleted the experiments. A tray is present in the environment where the dirty

objects are kept for cleaning purposes and a basket where the broken objects

can be discarded. The goal of the robot is to place all the dirty objects in

the tray, all the broken objects in the basket, and all the remaining clean

and unbroken objects on the table to their respective shelves so that the

laboratory table environment is well organized.

For this benchmark, three fluents are considered in the domain: objectAt,

isClean, and isBroken. In order to perform manipulation tasks, the robot

can perform two actuation actions pick_up and place_on. We consider

three sensing actions: check_loc, check_is_clean, and check_is_broken.

check_loc allows the robot to check for the location of an object while

check_is_clean and check_is_broken allow the robot to check if an ob-

ject is clean or if it is broken respectively. Table 6.3 describes the office

beverages serving domain description. In order to perform an experimental

evaluation of this benchmark domain, we created 15 benchmark instances by

varying the initial setting for possible uncertainty about the environment.

63

Figure 6.3: An image showing a laboratory cleaning environment where a
service robot is cleaning the laboratory table.

64

Table 6.3: Laboratory table cleaning benchmark domain description.
Fluents Description

objectAt represents the location of an object
isClean represents if an object is clean or not
isBroken represents if an object is broken or not

Sensing actions Description

check_loc checks the location of an object
check_is_clean checks if an object is clean or not
check_is_broken checks if an object is broken or not

Actuation actions Description Feasibility checks

pick_up robot picks an object in hand collision, reachability, graspability
place_on robot places an object at a location collision, reachability

65

Chapter VII

7 Experimental Evaluation

In Section 7.1, we describe our experimental setup followed by experimen-

tal evaluation of our framework for the benchmark domains in Section 7.2.

Section 7.3 and Section 7.4 discusses the use of parallelism and plan re-use

respectively, to compute the plans faster in our framework. Section 7.5 dis-

cusses the importance of feasibility checks integration in the benchmark do-

mains. Section 7.6 and Section 7.7 compare HCPlan to plan execution moni-

toring and HCP-ASP, respectively. Section 7.8 compares the results between

HCPlan and HCPlan-Anytime for the kitchen table setting benchmark

domain. Section 7.9 and Section 7.10 provide a comparison among HCPlan,

HCPlan-Reactive and plan execution monitoring using the kitchen table

setting benchmark.

7.1 Experimentation setup

All experiments are conducted on a PC workstation running Ubuntu 14.04

on 16 2.4GHz Intel E5-2665 CPU cores with 64GB memory. The feasibility

checks are pre-computed and cached in a hash table for further use. Our

HCPlan uses CCalc along with MiniSAT 2.2.0 as SAT solver and Python

2.7.

66

7.2 HCPlan results for benchmark domains

We compute hybrid conditional plans for all the benchmark domains and

report tree parameters in Tables 7.1, 7.2, and 7.3 as follow: the maximum

length of a branch from the root to a leaf LBmax (i.e., the maximum length of

a hybrid sequential plan that can be executed by the robot) and the number

of actuation actions A and the number of sensing actions S in that branch,

the maximum branching factor BFmax (i.e., the maximum number of sensory

outcomes), the total number of nodes in the tree N (i.e., the size of the tree),

the total number of decision nodes Ds (i.e. sensing actions) and the total

number of leaves in the tree LF (i.e., the number of different hybrid sequential

plans from an initial state to a goal state). Along with these tree parameter,

we also compute the planning time T in seconds, parallel speedups PS16 for

the level of parallelism “16” and degree of incomplete knowledge about initial

state Degincomplete for each benchmark instance.

The results for all the domains are similar, therefore we further discuss

the results with the help of a kitchen table setting benchmark, since it is

more generic than the other two domains. We expect the size of computed

plans to increase as the degree of uncertainty in initial state increases and

this is what we observe in Table 7.1. The plans for all benchmark instances

are complete with respect to the contingencies that were considered during

the planning phase.

In order to explain the results, let us consider Instance 24. The number

of nodes in the generated plan is 4869 and it consists of 776 leaf nodes.

The branch with maximum length consists of 30 actions (23 actuation and

7 sensing) which mean that if the plan is executed by the robot, it has to

perform a maximum of 23 actuation actions to reach the goal under the

67

Table 7.1: HCPlan results for the kitchen table setting benchmark with feasi-
bility checks integrated.
Inst. %Degincomplete LBmax(A+ S) BFmax N DS LF T [sec] PS16

1 3.45 14 (13+1) 3 32 1 3 12.56 1.37
2 6.9 14 (13+1) 3 36 2 4 12.45 1.58
3 10.34 14 (13+1) 3 36 2 4 15.51 1.45
4 10.34 14 (13+1) 5 50 2 7 11.34 2.26
5 10.34 17 (15+2) 5 84 3 8 35.75 1.71
6 13.79 19 (16+3) 5 109 6 11 29.82 1.91
7 17.24 18 (16+2) 3 64 5 7 22.67 1.64
8 20.69 16 (15+1) 3 45 3 5 34.2 1.21
9 20.69 21 (17+4) 5 309 25 42 24.95 5.43
10 24.14 19 (16+3) 5 100 11 16 37.7 1.84
11 24.14 21 (17+4) 5 177 13 24 26.29 3.28
12 24.14 20 (18+2) 5 254 12 26 77.07 2.37
13 27.59 22 (19+3) 5 119 11 16 35.04 2.19
14 31.03 23 (19+4) 5 123 13 18 72.78 1.54
15 34.48 23 (18+5) 5 191 22 27 79.32 1.84
16 34.48 23 (20+3) 5 282 17 34 152.24 1.67
17 37.93 21 (18+3) 5 309 24 50 40.36 4.15
18 37.93 21 (18+3) 5 530 50 76 31.47 8.12
19 37.93 28 (23+5) 5 863 96 137 196 2.9
20 41.38 23 (20+3) 5 1325 135 206 129.89 5.55
21 41.38 27 (21+6) 5 1281 133 201 238.57 3.37
22 44.83 26 (19+7) 5 1928 162 320 89.02 10.25
23 44.83 28 (20+8) 5 2138 222 308 265.71 5.15
24 48.28 30 (23+7) 5 4869 558 776 269.14 9.11
25 48.28 31 (23+8) 5 7392 719 1129 362.51 10.29

68

Table 7.2: HCPlan results for the office beverages serving benchmark with
feasibility checks integrated.
Inst. %Degincomplete LBmax(A+ S) BFmax N DS LF T [sec]

1 10 12 (9+3) 2 14 3 3 117.84
2 10 11 (10+1) 6 36 1 6 21.41
3 20 16 (11+5) 6 105 8 24 109.88
4 20 25 (18+7) 6 152 37 36 240.87
5 20 12 (10+2) 6 231 7 36 49.64
6 20 19 (12+7) 2 46 14 10 491.28
7 30 18 (14+4) 6 604 29 108 217.22
8 30 19 (14+5) 6 578 103 108 482.05
9 30 22 (14+8) 6 372 102 72 546.5
10 40 36 (24+12) 6 4267 789 900 2525.97
11 40 25 (17+8) 6 1784 313 324 1392.57
12 50 37 (22+15) 6 9999 2809 2160 9276.31
13 50 34 (19+15) 6 10980 2929 2592 9925.3
14 50 34 (20+14) 6 8730 2130 2268 4760.07
15 50 29 (18+11) 6 15539 1052 3240 3809.43

Table 7.3: HCPlan results for the laboratory cleaning benchmark with feasibility
checks integrated.
Inst. %Degincomplete LBmax(A+ S) BFmax N DS LF T [sec]

1 7.41 11 (9+2) 2 34 3 4 7.01
2 7.41 11 (9+2) 5 83 6 10 6.06
3 7.41 12 (10+2) 5 77 6 10 7.39
4 11.11 14 (11+3) 5 75 7 20 7.58
5 11.11 15 (12+3) 4 147 13 16 28.97
6 14.81 14 (10+4) 4 284 25 64 45.06
7 14.81 15 (11+4) 4 277 27 32 62.29
8 14.81 15 (11+4) 5 923 63 250 31.57
9 18.52 14 (9+5) 4 482 95 128 47.73
10 18.52 17 (12+5) 4 1715 197 256 353.4
11 22.22 15 (9+6) 4 1417 193 256 117.54
12 22.22 17 (11+6) 5 1716 153 320 108.79
13 22.22 19 (13+6) 5 3210 265 640 286.07
14 25.93 19 (12+7) 5 6144 634 1280 767.07
15 29.63 20 (12+8) 4 4128 673 1024 1052.74

69

incomplete initial state. It took about 269.14 seconds to generate the plan.

This means that it computes 776 possible ways to reach the goal state with

each possible way being computed in 0.35 seconds.

The planning time is expected to increase as the degree of uncertainty in

the initial state increases since the size of the generated plan will increase.

This is what we generally observe, but in instances where the degree of

uncertainty in the initial state is the same, it does not take similar planning

time to generate the plans. For example, in Instances 22 and Instance 23

the planning time is 89.02 seconds and 265.71 seconds respectively even with

a similar number of leaves. This is due to the different number of parallel

speedups. Even though the level of parallelism is 16 for both instances, the

parallel speedups are different which results in different planning times.

7.3 Parallel computation of branches

In order to understand the effect of parallel computation of branches for our

hybrid conditional planning framework, we repeated the generation of plans

using the benchmark instances for our kitchen table setting domain with

different values for the level of parallelism. In Table 7.4, we report sequential

planning time Tseq (planning time using a single core) in seconds, the parallel

speedups PSx, where x level of parallelism along with the number of leaves

LF for each benchmark instance.

We observe that an increase in the level of parallelism results in a faster

generation of the plans. For example, in Instance 25 more than an hour is

needed to generate the plan using a single core compared to 362.51 seconds

it takes when the level of parallelism is set to 16, which shows a parallel

speedup of 10.29. We also observe that parallel speedup is more prominent

70

Table 7.4: Effect of parallel computation of branches for HCPlan for kitchen
table setting benchmark.

Inst. LF Tseq [sec] PS2 PS4 PS8 PS16

1 3 17.25 1.31 1.3 1.34 1.37
2 4 19.64 1.58 1.61 1.51 1.58
3 4 22.56 1.44 1.45 1.4 1.45
4 7 25.65 1.72 2.3 2.19 2.26
5 8 61.01 1.5 1.69 1.71 1.71
6 11 56.98 1.39 1.71 1.9 1.91
7 7 37.1 1.62 1.59 1.61 1.64
8 5 41.4 1.22 1.2 1.21 1.21
9 42 135.44 1.76 3.22 4.89 5.43
10 16 69.31 1.55 1.72 1.84 1.84
11 24 86.3 1.75 2.54 3.19 3.28
12 26 182.76 1.67 2.16 2.34 2.37
13 16 76.58 1.86 2.07 2.16 2.19
14 18 111.86 1.43 1.58 1.55 1.54
15 27 145.7 1.53 1.77 1.82 1.84
16 34 254.39 1.36 1.59 1.62 1.67
17 50 167.35 1.84 2.9 3.86 4.15
18 76 255.51 1.88 3.78 6.16 8.12
19 137 569.33 1.58 2.19 2.66 2.9
20 206 721.03 1.85 3.1 4.65 5.55
21 201 803.15 1.67 2.51 3.06 3.37
22 320 912.04 1.95 3.95 6.84 10.25
23 308 1367.63 1.81 3 4.2 5.15
24 776 2451.39 1.91 3.78 6.52 9.11
25 1129 3730.72 2.01 4.08 7.09 10.29

71

in benchmark instances where plans generated have more leaves, as more

calls to planner have to be made.

In general, generation of hybrid conditional plans is computationally ex-

pensive, our planner utilizes the parallel computation of branches to reduce

planning time. Our hybrid conditional planner is scalable and harvests the

computation power of the running machine to effectively reduce the genera-

tion time of plans.

7.4 Re-use of saved branches

In Table 7.5, we evaluate the effectiveness of re-usage of the computed

branches for our hybrid conditional planning framework with respect to com-

putation and time for the kitchen table setting benchmark. We report the

number of query calls to the planner with and without re-usage of the com-

puted branches, Qorig and Qreusage respectively, along with the percentage of

the query call reduced using re-use of the computed branches %Qreduced. We

also report the planning time in seconds with and without for each bench-

mark instance, Torig and Torig, respectively. Finally, the percentage of plan-

ning time improved %Timproved by the re-use of computed branches is also

reported.

For the initial benchmark instances, the number of saved branches is small

but as the instances increase, more branches are computed and saved, there-

fore we observe that the effectiveness of re-usage of the computed branches

becomes more significant. For example, for Instance 24, re-use of the com-

puted branches reduces the percentage of query calls to planner by 22.29%

by taking 19.14% of less planning time. Our framework improves on compu-

tation time of plans by reducing the number of query calls to the planner.

72

Table 7.5: Statistics for re-use of the computed branches in the kitchen table
setting benchmark.

Inst. Qorig Qreusage %Qreduced Torig [sec] Treusage [sec] %Timproved

01 3 3 0.00 12.56 12.56 0.00
02 4 4 0.00 12.45 12.45 0.00
03 4 4 0.00 15.51 15.51 0.00
04 7 7 0.00 11.34 11.34 0.00
05 8 7 12.50 35.75 34.74 2.83
06 11 10 9.09 29.82 29.3 1.74
07 7 7 0.00 22.67 22.67 0.00
08 5 5 0.00 34.2 34.2 0.00
09 42 38 9.52 24.95 24.52 1.72
10 16 14 12.50 37.7 35.97 4.59
11 24 22 8.33 26.29 26.29 0.00
12 26 23 11.54 77.07 76.04 1.34
13 16 14 12.50 35.04 33.83 3.45
14 18 15 16.67 72.78 71.84 1.29
15 27 23 14.81 79.32 77.85 1.85
16 34 28 17.65 152.24 150.23 1.32
17 50 41 18.00 40.36 37.24 7.73
18 76 64 15.79 31.47 28.02 10.96
19 137 126 8.03 196 191.79 2.15
20 206 187 9.22 129.89 120.76 7.03
21 201 166 17.41 238.57 227.45 4.66
22 320 261 18.44 89.02 80.06 10.07
23 308 235 23.70 265.71 252.29 5.05
24 776 603 22.29 269.14 217.62 19.14
25 1129 851 24.62 362.51 310.37 14.38

73

7.5 Integration of feasibility checks

Feasibility checks are integrated into task planning to improve the feasibility

of computed plans during the execution phase. Based on this assumption, we

integrated feasibility checks in our hybrid conditional planning framework.

Computation of feasibility checks is a computationally expensive task and

their computation needs to be justified in the overall framework.

We evaluate the effectiveness of feasibility checks integration for the hy-

brid conditional planning framework using the kitchen table setting bench-

mark domain. We compute plans with and without feasibility checks integra-

tion for first 15 instances of the benchmark domain. The computed plans are

understandably different where one approach utilizes feasibility checks inte-

gration during the planning phase to make the plans more feasible during

the execution phase, while the other does not.

We want to evaluate the successful execution of plans under all contin-

gencies. For every instance, we separate all possible branches, where each

branch shows a unique possible way of setting up the kitchen table under

different initial settings. Each branch is then simulated in OpenRAVE [77]

dynamic simulation environment by checking for executability and continuity

of all the actions. We retry to re-instantiate geometric ramifications for each

failed action up to 10 maximum times. If however, geometric ramifications

fail after these many attempts, then that branch is labeled as infeasible for

execution. It is important to note that we use non-deterministic sampling

based probabilistically complete motion planners, therefore failure to find a

motion plan does not necessarily imply that the branch is infeasible.

We perform the simulation process for both types of plans i.e. with

and without feasibility checks integration. Once all the branches have been

74

Figure 7.1: Plot showing the percentage of successful execution of branches
without feasibility checks integration for the kitchen table setting benchmark.

simulated, the percentage success of plan execution %S is computed for plans,

by comparing the feasible branches with respect to all the branches in the

tree.

All the branches of plans computed with feasibility checks integration for

the kitchen table setting benchmark have been evaluated to be successful;

however, this was not the case for the plans computed without them. Fig-

ure 7.1 shows the percentage of successful execution of the branches for the

kitchen table setting benchmark instances without feasibility checks integra-

tion. We see that the integration of feasibility checks for service robotics

domains, such as the kitchen table setting benchmark are really important

since the success of execution of plans without them is significantly lower (for

example, in Instances 6 and 13 the success rate is slightly higher than 60%).

As mentioned before, pre-computation of feasibility checks is computa-

tionally expensive; however, the results in Figure 7.1 justifies their use for

75

service robotic domains as it significantly improves the feasibility of com-

puted plans for real-life executions. It is important to point out here, while

the integration of feasibility checks improves the feasibility of execution of

the plans, in general, successful plan execution cannot be guaranteed. This

may be due to the incomplete nature of the feasibility check algorithms.

Therefore, to ensure successful plan execution, a plan execution monitoring

module is still useful.

7.6 Comparison between plan execution monitoring

and HCPlan

Hybrid conditional planning is performed in an offline manner and it plans

for contingencies during the planning phase. An alternative approach to

hybrid conditional planning is plan execution monitoring, where some as-

sumptions are made for these contingencies and a classical planner along

with an execution monitor is utilized to compute as well as execute the plan.

The basic plan execution monitoring works as follow: (1) Make assumptions

about uncertainties in initial state, (2) computes a hybrid classical plan us-

ing a classical planner, that consists of sequence of actuation actions to reach

goal for modified initial state, (3) execute the plan and monitor the observ-

able fluents for discrepancies, (4) re-plan if a discrepancy is detected between

the expected and the observed values of these fluents and (5) execute and

monitor until the goal is reached or failure to reach the goal occurs.

Since classical planners require complete information about the ini-

tial state, in our experiments evaluation, we deterministically assign le-

gitimate values (i.e., outcomes of relevant sensing actions) to the fluents

that are not known (due to incomplete knowledge about initial state) non-

76

deterministically. Due to this non-deterministic assignment, each instance is

solved 5 times, and the averages along with maximum values are reported

in results. A parameter that effects plan execution monitoring framework is,

how often the observable fluents are sensed. The more frequent sensing is

performed typically the better it is, but real-world scenarios may have some

limitations about how often sensing is feasible. We report the results where

sensing is performed at intervals of every 3 and 5 time steps. Tables 7.6 and

7.7 present the comparison of plans computed for kitchen table setting bench-

mark using plan execution monitoring with sensing at every 3 and 5 steps,

respectively along with hybrid conditional plans. For plan execution moni-

toring: the total plan length to reach the goal L, the number of re-planning

attempts R, and the planning time T (offline and online) in seconds are re-

ported. As the experiment is performed 5 times, the maximum (.)max and the

average (.)av values are listed in the tables. For hybrid conditional planning

framework: the maximum length of a branch from the root to a leaf LBmax

along with the number of actuation A and sensing S actions in that branch,

the total number of leaves in the tree LF and the planning time (offline) in

seconds are reported. It is important to note that A in LBmax represents

the upper bound for the number of actuation actions that will be performed

while execution of hybrid conditional plans.

Hybrid conditional planning framework spends more time on planning

compared to plan execution monitoring. This is understandable since it

computes plans for all possible contingencies. For example, in Table 7.7 for

Instance 24 hybrid conditional planning takes 269.14 seconds to compute the

whole conditional plan compared on average 90.59 seconds (189.01 seconds in

the worst case) for plan execution monitoring with sensing at every 5 steps.

77

Table 7.6: Comparison between the computed plans using plan execution moni-
toring with sensing after every ‘3’ steps and hybrid conditional planning for the
kitchen table setting benchmark.

Plan Execution Monitoring HCPlan
Inst. Lmax(Lav) Rmax(Rav) Tmax(Tavg) [sec] LBmax(A+ S) LF T [sec]

01 16 (14.8) 1 (0.6) 10.29 (8.8) 14 (13+1) 3 12.56
02 19 (17.2) 2 (1.4) 15.44 (13.49) 14 (13+1) 4 12.45
03 22 (18.4) 3 (1.8) 25.35 (16.03) 14 (13+1) 4 15.51
04 22 (20.2) 3 (2.4) 27.72 (19.56) 14 (13+1) 7 11.34
05 24 (19.8) 3 (1.6) 54.45 (30.81) 17 (15+2) 8 35.75
06 23 (21.8) 3 (2.6) 35.93 (27.32) 19 (16+3) 11 29.82
07 30 (25.4) 5 (3.6) 63.39 (43.87) 18 (16+2) 7 22.67
08 30 (26.8) 5 (4) 83.97 (64.54) 16 (15+1) 5 34.2
09 26 (22.8) 4 (3.2) 34.36 (27.97) 21 (17+4) 42 24.95
10 30 (28.6) 5 (4.6) 74.87 (50.09) 19 (16+3) 16 37.7
11 32 (29.6) 6 (5.2) 57.85 (37.19) 21 (17+4) 24 26.29
12 30 (27) 5 (4) 77.36 (52.73) 20 (18+2) 26 77.07
13 32 (29.6) 6 (5.2) 90.43 (53.87) 22 (19+3) 16 35.04
14 36 (30.6) 7 (5.2) 75.04 (54.39) 23 (19+4) 18 72.78
15 38 (32) 8 (6) 90.11 (52.16) 23 (18+5) 27 79.32
16 36 (32.4) 7 (5.8) 277.76 (142.21) 23 (20+3) 34 152.24
17 40 (34) 9 (7) 80.12 (48.61) 21 (18+3) 50 40.36
18 40 (37.6) 9 (8.2) 73.52 (58.56) 21 (18+3) 76 31.47
19 38 (34) 8 (6.4) 149.77 (94.31) 28 (23+5) 137 196
20 39 (37.6) 8 (7.6) 163.27 (86.32) 23 (20+3) 206 129.89
21 41 (37) 9 (7.4) 140.69 (103.5) 27 (21+6) 201 238.57
22 43 (35.8) 10 (7.6) 87.63 (68.95) 26 (19+7) 320 89.02
23 44 (41.8) 10 (9.2) 177.57 (94.23) 28 (20+8) 308 265.71
24 48 (39.4) 11 (8.2) 113.31 (74.68) 30 (23+7) 776 269.14
25 51 (43.6) 12 (9.8) 150.24 (103.68) 31 (23+8) 1129 362.51

78

Table 7.7: Comparison between the computed plans using plan execution moni-
toring with sensing after every ‘5’ steps and hybrid conditional planning for the
kitchen table setting benchmark.

Plan Execution Monitoring HCPlan
Inst. Lmax(Lav) Rmax(Rav) Tmax(Tavg) [sec] LBmax(A+ S) LF T [sec]

01 18 (15) 1 (0.4) 10.41 (8.26) 14 (13+1) 3 12.56
02 23 (17) 2 (0.8) 14.16 (10.19) 14 (13+1) 4 12.45
03 28 (20) 3 (1.4) 27.43 (15.26) 14 (13+1) 4 15.51
04 23 (21) 2 (1.6) 21.41 (17.53) 14 (13+1) 7 11.34
05 25 (23) 2 (1.6) 48.38 (33.66) 17 (15+2) 8 35.75
06 34 (28) 4 (2.8) 46.48 (30.35) 19 (16+3) 11 29.82
07 40 (33) 5 (3.6) 62.34 (37.87) 18 (16+2) 7 22.67
08 39 (33.8) 5 (3.8) 83.65 (70.57) 16 (15+1) 5 34.2
09 33 (31) 4 (3.6) 31.88 (25.37) 21 (17+4) 42 24.95
10 45 (39) 6 (4.8) 94.97 (64.56) 19 (16+3) 16 37.7
11 39 (34) 5 (3.8) 89.75 (58.05) 21 (17+4) 24 26.29
12 50 (38.8) 5 (4.2) 240.66 (112.08) 20 (18+2) 26 77.07
13 54 (40) 8 (5.2) 74.19 (42.05) 22 (19+3) 16 35.04
14 54 (44.8) 8 (6) 92.96 (67.19) 23 (19+4) 18 72.78
15 54 (43) 8 (5.8) 69.98 (48.77) 23 (18+5) 27 79.32
16 55 (43.8) 7 (5.6) 74.44 (55.83) 23 (20+3) 34 152.24
17 58 (50) 8 (7) 67.71 (56.25) 21 (18+3) 50 40.36
18 58 (44) 9 (6.2) 83.4 (52.74) 21 (18+3) 76 31.47
19 60 (52) 8 (7) 163.35 (84.92) 28 (23+5) 137 196
20 65 (50) 9 (6.8) 174.09 (109.24) 23 (20+3) 206 129.89
21 65 (55) 9 (7.8) 137.63 (99.83) 27 (21+6) 201 238.57
22 64 (55.2) 10 (8.4) 80.29 (60.95) 26 (19+7) 320 89.02
23 60 (54.2) 9 (7.8) 123.07 (88.25) 28 (20+8) 308 265.71
24 80 (68.8) 12 (10.6) 189.01 (90.59) 30 (23+7) 776 269.14
25 59 (56) 9 (8.4) 234.59 (127.63) 31 (23+8) 1129 362.51

79

However, it is important to note that, hybrid conditional planning frame-

work generates a tree with 776 leaves; therefore, it just takes 0.35 seconds

to generate a hybrid sequential plan (which represents one possible way to

reach the goal from an initial state with incomplete knowledge). Also, hy-

brid conditional plans are computed offline and do not require re-planning

whereas, plan execution monitoring had to pause the execution and re-plan

on average 10.6 times (12 times in the worst case).

We also note that the total number of actuation actions to be executed are

typically more for plan execution monitoring compared to hybrid conditional

plans. For example, in Instance 24 if robot utilizes plan execution monitoring

framework than it needs to execute on average 68.8 (and a maximum of 80)

robotic actuation actions, whereas with hybrid conditional planning it just

needs to perform a maximum of 23 robotic actuation actions to reach goal

under any contingency. The number of actuation actions is critical especially

in robotics domains where execution of physical actions takes precious time

and resources. It is important to mention here that, A represents the upper

bound for the number of actuation actions for an instance, therefore typically

the number of actuation actions will be lower than this value. Furthermore,

hybrid conditional planning framework also provides the exact location for

sensing to be performed during the execution.

80

7.7 Comparison between HCP-ASP and HCPlan

In order to compare our planner with another hybrid conditional planner

HCP-ASP, we choose to use the kitchen table setting benchmark domain.

The input language of HCPlan is C+ [64], while it is answer set program-

ming (ASP) [62] for HCP-ASP. Therefore, in order to compute the plans

for kitchen table setting benchmark using HCP-ASP, the translation of the

benchmark domain from C+ into ASP is performed using a formal transfor-

mation. The translation soundness is guaranteed by the module theorem [85].

We computed the plans with HCPlan and HCP-ASP for all the 25

benchmark instances of the kitchen table setting domain. In Table 7.8, we

report the minimum length of hybrid sequential plan Lmin, the maximum

length of hybrid sequential plan Lmax, the average branching factor BFavg,

the number of nodes in the tree N , the number of sensing nodes in the tree

DS, the number of leaves of the tree L and the computation time in seconds

T for all the plans computed trees by both planners.

HCP-ASP and HCPlan are based on similar algorithms: they start by

computing a shortest branch (i.e., a sequence of actuation actions and sensing

actions) to reach a goal state, and then traverse this branch to identify the

sensing actions and to compute branches for alternate outcomes of all sensing

actions; in this way, they compute the complete hybrid conditional plan.

While the branches computed initially are optimal in plan length, in general

they may be different. Furthermore, even though all plans computed from

sensing nodes to goal states have minimum plan lengths, the plans from the

root node to a goal state are not necessarily the shortest. Optimal plan

length for each branch may be computed if all branches in the plans are

computed from the root node to the goal states; however, this process is

81

Table 7.8: Comparison between HCP-ASP and HCPlan using the plans gen-
erated for the kitchen table setting benchmark domain.

HCP-ASP HCPlan
Inst. Lmin Lmax BFavg N DS L T [sec] Lmin Lmax BFavg N DS L T [sec]

1 9 14 3 32 1 3 10.56 9 14 3 32 1 3 12.56
2 10 14 2.5 37 2 4 14.21 10 14 2.5 36 2 4 12.45
3 10 14 2.5 37 2 4 18.81 10 14 2.5 36 2 4 15.51
4 8 14 4 54 2 7 12.52 8 14 4 50 2 7 11.34
5 10 16 2.5 40 2 4 71.27 10 17 3.33 84 3 8 35.75
6 11 18 2.2 59 5 7 38.79 11 19 2.67 109 6 11 29.82
7 11 18 2.2 56 5 7 51.47 11 18 2.2 64 5 7 22.67
8 11 20 2.17 63 6 8 118.05 11 16 2.33 45 3 5 34.2
9 11 23 2.48 336 27 41 67.49 11 21 2.64 309 25 42 24.95
10 11 16 2.33 138 12 17 81.95 11 19 2.36 100 11 16 37.7
11 11 21 3.86 118 7 21 25.11 11 21 2.77 177 13 24 26.29
12 11 21 2.39 234 18 26 735.26 11 20 3.08 254 12 26 77.07
13 11 16 2.5 83 8 13 106.69 11 22 2.36 119 11 16 35.04
14 11 20 2.36 122 11 16 252.42 11 23 2.31 123 13 18 72.78
15 11 24 2.29 199 24 32 170.16 11 23 2.18 191 22 27 79.32
16 11 22 2.41 159 17 25 589.47 11 23 2.94 282 17 34 152.24
17 8 22 2.33 100 12 17 133.74 8 21 3.04 309 24 50 40.36
18 9 21 3.33 197 12 29 27.58 9 21 2.5 530 50 76 31.47
19 9 25 2.55 878 84 131 889.16 9 28 2.42 863 96 137 196
20 12 23 2.51 1603 174 263 368.18 12 23 2.52 1325 135 206 129.89
21 9 24 2.65 864 84 140 800.26 9 27 2.5 1281 133 201 238.57
22 8 28 2.69 2945 262 444 267.96 8 26 2.97 1928 162 320 89.02
23 9 31 2.41 1541 163 231 816.17 9 28 2.38 2138 222 308 265.71
24 8 32 2.47 3900 435 641 622.96 8 30 2.39 4869 558 776 269.14
25 12 33 2.56 7366 764 1192 142.05 12 31 2.57 7392 719 1129 362.51

82

computationally expensive. Moreover, combining these branches into a single

hybrid conditional plan will be a difficult task.

Results in Table 7.8 show that the minimum length of branch Lmin for

both planners is similar. However, while the first computed branch is guar-

anteed to have the same plan length, the plans computed by HCP-ASP and

HCPlan, in general, are not the same (i.e the plans may have different sens-

ing and actuation actions, and the order of actions may differ). Similarly,

the future branches may differ and this results in trees with different sizes

and lengths. Although the plans computed by HCPlan and HCP-ASP may

be different, they consider all possible contingencies starting from the same

state and the robot can follow any one of the branches to reach a goal state.

Even though the resulting trees are similar, the computation times dif-

fer for HCP-ASP and HCPlan. Indeed even though both planners are

based on similar algorithms for hybrid conditional planning, their input lan-

guages and solvers differ. In particular, HCP-ASP relies on ASP solvers

(GrinGo [86] for grounding and Clasp [87] for solving) while HCPlan

utilizes CCalc [59] (SWI-Prolog [88] for grounding and SAT solvers such as

MiniSAT [89] for solving). Along these lines, our experimental evaluations

indicate that CCalc with MiniSAT is more efficient in computing plans for

service robotic domains tested.

83

7.8 Comparison between HCPlan and HCPlan-

Anytime

HCPlan is a compilation-based hybrid conditional planner that utilized par-

allel computation of branches to computes plans that are complete for the

contingencies considered during the planning phase. HCPlan-Anytime

utilizes a similar framework and extends it to compute partial plans that con-

tain most probable contingencies. HCPlan-Anytime trades off complete-

ness for better computation time by neglecting generation of least probable

branches. This trade-off between planning time and completeness of plans

can be justified in real-world robotics applications where plans are needed

to be computed and executed in real-time. Moreover, HCPlan-Anytime

is an anytime planner, that is, it can be stopped at any moment during the

planning phase and will still provide a valid partial hybrid conditional plan

that includes all the most probable branches that have been computed until

that moment. Since HCPlan-Anytime computes partial plans, we expect

the tree sizes of the plans computed with HCPlan-Anytime to be smaller

compared to ones computed with HCPlan.

Tables 7.9 and 7.10 show the comparison between complete plans com-

puted with HCPlan versus 70% and 95% of partial plans computed with

HCPlan-Anytime for the kitchen table setting benchmark instances. We

report the average branching factor BFavg (i.e., the average number of sen-

sory outcomes), the total number N of nodes in the tree (i.e., the size of the

tree), the total number LF of leaves in the tree (i.e., the number of different

hybrid sequential plans from an initial state to a goal state) and the plan-

ning time spend on tree, T in seconds. We also report %Tx, that represents

the percentage of planning time taken in the computation of partial plan

84

with the x amount by HCPlan-Anytime compared to the planning time

of complete plan computed with HCPlan.

The results comply with our expectations. As HCPlan-Anytime com-

putes partial plans by not computing least probable branches, the average

branching factor is lower than complete plans computed with HCPlan. This

results in lesser number of leaves and smaller size of the tree. Moreover, the

planning time reduces as well. For example, in Table 7.9, Instance 25 BFavg

for complete plan computed with HCPlan is 2.57 compared to 1.82 for

70% partial plan computed with HCPlan-Anytime. The planning time

for computation of plans falls from 362.51 seconds to 188.66 seconds which

represents a 47.96% decrease in planning time to compute the plan. Fig-

ure 7.2 shows a partial hybrid conditional plan for an instance of kitchen

table setting benchmark computed by HCPlan-Anytime where x is 70.

85

Table 7.9: Comparison between the complete plans computed with HCPlan
and 70% of the partial plans computed with HCPlan-Anytime for the kitchen
table setting benchmark.

HCPlan HCPlan-Anytime
Scen BFavg N LF T [sec] BFavg N LF T [sec] %T70

01 3 32 3 12.56 3 32 3 12.81 0
02 2.5 36 4 12.45 2 33 3 12.28 1.37
03 2.5 36 4 15.51 2 33 3 15.41 0.64
04 4 50 7 11.34 2 30 3 10.87 4.14
05 3.33 84 8 35.75 2 41 4 30.23 15.44
06 2.67 109 11 29.82 1.67 57 5 24.81 16.8
07 2.2 64 7 22.67 1.6 44 4 18.44 18.66
08 2.33 45 5 34.2 2 41 4 31.61 7.57
09 2.64 309 42 24.95 1.86 157 20 21.29 14.67
10 2.36 100 16 37.7 1.82 75 10 35.28 6.42
11 2.77 177 24 26.29 2.18 110 14 22.93 12.78
12 3.08 254 26 77.07 2.3 150 14 65.8 14.62
13 2.36 119 16 35.04 1.89 89 9 32.74 6.56
14 2.31 123 18 72.78 1.75 77 10 69.21 4.91
15 2.18 191 27 79.32 1.74 130 15 65.98 16.82
16 2.94 282 34 152.24 2.3 131 14 143.36 5.83
17 3.04 309 50 40.36 1.76 126 17 33.97 15.83
18 2.5 530 76 31.47 1.78 150 15 20.75 34.06
19 2.42 863 137 196 1.71 403 56 187.04 4.57
20 2.52 1325 206 129.89 1.79 413 57 111.77 13.95
21 2.5 1281 201 238.57 1.75 565 75 218.12 8.57
22 2.97 1928 320 89.02 2.24 1076 171 75.1 15.64
23 2.38 2138 308 265.71 1.82 942 116 228.92 13.85
24 2.39 4869 776 269.14 1.69 1510 205 160.33 40.43
25 2.57 7392 1129 362.51 1.82 2333 292 188.66 47.96

86

Table 7.10: Comparison between the complete plans computed with HCPlan
and 95% of the partial plans computed with HCPlan-Anytime for the kitchen
table setting benchmark.

HCPlan HCPlan-Anytime
Scen BFavg N LF T [sec] BFavg N LF T [sec] %T95

01 3 32 3 12.56 3 32 3 12.41 1.19
02 2.5 36 4 12.45 2.5 36 4 12.79 0
03 2.5 36 4 15.51 2.5 36 4 15.55 0
04 4 50 7 11.34 3 40 5 11 3
05 3.33 84 8 35.75 3 74 7 35.5 0.7
06 2.67 109 11 29.82 2.5 99 10 29.85 0
07 2.2 64 7 22.67 2.2 64 7 22.55 0.53
08 2.33 45 5 34.2 2.33 45 5 33.69 1.49
09 2.64 309 42 24.95 2.52 289 39 24.64 1.24
10 2.36 100 16 37.7 2.36 100 16 38.21 0
11 2.77 177 24 26.29 2.69 173 23 25.86 1.64
12 3.08 254 26 77.07 2.83 226 23 72.95 5.35
13 2.36 119 16 35.04 2.27 115 15 35.31 0
14 2.31 123 18 72.78 2.23 119 17 71.95 1.14
15 2.18 191 27 79.32 2.05 177 24 78.33 1.25
16 2.94 282 34 152.24 2.62 191 22 147.33 3.23
17 3.04 309 50 40.36 2.65 249 39 37.7 6.59
18 2.5 530 76 31.47 2 323 39 28.27 10.17
19 2.42 863 137 196 2.18 700 108 194.69 0.67
20 2.52 1325 206 129.89 1.95 647 91 111.26 14.34
21 2.5 1281 201 238.57 2.29 1086 162 229.13 3.96
22 2.97 1928 320 89.02 2.79 1727 282 84.37 5.22
23 2.38 2138 308 265.71 2.06 1572 208 242.49 8.74
24 2.39 4869 776 269.14 2.19 3581 553 246.13 8.55
25 2.57 7392 1129 362.51 2.1 4665 648 263.79 27.23

87

F
ig
ur
e
7.
2:

A
n
an

yt
im

e
hy

br
id

co
nd

it
io
na

l
pa

rt
ia
l
pl
an

co
m
pu

te
d
fo
r
an

in
st
an

ce
of

th
e
ki
tc
he
n
ta
bl
e
se
tt
in
g

be
nc
hm

ar
k
w
he
re

x
is

‘7
0’
.

88

7.9 Comparison between HCPlan and HCPlan-

Reactive

HCPlan-Reactive extends hybrid conditional planning framework and

utilizes guidance from online sensing to compute partial plans by expanding

portions that are more relevant during the execution phase. Since HCPlan-

Reactive expands a relevant portion of tree guided by online sensing instead

of blind expansion as done in offline plans; we call it a reactive planner. Fur-

thermore, since HCPlan-Reactive computes partial plans as compared to

HCPlan, it results in a significantly smaller size for plans.

Tables 7.11 and 7.12 show the comparison between complete plans com-

puted with HCPlan and partial plans computed with HCPlan-Reactive

for kitchen table setting benchmark instances with a reactive depth thresh-

old Dth of ‘3’ and ‘5’, respectively. We report the computed tree parameters:

the total number N of nodes in the tree (i.e., the size of the tree) and the

total number LF of leaves in the tree (i.e., the number of different hybrid

sequential plans from an initial state to a goal state). We also report the

planning time spend on the tree, T in seconds.

We observe smaller trees in case of HCPlan-Reactive compared to

HCPlan which is understandable as former computes partial plans com-

pared to the complete plans in case of HCPlan. For example, in Table 7.12,

in Instance 25 HCPlan computes a tree with 7392 nodes with 1129 leaves in

362.51 seconds whereas, HCPlan-Reactive takes just 80 seconds to solve

the same instance and computes 92 leaves instead. This shows that only

8.15% of the complete plan was computed and this partial plan computa-

tion reduces the planning time by more than 450%. HCPlan-Reactive

takes some online planning time to reduce the load on offline computation

89

Table 7.11: Comparison between the complete plans computed with HCPlan
and the partial plans computed using HCPlan-Reactive with reactive depth
threshold Dth of ‘3’, for the kitchen table setting benchmark.

HCPlan HCPlan-Reactive
Scen N LF T [sec] N LF T [sec]

1 32 3 12.56 32 3 12.79
2 36 4 12.45 33 3 12.48
3 36 4 15.51 33 3 14.94
4 50 7 11.34 30 3 11.39
5 84 8 35.75 41 4 32.74
6 109 11 29.82 51 5 24.04
7 64 7 22.67 35 3 18.82
8 45 5 34.2 41 4 34.24
9 309 42 24.95 171 20 19.51
10 100 16 37.7 42 4 35.58
11 177 24 26.29 85 11 25.01
12 254 26 77.07 132 11 70.22
13 119 16 35.04 75 7 30.44
14 123 18 72.78 51 5 68.33
15 191 27 79.32 74 8 64.31
16 282 34 152.24 150 15 145.87
17 309 50 40.36 76 10 33.2
18 530 76 31.47 143 17 21.71
19 863 137 196 199 26 173.78
20 1325 206 129.89 117 15 87.14
21 1281 201 238.57 142 13 187.16
22 1928 320 89.02 119 18 25.27
23 2138 308 265.71 163 19 162.19
24 4869 776 269.14 165 19 96.6
25 7392 1129 362.51 489 51 93.77

90

Table 7.12: Comparison between the complete plans computed with HCPlan
and the partial plans computed using HCPlan-Reactive with reactive depth
threshold Dth of ‘5’, for the kitchen table setting benchmark.

HCPlan HCPlan-Reactive
Scen N LF T [sec] N LF T [sec]

1 32 3 12.56 32 3 12.78
2 36 4 12.45 33 3 12.75
3 36 4 15.51 33 3 15.02
4 50 7 11.34 30 3 11.24
5 84 8 35.75 41 4 32.57
6 109 11 29.82 57 5 24.21
7 64 7 22.67 44 4 18.23
8 45 5 34.2 41 4 33.39
9 309 42 24.95 114 13 18.57
10 100 16 37.7 42 4 35.04
11 177 24 26.29 112 14 24.77
12 254 26 77.07 219 19 77.59
13 119 16 35.04 85 8 30.77
14 123 18 72.78 68 7 75.22
15 191 27 79.32 97 10 68.98
16 282 34 152.24 127 12 144.56
17 309 50 40.36 94 12 38.51
18 530 76 31.47 249 30 22.08
19 863 137 196 318 41 185.98
20 1325 206 129.89 470 49 101.03
21 1281 201 238.57 264 26 215.74
22 1928 320 89.02 171 27 30.96
23 2138 308 265.71 316 31 203.45
24 4869 776 269.14 574 66 112.33
25 7392 1129 362.51 913 92 80

91

significantly. Figure 7.2 shows a partial hybrid conditional plan for a sample

kitchen table setting benchmark instance computed by HCPlan-Reactive

where reactive depth threshold Dth is set to ‘5’.

92

F
ig
ur
e
7.
3:

A
re
ac
ti
ve

hy
br
id

co
nd

it
io
na

l
pa

rt
ia
l
pl
an

co
m
pu

te
d
fo
r
an

in
st
an

ce
of

th
e
ki
tc
he
n
ta
bl
e
se
tt
in
g

be
nc
hm

ar
k
w
he
re

re
ac
ti
ve

de
pt
h
th
re
sh
ol
d
D

th
is

se
t
to

‘5
’.

93

7.10 Comparison between plan execution monitoring

and HCPlan-Reactive

Plan execution monitoring and HCPlan-Reactive not only compute the

plan to reach the goal state but also return the executed branch/plan fol-

lowed by the robot. Therefore, comparing the executed plans is possible.

Tables 7.11 and 7.12 show the comparison between the plans executed by

plan execution monitoring and the branch executed by HCPlan-Reactive

with sensing step/reactive depth threshold Dth of ‘3’ and ‘5’, respectively,

to reach the goal for the kitchen table setting benchmark instances. For

HCPlan-Reactive, we report the length of executed branch Bexec along

with the number of sensing actions S and actuation action A in it, re-planning

attempts R and planning time T in seconds. For plan execution monitoring,

the computation time of the plan T in seconds, the number R of re-planning

attempts, and the total plan length L to reach the goal are reported. Since,

each instance of benchmark domains is solver using plan execution monitor-

ing ‘5’ times, the maximum (.)max and the average (.)av values are listed in

the table.

Tables 7.13 and 7.14 show that the plans obtained from HCPlan even

have shorter plan length compared to plan execution monitoring. Therefore,

HCPlan-Reactive is more suited to generate the plans in service robotics

application than plan execution monitoring, where the actions performed by

robots are expensive and have a cost associated with them. Moreover, re-

planning for new plans represent halt in execution and we typically want re-

planning time to be as minimum as possible. This is especially true in service

robotics applications as re-planning represents an idle time for robots. The

number of re-planning attempts is significantly less for HCPlan-Reactive

94

Table 7.13: Comparison between plan execution monitoring and HCPlan-
Reactive with the sensing step/adaptive depth threshold of ‘3’ for the kitchen
table setting domain.

Plan Execution Monitoring HCPlan-Reactive
Scen Lmax(Lav) Rmax(Rav) Tmax(Tavg) [sec] Bexec(A+ S) R T [sec]

01 16 (14.8) 1 (0.6) 10.29 (8.8) 11 (10+1) 1 12.79
02 19 (17.2) 2 (1.4) 15.44 (13.49) 11 (10+1) 1 12.48
03 22 (18.4) 3 (1.8) 25.35 (16.03) 11 (10+1) 1 14.94
04 22 (20.2) 3 (2.4) 27.72 (19.56) 14 (13+1) 1 11.39
05 24 (19.8) 3 (1.6) 54.45 (30.81) 13 (11+2) 2 32.74
06 23 (21.8) 3 (2.6) 35.93 (27.32) 14 (11+3) 2 24.04
07 30 (25.4) 5 (3.6) 63.39 (43.87) 11 (10+1) 1 18.82
08 30 (26.8) 5 (4) 83.97 (64.54) 12 (10+2) 2 34.24
09 26 (22.8) 4 (3.2) 34.36 (27.97) 15 (11+4) 2 19.51
10 30 (28.6) 5 (4.6) 74.87 (50.09) 15 (13+2) 2 35.58
11 32 (29.6) 6 (5.2) 57.85 (37.19) 18 (15+3) 3 25.01
12 30 (27) 5 (4) 77.36 (52.73) 19 (17+2) 2 70.22
13 32 (29.6) 6 (5.2) 90.43 (53.87) 12 (10+2) 1 30.44
14 36 (30.6) 7 (5.2) 75.04 (54.39) 23 (19+4) 3 68.33
15 38 (32) 8 (6) 90.11 (52.16) 16 (13+3) 3 64.31
16 36 (32.4) 7 (5.8) 277.76 (142.21) 15 (13+2) 2 145.87
17 40 (34) 9 (7) 80.12 (48.61) 21 (18+3) 3 33.2
18 40 (37.6) 9 (8.2) 73.52 (58.56) 17 (13+4) 3 21.71
19 38 (34) 8 (6.4) 149.77 (94.31) 16 (11+5) 2 173.78
20 39 (37.6) 8 (7.6) 163.27 (86.32) 18 (14+4) 3 87.14
21 41 (37) 9 (7.4) 140.69 (103.5) 22 (17+5) 3 187.16
22 43 (35.8) 10 (7.6) 87.63 (68.95) 18 (13+5) 3 25.27
23 44 (41.8) 10 (9.2) 177.57 (94.23) 22 (17+5) 4 162.19
24 48 (39.4) 11 (8.2) 113.31 (74.68) 17 (12+5) 3 96.6
25 51 (43.6) 12 (9.8) 150.24 (103.68) 25 (19+6) 4 93.77

95

Table 7.14: Comparison between plan execution monitoring and HCPlan-
Reactive with the sensing step/adaptive depth threshold of ‘5’ for the kitchen
table setting domain.

Plan Execution Monitoring HCPlan-Reactive
Scen Lmax(Lav) Rmax(Rav) Tmax(Tavg) [sec] Bexec(A+ S) R T [sec]

01 18 (15) 1 (0.4) 10.41 (8.26) 11 (10+1) 1 12.78
02 23 (17) 2 (0.8) 14.16 (10.19) 11 (10+1) 1 12.75
03 28 (20) 3 (1.4) 27.43 (15.26) 11 (10+1) 1 15.02
04 23 (21) 2 (1.6) 21.41 (17.53) 14 (13+1) 1 11.24
05 25 (23) 2 (1.6) 48.38 (33.66) 13 (11+2) 2 32.57
06 34 (28) 4 (2.8) 46.48 (30.35) 14 (11+3) 1 24.21
07 40 (33) 5 (3.6) 62.34 (37.87) 11 (10+1) 1 18.23
08 39 (33.8) 5 (3.8) 83.65 (70.57) 12 (10+2) 2 33.39
09 33 (31) 4 (3.6) 31.88 (25.37) 15 (11+4) 2 18.57
10 45 (39) 6 (4.8) 94.97 (64.56) 15 (13+2) 2 35.04
11 39 (34) 5 (3.8) 89.75 (58.05) 18 (15+3) 2 24.77
12 50 (38.8) 5 (4.2) 240.66 (112.08) 19 (17+2) 2 77.59
13 54 (40) 8 (5.2) 74.19 (42.05) 12 (10+2) 1 30.77
14 54 (44.8) 8 (6) 92.96 (67.19) 23 (19+4) 3 75.22
15 54 (43) 8 (5.8) 69.98 (48.77) 16 (13+3) 2 68.98
16 55 (43.8) 7 (5.6) 74.44 (55.83) 15 (13+2) 1 144.56
17 58 (50) 8 (7) 67.71 (56.25) 21 (18+3) 2 38.51
18 58 (44) 9 (6.2) 83.4 (52.74) 17 (13+4) 2 22.08
19 60 (52) 8 (7) 163.35 (84.92) 16 (11+5) 2 185.98
20 65 (50) 9 (6.8) 174.09 (109.24) 18 (14+4) 2 101.03
21 65 (55) 9 (7.8) 137.63 (99.83) 22 (17+5) 3 215.74
22 64 (55.2) 10 (8.4) 80.29 (60.95) 18 (13+5) 3 30.96
23 60 (54.2) 9 (7.8) 123.07 (88.25) 22 (17+5) 3 203.45
24 80 (68.8) 12 (10.6) 189.01 (90.59) 17 (12+5) 3 112.33
25 59 (56) 9 (8.4) 234.59 (127.63) 25 (19+6) 3 80

96

than plan execution monitoring, in fact, it does not exceed ‘4’ in any of the

benchmark instance. For example, in Instance 25 of Table 7.13, HCPlan-

Reactive has to re-plan ‘4’ times while plan execution monitoring has to

perform re-planning on average 9.8 times (a maximum of 12 in the worst

case).

97

Chapter VIII

8 Execution of Hybrid Conditional Plans

In Chapter 4, we have discussed the computation of hybrid conditional plans

for service robotic domains. In this chapter, we discuss the execution of these

plans. We show dynamic and physical execution of such plans in complex

mobile manipulation domain, like the kitchen table setting benchmark that

was introduced in Section 6.1. Section 8.1 shows the dynamic simulation of a

hybrid conditional plan with a bi-manual mobile manipulator robot CoCoA

while, Section 8.2 shows physical execution of a plan with a bi-manual sta-

tionary manipulator Baxter for the kitchen table setting benchmark domain.

8.1 Dynamic simulation

In order to demonstrate the dynamic simulation of a hybrid conditional plan

computed for a kitchen table setting benchmark instance, we use Open-

RAVE [77] simulation environment. We integrate feasibility checks like gras-

pability, reachability, and collision checks during the planning phase in order

to ensure plan executability. The hybrid conditional plan generated by HC-

Plan for an instance of kitchen table setting scenario is shown in Figure 8.1.

98

1
,

c
h

e
c

k
_

fo
o

d
_

ty
p

e

2
,
g

o
_
to

(e
x
tr

a
T

a
b

le
)

s
o

u
p

3
3
,
g

o
_
to

(e
x
tr

a
T

a
b

le
)

p
iz

z
a

8
,
c
h

e
c
k
_
is

_
c
le

a
n

(s
p

o
o

n
)

9
,

g
o

_
to

(f
a

u
c

e
t)

n
o

2
2
,
g

o
_
to

(t
a
b

le
R

ig
h

t)

y
e
s

3
9

,
c

h
e

c
k

_
is

_
c

le
a

n
(p

la
te

)

4
0

,
g

o
_

to
(f

a
u

c
e

t)

n
o

5
9
,
g

o
_
to

(t
a
b

le
L

e
ft

)

y
e
s

2
4

,
c

h
e

c
k

_
lo

c
(b

o
w

l)

2
5
,
g

o
_
to

(c
a
b

in
e
tB

)c
a

b
in

e
tB

2
9
,
g

o
_
to

(c
a
b

in
e
tA

)

c
a

b
in

e
tA

4
3
,
c
h

e
c
k
_
lo

c
(k

n
if

e
)

4
4
,
p

la
c
e
_
o

n
(t

a
b

le
)

c
a

b
in

e
tB

4
9
,
p

la
c
e
_
o

n
(t

a
b

le
)

c
a

b
in

e
tA

5
4
,
p

la
c
e
_
o

n
(t

a
b

le
)

fa
u

c
e

t

6
2
,
c
h

e
c
k
_
lo

c
(k

n
if

e
)

6
3

,
p

ic
k

_
u

p
(k

n
if

e
)fa

u
c

e
t 6

6
,
g

o
_
to

(c
a
b

in
e
tA

)

c
a

b
in

e
tA

7
0
,
g

o
_
to

(c
a
b

in
e
tB

)

c
a
b

in
e

tB

1
3

,
c

h
e

c
k

_
lo

c
(b

o
w

l)

1
4
,
g

o
_
to

(c
a
b

in
e
tA

)

c
a

b
in

e
tA

1
8
,
g

o
_
to

(c
a
b

in
e
tB

)

c
a

b
in

e
tB

3
,

p
ic

k
_

u
p

(w
a

te
rG

la
s

s
)

3
4
,
p

ic
k
_
u

p
(f

o
rk

)

4
,
g

o
_
to

(t
a
b

le
R

ig
h

t)
3
5
,
g

o
_
to

(t
a
b

le
L

e
ft

)

5
,

p
la

c
e

_
o

n
(t

a
b

le
)

3
6
,
p

la
c
e
_
o

n
(t

a
b

le
)

6
,
g

o
_
to

(c
a
b

in
e
tA

)
3
7
,
g

o
_
to

(c
a
b

in
e
tA

)

7
,
p

ic
k
_
u

p
(s

p
o

o
n

)
3

8
,

p
ic

k
_

u
p

(p
la

te
)

1
0
,
c
le

a
n

(s
p

o
o

n
)

2
3
,
p

la
c
e
_
o

n
(t

a
b

le
)

4
1

,
c

le
a

n
(p

la
te

)
6
0
,
p

la
c
e
_
o

n
(t

a
b

le
)

1
1
,
g

o
_
to

(t
a
b

le
R

ig
h

t)
4
2
,
g

o
_
to

(t
a
b

le
L

e
ft

)
6

1
,
g

o
_

to
(f

a
u

c
e

t)

1
2
,
p

la
c
e
_
o

n
(t

a
b

le
)

2
6
,
p

ic
k
_
u

p
(b

o
w

l)
3
0
,
p

ic
k
_
u

p
(b

o
w

l)

2
7
,
g

o
_
to

(t
a
b

le
L

e
ft

)
3
1
,
g

o
_
to

(t
a
b

le
L

e
ft

)
4
5
,
g

o
_
to

(c
a
b

in
e
tB

)
5
0
,
g

o
_
to

(c
a
b

in
e
tA

)
5

5
,
g

o
_

to
(f

a
u

c
e

t)
6
4
,
g

o
_
to

(t
a
b

le
R

ig
h

t)
6

7
,

p
ic

k
_

u
p

(k
n

if
e

)
7

1
,

p
ic

k
_

u
p

(k
n

if
e

)

1
5
,
p

ic
k
_
u

p
(b

o
w

l)
1
9
,
p

ic
k
_
u

p
(b

o
w

l)
2
8
,
p

la
c
e
_
o

n
(t

a
b

le
)

3
2
,
p

la
c
e
_
o

n
(t

a
b

le
)

4
6

,
p

ic
k

_
u

p
(k

n
if

e
)

5
1

,
p

ic
k

_
u

p
(k

n
if

e
)

5
6

,
p

ic
k

_
u

p
(k

n
if

e
)

6
5
,
p

la
c
e
_
o

n
(t

a
b

le
)

6
8
,
g

o
_
to

(t
a
b

le
R

ig
h

t)
7
2
,
g

o
_
to

(t
a
b

le
R

ig
h

t)

1
6
,
g

o
_
to

(t
a
b

le
L

e
ft

)
2
0
,
g

o
_
to

(t
a
b

le
L

e
ft

)
4
7
,
g

o
_
to

(t
a
b

le
R

ig
h

t)
5
2
,
g

o
_
to

(t
a
b

le
R

ig
h

t)
5
7
,
g

o
_
to

(t
a
b

le
R

ig
h

t)
6
9
,
p

la
c
e
_
o

n
(t

a
b

le
)

7
3
,
p

la
c
e
_
o

n
(t

a
b

le
)

1
7
,
p

la
c
e
_
o

n
(t

a
b

le
)

2
1
,
p

la
c
e
_
o

n
(t

a
b

le
)

4
8
,
p

la
c
e
_
o

n
(t

a
b

le
)

5
3
,
p

la
c
e
_
o

n
(t

a
b

le
)

5
8
,
p

la
c
e
_
o

n
(t

a
b

le
)

F
ig
ur
e
8.
1:

A
hy

br
id

co
nd

it
io
na

lp
la
n
fo
r
an

in
st
an

ce
of

ki
tc
he
n
ta
bl
e
se
tt
in
g
be

nc
hm

ar
k
in
st
an

ce
us
in
g
a
si
ng

le
ar
m

m
ob

ile
m
an

ip
ul
at
or

ro
bo

t.

99

In the simulation, the robot executes the plan from the root node and

depending upon the outcome of sensing action branch ‘2’ of the plan in Fig-

ure 8.1 is executed. Snapshots showing the dynamic simulation using a single

arm mobile manipulator robot, CoCoA is shown in Figure 8.2. Each snap-

shot is labeled as x(y), where x is the action number in the branch and y

represents the actual node number in the plan. Moreover, the green color

represents an actuation action while red represents a sensing action. Fig-

ure 8.2 shows the dynamic simulation of branch ‘2’ of the hybrid conditional

plan (shown in Figure 8.1) of the kitchen table setting scenario by the CoCoA

robot: (a) robot inquires the person about the type of food and the person

answers soup (b) robot goes to the extra table (c) robot picks up the water

glass (d) robot goes to right side of the table (e) robot places the water glass

on the table (f) robot goes to the cabinet A (g) robot picks up the spoon (h)

robot checks cleanliness of the spoon and finds that it is not clean (i) robot

goes to the faucet (j) robot cleans the spoon (k) robot goes to right side of

the table (l) robot places the spoon on the table (m) robot looks for the bowl

and finds it at the cabinet B (n) robot goes to the cabinet B (o) robot picks

up the bowl (p) robot goes to right side of the table (q) robot places the bowl

on the table (r) kitchen table is set for soup.

100

101

Figure 8.2: Dynamic simulation showing the robot setting up the kitchen
table for ‘soup’.

102

8.2 Physical execution

In order to demonstrate the physical execution of a hybrid conditional plan on

kitchen table setting benchmark introduced in Section 6.1 we use a bi-manual

mobile manipulator robot, Baxter. We use ROS [90] and OMPL [84] to

generate and execute motion plans for Baxter robot. The hybrid conditional

plan generated by HCPlan for an instance of kitchen table setting scenario

for the Baxter is shown in Figure 8.3. The robot executes the plan from

the root node and depending upon the outcome of sensing action different

branches can be executed.

103

1
,

c
h

e
c

k
_

fo
o

d
_

ty
p

e

2
,
c
h

e
c
k
_
lo

c
(s

p
o

o
n

)s
o

u
p

1
9
,
c
h

e
c
k
_
lo

c
(k

n
if

e
)

p
iz

z
a

3
,
p

ic
k
_
u

p
(b

o
w

l,
c
a
b

in
e
tA

)

c
a
b

in
e
tB

1
2
,
p

ic
k
_
u

p
(s

p
o

o
n

,c
a
b

in
e
tA

)

c
a
b

in
e
tA

2
0
,
p

ic
k
_
u

p
(f

o
rk

,c
a
b

in
e
tA

)

c
a
b

in
e
tA

2
9
,
p

ic
k
_
u

p
(k

n
if

e
,c

a
b

in
e
tB

)

c
a
b

in
e
tB

4
,

c
h

e
c

k
_

is
_

c
le

a
n

(b
o

w
l)

5
,

p
la

c
e

_
o

n
(t

a
b

le
)

y
e
s 8

,
c
le

a
n

(b
o

w
l)

n
o

1
5
,
c
h

e
c
k
_
is

_
c
le

a
n

(b
o

w
l)

1
6
,
p

la
c
e
_
o

n
(t

a
b

le
)y
e
s

1
7
,
c
le

a
n

(b
o

w
l)

n
o

2
5

,
c

h
e

c
k

_
is

_
c

le
a

n
(p

la
te

)

2
6

,
c

le
a

n
(p

la
te

)

n
o 2
8
,
p

la
c
e
_
o

n
(t

a
b

le
)

y
e
s

3
4

,
c

h
e

c
k

_
is

_
c

le
a

n
(p

la
te

)

3
5

,
c

le
a

n
(p

la
te

)

n
o

3
7
,
p

la
c
e
_
o

n
(t

a
b

le
)

y
e
s

1
3
,
p

la
c
e
_
o

n
(t

a
b

le
)

2
1
,
p

la
c
e
_
o

n
(t

a
b

le
)

3
0
,
p

la
c
e
_
o

n
(t

a
b

le
)

1
4
,
p

ic
k
_
u

p
(b

o
w

l,
c
a
b

in
e
tA

)
2
2
,
p

ic
k
_
u

p
(k

n
if

e
,c

a
b

in
e
tA

)
3
1
,
p

ic
k
_
u

p
(f

o
rk

,c
a
b

in
e
tA

)

6
,
p

ic
k
_
u

p
(s

p
o

o
n

,c
a
b

in
e
tB

)
9

,
p

la
c

e
_

o
n

(t
a

b
le

)
2
3
,
p

la
c
e
_
o

n
(t

a
b

le
)

3
2
,
p

la
c
e
_
o

n
(t

a
b

le
)

7
,

p
la

c
e

_
o

n
(t

a
b

le
)

1
0
,
p

ic
k
_
u

p
(s

p
o

o
n

,c
a
b

in
e
tB

)
2
4
,
p

ic
k
_
u

p
(p

la
te

,e
x
tr

a
T

a
b

le
)

3
3
,
p

ic
k
_
u

p
(p

la
te

,e
x
tr

a
T

a
b

le
)

1
1
,
p

la
c
e
_
o

n
(t

a
b

le
)

1
8
,
p

la
c
e
_
o

n
(t

a
b

le
)

2
7
,
p

la
c
e
_
o

n
(t

a
b

le
)

3
6
,
p

la
c
e
_
o

n
(t

a
b

le
)

F
ig
ur
e
8.
3:

A
hy

br
id

co
nd

it
io
na

lp
la
n
fo
r
an

in
st
an

ce
of

th
e
ki
tc
he
n
ta
bl
e
se
tt
in
g
be

nc
hm

ar
k
in
st
an

ce
us
in
g
a

bi
-m

an
ua

lm
an

ip
ul
at
or

ro
bo

t.

104

Figure 8.4 show snapshots of execution of ‘1’ branch of hybrid conditional

plan shown in Figure 8.3 by Baxter robot: (a) robot inquires the person about

the type of food and the person answers soup (b) robot looks for the spoon

and finds it at the cabinet B (c) robot picks up the bowl from the cabinet A

(d) robot checks cleanliness of the bowl and finds it is clean (e) robot places

the bowl on the table (f) robot picks the spoon from the cabinet B (g) robot

places the spoon on the table (h) kitchen table is set for soup.

105

Figure 8.4: Physical execution showing the robot setting up the kitchen table
for ‘soup’.

106

Figure 8.4 show snapshots of execution of ‘6’ branch of hybrid conditional

plan shown in Figure 8.3 by Baxter robot: (a) robot inquires person about

the type of food and the person answers pizza (b) robot looks for the fork

and finds it at the cabinet A (c) robot picks up the knife from the cabinet

A (d) robot places the knife on the table (e) robot picks the fork from the

cabinet A (f) robot places the fork on the table (g) robot picks the plate from

the extra table (h) robot checks cleanliness of the plate and finds that it is

clean (i) robot places the plate on the table (j) kitchen table is set for pizza.

107

Figure 8.5: Physical execution showing the robot setting up the kitchen table
for ‘pizza’.

108

Chapter XI

9 Conclusions

We have introduced a novel hybrid conditional planning framework that ex-

tends hybrid sequential planning with non-deterministic sensing actions and

utilizes this extension to compute the branches of a hybrid conditional plan.

The planner HCPlan is a compilation based hybrid conditional planner that

utilizes parallel computation of branches to speed up the computation task.

We have provided formal definitions of sensing and actuation actions using

action language C+ and introduced a mechanism to develop service robotic

benchmark for planning under incomplete knowledge and partial observabil-

ity. We have developed real-world benchmarks that involve manipulation

and navigation tasks by service robots.

We have evaluated the benchmarks using our hybrid conditional plan-

ning framework and show that our approach is complete with respect to

contingencies considered during the planning phase. We evaluate the effec-

tiveness of parallel computation of branches and re-usability of the branches

and showed them as a useful extension to our planning framework. We have

demonstrated the importance of integration of feasibility checks in hybrid

conditional planning framework, especially for service robotics domains, by

providing an experimental evaluation of the successful execution of plans.

109

Furthermore, we have compared our framework to other planning under

uncertainty approaches like the plan execution monitoring approach using a

benchmark domain and showed that our approach significantly outperforms

this alternative in terms of plan lengths. In that sense, computing a hybrid

conditional plan in advance may be more preferable for applications where

execution of the robotic actions is costly and/or where re-planning is not

desired during the execution phase. We also have compared HCPlan to

another state of the art hybrid conditional planner HCP-ASP, by translation

of the kitchen table setting benchmark domain to the language of ASP and

showed that both approaches are complete with respect to the contingencies

considered during the planning phase.

We have introduced anytime and reactive versions of our hybrid con-

ditional planning framework by implementing HCPlan-Anytime and

HCPlan-Reactive. These extensions compute partial hybrid conditional

plans that are less computationally demanding, making them useful in real-

world applications where the robots can perform the planning and execution

simultaneously.

We have provided dynamic simulations and physical executions of sev-

eral instances of the kitchen table setting benchmark using a service robot.

These demonstrations show that our hybrid conditional planning framework

computes the plans that are feasible to be utilized in real-world applications.

Physical executions and dynamic simulations of the hybrid conditional plans

generated by our framework are available at http://cogrobo.sabanciuniv.

edu/?p=1126.

110

http://cogrobo.sabanciuniv.edu/?p=1126
http://cogrobo.sabanciuniv.edu/?p=1126

References

[1] P. Haslum, “Admissible heuristics for automated planning by,” 2006.

[2] K. Erol, D. S. Nau, and V. S. Subrahmanian, “Complexity, decidability

and undecidability results for domain-independent planning,” Artif.

Intell., vol. 76, no. 1-2, pp. 75–88, 1995. [Online]. Available:

https://doi.org/10.1016/0004-3702(94)00080-K

[3] D. H. D. Warren, “Generating conditional plans and programs,” in AISB

(ECAI), 1976, pp. 344–354.

[4] M. A. Peot and D. E. Smith, “Conditional nonlinear planning,”

in Proceedings of the First International Conference on Artificial

Intelligence Planning Systems. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1992, pp. 189–197. [Online]. Available:

http://dl.acm.org/citation.cfm?id=139492.139518

[5] L. Pryor and G. Collins, “Planning for contingencies: A decision-based

approach,” J. Artif. Int. Res., vol. 4, no. 1, pp. 287–339, May

1996. [Online]. Available: http://dl.acm.org/citation.cfm?id=1622737.

1622749

[6] A. Nouman, I. F. Yalciner, E. Erdem, and V. Patoglu, “Experimental

evaluation of hybrid conditional planning for service robotics,” in

International Symposium on Experimental Robotics, ISER 2016, Tokyo,

Japan, October 3-6, 2016., 2016, pp. 692–702. [Online]. Available:

https://doi.org/10.1007/978-3-319-50115-4_60

[7] I. F. Yalciner, A. Nouman, V. Patoglu, and E. Erdem, “Hybrid

111

https://doi.org/10.1016/0004-3702(94)00080-K
http://dl.acm.org/citation.cfm?id=139492.139518
http://dl.acm.org/citation.cfm?id=1622737.1622749
http://dl.acm.org/citation.cfm?id=1622737.1622749
https://doi.org/10.1007/978-3-319-50115-4_60

conditional planning using answer set programming,” TPLP, vol. 17,

no. 5-6, pp. 1027–1047, 2017. [Online]. Available: https://doi.org/10.

1017/S1471068417000321

[8] C. Baral, V. Kreinovich, and R. Trejo, “Computational complexity

of planning and approximate planning in presence of incompleteness,”

in Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August

6, 1999. 2 Volumes, 1450 pages, 1999, pp. 948–955. [Online]. Available:

http://ijcai.org/Proceedings/99-2/Papers/040A.pdf

[9] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,

“Combining high-level causal reasoning with low-level geometric

reasoning and motion planning for robotic manipulation,” in IEEE

International Conference on Robotics and Automation, ICRA 2011,

Shanghai, China, 9-13 May 2011, 2011, pp. 4575–4581. [Online].

Available: https://doi.org/10.1109/ICRA.2011.5980160

[10] A. Hertle, C. Dornhege, T. Keller, and B. Nebel, “Planning with

semantic attachments: An object-oriented view,” in ECAI 2012

- 20th European Conference on Artificial Intelligence. Including

Prestigious Applications of Artificial Intelligence (PAIS-2012) System

Demonstrations Track, Montpellier, France, August 27-31 , 2012,

2012, pp. 402–407. [Online]. Available: https://doi.org/10.3233/

978-1-61499-098-7-402

[11] E. Plaku, “Planning in discrete and continuous spaces: From

LTL tasks to robot motions,” in Advances in Autonomous Robotics

- Joint Proceedings of the 13th Annual TAROS Conference and

112

https://doi.org/10.1017/S1471068417000321
https://doi.org/10.1017/S1471068417000321
http://ijcai.org/Proceedings/99-2/Papers/040A.pdf
https://doi.org/10.1109/ICRA.2011.5980160
https://doi.org/10.3233/978-1-61499-098-7-402
https://doi.org/10.3233/978-1-61499-098-7-402

the 15th Annual FIRA RoboWorld Congress, Bristol, UK, August

20-23, 2012, 2012, pp. 331–342. [Online]. Available: https:

//doi.org/10.1007/978-3-642-32527-4_30

[12] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion

planning in belief space,” I. J. Robotics Res., vol. 32, no. 9-10,

pp. 1194–1227, 2013. [Online]. Available: https://doi.org/10.1177/

0278364913484072

[13] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. J. Russell, and

P. Abbeel, “Combined task and motion planning through an extensible

planner-independent interface layer,” in 2014 IEEE International

Conference on Robotics and Automation, ICRA 2014, Hong Kong,

China, May 31 - June 7, 2014, 2014, pp. 639–646. [Online]. Available:

https://doi.org/10.1109/ICRA.2014.6906922

[14] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson,

“Efficiently combining task and motion planning using geometric

constraints,” I. J. Robotics Res., vol. 33, no. 14, pp. 1726–1747, 2014.

[Online]. Available: https://doi.org/10.1177/0278364914545811

[15] D. Hadfield-Menell, E. Groshev, R. Chitnis, and P. Abbeel,

“Modular task and motion planning in belief space,” in 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS 2015,

Hamburg, Germany, September 28 - October 2, 2015, 2015, pp. 4991–

4998. [Online]. Available: https://doi.org/10.1109/IROS.2015.7354079

[16] F. Lagriffoul and B. Andres, “Combining task and motion planning:

A culprit detection problem,” I. J. Robotics Res., vol. 35, no. 8,

113

https://doi.org/10.1007/978-3-642-32527-4_30
https://doi.org/10.1007/978-3-642-32527-4_30
https://doi.org/10.1177/0278364913484072
https://doi.org/10.1177/0278364913484072
https://doi.org/10.1109/ICRA.2014.6906922
https://doi.org/10.1177/0278364914545811
https://doi.org/10.1109/IROS.2015.7354079

pp. 890–927, 2016. [Online]. Available: https://doi.org/10.1177/

0278364915619022

[17] E. Erdem, V. Patoglu, and P. Schüller, “A systematic analysis of levels

of integration between high-level task planning and low-level feasibility

checks,” AI Commun., vol. 29, no. 2, pp. 319–349, 2016. [Online].

Available: https://doi.org/10.3233/AIC-150697

[18] J. Bidot, L. Karlsson, F. Lagriffoul, and A. Saffiotti, “Geometric

backtracking for combined task and motion planning in robotic

systems,” Artif. Intell., vol. 247, pp. 229–265, 2017. [Online]. Available:

https://doi.org/10.1016/j.artint.2015.03.005

[19] F. Lagriffoul, N. T. Dantam, C. Garrett, A. Akbari, S. Srivastava,

and L. E. Kavraki, “Platform-independent benchmarks for task

and motion planning,” IEEE Robotics and Automation Letters,

vol. 3, no. 4, pp. 3765–3772, 2018. [Online]. Available: https:

//doi.org/10.1109/LRA.2018.2856701

[20] S. J. Russell and P. Norvig, Artificial Intelligence - A Mod-

ern Approach (3. internat. ed.). Pearson Education, 2010.

[Online]. Available: http://vig.pearsoned.com/store/product/1,1207,

store-12521_isbn-0136042597,00.html

[21] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory

and practice. Elsevier, 2004.

[22] H. Geffner, “Non-classical planning with a classical planner: The power

of transformations,” in Logics in Artificial Intelligence - 14th European

Conference, JELIA 2014, Funchal, Madeira, Portugal, September

114

https://doi.org/10.1177/0278364915619022
https://doi.org/10.1177/0278364915619022
https://doi.org/10.3233/AIC-150697
https://doi.org/10.1016/j.artint.2015.03.005
https://doi.org/10.1109/LRA.2018.2856701
https://doi.org/10.1109/LRA.2018.2856701
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html
http://vig.pearsoned.com/store/product/1,1207,store-12521_isbn-0136042597,00.html

24-26, 2014. Proceedings, 2014, pp. 33–47. [Online]. Available:

https://doi.org/10.1007/978-3-319-11558-0_3

[23] M. Bjäreland, “Model-based execution monitoring,” in Linköping Stud-

ies in Science and Technology, Dissertation No 688, available at

http://www. ida. liu. se/labs/kplab/people/marbj, 2001.

[24] R. Fikes and N. J. Nilsson, “STRIPS: A new approach to

the application of theorem proving to problem solving,” Artif.

Intell., vol. 2, no. 3/4, pp. 189–208, 1971. [Online]. Available:

https://doi.org/10.1016/0004-3702(71)90010-5

[25] R. Fikes, P. E. Hart, and N. J. Nilsson, “Learning and executing

generalized robot plans,” Artif. Intell., vol. 3, no. 1-3, pp. 251–288, 1972.

[Online]. Available: https://doi.org/10.1016/0004-3702(72)90051-3

[26] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,”

in Proceedings of the 6th National Conference on Artificial Intelligence.

Seattle, WA, USA, July 1987., 1987, pp. 677–682. [Online]. Available:

http://www.aaai.org/Library/AAAI/1987/aaai87-121.php

[27] K. Chen, F. Yang, and X. Chen, “Planning with task-oriented

knowledge acquisition for a service robot,” in Proceedings of the

Twenty-Fifth International Joint Conference on Artificial Intelligence,

IJCAI 2016, New York, NY, USA, 9-15 July 2016, 2016, pp. 812–818.

[Online]. Available: http://www.ijcai.org/Abstract/16/120

[28] R. Janssen, E. van Meijl, D. D. Marco, R. van de Molengraft,

and M. Steinbuch, “Integrating planning and execution for ROS

enabled service robots using hierarchical action representations,” in

115

https://doi.org/10.1007/978-3-319-11558-0_3
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(72)90051-3
http://www.aaai.org/Library/AAAI/1987/aaai87-121.php
http://www.ijcai.org/Abstract/16/120

16th International Conference on Advanced Robotics, ICAR 2013,

25-29 November 2013, Montevideo, Uruguay, 2013, pp. 1–7. [Online].

Available: https://doi.org/10.1109/ICAR.2013.6766556

[29] A. Küstenmacher, N. Akhtar, P. Plöger, and G. Lakemeyer, “Towards

robust task execution for domestic service robots,” Journal of Intelligent

and Robotic Systems, vol. 76, no. 1, pp. 5–33, 2014. [Online]. Available:

https://doi.org/10.1007/s10846-013-0005-6

[30] E. Shpieva and I. Awaad, “Integrating task planning, execution

and monitoring for a domestic service robot,” it - Information

Technology, vol. 57, no. 2, pp. 112–121, 2015. [Online]. Available:

https://doi.org/10.1515/itit-2014-1064

[31] E. Erdem, E. Aker, and V. Patoglu, “Answer set programming for

collaborative housekeeping robotics: representation, reasoning, and

execution,” Intelligent Service Robotics, vol. 5, no. 4, pp. 275–291, 2012.

[Online]. Available: https://doi.org/10.1007/s11370-012-0119-x

[32] M. Gianni, P. Papadakis, F. Pirri, M. Liu, F. Pomerleau,

F. Colas, K. Zimmermann, T. Svoboda, T. Petricek, G. M. Kruijff,

H. Khambhaita, and H. Zender, “A unified framework for planning and

execution-monitoring of mobile robots,” in Automated Action Planning

for Autonomous Mobile Robots, Papers from the 2011 AAAI Workshop,

San Francisco, California, USA, August 7, 2011, 2011. [Online].

Available: http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/

view/3852

[33] E. Erdem, V. Patoglu, and Z. G. Saribatur, “Integrating hybrid

116

https://doi.org/10.1109/ICAR.2013.6766556
https://doi.org/10.1007/s10846-013-0005-6
https://doi.org/10.1515/itit-2014-1064
https://doi.org/10.1007/s11370-012-0119-x
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3852
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/view/3852

diagnostic reasoning in plan execution monitoring for cognitive

factories with multiple robots,” in IEEE International Conference

on Robotics and Automation, ICRA 2015, Seattle, WA, USA,

26-30 May, 2015, 2015, pp. 2007–2013. [Online]. Available: https:

//doi.org/10.1109/ICRA.2015.7139461

[34] J. P. Mendoza, M. M. Veloso, and R. G. Simmons, “Plan

execution monitoring through detection of unmet expectations

about action outcomes,” in IEEE International Conference on

Robotics and Automation, ICRA 2015, Seattle, WA, USA, 26-

30 May, 2015, 2015, pp. 3247–3252. [Online]. Available: https:

//doi.org/10.1109/ICRA.2015.7139646

[35] C. Fritz, “Execution monitoring – a survey – fall 2005,” 2005.

[36] O. Pettersson, “Execution monitoring in robotics: A survey,” Robotics

and Autonomous Systems, vol. 53, no. 2, pp. 73–88, 2005. [Online].

Available: https://doi.org/10.1016/j.robot.2005.09.004

[37] E. J. Sondik, “The optimal control of partially observable markov pro-

cesses,” Ph.D. dissertation, Stanford University, 1971.

[38] ——, “The optimal control of partially observable markov processes

over the infinite horizon: Discounted costs,” Operations Research,

vol. 26, no. 2, pp. 282–304, 1978. [Online]. Available: https:

//doi.org/10.1287/opre.26.2.282

[39] R. D. Smallwood and E. J. Sondik, “The optimal control of

partially observable markov processes over a finite horizon,” Operations

117

https://doi.org/10.1109/ICRA.2015.7139461
https://doi.org/10.1109/ICRA.2015.7139461
https://doi.org/10.1109/ICRA.2015.7139646
https://doi.org/10.1109/ICRA.2015.7139646
https://doi.org/10.1016/j.robot.2005.09.004
https://doi.org/10.1287/opre.26.2.282
https://doi.org/10.1287/opre.26.2.282

Research, vol. 21, no. 5, pp. 1071–1088, 1973. [Online]. Available:

https://doi.org/10.1287/opre.21.5.1071

[40] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning

and acting in partially observable stochastic domains,” Artif.

Intell., vol. 101, no. 1-2, pp. 99–134, 1998. [Online]. Available:

https://doi.org/10.1016/S0004-3702(98)00023-X

[41] O. Madani, S. Hanks, and A. Condon, “On the undecidability

of probabilistic planning and infinite-horizon partially observable

markov decision problems,” in Proceedings of the Sixteenth National

Conference on Artificial Intelligence and Eleventh Conference on

Innovative Applications of Artificial Intelligence, July 18-22, 1999,

Orlando, Florida, USA., 1999, pp. 541–548. [Online]. Available:

http://www.aaai.org/Library/AAAI/1999/aaai99-077.php

[42] ——, “On the undecidability of probabilistic planning and related

stochastic optimization problems,” Artif. Intell., vol. 147, no. 1-2, pp. 5–

34, 2003. [Online]. Available: https://doi.org/10.1016/S0004-3702(02)

00378-8

[43] C. Muise, V. Belle, and S. A. McIlraith, “Computing contingent

plans via fully observable non-deterministic planning,” in Proceedings

of the Twenty-Eighth AAAI Conference on Artificial Intelligence, ser.

AAAI’14. AAAI Press, 2014, pp. 2322–2329. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2892753.2892874

[44] P. Haslum and P. Jonsson, “Some results on the complexity of

planning with incomplete information,” in Recent Advances in AI

118

https://doi.org/10.1287/opre.21.5.1071
https://doi.org/10.1016/S0004-3702(98)00023-X
http://www.aaai.org/Library/AAAI/1999/aaai99-077.php
https://doi.org/10.1016/S0004-3702(02)00378-8
https://doi.org/10.1016/S0004-3702(02)00378-8
http://dl.acm.org/citation.cfm?id=2892753.2892874

Planning, 5th European Conference on Planning, ECP’99, Durham,

UK, September 8-10, 1999, Proceedings, 1999, pp. 308–318. [Online].

Available: https://doi.org/10.1007/10720246_24

[45] H. Turner, “Polynomial-length planning spans the polynomial

hierarchy,” in Logics in Artificial Intelligence, European Conference,

JELIA 2002, Cosenza, Italy, September, 23-26, Proceedings, 2002, pp.

111–124. [Online]. Available: https://doi.org/10.1007/3-540-45757-7_

10

[46] J. Rintanen, “Complexity of planning with partial observability,” in

Proceedings of the Fourteenth International Conference on Automated

Planning and Scheduling (ICAPS 2004), June 3-7 2004, Whistler,

British Columbia, Canada, 2004, pp. 345–354. [Online]. Available:

http://www.aaai.org/Library/ICAPS/2004/icaps04-041.php

[47] C. Baral, V. Kreinovich, and R. Trejo, “Computational complexity of

planning and approximate planning in the presence of incompleteness,”

Artif. Intell., vol. 122, no. 1-2, pp. 241–267, 2000. [Online]. Available:

https://doi.org/10.1016/S0004-3702(00)00043-6

[48] A. Albore, H. Palacios, and H. Geffner, “A translation-based approach

to contingent planning,” in Proceedings of the 21st International Jont

Conference on Artifical Intelligence, ser. IJCAI’09. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2009, pp. 1623–1628. [Online].

Available: http://dl.acm.org/citation.cfm?id=1661445.1661706

[49] B. Bonet and H. Geffner, “Planning under partial observability

by classical replanning: Theory and experiments,” in IJCAI

119

https://doi.org/10.1007/10720246_24
https://doi.org/10.1007/3-540-45757-7_10
https://doi.org/10.1007/3-540-45757-7_10
http://www.aaai.org/Library/ICAPS/2004/icaps04-041.php
https://doi.org/10.1016/S0004-3702(00)00043-6
http://dl.acm.org/citation.cfm?id=1661445.1661706

2011, Proceedings of the 22nd International Joint Conference on

Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,

2011, pp. 1936–1941. [Online]. Available: https://doi.org/10.5591/

978-1-57735-516-8/IJCAI11-324

[50] R. I. Brafman and G. Shani, “Replanning in domains with partial

information and sensing actions,” J. Artif. Intell. Res., vol. 45, pp.

565–600, 2012. [Online]. Available: https://doi.org/10.1613/jair.3711

[51] S. Maliah, R. I. Brafman, E. Karpas, and G. Shani, “Partially

observable online contingent planning using landmark heuristics,”

in Proceedings of the Twenty-Fourth International Conference on

Automated Planning and Scheduling, ICAPS 2014, Portsmouth, New

Hampshire, USA, June 21-26, 2014, 2014. [Online]. Available: http:

//www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7913

[52] R. Komarnitsky and G. Shani, “Computing contingent plans

using online replanning,” in Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,

Arizona, USA., 2016, pp. 3159–3165. [Online]. Available: http:

//www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12379

[53] J. Hoffmann and R. I. Brafman, “Contingent planning via heuristic

forward search witn implicit belief states,” in Proceedings of the

Fifteenth International Conference on Automated Planning and

Scheduling (ICAPS 2005), June 5-10 2005, Monterey, California, USA,

2005, pp. 71–80. [Online]. Available: http://www.aaai.org/Library/

ICAPS/2005/icaps05-008.php

120

https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-324
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-324
https://doi.org/10.1613/jair.3711
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7913
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS14/paper/view/7913
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12379
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12379
http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php
http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php

[54] D. Bryce, S. Kambhampati, and D. E. Smith, “Planning graph

heuristics for belief space search,” J. Artif. Intell. Res., vol. 26, pp.

35–99, 2006. [Online]. Available: https://doi.org/10.1613/jair.1869

[55] R. P. A. Petrick and F. Bacchus, “A knowledge-based approach to

planning with incomplete information and sensing,” in Proceedings of

the Sixth International Conference on Artificial Intelligence Planning

Systems, April 23-27, 2002, Toulouse, France, 2002, pp. 212–

222. [Online]. Available: http://www.aaai.org/Library/AIPS/2002/

aips02-022.php

[56] ——, “Extending the knowledge-based approach to planning with

incomplete information and sensing,” in Proceedings of the Fourteenth

International Conference on Automated Planning and Scheduling

(ICAPS 2004), June 3-7 2004, Whistler, British Columbia, Canada,

2004, pp. 2–11. [Online]. Available: http://www.aaai.org/Library/

ICAPS/2004/icaps04-005.php

[57] P. H. Tu, T. C. Son, and C. Baral, “Reasoning and planning with

sensing actions, incomplete information, and static causal laws using

answer set programming,” TPLP, vol. 7, no. 4, pp. 377–450, 2007.

[Online]. Available: https://doi.org/10.1017/S1471068406002948

[58] S. T. To, T. C. Son, and E. Pontelli, “Contingent planning as and/or

forward search with disjunctive representation,” in Proceedings of the

Twenty-First International Conference on International Conference on

Automated Planning and Scheduling, ser. ICAPS’11. AAAI Press,

2011, pp. 258–265. [Online]. Available: http://dl.acm.org/citation.cfm?

id=3038485.3038519

121

https://doi.org/10.1613/jair.1869
http://www.aaai.org/Library/AIPS/2002/aips02-022.php
http://www.aaai.org/Library/AIPS/2002/aips02-022.php
http://www.aaai.org/Library/ICAPS/2004/icaps04-005.php
http://www.aaai.org/Library/ICAPS/2004/icaps04-005.php
https://doi.org/10.1017/S1471068406002948
http://dl.acm.org/citation.cfm?id=3038485.3038519
http://dl.acm.org/citation.cfm?id=3038485.3038519

[59] N. McCain and H. Turner, “Causal theories of action and

change,” in Proceedings of the Fourteenth National Conference on

Artificial Intelligence and Ninth Innovative Applications of Artificial

Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997,

Providence, Rhode Island, USA., 1997, pp. 460–465. [Online]. Available:

http://www.aaai.org/Library/AAAI/1997/aaai97-071.php

[60] B. Bonet and H. Geffner, “Flexible and scalable partially observable

planning with linear translations,” in Proceedings of the Twenty-Eighth

AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec

City, Québec, Canada., 2014, pp. 2235–2241. [Online]. Available:

http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8642

[61] R. P. Goldman and M. S. Boddy, “Expressive planning and

explicit knowledge,” in Proceedings of the Third International

Conference on Artificial Intelligence Planning Systems, Edinburgh,

Scotland, May 29-31, 1996, 1996, pp. 110–117. [Online]. Available:

http://www.aaai.org/Library/AIPS/1996/aips96-014.php

[62] G. Brewka, T. Eiter, and M. Truszczynski, “Answer set programming:

An introduction to the special issue,” AI Magazine, vol. 37, no. 3,

pp. 5–6, 2016. [Online]. Available: http://www.aaai.org/ojs/index.php/

aimagazine/article/view/2669

[63] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “Clingo =

ASP + control: Preliminary report,” CoRR, vol. abs/1405.3694, 2014.

[Online]. Available: http://arxiv.org/abs/1405.3694

[64] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner,

122

http://www.aaai.org/Library/AAAI/1997/aaai97-071.php
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8642
http://www.aaai.org/Library/AIPS/1996/aips96-014.php
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2669
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2669
http://arxiv.org/abs/1405.3694

“Nonmonotonic causal theories,” Artificial Intelligence, vol. 153, no. 1,

pp. 49 – 104, 2004, logical Formalizations and Commonsense Reasoning.

[Online]. Available: http://www.sciencedirect.com/science/article/pii/

S000437020300167X

[65] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to

intricate motion, manipulation and task planning,” I. J. Robotics

Res., vol. 28, no. 1, pp. 104–126, 2009. [Online]. Available:

https://doi.org/10.1177/0278364908097884

[66] F. Gravot, A. Haneda, K. Okada, and M. Inaba, “Cooking

for humanoid robot, a task that needs symbolic and geometric

reasonings,” in Proceedings of the 2006 IEEE International Conference

on Robotics and Automation, ICRA 2006, May 15-19, 2006,

Orlando, Florida, USA, 2006, pp. 462–467. [Online]. Available:

https://doi.org/10.1109/ROBOT.2006.1641754

[67] F. Gravot, S. Cambon, and R. Alami, “asymov: A planner that

deals with intricate symbolic and geometric problems,” in Robotics

Research, The Eleventh International Symposium, ISRR, October

19-22, 2003, Siena, Italy, 2003, pp. 100–110. [Online]. Available:

https://doi.org/10.1007/11008941_11

[68] R. Lallement, “Symbolic and geometric planning for teams of robots

and humans. (planification symbolique et géométrique pour des équipes

de robots et d’humains),” Ph.D. dissertation, INSA Toulouse, France,

2016. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01534323

[69] M. Colledanchise, D. Almeida, and P. Ögren, “Towards blended reactive

123

http://www.sciencedirect.com/science/article/pii/S000437020300167X
http://www.sciencedirect.com/science/article/pii/S000437020300167X
https://doi.org/10.1177/0278364908097884
https://doi.org/10.1109/ROBOT.2006.1641754
https://doi.org/10.1007/11008941_11
https://tel.archives-ouvertes.fr/tel-01534323

planning and acting using behavior trees,” CoRR, vol. abs/1611.00230,

2016. [Online]. Available: http://arxiv.org/abs/1611.00230

[70] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and

motion planning in the now,” in IEEE International Conference

on Robotics and Automation, ICRA 2011, Shanghai, China, 9-

13 May 2011, 2011, pp. 1470–1477. [Online]. Available: https:

//doi.org/10.1109/ICRA.2011.5980391

[71] S. Stock, “Hierarchical hybrid planning for mobile robots,” KI,

vol. 31, no. 4, pp. 373–376, 2017. [Online]. Available: https:

//doi.org/10.1007/s13218-017-0507-7

[72] K. Hauser and J.-C. Latombe, “Integrating task and prm motion plan-

ning : Dealing with many infeasible motion planning queries,” 2009.

[73] A. Gaschler, R. P. A. Petrick, M. Giuliani, M. Rickert, and A. Knoll,

“KVP: A knowledge of volumes approach to robot task planning,” in

2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems, Tokyo, Japan, November 3-7, 2013, 2013, pp. 202–208.

[Online]. Available: https://doi.org/10.1109/IROS.2013.6696354

[74] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,

“Incremental task and motion planning: A constraint-based approach,”

in Robotics: Science and Systems XII, University of Michigan, Ann

Arbor, Michigan, USA, June 18 - June 22, 2016, 2016. [Online].

Available: http://www.roboticsproceedings.org/rss12/p02.html

[75] O. Caldiran, K. Haspalamutgil, A. Ok, C. Palaz, E. Erdem, and

V. Patoglu, “Bridging the gap between high-level reasoning and

124

http://arxiv.org/abs/1611.00230
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1007/s13218-017-0507-7
https://doi.org/10.1007/s13218-017-0507-7
https://doi.org/10.1109/IROS.2013.6696354
http://www.roboticsproceedings.org/rss12/p02.html

low-level control,” in Logic Programming and Nonmonotonic Reasoning,

10th International Conference, LPNMR 2009, Potsdam, Germany,

September 14-18, 2009. Proceedings, 2009, pp. 342–354. [Online].

Available: https://doi.org/10.1007/978-3-642-04238-6_29

[76] R. W. Weyhrauch, “Prolegomena to a theory of mechanized formal

reasoning,” Artif. Intell., vol. 13, no. 1-2, pp. 133–170, 1980. [Online].

Available: https://doi.org/10.1016/0004-3702(80)90015-6

[77] R. Diankov, “Automated construction of robotic manipulation pro-

grams,” Ph.D. dissertation, Carnegie Mellon University, Robotics In-

stitute, August 2010.

[78] M. Fox and D. Long, “PDDL2.1: an extension to PDDL for expressing

temporal planning domains,” J. Artif. Intell. Res., vol. 20, pp. 61–124,

2003. [Online]. Available: https://doi.org/10.1613/jair.1129

[79] D. V. McDermott, “The 1998 AI planning systems competition,”

AI Magazine, vol. 21, no. 2, pp. 35–55, 2000. [Online]. Available:

http://www.aaai.org/ojs/index.php/aimagazine/article/view/1506

[80] M. Ghallab, C. Knoblock, D. Wilkins, A. Barrett, D. Christianson,

M. Friedman, C. Kwok, K. Golden, S. Penberthy, D. Smith, Y. Sun, and

D. Weld, “Pddl - the planning domain definition language,” 08 1998.

[81] T. L. Dean and M. S. Boddy, “An analysis of time-dependent planning,”

in Proceedings of the 7th National Conference on Artificial Intelligence,

St. Paul, MN, USA, August 21-26, 1988., 1988, pp. 49–54. [Online].

Available: http://www.aaai.org/Library/AAAI/1988/aaai88-009.php

125

https://doi.org/10.1007/978-3-642-04238-6_29
https://doi.org/10.1016/0004-3702(80)90015-6
https://doi.org/10.1613/jair.1129
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1506
http://www.aaai.org/Library/AAAI/1988/aaai88-009.php

[82] M. S. Boddy and T. L. Dean, “Solving time-dependent planning

problems,” in Proceedings of the 11th International Joint Conference

on Artificial Intelligence. Detroit, MI, USA, August 1989, 1989,

pp. 979–984. [Online]. Available: http://ijcai.org/Proceedings/89-2/

Papers/021.pdf

[83] M. S. Boddy, “Anytime problem solving using dynamic programming,”

in Proceedings of the 9th National Conference on Artificial Intelligence,

Anaheim, CA, USA, July 14-19, 1991, Volume 2., 1991, pp. 738–

743. [Online]. Available: http://www.aaai.org/Library/AAAI/1991/

aaai91-115.php

[84] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning

library,” IEEE Robot. Automat. Mag., vol. 19, no. 4, pp. 72–82, 2012.

[Online]. Available: https://doi.org/10.1109/MRA.2012.2205651

[85] J. Babb and J. Lee, “Cplus 2asp: Computing action language ${\cal

C}$ + in answer set programming,” in Logic Programming and Non-

monotonic Reasoning, 12th International Conference, LPNMR 2013,

Corunna, Spain, September 15-19, 2013. Proceedings, 2013, pp. 122–134.

[Online]. Available: https://doi.org/10.1007/978-3-642-40564-8_13

[86] M. Gebser, T. Schaub, and S. Thiele, “Gringo : A new grounder for

answer set programming,” in Logic Programming and Nonmonotonic

Reasoning, 9th International Conference, LPNMR 2007, Tempe, AZ,

USA, May 15-17, 2007, Proceedings, 2007, pp. 266–271. [Online].

Available: https://doi.org/10.1007/978-3-540-72200-7_24

[87] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp

126

http://ijcai.org/Proceedings/89-2/Papers/021.pdf
http://ijcai.org/Proceedings/89-2/Papers/021.pdf
http://www.aaai.org/Library/AAAI/1991/aaai91-115.php
http://www.aaai.org/Library/AAAI/1991/aaai91-115.php
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1007/978-3-642-40564-8_13
https://doi.org/10.1007/978-3-540-72200-7_24

: A conflict-driven answer set solver,” in Logic Programming and

Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007,

Tempe, AZ, USA, May 15-17, 2007, Proceedings, 2007, pp. 260–265.

[Online]. Available: https://doi.org/10.1007/978-3-540-72200-7_23

[88] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “Swi-prolog,”

TPLP, vol. 12, no. 1-2, pp. 67–96, 2012. [Online]. Available:

https://doi.org/10.1017/S1471068411000494

[89] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and

Applications of Satisfiability Testing, 6th International Conference,

SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected

Revised Papers, 2003, pp. 502–518. [Online]. Available: https:

//doi.org/10.1007/978-3-540-24605-3_37

[90] M. Quigley, K. Conley, B. P Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y Ng, “Ros: an open-source robot operating sys-

tem,” vol. 3, 01 2009.

127

https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1017/S1471068411000494
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37

	Introduction
	Problem statement
	Overview of our approach
	Dissertation contributions
	Overview of dissertation

	Literature Review
	Plan execution monitoring
	Planning under incomplete knowledge
	Policy generations
	Conditional planning

	Hybrid planning approaches
	Novelties in our approach

	Action Descriptions Language C+
	Language of C+

	Hybrid Conditional Planning Framework
	Hybrid conditional plan
	Formal definition of actuation and sensing actions
	Describing actuation actions
	Describing sensing actions

	Feasibility checks integration
	Planning problem
	Computation of hybrid conditional plans
	Novelties in our framework

	Anytime and Reactive Hybrid Conditional Planning
	Anytime hybrid conditional planning
	Reactive hybrid conditional planning

	Benchmark Domains
	Mobile manipulation benchmark
	Navigation benchmark
	Manipulation benchmark

	Experimental Evaluation
	Experimentation setup
	HCPlan results for benchmark domains
	Parallel computation of branches
	Re-use of saved branches
	Integration of feasibility checks
	Comparison between plan execution monitoring and HCPlan
	Comparison between HCP-ASP and HCPlan
	Comparison between HCPlan and HCPlan-Anytime
	Comparison between HCPlan and HCPlan-Reactive
	Comparison between plan execution monitoring and HCPlan-Reactive

	Execution of Hybrid Conditional Plans
	Dynamic simulation
	Physical execution

	Conclusions

