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Due to increasing concerns about greenhouse gas emissions in recent years, many companies 

have had an interest in using alternative fuel vehicles in their fleets. Electric vehicles (EVs) are 

one of these vehicles and they have various advantages such as zero tailpipe emissions, low 

maintenance costs and low energy consumption. However, their acquisition costs are higher 

compared to the conventional vehicles and recharging the battery may take significant amount 

of time compared to the short fueling times. Hence, to overcome these challenges, logistics 

decisions have to be made effectively. The problem of planning EVs’ activities has been 

introduced to the literature as the Electric Vehicle Routing Problem (EVRP), which is a special 

case of the classical VRP where the fleet consists of EVs. The difference between this problem 

and the classical VRP is that vehicles have batteries as the energy source and the battery is 

being discharged while the EV is traveling. Hence, the EVs may recharge their batteries at the 

recharging stations to continue their routes. These stations are located at distant locations and 

there are few of them compared to the common fuel stations. Recharging may be performed at 

any level of the battery and the recharging time increases with the recharge amount. In some 

stations, there may be different chargers which vary in terms of charging speed. For instance, 

fast chargers recharge the battery faster, but they incur higher cost. Furthermore, EVs may wait 

in the queue at the stations since there may be other EVs which arrive earlier and wait for 
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service. In this dissertation, we address four problems which consider these different features 

of the EVRP. First, we study the EVRP with Time Windows where the batteries can be 

recharged partially at the recharging stations. Second, we extend this problem where the 

recharging stations are equipped with multiple types of chargers which differ by recharging 

rates and unit recharging costs. Next, we consider a stochastic environment where an EV may 

wait in the queue before recharging due to other EVs that have arrived earlier at that station. 

The waiting times depend on the time of the visit during the day, i.e., they are longer in the rush 

hours. Furthermore, the recharging time is assumed to be a nonlinear function of the energy 

recharged. In the final problem, we consider random waiting times at the recharging stations. 

In this case, the EVs do not have information about the queue lengths of the stations before they 

arrive at. We propose Adaptive Large Neighborhood Search heuristics and matheuristics to 

solve these problems effectively. 
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Sera gazı salınımları ile ilgili son yıllarda artan endişeler nedeniyle birçok şirket, filosuna 

alternatif yakıtlar ile çalışan araçları dahil etmekle ilgilenmeye başlamıştır. Elektrikli araçlar 

(EA) da bu araçlardan biri olup, egzoz gazı salınımı olmaması, düşük bakım ve enerji 

maliyetleri gibi birçok avantaja sahiptir. Bunların yanında, satınalma maliyeti klasik araçlara 

göre yüksek olup, pilin şarj edilmesi, kısa yakıt doldurma süresine kıyasla oldukça uzun 

sürebilmektedir. Bu zorlukları aşabilmek için lojistik kararların etkin bir şekilde alınması 

gerekmektedir. Elektrikli araçların hareketlerinin planlanmasını içeren bu problem literatüre 

Elektrikli Araç Rotalama Problemi (EARP) olarak girmiştir ve özünde, filonun EA’lardan 

oluştuğu, klasik ARP’nin özel bir durumudur. Bu problem ile klasik ARP’nin farkı, araçların 

enerji kaynağı olarak, araç yolda ilerledikçe şarj seviyesi azalan bir pile sahip olmalarıdır. Bu 

nedenle, araçlar rotalarına devam edebilmek için şarj istasyonlarına uğrayıp pillerini şarj etmek 

zorunda kalabilirler. Bu istasyonlar uzak mesafelerde olup sayıları, yaygın olarak bulunan 

benzin istasyonlarına göre oldukça azdır. Şarj işlemi, pil herhangi bir şarj seviyesindeyken 

yapılabilmekte ve şarj süresi, şarj miktarına bağlı olarak artmaktadır. Bazı istasyonlar şarj hızı 

farklı olan şarj cihazlarına da sahip olabilir. Örneğin, hızlı şarj cihazları pili hızlı şarj ederken, 

birim şarj maliyetleri daha yüksektir. Bununla beraber, istasyonda daha erken gelmiş olan 

araçlar olması durumunda, yeni gelen bir EA şarj işleminden önce bir süre kuyrukta beklemek 
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zorunda kalabilir. Bu tezde, EARP’nin farklı özelliklerini ele alan dört problem incelenmiştir. 

İlk olarak şarj istasyonlarında, araçların pillerinin kısmi olarak şarj edildiği EARP ele 

alınmıştır. İkinci olarak şarj istasyonlarının, şarj hızı ve birim şarj maliyetleri farklı olan şarj 

ekipmanlarına sahip olduğu problem incelenmiştir. Üçüncü problem rassal bir ortamı 

incelemekte olup, bir EA’nın şarj işleminden önce, o istasyona daha erken gelmiş olan başka 

araçlar nedeniyle bir süre kuyrukta bekleyebildiği durumu ele almaktadır. Bu bekleme süreleri, 

gün içinde istasyonun ziyaret saatine göre değişkenlik göstermektedir. Örneğin, trafiğin yoğun 

olduğu saatlerde bekleme süresi daha uzundur. Ayrıca, şarj süresinin şarj miktarının doğrusal 

olmayan bir fonksiyonu olduğu varsayılmıştır. Son problem ise, şarj istasyonlarında rassal 

bekleme sürelerini ele almaktadır. Bu durumda araçların, ilgili istasyona gitmedikleri sürece 

oradaki bekleme süresi hakkında bilgileri yoktur. Bu problemlerin etkin bir şekilde çözümü için 

Uyarlanabilir Geniş Komşuluk Arama Yöntemi sezgisel ve mat-sezgisel yöntemleri 

geliştirilmiştir. 
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Chapter 1 
_____________________________________________ 

 
Introduction 
 
 
Transportation systems account for about 20-25% of global energy consumption and CO2 

emissions. Road transport is a major contributor with 75% share (White Paper on Transport, 

2011). 95% of the world's transportation energy comes from fossil fuels, mainly gasoline and 

diesel. In the US, about 28% of total greenhouse gas (GHG) emissions in 2016 are transport 

related (www.epa.gov). 74% of the domestic freight in 2012 is moved by trucks and the freight 

volume is expected to grow by 39% in 2040 (Bureau of Transportation Statistics, 2014). 

Transport accounts for 63% of fuel consumption and 29% of all CO2 emissions in the EU. 

Freight transport activity is predicted to grow by around 80% in 2050 compared to 2005 

(ec.europa.eu).  

Transportation will continue to be a major and still growing source of GHGs. Hence, 

governments are considering new environmental measures and targets for reducing emissions 

and fuel resource consumptions. The US Administration aims at cutting the overall GHG 

emissions 17% below 2005 levels by 2020 and has recently established the toughest fuel 

economy standards for internal combustion engine vehicles (ICEVs) in the US history 

(www.state.gov). The EU targets 80–95% reduction of GHGs below 1990 levels by 2050, 

where a reduction of at least 60% is expected from the transport sector. The European 

Commission aims at reducing the transport-related GHG emissions to around 20% below their 

2008 level by 2030. The use of conventional vehicles will be reduced by 50% in urban transport 

by 2030 and phased out by 2050. City logistics in major European urban centers will be CO2-

free by 2030 (White Paper on Transport, 2011).  

The targets set by governments and the new regulations imposed encourage the usage of 

alternative fuel vehicles (AFV) such as solar, electric, biodiesel, LNG, CNG vehicles. Many 

municipalities, government agencies, non-profit organizations, and private companies are 

converting their fleets to include AFVs, either to reduce their environmental impact voluntarily 
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or to meet new environmental regulations (Erdoğan and Miller-Hooks, 2012). Consequently, 

the improvements in the EV technology have gained momentum in parallel with the growing 

environmental concerns in societies.  

This thesis aims to develop models and solution algorithms for different vehicle routing 

problems in which EVs are used.  

1.1. Overview of Electric Vehicle Technology 

EVs move with electric propulsion and can provide emission-free urban transportation. They 

can be classified as battery electric vehicles (BEV), hybrid electric vehicles (HEV), and fuel-

cell electric vehicles (FCEV) such as electric trains, airplanes, boats, motorcycles, scooters, and 

spacecrafts (Chan, 2002). Within the routing context, we refer to EV as a commercial road 

vehicle such as a lorry or van. A BEV has only one or more electric motors and uses the power 

generated by the on-board battery for propulsion (Electrification Coalition, 2013). As reported 

in Pollet et al. (2012), the advantages of BEVs are lack of tailpipe emissions, high efficiency 

and low operating noise while they have some disadvantages such as low achievable driving 

range and low energy density causing long times for recharging the battery. Number of moving 

parts in BEVs are much less than of ICEVs and do not require regular oil changes (Feng and 

Figliozzi, 2013). Also due to the regenerative breaking, brake wear is used less which brings 

less maintenance costs (Lee et al., 2013). Nesterova et al. (2013) stated that a single charge for 

freight BEVs provides a range varying from 100 to 150 kilometers. 

HEVs are further classified according to their powertrain architecture as parallel, series, series-

parallel and complex (Chan, 2007). A plug-in hybrid electric vehicle (PHEV) is an HEV which 

utilizes a rechargeable battery and is also equipped with both electric motor and internal 

combustion engine (ICE). In series type of vehicles, internal combustion engine (ICE) is used 

to power a generator and the propulsion comes from the electric motor while in the parallel 

type, both the ICE and the electric motor are used in the propulsion (Chan, 2007). The main 

advantage of PHEVs is the ability to move using fuel when it runs out of battery power. 

In the FCEV, the electricity is produced by a fuel cell via a chemical reaction which uses 

hydrogen as the input and produces water as the output. Then, the electricity is used to charge 

a battery or power the electric motor (Chan, 2007). den Boer et al. (2013) reported that fuel 

cells can convert approximately 50% of hydrogen’s energy to electricity and they have a 

durability of 10,000 operating hours. Those factors are the main drawbacks of FCEVs. 
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The rechargeable battery is the critical component of EVs. The main types of batteries include 

lead acid batteries, nickel metal hybrid batteries and lithium-ion batteries (Chan, 2007). 

Lithium-ion batteries are the most widely used type since they have high energy density, high 

power density, long battery life and low memory effect compared to other alternatives (den 

Boer et al., 2013). 

There are different ways for recharging EVs such as conductive charging, inductive charging 

and battery swapping. The most common method is conductive charging which is done by a 

cable and a vehicle connector. In inductive charging, the power is transferred to the battery 

magnetically via an on-board charger without needing any cables connectors (Yılmaz and 

Krein, 2013). Stationary inductive charging is used when the vehicle is stopped while in-road 

inductive charging can be performed even if the vehicle is moving (den Boer et al., 2013). 

Battery swapping includes changing the empty battery with a fully charged one in a battery 

swapping station. Using catenary wires is another charging option where the vehicles can be 

recharged using a pantograph device which slides along the electric wires and transfer the 

energy. It can be useful for public electric buses (CALSTART, 2013). 

The battery recharging times are dependent to the battery type, charging equipment and 

charging level. Yılmaz and Krein (2013) classifies the charging levels into three categories: 

level 1 (1.4 kW to 1.9 kW), level 2 (4 kW to 19.2 kW) and level 3 (50 kW to 100 kW). The last 

is also called as fast/quick charging. The charge durations are linear with respect to time at the 

first phase of charging which corresponds to almost full battery while the second phase is non-

linear and can take hours to obtain a fully charged battery (Bruglieri et al., 2015).  

Although EVs enable low-emission logistics services, operating an EV fleet has several 

drawbacks such as: (i) low energy density of batteries compared to the fuel of combustion 

engine vehicles; (ii) limited number of public charging stations; and (iii) long recharging times 

(Touati-Moungla and Jost, 2011). Battery swap may remedy the last; however, swapping raises 

additional issues in battery design and compatibility, battery degradation, ownership, and swap 

station infrastructure. Under these limitations, routing an EV fleet arises as a challenging 

combinatorial optimization problem in the Vehicle Routing Problem (VRP) literature. The 

problems studied in this thesis are motivated by the fact that the use of EVs are becoming more 

and more common and making the logistics decisions in an effective way is also becoming 

essential. The chapters are organized in a way that at the beginning the very basic problem is 

studied and in the subsequent chapters, the problem studied in that part is an extension to the 

previous one. In this thesis, we refer to EV as a commercial road BEV such as a lorry or van. 
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A fleet of EVs can be used in a variety of transport needs such as public transportation, home 

deliveries from grocery stores, postal deliveries and courier services, distribution operations in 

different sectors. 

1.2. The Problem of Routing Electric Vehicles 

The Electric Vehicle Routing Problem with Time Windows (EVRPTW) was introduced by 

Schneider et al. (2014) as an extension to the Green Vehicle Routing Problem (GVRP) of 

Erdoğan and Miller-Hooks (2012). GVRP concerns “green” vehicles which run with biodiesel, 

liquid natural gas, or CNG, and have a limited driving range. Hence, the vehicles may need 

refueling along their route. Refueling is fast; however, the stations for these fuels are scarce. 

EVRPTW is a variant of the classical VRPTW where the fleet consists of EVs that may need 

to visit stations to have their batteries recharged in order to continue their route, as in GVRP. 

On the other hand, the recharging operation may take a significant amount of time, especially 

when compared to relatively short refueling times of liquid fuels. Recharging may take place 

at any battery level and the recharge time is proportional to the amount charged. After the 

recharge, the battery is assumed to be full. The number of stations is usually few and the stations 

are dispersed in distant locations, which increases the difficulty of the problem. 

1.3. Thesis Organization 

Chapter 2 studies a variant of the EVRPTW introduced by Schneider et al. (2014) where partial 

recharging is allowed instead of recharging the battery up to the capacity at the recharging 

stations which is more practical in the real world due to shorter recharging duration. This 

relaxation brings advantages in terms of meeting time windows of the customers. In full 

charging scheme, sometimes it is not necessary to recharge the battery fully since the recharging 

point is close to the return point. Similarly, the EV may recharge a small amount at a station in 

order to catch the time windows of a specific customer and recharge more at a station visited 

afterwards. In this way, more customers may be merged in fewer number of vehicles and fleet 

size may be decreased. Furthermore, in some cases, even if the fleet size does not change, it is 

possible to save from the total distance. The primary objective of the problem is minimizing 

the fleet size and the secondary objective is minimizing the total distance. We formulate this 

problem as a 0-1 mixed integer linear program and develop an Adaptive Large Neighborhood 

Search (ALNS) algorithm to solve it efficiently. We apply several removal and insertion 

mechanisms by selecting them dynamically and adaptively based on their past performances, 

including new mechanisms specifically designed for EVRPTW and EVRPTW-PR. These new 
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mechanisms include the removal of the stations independently or along with the preceding or 

succeeding customers and the insertion of the stations with determining the charge amount 

based on the recharging decisions. We test the performance of ALNS by using benchmark 

instances from the recent literature. The computational results show that the proposed method 

is effective in finding high quality solutions and the partial recharging option may significantly 

improve the routing decisions. This study was published in Transportation Research Part C: 

Emerging Technologies as “Partial recharge strategies for the electric vehicle routing problem 

with time windows” by Merve Keskin and Bülent Çatay. This chapter introduced partial 

recharging to the EVRP literature and presented benchmark results. 

Chapter 3 analyzes the case in which the recharging stations have multiple types of chargers. 

They differ in their recharging rates and unit costs of energy. There are three types of chargers, 

namely slow, fast and super-fast. As expected, slow charger is the cheapest one and the super-

fast charger recharges the battery with the most expensive cost. The advantage of using fast 

chargers is saving time and being able to catch the time windows of the customers which cannot 

be reached otherwise due to long recharging times. In this way, customers can be merged and 

total travelled distance or sometimes the fleet size may be reduced. The primary objective is 

minimizing the number of vehicles as in the previous problem, and the secondary objective is 

minimizing the total energy cost. Here we are minimizing the total energy cost since the 

chargers have different costs per energy recharged. We formulated this problem as a mixed 

integer linear program and solved the small instances using CPLEX. To solve the larger 

problems, we develop a matheuristic approach which couples the ALNS approach with a mixed 

integer linear programming model. Our ALNS is equipped with various destroy-repair 

algorithms to efficiently explore the neighborhoods and uses CPLEX to strengthen the routes 

obtained. We carried out extensive experiments to investigate the benefits of fast recharges and 

test the performance of our algorithm using benchmark instances from the literature. The results 

show the effectiveness of the proposed matheuristic and demonstrate the benefits of fast 

chargers on the fleet size and energy costs. This study was published in Computers & 

Operations Research as “A Matheuristic Method for the Electric Vehicle Routing Problem with 

Time Windows and Fast Chargers” by Merve Keskin and Bülent Çatay. Although there were 

studies considering multiple chargers, this chapter was the first which also addresses the time 

windows for the customers and the depot.  

Chapter 4 relaxes the assumption that EVs receive service right after they arrive at a recharging 

station. If the stations are public, then the EVs cannot have a control on the scheduling of the 

stations and they may face queues. It means, they may wait before they recharge their batteries. 



 

 6 

Furthermore, these waiting times may differ from one time interval to another within the day 

due to the rush hours. Hence, the EVs have to make routing plans according to these waiting 

times because otherwise they may wait too long and be late for the customers. In this study, the 

planning horizon is split into a set of time intervals and for each interval, different waiting times 

are assigned to the stations. It is assumed that the stations have M/G/1 queueing system and we 

make use of the average waiting time equations to generate waiting times. We further assume 

that the customers and the depot have soft time windows. If the EV arrives at a customer earlier 

than the service beginning time, it has to wait until that time, but if it arrives later than the late 

service time, a penalty, proportional to the lateness, is paid. For the depot, this penalty is paid 

as overtime wage to the driver. A regular wage is also paid to the driver on unit time basis. The 

problem is to find routes such that total cost of energy, penalty, driver regular and overtime 

wages, and operating EVs is minimized. We formulate the problem as a mixed integer linear 

program and solve small instances with CPLEX. For the larger instances, we develop a 

matheuristic which is a combination of Adaptive Large Neighborhood Search and of the 

solution of a mixed integer linear program. We perform experiments on benchmark instances. 

Our results show the impact of waiting times on routing decisions. This study was carried out 

with the help of Prof. Gilbert Laporte when the author was visiting student at CIRRELT (Centre 

interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et le transport) and is 

submitted to Computers & Operations Research as “Electric Vehicle Routing Problem with Soft 

Time Windows and Time-Dependent Waiting Times at Recharging Stations” by Merve Keskin, 

Gilbert Laporte and Bülent Çatay. The contribution of this chapter is addressing time-dependent 

waiting times at the stations which was not studied before. 

Chapter 5 generalizes the problem studied in the previous chapter and considers stochastic 

waiting times at the recharging stations. Here the waiting times in the queues are not 

approximated with the average values, but they are random variables. Similar to the previous 

study, we assume that the stations have M/G/1 queueing system. The problem is modeled as a 

two-stage stochastic program with recourse. In the first stage, an a priori plan is made using the 

expected waiting times. Then, each time an EV arrives at a station, the random waiting time 

realizes. The customers and the depot have hard time windows and a failure occurs if an EV 

arrives at a customer or at the depot after their service finish time. In this case, a recourse action 

should be taken to correct the initial solution and make it feasible with the realized waiting 

time. The randomness of the waiting times is modeled using a set of scenarios and to calculate 

the probabilities and expected values, stochastic simulation is used. To solve the problem, an 

ALNS algorithm is proposed with some well-known operators from the literature as well as 

newly introduced mechanisms. Results show that waiting times are essential in planning and 
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using expected waiting times does not always yield good solutions. This chapter introduced 

presence of random waiting times at the stations which was not addressed before. 

Finally, the last chapter concludes the thesis and gives an outlook on future directions of 

research. 
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Chapter 2 
_____________________________________________ 

 
Partial Recharge Strategies for the Electric Vehicle 
Routing Problem with Time Windows 

 

2.1. Introduction 
EVs move with electric propulsion and can be used in a variety of transport needs such as public 

transportation, home deliveries from grocery stores, postal deliveries and courier services, and 

distribution operations in different sectors. Although EVs enable zero- or low-emission 

logistics services, operating an EV fleet has several drawbacks such as: (i) low energy density 

of batteries compared to the fuel of combustion engined vehicles; (ii) limited number of public 

charging stations; and (iii) long recharging times (Touati-Moungla and Jost, 2011). Battery 

swap may remedy the last; however, swapping raises additional issues in battery design and 

compatibility, battery degradation, ownership, and swap station infrastructure. Under these 

limitations, routing an EV fleet arises as a challenging combinatorial optimization problem in 

the Vehicle Routing Problem (VRP) literature.  

In this chapter, we relax the full recharging (FR) restriction and allow partial recharging (PR) 

which is more practical in the real world due to shorter recharging duration. When the vehicle 

visits a station near the end of its route, FR may not be needed for the vehicle to return to the 

depot. A similar situation may exist between two consecutive recharges. Saving from 

recharging time may allow the vehicle to catch the time window of an otherwise unvisited 

customer, thus, may improve the solution. 

In the PR scheme, the recharge quantity is associated with a continuous decision variable. We 

refer to this problem as EVRPTW and Partial Recharges (EVRPTW-PR) and formulate it as 0-

1 mixed integer linear program. Note that determining the recharge quantities brings significant 

difficulties to the problem. Since the problem is intractable for large instances, we propose an 

ALNS approach to solve it efficiently. ALNS is based on the destroy-and-repair framework 
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where at each iteration the existing feasible solution is destroyed by removing some customers 

and recharging stations from their routes and then repaired by inserting the removed customers 

to the solution along with stations when recharging is necessary. Several removal and insertion 

algorithms are applied by selecting them dynamically and adaptively based on their past 

performances. The new solution is accepted according to the Simulated Annealing criterion. 

Our approach combines the removal and insertion mechanisms presented in Ropke and Pisinger 

(2006a, 2006b), Pisinger and Ropke (2007) and Demir et al. (2012) with some new mechanisms 

designed specifically for EVRPTW and EVRPTW-PR. Our computational tests show that the 

proposed ALNS is effective in finding good quality solutions and improves some of the best-

known solutions in the literature. Furthermore, our results reveal that the PR scheme may 

substantially improve the routing decisions. 

The contributions of this study can be summarized as follows: 

• We extend EVRPTW to a PR scheme, which is more general and practical, and present 

the mathematical programming formulation of the problem. 

• We propose an effective ALNS method to solve the EVRPTW and EVRPTW-PR. The 

proposed method introduces new removal and insertion mechanisms to tackle the more 

complex problem structure of VRPs where the fleet consists of EVs. 

• We validate the performance of the proposed method using the EVRPTW instances of 

Schneider et al. (2014) and improve the best-known solutions of four problems. 

• We show that the PR scheme may improve the solutions obtained with the FR scheme 

substantially. 

The remainder of the chapter is organized as follows: Section 2.2 reviews the related studies in 

the literature. Section 2.3 describes the problem and formulates the mathematical model. The 

proposed ALNS method is presented in Section 2.4. Section 2.5 provides the computational 

study and discusses the results. Finally, concluding remarks and future research directions are 

given in Section 2.6. 

2.2. Related Literature 

There are relatively few studies on route optimization of AFVs. Artmeirer et al. (2010) study 

this problem within a graph-theoretic context and propose extensions to general shortest path 

algorithms that address the problem of energy-optimal routing. They formalize energy-efficient 

routing in the presence of rechargeable batteries as a special case of the constrained shortest 

path problem and present an adaption of a general shortest path algorithm that respects the given 
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constraints. Wang and Shen (2007) develop a model that minimizes the number of tours and 

total deadhead time hierarchically. The driving range of the vehicle is limited but the charging 

durations, time windows and vehicle capacities are not considered. A multiple ant colony 

algorithm is proposed to solve the problem.  

Conrad and Figliozzi (2011) introduce the Recharging VRP (RVRP), a new variant of the VRP 

where the EVs are allowed to recharge at selected customer locations. The model has dual 

objectives: the primary objective minimizes the number of routes or vehicles whereas the 

secondary objective minimizes the total costs associated with the travel distance, service time 

and vehicle recharging. The latter is a penalty cost incurred at each recharge. The EV is charged 

while servicing the customer and the charging time is constant. The battery level departing from 

a customer depends on the choice of full charge or partial charging. In the partial charge case 

the battery is charged to a specified level such as 80% of battery capacity. Conrad and Figliozzi 

(2011) use an iterative construction and improvement procedure to solve this problem but do 

not provide its details. 

Wang and Cheu (2012) investigate the operations of an electric taxi fleet. Their model 

minimizes the total distance travelled under the recharging constraints and maximum route 

time. The battery is consumed at a given rate per distance and can be replenished at the 

recharging stations. Charging times are constant and after charging the battery becomes full. 

They construct an initial solution using one of the nearest-neighbor, sweep and earliest time 

window insertion heuristics and improve it using Tabu Search (TS). They also suggest three 

different recharging plans which provide different driving ranges and compare the results 

against the full charging scheme. 

Omidvar and R. Tavakkoli-Moghaddam (2012) tackle an AFV routing problem with time-

windows and propose a mathematical model that minimizes total costs related to vehicles, 

distance travelled, travel time and emissions. The refueling times are assumed to be constant. 

They use the Simulated Annealing (SA) and Genetic Algorithm (GA) approaches and compare 

their performances. Worley et al. (2012) address the problem of locating recharging stations 

and designing EV routes simultaneously. The objective is to minimize the sum of the travel 

costs, recharging costs, and costs of locating recharging stations. A solution method is not 

proposed and left as future work. 

Erdoğan and Miller-Hooks (2012) consider the routing of AFVs within the GVRP context and 

formulate the mathematical model. The model aims at minimizing the total distance travelled 

where the length of the routes is restricted. Fuel is consumed with a given rate per traveled 
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distance and can be replenished at the alternative fuel stations. Refueling times are assumed to 

be fixed and after refueling the tank becomes full. The model does not involve time windows 

and vehicle capacity constraints. They propose two heuristics to solve the GVRP. The first is a 

Modified Clarke and Wright Savings (MCWS) algorithm which creates routes by establishing 

feasibility through the insertion of AFSs, merging feasible routes according to savings values, 

and removing redundant AFSs. The second is a Density-Based Clustering Algorithm (DBCA) 

based on the cluster-first and route-second approach. DBCA forms clusters of customers such 

that every vertex within a given radius contains at least a predefined number of neighbors. 

Subsequently, the MCWS algorithm is applied to the identified clusters. To test the performance 

of these two heuristics, they design two sets of problem instances. The first consists of 40 small-

sized instances with 20 customers while the second involves 12 instances with up to 500 

customers. 

Recently, Felipe et al. (2014) extend GVRP for EVs by allowing partial recharges using 

multiple technologies, i.e. using different power options. As in GVRP, the problem does not 

involve time windows but EVs have capacity and total route duration limits. The authors 

formulate the mathematical programming model and present constructive and deterministic 

local search algorithms as well as a metaheuristic extension based on an SA framework. The 

computational tests on both randomly generated and GVRP data show that using partial 

recharge strategies and providing multiple recharge technologies can achieve cost and energy 

savings and ensure feasibility in some instances. 

Schneider et al. (2014) develop a hybrid metaheuristic that combines the Variable 

Neighborhood Search (VNS) algorithm with TS for solving EVRPTW. They test the 

performance of the proposed method on benchmark instances of GVRP and Multi-Depot VRP 

with Inter-Depot Routes. They also generate new instances for EVRPTW by modifying 

Solomon (1987) data and report their results. Desaulniers et al. (2014) tackle the same problem 

by considering four recharging strategies which are the combinations of 2 cases. In the first 

case, the EVs are allowed to recharge only once (single) or multiple times (multiple). In the 

second case, batteries are recharged partially (PR) or fully (FR). Hence, they analyze the 

strategies single-FR, single-PR, multiple-FR, multiple-PR and attempt to solve the problems 

optimally using branch-price-and-cut algorithms. Goeke and Schneider (2015) extend 

EVRPTW to the routing of a mixed fleet of EVs and internal combustion engine (ICE) vehicles. 

Their objective function consists of an energy consumption function of speed, gradient, and 

cargo load distribution, and they propose an ALNS approach to solve it. Hiermann et al. (2015) 

address the Fleet Size and Mix Vehicle Routing Problem with Time Windows where the fleet 
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consists of EVs. They also implement an ALNS algorithm equipped with local search and 

labeling procedures.  

2.3. Problem Description and Model Formulation 

EVRPTW-PR concerns a set of customers with known demands, delivery time windows, and 

service durations. The deliveries are performed by a homogeneous fleet of EVs with fixed 

loading capacities and limited cruising ranges. While the vehicle is traveling, the battery charge 

level decreases proportionally with the distance traversed and the vehicle may need to visit a 

recharging station in order to continue its route. The battery is recharged at any quantity and 

the duration of the recharge depends on the initial state of battery charge. The vehicle departs 

from the depot fully charged and may arrive at/depart from a station with any SoC and it returns 

to depot with an empty battery if it has been recharged once during its route. If the EV does not 

visit any stations, it may still arrive at the depot with an empty battery if the total distance 

traveled is equal to the battery capacity. Otherwise, the arrival SoC at the depot will have a 

positive value. 

Figure 2.1 illustrates an example involving ten customers (C1-C10), four stations (S1-S4), and 

the depot (D) which can also be used for recharging. The percentage values along the routes 

show the battery SoC when the vehicle arrives at a customer or a station and when it departs 

from the station after having its battery recharged. EV1 services C1 and C2, returns to the depot 

without any recharging. EV2 visits S1 after servicing C4 and has its battery recharged before 

visiting C5 and C3. On the other hand, EV3 is recharged once in S4 and twice in S3. Note that 

a station can be visited multiple times by the same (see S3) or different vehicles and each station 

is not necessarily visited (see S2). In what follows, we provide the mathematical model for 

EVRPTW-PR following the notation and formulation of Schneider et al. (2014).  

 

Figure 2.1. An illustrative example 
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Let 𝑉 = {1,… ,𝑁} denote the set of customers and 𝐹 denote the set of recharging stations. Since 

a recharging station may be visited more than once depending on the route structure, we create 

𝐹′which is the set of dummy vertices generated to permit several visits to each vertex in the set 

𝐹. Vertices 0 and 𝑁 + 1 denote the depot and every route starts at 0 and ends at 𝑁 + 1. Let 𝑉 ′ 

be the set of vertices with 𝑉 ′ = 𝑉 ∪ 𝐹′. In order to indicate that a set contains the respective 

instance of the depot, the set is subscripted with 0 or 𝑁 + 1. Hence, 𝐹4′ = 𝐹′ ∪ {0},  𝑉4′ = 𝑉 ′ ∪

{0}, and 𝑉567′ = 𝑉 ′ ∪ {𝑁 + 1}. Now we can define the problem on a complete directed graph 

𝐺 = (𝑉4,567′ , 𝐴) with the set of arcs 𝐴 = :(𝑖, 𝑗)|		𝑖, 𝑗 ∈ 𝑉4,567′ , 𝑖 ≠ 𝑗@. Each arc is associated 

with a distance 𝑑BC and travel time 𝑡BC. The battery charge is consumed at a rate of ℎ and every 

traveled arc consumes ℎ ∙ 𝑑BC of the remaining battery. Each customer 𝑖 ∈ 𝑉 has positive 

demand 𝑞B, service time 𝑠B and time window [𝑒B, 𝑙B]. All EVs have a load capacity of 𝐶 and a 

battery capacity of 𝑄. At a recharging station, the battery is charged at a recharging rate of 𝑔. 

The decision variables, 𝜏B, 𝑢B and 𝑦B keep track of the service starting time, remaining cargo 

level and battery SoC on arriving to vertex 𝑖 ∈ 𝑉4,567′ , respectively. The binary decision 

variable 𝑥BC			takes value 1 if arc (𝑖, 𝑗) is traversed and 0 otherwise. In Schneider et al. (2014) 

the battery is always recharged to full capacity, i.e. the recharge amount is (𝑄 − 𝑦B). The 

EVRPTW-PR allows partial recharges by defining a new decision variable 𝑌B which represents 

the battery SoC on departure from station 𝑖. 

min			 Y 𝑑BC𝑥BC				
B∈Z[′ ,C∈Z\]^′

  (2.1) 

subject to 
 

  

Y 𝑥BC
C∈Z\]^′

= 1											 ∀𝑖 ∈ 𝑉															 (2.2) 

Y 𝑥BC
C∈Z\]^′

≤ 1																															 ∀𝑖 ∈ 𝐹′ (2.3) 

Y𝑥BC
B∈Z[′

− Y 𝑥CB
B∈Z\]^′

= 0																				 ∀𝑗 ∈ 𝑉 ′ (2.4) 

𝜏B + a𝑡BC + 𝑠Bb𝑥BC − 𝑙4a1 − 𝑥BCb ≤ 𝜏C ∀𝑖 ∈ 𝑉4, ∀𝑗 ∈ 𝑉c67′  (2.5) 

𝜏B + 𝑡BC𝑥BC + 𝑔(𝑌B − 𝑦B) − (𝑙4 + 𝑔𝑄)a1 − 𝑥BCb ≤ 𝜏C ∀𝑖 ∈ 𝐹′, ∀𝑗 ∈ 𝑉c67′  (2.6) 

𝑒C ≤ 𝜏C ≤ 𝑙C		  ∀𝑗 ∈ 𝑉4,c67′  (2.7) 

0 ≤ 𝑢C ≤ 𝑢B − 𝑞B𝑥BC + 𝐶a1 − 𝑥BCb ∀𝑖 ∈ 𝑉4′ , ∀𝑗 ∈ 𝑉c67′   (2.8) 

0 ≤ 𝑢4 ≤ 𝐶					  (2.9) 
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0 ≤ 𝑦C ≤ 𝑦B − aℎ ∙ 𝑑BCb𝑥BC + 𝑄a1 − 𝑥BCb ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉c67′  (2.10) 

0 ≤ 𝑦C ≤ 𝑌B − (ℎ ∙ 𝑑BC)𝑥BC 	+ 𝑄a1 − 𝑥BCb ∀𝑖 ∈ 𝐹4′ , ∀𝑗 ∈ 𝑉c67′  (2.11) 

𝑦B ≤ 𝑌B ≤ 𝑄 ∀𝑖 ∈ 𝐹4′  (2.12) 

𝑥BC ∈ {0,1} ∀𝑖 ∈ 𝑉4′ , ∀𝑗 ∈ 𝑉c67′  (2.13) 

 

The objective function (2.1) minimizes the total distance traveled. Constraints (2.2) and (2.3) 

handle the connectivity of customers and visits to recharging stations, respectively. The flow 

conservation constraints (2.4) enforce that the number of outgoing arcs equals to the number of 

incoming arcs at each vertex. Constraints (2.5) and (2.6) ensure the time feasibility of arcs 

leaving the customers (and the depot), and the stations, respectively. Constraints (2.7) enforce 

the time windows of the customers and the depot. In addition, constraints (2.5)−(2.7) eliminate 

the sub-tours. Constraints (2.8) and (2.9) guarantee that demand of all customers are satisfied. 

Constraints (2.10) and (2.11) keep track of the battery SoC and make sure that it is never 

negative. Constraints (2.12) determine the battery SoC after the recharge at a station and make 

sure that it does not exceed its capacity. Finally, constraints (2.13) define the binary decision 

variables. 

Proposition 2.1: If an optimal solution exists such that an EV leaves the depot with its battery 

partially charged, i.e.,  𝑌4∗ < 𝑄, then the same EV departing from the depot fully charged is also 

optimal, i.e., 𝑌4∗ = 𝑄 is also optimal. 

Proof: Let  𝑌4∗ < 𝑄 be optimal. Since fully recharging the battery at the depot does not delay 

the departure time of the EV, 𝑌4∗ = 𝑄 must also be optimal. 

Corollary 2.1: If  𝑌4∗ < 𝑄 is optimal, then the problem has infinite multiple optima. 

Proof: Let 𝑌f4 < 𝑄 be optimal and 𝑌f4 + e		£	𝑄 not, where e	 is a small positive scalar. Then 

following Proposition 2.1, multiple optima exist such that 𝑌f4	£	𝑌4∗	£	𝑄. 

Proposition 2.2: If an optimal solution exists such that an EV has been recharged at least once 

and returns to the depot at the end of its route with positive battery state, i.e.  𝑦c67∗ > 0, then its 

return to the depot with empty battery is also optimal, i.e. 𝑦c67∗ = 0 is also optimal. 

Proof: Let  𝑦c67∗ > 0 be optimal. Since recharging the battery with less energy at the preceding 

station does not delay the departure time to cause any time window infeasibility, 𝑦c67∗ = 0 must 

also be optimal. 
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Corollary 2.2: If  𝑦c67∗ > 0  is optimal, then the problem has infinite multiple optima. 

Proof: Let 𝑦fc67 > 0  be optimal and 𝑦fc67 + e		 not, where e	 is a small positive scalar. Then 

following Proposition 2.2, multiple optima exist such that 0	£	𝑦c67∗ 	£	𝑦fc67. 

Without loss of generality, we assume that an EV departs from the depot with a battery charged 

in full and returns to the depot with its battery fully consumed if it has been recharged at least 

once along its route. 

2.4. Solution Methodology 

We propose an ALNS method to solve the EVRPTW-PR. ALNS was introduced by Ropke and 

Pisinger (2006a) as an extension of the Large Neighborhood Search (LNS) framework put 

forward by Shaw (1998). Since local search methods can only make small changes to an 

existing solution their search space is narrow. Hence, they are unable to move from one 

promising area to another within the feasible region. To overcome this shortcoming, Ropke and 

Pisinger (2006a) considered large moves that rearrange up to 40% of the vertices instead of 

using small moves that relocate or exchange only a few arcs or vertices at each iteration. In a 

subsequent study, Ropke and Pisinger (2006b) developed a unified ALNS heuristic for a large 

class of VRP with Backhauls. Pisinger and Ropke (2007) improved this heuristic with 

additional algorithms and showed that the proposed framework gives competitive results in 

different VRP variants. Since then, ALNS has been successfully implemented to solve various 

VRPs, e.g. cumulative capacitated VRP (Ribeiro and Laporte, 2012), pollution-routing problem 

(Demir et al., 2012), two-echelon VRP (Hemmelmayr et al., 2012), pickup and delivery 

problems with transshipment (Qu and Bard, 2012) and with vehicle transfers (Masson et al., 

2013), VRP with multiple routes (Azi et al., 2014), periodic inventory routing problem (Aksen 

et al., 2014), and production routing problem (Adulyasak et al., 2014). 

2.4.1. Overview of the Proposed ALNS Approach 

2.4.1.1. Initial Solution Construction 

The initial solution is obtained by iteratively constructing feasible routes. The route 

construction begins with the nearest customer to the depot. Then, the insertion costs of all 

unassigned customers to all possible existing positions in the route are determined respecting 

the time window constraints, i.e. the insertion of customer 𝑖 between nodes 𝑗 and 𝑘 is calculated 

as 𝑑CB + 𝑑Bi − 𝑑Ci if customers 𝑖, 𝑗, and 𝑘 can be visited within their time windows. Next, the 
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best insertion is performed. If no customer can be inserted because of low battery level, we use 

the Greedy Station Insertion algorithm described in section 2.4.2.2 and insert a customer along 

with a recharging station. In that case, the insertion cost becomes the difference between the 

total distance of the route after and before the insertions of the customer and the recharging 

station. When no customer can be inserted to the route due to capacity or time-window 

constraints, the route is finalized and the procedure is repeated by starting with a new route 

until all customers have been visited. The pseudocode of the initial solution construction 

procedure is given in Algorithm 2.1.  

Algorithm 2.1: Initial solution construction  
1:      Start a new route with the customer closest to the depot 
2:      repeat  
3:           Calculate insertion costs of all unserved customers to the current route 
4:           if  no customer can be added then 
5:                  Start a new route with the unserved customer closest to the depot 
6:           else 
7:                  Select the customer which increases the distance least and make the insertion 
8:           end if 
9:           if a recharging station is needed then 
10:                  Perform Greedy Station Insertion 
11:         end if 
12:      until all customers are served 

 

2.4.1.2. ALNS Procedure 

The proposed ALNS heuristic includes four classes of algorithms: Customer Removal (CR), 

Customer Insertion (CI), Station Removal (SR), and Station Insertion (SI). After the initial 

solution has been constructed, ALNS tries to improve it iteratively until a stopping condition is 

satisfied. We use an iteration number limit to terminate the heuristic. At each iteration, the 

existing feasible solution is destroyed by removing some nodes from their routes using a 

removal algorithm. These nodes consist of customers, recharging stations, or both. The 

resulting partial solution is then repaired using an insertion algorithm which heuristically inserts 

removed customers and/or recharging stations (removed or other) to the existing routes or new 

routes are created for these removed nodes in an attempt to obtain a better solution than the 

previous. Several removal and insertion algorithms are applied by selecting them dynamically 

and adaptively based on a probability calculated using their performances in the previous 

iterations. In order to calculate the selection probabilities, an adaptive weight w and a score 𝜋 

is assigned to each algorithm. High score corresponds to a successful mechanism and hence the 

mechanism should be selected with larger probability. Initially, all weights are equal and all 
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scores are 0. In an iteration, if a new best solution has been found, then the scores corresponding 

to the removal and insertion algorithms which achieved that solution are increased by 𝜎7. If the 

algorithms have yielded a better solution than the previous then the scores are increased by 𝜎l. 

Finally, if the new solution is worse than the previous but accepted using the simulated 

annealing rule then the scores are increased by 𝜎m. The procedure is divided into segments 

which consist of 𝑁n  iterations for customer related mechanisms and 𝑁o for station related 

mechanisms. At the end of each segment s, the weight of algorithm a is updated using the 

formula 𝑤qr67 = 𝑤qr(1 − 𝜌) + 𝜌𝜋q/𝜃q, where 𝜌 is the roulette wheel parameter, 𝜃q is the 

number of times it was used during segment s and 𝜋q is the score associated with algorithm 𝑎. 

After updating the weights, the probabilities of the algorithms which will be used in the next 

segment (s+1) are calculated using the formula 𝑃qr67 = 𝑤qr/∑ 𝑤yrz
y{7  and the scores are reset 

to zero. 

The simulated annealing (SA) approach that accepts or rejects a solution is implemented as 

follows: if the number of vehicles in the new solution is smaller than that of the current solution 

or if they are equal but the total distance of the new solution is shorter then we accept the new 

solution. On the other hand, we reject the new solution if it requires more vehicles. When the 

numbers of vehicles are equal but the distance is longer, the new solution is accepted with 

probability 𝑒|(}(~���)|}(~�����\�)/�, where , 𝑓(𝑋) denotes the total distance of solution 𝑋, 𝑋5�" 

and 𝑋n����c� are the new and current solutions, respectively, and 𝑇 is the current temperature. 

𝑇 is initially set to 𝑇BcB�  and decreased at every iteration using the formula 𝑇 = 𝑇𝜀, where 0 <

𝜀 < 1 is the cooling rate parameter. 𝑇BcB� is determined using	the initial temperature control 

parameter 𝜇 such that a solution which is 𝜇% worse than the initial solution is accepted with 

probability 0.5.  

2.4.2. Removal Algorithms 

2.4.2.1. Customer Removal 

The current solution is destroyed by removing 𝛾 customers from the solution according to 

different rules and adding them in a removal list ℒ. 𝛾 depends on the total number of customers 

𝑛� and is determined randomly between 𝑛� and 𝑛� using a uniform distribution. The removal 

algorithms are selected in an adaptive manner from the set of algorithms CR. 

We utilize Random, Worst-Distance, Worst-Time, Shaw, Proximity-Based, Demand-Based, 

Time-Based, Zone Removal algorithms presented in the literature and adopt the Route Removal 
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algorithms presented in Emeç et al. (2016). Random Removal algorithm selects 𝛾 customers 

randomly and removes them from the solution. Worst-Distance Removal algorithm determines 

customers with high cost, where the cost is the sum of distances of the customer from the 

preceding and succeeding nodes in the route. Then, it removes the customer with ⌊𝛾. 𝜆�⌋�� 

highest cost where 𝜆 ∈ [0,1] is a random number and 𝜅 ≥ 1 is a parameter which introduces 

randomness in the selection of customers to avoid the selection of the same customers 

repeatedly and is referred to as worst removal determinism factor. Worst-Time Removal 

algorithm is similar to Worst-Distance Removal algorithm where the cost of customer 𝑖 is 

calculated as |𝜏B − 𝑒B|.  

Shaw Removal is designed to remove customers that are similar to each other with respect to 

several criteria and uses the following relatedness measure:  𝑅BC = 𝜙𝑑BC + 𝜙l�𝜏B − 𝜏C� +

𝜙m𝑙BC + 𝜙��𝑞B − 𝑞C� where 𝜙7 − 𝜙� are the Shaw parameters and 𝑙BC = −1 if 𝑖 and 𝑗 are in the 

same route, and 1 otherwise. Small 𝑅BC means high similarity. The algorithm first selects a 

customer 𝑖 randomly. Then, it sorts the non-removed customers in the non-decreasing order of 

their relatedness value with a customer 𝑖 and chooses the customer listed in position ⌊𝛾. 𝜆 ⌋ 

where 𝜂 is a parameter called Shaw removal determinism factor. Proximity, Demand and Time-

Based Removals are the special cases of Shaw Removal where 𝜙7, 𝜙l, 𝜙� takes the value 1 and 

the other parameters are assumed to be 0. In the Zone Removal, the Cartesian coordinate system 

in which the nodes are located is divided into 𝑛¢ many smaller areas that are called as zones. A 

zone is randomly selected and all the customers in that zone are removed from the solution. 

More details of these algorithms can be found in Demir et al. (2012). 

 

  
a) Current feasible solution b) Solution after GRR 

Figure 2.2. Illustration of Greedy Route Removal 
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Random Route Removal (RRR) randomly chooses 𝜔 routes and removes all the customers 

visited in those routes. 𝜔 depends on the number of routes in the current solution and is 

determined randomly between 10% and 𝑚�% of total number of routes. Greedy Route Removal 

(GRR) algorithm removes 𝜔 routes in a greedy way. 𝜔 is determined in the same way as in 

RRR. The routes are sorted in the non-decreasing order of the number of customers serviced 

and 𝜔 routes are removed starting from the first route in the order. The motivation is to 

distribute the customers in shorter routes into other existing routes in the solution in an attempt 

to reduce the number of vehicles. The procedure is illustrated in Figure 2.2 for 𝜔=2. 

Note that after a predetermined number of iterations 𝑁¥¥, we explicitly perform RRR and GRR 

for 𝑛¥¥ iterations to extensively attempt to reduce the number of vehicles used. RRR and GRR 

remove the complete routes from the solution. On the other hand, since other removal 

algorithms remove customers from their routes the battery state, time, and remaining capacity 

of the EV at its arrival to a node should be updated. Furthermore, some recharges may no longer 

be necessary and those stations may be removed from the solution. In fact, an EV may visit a 

recharging station right before or after servicing a customer, and it might be beneficial to 

remove the customer from the solution with its preceding or succeeding station. So, we 

introduce the following two operators for the customer removal algorithms in addition to 

removing customers only (RCO) option: 

Remove Customer with Preceding Station (RCwPS): We remove the customer in the removal 

list along with the preceding station, if any exists. The idea is to eliminate the visit to a station 

where recharging is not necessarily needed at that battery state if EV no longer visits the 

removed customer.  

Remove Customer with Succeeding Station (RCwSS): We remove the customer in the removal 

list along with the succeeding station, if any exists. The idea is similar to RCwPS. The 

recharging may be needed after departing from a customer in order to be able to reach the next 

customer in the route. In that case, recharging is not necessarily needed at that battery state if 

the departure customer is removed from the solution and the station can be removed as well. 

2.4.2.2. Station Removal 

The recharging stations are the crucial components of the problem. Hence, removing them or 

changing their positions in the visit sequence of a route may also improve the solution. So, after 

a pre-determined number of iterations, an SR (followed by a Station Insertion) procedure is 
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applied. The number of stations to be removed 𝜎 is determined in a similar fashion to 𝛾 based 

on the total number of stations in the current station. The Random Station and Worst Distance 

Station Removal mechanisms are similar to their customer removal counterparts.  We also use 

the Worst-Charge Usage Station Removal which aims at removing the stations visited with high 

battery levels and Full Charge Station Removal which aims at promoting the PR option.  

Worst-Charge Usage Station Removal: The motivation of this algorithm is to make the use of 

the battery as much as possible before a recharging is needed and increase the efficiency in 

using the stations. We promote the removal of the stations which an EV visits with relatively 

higher charge level. The stations are sorted in the non-increasing order of the battery level of 

the EVs that visit them for recharging and 𝜎 stations are removed starting from the first station 

in the order. 

Full Charge Station Removal: The algorithm identifies the stations where EVs are fully charged 

and removes 𝜎 of them randomly. 

 

 
a) Feasible route before SR 

 
b) Time-window infeasible route after SR 

Figure 2.3. Example of time-window infeasibility after SR 

 
After the removal algorithms, the destroyed solution may become infeasible with respect to the 

time windows. Consider the route shown in Figure 2.3(a) as an example. The % numbers above 

the route indicate the SoC at the arrival to and departure from a node whereas the numbers 

under the route show the arrival and departure times. When S1 is removed from the route, the 

EV can still visit C1 and C2 in the given sequence. However, since its battery is empty, the 

recharging takes longer at S2, which delays its arrival to C3. Since the EV departs from C3 at 

a later time, it cannot return to D before the latest arrival time of 550 as shown in Figure 2.3(b).  
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a) Feasible route before SR 

 

b) Battery infeasible route after SR 

Figure 2.4. Example of battery infeasibility after SR 

 

Figure 2.4 illustrates how the battery infeasibility may occur after a SR. Consider the feasible 

route in Figure 2.4(a). The EV is charged to full at S1. However, when S1 is removed, the 

battery level is not sufficient to return to the depot after visiting C3 as shown in Figure 2.4(b).  

2.4.3. Insertion Algorithms 

2.4.3.1. Customer Insertion  

We use the Greedy and Regret Insertion algorithms from the literature. Greedy Insertion 

algorithm determines the best insertion position for customer 𝑖 by calculating the cost of 

inserting it between all feasible pairs of nodes 𝑗 and 𝑘 and selecting the position with the 

minimum cost. The procedure is repeated for all customers and the customer who has the 

minimum insertion cost is inserted to its designated position. Regret-k Insertion prevents the 

myopic nature of Greedy Insertion by avoiding the customers which may yield higher costs in 

the subsequent iterations. It calculates the difference between the cost of the first and kth best 

insertions of the customers and insert the one with the highest difference to its best position. In 

our ALNS we utilize Regret-2 and Regret-3 methods. In addition, we propose the Time-Based 

Insertion and adapt the Zone Insertion of Demir et al. (2012) as follows:  

Time Based Insertion: In this algorithm, the insertion cost is calculated as the difference 

between the total route durations before and after the insertion of a customer. For each 

customer, the algorithm determines the best insertion position among all routes based on this 

insertion cost. The customer that increases the route duration the least is selected and inserted. 

The procedure is repeated for the remaining customers until all customers are inserted. The aim 

of this algorithm is to increase the number of customers visited by an EV by combining 

compatible customers with respect to their time windows or distances. 

100% 60% 20% 0%-100% 70% 50%
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Zone Insertion: The algorithm uses the Time-Based Insertion criterion above when selecting a 

customer. However, instead of investigating all routes in the solution, it considers the routes 

within a randomly selected zone only. The zones are determined in the same way with Zone 

Removal. 

Note that a customer insertion may be feasible with respect to service time-window but 

infeasible with respect to the battery state (referred to as battery infeasibility). In that case, the 

Greedy Station Insertion (described in Section 2.4.2.2) is applied to make the destroyed solution 

charge feasible. 

To determine the battery SoC and the recharge amount at a station visited in the implementation 

of CI algorithms we use the assumptions stated at the end of Section 2.3: an EV departs from 

the depot with a full battery and returns to the depot by completely consuming its battery if it 

has been recharged at least once along its route. So, in the case the EV is recharged only once 

during its route then: (i) if the customer is inserted between the depot and the station the 

insertion only affects the arrival SoC at the station; (ii) if the customer is inserted between the 

station and the depot the recharge amount is increased such that the EV returns to the depot 

with empty battery. 

If multiple recharges exist along the route and the customer is inserted between the depot and 

the first station visited, we follow the procedure (i) described above. If the customer is inserted 

between two consecutive stations or between the last station visited and the depot the amount 

recharged at the last station visited is increased by the additional energy needed to visit that 

customer. If the recharge duration makes the insertion infeasible with respect to service time 

window of an existing customer, then we attempt to reduce the recharge duration by increasing 

the battery charge level at the arrival to that station. This is achieved by recharging the EV 

longer at the previous station making sure that the time-window feasibility of the customers 

visited between these two consecutive stations is maintained. In any case, if the insertion is 

feasible with respect to service time window but battery infeasible the Greedy Station Insertion 

(see Section 2.4.2.2) is applied to make the destroyed solution charge feasible. 

2.4.3.2. Station Insertion 

After removing some stations, the current feasible solution may become battery infeasible. In 

order to repair the solution, stations must be inserted to the infeasible routes. We make an 

infeasible route feasible by identifying the first customer at which the vehicle arrives with a 

negative battery level and inserting a station into the partial route prior to that customer. The 

difference from CI algorithms is that SI algorithms do not necessarily insert the stations which 
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have been removed in SR. Since the stations are always available and it is assumed that as many 

stations as needed are available, any station can be inserted throughout the algorithm. The SR 

and SI procedures are illustrated on an example in Figure 2.5. A feasible route is depicted in 

Figure 2.5(a). Suppose, S1 is removed using an SR algorithm. Next, S2 is inserted between C1 

and C2 by maintaining both time-window and battery feasibility. The resulting route in Figure 

2.5(b) is shorter than the initial. 

 

 

  

a) Feasible solution b) Improved solution after SR and SI 

Figure 2.5. An improved route after SR and SI procedure 

 

We use the following three SI algorithms: 

Greedy Station Insertion (GSI): This algorithm determines the first customer in the route at 

which the vehicle arrives with negative battery level and inserts the “best” (which increases the 

distance least) station on the arc between that customer and the previous customer. If this 

insertion is not feasible, then the previous arcs are attempted in the same manner. 

Greedy Station Insertion with Comparison: The algorithm determines the best station on the 

arc leading to the customer where the battery level is negative as in GSI and compares the 

outcome with the case of inserting the corresponding best station on the immediate predecessor 

arc. The insertion which increases the route distance the least is performed. If both insertions 

are infeasible, the GSI procedure is applied by considering the previous arcs. 

Best Station Insertion: We determine the best station insertions between the customer that the 

EV arrives at with negative battery level and the depot or a previously visited station by 

considering all the arcs backwards in the route. We select the best feasible insertion and perform 

it. 
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The procedure is repeated for all customers where the EVs arrive with negative battery level. 

If a station insertion cannot be performed feasibly, we return to the previous feasible solution. 

The battery state of the EV and/or the recharge quantities in the implementation of the SI 

algorithms are determined in a similar fashion as in CI algorithms. 

The pseudocode of the ALNS approach is provided in Algorithm 2.2. 

Algorithm 2.2: ALNS algorithm 
1: Generate an initial solution 
2: 𝑗 ← 1 
3: repeat 
4:  if 𝑗 ≡ 0	(𝑚𝑜𝑑	𝑁o¥)  then 
5:   Select SR algorithm and remove stations 
6:   Select SI algorithm and repair solution 
7:  else if 𝑗 ≡ 0	(𝑚𝑜𝑑	𝑁¥¥)  then  
8:   for 𝑛¥¥ iterations do 
9:    Select RRR or GRR algorithm and remove customers 

10:    Select CI algorithm and repair solution 
11:   end for 
12:  else  
13:   Select CR algorithm and remove customers 
14:   if  destroyed solution infeasible  then 
15:    Perform Greedy Station Insertion 
16:   end if 
17:   Select CI algorithm and repair solution 
18:  end if 
19:  Using SA criterion, accept/reject solution 
20:  𝑗 ← 𝑗 + 1 
21:  if  𝑗 ≡ 0	(𝑚𝑜𝑑	𝑁n)  then 
22:   Update adaptive weights of CR and CI algorithms 
23:  else if 𝑗 ≡ 0	(𝑚𝑜𝑑	𝑁o)  then 
24:   Update adaptive weights of SR and SI algorithms 
25:  end if  
26: until stop-criterion met 

 

2.5. Computational Study 

To validate the performance of the proposed ALNS approach we perform computational 

experiments using the EVRPTW data. This data set consists of 36 small and 56 large instances 

generated by Schneider et al. (2014) based on the well-known VRPTW instances of Solomon. 

The large instances include three main problem classes where 100 customers and 21 recharging 

stations are clustered (C), randomly distributed (R), and both clustered and randomly 

distributed (RC) over a 100×100 grid. Each set has also two subsets, type 1 and type 2, which 

differ by the length of the time windows and the vehicle load and battery capacities. The small 
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instances include three subsets of 12 problems, each involving 5, 10 and 15 customers drawn 

randomly from the large instances. 

We first tuned the parameters values using a subset of EVRPTW instances. Then, we solved 

the large EVRPTW problems and compare the results with the benchmarks reported in the 

literature. Finally, we report the solutions we achieved using the EVRPTW-PR setting and 

discuss the results. The algorithm was coded in the Java programming language. 

2.5.1. Parameter Tuning 

Our tuning methodology is in line with those adopted in the literature (Ropke and Pisinger, 

2006a, 2006b; Pisinger and Ropke, 2007; Demir et al., 2012, Emeç et al., 2016). We selected 

six problems and performed 10 runs by considering up to 10 values for each parameter. We 

omitted C1 and C2 problem classes since they usually converged to the same solutions for 

different parameter values and did not provide much information about the contribution of the 

parameter value on the solution quality. Consequently, we selected the instances R107, RC101, 

RC104, RC105, R205 and RC205 for parameter tuning. 

For each value we calculated the average percent deviation from the average of the best 

achieved solutions, determined the one that yielded the least average percent deviation, and 

fixed the parameter value. We repeated this procedure until all parameter values had been tuned. 

In the EVRPTW, we set the initial values according to the best values reported in Emeç et al. 

(2016). In the EVRPTW-PR, we initialized the values using the best values obtained for the 

EVRPTW and performed another parameter tuning using the same procedure. The parameters, 

their considered values and the corresponding deviations, and their final values selected are 

given in Appendix A. 

We observed that if the score of the worse solution (𝜎m) is greater than the score of the better 

solution (𝜎l). It allows diversification by rewarding non-improved solutions as noted in Ropke 

and Pisinger (2006a) and Demir et al. (2012). So, our setting of the parameters 𝜎7, 𝜎l, and 𝜎m 

also rewards a worse solution more than a better solution as follows: 𝜎7 ≥ 𝜎m ≥ 𝜎l. 

Ropke and Pisinger (2006a) set the number of iterations to 25000 and noted that additional 

runtime had a minor contribution to the solution quality. Our convergence analysis showed 

similar results. So, we also set the number of iterations to 25000. The lower and upper limits 

for the number of customers 𝑛� to be removed are set as 𝑛� = 𝑚𝑖𝑛	{0.1|𝑁|, 30} and 𝑛� =
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𝑚𝑖𝑛	{0.4|𝑁|, 60}, respectively. The removal algorithms are selected in an adaptive manner 

from the Customer Removal or Station Removal algorithms. 

2.5.2. Numerical Results for the EVRPTW Instances 

In this section, we investigate the effectiveness of the proposed algorithm in the case where 

partial recharges are not allowed, and aim at validating its performance by comparing it to the 

state-of-the-art methodologies designed for solving that particular case. Table 2.1 compares our 

average results and the average of the results reported in Goeke and Schneider (2015) and 

Hiermann et al. (2015) to the original results given in Schneider et al. (2014). Our results were 

obtained using the parameters tuned to the values given in Appendix A. The benchmark results 

from the literature were also obtained in the same way by fixing the parameters of the 

corresponding algorithm to the values tuned instead of running the algorithms using different 

values for the parameters. The first column in Table 2.1 denotes the instances. ‘#Veh’ and ‘TD’ 

refer to the number of vehicles and the total distance, respectively. ‘∆%’ is the percentage 

deviation from the distances reported in Schneider et al. (2014), if the number of vehicles is 

same, and is calculated as (𝑇𝐷oo® − 𝑇𝐷¯)/𝑇𝐷¯, where SSG stands for the VNS/TS of 

Schneider et al. (2014) and M refers to the corresponding method, i.e. GS for Goeke and 

Schneider (2015), HPH for Hiermann et al. (2015), and KÇ for this study. A negative ∆% value 

means improvement. 

Table 2.1. Average results for EVRPTW obtained with fixed parameters 

Instance 
Type 

SSG   GS   HPH   KÇ 
#Veh     TD   #Veh ∆%   #Veh ∆%   #Veh ∆% 

C1 10.67 1050.04  10.67 -0.31  10.67 0.16  10.89 0.78 
C2 4.00 640.92  4.00 0.00  4.00 0.06  4.00 0.00 
R1 12.83 1268.60  12.83 -0.80  13.00 0.11  13.25 0.69 
R2 2.64 919.04  2.64 -0.47  2.64 0.53  2.82 -0.07 
RC1 13.13 1415.84  13.13 -0.50  13.00 -0.48  13.38 0.13 
RC2 3.13 1146.76   3.13 -0.15   3.13 0.95   3.25 0.08 
Average     -0.41   0.25   0.25 
SSG: Schneider et al. (2014), GS: Goeke and Schneider (2015), HPH: Hiermann et al. (2015), and 
KÇ: Our method 

 

Our results show that our ALNS approach performs better in type-2 problems but it converges 

to solutions with one additional vehicle in several instances as compared to other methods. Even 

though the performance of Hiermann et al. (2015) is better in type-1 problems, the overall 

performance of our approach is similar. We also observe that the recent work of Goeke and 

Schneider (2015) has a superior performance, improving many of the best solutions to date. We 
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note that Goeke and Schneider (2015) used the numbers of vehicles achieved in Schneider et 

al. (2014) as a priori information to construct their initial routes, which might have a positive 

effect both in run time and solution quality. Nevertheless, with fixed parameters our approach 

improved the best solutions of 11 instances.  

Table 2.2. Comparison with the best-known solutions of the EVRPTW instances 
  BKS   KÇ     BKS   KÇ 
Inst. #Veh     TD Ref.   #Veh     TD ∆%  Inst. #Veh     TD Ref.   #Veh     TD ∆% 
c101 12 1053.83 SSG  12 1053.83 0.00  c201 4 645.16 SSG  4 645.16 0.00 
c102 11 1051.38 GS  11 1056.12 0.45  c202 4 645.16 SSG  4 645.16 0.00 
c103 10 1034.86 GS  11 1001.81 -  c203 4 644.98 SSG  4 644.98 0.00 
c104 10 961.88 GS  10 951.57 -1.08  c204 4 636.43 SSG  4 636.43 0.00 
c105 11 1075.37 SSG  11 1075.37 0.00  c205 4 641.13 SSG  4 641.13 0.00 
c106 11 1057.65 HPH  11 1057.65 0.00  c206 4 638.17 SSG  4 638.17 0.00 
c107 11 1031.56 SSG  11 1031.56 0.00  c207 4 638.17 SSG  4 638.17 0.00 
c108 10 1095.66 GS  11 1015.68 -  c208 4 638.17 SSG  4 638.17 0.00 
c109 10 1033.67 GS  10 1069.16 3.32          
r101 18 1663.04 HPH   18 1679.06 0.95  r201 3 1264.82 SSG   3 1265.67 0.07 
r102 16 1487.41 GS  16 1519.80 2.13  r202 3 1052.32 SSG  3 1052.32 0.00 
r103 13 1271.35 GS  13 1312.50 3.14  r203 3 895.54 GS  3 895.54 0.00 
r104 11 1088.43 SSG  12 1071.89 -  r204 2 779.49 GS  2 780.98 0.19 
r105 14 1442.35 GS  15 1383.29 -  r205 3 987.36 GS  3 987.36 0.00 
r106 13 1324.10 GS  14 1276.15 -  r206 3 922.19 GS  3 922.70 0.06 
r107 12 1150.95 GS  12 1148.43 -0.22  r207 2 845.26 GS  2 847.14 0.22 
r108 11 1050.04 SSG  11 1051.59 0.15  r208 2 736.12 GS  2 736.12 0.00 
r109 12 1261.31 GS  13 1214.72 -  r209 3 867.05 GS  3 871.22 0.48 
r110 11 1119.50 GS  12 1097.89 -  r210 3 846.20 GS  3 843.65 -0.30 
r111 12 1106.19 SSG  12 1109.14 0.27  r211 2 827.89 GS  3 761.56 - 
r112 11 1016.63 GS   11 1038.74 2.13                  
rc101 16 1726.91 HPH  16 1731.07 0.24  rc201 4 1444.94 SSG  4 1446.84 0.13 
rc102 14 1552.08 HPH  15 1551.69 -  rc202 3 1410.74 GS  3 1450.34 2.73 
rc103 13 1350.09 GS  13 1351.73 0.12  rc203 3 1055.19 GS  3 1069.27 1.32 
rc104 11 1227.25 GS  11 1232.45 0.42  rc204 3 884.80 GS  3 887.45 0.30 
rc105 14 1475.31 HPH  14 1473.24 -0.14  rc205 3 1273.55 GS  3 1277.60 0.32 
rc106 13 1427.21 GS  14 1414.99 -  rc206 3 1188.63 GS  3 1207.64 1.57 
rc107 12 1274.89 SSG  12 1283.05 0.64  rc207 3 985.03 GS  3 994.48 0.95 
rc108 11 1197.83 GS   11 1209.11 0.93   rc208 3 836.29 GS   3 841.34 0.60 
Avg 12.21      12.52  0.60     3.19      3.22  0.33 
SSG: Schneider et al. (2014), GS: Goeke and Schneider (2015), HPH: Hiermann et al. (2015), and KÇ: Our method 

 

In Table 2.2, we report the best solutions we observed throughout our entire experimental study 

and compare them against the best-known solutions (BKS) from the literature achieved in a 

similar way. Note that Schneider et al. (2014) and Goeke and Schneider (2015) reported the 

best results they obtained throughout all the experiments they performed as their BKS whereas 

Hiermann et al. (2015) performed their tests with fixed parameters only. The results in Table 

2.2 also show that our ALNS approach performs better in type-2 problems. Although it finds 

solutions with one additional vehicle in some instances, it improved the best-known solutions 

of four instances, of which three are type-1 problems. Furthermore, it achieved the same best-

known solution in 16 instances. In comparison, Schneider et al. (2014) found the best-known 
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solutions in 18 instances whereas Hiermann et al. (2015) and Goeke and Schneider (2015) 

improved the solutions of 4 and 30 instances, respectively.  

With respect to computational effort, it is not possible to make a fair comparison among the 

algorithms since they utilize different processors and data structures. We only note that 

Schneider et al. (2014), Hiermann et al. (2015), and Goeke and Schneider (2015) report average 

run times of 15.34 minutes1, 15.92 minutes2, and 2.78 minutes3, respectively, whereas our 

average run time is comparable to the first two with 12.26 minutes 4. Goeke and Schneider 

(2015) has an outstanding run time performance; yet it is not possible to assess the contribution 

of feeding the a priori number of vehicles information to this performance. 

2.5.3. Experiments on EVRPTW Instances Using PR Scheme 

We first analyze the performance of our ALNS on small EVRPTW instances. This allows us to 

make a comparison with the (near-)optimal solutions found by using CPLEX 12.6.1 both for 

the FR and PR cases. Next, we solve the large instances using two different ALNS 

implementations and discuss potential gains that can be achieved through different PR 

strategies. 

2.5.3.1. Numerical Results for Small-Size Instances 

Schneider et al. (2014) provided the optimal solution for 25 small-size problems and upper 

bound for the remaining 11 for the FR case using CPLEX 12.2 with a time limit of 7200 

seconds. We solved all these problems with CPLEX 12.6.1 and confirmed the optimality of 

these upper bounds. Note that ALNS was also able to find the optimal solution for all these 

instances. 

For the PR case, we report the solutions obtained by CPLEX and ALNS in Table 2.3 in 

comparison with the optimal solutions achieved with FR. ‘FR Optimal’ refers to the optimal 

solution of the FR scheme and ‘t(sec)’ is the run time in seconds. The time limit for CPLEX is 

set to 7200 seconds. ‘∆CPLEX %’ denotes the percentage deviation of the total distance of the 

ALNS solution from the total distance of the solution found by CPLEX. ‘∆FR %’ gives the 

                                                        
1 Intel Core i5 processor with 2.67 GHz speed and 4 GB RAM, operating on Windows 7 Professional 
2 Intel Core2 Quad CPU Q6600 processor with 2.40 GHz speed and 4 GB RAM, operating on 64-bit Linux 
3 Intel Core i7 processor with 2.8 GHz speed and 8 GB RAM, operating on Windows 7 Enterprise 
4 Intel Xeon E5 processor with 3.30 GHz speed and 32 GB RAM, operating on 64-bit Windows 7 
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percentage deviation from the optimal distance of the solution with the FR scheme and shows 

the benefit of adopting the PR strategy.  

Table 2.3. Comparison of results obtained with CPLEX and ALNS on the small-size instances 

  FR Optimal  PR CPLEX  PR ALNS 
Instance #Veh TD  #Veh TD t(sec)  #Veh TD ∆CPLEX % ∆FR % t(sec) 
C101-5 2 257.75  2 257.75 0.31  2 257.75 0.00 0.00 0.03 
C103-5 1 176.05  1 175.37 2.73  1 175.37 0.00 -0.39 0.05 
C206-5 1 242.55  1 242.56 5.38  1 242.56 0.00 0.00 0.07 
C208-5 1 158.48  1 158.48 1.37  1 158.48 0.00 0.00 0.06 
R104-5 2 136.69  2 136.69 0.47  2 136.69 0.00 0.00 0.04 
R105-5 2 156.08  2 156.08 3.39  2 156.08 0.00 0.00 0.04 
R202-5 1 128.78  1 128.78 0.95  1 128.78 0.00 0.00 0.08 
R203-5 1 179.06  1 179.06 1.12  1 179.06 0.00 0.00 0.10 
RC105-5 2 241.30  2 233.77 3.06  2 233.77 0.00 -3.22 0.03 
RC108-5 2 253.93  2 253.93 3.76  2 253.93 0.00 0.00 0.04 
RC204-5 1 176.39  1 176.39 2.17  1 176.39 0.00 0.00 0.08 
RC208-5 1 167.98  1 167.98 1.05  1 167.98 0.00 0.00 0.07 
C101-10 3 393.76  3 388.25 50.26  3 388.25 0.00 -1.42 0.10 
C104-10 2 273.93  2 273.93 5.15  2 273.93 0.00 0.00 0.17 
C202-10 1 304.06  1 304.06 7.52  1 304.06 0.00 0.00 0.20 
C205-10 2 228.28  2 228.28 2.01  2 228.28 0.00 0.00 0.16 
R102-10 3 249.19  3 249.19 1.83  3 249.19 0.00 0.00 0.11 
R103-10 2 207.05  2 206.12 6.76  2 206.12 0.00 -0.45 0.17 
R201-10 1 241.51  1 241.51 11.40  1 241.51 0.00 0.00 0.21 
R203-10 1 218.21  1 218.21 1.62  1 218.21 0.00 0.00 0.62 
RC102-10 4 423.51  4 423.51 3.07  4 423.51 0.00 0.00 0.09 
RC108-10 3 345.93  3 345.93 2.90  3 345.93 0.00 0.00 0.09 
RC201-10 1 412.86  1 412.86 7200.00  1 412.86 0.00 0.00 0.17 
RC205-10 2 325.98  2 325.98 3.26  2 325.98 0.00 0.00 0.19 
C103-15 3 384.29  3 348.46 1008.00  3 348.46 0.00 -10.28 0.23 
C106-15 3 275.13  3 275.13 0.47  3 275.13 0.00 0.00 0.15 
C202-15 2 383.62  2 383.62 24.07  2 383.62 0.00 0.00 0.29 
C208-15 2 300.55  2 300.55 0.92  2 300.55 0.00 0.00 0.26 
R102-15 5 413.93  5 412.78 7200.00  5 412.78 0.00 -0.28 0.12 
R105-15 4 336.15  4 336.15 1.39  4 336.15 0.00 0.00 0.09 
R202-15 2 358.00  2 358.00 462.89  2 358.00 0.00 0.00 0.51 
R209-15 1 313.24  1 313.24 610.64  1 313.24 0.00 0.00 0.92 
RC103-15 4 397.67  4 397.67 20.27  4 397.67 0.00 0.00 0.12 
RC108-15 3 370.25  3 370.25 101.45  3 370.25 0.00 0.00 0.15 
RC202-15 2 394.39  2 394.39 113.43  2 394.39 0.00 0.00 0.31 
RC204-15 1 407.45  1 403.38 7200.00  1 382.22 -5.54 -1.01 1.35 
Average          668.47      -0.15 -0.47 0.21 

 

The results show that our ALNS is able to solve all small instances very efficiently. CPLEX 

found the optimal solution for 33 instances within the time limit and ALNS was able to obtain 

the optimal solution in all these instances. In RC201-10 and R102-15, we found the same upper 

bound as CPLEX and in RC204-15 our solution is 5.54% better than the upper bound provided 
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by CPLEX. The average run time of ALNS is only 0.21 seconds whereas CPLEX spent 668 

seconds on the average. It should be noted that the run time of CPLEX is not the time it takes 

until it finds the optimal solution or the upper bound but the time it stops after the optimality 

conditions have been satisfied or the time limit has been reached. 

When we compare the solutions that we found with the PR scheme to the optimal solutions of 

the FR scheme, we see that the number of EVs utilized remained same and the routes were 

improved only in seven instances. We believe that the potential advantage of the PR strategy is 

not evident in these instances because their sizes are too restrictive to allow alternate routes. 

Nevertheless, the savings in total distance may exceed 10% as we observed in C103-15. 

2.5.3.2. Numerical Results for Large-Size Instances 

In our experimental study with the large instances we also implement a strategy where the 

partial recharge is allowed at a pre-determined constant amount and test different amounts for 

comparison purposes. In that case, the implementation of SI algorithms is same, but the PR is 

performed at a constant level. If the battery is not sufficient to complete the route, we fully 

recharge the battery at the last station visited before the infeasibility occurs, if the time windows 

of the customers permit.  

The results are illustrated in Table 2.4. The results obtained by the FR scheme are given in the 

‘FR’ column for comparison. The next three main columns report the best solutions found by 

ALNS using different PR strategies. ‘q free’ refers to the case where the PR is performed at any 

level, i.e. the recharge amount is a decision variable, whereas in ‘q=0.3’, ‘q=0.4’, and ‘q=0.5’ 

the PR is allowed at the constant levels of 30%, 40%, and 50% of the battery capacity, 

respectively. Note that in some instances, the results obtained using the PR scheme are worse 

than the best results found with the FR scheme. For consistency, we preferred to give them as 

reported by ALNS even though the solutions to EVRPTW are also feasible to EVRPTW-PR. 

These results clearly show the advantage of using the PR strategy over the FR restriction: when 

PR quantity is not fixed (q free) the average total distance reduces by 1.64% in the instances 

for which the numbers of vehicles used with FR and PR schemes are the same. On the other 

hand, the reductions are 0.80%, 0.91%, and 0.73% if PR is performed at the level of q=0.3, 

q=0.4, and q=0.5, respectively.   In addition, we observe that solutions with one less vehicle are 

found in nine instances when q is free while the same situation occurs in six instances for q=0.3 

and in three instances for q=0.4 and q=0.5. Moreover, we see PR has more potential for saving 



 

 31 

from the number of vehicles in type-1 problems, which is an expected outcome since those 

problems are more restrictive due to narrow time-windows and shorter route durations. Due to 

Table 2.4. EVRPTW-PR results for different recharge strategies 

 FR   PR (q free)   PR (q=0.3)   PR (q=0.4)   PR (q=0.5) 

Inst. #Veh     TD   #Veh     TD ∆%   #Veh     TD ∆%   #Veh     TD ∆%   #Veh     TD ∆% 
c101 12 1053.83  12 1051.23 -0.25  12 1043.38 -1.00  12 1045.98 -0.75  12 1053.82 0.00 
c102 11 1056.12  11 1034.24 -2.12  11 1034.48 -2.09  11 1032.49 -2.29  11 1040.34 -1.52 
c103 11 1001.81  10 973.39 -  10 981.16 -  10 1028.32 -  10 1030.42 - 
c104 10 951.57  10 886.72 -7.31  10 891.05 -6.79  10 892.84 -6.58  10 894.03 -6.44 
c105 11 1075.37  11 1037.78 -3.62  11 1051.98 -2.22  11 1051.98 -2.22  11 1054.36 -1.99 
c106 11 1057.65  11 1024.18 -3.27  11 1030.41 -2.64  11 1036.88 -2.00  11 1046.57 -1.06 
c107 11 1031.56  10 1058.11 -  11 1014.45 -1.69  11 1013.63 -1.77  11 1013.63 -1.77 
c108 11 1015.68  10 1033.50 -  11 999.55 -1.61  11 1002.54 -1.31  11 1000.62 -1.51 
c109 10 1069.16  10 960.03 -11.37  10 990.53 -7.94  10 947.20 -12.88  10 946.84 -12.92 
c201 4 645.16   4 629.95 -2.41   4 642.84 -0.36   4 642.84 -0.36   4 641.13 -0.63 
c202 4 645.16  4 629.95 -2.41  4 641.07 -0.64  4 641.07 -0.64  4 641.07 -0.64 
c203 4 644.98  4 629.95 -2.39  4 641.07 -0.61  4 641.07 -0.61  4 641.07 -0.61 
c204 4 636.43  4 629.95 -1.03  4 635.80 -0.10  4 636.43 0.00  4 636.43 0.00 
c205 4 641.13  4 629.95 -1.77  4 638.17 -0.46  4 631.26 -1.56  4 638.17 -0.46 
c206 4 638.17  4 629.95 -1.30  4 641.13 0.46  4 631.26 -1.09  4 638.17 0.00 
c207 4 638.17  4 629.95 -1.30  4 641.13 0.46  4 638.17 0.00  4 638.17 0.00 
c208 4 638.17   4 629.95 -1.30   4 634.19 -0.63   4 631.26 -1.09   4 638.17 0.00 
r101 18 1679.06  18 1661.33 -1.07  18 1636.69 -2.59  18 1651.80 -1.65  18 1679.27 0.01 
r102 16 1519.80  16 1461.48 -3.99  16 1466.58 -3.63  16 1461.38 -4.00  16 1467.92 -3.53 
r103 13 1312.50  13 1262.75 -3.94  14 1254.22 -  13 1265.90 -3.68  13 1276.80 -2.80 
r104 12 1071.89  11 1078.99 -  11 1131.39 -  12 1065.14 -0.63  12 1065.17 -0.63 
r105 15 1383.29  15 1373.94 -0.68  15 1380.62 -0.19  15 1380.44 -0.21  15 1396.79 0.97 
r106 14 1276.15  13 1310.46 -  14 1288.90 0.99  14 1295.60 1.50  14 1284.19 0.63 
r107 12 1148.43  12 1118.91 -2.64  12 1132.35 -1.42  12 1131.01 -1.54  12 1126.42 -1.95 
r108 11 1051.59  11 1031.14 -1.98  11 1045.97 -0.54  11 1044.82 -0.65  11 1048.49 -0.30 
r109 13 1214.72  13 1201.04 -1.14  13 1193.76 -1.76  13 1209.30 -0.45  13 1194.80 -1.67 
r110 12 1097.89  11 1112.80 -  11 1090.92 -  12 1095.98 -0.17  12 1093.73 -0.38 
r111 12 1109.14  12 1084.13 -2.31  12 1102.07 -0.64  12 1096.22 -1.18  12 1101.27 -0.71 
r112 11 1038.74  11 1017.31 -2.11  11 1035.16 -0.35  11 1017.52 -2.09  11 1037.90 -0.08 
r201 3 1265.67   3 1266.06* 0.03   3 1266.54 0.07   3 1274.00 0.65   3 1262.10 -0.28 
r202 3 1052.32  3 1052.32 0.00  3 1054.70 0.23  3 1053.57 0.12  3 1055.48 0.30 
r203 3 895.54  3 895.54 0.00  3 896.71 0.13  3 895.83 0.03  3 895.70 0.02 
r204 2 780.98  2 780.14 -0.11  3 720.15 -  3 723.08 -  2 801.29 2.53 
r205 3 987.36  3 987.36 0.00  3 989.03 0.17  3 995.03 0.77  3 991.52 0.42 
r206 3 922.70  3 922.70 0.00  3 925.40 0.29  3 934.88 1.30  3 925.67 0.32 
r207 2 847.14  2 846.59 -0.06  2 853.12 0.70  3 811.63 -  2 849.49 0.28 
r208 2 736.12  2 736.12 0.00  2 736.75 0.09  2 736.75 0.09  2 737.40 0.17 
r209 3 871.22  3 868.95 -0.26  3 871.31 0.01  3 872.03 0.09  3 871.55 0.04 
r210 3 843.65  3 843.36 -0.03  3 850.84 0.84  3 849.15 0.65  3 850.16 0.77 
r211 3 761.56   2 862.56 -   3 761.56 0.00   3 766.56 0.65   3 766.56 0.65 
rc101 16 1731.07   16 1684.84 -2.74   15 1743.90 -   16 1689.40 -2.47   16 1704.19 -1.58 
rc102 15 1551.69  14 1155.50 -  14 1566.40 -  14 1555.90 -  14 1558.51 - 
rc103 13 1351.73  13 1329.58 -1.67  13 1351.51 -0.02  13 1342.49 -0.69  13 1345.04 -0.50 
rc104 11 1232.45  11 1202.93 -2.45  11 1226.33 -0.50  11 1229.38 -0.25  11 1223.79 -0.71 
rc105 14 1473.24  14 1458.49 -1.01  14 1458.28 -1.03  14 1467.44 -0.40  14 1470.40 -0.19 
rc106 14 1414.99  13 1422.96 -  13 1440.45 -  13 1455.21 -  13 1417.40 - 
rc107 12 1283.05  12 1261.03 -1.75  12 1272.09 -0.86  12 1265.16 -1.41  12 1261.44 -1.71 
rc108 11 1209.11   11 1185.68 -1.98   11 1184.06 -2.12   11 1235.85 2.16   11 1209.64 0.04 
rc201 4 1446.84  4 1446.84 0.00  4 1454.11 0.50  4 1463.70 1.15  4 1456.02 0.63 
rc202 3 1450.34  3 1416.96 -2.36  4 1244.76 -  4 1245.10 -  4 1242.59 - 
rc203 3 1069.27  3 1069.27 0.00  3 1089.74 1.88  3 1092.22 2.10  3 1084.06 1.36 
rc204 3 887.45  3 887.76 0.04  3 887.29 -0.02  3 892.25 0.54  3 886.23 -0.14 
rc205 3 1277.60  3 1262.22 -1.22  4 1162.16 -  4 1145.34 -  4 1151.93 - 
rc206 3 1207.64  3 1213.89 0.51  3 1206.09 -0.13  3 1208.36 0.06  3 1209.42 0.15 
rc207 3 994.48  3 993.49 -0.10  3 996.35 0.19  3 992.14 -0.24  3 993.26 -0.12 
rc208 3 841.34   3 839.71 -0.19   3 847.82 0.76   3 843.98 0.31   3 844.76 0.40 

Avg      -1.64    -0.80    -0.91    -0.73 
  * 1258.39 was also observed during our tests 
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the same fact, we also observe that the average distances improve significantly in type-1 

instances, c1 problem set in particular. When q is free the average improvement in total distance 

is 2.89% in type-1 problems whereas the average improvement in type-2 problems is only 

0.66%. 

Not surprisingly ALNS using the variable PR amount has a better performance compared to 

ALNS with constant PR. On the other hand, its average computation time is 9.7% longer 

compared to the case when q=0.3 (16.77 minutes vs. 15.29 minutes). The difference in run time 

is particularly significant in r2 and rc2 problems where ALNS with variable PR takes 25.1% 

and 10.3% more time, respectively. Since the time-windows are wider and routes are longer in 

these problem types, ALNS needs more time to evaluate the insertions and determine the 

recharge quantity. Nevertheless, the additional time brings substantial improvements both in 

the number of vehicles and total distance traveled. Overall, these results suggest the PR scheme 

is effective, particularly in cases where the time windows are more restrictive. 

2.6. Conclusions and Future Research 

In this chapter, we investigated the partial recharge strategies for the EVRPTW, namely 

EVRPTW-PR, and proposed an ALNS algorithm to solve it. Some of the existing ALNS 

mechanisms were adopted from the literature whereas new removal and insertion mechanisms 

specific to the EVRPTW were developed to handle the visits to recharging stations and to 

incorporate the PR decisions. 

We used the instances generated by Schneider et al. (2014) to validate the performance of the 

proposed ALNS. We first solved the EVRPTW instances and compared our results to those 

reported in Schneider et al. (2014), Goeke and Schneider (2015), and Hiermann et al. (2015). 

We also reported four new best-known solutions. For the proposed EVRPTW-PR we solved 

the same instances. The results revealed that the routes can be significantly improved when PR 

is allowed, even if at a pre-determined constant level.  

In this study, we only allowed PR using the same power level. The problem can be extended to 

a multiple recharge power options at different speeds and costs as discussed in Felipe et al. 

(2014). Further research on this topic may also address the heterogeneous fleet case. The 

heterogeneity within this context does not only arise from the vehicle capacities but from their 

batteries as well since the cruising range of EVs and discharge/recharge durations differ 

depending on their battery condition and age. Furthermore, the travel times may vary due to 

traffic conditions, accidents, construction, etc., which may have a significant impact on the 
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routing decisions due to limited driving range of the EVs. In addition, we assume that 

recharging stations are always available, which may not be true in real life and there may be 

queues in the stations. So, variability in both travel and recharging times arises as an interesting 

and challenging topic to be investigated within the stochastic context.  
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Chapter 3 
_____________________________________________ 
 
 
 
A Matheuristic Method for the Electric Vehicle Routing 
Problem with Time Windows and Fast Chargers 
 

3.1. Introduction 

Transportation systems have a major impact on global energy consumption and CO2 emissions 

with a share of around 20-25%. In the US, 26% of the total GHG emissions in 2014 was 

generated by transportation systems that utilize fossil fuels (www.epa.gov). Furthermore, 74% 

of the domestic freight in 2012 was moved by trucks and the freight volume is expected to grow 

by 39% in 2040 (Bureau of Transportation Statistics, 2014). Similarly, the EU reported that 

transportation was a main contributor with 23.2% of total GHG emissions in 2014 and freight 

transport activity is predicted to grow by around 80% in 2050 compared to 1990 (ec.europa.eu).  

Transportation will remain a major and growing source of GHGs in the future. Hence, 

governments initiated new environmental measures and targets for reducing emissions and 

cutting the dependency on fossil fuels. For instance, US government targets reducing GHG 

emissions 20% below 2008 levels by 2020 (www.state.gov). The EU aims a reduction of 80-

95% by 2050 with respect to 1990 (White Paper on Transport, 2011). In December 2016, a 

commitment was signed by 194 countries in New York to set a global action to stop the global 

temperature rise (unfccc.int). Since transportation plays a major part in GHG emissions and 

road transport contributes with a 75% share, the new regulations bring limitations to the use of 

ICEVs. In the EU, the use of ICEVs will be reduced by 50% in urban transport by 2030 and 

phased out by 2050. City logistics in major European urban centers will be CO2-free by 2030 

(White Paper on Transport, 2011). The parliaments of Netherlands and Norway recently passed 

new motions that will end sales of new cars powered by fossil fuels after 2025 (Edelstein, 2016). 
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Similarly, German Federal Council accepted a resolution that bans the sales of fossil fuel cars 

by 2030 (Khan, 2017). 

The targets set by governments and the new regulations encourage the usage of AFVs such as 

solar, electric, biodiesel, LNG, CNG vehicles. Many municipalities, government agencies, non-

profit organizations, and private companies are converting their fleets to include AFVs, either 

to reduce their environmental impact voluntarily or to meet new environmental regulations 

(Erdoğan and Miller-Hooks, 2012). Consequently, the advancements in the EV technology 

have gained momentum in parallel with the growing environmental concerns in societies. 

EVRP is an extension to the Capacitated Vehicle Routing Problem (CVRP) where a fleet of 

EVs is used instead of ICEVs. The energy stored in the battery is consumed along the journey 

proportional to the distance travelled and the EV may need recharging to complete its tour. 

Recharging may be performed at any battery SoC. The stations are scarce and recharging may 

require a significant amount of time, compared to short refueling times at petrol stations. In this 

chapter, we address the EVRPTW which was firstly introduced by Schneider et al. (2014). 

EVRPTW assumes that recharging time is a linear function of the energy transferred and the 

battery is fully charged. Bruglieri et al. (2015) relaxed the full charge restriction and allowed 

partial recharging with any quantity up to the battery capacity, which is the current practice in 

real-world applications. 

In this study, we extend the EVRPTW-PR by introducing fast charging option and refer to this 

problem as EVRPTW and Fast Charging (EVRPTW-FC). Basically, we assume that the 

stations are equipped with multiple charger types. They vary in power supply, power voltage, 

and maximum current options, which affect the recharge duration. We formulate this problem 

as a 0-1 mixed integer linear program and propose a matheuristic approach to solve it 

efficiently. Our approach combines the ALNS with an exact method. At each iteration of the 

ALNS, the feasible solution is destroyed by removing certain customers and stations from their 

routes and then repaired by inserting the removed customers back to the solution along with 

stations when recharging is necessary. When a station is inserted, the charger type and recharge 

quantity are also determined. The solution found by ALNS is then improved periodically by 

solving a mixed linear integer program which optimizes the decisions associated with 

recharging stations, charger types, and recharge quantities given the sequence of the customers 

visited. 
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The main contributions of this chapter can be summarized as follows: 

˗ We extend EVRPTW-PR to allow fast charging using multiple charging equipment 

types, and present two mathematical programming formulations of EVRPTW-FC. 

˗ As a solution methodology, we develop a matheuristic approach which combines ALNS 

with an exact method. 

˗ The proposed ALNS involves new destroy and repair mechanisms specific to the nature 

of the problem. 

˗ For a given sequence of customers, we propose a novel formulation of the charging sub-

problem that can be solved to optimality fast. 

˗ We devise an extensive experimental design to validate the performance of the proposed 

methodology and to show the benefits of fast charging. 

The remainder of the chapter is organized as follows. Section 3.2 reviews the relevant literature. 

Section 3.3 describes the problem and presents the mathematical models. The proposed solution 

approach is described in Section 3.4. Then, Section 3.5 presents the computational study and 

provides the numerical results. Finally, the chapter closes with concluding remarks in Section 

3.6. 

3.2. Related Literature 

VRPs with AFVs context have been studied by several researchers in recent years. Schneider 

et al. (2014) introduce EVRPTW as an extension to GVRP. Bruglieri et al. (2015) and Chapter 

2 relaxes the full recharge restriction and allow batteries to be recharged up to any level. The 

former minimizes the number of vehicles, travel time, waiting time, and recharging time, 

develops a Variable Neighborhood Search Branching method, and uses it to solve small size 

instances. The latter extends the model of Schneider et al. (2014) to formulate EVRPTW with 

Partial Recharges and proposes an ALNS approach that improves some of the best-known 

results in the literature. Bruglieri et al. (2016) formulate a more effective mathematical model 

for GVRP by reducing the number of variables and eliminating dominated stations for each pair 

of customers. 

Montoya et al. (2017) is the first study that extended EVRP to consider nonlinear charging 

functions. The objective function minimizes the total time which includes travel and charging 

time. The authors propose a hybrid metaheuristic to solve the problem and introduce new 

benchmark instances. New formulations of this problem are proposed in Froger et al. (2017).  
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Yang and Sun (2015) model location and routing decisions simultaneously for a capacitated 

EV fleet. They consider battery swap stations (BSSs) instead of recharging stations where the 

EVs always depart from stations with full battery. Hof et al. (2017) also investigate EVRP with 

BSSs and develop an Adaptive VNS (AVNS) approach to solve it. Recently, Schiffer and 

Walther (2017) propose a location-routing model for EVRPTW allowing partial recharging at 

customer locations. They analyze the effects of different objective functions. Paz et al. (2017) 

also model the same problem considering multi depots and battery swapping option in some 

locations.  

Pelletier et al. (2017) integrate battery degradation into the model and optimize charging 

schedules at the depot. They also provide managerial insights considering degradation, grid 

restrictions, charging costs, and charging schedules of the fleet. A detailed survey of the goods 

distribution with EVs can be found in Pelletier et al. (2016) and Pelletier et al. (2017). 

3.3. Problem Description and Model Formulation 

3.3.1. Problem Description 

Given a homogeneous fleet of EVs, EVRPTW-FC aims to determine a set of routes involving 

customers with known demands, delivery time windows, service durations, and recharging 

stations with different types of chargers. The charging levels can be classified into three 

categories: Level 1 (1.4 kW to 1.9 kW), Level 2 (4 kW to 19.2 kW), and Level 3 (50 kW to 100 

kW) (Yilmaz and Krein, 2013). In line with the current technology, we assume that every station 

is equipped with three types of chargers, which may be referred to as normal, fast, and super-

fast charger, respectively. While recharging takes less time in fast and super-fast charging 

options, the unit cost of energy is higher since the installation of the chargers requires 

substantial electrical infrastructure and the equipment is more expensive. The charge durations 

are linear with respect to time at the first phase of charging which corresponds to almost full 

battery while the second phase is non-linear and can take hours to obtain a fully charged battery 

(Montoya et al., 2017). On the other hand, it is a common industrial practice to operate within 

the first phase because recharging the battery up to full capacity can adversely affect its lifespan 

(Sweda et al., 2017). So, without loss of generality we assume linear recharging times in this 

study. In addition, we allow only one recharge between two consecutive customers which is the 

realistic situation within the context of urban logistics. Our objective function is hierarchical 

where minimizing the number of vehicles is the primary objective while minimizing the total 

cost of energy consumed is the secondary. 
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To describe the general setting and highlight the advantage of using fast chargers we employ 

the instance c104c10-s3 of Schneider et al. (2014) which involves ten customers and three 

stations. The problem is solved using CPLEX and the optimal solution is illustrated in Figure 

3.1. The recharging stations are represented with charger icons. The numbers on the icons refer 

to level 1 (normal), level 2 (fast), and level 3 (super-fast) chargers. The cargo and battery 

capacities of the vehicles are 200 and 77.75 units, respectively. The vehicles travel one unit 

distance in one unit of time consuming one unit of energy. Normal, fast, and super-fast chargers 

transfer one unit of energy in 3.47, 0.62, and 0.28 time units, respectively, at the cost of 1, 1.1, 

and 1.2 units, respectively. The demands and time windows are provided in Table 3.1. The 

values given in brackets placed at the beginning (end) of an arc represent the time and battery 

states of charge, respectively, at departure (arrival) from (at) the corresponding customer. The 

arc distances are shown in bold. For ease of understanding, we rounded all the values in the 

figure to the nearest integer whereas the objective function values are exact. 

Table 3.1. Demand and time-window data for the example illustrated in Figure 3.1 

 

In Figure 3.1.a, we see the optimal solution of the problem when only normal chargers are 

available at the stations. Two vehicles travel a total distance of 273.93 units at a total energy 

cost of 273.93. The two values coincide because the problem involves only normal chargers 

and one unit of energy is consumed to travel one unit of distance. On the other hand, Figure 

3.1.b shows that all customers can be served by only one vehicle in a single tour when fast and 

super-fast chargers are available. This is due to the reduced recharging times at stations which 

enable the EV to catch the time windows of all customers. In this case, the total distance 

travelled is 239.13 and total cost of energy is 267.60. Although fast and super-fast recharges 

are more expensive, the total cost of energy decreases because the EV makes a shorter trip 

consuming less energy. 

Depot
D C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Demand - 10 10 30 10 10 40 20 10 20 20
Early service time 0 0 177 0 0 0 0 0 0 0 0
Late service time 1236 1129 243 1119 1122 1094 1111 1126 1122 1113 1133

Customers
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(a) Optimal solution using single charger (Total cost=273.93) 

 

(b) Optimal solution using multiple chargers (Total cost=267.60) 

Figure 3.1. Route plans when each recharging station is equipped with (a) only normal 
chargers, (b) normal, fast and super-fast chargers 
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3.3.2. Problem Formulation 

We follow the notation used in Chapter 2 for ease of understanding. Let 𝑉 and 𝐹 denote the set 

of customers and the set of recharging stations, respectively. Since recharging stations may be 

visited multiple times by the same vehicle or different vehicles, we create sufficient number of 

copies and allow at most one visit to each in the mathematical model. So, we define 𝐹° as the 

set of all recharging stations along with their copies and 𝑉° = 𝑉 ∪ 𝐹°. We assume that each 

station is equipped with all types of chargers but only one is used at each visit to the station. 

This assumption can be easily relaxed but may not be practical in the real business environment. 

We also assume that all EVs are recharged with normal (cheapest) charger type over night at 

the depot and depart in the morning with full battery. To keep track of each EV’s energy 

consumption along its tour we create copies of the depot by defining sets DD and AD as the 

departure depot and arrival depot vertices, respectively. We define 	𝑉±± = 𝑉 ∪ 𝐷𝐷 and 𝑉²± =

𝑉 ∪ 𝐴𝐷. Let 𝑉±±° = 𝑉° ∪ 𝐷𝐷, 𝑉²±° = 𝑉° ∪ 𝐴𝐷, and 𝐹±±° = 𝐹° ∪ 𝐷𝐷. Then, the problem can be 

represented by a complete graph 𝐺 = (𝑉±±,²±° , 𝐴) where 𝐴 = {(𝑖, 𝑗)|𝑖 ∈ 𝑉±±° , 𝑗 ∈ 𝑉²±, 𝑖 ≠ 𝑗} and 

𝑉±±,²±° = 𝑉° ∪ 𝐴𝐷 ∪ 𝐷𝐷. 

Each arc is associated with distance 𝑑BC and travel time 𝑡BC. The energy is consumed at a rate of 

h and the battery is discharged by ℎ. 𝑑BC when the vehicle traverses arc (𝑖, 𝑗). Each customer 

𝑖 ∈ 𝑉 is associated with demand 𝑞B, service time 𝑠B, and time window [𝑒B, 𝑙B]. The fleet is 

homogeneous and consists of vehicles with cargo capacity 𝐶 and battery capacity 𝑄. The 

continuous decision variables 𝜏B, 𝑢B, and 𝑦B keep track of the service start time, remaining cargo 

level, and remaining battery level upon arrival to each vertex, respectively. 𝑌B keeps track of 

the battery SoC at the departure from either the depot or a station. Finally, the binary variable 

𝑥BC takes the value 1 if arc (𝑖, 𝑗) is traversed and 0, otherwise. The mathematical notation is 

given in Table 3.2. 

Table 3.2. Mathematical notation 

  Sets:  
𝑉 Set of customers 
𝐹 Set of recharging stations 
𝐹° Set of recharging stations with their copies 
𝑉° Set of customers and stations with their copies (𝑉 ∪ 𝐹°) 
𝐷𝐷 Set of departure depots 
𝐴𝐷 Set of arrival depots 
𝑉±± Set of customers and departure depots (𝑉 ∪ 𝐷𝐷) 
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Sets: 
𝑉²± Set of customers and arrival depots (𝑉 ∪ 𝐴𝐷) 
𝑉±±°  Set of customers, departure depots, and stations with their copies (𝑉° ∪ 𝐷𝐷) 
𝑉²±°  Set of customers, arrival depots, and stations with copies (𝑉° ∪ 𝐴𝐷) 
𝐹±±°  Set of departure depots and stations with their copies (𝐹° ∪ 𝐷𝐷) 
𝑉±±,²±°  Set of customers, arrival/departure depots, and stations with their copies (𝑉° ∪ 𝐴𝐷 ∪ 𝐷𝐷) 

  Parameters: 
𝑑BC  Distance from node i to node j 
𝑡BC  Travel time from node i to node j 
𝑞B  Demand of customer i 
𝑠B  Time required to serve customer i 

[𝑒B, 𝑙B] Service time window of customer i 
C Cargo capacity of the vehicles 
Q Battery capacity of the vehicles 

  Decision variables: 
𝜏B  Service starting time at node i 
𝑢B  Remaining cargo level at node i 
𝑦B  Battery SoC at the arrival at node i 
𝑌B  Battery SoC at the departure from node i  
𝑥BC  1 if the vehicle traverses arc (i, j); 0 otherwise 
𝑎B 1 if the vehicle is recharged with normal charger at station i; 0 otherwise 
𝑏B 1 if the vehicle is recharged with fast charger at station i; 0 otherwise 
𝜃Bz Amount of energy recharged at station i using charger type m 

 

In what follows, we present two alternative 0-1 mixed integer linear programming formulations 

of the problem. 

3.3.2.1. Model 1 

In this model, we define binary variables 𝑎B and 𝑏B to determine which charging equipment is 

used to recharge the vehicle at station 𝑖 ∈ 𝐹°: 𝑎B = 1 if charger type 1 (normal) is used, 𝑏B = 1 

if type 2 (fast) is used, and 𝑎B = 𝑏B = 0 if the charger type is 3 (super-fast). The battery 

recharging rate and unit energy cost depend on the charger type 𝑚 ∈ 𝑀 and are referred to as 

𝑔z and 𝑐z, respectively. Since we consider three charger types, 𝑀 = {1,2,3} and 𝑚 = 1 

corresponds to the normal (slowest) charger whereas 𝑚 = 3 represents the super-fast (fastest) 

charger. Then, the problem is formulated as follows:   
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min					Y Y 𝑐z𝜃Bz

z·¯B·¸¹
+ 𝑐7 º𝑄 Y Y 𝑥BC

C·Z¹B·±±

− Y 𝑦B
B·²±

» 

 

 (3.1) 

s.t. Y 𝑥BC ≤ 1
C∈Z¼½

 ∀𝑖 ∈ 𝐹° (3.2) 

 Y 𝑥BC
C·Z¼½

¹

= 1 ∀𝑖 ∈ 𝑉 (3.3) 

 Y 𝑥BC
B·Z½½

¹

= Y 𝑥CB
B·Z¼½

¹

 ∀𝑗 ∈ 𝑉° (3.4) 

 Y𝑥BC
C·Z¹

≤ 1 ∀𝑖 ∈ 𝐷𝐷 (3.5) 

 Y𝑥BC
B·Z¹

≤ 1 ∀𝑗 ∈ 𝐴𝐷 (3.6) 

 Y Y𝑥BC
C·Z¹B·±±

= Y Y 𝑥CB
C·Z¹B·²±

  (3.7) 

 𝜏B + a𝑡BC + 𝑠Bb𝑥BC − 𝑙4(1 − 𝑥BC) ≤ 𝜏C ∀𝑖 ∈ 𝑉±±, ∀𝑗 ∈ 𝑉²±°  (3.8) 

 𝜏B + 𝑡BC𝑥BC + Y 𝑔z𝜃Bz

z∈¯

− (𝑙4 + 𝑔7𝑄)(1 − 𝑥BC) ≤ 𝜏C ∀𝑖 ∈ 𝐹°, ∀𝑗 ∈ 𝑉²± (3.9) 

 𝑒C ≤ 𝜏C ≤ 𝑙C ∀𝑗 ∈ 𝑉±±,²±°  (3.10) 

 0 ≤ 𝑢C ≤ 𝑢B − 𝑞B𝑥BC + 𝐶(1 − 𝑥BC) ∀𝑖 ∈ 𝑉±±° , ∀𝑗 ∈ 𝑉²±°  (3.11) 

 0 ≤ 𝑢B ≤ 𝐶 ∀𝑖 ∈ 𝐷𝐷 (3.12) 

 0 ≤ 𝑦C ≤ 𝑦B − (ℎ. 𝑑BC)𝑥BC + 𝑄(1 − 𝑥BC) ∀𝑖 ∈ 𝑉, ∀𝑗 ∈ 𝑉²±°  (3.13) 

 0 ≤ 𝑦C ≤ 𝑌B − (ℎ. 𝑑BC)𝑥BC + 𝑄(1 − 𝑥BC) ∀𝑖 ∈ 𝐹±±° , ∀𝑗 ∈ 𝑉²± (3.14) 

 0 ≤ 𝑦B ≤ 𝑌B ≤ 𝑄 ∀𝑖 ∈ 𝐹±±°  (3.15) 

 𝑌B = 𝑄 ∀𝑖 ∈ 𝐷𝐷 (3.16) 

 𝑌B − 𝑦B = Y 𝜃Bz

z∈¯

 ∀𝑖 ∈ 𝐹° (3.17) 

 0 ≤ 𝜃B7 ≤ 𝑄𝑎B ∀𝑖 ∈ 𝐹° (3.18) 

 0 ≤ 𝜃Bl ≤ 𝑄𝑏B ∀𝑖 ∈ 𝐹° (3.19) 

 0 ≤ 𝜃Bm ≤ 𝑄(1 − 𝑎B − 𝑏B) ∀𝑖 ∈ 𝐹° (3.20) 

 𝑎B, 𝑏B ∈ {0,1} ∀𝑖 ∈ 𝐹° (3.21) 

 𝑥BC ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴 (3.22) 

    

The objective function (3.1) minimizes the total energy cost which consists of two terms. The 

first term corresponds to the total cost of energy recharged along the route. The second is the 

total cost of energy. All vehicles are recharged fully using the cheapest (slowest) charger type 

at the depot overnight. Note that the second term includes the battery SoC at the end of the trip. 

More specifically, the value of the remaining energy is deducted from the total cost since that 
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amount of energy has not been consumed en-route. Constraints (3.2)−(3.4) are the connectivity 

constraints which ensure that each customer is visited exactly once, and each recharging station 

may be visited at most once. Constraints (3.5) and (3.6) keep track of departures from and 

arrivals at the depots. Constraints (3.7) guarantee that all EVs departed from the depot arrive at 

the depot at the end of their tour. The start times to service are controlled by constraints 

(3.8)−(3.10). Constraints (3.11) and (3.12) observe the load on the vehicle and make sure that 

total load does not exceed the cargo capacity. Constraints (3.13) and (3.14) keep track of battery 

SoC when departing from customers and stations, respectively. Constraints (3.15) define the 

bounds for variables 𝑦B and 𝑌B while constraints (3.16) ensure that EVs depart from the depot 

with full battery. Constraints (3.17) determine the amount of energy transferred while 

constraints (3.18)−(3.20) control which charger type is utilized for recharging. Note that 𝑎B and 

𝑏B cannot be 1 simultaneously because of nonnegativity of 𝜃Bm variables. Finally, constraints 

(3.21) and (3.22) define the binary decision variables. 

3.3.2.2. Model 2 

The second model is a simple modification of EVRPTW-PR formulation and was first 

presented in Çatay and Keskin (2017). Here, instead of defining 𝑎B and 𝑏B variables to determine 

the charger type utilized at the station, we use three copies of each station where each copy 

represents a different charger type. In other words, each recharging station is equipped with 

only one charger type, but we have three stations at the same location. Thus, the total number 

of stations increases three-fold. So, 𝐹 includes all these stations and 𝐹° is the set of stations and 

their copies to allow multiple visits to each station. Let 𝑔B and 𝑐B be the recharging rate and unit 

energy cost for station 𝑖 ∈ 𝐹°, respectively. 𝑔4 is the recharging rate of the slowest charger and 

𝑐4 is the associated unit cost. Then, the mathematical model is formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	Y𝑐B(𝑌B − 𝑦B)
B·¸¹

+ 𝑐4 ¿𝑄 Y Y 𝑥BC
C·Z¹B·±±

− Y 𝑦B
B·²±

À  (3.23) 

s.t. (3.2)−(3.16) and (3.22)   

 

The objective function (3.23) represents the same energy cost as (3.1) but with different terms. 

All constraints in Model 1 remain in Model 2 except constraints (3.17)−(3.21) which are 

associated with charger types. 
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3.3.2.3. Evaluation of Model 1 and Model 2 

We compare the efficiency of models 1 and 2 by solving small instances of EVRPTW data set 

of Schneider et al. (2014). The data set includes three subsets of 12 problems, each involving 

5, 10, and 15 customers. We used CPLEX 12.6.2 solver running on a single thread and the time 

limit is set to 7200 seconds. The experiments were carried on a workstation with Intel Xeon E5 

3.30 GHz processor and 64 GB RAM. 

Table 3.3. Comparison of the two models 

 

The results are summarized in Table 3.3. The column “#Cust” gives the number of customers 

in the problem set. “#Opt” refers to the number of optimal solutions found within the time limit 

whereas “#NFS” indicates the number of instances for which no feasible solution could be 

found. “AvgTime” is the average of the run times in seconds for each subset and “#Better” in 

the last column reports the number of instances in which Model 1 gives better solutions than 

Model 2. Since 5-customer instances are very small, CPLEX found the optimal solutions with 

both models; however, the solution times were significantly smaller with Model 1. For the 10-

customer instances, CPLEX failed to prove the optimality of five problems within the time limit 

using Model 2 while all problems were solved to optimality with Model 1, again in substantially 

less time. Finally, for the 15-customer instances, three problems were solved optimally with 

Model 1 and none with Model 2. Furthermore, Model 2 could not yield a feasible solution in 

one problem. Overall, Model 1 provided the optimal solutions faster and in many instances, it 

provided better upper bounds when the time limit is reached. So, we decided to use the results 

obtained with Model 1 to benchmark our solution methodology that we will describe in the next 

section. 

3.4. Description of the Matheuristic 

For solving the EVRPTW-FC, we propose a two-phase matheuristic approach where in the first 

phase, we attempt to find good heuristic solutions using ALNS and then improve them using 

CPLEX in the second phase. In this phase, we resort to CPLEX solver but any open-source or 

commercial solver can be utilized instead. Matheuristics use mathematical models in a heuristic 

framework and they have been applied to various routing problems. We refer the interested 

#Cust #Opt #NFS AvgTime #Opt #NFS AvgTime #Better
5 12 0 265 12 0 <1 0
10 7 0 3618 12 0 179 0
15 0 1 7200 3 0 5582 6

Model 2 Model 1
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reader to Archetti and Speranza (2014) for the details of the approach and an overview of 

implementations. 

In our matheuristic approach, while ALNS explores the neighborhoods to find promising 

routes, after every Ω iterations we further enhance the current best solution by optimizing the 

charging decisions along the tour of an EV by fixing the sequence of customers visited. A 

similar problem was also solved by Montoya et al. (2017). They name this problem as Fixed-

Route Vehicle-Charging Problem (FRVCP) after the Fixed-Route Vehicle-Refueling Problem 

(FRVRP) introduced by Suzuki (2014). Montoya et al. (2017) solve the EVRP by using a 

sequence-first split-second approach where they first construct a TSP tour and then split it to 

extract vehicle routes by ignoring the EV range limit. If any of the resulting routes is energy-

infeasible, then they try to repair it by solving FRVCP. This approach cannot be implemented 

for solving EVRPTW because building vehicle routes without considering the recharge 

needs/durations of EVs and then trying to insert stations may cause many time-window 

violations. So, at each iteration of ALNS our repair procedure yields a feasible solution which 

is further improved by solving the mathematical programming with CPLEX. 

For most of the ALNS destroy and repair mechanisms we resort to the neighborhoods utilized 

in Chapter 2. In addition, we propose new removal and insertion methods specific to the fast 

charging nature of the problem. 

3.4.1. Removal Heuristics 

Since the problem has two types of vertices, namely customers and recharging stations, their 

removal will have different impact on the solution. So, we employ separate customer removal 

(CR) and recharging station removal (SR) operators for destroying the solution. 

3.4.1.1. Customer Removal 

In addition to the well-known CR heuristics widely used in the literature such as Random, 

Worst-Distance, Worst-Time, Shaw, Proximity-based, Demand-based, Time-based, Zone, 

Random Route, and Greedy Route removals, we utilize Remove Customer with Preceding 

Station and Remove Customer with Succeeding Station operators introduced in Chapter 2 

where customers are removed along with the station visited immediately before or after serving 

that customer. At each iteration, one of these CR operators is selected randomly to remove 𝛾 

customers from the solution and put them in a removal list. The value of 𝛾 depends on the total 
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number of customers and is determined randomly between 𝑛� and 𝑛f� using a uniform 

distribution. 

3.4.1.2. Station Removal 

We use Random and Worst-Distance Station removals proposed in Chapter 2. In addition, we 

propose the following two new SR operators:  

Least Used Station Removal: The motivation behind this heuristic is to reduce the cost of 

visiting recharging stations often. So, we attempt to eliminate unnecessary recharges and satisfy 

the energy needs of EVs by visiting less number of stations. This can be achieved by utilizing 

the visited stations to recharge the battery as much as possible instead of recharging small 

quantities with frequent visits. The operator lists the stations (chargers) in the non-decreasing 

order of the quantity of energy they charge and removes a pre-determined number of stations 

from the top of the list.    

Expensive Station Removal: Our aim in this removal heuristic is to save from energy cost by 

eliminating unnecessary recharges using more expensive charging options. The operator lists 

the stations (chargers) in the non-increasing order of the cost they incur and removes a pre-

determined number of stations from the top of the list. 

In all the SR operators, 𝜎 recharging stations are removed from the solution after every 𝑁o¥ 

iterations. 𝜎 is determined in a similar way as 𝛾 based on the number of stations visited in the 

current solution. 

3.4.2. Insertion Heuristics 

As in removal heuristics, different insertion mechanisms are designed for customers and 

recharging stations. A customer insertion (CI) mechanism is used after every CR operation 

whereas the station insertion (SI) follows only an SR operation. 

3.4.2.1. Customer Insertion 

We use the Greedy, Regret-2, Time-based, and Zone insertions as proposed in Chapter 2. In 

addition, we employ these mechanisms only with the fastest recharging option when a station 

insertion is needed to feasibly add a removed customer into a tour. We refer to these new 

operators as Fast Recharge (FR) Greedy, FR Regret-2, FR Time-based, and FR Zone insertions. 

Our aim is to shorten the charge durations which may allow serving more customers along the 
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tour and thus reduce the number of vehicles. Eventually, the charge-related decisions will later 

be optimized in the second phase using a solver as described in Section 3.4.4.  

3.4.2.2. Station Insertion 

We adapt the Greedy and Best Station insertions introduced in Chapter 2 using the cost criterion 

as follows: when a recharging station is inserted in a route, first, we try the normal charger since 

it is the cheapest option. If the normal charge is infeasible due to its longer duration, we try fast 

and super-fast chargers consecutively. This procedure is repeated for all feasible stations and 

candidate stations are determined along with the charger type. Then, the insertion is performed 

according to the criteria used in the corresponding SI operator. 

3.4.3. Constructing the Initial Solution 

We use three initialization approaches for comparison. The first uses the best-known solutions 

reported Chapter 2. Basically, these solutions were obtained by only allowing normal recharge 

at the stations and can be considered as an upper bound for the fast recharge case. In the second 

approach, we implement the ALNS of Chapter 2 by allowing the super-fast recharge only and 

feed its solution to initiate the matheuristic. The last approach randomly puts all customers into 

the removal list and applies the FR Greedy CI heuristic. Henceforth, we will refer to these 

initialization approaches as IA 1, IA 2, and IA 3, respectively.  

3.4.4. Route Enhancement 

To improve the solution quality, we employ a post-optimization procedure systematically 

throughout the ALNS process. This procedure uses CPLEX to optimize the charge-related 

decisions along each EV route by fixing the sequence of the customers. These decisions include 

the locations of the stations, selection of the charger type, and the amount of energy transferred.  

An easy way to solve this problem is to use Model 1 by reducing the customer set to include 

only those visited along the route of the vehicle considered and fixing their sequence. However, 

this formulation will be weak and solving it may require significant computation time 

particularly when the EV makes frequent stops. To overcome this drawback and speed-up the 

algorithm, we propose a tighter formulation which also eliminates the need for using copies of 

the stations. Our approach is similar to the ideas presented in Bruglieri et al. (2016). Let  𝑉f =

{1,… , 𝐾} be the set of customers served by the vehicle. 0 and 𝐾 + 1 represent the depot. We 

define 𝑉f4 = 𝑉f ∪ {0} and 𝑉fÃ67 = 𝑉f ∪ {𝐾 + 1}. Let 𝜃B,B67z  denote the amount of energy recharged 
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using charger type 𝑚 if the EV visits a station on its way from customer 𝑖 to customer 𝑖 + 1. 

As in Model 1, binary variables 𝑎B,B67 and 𝑏B,B67 are used to determine the charger type if the 

EV is recharged at a station between customers 𝑖 and 𝑖 + 1. Note that these variables are defined 

for only consecutive customers and the number of 𝑎B,B67 and 𝑏B,B67 variables is the same as the 

number of arcs on the route. The mathematical model is formulated as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒.				Y Y 𝑐z𝜃B,B67z

z∈¯B∈¸

+ 𝑐7(𝑄 − 𝑦Ã67) 

 
 (3.24) 

s.t. 𝜏B + 𝑠B +Y(
C∈¸

𝑡BC + 𝑡C,B67)𝑥BC + Y 𝑔z𝜃B,B67z

z∈¯

≤ 𝜏B67 ∀𝑖 ∈ 𝑉f4 (3.25) 

 𝑒B ≤ 𝜏B ≤ 𝑙B  ∀𝑖 ∈ 𝑉fÃ67 (3.26) 

 
𝑦B − ℎ ¿𝑑B,B67 º1 −Y𝑥BC

C∈¸

» +Ya𝑑BC + 𝑑C,B67b𝑥BC
C∈¸

À

+ Y 𝜃B,B67z

z∈¯

= 𝑦B67 
∀𝑖 ∈ 𝑉f4 (3.27) 

 𝑦B − ℎY𝑑BC𝑥BC
C∈¸

≥ 0 ∀𝑖 ∈ 𝑉f4 (3.28) 

 Y 𝜃B,B67z

z∈¯

≤ 𝑄Y𝑥BC
C∈¸

 ∀𝑖 ∈ 𝑉f4 (3.29) 

 Y 𝜃B,B67z

z∈¯

≤ 𝑄 − º𝑦B − ℎY𝑑BC𝑥BC
C∈¸

» ∀𝑖 ∈ 𝑉f4 (3.30) 

 0 ≤ 𝜃B,B677 ≤ 𝑄𝑎B,B67 ∀𝑖 ∈ 𝑉f4 (3.31) 

 0 ≤ 𝜃B,B67l ≤ 𝑄𝑏B,B67 ∀𝑖 ∈ 𝑉f4 (3.32) 

 0 ≤ 𝜃B,B67m ≤ 𝑄(1 − 𝑎B,B67 − 𝑏B,B67) ∀𝑖 ∈ 𝑉f4 (3.33) 

 𝑦4 = 𝑄  (3.34) 

 𝑎B,B67, 𝑏B,B67 ∈ {0,1} ∀𝑖 ∈ 𝑉f4 (3.35) 

 𝑥BC ∈ {0,1} ∀𝑖 ∈ 𝑉f4, 𝑗 ∈ 𝐹 (3.36) 

 

The objective function (3.24) minimizes total energy cost of the route. The first term represents 

the cost of recharges en-route while the second is the cost of energy, calculated based on the 

difference of SoCs between departure from and arrival at the depot. Constraints (3.25)−(3.26) 

satisfy time-window feasibility of the customers and the depot. Constraints (3.27) keep track of 

the battery SoC: if the EV does not visit a recharging station after leaving customer 𝑖, then SoC 
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at arrival at customer 𝑖 + 1 is calculated by subtracting the energy consumed along the arc 

(𝑖, 𝑖 + 1) from SoC at customer 𝑖. If it visits a station, then the energy recharged at station 𝑗 is 

added to the amount described in the previous case and the energy consumed along the arcs 

(𝑖, 𝑗) and (𝑗, 𝑖 + 1) is subtracted. Constraints (3.28) make sure that if the EV visits a recharging 

station after customer 𝑖, SoC at the arrival at station 𝑗 is nonnegative. Constraints (3.29) ensure 

that the recharging variables 𝜃B,B67z  take a positive value only if the vehicle visits a station 

between customers 𝑖 and 𝑖 + 1. Constraints (3.30) guarantee that SoC after the recharge does 

not exceed the battery capacity 𝑄. Constraints (3.31)−(3.33) determine the charger type if the 

EV is recharged between 𝑖 and 𝑖 + 1. Constraint (3.34) makes sure that the vehicle departs from 

the depot with a full battery while constraints (3.35)−(3.36) define the binary decision 

variables.  

We also introduce a pre-processing procedure to reduce the set of the recharging stations as 

follows: Let 𝑖 and 𝑖 + 1 be two consecutive customers in the route and 𝐹B,B67 be the set of 

recharging stations that the EV may visit when traveling from customer 𝑖 to 𝑖 + 1. Initially, 

𝐹B,B67 = 𝐹. Then, we make a pairwise comparison of the stations with respect to their distance 

to customers 𝑖 and 𝑖 + 1. For instance, consider two stations 𝑗, 𝑗° ∈ 𝐹B,B67. If 𝑑BC¹ > 𝑑BC and 

𝑑C¹,B67 > 𝑑C,B67 then 𝑗 is said to dominate 𝑗° and 𝑗° cannot be visited in the optimal solution 

since 𝑗 is closer to both 𝑖 and 𝑖 + 1. Hence, 𝑗° is removed from 𝐹B,B67. We repeat this procedure 

for all station pairs in  𝐹B,B67 to reduce its size. The same procedure is applied to all customer 

pairs (𝑖, 𝑖 + 1) in the route. 

 

Figure 3.2. Set of recharging stations between customers 𝑖 and 𝑖 + 1 
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Figure 3.2 illustrates the case of four recharging stations 𝑗, 𝑗°, 𝑗°°,	and 𝑗°°°, which can be visited 

between customers 𝑖 and 𝑖 + 1. It can be easily identified that 𝑗° is dominated by 𝑗 as explained 

above. However, neither one of 𝑗, 𝑗°°, and 𝑗°°° dominates the other since both conditions are not 

satisfied. So, 𝐹B,B67 includes 𝑗, 𝑗°°, and 𝑗°°°. 

In Figure 3.3, the structure of fixed-route problem is illustrated using a segment of the route 

consisting of three customer vertices. Since the pre-processing may eliminate some of stations 

that can be visited between a pair of customers, each arc is associated with a different recharging 

station set. So, we do not need to create any copies of the stations to allow multiple visits in the 

mathematical model. This decreases the number of decision variables significantly. 

 

Figure 3.3. Station insertion between two nodes 

3.4.5. Reducing the Number of Vehicles 

Since the primary objective is to minimize the number of vehicles, we devote some iterations 

throughout the ALNS to this purpose. After every 𝑁¥¥ iterations we dedicate 𝑛¥¥ consecutive 

iterations to remove customers using the Random Route Removal or Greedy Route Removal 

operators and insert them using FR CI heuristics described in Section 4.2.1. Using only super-

fast chargers when recharging is needed decreases the duration of the recharge and allow 

serving more customers along the route which may not be possible otherwise due to time-

windows restrictions. This yields longer routes with more frequent visits to customers and thus 

offers an opportunity to reduce the total number of vehicles in the fleet. 

The general structure of the proposed matheuristic is provided in Appendix B. 
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3.5. Experimental Design and Numerical Results 

We test the performance of the proposed matheuristic on the EVRPTW data sets that Schneider 

et al. (2014). The data set of Felipe et al. (2014) is referred to as FORT instances and consists 

of two different configurations involving five and nine stations. Each configuration includes 

three sets of ten instances with 100, 200 and 400 customers distributed randomly. In total, the 

data set includes 60 instances.   

In ALNS, we used the same parameter values as reported in Chapter 2. For the recharging speed 

and cost of different chargers, we used the values given in Felipe et al. (2014). In the 

optimization phase, we employed CPLEX 12.6.2 with its default setting using single thread. 

The matheuristic was implemented in Java programming language and the experiments are 

conducted on the same workstation described in Section 3.2.3. 

3.5.1. Results for Large Instances 

We first investigate how different initialization approaches and optimization frequencies affect 

the solution quality in order to determine the best configuration. Next, we examine the benefits 

of utilizing fast chargers in terms of fleet size and energy costs.  

3.5.1.1. Analysis of Different Configurations 

We optimize the recharging decisions of the best solution of that round every Ω iterations, 

which we refer to as CPLEX call frequency. On the one hand, choosing this number too small 

may increase the run time. On the other hand, choosing it too large may deteriorate the solution 

quality. Our preliminary experiments revealed that calling CPLEX after 200 and 500 iterations 

shows a good compromise. So, we decided to consider these values for further investigation. 

Our stopping criterion is a limit on the number of iterations. For different initialization 

algorithms, we set different limits. We perform 25,000 iterations of ALNS when we utilize IA 

1 and IA 2 to generate the initial solution. Then, we apply the matheuristic for 10,000 iterations. 

When we utilize IA 3 for initialization, the solution is constructed very fast by the greedy 

algorithm whereas the matheuristic is performed for 25,000 iterations. In other words, we allow 

a more intensive search during the initial solution generation in the former case whereas in the 

latter case matheuristic is the only actor and it benefits from the mathematical programming 

more rigorously. 
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Table 3.4. Comparison of results obtained with different configurations  

 

Instance #Veh TC #Veh TC #Veh TC #Veh TC #Veh TC #Veh TC
c101 12 1043.38 12.00 1043.38 12.00 1043.38 12.00 1043.38 12.00 1044.51 12.00 1044.51
c102 10 1078.12 10.00 1096.73 10.00 1009.86 10.00 1009.86 10.00 1080.95 10.00 1055.41
c103 10 962.78 10.00 962.78 10.00 961.78 10.00 961.78 10.00 992.25 10.00 997.27
c104 9 1113.85 10.00 878.81 9.00 1006.12 9.00 1006.12 10.00 893.66 10.00 900.29
c105 10 1102.47 10.00 1124.58 10.00 1031.58 10.00 1031.58 10.00 1141.21 10.00 1166.01
c106 10 1141.19 10.00 1082.12 10.00 1044.96 10.00 1044.96 10.00 1083.49 10.00 1166.84
c107 10 1017.80 10.00 1022.24 10.00 1015.81 10.00 1015.81 10.00 1146.72 10.00 1048.87
c108 10 1025.15 10.00 1025.15 10.00 1022.36 10.00 1022.36 10.00 1191.61 10.00 1074.91
c109 10 940.38 10.00 940.38 10.00 959.66 10.00 959.66 10.00 1126.70 10.00 1057.56
c201 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95
c202 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 641.13
c203 4 629.95 4 629.95 4 629.95 4 629.95 4 638.17 4 638.17
c204 3 746.75 3 787.77 3 719.89 3 720 3 741.99 3 846.81
c205 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95
c206 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95
c207 4 629.95 4 629.95 4 629.95 4 629.95 4 638.17 4 629.95
c208 4 629.95 4 629.95 4 629.95 4 629.95 4 629.95 4 630.06
r101 17 1772.39 17 1829.99 16 1815.77 17 1642.9 17 1845.09 17 1817.59
r102 15 1583.3 15 1561.71 15 1436.95 15 1436.95 15 1572.01 15 1585.49
r103 13 1256.95 12 1395 12 1233.72 12 1233.72 12 1423.86 12 1472.09
r104 11 1076.25 11 1076.25 10 1048.69 10 1048.69 11 1210.75 11 1261.95
r105 13 1515.67 13 1547.43 13 1364.98 13 1366.89 14 1549.83 14 1572.14
r106 12 1446.52 13 1300.36 12 1280.16 12 1280.16 12 1386.04 12 1435.11
r107 11 1159.07 11 1184.88 10 1130.86 10 1130.86 11 1261.46 11 1234.65
r108 10 1213.32 11 1030.48 10 1010.68 10 1010.68 10 1223.7 10 1168.6
r109 12 1359.11 12 1310.09 11 1198.55 11 1198.55 12 1433.76 12 1389.78
r110 11 1089.9 11 1089.9 10 1127.7 10 1127.7 11 1206.9 11 1336.29
r111 11 1180.33 11 1192.5 11 1086.1 11 1086.1 11 1325.5 11 1276.08
r112 11 1016.3 11 1016.3 10 1015.49 10 1015.49 11 1181.79 11 1168.92
r201 3 1262.06 3 1262.06 3 1295.95 3 1257.50 3 1576.58 3 1378.97
r202 3 1051.46 3 1051.46 3 1060.18 3 1060.18 3 1068.4 3 1097.62
r203 3 895.54 3 895.54 3 898.96 3 898.96 3 932.9 3 923.22
r204 2 779.71 2 780.13 2 785.7 2 785.7 2 816.47 3 728.46
r205 3 987.36 3 987.36 3 1001.85 3 1006.86 3 1020.8 3 1047.23
r206 3 922.7 3 922.7 3 928.56 3 928.56 3 956.58 3 974.17
r207 2 846.43 2 846.43 2 857.07 2 859.3 3 825.55 3 829.16
r208 2 736.13 2 736.13 2 737.43 2 739.64 2 739.15 2 747.66
r209 3 866.67 3 866.67 3 900.77 3 900.77 3 931.26 3 892.07
r210 3 843.21 3 843.21 3 856.76 3 859.13 3 879.16 3 871.9
r211 2 862.56 2 862.56 2 840.61 2 857.74 3 783.63 3 797.63
rc101 15 1744.85 15 1744.85 14 1800.73 15 1640.57 15 1827.93 15 1810.49
rc102 14 1526.31 14 1526.27 13 1557.39 13 1557.39 14 1657.06 13 1645.16
rc103 12 1389.5 12 1444.88 12 1355.71 12 1355.71 12 1497.5 12 1552.26
rc104 11 1201.04 11 1200.24 10 1192.6 10 1193.86 11 1257.48 11 1389.82
rc105 14 1449.53 13 1587.57 13 1425.92 13 1425.92 13 1488.58 13 1590.97
rc106 13 1402.95 13 1398.85 12 1388.85 12 1388.85 13 1541.1 13 1490.22
rc107 11 1294.2 11 1300.44 11 1249.03 11 1247.87 11 1366.75 11 1440.09
rc108 11 1182.84 11 1182.84 10 1199.24 10 1199.24 11 1302.43 11 1262.57
rc201 4 1446.84 4 1446.84 4 1485.23 4 1485.23 4 1482.53 4 1501.32
rc202 3 1416.96 3 1416.96 3 1426.88 3 1424.86 4 1287.24 4 1313.06
rc203 3 1064.33 3 1064.33 3 1081.57 3 1081.57 3 1144.73 3 1114.98
rc204 3 886.23 3 886.19 3 895.18 3 895.18 3 898.97 3 894.21
rc205 3 1257.92 3 1257.92 3 1256.30 3 1256.30 3 1341.91 3 1451.59
rc206 3 1206.06 3 1206.06 3 1229.67 3 1229.67 3 1223.51 3 1296.31
rc207 3 992.14 3 992.14 3 991.65 3 991.65 3 1073.96 3 1090.87
rc208 3 839.71 3 839.71 3 884.76 3 885.76 3 886.36 3 944.14
#Best

IA 2 IA 3IA 1

23

 

45333823

Ω = 200 Ω = 500 Ω = 200 Ω = 500 Ω = 200 Ω = 500
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For each configuration, we performed 30 runs for each instance and reported the best results in 

Table 3.4. “#Veh” and “TC” represent the number of vehicles needed and total cost of energy, 

respectively. The best solutions among six different configurations are indicated in bold. The 

row “#Best” shows the total number of instances for which the corresponding configuration 

yielded the best solution. 

We observe that the initialization approaches have a significant effect on the performance of 

the matheuristic. While IA 2 yields better solutions in type-1 instances where customers have 

narrow time windows, IA 1 performs better in type-2 instances which involve customers with 

wide time windows. In other words, determining the initial solution through ALNS by 

considering only normal chargers works better in type-2 problems whereas using the same 

initialization approach with super-fast chargers has a better performance in type-1 problems. 

Moreover, we also see that the superiority of IA 2 in type-1 problems is usually in terms of the 

number of vehicles while in type-2 problems IA 1 performs slightly better than IA 2 in total 

cost. The former is an expected outcome as the utilization of super-fast chargers may 

significantly cut down the recharge time at stations and allow the EV serve more customers 

along its route which will translate into a reduction in fleet size. However, the latter can be 

considered as a surprising result and we will further elaborate on this issue in the next section. 

Table 3.5. Average run times of different configurations (in minutes) 

 

When we examine the role of CPLEX call frequency on the solution quality we do not observe 

any substantial difference, yet Ω = 200 performs slightly better than Ω = 500, which is not 

surprising and supports the role of optimization in achieving higher quality solutions. 

Independent of the value of Ω, the results obtained by using IA 3 are inferior than those given 

by the other two initialization approaches. In other words, searching for a good initial solution 

pays back the effort spent. 

In Table 3.5, we report the average run time of each problem subset to evaluate the 

computational effort required by different configurations. The numbers are in minutes. The 

Table 5. Average run times of different configurations

Data	set
c1 4.89 4.85 2.20 2.18 5.49 4.60
c2 38.31 38.70 22.27 22.63 46.58 45.13
r1 3.73 3.67 1.26 1.23 2.89 2.83
r2 74.33 72.39 31.19 33.15 64.10 68.60
rc1 3.27 3.21 1.07 1.08 2.51 2.75
rc2 33.56 33.69 12.62 12.65 37.03 37.22
Average 26.35 26.08 11.77 12.15 26.43 26.85

IA	1 IA	3IA	2
Ω = 200 Ω = 500 Ω = 200 Ω = 500 Ω = 200 Ω = 500
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results indicate that type-2 problems require more time than type-1 problems. This is well 

expected and in parallel with many studies that utilized Solomon (1987) data because wide time 

windows expand the search space bringing more feasible insertions to be evaluated and long 

planning horizon allows an EV make longer trips visiting more customers (more than 50 in 

certain instances) requiring more recharges. On the other hand, we observe that the run time of 

the implementation with IA 2 is significantly smaller than those with IA 1 and IA 3. Although 

IA 1 and IA 2 perform the same number of iterations using the same ALNS mechanisms, the 

station insertion procedure requires less computational effort in IA 2. This is due to the fact that 

the search for a feasible station for insertion takes more time when only normal chargers are 

available because of their longer recharging durations. 

Regarding CPLEX call frequency, we do not see any major difference between the run times 

with Ω = 200 and Ω = 500 in any setting. This indicates that CPLEX does not require 

extensive computational effort to find the optimal solution for the fixed-route problem and 

validates the effectiveness of the proposed mathematical formulation.  To further investigate 

the computational burden of route enhancement with CPLEX we illustrate the percentage of 

total computational time spent by ALNS and CPLEX in Figure 3.4. This figure reveals that 

CPLEX does not require more than 1% of the total run time in type-2 problems whereas in type-

1 problems the optimization can take up to 8% of total time. Although route enhancement seems 

to require relatively more effort in type-1 problems, the total computation time for type-2 

problems is substantially higher (see Table 3.4) and the time devoted to route enhancement 

corresponds to a small proportion within this large amount of time. 

 
Figure 3.4. Percentage of computational effort required by ALNS vs. CPLEX 
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In summary, we can conclude that our matheuristic using IA 2 for initialization and performing 

route enhancement every 200 iterations (i.e. Ω = 200)  exhibits the best performance in terms 

of both solution quality and run time. 

3.5.1.2. Effect of Multiple Chargers 

In this section, we compare the best results obtained by the proposed matheuristic with the best 

results that ALNS of Chapter 2 yields for the single charge case where the stations are equipped 

with only Level 1 (normal) chargers. The results are presented in Table 3.6. In this table, “Q”, 

“TC” and “TD” stand for the battery capacity, the total cost and total distance, respectively. 

Total cost is equivalent to total distance travelled in the normal charge case. Columns “#L1”, 

“#L2”, and “#L3” report the total number of recharges performed by using Level 1, Level 2, 

and Level 3 chargers, respectively, and “Qty” shows the corresponding quantity of energy 

transferred. The improvements over the single charger results are highlighted in bold. 

When we compare the 3-charger results with 1-charger results we see that fast charging is more 

beneficial when the customers have narrow time windows (i.e. type-1 problems). This is 

expected because the time spent at stations for recharging the EV can be reduced significantly 

with fast chargers and the vehicle may be able to serve additional customers along its route 

including customers that cannot be served otherwise due to strict time-window restrictions. If 

the EV can serve more customers along its route, then more efficient solutions may be 

constructed which require fewer number of vehicles and/or consume less energy due to 

shortened travel distance. The cost of total energy may also go down depending on the charger 

types utilized and the quantity of energy transferred. In type-1 data set, out of 29 instances we 

have achieved better solutions in 28 whereas the solution for one instance (c101) has not 

changed. In addition, the number of vehicles is decreased by two in 8 instances and by one in 

20. The fleet size is reduced in all r- and rc-type problems. Furthermore, both the fleet size and 

energy cost are improved in 13 type-1 instances. We can conclude that the improvements in 

type-1 problems were accomplished by utilizing fast and super-fast chargers effectively based 

on the number of recharges and the energy quantities given in the last four columns.  

When we analyze the results for type-2 instances we observe that fast charging is able to reduce 

the fleet size in only one instance (c204) out of 27 and by only one vehicle. Since the time 

windows can be easily satisfied in these problems the vehicles can serve more customers on 

their routes and the number of EVs is already few (between 2 and 4). Hence, a reduction in the 

fleet size is usually impossible. We also observe that fast charging does not help cutting down 
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Table 3.6. Comparison of results obtained by multiple fast charging vs. single normal 

charging 

 

Instance Q #Veh TC/TD #L1 Qty #Veh TD TC #L1 Qty #L2 Qty #L3 Qty
c101 79.69 12 1043.38 8 165.96 12 1043.38 1043.38 8 165.96 0 0.00 0 0.00
c102 79.69 11 1032.49 10 202.56 10 998.48 1009.86 6 143.66 3 70.67 1 21.57
c103 79.69 10 973.39 9 229.52 10 946.79 961.78 5 98.76 2 87.40 2 31.25
c104 79.69 10 886.72 7 140.48 9 984.82 1006.12 7 93.07 5 136.11 1 38.43
c105 79.69 11 1037.78 9 206.52 10 1024.01 1031.58 7 172.50 3 75.72 0 0.00
c106 79.69 11 1024.18 9 212.81 10 1028.89 1044.96 6 125.67 3 104.42 1 28.11
c107 79.69 10 1058.11 11 273.32 10 1005.84 1015.81 7 138.76 3 99.71 0 0.00
c108 79.69 10 1033.50 10 252.33 10 1014.21 1022.36 8 174.26 3 81.54 0 0.00
c109 79.69 10 946.84 9 170.88 10 940.38 940.38 9 164.42 0 0.00 0 0.00
c201 118.31 4 629.95 3 168.26 4 629.95 629.95 3 168.26 0 0.00 0 0.00
c202 118.31 4 629.95 3 168.26 4 629.95 629.95 3 168.26 0 0.00 0 0.00
c203 118.23 4 629.95 3 168.50 4 629.95 629.95 3 168.50 0 0.00 0 0.00
c204 118.12 4 629.95 3 168.83 3 697.22 719.89 3 157.52 3 143.98 1 41.36
c205 117.78 4 629.95 3 169.85 4 629.95 629.95 3 169.85 0 0.00 0 0.00
c206 117.70 4 629.95 3 170.09 4 629.95 629.95 3 170.09 0 0.00 0 0.00
c207 117.66 4 629.95 3 170.21 4 629.95 629.95 3 170.21 0 0.00 0 0.00
c208 117.66 4 629.95 3 170.21 4 629.95 629.95 3 170.21 0 0.00 0 0.00
r101 62.14 18 1641.42 22 533.93 16 1788.25 1815.77 23 518.81 12 275.20 0 0.00
r102 62.14 16 1461.38 24 469.22 15 1422.69 1436.95 19 353.90 6 142.64 0 0.00
r103 62.14 13 1262.75 17 457.31 12 1195.76 1233.72 8 136.87 10 254.93 2 62.32
r104 67.15 11 1078.99 12 343.29 10 1015.81 1048.69 3 102.62 7 154.61 3 87.09
r105 62.14 15 1373.94 18 454.85 13 1338.52 1364.98 15 278.83 9 264.56 0 0.00
r106 62.60 13 1310.46 18 496.66 12 1246.47 1280.16 10 186.17 14 336.85 0 0.00
r107 66.28 12 1118.91 14 326.82 10 1096.09 1130.86 6 90.64 12 337.60 1 5.06
r108 64.06 11 1031.14 13 331.25 10 987.04 1010.68 7 135.59 5 192.14 2 22.16
r109 65.17 13 1197.57 15 360.49 11 1156.36 1198.55 5 82.61 9 306.66 2 57.64
r110 67.12 11 1090.92 17 352.61 10 1078.66 1127.70 4 77.84 7 168.81 4 160.81
r111 65.80 12 1084.13 13 304.56 11 1064.34 1086.10 8 153.74 5 155.99 1 30.81
r112 65.48 11 1017.31 14 297.03 10 986.79 1015.49 6 82.95 8 211.04 1 37.99
r201 187.86 3 1262.10 6 698.52 3 1257.50 1257.50 7 693.92 0 0.00 0 0.00
r202 238.34 3 1052.32 3 337.30 3 1051.46 1051.46 3 336.44 0 0.00 0 0.00
r203 187.90 3 895.54 4 331.84 3 895.54 895.54 4 331.84 0 0.00 0 0.00
r204 247.66 2 780.14 2 284.82 2 779.71 779.71 2 284.39 0 0.00 0 0.00
r205 198.88 3 987.36 3 390.72 3 987.36 987.36 3 390.72 0 0.00 0 0.00
r206 181.23 3 922.70 3 379.01 3 922.70 922.70 3 379.01 0 0.00 0 0.00
r207 267.18 2 846.59 2 312.23 2 846.43 846.43 2 312.07 0 0.00 0 0.00
r208 218.03 2 736.12 2 300.06 2 736.12 736.12 2 300.06 0 0.00 0 0.00
r209 181.83 3 868.95 4 323.46 3 866.67 866.67 4 321.18 0 0.00 0 0.00
r210 187.87 3 843.36 3 299.98 3 843.21 843.21 3 299.84 0 0.00 0 0.00
r211 265.71 2 862.56 2 331.14 2 840.61 840.61 4 309.19 0 0.00 0 0.00
rc101 79.69 15 1754.75 22 573.65 14 1769.82 1800.73 17 403.60 7 191.95 2 58.61
rc102 79.69 14 1526.31 17 455.00 13 1531.90 1557.39 12 269.33 8 213.47 1 20.68
rc103 79.69 13 1329.58 13 366.84 12 1332.38 1355.71 12 222.11 4 129.22 1 52.05
rc104 79.69 11 1202.93 14 326.34 10 1165.39 1192.60 7 121.53 8 221.88 1 25.08
rc105 79.69 14 1449.53 17 356.63 13 1403.53 1425.92 10 156.40 7 223.88 0 0.00
rc106 79.69 13 1402.95 16 372.68 12 1369.51 1388.85 10 236.05 8 193.48 0 0.00
rc107 79.69 12 1261.03 14 314.68 11 1221.72 1247.87 8 161.81 6 149.77 1 55.85
rc108 79.69 11 1164.32 13 289.47 10 1171.71 1199.24 7 156.53 5 161.34 1 56.95
rc201 211.04 4 1446.84 4 602.68 4 1446.84 1446.84 4 602.68 0 0.00 0 0.00
rc202 273.13 3 1416.96 4 597.57 3 1416.96 1416.96 4 597.57 0 0.00 0 0.00
rc203 209.92 3 1069.27 5 439.51 3 1064.33 1064.33 7 434.57 0 0.00 0 0.00
rc204 159.68 3 886.23 6 407.19 3 886.19 886.19 5 407.15 0 0.00 0 0.00
rc205 194.58 3 1262.22 8 678.48 3 1255.15 1256.30 8 659.89 1 11.51 0 0.00
rc206 229.26 3 1206.09 6 518.31 3 1206.06 1206.06 5 518.28 0 0.00 0 0.00
rc207 212.23 3 992.14 4 355.45 3 991.65 991.65 5 354.96 0 0.00 0 0.00
rc208 165.63 3 839.71 4 342.82 3 839.71 839.71 4 342.82 0 0.00 0 0.00

1-Charger 3-Chargers 
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the costs either: total energy cost is reduced in 12 instances and the average improvement is 

only 0.17%. The main contributor to this average value is problem r211 where a 2.54% 

reduction in energy cost is achieved. These results are in parallel with Desaulniers et al. (2016) 

who highlighted the minor influence of wide time-window constraints on recharging decisions. 

Further investigation on these results reveals that #L2 and #L3 values are 0 in most of the 

instances. So, these slight improvements were achieved by an extended search of the solution 

space of single charger case rather than by using fast or super-fast chargers. Noting again that 

IA 1 constructs the initial solution by using only normal chargers, these results now explain 

why the matheuristic using IA 1 showed a better performance in type-2 problems in Section 

5.1.1. 

3.5.2. Results for Small Instances 

In this section, we solve the small instances to compare the solutions of the matheuristic with 

the optimal solutions or best bounds given by CPLEX. With CPLEX, we solve Model 1 using 

a single thread and set the time limit to 7200 seconds. Since the problems are smaller, we 

perform IA 2 for 10,000 iterations and run the matheuristic 10,000 iterations with Ω = 200. 

The results are presented in Table 3.7. The computation times reported in columns “Time” are 

in seconds. The values given following “c” and “s” in the instance names represent the number 

of customers and stations, respectively. Note that CPLEX results reported with a run time of 

7200 seconds show the best upper bounds found within the given time limit and are not 

necessarily the optimal solutions. CPLEX solves all 5- and 10-customer instances to optimality. 

Our matheuristic also solves them optimally; however, it requires more computational time in 

most of the instances. On the other hand, the matheuristic outperforms CPLEX in 15-customer 

instances both in terms of solution quality and run time. The improved results are highlighted 

in bold in the table. We see that our matheuristic achieved better cost figures in two instances 

(c103c15-s5 and rc204c15-s7) and provided a solution with one less vehicle in another instance 

(rc202c15-s5). The latter case corresponds to a major improvement as the fleet size is reduced 

to a single vehicle from two. We believe that these results show the effectiveness of the 

proposed matheuristic approach. 

 

 

 

 



 

 58 

Table 3.7. Comparison of results on small size instances 

 

 

3.5.3. Results for FORT instances of Felipe et al. (2014)   

To the best of our knowledge, Felipe et al. (2014) is the only study that addressed EVRP with 

multiple charger types and partial recharges but without considering time windows and using a 

different objective function which minimizes total cost of energy and battery degradation. To 

further evaluate the performance of our method, we adapt it to solve their case and perform five 

runs for each instance of FORT data. We implement IA2 with Ω=200 and run the algorithm 

with two different configurations: (A) 25,000 iterations of ALNS for initialization and 10,000 

Instance #Veh TC Time #Veh TC Time
c101c5-s3 2 250.69 < 1 2 250.69 2.50
c103c5-s2 1 175.37 < 1 1 175.37 2.76
c206c5-s4 1 242.56 < 1 1 242.56 3.02
c208c5-s3 1 164.34 < 1 1 164.34 2.62
r104c5-s3 2 136.69 < 1 2 136.69 0.98
r105c5-s3 2 156.08 < 1 2 156.08 2.09
r202c5-s3 1 128.88 < 1 1 128.88 3.08
r203c5-s4 1 179.06 < 1 1 179.06 3.43
rc105c5-s4 2 233.77 < 1 2 233.77 1.67
rc108c5-s4 2 253.93 < 1 2 253.93 2.44
rc204c5-s4 1 185.16 < 1 1 185.16 3.17
rc208c5-s3 1 167.98 < 1 1 167.98 3.23
c101c10-s5 3 382.93 1 3 382.93 4.34
c104c10-s4 1 267.60 27 1 267.60 8.48
c202c10-s5 1 304.06 1 1 304.06 7.99
c205c10-s3 1 283.29 3 1 283.29 5.91
r102c10-s4 3 249.19 1 3 249.19 3.78
r103c10-s3 2 206.30 57 2 206.30 5.22
r201c10-s4 1 241.25 1159 1 241.25 7.76
r203c10-s5 1 222.64 14 1 222.64 26.90
rc102c10-s4 4 415.99 12 4 415.99 3.13
rc108c10-s4 3 347.90 2 3 347.90 4.27
rc201c10-s4 1 412.86 865 1 412.86 6.50
rc205c10-s4 2 325.98 < 1 2 325.98 6.86
c103c15-s5 2 368.91 7200 2 368.80 12.47
c106c15-s3 2 310.79 1375 2 310.79 10.04
c202c15-s5 2 381.23 453 2 381.23 19.29
c208c15-s4 1 339.21 7200 1 339.21 21.09
r102c15-s8 5 411.03 7200 5 411.03 5.73
r105c15-s6 3 340.62 353 3 340.62 5.63
r202c15-s6 1 449.81 7200 1 449.81 30.08
r209c15-s5 1 313.24 7200 1 313.24 44.49
rc103c15-s5 4 397.67 7200 4 397.67 5.91
rc108c15-s5 3 370.25 7200 3 370.25 6.87
rc202c15-s5 2 394.39 7200 1 648.05 15.95
rc204c15-s7 1 392.76 7200 1 340.25 62.45

CPLEX Matheuristic
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iterations of matheuristic; (B) 2500 iterations of ALNS and 1000 iterations of matheuristic. Our 

aim in performing test (B) is to investigate the trade-off between the solution quality and 

computation time, and to make a fair comparison with the heuristic of Felipe et al. (2014) in 

terms of run time. Note that they coded their algorithm in Fortran 95 and executed on an Intel 

Core i5 2.8 GHz processor and 8 GB RAM. 

The average results are presented in Table 3.8 and detailed results are given in Appendix C. In 

this table, “N” and “S” refer to the number of customers and number of stations in the data, 

respectively. “Avg TC” and “Avg Time” report the average total cost and the average 

computation time (in seconds) of the corresponding problem set. “% Imp” shows the percentage 

improvement achieved by our matheuristic for each configuration and calculated as (FORT −

Matheuristic)/FORT.  

Table 3.8. Comparison of average results with Felipe et al. (2014) on FORT instances* 

 

The average results are presented in Table 3.8 and detailed results are given in Appendix C. In 

this table, “N” and “S” refer to the number of customers and number of stations in the data, 

respectively. “Avg TC” and “Avg Time” report the average total cost and the average 

computation time (in seconds) of the corresponding problem set. “% Imp” shows the percentage 

improvement achieved by our matheuristic for each configuration and calculated as (FORT −

Matheuristic)/FORT.  

The results reveal that our matheuristic provides significantly better solutions than FORT using 

both configurations (A) and (B). Reducing the number of iterations in configuration (B) 

deteriorates the solution quality by 2% on the average while the average run time is 

approximately 1 8⁄  of that of configuration (A). Felipe et al. (2014) reported an average run 

time of 647 seconds whereas our matheuristic (A) and (B) spent on the average 1352 and 186 

                                                        
* The cost figures are kindly provided by Gregorio Tirado. The average computation times correspond to the 
average running times of SA approach reported in Felipe et al. (2014). 

N S Avg TC Avg Time Avg TC Avg Time % Imp Avg TC Avg Time % Imp
100 9 71.19 274 64.66 181 9.17 65.01 20 8.73

5 71.59 268 65.12 180 9.02 65.24 31 8.85
200 9 110.38 533 98.75 798 11.19 101.81 80 8.62

5 114.36 522 101.27 770 11.44 104.02 122 9.03
400 9 195.75 1181 176.61 2936 9.84 182.43 329 6.84

5 203.18 1101 181.61 3247 10.58 188.18 533 7.33
Average 647 1352 10.21 186 8.23

Matheuristic (A) Matheuristic (B)FORT
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seconds, respectively. Even though the problem addressed is slightly different and the two 

methods were executed on different processors, we believe that these results show the 

superiority of our matheuristic and confirm its effectiveness.  

3.6. Conclusions 

In this chapter, we tackled the Electric Vehicle Routing Problem with Time Windows and Fast 

Chargers. In EVRPTW-FC, the stations are equipped with multiple chargers which vary in 

power supply, power voltage, and maximum current options. We considered three charger 

types, namely normal, fast, and super-fast. We formulated two different mathematical models 

of this problem and compared them in terms of solution quality and computational time. Since 

the medium and large size problems are intractable, we developed a matheuristic approach to 

solve the problem efficiently. Our approach combines ALNS with an exact method. In ALNS, 

while we employed destruction and repair algorithms from the literature, we also introduced 

new mechanisms specific to the nature of the problem. In the exact method, we fixed the 

sequence of the customers visited by each vehicle in the solution provided by ALNS and 

utilized CPLEX solver to optimize the charging related decisions. We also developed an 

efficient mathematical formulation for this fixed-route single-vehicle problem to be able to find 

the optimal solution in reasonable run time. 

We tested the performance of our algorithm on both small and large benchmark instances from 

the literature. Our numerical results in small-size instances showed that our matheuristic 

outperformed CPLEX both in solution quality and run time. In large-size instances, the results 

revealed the advantage of using fast charging in terms of fleet size and energy consumption. 

Specifically, we were able to obtain route plans requiring less EVs or reducing energy cost or 

both in all instances where the time windows are narrow. On the other hand, the influence of 

the availability of fast chargers was minor when the time windows are wide. 

In this study, we assumed that all stations were already located and equipped with all types of 

chargers. However, this may not be the case considering the high installation costs and lack of 

infrastructure. So, the problem can be extended to a location routing problem where the 

recharging stations are sited, their charger equipment and capacities are determined, and the 

EVs are routed simultaneously. Further research on this topic may also address the 

heterogeneous fleet case where the vehicles vary by their cargo capacities, battery condition 

and age which affect their cruising range and discharge/recharge durations. Furthermore, we 

assumed that recharging stations and chargers were always available. In real life, there may be 



 

 61 

queues in the stations and the EVs may need to wait for service. Alternatively, it may drive to 

another station. So, variability in recharging times can be investigated within the stochastic 

context. The authors are currently working on this extension. 
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Chapter 4 
_____________________________________________ 
 
 
 
 

Electric Vehicle Routing Problem with Soft Time 
Windows and Time-Dependent Waiting Times at 
Recharging Stations 
 

4.1. Introduction 

The existing literature of the EVRPTW assumes that recharging at a station starts as soon as 

the EV arrives. However, in practice the number of chargers in a station is limited and a charger 

may not be available at the time of the vehicle's arrival. It may therefore have to queue before 

recharging, and this waiting time needs to be taken into account in the routing decisions. The 

waiting time may vary depending on the location of the station and on the time of the visit. 

Some variations in the waiting time are difficult to predict. For instance, if a traffic accident or 

a special event occurs near a station, there may be long queues. On the other hand, some delays 

are easier to foresee such as those observed during rush hour congestion. In this study, we 

assume that the expected queue length at all stations and at any time of the day is known in 

advance. Furthermore, the charging time is a non-linear concave function of the charge amount 

(Pelletier et al., 2017, Montoya et al., 2017). 

In this chapter, we extend the EVRP by considering time-dependent waiting times at the 

recharging stations using an M/G/1 queueing system. We use a non-linear charging function 

and soft time windows at the customer locations. We approximate the random waiting times by 

their expected values. The planning horizon is split into a predetermined number of time 

intervals and an average queue length is assigned to each station for different time intervals. 

The routing decisions are then made according to these time-dependent waiting times at the 

recharging stations. We formulate the problem as a mixed integer linear program and propose 

a matheuristic to solve it efficiently. Our algorithm is a combination of the well-known ALNS 

metaheuristic and a mixed integer linear programming. 
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This chapter makes two main scientific contributions. It first introduces a new problem called 

the Electric Vehicle Routing Problem with Soft Time Windows and Time Dependent Waiting 

Times at Recharging Stations, TD-EVRPSTW, using a comprehensive objective function that 

minimizes the total cost of fuel, drivers, vehicles, overtime, and lateness penalties at the 

customer locations. It formulates the problem in two ways: a first comprehensive formulation 

is used to compute an optimal solution from scratch, while the second formulation optimizes a 

single route in which the customer sequence is known in advance. Secondly, it proposes a 

matheuristic that combines ALNS with an exact solver along with problem-specific 

mechanisms. 

The remainder of the chapter is organized as follows. Section 4.2 provides a summary of the 

literature. Section 4.3 describes the problem and presents the mathematical model, while 

Section 4.4 describes the proposed solution approach with the single-route optimization 

formulation. Section 4.5 presents the computational study and provides the numerical results, 

followed by concluding remarks in Section 4.6. 

4.2. Related Literature 

The EVRP is first studied by Conrad and Figliozzi (2011) assuming a constant recharging time. 

The model allows charging fully or up to the 80% of the battery capacity at only customer 

locations. Erdoğan and Miller-Hooks (2012) then study the routing of AFVs which are refueled 

up to the tank capacity at alternative fuel stations within a constant amount of time. Schneider 

et al. (2014) introduce time windows and a linear charging function assuming that the battery 

is fully recharged. Since then, several extensions have been proposed. The full charge 

assumption is first relaxed and models are developed to allow partial charging (Bruglieri et al., 

2015; Chapter 2). Some models take into account the fact that the stations have different 

chargers (Felipe et al., 2014; Sassi et al., 2014; Li-ying and Yuan-bin, 2015; Chapter 3). Several 

studies have analyzed the heterogeneous fleet case. Some of them consider a mixed fleet 

composed of EVs with different characteristics (Desaulniers et al., 2016; Ji et al., 2018) whereas 

in other studies, the fleet includes different ICEVs as well (Sassi et al., 2014; Goeke and 

Schneider, 2015; Hiermann et al., 2018; Kopfer and Vornhusen, 2018). Some recent papers 

have dealt with both the location of the stations and the routing (Li-ying and Yuan-bin, 2015; 

Yang and Sun, 2015; Paz et al., 2018; Schiffer and Walther, 2017). Although recharging is 

performed at charging stations in most studies, some papers consider battery swap stations 

(BSS) where the discharged battery is replaced with a fully recharged one (Paz et al., 2018; 

Wang et al., 2018; Jie et al., 2018), and wireless charging systems (WCS) where the battery is 

recharged by an inductive charging system placed along the roads while the EV is traveling (Li 
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et al., 2018). Some recent studies have considered EVs within the context of the two-echelon 

VRP (Jie et al., 2018; Breunig et al., 2018), technician routing (Villegas et al., 2018) and reverse 

logistics (Zhang et al., 2018a). Finally, the linear charging function is relaxed by Montoya et 

al. (2017) and Froger et al. (2017a,b) who use a concave piecewise linear function. Afroditi et 

al. (2014) and Pelletier et al. (2016) review EVs in goods distribution. Regarding the unknown 

service times at the stations, in Sweda et al. (2017) the stations are unavailable with a certain 

probability. If a vehicle visits an occupied station, it should wait for some time which is random. 

Froger et al. (2017b) solve a related problem in which the stations have limited number of 

chargers (one, two or three) and an EV may need to wait for service if the chargers are busy 

with recharging other EVs in the fleet. In this problem, the use of the chargers depends on the 

routing and charging decisions, whereas in our setting the queue lengths are independent of 

these features. 

Table 4.2 classifies the EVRP studies in terms of the main features of the problem. The column 

headings stand for recharging function (RC fcn), electricity consumption function (EC fcn), 

fleet composition (fleet comp), charger types in the stations, objective function (obj fcn), charge 

amount, solution methodology, and existence of time windows (TW) and station location 

decisions (Lctn) in the problem; the letters L and NL represent linear and non-linear functions; 

Ho and Hc correspond to homogeneous and heterogeneous fleets; (A)VNS, TS, ALNS, ILS, 

HC, AC, DP, and CG stand for (adaptive) variable neighborhood search, tabu search, adaptive 

large neighborhood search, iterated local search, heuristic concentration, ant colony, dynamic 

programming, and column generation, respectively; MIP is used for the papers that only 

formulate the mathematical model and report results obtained by a solver. Explanations of the 

numbers associated with the objective function are provided in Table 4.1. 

Table 4.1. Meanings of the objective functions in Table 4.2 

 

 

 

 

The time-dependent vehicle routing literature has mainly focused on time-dependent travel 

times. The papers can be classified as static or dynamic if the times are fixed for a given time 

interval, or change dynamically, respectively. Static models include deterministic (Malandraki 

Table 1: Meanings of the objective functions in Table 1

1: Vehicle cost 8: Total time cost
2: Total travel cost 9: Fuel cost
3: Recharging cost 10: Battery cost
4: Waiting cost 11: Charging cost
5: Station installation cost 12: Profit of visits
6: Stopping cost at a station 13: Operational costs
7: Overcharging cost 14: Battery swapping cost

4
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and Daskin, 1992; Jung and Haghani, 2001; Hashimoto et al., 2008; Jabali et al., 2012; 

Franceschetti et al., 2017) or stochastic features (Van Woensel et al., 2008; Nahum and Hadas, 

2009; Taş et al., 2013; Huang et al., 2017; Çimen and Soysal, 2017). Fleischmann et al., (2004); 

Haghani and Jung, (2005); Potvin et al., (2006) and Schilde et al., (2014) are some papers based 

on dynamic models. On the other hand, only Taş et al. (2016) consider the time-dependent 

service times in the context of the traveling salesman problem. A comprehensive review of the 

time-dependent VRP is provided by Gendreau et al. (2015).   

4.3. Problem Description and Formulation 

Given a homogeneous fleet of EVs, the problem is to determine a set routes that cover all 

customers, which have demands and soft time windows, while preserving time and energy 

feasibility. The EVs may visit recharging stations to charge their batteries and continue their 

routes. The stations are equipped with a single charging technology. For this reason, an arriving 

EV may face a queue and have to wait to be serviced. This waiting time varies depending on 

the time of the day. The energy transferred is assumed to be a concave function of the charging 

time (Montoya et al., 2017) and the cost of charging is proportional to the amount of energy 

transferred. The EVs have to pay for the energy they receive. If an EV arrives at a customer 

before the early service time, it has to wait until that time, but if it arrives later than the late 

service time, a penalty proportional to the lateness is incurred. Furthermore, the vehicles have 

an acquisition cost and the drivers are paid an hourly wage. If an EV arrives at the depot after 

the regular shift hours, its driver is paid an overtime wage. The objective is to determine 

minimum cost routes satisfying all constraints. 

4.3.1. Time-Dependent Waiting Time Functions 

We assume that each recharging station is equipped with a single charger and the EVs arrive at 

the stations according to a Poisson distribution with mean 𝜆. Hence, each station is a system 

involving a charger as the server and the EVs as the entities. When an EV arrives at a station, 

if the server is idle, it receives service immediately. On the other hand, if there is another EV 

recharging at the time of the arrival, then the newly arriving EV has to wait until the recharging 

finishes. Furthermore, there may be other EVs which have already queued. In this case, the 

newly arriving EV should join the queue and wait until all EVs, which arrived before, are 

serviced. Since the stations are public, we do not have information about other EVs and their 

recharge amounts. Hence, it is difficult to assign a distribution function for the service time. 

For this reason, the service time is drawn from a general distribution whose mean and standard 

deviation are known. In fact, it can be any distribution. Since this is a case with a single server,  
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Poisson arrivals and generally distributed service times, we may consider the M/G/1 queueing 

system. In M/G/1 queue, customers arrive one by one according to a Poisson distribution. The 

letter M in the queue representation stands for “memoryless property” of the exponential 

distribution. Since the arrivals are Poisson arrivals, interarrival times between two consecutive 

customers follow exponential distribution with parameter 𝜆. The service times are independent 

and identically distributed with distribution function 𝐹o and density 𝑓o. Since this is a general 

distribution, i.e., the service times does not belong to a specific distribution, G stands for the 

“general distribution”. Finally, the number 1 shows that there is only one server in the system. 

Let the mean and standard deviation of the service time be 𝐸[𝑆] and 𝑉𝑎𝑟[𝑆], respectively. In 

order to satisfy stability of the system, the utilization rate of the charger, 𝜌 = 𝜆𝐸[𝑆] should be 

less than one. The EVs receive service according to a first-in-first-out (FIFO) discipline. Upon 

arrival of a new EV, if the charger is idle, the EV receives service immediately. If the charger 

is busy with recharging one EV but there are no other EVs waiting in the queue, a newly arriving 

EV waits for the remaining recharging time of the EV which is in service. If there is one EV 

waiting in the queue as well as an EV in service, then the waiting time for a newly arriving EV 

is the remaining recharging time of the EV being serviced and all recharging time of other EV 

waiting in the queue. The average waiting time is derived considering all such possible states 

of the system. 

We handle time-dependent waiting times by discretizing the time and dividing the planning 

horizon into a set of time intervals [𝑡z − 𝑡z67], 𝑚 ∈ 𝑀. This approach is similar to the time-

dependent travel times case where the time is split into intervals and each interval is assigned 

an average speed. The starting and ending times of interval 𝑚 are denoted by 𝑡z and 𝑡z67, 

respectively. Since the traffic density changes with time, the arrival rate of the vehicles is also 

a function of time. Different stations may have different arrival rates since they are positioned 

at different locations. In Figure 4.1, we divide the day into five time intervals and illustrate a 

sample pattern of the arrival rate function 𝜆B(𝑡) for station 𝑖. The noon interval is the most 

crowded time of the day. Late afternoon and morning are the second and third most crowded 

times, while the evening and night have the least traffic densities. In real life, 𝜆B(𝑡) is a smooth 

function as depicted in Figure 4.1. However, for modeling purposes, we will discretize the time 

and approximate 𝜆B(𝑡) by a piecewise linear function as illustrated in Figure 4.2. In this figure, 

the arrival rates for station 𝑖 during the morning, noon, late afternoon, and evening time 

intervals are assumed constant and equal to 𝜆B7, 𝜆Bl, 𝜆Bm and 𝜆B�, respectively. In order to preserve 

the FIFO property, transient periods should be introduced between the intervals. It will satisfy 

that, an EV which arrives at a station later than another EV cannot leave the station earlier. 
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Then these transient zones will have variable rates, contrary to other zones. These assumptions 

lead to an M/G/1 queueing system with Poisson arrivals having varying rates and a service time 

coming from a general distribution function. 

 

 

Figure 4.1. Arrival rate of EVs at station 𝑖 as a function of time 

 

 
Figure 4.2. Piecewise linear approximation of the arrival rate as a function of time 

 

For an EV arriving at station 𝑖 at time 𝑡, the expected waiting time in the queue, 𝐸[𝑊B(𝑡)] can 
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In Figure 2, the arrival rates for station i during the morning, noon, late afternoon, and evening
time intervals are assumed constant and equal to ⁄

1
i
, ⁄

2
i
, ⁄

3
i

and ⁄
4
i
, respectively. In order to pre-

serve the FIFO property, transient periods should be introduced between the intervals. It will satisfy
that, an EV which arrives at a station later than another EV cannot leave the station earlier. Then
these transient zones will have variable rates, contrary to other zones. These assumptions lead to
an M/G/1 queueing system with Poisson arrivals having varying rates and a service time coming
from a general distribution function. For an EV arriving at station i at time t, the expected waiting
time in the queue, Wi(t), can then be calculated using the steady-state equations of the M/G/1
queueing system as follows:

E[Wi(t)] = fl

1 ≠ fl

C
2

S
+ 1
2 E[S] , where C

2

S = V ar(S)
E2[S] . (1)

Clearly, E[Wi(t)] is non-linear in the transient zones. Hence, we approximate it by a linear function
as shown in Figure 3. Each segment of the function E[W t

i
] is characterized by an intercept W

m
i

and a slope s
m
i

. Hence, if a vehicle arrives at station i in the m
th time interval, i.e. at time t, it

will wait for a time W
m
i

+ s
m
i

(t ≠ tm) in the queue before being serviced.
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Clearly, 𝐸[𝑊B(𝑡)] is non-linear in the transient zones. Hence, we approximate it by a linear 

function as shown in Figure 4.3 

 Figure 4.3. Piecewise linear approximation of waiting time in the queue as a function of time 

Each segment of the function 𝐸[𝑊B(𝑡)] is characterized by an intercept 𝑊B
z and a slope 𝑠Bz. 
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z + 𝑠Bz(𝑡 − 𝑡z) in the queue before being serviced. 
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Figure 4: Piecewise linear approximation of waiting time in the queue as a function of time

The service time for an EV is the recharging time at a station. In this study, we assume that
the EVs operate between 10% and 90% of the battery SoC to minimize the degradation (Pelletier
et al., 2017). Hence, all EVs enter and leave a station with an SoC within this range. To assign a
mean and a variance to the service time function, we assume that the amount of energy transferred
follows a uniform distribution between 0 and 0.8q, where q is the battery capacity. Hence we can
calculate the expected recharge amount, the expected time required to recharge the battery, and
the variance of the recharging time using the equations of moments of the uniform distribution.
Let s be the recharging time. Then the expected service time at a recharging station will be
E[s] = (0.8q ◊ r)/2 = 0.4q ◊ r, where r is the recharging rate. Similarly, the variance of the service
time can be computed as V ar(s) = (0.8q ◊ r)2/12.

3.2 Mathematical Formulation

Let V = {1, ..., n} be the set of vertices representing customers to be served, and let S be the set of
recharging stations. Since a station may be visited multiple times, we create copies of the stations.
We denote by S

Õ the set of recharging stations along with their copies. Let V
Õ = V fi S

Õ be the set
of customers and stations. Each vehicle may have di�erent battery SoC when departing from the
depot and arriving at the depot. For this reason, copies of the depot vertex should also be defined.
Let V

d be the set of vertices from which the vehicles depart, and let V
a be the set of vertices at

which the vehicles arrive. Defining the sets V0 = V fi V
d
, VN+1 = V fi V

a, V0,N+1 = V
d fi VN+1,

V
Õ
0 = V

Õ fi V
d
, V

Õ
N+1

= V
Õ fi V

a, V
Õ
0,N+1

= V
d fi V

Õ
N+1

, S
Õ
0 = S

Õ fi V
d, the problem can be represented

by a complete directed graph G = (V Õ
0,N+1

, A), where A = {(i, j)|i, j œ V
Õ
0,N+1

, i ”= j}.

With each arc are associated a distance dij and a travel time tij . Each vehicle has a load capacity
c and a battery capacity q. The energy is consumed at a rate of h per distance unit. Hence,
traversing arc (i, j) requires h.dij units of energy. Each customer i œ V is associated with demand
di, service time si and soft time window [ei, li]. Arrivals later than li are allowed but are penalized
by a late arrival cost cp multiplied by the lateness. We also assume that the depot has soft time
windows whose violation is penalized by an overtime wage co. Each vehicle has an operating cost
cf which may represent maintenance and acquisition costs, and the driver is paid at a wage of cd

per time unit.

The charging function is known to be concave (Pelletier et al. 2017). Hence, we adopt a non-linear
charging function and approximate it by a piecewise linear function as in Montoya et al. (2017).
The unit cost of energy is c. Figure 4 illustrates the piecewise linear approximation of the charging

8
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be the set of vertices at which the vehicles arrive. Defining the sets 𝑉4 = 𝑉 ∪ 𝑉Ù , 𝑉567 = 𝑉 ∪

𝑉q, 𝑉4,567 = 𝑉Ù ∪ 𝑉567, 𝑉4° = 𝑉° ∪ 𝑉Ù, 𝑉567° = 𝑉° ∪ 𝑉q, 𝑉4,567° = 𝑉Ù ∪ 𝑉567° , 𝐹4° = 𝐹° ∪ 𝑉Ù, 

the problem can be represented by a complete graph 𝐺 = (𝑉4,567° , 𝐴), where 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈

𝑉4,567° , 𝑖 ≠ 𝑗}. 

With each arc are associated a distance 𝑑BC and a travel time 𝑡BC. Each vehicle has a load capacity 

𝐶 and a battery capacity 𝑄. The energy is consumed at a rate of ℎ per distance unit. Hence, 

traversing arc (𝑖, 𝑗) requires ℎ. 𝑑BC units of energy. Each customer 𝑖 ∈ 𝑉 is associated with 

demand 𝑑B, service time 𝑠B and soft time window [𝑒B, 𝑙B]. Arrivals later than 𝑙B are allowed but 

are penalized by a late arrival cost 𝑐Ú multiplied by the lateness. We also assume that the depot 

has soft time windows whose violation is penalized by an overtime wage 𝑐Û. Each vehicle has 

an operating cost 𝑐} which may represent maintenance and acquisition costs, and the driver is 

paid at a wage of 𝑐Ù per time unit. 

The charging function is known to be concave (Pelletier et al. 2017). Hence, we adopt a non-

linear charging function and approximate it by a piecewise linear function as in Montoya et al. 

(2017). The unit cost of energy is 𝑐�. Figure 4.4 illustrates the piecewise linear approximation 

of the charging function, where 𝑐y and 𝑎y represent the time and charge level, respectively, for 

the breakpoints 𝑙 ∈ 𝐵, and 𝐵 = {0,… , 𝑏} is the set of breakpoints of the piecewise linear 

approximation. 

 

Figure 4.4. Piecewise linear approximation for the charging function (Montoya et al., 2017) 

 

function, where bl and al represent the time and charge level, respectively, for the breakpoints
l œ B, and B = {0, ..., b} is the set of breakpoints of the piecewise linear approximation.
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Figure 4: Piecewise linear approximation for the charging function (Montoya et al., 2017)

Table 3: Mathematical notation

Sets
V Set of customers
S Set of recharging stations
S

Õ Set of recharging stations with their copies
V

Õ
Set of customers and stations with their copies (V fi S

Õ)
V

d Set of departure depots
V

a Set of arrival depots
S

Õ

0 Set of departure depots and stations with their copies (V d fi S
Õ)

V0 Set of departure depots and customers (V fiV
d)

VN+1 Set of arrival depots and customers (V fi V
a)

V0,N+1 Set of departure and arrival depots with customers (V d fi V
a)

V
Õ

0 Set of departure depots, customers, and stations with their copies (V d fi V
Õ)

V
Õ

N+1 Set of arrival depots, customers, and stations with their copies (V Õ fi V
a)

V
Õ

0,N+1 Set of all vertices (V d fi V
Õ

N+1)
ÂV Set of i, j pairs such that i œ S

Õ , j œ VN+1 and i œ V0, j œ V
Õ

N+1
Parameters
dij Distance from vertex i to vertex j

tij Travel time from vertex i to vertex j

di Demand of customer i

si Service time of customer i

ei Early service time of customer i

li Late service time of customer i

c Cargo capacity of the vehicles
q Battery capacity of the vehicles
bl Time of breakpoint l in the approximated recharging time function
al SoC of breakpoint l in the approximated recharging time function
t
m Beginning of m

th time interval
W

m
j Average waiting time at station j at the beginning of m

th time interval
s

m
j Slope of the Wi(t) function of station j in m

th time interval
h Fuel consumption rate
ce Unit energy cost

8
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Table 4.3. Mathematical notation 

  Sets:  
𝑉 Set of customers 
𝐹 Set of recharging stations 
𝐹° Set of recharging stations with their copies 
𝑉° Set of customers and stations with their copies (𝑉 ∪ 𝑆°) 
𝑉Ù  Set of departure depots 
𝑉q Set of arrival depots 
𝐹4° Set of departure depots and stations with their copies (𝑉Ù ∪ 𝐹°) 
𝐹567°  Set of arrival depots and stations with their copies (𝐹° ∪ 𝑉q) 
𝑉4 Set of departure depots and customers (𝑉 ∪ 𝑉Ù) 
𝑉567 Set of arrival depots and customers (𝑉 ∪ 𝑉q) 
𝑉4,567 Set of departure and arrival depots with customers (𝑉Ù ∪ 𝑉567) 
𝑉4° Set of departure depots, customers, and stations with their copies (𝑉Ù ∪ 𝑉°) 
𝑉567°  Set of arrival depots, customers, and stations with their copies (𝑉° ∪ 𝑉q) 
𝑉4,567°  Set of all vertices (𝑉Ù ∪ 𝑉567° ) 
𝑉Ý  Set of 𝑖, 𝑗 pairs such that 𝑖 ∈ 𝐹°, 𝑗 ∈ 𝑉567, and 𝑖 ∈ 𝑉4, 𝑗 ∈ 𝑉567°  

  Parameters: 
𝑑BC  Distance from node i to node j 
𝑡BC  Travel time from node i to node j 
𝑑B  Demand of customer i 
𝑠B  Service time of customer i 
𝑒B  Early service time of customer i 
𝑙B  Late service time of customer i 
𝐶 Cargo capacity of the vehicles 
𝑄 Battery capacity of the vehicles 
𝑐y  Time of breakpoint 𝑙 in the approximated recharging time function 
𝑎y  SoC of breakpoint 𝑙 in the approximated recharging time function 
𝑡z Beginning of 𝑚�� time interval 
𝑊Cz Average waiting time at station 𝑗 at the beginning of 𝑚�� time interval 
𝑠Cz Slope of the 𝐸[𝑊C(𝑡)] function of station 𝑗 in 𝑚�� time interval 
ℎ Fuel consumption rate 
𝑐� Unit energy cost 
𝑐Ú Unit late service cost of customers 
𝑐Ù  Driver wage per unit time 
𝑐Û Overtime wage per unit time 
𝑐} Fixed vehicle cost 

  Decision variables: 
𝑥BCz 1 if EV departs from vertex 𝑖 and arrives at vertex 𝑗 in time interval 𝑚, 0 otherwise 
𝑧By 1 if battery SoC at the arrival at station 𝑖 is between 𝑎y|7 and 𝑎y, 𝑙 ∈ 𝐵\{0}, 0 otherwise 

𝑦By 
1 if battery SoC at the departure from station 𝑖 is between 𝑎y|7 and 𝑎y, 𝑙 ∈ 𝐵\{0}, 0 
otherwise 

𝜏B  Service starting time upon arrival at vertex 𝑖 
𝑣B  Lateness at customer 𝑖 due to the late arrival of the vehicle 
𝑢B  Remaining cargo capacity upon arrival at vertex 𝑖 
𝑦Bq Battery SoC at vertex 𝑖 
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Decision variables: 
𝑦BÙ  Battery SoC when departing from station 𝑖 
𝑤B  Queue waiting time of the EV arriving at station 𝑖 
𝑟Byq Coefficient of breakpoint 𝑙 in the piecewise approximation when EV arrives at station 𝑖 
𝑟ByÙ  Coefficient of breakpoint 𝑙 in the piecewise approximation when EV departs from station 𝑖 
 

Unlike what is done in Montoya et al. (2017), we assume that all stations are equipped with the 

same charger type; hence the vehicles are always subject to the same charging function. We 

denote by 𝑊Cz the expected waiting time at station 𝑗 in time interval 𝑚, while 𝑠Cz is the slope 

of the piecewise linear waiting time function in time interval 𝑚. The sets, parameters and 

decision variables of the problem are presented in Table 4.3. 

Given the above definitions, the mathematical model for the problem with time-dependent 

waiting times at the stations is formulated as follows: 

minimize 𝑐� Y Y Y 𝑑BC𝑥BCz + 𝑐ÚY𝑣B + (𝑐Û − 𝑐Ù) Y 𝑣B
B·ZàB·Zz·¯C·Z�]^¹B·Z[¹

  (4.2) 

 +𝑐}Y Y Y 𝑥BCz
z·¯C·ZàB·Z[¹

+ 𝑐Ù Y 𝜏B
B·Zà

   

subject to    
 Y Y 𝑥BCz

C·Z�]^¹z·¯

= 1 𝑖 ∈ 𝑉 (4.3) 

 Y Y 𝑥BCz

C·Z�]^¹z·¯

≤ 1 𝑖 ∈ 𝐹° (4.4) 

 Y Y𝑥BCz

B·Z[¹z·¯

= Y Y 𝑥CBz

B·Z�]^¹z·¯

 𝑗 ∈ 𝑉° (4.5) 

 Y Y𝑥BCz
C·Z¹z·¯

≤ 1 𝑖 ∈ 𝑉Ù (4.6) 

 Y Y𝑥BCz
B·Z¹z·¯

≤ 1 𝑗 ∈ 𝑉q (4.7) 

 Y Y Y𝑥BCz
C·Z¹

=
B·Zâz·¯

Y Y Y𝑥CBz
C·Z¹B·Zàz·¯

  (4.8) 

 
𝜏B + a𝑡BC + 𝑠Bb Y 𝑥BCz

z·¯

− 𝑙4 ã1 − Y 𝑥BCz
z·¯

ä ≤ 𝜏C 
𝑖 ∈ 𝑉4, 𝑗 ∈ 𝑉567°  (4.9) 

 
𝜏B + ãY𝑟ByÙ𝑐y

y·å

−Y𝑟Byq𝑐y
y·å

ä + 𝑤B(𝜏B) + 𝑡BC − 𝑙4 ã1 − Y 𝑥BCz
z·¯

ä ≤ 𝜏C 
𝑖 ∈ 𝐹°, 𝑗 ∈ 𝑉567 (4.10) 

 
𝑡zY𝑥BCz

B·Z[

≤ 𝜏C ≤ 𝑡z67 + 𝑙4 º1 −Y𝑥BCz
B·Z[

» 𝑗 ∈ 𝑉567° ,𝑚 ∈ 𝑀 (4.11) 

 
𝑡zY𝑥BCz

B·¸¹
≤ 𝜏C ≤ 𝑡z67 + 𝑙4 ã1 −Y𝑥BCz

B·¸¹
ä 𝑗 ∈ 𝑉567,𝑚 ∈ 𝑀 (4.12) 

 𝑒B ≤ 𝜏B 𝑖 ∈ 𝑉567°  (4.13) 
 𝑣B ≥ (𝜏B − 𝑙B) 𝑖 ∈ 𝑉567 (4.14) 
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 𝜏B ≤ 𝑙4 𝑖 ∈ 𝑉q (4.15) 

 𝑤Ba𝜏Cb ≥ 𝑊Cz + 𝑠Cza𝜏C − 𝑡zb −𝑀(1 − 𝑥BCz) 𝑖 ∈ 𝑉4, 𝑗 ∈ 𝐹°,𝑚 ∈ 𝑀 (4.16) 

 𝑦Bq =Y𝑟Byq𝑎y
y∈å

 𝑖 ∈ 𝐹° (4.17) 

 𝑦BÙ =Y𝑟ByÙ𝑎y
y∈å

 𝑖 ∈ 𝐹° (4.18) 

 
𝑦Cq ≤ 𝑦BÙ − Y 𝑥BCzaℎ𝑑BCb + 0.9𝑄 ã1 − Y 𝑥BCz

z·¯

ä
z∈¯

 
𝑖, 𝑗 ∈ 𝑉Ý  (4.19) 

 
𝑦Cq ≥ 𝑦BÙ − Y 𝑥BCzaℎ𝑑BCb − 0.9𝑄 ã1 − Y 𝑥BCz

z·¯

ä
z∈¯

 
𝑖, 𝑗 ∈ 𝑉Ý  (4.20) 

 𝑦Bq ≥ 0.1𝑄 Y Y 𝑥CBz

C·Z[¹z·¯

 𝑖 ∈ 𝑉567°  (4.21) 

 𝑦Bq ≤ 𝑦BÙ ≤ 0.9𝑄 𝑖 ∈ 𝑉4° (4.22) 

 𝑢B ≤ 𝐶 𝑖 ∈ 𝑉Ù (4.23) 
 

𝑢C ≤ 𝑢B − 𝑑B Y 𝑥BCz
z·¯

+ 𝐶 ã1 − Y 𝑥BCz
z·¯

ä 𝑖 ∈ 𝑉4°, 𝑗 ∈ 𝑉567°  (4.24) 

 Y𝑟Byq
y·å

= Y 𝑧By
y·å\{4}

= Y Y 𝑥BCz

C·Z�]^¹z·¯

 𝑖 ∈ 𝐹° (4.25) 

 𝑟B4q ≤ 𝑧B7 𝑖 ∈ 𝐹° (4.26) 
 𝑟Byq ≤ 𝑧By + 𝑧B,y67 𝑖 ∈ 𝐹°, 𝑙 ∈ 𝐵\{0, 𝑏} (4.27) 
 𝑟Bæq ≤ 𝑧Bæ 𝑖 ∈ 𝐹° (4.28) 
 Y𝑟ByÙ

y·å

= Y 𝑦By
y·å\{4}

= Y Y 𝑥BCz

C·Z�]^¹z·¯

 𝑖 ∈ 𝐹° (4.29) 

 𝑟B4Ù ≤ 𝑦B7 𝑖 ∈ 𝐹° (4.30) 
 𝑟ByÙ ≤ 𝑦By + 𝑦B,y67 𝑖 ∈ 𝐹°, 𝑙 ∈ 𝐵\{0, 𝑏} (4.31) 
 𝑟Byq ≤ 𝑦Bæ 𝑖 ∈ 𝐹° (4.32) 
 Y Y𝑥BCz = 0

C·¸¹z·¯

 𝑖 ∈ 𝐹° (4.33) 

 𝑥BCz ∈ {0,1} 𝑖 ∈ 𝑉4°, 𝑗 ∈ 𝑉567° ,𝑚

∈ 𝑀 

(4.34) 
 𝑧BCz ≥ 0 𝑖 ∈ 𝐹°, 𝑗 ∈ 𝑉567,𝑚

∈ 𝑀 

(4.35) 
 𝑤Bæ, 𝑤Bæ ∈ {0,1} 𝑖 ∈ 𝐹°, 𝑏 ∈ 𝐵 (4.36) 
 𝑦Bq, 𝑦BÙ, 𝑤B ≥ 0 𝑖 ∈ 𝐹° (4.37) 
 𝑣B ≥ 0 𝑖 ∈ 𝑉567 (4.38) 
 𝑢B, 𝜏B ≥ 0 𝑖 ∈ 𝑉4,567°  (4.39) 
 𝑟Byq, 𝑟ByÙ ≥ 0 𝑖 ∈ 𝐹°, 𝑙 ∈ 𝐵 (4.40) 

 

The objective function (4.2) minimizes total cost equal to the sum of five terms. The first term 

corresponds to the energy cost which is proportional to the distance traveled. The second and 

third terms are the penalties associated with customer and depot time window violations, 

respectively. The fourth term is total cost of vehicles, while the last term computes the driver 

cost. Constraints (4.3) ensure that each customer is visited exactly once whereas constraints 

(4.4) indicate that each station is visited at most once. The connectivity of the nodes is ensured 

by constraints (4.5). Constraints (4.6) and (4.7) keep track of departures from the depots and 
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arrival at the depots. Constraint (4.8) ensures that the number of departure depots used should 

be equal to the number of arrival depots. Constraints (4.9) and (4.10) keep track of arrival times 

after departing from a customer or a recharging station, respectively. While traveling from 

vertex 𝑖 to vertex 𝑗, if 𝑥BCz(  is 1, for instance, the arrival time at 𝑗 should be in the 𝑚(�� time 

interval, which is between [𝑡z( − 𝑡z(67]. This in ensured by constraints (4.11) for departures 

from the depot or a customer, and by constraints (4.12) for departures from a station. Constraints 

(4.13) mean that the vehicle starts its service after the early service time of that customer, while 

constraints (4.14) guarantee that lateness will have a positive value when vehicle arrives at a 

customer after its late service time. Constraints (4.15) state that the vehicles should end their 

trips before the maximum time limit 𝑙4. Constraints (4.16) link the flow variables 𝑥BCz and the 

waiting time 𝑤C(𝜏C) at a station 𝑗. Constraints (4.17) and (4.18) determine the SoC of the vehicle 

at arrival at and departure from station 𝑖 in terms of the breakpoints of the piecewise linear 

approximation. Constraints (4.19) and (4.20) track the SoC at departure from a recharging 

station and a customer/depot, respectively. The battery operates between 10% and 90% of its 

capacity in order to minimize the degradation. Constraints (4.21) and (4.22) set the battery 

utilization between 10% and 90% of its capacity. Constraints (4.23) and (4.24) keep track of 

load of the vehicle and ensure that it is initially smaller than the load capacity and it never goes 

below 0. Constraints (4.25) and (4.29) establish the relationship between the binary variables 

𝑧By and 𝑦By and the coefficients of the breakpoints in the piecewise approximation when an EV 

enters and leaves a station, respectively. Constraints (4.26)−(4.28) and (4.30)−(4.32) ensure 

that the coefficients related to the piecewise linear approximation of the charging function take 

correct values. Constraint (4.33) prevents the consecutive visits to multiple stations. Finally, 

(4.34)−(4.40) define the domains of the decision variables.   

4.4. Solution Methodology 

Since the problem generalizes the classical VRP, which is NP-hard, it is intractable for large-

size instances. Hence, we propose a matheuristic to solve it within reasonable time. 

Matheuristics have been used in vehicle routing problems successfully (Archetti and Speranza, 

2014). In our approach, ALNS is used to search the feasible space and determine feasible routes, 

while the charging decisions are optimized by solving an integer linear program exactly by 

CPLEX. 
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4.4.1. Adaptive Large Neighborhood Search 

The ALNS metaheuristic, proposed by Ropke and Pisinger (2006a,b), is a search framework 

based on iterative destroy and repair phases, that has been successfully employed for solving 

various VRP variants. In this study, we use two types of operators which are designed for 

customers and stations. Candidate solutions are accepted according to a simulated annealing 

criterion. 

4.4.1.1. Initial Solution 

At the beginning of the algorithm, all customers are inserted in a removal list in a random order. 

A greedy customer insertion procedure (see Section 4.4.1.3) is then applied to this list to 

construct the initial solution 𝑥4. 

4.4.1.2. Customer Removal 

The current feasible solution 𝑥�����c� is destroyed by the removal operators, and insertion 

operators are then applied to generate a new solution. Customer removal (CR) operators remove 

𝛾 customers and add them to a removal list. We use the random, worst-distance, worst-time, 

Shaw, proximity-based, demand-based, time-based, zone, random route and greedy route 

removals which have been used in related studies (Demir et al., 2012, Emeç et al., 2016). In 

addition, we introduce the following operator. 

Expensive customer removal: This operator tends to remove customers whose visiting cause a 

high increase in the objective function. It first identifies the customers whose predecessor or 

successor nodes are stations, and sorts them in non-increasing order of their costs which are 

calculated in the following way. Let station 𝑖 be the neighboring node of customer 𝑗. Then the 

total cost of traveling, recharging and waiting will be 𝑐�a𝑑CB + 𝑦BÙ − 𝑦Bqb + 𝑐Ù𝑤B. The operator 

removes from the solution the customers having the 𝛾 largest costs. 

After the removal of the selected customers, some stations may become unnecessary to visit. A 

route refinement procedure is applied to eliminate these unnecessary stations. It evaluates the 

decrease in the objective function resulting from the elimination of each station if this 

elimination is feasible. The station whose removal reduces the objective function the most is 

removed from the solution. This operation is repeated until no feasible station removal exists. 
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4.4.1.3. Customer Insertion 

This operator inserts the customers from the removal list back into the partial solution. We 

employ greedy, regret-2 and time-based insertion operators, as proposed in Chapter 2. 

However, some customers may need the insertion of a station to maintain feasibility. In such 

cases, greedy station insertion operator is applied to insert a station along with the customer. 

4.4.1.4. Station Insertion 

We use the greedy station insertion presented in Chapter 2. Here we propose a preprocessing 

procedure that eliminates the dominated stations and speeds up the algorithm. Since the station 

insertion is performed to make an infeasible customer sequence feasible, the possible insertion 

locations are known in advance. We can therefore eliminate some stations according to their 

queueing time and their distances to the customers between which they are inserted. To insert 

a non-dominated station between customers 𝑖 and 𝑘 we proceed as follows: Initially, the set of 

stations is the same as the original set of stations, i.e. 𝐹Bi = 𝐹. Let 𝑗 ∈ 𝐹 and 𝑗° ∈ 𝐹 be two 

candidate stations. If 𝑑BC > 𝑑BC¹ and 𝑑Ci > 𝑑C¹i, then 𝑗° is preferred to 𝑗. However, 𝑗 may have 

a shorter queueing time at the time of arrival. Hence, we calculate 𝑤C and 𝑤C¹, the queueing 

times at stations 𝑗 and 𝑗° if these are visited after customer 𝑖. If 𝑤C > 𝑤C¹ then 𝑗° is preferred 

also in terms of the total time spent to visit a station. Then, 𝑗 is dominated and we eliminate it 

from 𝐹Bi. By comparing all the stations pairwise in this fashion, we obtain the reduced set 𝐹Bi. 

This procedure is illustrated in Figure 4.5. 

Figure 4.5 depicts customers 𝑖 and 𝑘 and the stations 𝑗, 𝑗°, 𝑗°° and 𝑗°′′ that can be inserted 

between them. It also shows the EVs waiting at each station at the time of arrival. Comparing 

𝑗 and 𝑗°, one can see that 𝑑BC¹ > 𝑑BC and 𝑑C¹i > 𝑑Ci. In addition, the waiting time at 𝑗° is more 

than at 𝑗 since 𝑗° has two more EVs. Hence, station 𝑗° is dominated by 𝑗. For 𝑗 and 𝑗°°, clearly 

𝑑BC > 𝑑BC¹¹ and 𝑑Ci > 𝑑C¹¹i, but 𝑗 has fewer EVs than 𝑗°° in its system. So, we cannot eliminate 

either of them. Finally, 𝑗°°° cannot be eliminated since its distance to customer 𝑘 is shorter than 

that of 𝑗 and 𝑗°°. In this case, the station insertion operator will only evaluate the stations 𝑗, 𝑗°° 

and 𝑗°°° between customers 𝑖 and 𝑘. 
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Figure 4.5. Elimination of dominated stations 

4.4.2. Fixed Sequence Route Optimization 

After every Δ iterations, the best-known solution 𝑥é is improved by solving each of its routes 

to optimality without changing the customer sequence, as in Bruglieri et al., (2016), Montoya 

et al., (2017), and Koç et al., (2018). The solver optimizes the following decisions: when to 

visit a station, which station to visit, and how much to recharge. 

4.4.2.1. Mathematical Model 

Let 𝑉 be the set of customers to be served along the route. Since the customer sequence is 

predetermined, we can form the set of consecutive node pairs 𝑉f . The set definitions of 𝑆, 𝑉°, 

𝑉4, 𝑉567, 𝑉4,567, 𝑉4°, 𝑉567°  and 𝑉4,567°  are the same with the new set 𝑉. In this case, 0 and 𝑁 + 1 

involve single departure and arrival depots. Then, the problem can be represented by a complete 

graph 𝐺 = (𝑉4,567° , 𝐴), where 𝐴 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉4,567° , 𝑖 ≠ 𝑗}. Some decision variables are the 

same as in the main formulation presented in Section 4.4, while the new decision variables and 

sets are shown in Table 4.4. 

Table 4.4. Mathematical notation 

  Sets:  
𝑉f  Set of consecutive customer pairs in the route 
𝑉4 Set of customers in the route and the departure depot 
𝑉567 Set of customers in the route and the arrival depot 
𝑉4,567 Set of customers in the route and the depots 

  Decision variables: 

𝑥BCz 1, if the vehicle departing from customer 𝑖, goes to station 𝑗 and arrives there in time 
interval 𝑚, 0 otherwise 

𝑧Biy 
1, if SoC at arrival at the station between consecutive customers 𝑖 and 𝑘 is between 𝑎y|7 
and 𝑎y, 0 otherwise 

However, some customers may need the insertion of a station to maintain feasibility. In such cases,
greedy station insertion operator is applied to insert a station along with the customer.

4.1.4 Station insertion

We use the greedy station insertion presented in Keskin and Çatay (2016). Here we propose a
preprocessing procedure that eliminates the dominated stations and speeds up the algorithm. Since
the station insertion is performed to make an infeasible customer sequence feasible, the possible
insertion locations are known in advance. We can therefore eliminate some stations according to
their queueing time and their distances to the customers between which they are inserted. To
insert a non-dominated station between customers i and k we proceed as follows: Initially, the set
of stations is the same as the original set of stations, i.e. Fik = F . Let j œ F and j

Õ œ F be two
candidate stations. If dij > d

ij
Õ and djk > d

j
Õ
k
, then j

Õ is preferred to j. However, j may have a
shorter queueing time at the time of arrival. Hence, we calculate wj and w

j
Õ , the queueing times at

stations j and j
Õ if these are visited after customer i. If wj > w

j
Õ then j

Õ is preferred also in terms
of the total time spent to visit a station. Then, j is dominated and we eliminate it from Fik. By
comparing all the stations pairwise in this fashion, we obtain the reduced set Fik. This procedure
is illustrated in Figure 5.
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Figure 5: Elimination of dominated stations

Figure 5 depicts customers i and k and the stations j, j
Õ , j

ÕÕ and j
ÕÕÕ that can be inserted between

them. It also shows the EVs waiting at each station at the time of arrival. Comparing j and j
Õ ,

one can see that d
ij

Õ > dij and d
j

Õ
k

> djk. In addition, the waiting time at j
Õ is more than at j

since j
Õ has two more EVs. Hence, station j

Õ is dominated by j. For j and j
ÕÕ , clearly dij > d

ij
ÕÕ

and djk > d
j

ÕÕ
k
, but j has fewer EVs than j

ÕÕ in its system. So, we cannot eliminate either of them.
Finally, j

ÕÕÕ cannot be eliminated since its distance to customer k is shorter than that of j and j
ÕÕ .

In this case, the station insertion operator will only evaluate the stations j, j
ÕÕ and j

ÕÕÕ between
customers i and k.
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Decision variables: 

𝑤Biy 
1, if SoC at departure from the station between consecutive customers 𝑖 and 𝑘 is between 
𝑎y|7 and 𝑎y, 0 otherwise 

𝑦Biq  Battery SoC at a station visited between customers 𝑖 and 𝑘 
𝑦BiÙ  Battery SoC when departing from a station visited between customers 𝑖 and 𝑘 
𝑤Bi Average queueing time of the EV arriving at a station visited between customers 𝑖 and 𝑘 

𝑟Biyq  Coefficient of breakpoint 𝑙 in the piecewise approximation when EV arrives at a station 
visited between customers 𝑖 and 𝑘 

𝑟BiyÙ  Coefficient of breakpoint 𝑙 in the piecewise approximation when EV departs from a station 
visited between customers 𝑖 and 𝑘 

 

Given the above definitions, the mathematical model for the problem with time dependent 
waiting times in stations is formulated as follows: 

minimize 𝑐�(0.9𝑞 − 𝑦567) + 𝑐� Y a𝑦BiÙ − 𝑦Biq b + 𝑐Ú
(B,i)∈Z(

Y𝑣B
B·Z

																									

+ 𝑐Ù𝜏567 + (𝑐Û − 𝑐Ù)𝑣567 + 𝑐} 

 

(4.41) 

subject to    
 

𝜏B + 𝑠B +Y Y 𝑥BCz
z·¯

(𝑡BC + 𝑡Ci)
C∈o

+ 𝑤Bi(𝜏Bi) + 𝑡Bi º1 −Y Y 𝑥BCz
z·¯C·o

»

+ ãY𝑟BiyÙ 𝑐y
y·å

−Y𝑟Biyq 𝑐y
y·å

ä ≤ 𝜏i 

(𝑖, 𝑘) ∈ 𝑉f  (4.42) 

 
𝑡zY𝑥BCz

C·ê

≤ 𝜏B + 𝑠B +Y𝑥BCz𝑡BC
C·ê

≤ 𝑡z67 + 𝑙4 º1 −Y𝑥BCz
C·ê

» 𝑖 ∈ 𝑉4,𝑚 ∈ 𝑀 (4.43) 

 𝑤Bi(𝜏Bi) ≥ 𝑊Cz + 𝑠Cza𝜏B + 𝑠B + 𝑡BC − 𝑡zb −𝑀(1 − 𝑥BCz) (𝑖, 𝑘) ∈ 𝑉f, 𝑗 ∈ F,𝑚 ∈ 𝑀 (4.44) 

 
𝑤Bi(𝜏Bi) ≤ 𝑀º1 −Y Y 𝑥BCz

z·¯C·o

» (𝑖, 𝑘) ∈ 𝑉f  (4.45) 

 𝑦Biq =Y𝑟Biyq 𝑎y
y∈å

 (𝑖, 𝑘) ∈ 𝑉f  (4.46) 

 𝑦BiÙ =Y𝑟BiyÙ 𝑎y
y∈å

 (𝑖, 𝑘) ∈ 𝑉f  (4.47) 

 

𝑦B − ℎë𝑑Bi º1 −Y Y 𝑥BCz
z·¯C·o

» +Y Y 𝑥BCz
z·¯C·o

a𝑑BC + 𝑑Cibì

+ a𝑦BiÙ − 𝑦BiÙ b = 𝑦i 

(𝑖, 𝑘) ∈ 𝑉f  (4.48) 

 
𝑦B − ℎY Y 𝑑BC𝑥BCz

z·¯C·o

≥ 𝑦Biq − 0.9𝑞 º1 −Y Y 𝑥BCz
z·¯C·o

» (𝑖, 𝑘) ∈ 𝑉f  (4.49) 

 
𝑦B − ℎY Y 𝑑BC𝑥BCz

z·¯C·o

≤ 𝑦Biq + 0.9𝑞 º1 −Y Y 𝑥BCz
z·¯C·o

» (𝑖, 𝑘) ∈ 𝑉f  (4.50) 

 0.1𝑞Y Y 𝑥BCz
z·¯C·o

≤ 𝑦Biq ≤ 𝑦BiÙ ≤ 0.9𝑞Y Y 𝑥BCz
z·¯C·o

 (𝑖, 𝑘) ∈ 𝑉f  (4.51) 
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 Y𝑟Biyq
y·å

= Y 𝑧Biy
y·å\{4}

= Y Y𝑥BCz
C·oz·¯

 (𝑖, 𝑘) ∈ 𝑉f  (4.52) 

 𝑟Bi4q ≤ 𝑧Bi7 (𝑖, 𝑘) ∈ 𝑉f  (4.53) 
 𝑟Biyq ≤ 𝑧Biy + 𝑧Bi,y67 (𝑖, 𝑘) ∈ 𝑉f, 𝑙 ∈ 𝐵\{0, 𝑏} (4.54) 
 𝑟Biæq ≤ 𝑧Biæ (𝑖, 𝑘) ∈ 𝑉f  (4.55) 
 Y𝑟BiyÙ

y·å

= Y 𝑤Biy
y·å\{4}

= Y Y𝑥BCz
C·oz·¯

 (𝑖, 𝑘) ∈ 𝑉f  (4.56) 

 𝑟Bi4Ù ≤ 𝑤Bi7 (𝑖, 𝑘) ∈ 𝑉f  (4.57) 
 𝑟BiyÙ ≤ 𝑤Biy + 𝑤Bi,y67 (𝑖, 𝑘) ∈ 𝑉f, 𝑙 ∈ 𝐵\{0, 𝑏} (4.58) 
 𝑟BiæÙ ≤ 𝑤Biæ (𝑖, 𝑘) ∈ 𝑉f  (4.59) 
 𝑦B ≥ 0.1𝑞 𝑖 ∈ 𝑉567 (4.60) 
 𝑦4 = 0.9𝑞  (4.61) 
 𝑦B, 𝜏B ≥ 0 𝑖 ∈ 𝑉4,567 (4.62) 
 𝑤Bi, 𝑦Biq , 𝑦BiÙ ≥ 0 (𝑖, 𝑘) ∈ 𝑉f  (4.63) 
 0 ≤ 𝑟Biyq , 𝑟BiyÙ ≤ 1 (𝑖, 𝑘) ∈ 𝑉f, 𝑙 ∈ 𝐵 (4.64) 
 𝑧Biy, 𝑤Biy ∈ {0,1} (𝑖, 𝑘) ∈ 𝑉f, 𝑙 ∈ 𝐵\{0} (4.65) 
 13 − 15 

 
  

 

The objective function has the same components as in (4.2). Constraints (4.42) keep track of 

service beginning times for consecutive customers 𝑖 and 𝑘. Constraints (4.43) ensure that if any 

station is visited after customer 𝑖 in time period 𝑚, then the service start time should lie within 

time interval [𝑡z − 𝑡z67]. Constraints (4.44) link the flow variables 𝑥BCz and the waiting time 

𝑤Bi(𝜏Bi) at a station between consecutive customers 𝑖 and 𝑘. Constraints (4.46)−(4.47) 

determine the arrival and departure SoC values at the station visited between consecutive 

customers 𝑖 and 𝑘 in terms of the breakpoints in the piecewise linear approximation. The battery 

SoC upon arrival at consecutive customers is tracked by constraints (4.48). If any station is not 

visited, i.e., all 𝑥BCzs are 0, then the SoC upon arrival at customer 𝑘 will be the level at customer 

𝑖, minus the energy consumed on arc (𝑖, 𝑘). Otherwise, the recharged amount (𝑦BiÙ − 𝑦Biq ) will 

be added to that value while the subtracted value will be the energy consumed on arcs (𝑖, 𝑗) and 

(𝑗, 𝑘). Similarly, the battery level upon arrival at station 𝑗 after customer 𝑖 is determined by 

constraints (4.49) and (4.50). In this case, the SoC upon arrival at the station and the departure 

from the station should lie between 10% and 90% of the battery capacity, which is stated by 

constraints (4.51). Constraints (4.52) and (4.56) establish the relationship between the binary 

variables 𝑧Biy and 𝑤Biy and the coefficients of the breakpoints in the piecewise approximation 

when an EV enters and leaves a station, respectively. Constraints (4.53)−(4.55) and 

(4.47)−(4.59) ensure that the coefficients related to the piecewise linear approximation of the 

charging function take correct values. Constraints (4.60) ensure that when arriving at a customer 

or at the depot, the SoC is at least 10% of the battery capacity. The vehicle departs from the 
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depot with a SoC level equal to 90% the battery capacity, which is ensured by the constraint 

(4.61). Finally, (4.62)−(4.65) define the domains of the decision variables.   

Having explained all components of the proposed matheuristic, its general framework is 

described in Algorithm 4.1. We denote by 𝑓(𝑥) the objective function value of solution 𝑥. 

 Algorithm 4.1. General Framework of the Matheuristic 

 

4.4.2.2. Preprocessing on Decision Variables for the Fixed Route Formulation 

Since we know the customer sequence of the customers in the route, we can eliminate some 

decision variables. First, for each customer 𝑖 in the route we calculate the earliest and latest 

approximation when an EV enters and leaves a station, respectively. Constraints (53)≠(55) and
(47)≠(59) ensure that the coe�cients related to the piecewise linear approximation of the charging
function take correct values. Constraints (60) ensure that when arriving at a customer or at the
depot, the SoC is at least 10% of the battery capacity. The vehicle departs from the depot with
a SoC level equal to 90% the battery capacity, which is ensured by the constraint (61). Finally,
(62)≠(65) define the domains of the decision variables.

Having explained all components of the proposed matheuristic, its general framework is described
in Algorithm 1. We denote by f(x) the objective function value of solution x.

Algorithm 1 General Framework of the Matheuristic
1: Generate an initial solution x0, x� Ω xbest Ω xcurrent Ω x0

2: Initialize the scores and probabilities of the operators, iter Ω 1
3: while iter < Maximum number of iterations do
4: if iter is a multiple of � and f(x�) ”= f(x�≠previous) then
5: for all routes in x� do
6: Remove all charging stations from the route
7: Solve TD-EVRPTW for a given route, update the route in x�

8: end for
9: f(x�≠previous) Ω f(x�), xcurrent Ω x�

10: if f(x�) < fbest then
11: xbest Ω x�, fbest Ω f(x�)
12: end if
13: f(x�) Ω Œ
14: else
15: Select a Customer Removal operator and remove “ customers from xcurrent

16: Apply Route Refinement Procedure
17: Select a Customer Insertion operator and repair the solution
18: if f(xcurrent) < fprevious then
19: xprevious Ω xcurrent, fprevious Ω f(xcurrent)
20: if f(xcurrent) < fbest then
21: xbest Ω xcurrent, fbest Ω f(xcurrent)
22: end if
23: else
24: Accept the solution using Simulated Annealing Criterion
25: xprevious Ω xcurrent, fprevious Ω f(xcurrent)
26: end if
27: if f(xcurrent) < f(x�) then
28: f(x�) Ω f(xcurrent)
29: end if
30: end if
31: if iter is a multiple of Nc then
32: Update adaptive weights of CR and CI operators and calculate new selection probabilities
33: end if
34: iter Ω iter + 1
35: end while
36: Return xbest

19
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possible departure times, namely 𝑡B,�q�yí and 𝑡B,yq��, using the fact that vehicles depart from the 

depot at time 0 and have to return to the depot before 𝑙4. Therefore, departing from a customer 

𝑖 earlier than 𝑡B,�q�yí or later than 𝑡B,yq�� is impossible. Using these bounds, we can calculate the 

earliest and latest arrival times at the stations to be inserted between each customer pair and 

eliminate the 𝑥BCzs corresponding to the time interval outside of the limits just calculated. 

4.5. Computational Experiments 

This section presents the assumptions and calculations related to the waiting times and reports 

the results of our computational experiments. All experiments are conducted on an Intel Xeon 

E5 2.10 GHz processor virtual machine with 16 GB of RAM. The models described in Sections 

4.3.2 and 4.4.2.1 as well as the matheuristic were coded in Java and the models were solved by 

CPLEX 12.6.2 with default settings. We used the EVRPTW instances of Schneider et al. (2014) 

with some problem-specific adaptations. 

4.5.1. Experimental Design 

Since we use a non-linear charging function and the EVRPTW data have a fixed charging rate, 

we need to adapt the rates. We used the piecewise linear charging function for fast chargers 

proposed in Montoya et al. (2017). The function has three pieces which means that we also 

need three different charging rates. We apply a scaling such that the recharging rate during the 

last piece is equal to the rate applied in Schneider et al. (2014) data. Furthermore, we assumed 

a battery whose SoC interval between 10% and 90% corresponds to the full capacity value used 

in Schneider et al. (2014). There are three types of instances defined according to the locations 

of customers, which are random, clustered and random clustered. These types are represented 

by R, C and RC in the names of the instances. Furthermore, for each instance type, there are 

two types of time windows which are narrow and wide. The number in the names of the 

instances begin with 1 or 2 depending on that whether they belong to the narrow or to the wide 

group. 

The day is divided into five time intervals, namely morning, noon, late afternoon, evening, and 

night. However, since the FCFS property must hold, we need to define transition periods 

between each interval. It is assumed that the transition periods from a less crowded interval to 

a crowded interval last 30 minutes. Since the increase in the arrival rate is an outside factor, it 

is safe to assume that the increase can happen within 30 minutes. However, for the transitions 

from a crowded interval to a less crowded one, the transition period is bounded by the service 

time of the charger. The reason is that the number of vehicles that can be served is limited due 
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to the charging capacity at the station. Hence, the ends of these transition periods are variable 

and they are determined by adding the time to serve the difference of the number of vehicles 

between the time periods to the end of the previous period. This means that from noon to late 

afternoon and from late afternoon to evening, the transition periods differ from each other and 

are not equal to 30 minutes as earlier in the day. After introducing the transition periods, the 

number of time intervals becomes eight. These intervals are defined as follows: [7:00,7:30), 

[7:30,9:30), [9:30,10:00), [10:00,15:30), [15:30,	𝑡7), [𝑡7,19:00), [19:00,	𝑡l), [𝑡l,7:00). Here, 𝑡7 

and 𝑡l are the ending times of the transient periods, calculated as explained above. The vehicles 

depart from the depot at 8:00 and must return to the depot by 20:00. Because the deadline of 

the depot is 20:00, we do not include the night-time interval in our study. Arrivals at the depot 

after 18:00 are penalized with an overtime wage. Since the benchmark instances are synthetic 

we convert the time data proportionally to the above setting. In each data we equal due date of 

the depot to 12 hours and determine the time intervals accordingly. So, the time intervals are 

different in each data set and scaled according to the due date of the depot. 

In order to analyze the effect of the waiting times, we investigate different scenarios among 

which one does not involve waiting. For the other scenarios, we consider two types of patterns 

for the waiting times, namely time-independent (TI) and time-dependent (TD) waiting times. 

In the time-independent case, the waiting times are constant during the day. In the time-

dependent case, we assume two types of transitions between time intervals, referred to as 

smooth and steep transitions. In the former type, the increase in the expected waiting time is 

smaller than that of the latter during the same transition time from an off-peak interval to a peak 

interval. Similarly, the decrease from a peak interval to an off-peak interval is smaller compared 

to the steep type. Whenever there is waiting time, we further use two scenarios where waiting 

times are short and long. The configurations for the time-dependent case are depicted in Figure 

4.6. Note that the expected waiting time doubles from night to morning and from morning to 

noon, then halves from noon to late afternoon and from late afternoon to evening in the smooth 

transition case. In the steep transition case, it quadruples from night to morning, increases by a 

factor of 2.5 from morning to noon and decreases by a factor of two and five from noon to late 

afternoon and late afternoon to evening, respectively. Note also that the slopes of the transitions 

from noon to late afternoon and from late afternoon to evening are the same, which is the 

negative of the service rate. We assign waiting times to each interval assuming a 12-hour 

planning period. These waiting time values in minutes are given in Table 4.5 and illustrated in 

Figure 4.6. For each instance the waiting times for each interval are calculated considering the 
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due date of the depot in the data. Since the service rate 𝜇 is the same for all time intervals and 

scenarios, the 𝜆 values are calculated accordingly. 

Table 4.5. Average waiting time (𝑊( ) parameters for each scenario 

 

 

Figure 4.6. Average waiting times for each scenario 

We adopt the objective function coefficients of Taş et al. (2013). However, we replace 𝑐� and 

𝑐} to represent the cost figures of an EV instead of those of a diesel ICEV. In Feng and Figliozzi 

(2013), a conventional vehicle and an electric vehicle are compared for their fuel consumptions 

and purchase prices. The EV is three times more expensive than the conventional vehicle. 

Furthermore, using the consumption values reported in Feng and Figliozzi (2013) and the 

current electricity and fuel prices (www.eia.gov), we can conclude that cost per km of the 

conventional vehicle is 2.5 times higher than that of the EV. Hence, the cost values for our case 

are determined as follows: 𝑐� = 0.4, 𝑐Ú = 1, 𝑐} = 1200, 𝑐Ù = 1 and 𝑐Û = 11/6. In ALNS, we 

use the same parameter values as reported in Chapter 2. 

 

crowded interval too a less crowded one, the transition period is bounded by the service time of
the charger. The reason is that the number of vehicles that can be served is limited due to the
charging capacity at the station. Hence, the ends of these transition periods are variable and they
are determined by adding the time to serve the di�erence of the number of vehicles between the
time periods to the end of the previous period. This means that from noon to late afternoon and
from late afternoon to evening, the transition periods di�er from each other and are not equal
to 30 minutes as earlier in the day. After introducing the transition periods, the number of time
intervals becomes eight. These intervals are defined as follows: [7:00,7:30), [7:30,9:30), [9:30,10:00),
[10:00,15:30), [15:30,t1), [t1,19:00), [19:00,t2), [t2,7:00). Here, t1 and t2 are the ending times of the
transient periods, calculated as explained above. The vehicles depart from the depot at 8:00 and
must return to the depot by 20:00. Because the deadline of the depot is 20:00, we do not include the
night-time interval in our study. Arrivals at the depot after 18:00 are penalized with an overtime
wage. Since the benchmark instances are synthetic we convert the time data proportionally to the
above setting. In each data we equal due date of the depot to 12 hours and determine the time
intervals accordingly. So, the time intervals are di�erent in each data set and scaled according to
the due date of the depot.

t
0

7:
00

7:
30

8:
00

9:
30

10
:0

0

15
:3

0

15
:4

5

16
:0

0

16:10

16
:4

5

19
:0

0

19
:0

8
19:15

19:30 20:00

5

10

20

25

40

50

100

W

e0

l0

TD-Smooth-Short
TD-Smooth-Long
TD-Steep-Short
TD-Steep-Long

Figure 6: Average waiting times for each scenario

In order to analyze the e�ect of the waiting times, we investigate di�erent scenarios among
which one does not involve waiting. For the other scenarios, we consider two types of patterns
for the waiting times, namely time-independent (TI) and time-dependent (TD) waiting times. In
the time-independent case, the waiting times are constant during the day. In the time-dependent
case, we assume two types of transitions between time intervals, referred to as smooth and steep
transitions. In the former type, the increase in the expected waiting time is smaller than that of
the latter during the same transition time from an o�-peak interval to a peak interval. Similarly,
the decrease from a peak interval to an o�-peak interval is smaller compared to the steep type.
Whenever there is waiting time, we further use two scenarios where waiting times are short and
long. The configurations for the time-dependent case are depicted in Figure 6. Note that the
expected waiting time doubles from night to morning and from morning to noon, then halves from
noon to late afternoon and from late afternoon to evening in the smooth transition case. In the

18

steep transition case, it quadruples from night to morning, increases by a factor of 2.5 from morning
to noon and decreases by a factor of two and five from noon to late afternoon and late afternoon to
evening, respectively. Note also that the slopes of the transitions from noon to late afternoon and
from late afternoon to evening are the same, which is the negative of the service rate. We assign
waiting times to each interval assuming a 12-hour planning period. These waiting time values in
minutes are given in Table 5 and illustrated in Figure 6. For each instance the waiting times for
each interval are calculated considering the due date of the depot in the data. Since the service
rate µ is the same for all time intervals and scenarios, the ⁄ values are calculated accordingly.

Table 5: Average waiting time (W ) parameters for each scenario

Scenarios Length of Time Interval
waiting times Morning Noon Late afternoon Evening

No waiting - 0 0 0 0

Time-independent Short 10 10 10 10
Long 20 20 20 20

Time-dependent/ Short 10 20 10 5
Smooth transitions Long 20 40 20 10
Time-dependent/ Short 20 50 25 5
Steep transitions Long 40 100 50 10

We adopt the objective function coe�cients of Taş et al. (2013). However, we replace ce and
cf to represent the cost figures of an EV instead of those of a diesel ICEV. In Feng and Figliozzi
(2013), a conventional vehicle and an electric vehicle are compared for their fuel consumptions and
purchase prices. The EV is three times more expensive than the conventional vehicle. Furthermore,
using the consumption values reported in Feng and Figliozzi (2013) and the current electricity and
fuel prices (www.eia.gov), we can conclude that cost per km of the conventional vehicle is 2.5 times
higher than that of the EV. Hence, the cost values for our case are determined as follows: ce = 0.4,
cp = 1, cf = 1200, cd = 1, and co = 11/6. In ALNS, we use the same parameter values as reported
in Keskin and Çatay (2016).

5.2 Results on the Small Instances

We first solved small instances with five, 10 and 15 customers with CPLEX with a time limit
of two hours. We used the TD-Steep-Long scenario for these experiments. Table 5 compares
the performance of CPLEX with that of the matheuristic. The computational times are given
in seconds. The value of %Imp is calculated as (fCP LEX ≠ fMath))/fCP LEX , where fCP LEX and
fMath stand for the solution values of CPLEX and the proposed matheuristic, respectively. The
matheuristic was run 10 times and the best results are presented. The last column shows the
average computational time. Since the copies of depots and stations should be created and we do
not know how many of them will be in the optimal solution, we applied an iterative approach in
CPLEX. First, we kept the number of depots fixed and increased the number of stations until the
same or a worse optimal solution or upper bound was obtained. We then repeated this procedure
by gradually increasing the number of depots while the solution was improving. The overall best
optimal solution or the best upper bound is reported along with its CPU time and the optimality
gap. In the five-customer instances and some of the 10-customer instances, CPLEX was able to find
optimal solutions within two hours. However, the other instances could not be solved to optimality.
The heuristic was able to find an optimal solution for those instances with a zero gap. For the
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4.5.2. Results on Small Instances 

We first solved small instances with 5, 10 and 15 customers with CPLEX with a time limit of 

two hours. We used the TD-Steep-Long scenario for these experiments. Table 4.6 compares the 

performance of CPLEX with that of the matheuristic. The computational times are given in 

seconds. The value of %𝐼𝑚𝑝 is calculated as (𝑓nðñò~ − 𝑓 q��)/𝑓nðñò~, where 𝑓nðñò~ and 𝑓 q�� 

stand for the solution values of CPLEX and the proposed matheuristic, respectively. The 

matheuristic was run 10 times and the best results are presented. The last column shows the 

average computational time. Since the copies of depots and stations should be created and we 

do not know how many of them will be in the optimal solution, we applied an iterative approach 

in CPLEX. First, we kept the number of depots fixed and increased the number of stations until 

the same or a worse optimal solution or an upper bound was obtained. We then repeated this 

procedure by gradually increasing the number of depots while the solution was improving. The 

overall best optimal solution or the best upper bound is reported along with its CPU time and 

the optimality gap. In the five-customer instances and some of the 10-customer instances, 

CPLEX was able to find optimal solutions within two hours. However, the other instances could 

not be solved to optimality. The heuristic was able to find an optimal solution for those instances 

with a zero gap. For the others, it either found the same bound as CPLEX, or improved it. In all 

instances, the heuristic performed faster than CPLEX. 

4.5.3. Results on Large Instances 

Desaulniers et al. (2016) highlighted the minor influence of wide time-window constraints on 

recharging decisions. Hence, we decided to use instances with narrow time windows in our 

experimental study, and we randomly selected four instances from each data set of C1, R1, and 

RC1 of the Schneider (2014) instances. 

4.5.3.1. The Impact of Waiting on Total Cost and Its Components 

We performed experiments for several scenarios of each instance and analyzed the impact of 

considering different waiting times at the stations by comparing the value of the objective 

function to that of the base case where waiting is ignored. In Table 4.7, we report the ratio of 

the corresponding objective function values calculated as (𝑂𝐹𝑉r��cq�BÛ/𝑂𝐹𝑉æqr�), where 

𝑂𝐹𝑉r��cq�BÛ and 𝑂𝐹𝑉æqr� are the objective function values of the best solutions over 10 runs. 

In the headings, “Sm” and “St” stand for Smooth and Steep transition scenarios, respectively, 

while the last letters “S” and “L” represent short and long waiting time cases, respectively. 
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Table 4.6. Results on small size instances 

 

The results show that waiting at stations can increase the total cost by up to 11% and 26% for 

short- and long-waiting scenarios, respectively. As expected, the total cost is larger in the TD 

instances compared with the TI instances, when the waiting time is longer, and when the 

transitions are steeper. The waiting at the stations has a greater impact on the R and RC 

instances compared with the C instances. This is because the customers are dispersed in the 

random and random-and-clustered data and the vehicles need more frequent recharges (see 

Figure 4.7). On average, the total cost increases between 3% and 17% for different waiting 

scenarios. 

others, it either found the same bound as CPLEX, or improved it. In all instances, the heuristic
performed faster than CPLEX.

Table 6: Results on small size instances

CPLEX Matheuristic
Instance Cost #Veh Time Cost #Veh Time % Imp.
C101C5 4234.59 2 469.70 4234.59 2 3.16 -
C103C5 2494.12 1 5.46 2494.12 1 2.08 -
C206C5 4883.26 1 9.58 4883.26 1 3.38 -
C208C5 3564.84 1 3.23 3564.84 1 1.92 -
R104C5 2770.12 2 3.00 2770.12 2 1.38 -
R105C5 2841.33 2 1.70 2841.33 2 1.02 -
R202C5 1755.46 1 4.74 1755.46 1 2.39 -
R203C5 2001.82 1 3.38 2001.82 1 2.36 -
RC105C5 2954.94 2 5.28 2954.94 2 2.63 -
RC108C5 4215.56 3 4.42 4215.56 3 1.75 -
RC204C5 2032.12 1 12.30 2032.12 1 1.42 -
RC208C5 1728.37 1 4.80 1728.37 1 1.83 -
C101C10 5990.07 2 7200 5342.34 2 8.14 10.81
C104C10 4149.23 2 7200 4149.23 2 22.03 -
C202C10 4929.78 1 7200 4929.78 1 13.14 -
C205C10 5959.2 1 425.56 5959.20 1 7.83 -
R102C10 4375.04 3 7200 4374.54 3 6.26 0.01
R103C10 2887.6 2 7200 2887.03 2 7.19 0.02
R201C10 2695.02 1 7200 2694.18 1 14.53 0.03
R203C10 2178.18 1 7200 2162.87 1 9.62 0.70
RC102C10 5792.04 4 7200 5792.04 4 6.33 -
RC108C10 4458.81 3 2810.71 4458.81 3 5.81 -
RC201C10 3562.49 1 7200 3453.67 1 11.66 3.05
RC205C10 3830.69 2 5986.4 3830.69 2 8.58 -
C103C15 6679.78 3 7200 6674.73 3 23.19 0.08
C106C15 6756.55 3 7200 6756.55 3 15.73 -
C202C15 8379.29 3 7200 7885.32 2 35.24 5.90
C208C15 6630.84 2 7200 6630.84 2 20.85 -
R102C15 5904.56 4 7200 5854.66 4 15.25 0.85
R105C15 5795.65 4 7200 5795.65 4 10.14 -
R202C15 4478.96 2 7200 4009.78 2 37.04 10.48
R209C15 4049.81 2 7200 4025.98 2 36.18 0.59
RC103C15 5786.35 4 7200 5786.35 4 13.65 -
RC108C15 5679.35 4 7200 4592.83 3 7.92 19.13
RC202C15 4393.06 2 7200 4335.84 2 20.96 1.30
RC204C15 3636.58 2 7200 3389.35 1 48.65 6.80
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Table 4.7. Impact of different waiting schemes on total cost 

 

Figure 4.7. Average number of recharges for each data set 

Figure 4.8 illustrates the average changes in total cost and cost components compared with the 

base scenario. The green, yellow, and orange-colored columns represent the average results for 

the C, R, and RC instances, respectively, whereas the blue-colored columns show the overall 

averages. In Figures 4.8(a)− 4.8(c) we see that waiting at the stations has a similar effect on 

the total cost, the cost of the vehicles, and the driver wages. On the other hand, Figures 4.8(d)− 

4.8(e) reveal that the overtime wages and cost of late arrivals at customers increase more 

significantly in the C instances compared with the other two instance types. This is because the 

fleet size does not increase dramatically in the C instances and the vehicles make longer tours 

which causes more time window violations. Finally, Figure 4.8(f) shows that the cost of energy 

is relatively steady compared with the other cost components: the maximum increase is 7% in  

5.3 Results on Large Instances

Desaulniers et al. (2016) highlighted the minor influence of wide time-window constraints on
recharging decisions. Hence we decided to use instances with narrow time windows in our experi-
mental study, and we randomly selected four instances from each data set of C1, R1, and RC1 of
the Schneider (2014) instances.

5.3.1 The impact of waiting on total cost and its components

We performed experiments for several scenarios of each instance and analyzed the impact of con-
sidering di�erent waiting times at the stations by comparing the value of the objective function to
that of the base case where waiting is ignored. In Table 7, we report the ratio of the corresponding
objective functions calculated as (OFVscenario/OFVbase), where OFVscenario and OFVbase are the
objective function values of the best solutions over 10 runs. In the headings, Sm and St stand for
Smooth and Steep transition scenarios, respectively, while the last letters S and L represent short
and long waiting time cases, respectively.

Table 7: Impact of di�erent waiting schemes on total cost

Instances TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
C101 1.01 1.03 1.01 1.05 1.08 1.12
C105 1.01 1.02 1.01 1.05 1.08 1.10
C107 1.01 1.02 1.02 1.03 1.04 1.10
C108 1.01 1.02 1.01 1.02 1.03 1.08
Average C 1.01 1.02 1.01 1.04 1.06 1.10
R102 1.07 1.07 1.06 1.09 1.14 1.25
R104 1.01 1.02 1.02 1.10 1.11 1.20
R109 1.08 1.09 1.08 1.10 1.10 1.26
R110 1.01 1.01 1.01 1.03 1.09 1.12
Average R 1.04 1.05 1.04 1.08 1.11 1.21
RC103 1.02 1.04 1.01 1.05 1.10 1.19
RC104 1.08 1.09 1.03 1.10 1.11 1.20
RC106 1.01 1.08 1.08 1.08 1.08 1.18
RC108 1.08 1.08 1.08 1.09 1.10 1.19
Average RC 1.05 1.07 1.05 1.08 1.10 1.19
Average All 1.03 1.05 1.04 1.07 1.09 1.17

The results show that waiting at stations can increase the total cost by up to 11% and 26%
for short- and long-waiting scenarios, respectively. As expected, the total cost is larger in the TD
instances compared with the TI instances, when the waiting time is longer, and when the transitions
are steeper. The waiting at the stations has a greater impact on the R and RC instances compared
with the C instances. This is because the customers are dispersed in the random and random-and-
clustered data and the vehicles need more frequent recharges (see Figure 7). On average, the total
cost increases between 3% and 17% for di�erent waiting scenarios.
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Figure 7: Average number of recharges for each data set

Figure 8 illustrates the average changes in total cost and cost components compared with the
base scenario. The green, yellow, and orange-colored columns represent the average results for the
C, R, and RC instances, respectively, whereas the blue-colored columns show the overall averages.
In Figures 8(a)≠(c) we see that waiting at the stations has a similar e�ect on the total cost, the cost
of the vehicles, and the driver wages. On the other hand, Figures 8(d)≠(e) reveal that the overtime
wages and cost of late arrivals at customers increase more significantly in the C instances compared
with the other two instance types. This is because the fleet size does not increase dramatically
in the C instances and the vehicles make longer tours which causes more time window violations.
Finally, Figure 8(f) shows that the cost of energy is relatively steady compared with the other
cost components: the maximum increase is 7% in the worst case and it even decreases in certain
scenarios. In particular, the reduced energy consumption, i.e. total traveled distance, in the C
instances is rather surprising. To avoid waiting, planners avoid frequent recharges at the expense
of increasing the fleet size. This, however, yields more compact tours and fewer visits between
customers located in di�erent cluster zones, hence this reduces the distance traveled.

Figure 9 shows the percentage contribution of each cost component to the objective function for the
no-waiting and the TD-St-L scenarios. We only report the results of these two extreme cases, but
the distributions of the cost components exhibit similar patterns in the intermediate scenarios as
well. In Figure 9(a), we see that the vehicle cost is the major contributor to the total cost, followed
by the driver wages in the R and RC instances. On the other hand, these two cost components
are almost equal in the C instances. This di�erence is due to di�erent time horizons in the data:
the due date at the depot is about five times longer in the C instances. Since driver wages are
proportional to the total travel time and the vehicles make longer tours, the total cost of wages
is higher in the C instances. Figure 9(b) depicts results similar to those of Figure 9(a) in terms
of the relationship between the cost components. However, the shares of cost of late arrivals and
overtime wages increase slightly because of the waiting times which cause more delays in arrivals.

5.3.2 The impact of waiting at the recharging stations on the decisions made in
di�erent time intervals

We now investigate how waiting at the recharging stations influences the recharging decisions made
in di�erent time intervals and the resulting cost behavior. Figure 10 provides a temporal analysis
using the average values over all instances. Figure 10(a) shows that the vehicles do not recharge
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Figure 4.8. Comparison of different cost components for different waiting schemes 

 

the worst case and it even decreases in certain scenarios. In particular, the reduced energy 

consumption, i.e. total traveled distance, in the C instances is rather surprising. To avoid 

waiting, planners avoid frequent recharges at the expense of increasing the fleet size. This, 

however, yields more compact tours and fewer visits between customers located in different 

cluster zones, hence this reduces the distance traveled. 

6

8

10

12

14

16

18

No Wait TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

C R RC

Figure 7: Average number of recharges for each data set

Table 8: Impact of di�erent waiting schemes on total cos

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

a) Total cost

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

a) Cost of vehiclesC R RC All

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

C R RC All

24

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

a) Total costC R RC All

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

b) Cost of vehicles

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

c) Regular driver wages
TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

0.8

1

1.2

1.4

1.6

1.8

2

d) Overtime wages

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

0

10

20

30

e) Cost of late arrivals at customers
TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

0.85

0.9

0.95

1

1.05

1.1

f) Cost of energy

Figure 8. Comparison of di�erent cost components for di�erent waiting schemes

25

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

a) Total costC R RC All

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

b) Cost of vehicles

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

c) Regular driver wages
TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

0.8

1

1.2

1.4

1.6

1.8

2

d) Overtime wages

TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

0

10

20

30

e) Cost of late arrivals at customers
TI-S TI-L TD-Sm-STD-Sm-L TD-St-S TD-St-L

0.85

0.9

0.95

1

1.05

1.1

f) Cost of energy

Figure 8. Comparison of di�erent cost components for di�erent waiting schemes

24

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
1

1.05

1.1

1.15

1.2

1.25

a) Total costC R RC All
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

b) Cost of vehicles

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
1

1.05

1.1

1.15

1.2

1.25

c) Regular driver wages
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

0.8

1

1.2

1.4

1.6

1.8

2

d) Overtime wages

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
0

10

20

30

e) Cost of late arrivals at customers
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

0.85

0.9

0.95

1

1.05

1.1

f) Cost of energy

Figure 8. Comparison of di�erent cost components for di�erent waiting schemes

23

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
1

1.05

1.1

1.15

1.2

1.25

C R RC All
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

b) Cost of vehicles

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
1

1.05

1.1

1.15

1.2

1.25

c) Regular driver wages
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

0.8

1

1.2

1.4

1.6

1.8

2

d) Overtime wages

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
0

10

20

30

e) Cost of late arrivals at customers
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

0.85

0.9

0.95

1

1.05

1.1

f) Cost of energy

Figure 8. Comparison of di�erent cost components for di�erent waiting schemes

23

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
1

1.05

1.1

1.15

1.2

1.25

a) Total cost
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

1

1.05

1.1

1.15

1.2

1.25

b) Cost of vehicles

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
1

1.05

1.1

1.15

1.2

1.25

c) Regular driver wages
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

0.8

1

1.2

1.4

1.6

1.8

2

d) Overtime wages

TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
0

10

20

30

e) Cost of late arrivals at customers
TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L

0.85

0.9

0.95

1

1.05

1.1

f) Cost of energy

Figure 8. Comparison of di�erent cost components for di�erent waiting schemes

23



 

 88 

Figure 4.9 shows the percentage contribution of each cost component to the objective function 

for the no-waiting and the TD-St-L scenarios. We only report the results of these two extreme 

cases, but the distributions of the cost components exhibit similar patterns in the intermediate 

scenarios as well. In Figure 4.9(a), we see that the vehicle cost is the major contributor to the 

total cost, followed by the driver wages in the R and RC instances. On the other hand, these 

two cost components are almost equal in the C instances. This difference is due to different 

time horizons in the data: the due date at the depot is about five times longer in the C instances. 

Since driver wages are proportional to the total travel time and the vehicles make longer tours, 

the total cost of wages is higher in the C instances. Figure 4.9(b) depicts results similar to those 

of Figure 4.9(a) in terms of the relationship between the cost components. However, the shares 

of cost of late arrivals and overtime wages increase slightly because of the waiting times which 

cause more delays in arrivals. 

 

Figure 4.9. Distribution of the cost components for no-wait and TD-St-L scenarios 

4.5.3.2. The Impact of Waiting at the Recharging Stations on the Decisions Made in    
Different Time Intervals 

We now investigate how waiting at the recharging stations influences the recharging decisions 

made in different time intervals and the resulting cost behavior. Figure 4.10 provides a temporal 

analysis using the average values over all instances. Figure 4.10(a) shows that the vehicles do 
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Figure 9. Distribution of the cost components for no-wait and TD-ST-L scenarios

in the morning and they return to the depot without visiting any customers and without incurring
overtime wages in the evening. The average number of recharges illustrated in Figure 10(b) shows a
similar behavior. However, we observe more frequent recharges in the morning when the waiting is
time-dependent. When we compare the short and long waiting cases for each scenario, we see that
the number of recharges and the total amount of energy charged decreases during the afternoon
when the waiting times are more significant, and increases in the morning and late afternoon
intervals when the waiting times are shorter. We also note that both the number of recharges and
the amount of energy recharged en route are smaller in the long waiting cases than in the short
cases. This unexpected result is due to the increased fleet size in the former case, as depicted in
Figure 8(b). To avoid long waiting times at the stations and high costs associated with late arrivals
at the customers, the algorithm tends to add more vehicles to the fleet. As a result, on average each
vehicle makes fewer stops and needs less recharging en route to complete its route. These results
are more apparent when we compare the results of the no-wait scenario and to those of TD-St-L
scenario. Figure 10(c) shows that substantial late arrival costs are incurred when there is more
waiting at the stations. Since the vehicles rarely recharge in the morning, we observe almost no
time window violations in this time interval. However, the violations are noticeable during the noon
and late afternoon hours, particularly in the case of long waiting times. We also observe that some
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overtime wages in the evening. The average number of recharges illustrated in Figure 10(b) shows a
similar behavior. However, we observe more frequent recharges in the morning when the waiting is
time-dependent. When we compare the short and long waiting cases for each scenario, we see that
the number of recharges and the total amount of energy charged decreases during the afternoon
when the waiting times are more significant, and increases in the morning and late afternoon
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the amount of energy recharged en route are smaller in the long waiting cases than in the short
cases. This unexpected result is due to the increased fleet size in the former case, as depicted in
Figure 8(b). To avoid long waiting times at the stations and high costs associated with late arrivals
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in the morning and they return to the depot without visiting any customers and without incurring
overtime wages in the evening. The average number of recharges illustrated in Figure 10(b) shows a
similar behavior. However, we observe more frequent recharges in the morning when the waiting is
time-dependent. When we compare the short and long waiting cases for each scenario, we see that
the number of recharges and the total amount of energy charged decreases during the afternoon
when the waiting times are more significant, and increases in the morning and late afternoon
intervals when the waiting times are shorter. We also note that both the number of recharges and
the amount of energy recharged en route are smaller in the long waiting cases than in the short
cases. This unexpected result is due to the increased fleet size in the former case, as depicted in
Figure 8(b). To avoid long waiting times at the stations and high costs associated with late arrivals
at the customers, the algorithm tends to add more vehicles to the fleet. As a result, on average each
vehicle makes fewer stops and needs less recharging en route to complete its route. These results
are more apparent when we compare the results of the no-wait scenario and to those of TD-St-L
scenario. Figure 10(c) shows that substantial late arrival costs are incurred when there is more
waiting at the stations. Since the vehicles rarely recharge in the morning, we observe almost no
time window violations in this time interval. However, the violations are noticeable during the noon
and late afternoon hours, particularly in the case of long waiting times. We also observe that some
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much during the morning and the evening. This is expected since they depart from the depot
with full charge in the morning and they return to the depot without visiting any customer and
without incurring overtime wages in the evening. The average number of recharges illustrated in
Figure 10(b) shows a similar behavior. However, we observe more frequent recharges in the morning
when the waiting is time-dependent. When we compare the short and long waiting cases for each
scenario, we see that the number of recharges and the total amount of energy charged decreases
during the afternoon when the waiting times are more significant, and increases in the morning and
late afternoon intervals when the waiting times are shorter. We also note that both the number of
recharges and the amount of energy recharged en route are smaller in the long waiting cases than
in the short cases. This unexpected result is due to the increased fleet size in the former case, as
depicted in Figure 8(b). To avoid long waiting times at the stations and high costs associated with
late arrivals at the customers, the algorithm tends to add more vehicles to the fleet. As a result,
on average each vehicle makes fewer stops and needs less recharging en route to complete its route.
These results are more apparent when we compare the results of the no-wait scenario to those of the
TD-St-L scenario. Figure 10(c) shows that substantial late arrival costs are incurred when there is
more waiting at the stations. Since the vehicles rarely recharge in the morning, we observe almost
no time window violations in this time interval. However, the violations are noticeable during the

24



 

 89 

not recharge much during the morning and the evening. This is expected since they depart from 

the depot with full charge in the morning and they generally return to the depot without visiting 

any customer in the evening interval. The average number of recharges illustrated in Figure 

4.10(b) shows a similar behavior. However, we observe more frequent recharges in the morning 

when the waiting is time-dependent. When we compare the short and long waiting cases for 

each scenario, we see that the number of recharges and the total amount of energy charged 

decreases during the afternoon when the waiting times are more significant, and increases in 

the morning and late afternoon intervals when the waiting times are shorter. We also note that 

both the number of recharges and the amount of energy recharged en route are smaller in the 

long waiting cases than in the short cases. This unexpected result is due to the increased fleet 

size in the former case, as depicted in Figure 4.8(b). To avoid long waiting times at the stations 

and high costs associated with late arrivals at the customers, the algorithm tends to add more 

vehicles to the fleet. As a result, on average each vehicle makes fewer stops and needs less 

recharging en route to complete its route. These results are more apparent when we compare 

the results of the no-wait scenario to those of the TD-St-L scenario. Figure 4.10(c) shows that 

substantial late arrival costs are incurred when there is more waiting at the stations. Since the 

vehicles rarely recharge in the morning, we observe almost no time window violations in this 

time interval. However, the violations are noticeable during the noon and late afternoon hours, 

particularly in the case of long waiting times. We also observe that some customers are served 

during the evening with a long delay in the TD-St-L scenario. In other scenarios, the evening 

interval is used to return to the depot, i.e., no customers are visited. However in this case, visits 

of some customers have to be postponed to the evening because of long waiting times. This 

generates late arrival cost in the evening interval, too. Figure 4.10(d) presents the total energy 

consumption (distance traveled) for each scenario. The total distance traveled is not affected by 

the changing waiting times, but the solutions differ in the number of vehicles and recharge 

schedules. 

4.5.3.3. Sensitivity of the Solutions to the Late Arrival Penalty 

We observed in Figure 4.8(e) that the cost of late arrivals at customers may increase 

dramatically in C-type instances. We therefore performed additional tests on these instances by 

increasing late arrival penalties 5-, 50-, and 100-fold to investigate the sensitivity of the results. 

Table 4.8 reports the average cost values and the average percentage change in each cost 

component for each late arrival penalty setting. The columns %Δ report the percentage 

difference in each component compared with the base case where the unit late arrival penalty 

is one. While almost all cost components increase, there is a significant decrease in late arrival 
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and overtime costs as well as in the total lateness. As the late arrival penalty increases, the fleet 

size also increases to avoid late arrivals at customers. As a result, overtime wages decrease as 

well. 

 

Figure 4.10. Temporal analysis of recharging decisions and costs 

 

Table 4.8. Comparison of results for different late arrival penalty values 

 

noon and late afternoon hours, particularly in the case of long waiting times. We also observe
that some customers are served during the evening with a long delay in the TD-St-L scenario.
Figure 10(d) presents the total energy consumption (distance traveled) for each scenario. The
total distance traveled is not a�ected by the changing waiting times, but the solutions di�er in the
number of vehicles and recharge schedules.
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5.3.3 Sensitivity of the solutions to late arrival penalty

We observed in Figure 7(c) that the cost of late arrivals at customers may increase dramatically
in C-type instances. We therefore performed additional tests on these instances by increasing
late arrival penalties five-, 50-, and 100-fold to investigate the sensitivity of the results. Table 8
reports the average cost values and the average percentage change in each cost component for each
late arrival penalty setting. The columns “% Change” report the percentage di�erence in each
component compared with the base case where the unit late arrival penalty is one. While almost
all cost components increase, there is a significant decrease in late arrival and overtime costs as
well as in the total lateness. As the late arrival penalty increases, the fleet size also increases too
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5.3.3 Sensitivity of the solutions to late arrival penalty

We observed in Figure 7(c) that the cost of late arrivals at customers may increase dramatically
in C-type instances. We therefore performed additional tests on these instances by increasing late
arrival penalties five-, 50-, and 100-fold to investigate the sensitivity of the results. Table 8 reports
the average cost values and the average percentage change in each cost component for each late
arrival penalty setting. The columns “%�” report the percentage di�erence in each component
compared with the base case where the unit late arrival penalty is one. While almost all cost
components increase, there is a significant decrease in late arrival and overtime costs as well as in
the total lateness. As the late arrival penalty increases, the fleet size also increases too to avoid
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5.3.3 Sensitivity of the solutions to late arrival penalty

We observed in Figure 7(c) that the cost of late arrivals at customers may increase dramatically
in C-type instances. We therefore performed additional tests on these instances by increasing late
arrival penalties five-, 50-, and 100-fold to investigate the sensitivity of the results. Table 8 reports
the average cost values and the average percentage change in each cost component for each late
arrival penalty setting. The columns “%�” report the percentage di�erence in each component
compared with the base case where the unit late arrival penalty is one. While almost all cost
components increase, there is a significant decrease in late arrival and overtime costs as well as in
the total lateness. As the late arrival penalty increases, the fleet size also increases too to avoid
late arrivals at customers. As a result, overtime wages decrease as well.
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5.3.3 Sensitivity of the solutions to the late arrival penalty

We observed in Figure 9(c) that the cost of late arrivals at customers may increase dramatically
in C-type instances. We therefore performed additional tests on these instances by increasing late
arrival penalties five-, 50-, and 100-fold to investigate the sensitivity of the results. Table 8 reports
the average cost values and the average percentage change in each cost component for each late
arrival penalty setting. The columns “%�” report the percentage di�erence in each component
compared with the base case where the unit late arrival penalty is one. While almost all cost
components increase, there is a significant decrease in late arrival and overtime costs as well as in
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the total lateness. As the late arrival penalty increases, the fleet size also increases too to avoid
late arrivals at customers. As a result, overtime wages decrease as well.

Table 8: Comparison of results for di�erent late arrival penalty values

Penalty
1 5 50 100

Value Value %� Value %� Value %�
Total Cost 24,610 25,603 4.03 26,511 7.72 26,766 8.76
Vehicle Cost 12,214 13,029 6.67 13,757 12.63 13,886 13.68
# of Vehicles 10.2 10.9 6.67 11.5 12.63 11.6 13.68
Late Arrival Cost 228 108 -52.36 28 -87.87 24 -89.5
Total Lateness 228 22 -90.47 0.6 -99.76 0.2 -99.89
Overtime Wage 627 564 -9.91 532 -15.15 532 -15.13
Driver Wage 11,077 11,421 3.1 11,709 5.7 11,827 6.77
Energy Cost 465 481 3.56 486 4.61 498 7.11

5.3.4 Computational times

We now investigate the e�ect of di�erent waiting scenarios on the computation times. Table 9
reports the average computational times of 10 runs for each scenario and data type, as well as the
overall average of all type-1 data. The results reveal that the C instances require longer run times
whereas RC instances are solved the fastest. Although the run time does not increase from short
to long waiting cases, there is a noticeable rise from the no-wait to the TD-St-L scenario.

Table 9: Computation times for various waiting schemes (in minutes)

Data Types No-Wait TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L
C 99.2 124.5 108.0 111.1 119.2 126.7 132.8
R 95.2 84.9 84.2 104.0 93.6 102.7 91.0
RC 76.3 72.6 72.2 76.7 81.8 60.8 64.2
Average 90.2 94.0 88.1 97.3 98.2 96.7 96.0

As can be seen from Table 9, the computational times are relatively long. We therefore per-
formed a sensitivity analysis to investigate the e�ect of the number of iterations on solution quality.
Table 10 provides the percentage deterioration in solution quality and the reduction in run time
for di�erent numbers of iterations. The results are obtained by using the average values of all
type 1 data considering all scenarios. The first column gives the number of iterations which are
the breakpoints for the comparison. The second column shows the percentage deterioration in the
objective function value at that iteration compared with that of the final solution obtained after
25,000 iterations. For instance, the cost of best-found solution at iteration 5,000 is 8.2% worse than
the global best solution achieved after 25,000 iterations. The third column shows the percentage of
the time spent at the corresponding breakpoint. For instance, the first 5,000 iterations take 14.8%
of the total run time of 25,000 iterations. These results indicate that the algorithm could have been
stopped after 15,000 iterations with only a 0.5% worsening in solution quality, and saving nearly
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since we aimed at obtaining best benchmark results at the expense of longer run times, we 

carried our detailed experimental study with 25,000 iterations. 
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formed a sensitivity analysis to investigate the e�ect of the number of iterations on solution quality.
Table 10 provides the percentage deterioration in solution quality and the reduction in run time
for di�erent numbers of iterations. The results are obtained by using the average values of all
type 1 data considering all scenarios. The first column gives the number of iterations which are
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half of the computational time. However, since we aimed at obtaining best benchmark results at
the expense of longer run times, we carried our detailed experimental study with 25,000 iterations.

Table 10: Sensitivity of solution quality and run time to number of iterations

# of Iterations %Deterioration Relative Run Time
25,000 - 100.0%
20,000 0.1% 76.7%
15,000 0.5% 54.6%
10,000 2.5% 34.0%
5,000 8.2% 14.8%

5.3.5 Computations on R2 type instances

We used type 1 instances in our experiments since they have narrow time windows and we can
better observe the e�ect of waiting times on routing decisions compared with the type 2 instances
with wide time windows, where respecting the customer time windows is less of a concern. We also
performed a limited set of experiments on R2 instances to gain some insights about the e�ect of
the waiting times in such an environment. Table 11 presents a comparative analysis of results for
R1- and R2-type data based on average cost figures across all waiting scenarios. Similar to our
observations on the R1 instances, the total cost and its components in R2 instances increase when
waiting is longer, both in the TI and TD settings, except for the cost of energy which does not
display a discernible pattern. On the other hand, there are some fundamental di�erences between
the two sets of results. First, the fleet size is not a�ected by waiting in the R2 instances and the
same number of vehicles is used in all scenarios. We therefore conclude that the size of the customer
time windows has a significant influence on the fleet size. Second, the costs of late arrivals and
overtime wages are much smaller in the R2 instances than in the R1 instances in all scenarios. This
can be considered as an expected consequence of the wider time windows. Even though late arrivals
at customers and at the depot still exist, their magnitudes are negligible compared with those of
the R1 instances. Finally, we see that the total travel distances are not a�ected by the size of the
time windows as the total energy cost figures for each scenario are similar in both data types.

Table 11: Comparison of results for R1 and R2 instances

Type 1 Instances No-Wait TI-S TI-L TD-Sm-S TD-Sm-L TD-St-S TD-St-L Average

Total Cost 18,499 19,039 19,323 19,119 19,647 20,054 21,427 19,587

# of Vehicles 10.4 10.8 10.8 10.8 10.9 11.3 12.1 11

Late Arrival Cost 136.6 145.1 221.8 181.7 304.1 185.9 257 204.6

Overtime Wage 287.1 304.4 336.5 322.8 390.8 348.6 428.4 345.5

Driver Wage 5,091 5,205 5,286 5,232 5,371 5,440 5,747 5,339

Energy Cost 484.8 484.2 478.7 482.8 481.2 479.1 495.2 483.7

Type 2 Instances

Total Cost 6,719 6,738 6,745 6,763 6,839 6,775 7,144 6,818

# of Vehicles 3 3 3 3 3 3 3 3

Late Arrival Cost 29.9 10.4 46.1 25.8 53.6 50.7 207.3 60.6

Overtime Wage 150.1 138.8 143.5 149 155.6 156.1 225.3 159.8

Driver Wage 2,461 2,501 2,502 2,530 2,569 2,530 2,680 2,539

Energy Cost 478 488.6 453.6 458.8 461.2 438.4 432.1 458.7
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R2 instances increase when waiting is longer, both in the TI and TD settings, except for the cost 

of energy which does not display a discernible pattern. On the other hand, there are some 
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see that the total travel distances are not affected by the size of the time windows as the total 

energy cost figures for each scenario are similar in both data types. 
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lengths. We used the M/G/1 queueing system equations to estimate the waiting times in each 

time interval. The EVs are allowed to serve the customers beyond their late service time by 

paying a penalty proportional to the length of the delay. Similarly, the EVs may return to the 

depot later than the depot closing time by paying overtime wages to the drivers. The recharging 

time is a non-linear function of the energy transferred and is approximated using a piecewise 

linear function. We formulated this problem as a mixed integer linear program and developed 

a matheuristic that couples ALNS with an exact solver. The ALNS uses known operators with 

problem-specific modifications, as well as a new customer removal operator. The routes 

obtained by the ALNS are enhanced by optimizing the recharging-related decisions while 

keeping the sequence of the visited customers fixed.  

To test the performance of our method we adapted benchmark instances by considering six 

scenarios with different waiting characteristics. On small-size instances our method 

outperformed CPLEX both in solution quality and computational time. Since we do not have 

any benchmark results for the large instances, we provided managerial insights based on the 

best solutions we achieved. The results showed that waiting times may be crucial in routing 

decisions and they should be taken into account to compute feasible and better route plans. The 

distribution of the cost components in the objective function remained similar from a scenario 

to another. When the waiting times increase, the number of vehicles also increases to avoid 

long routes and frequent visits to recharging stations. Similarly, station visits during the 

crowded time intervals decrease while the total distance travelled does not change much in all 

cases. The increase in unit late arrival costs results in a larger fleet size and in a higher total late 

arrival cost. Finally, the waiting times do not affect the solutions significantly when the 

customer time windows are wide.  
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Chapter 5 

_____________________________________________ 
 
 

Electric Vehicle Routing Problem with Time Windows and 

Stochastic Waiting Times at Recharging Stations 

 
5.1. Introduction 
Most of the papers in the literature assume that an EV can be recharged as soon as it arrives at 

a station. However, in practice, the chargers may be occupied and there may exist other EVs 

waiting for service. Hence, the EV may need to queue for some time before it starts recharging 

its battery. If the recharging stations are owned by the fleet operators, then the charging 

operations may be scheduled to prevent possible conflicts (Ding et al., 2015; Froger et al., 

2017). On the other hand, if the stations are public, it is challenging to foresee the congestion 

in the stations.  

In the stochastic Vehicle Routing Problems (VRPs), some parameters of the problem are not 

known in advance. The unknown parameters can be the customer demands, travel times, service 

times or customers’ presence. The problems can be modeled as chance constrained programs 

or multi-stage stochastic programs. In the former approach, it is ensured that probabilistic 

constraints are satisfied with a probability greater than a threshold. However, there is not a 

recovery phase for the solutions having those constraints satisfied with a probability less than 

the threshold. In the latter approach, an a priori plan is constructed firstly. Then, the stochastic 

parameters are revealed through time and the decisions are made accordingly to reoptimize the 

initial solution for the realized data. 

When the demands of the customers are unknown, for instance, after they are realized, the 

capacity of the vehicle may not be sufficient to perform the pickup or delivery of the subsequent 

customers in the route if the realized demands are more than expected. In this case, some 

corrective actions should be taken, i.e., the vehicle may return to the depot either to load goods 

for delivery or empty the vehicle to create space for pickup. When the travel times or service 

times are stochastic, the vehicles may not catch the time windows of the customers or the depot 

if these times are longer than expected. In this case, the corrective action may be skipping the 
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customers whose time windows cannot be caught or allowing late arrivals with penalty. Finally, 

when the customers’ presence is stochastic, there may exist some customers to be removed 

from or to be inserted to the planned solution. Then, the routing decisions may be altered 

accordingly. The objective function of the stochastic VRPs generally minimizes the 

transportation costs and the expected recourse costs.   

In this study, we extend the EVRPTW by considering stochastic waiting times at the recharging 

stations. Stations are equipped with single chargers and partial recharging is allowed.  We use 

an M/G/1 queuing system to model the waiting times, based on the assumptions discussed in 

Chapter 4. The problem is modeled as a two-stage stochastic program with recourse using 

scenarios. To calculate the probabilities and the expected costs, simulation is used. We propose 

an ALNS approach to solve the problem efficiently. We employ ALNS to solve both the first 

and the second stage problems. 

The remainder of the chapter is organized as follows: Section 5.2 explains the related studies 

in the literature. Section 5.3 describes the problem and gives the mathematical formulations. 

Section 5.4 provides the details of the proposed solution method, while Section 5.5 presents the 

computational study. Finally, Section 5.6 concludes the study with some remarks. 

5.2. Related Literature 
Within the context of VRP, the stochasticity may be related to customer demands, service times, 

travel times, and customers’ presence. Since our case is similar to that of stochastic service 

times at customers, we review the related literature and refer the interested reader to Gendreau 

et al. (2016) for a detailed survey of stochastic VRP. Sungur et al. (2010) study courier delivery 

problem with soft time windows. They use scenario-based stochastic programming with 

recourse and robust optimization to model the uncertainty in customers’ presence and service 

time uncertainty, respectively. They model service times as lognormal random variables and 

their recourse action is skipping or inserting customers according to their presence and paying 

penalties for late arrivals. They propose a Tabu Search (TS) algorithm to solve the problem.  

Zhang et al. (2013) address the stochastic VRP considering random travel and service times. 

Their recourse action is to allow late arrivals at the customers and the depot with penalty. They 

employ Iterated TS as the solution method. Li et al. (2010) consider a similar problem but they 

do not allow servicing customers earlier than their service start times. They use symmetric 

triangular distribution to model the service times and employ stochastic simulation to evaluate 

the objective function and calculate the probabilities. Their recourse action is to allow late 

arrivals with penalties. They also propose a TS solution method. Lei et al. (2012) study the 

capacitated VRP (CVRP) with stochastic service times and service times are assumed to be 
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normal random variables. Their recourse action is also allowing late arrivals at the depot with 

penalty. They propose a Variable Neighborhood Search (VNS) approach to solve the problem.  

Chen et al. (2014) study a capacitated arc routing problem with stochastic service times in the 

road network daily maintenance operations. They introduce confidence levels which 

correspond to the probability with which the stochastic constraint will hold. A chance-

constrained programming model is developed and solved using branch-and-cut algorithm. 

Then, the problem is modelled as a two-stage stochastic programming with recourse where the 

recourse action is terminating the route where failure occurs, and the recourse cost is the penalty 

associated with the skipped customers. They present an ALNS algorithm to solve this problem.  

Binart et al. (2016) consider the case of optional customers with the objective of minimizing 

total travel time while maximizing the optional customers visited. These visits are planned in 

the second stage. The random service times are drawn from a symmetric triangular distribution 

and dynamic programming is used to solve the problem. Errico et al. (2016) consider hard time 

windows in the presence of stochastic service times. The recourse action is skipping the current 

or the following customer with a penalty when infeasibility occurs. They also use symmetric 

triangular distribution for random service times and develop a branch-cut-and-price algorithm 

to solve the problem. Shi et al. (2018) study the delivery and pickup problem in home healthcare 

where the time windows are hard in the first stage and are relaxed with penalty in the second 

stage. Hence, the recourse action is allowing late arrivals at the customers and the depot with 

penalties. They use normal distribution to model the service times and employ simulation to 

evaluate the objective function and calculate the probabilities. They propose several heuristic 

methods such as Hybrid Genetic Algorithm, Simulated Annealing, and Bat and Firefly 

Algorithm. 

Recently, Bruglieri et al. (2018) study the waiting times at the stations within the context of 

GVRP. AFVs are routed such that their refueling do not overlap in the stations. They minimize 

total distance and propose an exact method in which the routes are considered as composition 

of paths. Pelletier et al. (2018) consider a similar problem using EVs. They assume that 

recharging is performed only at the depot and develop a model to plan the depot charge 

schedules also considering the realistic charging process, time-dependent energy costs, battery 

degradation, grid restrictions, and facility-related demand charges. Ding et al. (2015) consider 

limited charging capacity in EV recharging stations to determine conflict-free routes. Their 

objective minimizes the total distance traveled and they propose a heuristic method which 

combines VNS and TS to solve the problem. Froger et al. (2017b) solve a similar problem in 

which the stations have limited number of chargers and an EV may need to wait before 
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recharging if the chargers are busy recharging other EVs in the fleet. In this problem, the use 

of the chargers depends on the routing and charging decisions. They formulate the problem as 

a mixed integer linear program and propose a route-first assemble-second matheuristic to solve 

it. Their objective function minimizes the total time which includes driving, service, and 

charging times. Finally, Chapter 4 studies the time-dependent waiting times at the recharging 

stations where the objective is to minimize the total cost of drivers, EVs, energy, and late arrival 

penalties for customers. In this problem, the queue lengths at the recharging stations vary by 

the time of the day following different distributions. The study approximates the waiting times 

using their expected values during different time intervals and proposes an ALNS-based 

matheuristic approach to solve it. Kullman et al. (2018) model the uncertain availability of 

stations as a Markov decision process using 𝑀/𝑀/𝜓� queueing system and implement a 

stochastic dynamic programming method. Their objective is to minimize the total expected time 

consisting of travel, charging, and queueing times. 

5.3. Problem Description and Formulation 
The problem establishes a set of routes which are operated by a homogeneous fleet of EVs. 

Routes should cover all customers which have known demands and time windows. The 

customers should be visited within their time windows. If an EV arrives before the early service 

time, it waits until that time. On the other hand, arriving later than the late service time is not 

allowed. All EVs depart from the depot and should return to the depot before its due date. 

Furthermore, the SoC of the EVs should be nonnegative throughout the journey. The EVs may 

visit recharging stations to recharge their batteries in order to continue their routes. The crucial 

point of the problem is the waiting times at the stations before the recharging service, which 

are random variables. They are revealed at the time when an EV arrives at a station. Hence, if 

the waiting time is too long, the EV may not catch the time windows of the subsequent 

customers in the preplanned route, which is constructed before the EV begins its journey, and 

the route may become infeasible. In this case, some recourse actions should be taken to correct 

the solution and make it feasible. The problem can be formulated as a two-stage stochastic 

programming model. In the first stage, a set of routes is determined using expected waiting 

times at the stations. Next, the random queue times at the recharging stations are realized. Then, 

the second stage solution is the set of routes after the recourse actions are applied. The objective 

function minimizes the sum of the total first stage cost which includes vehicle acquisition cost, 

driver cost, energy cost, and the second stage cost corresponding to the expected cost of the 

recourse decisions. To keep the nature of the recourse action and the expected cost calculations 

simple, we assume that an EV may visit a recharging station at most once during its journey. 
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This is not a strong assumption considering the fact that waiting and recharging at station may 

take considerable amount of time during which the EV will remain idle. 

5.3.1.  Formulation of the First Stage Problem  

Let 𝑉, 𝐹 and 𝐾 denote the set of customers, the set of recharging stations and the set of available 

EVs, respectively. We denote the depot as 0 or 𝑁 + 1 if it is at the beginning or at the end of a 

route. We define the sets 𝑉4 = 𝑉 ∪ 0, 𝑉c67 = 𝑉 ∪ (𝑛 + 1), 𝑉° = 𝑉 ∪ 𝐹°, 𝑉4° = 𝑉4 ∪ 𝐹, and 

𝑉c67° = 𝐹 ∪ 𝑉c67. Each arc (𝑖, 𝑗) has a distance 𝑑BC and a travel time 𝑡BC. The energy is 

consumed at a rate of ℎ and each traveled arc (𝑖, 𝑗) consumes ℎ. 𝑑BC of the remaining energy. 

The battery is recharged at a rate of 𝑔, i.e., one unit of energy is transferred in 𝑔 time units. 

Each customer 𝑖 ∈ 𝑉 has positive demand 𝑞B, service time 𝑠B and time window [𝑒B, 𝑙B]. The 

cargo and battery capacities of the EVs are 𝐶 and 𝑄, respectively. When EV 𝑘 arrives at 

recharging station 𝑖, it waits in the queue for 𝜔Bi time units, which is a random variable. The 

objective function consists of the total cost of energy, driver wages and the acquisition cost of 

EVs. 𝑐�, 𝑐Ù and 𝑐} denote the unit energy cost, the cost of drivers per unit time and the fixed 

cost of the EVs’ acquisition, respectively. 𝜔öB represents the expected waiting time at recharging 

station 𝑖. The decision variables, 𝜏Bi, 𝑢Bi and 𝑦Bi keep track of the service starting time, remaining 

cargo level and remaining SoC level at vertex 𝑖 ∈ 𝑉c67°  visited by vehicle 𝑘, respectively, 

whereas the SoC level of EV 𝑘 at the departure from station 𝑖 ∈ 𝐹 is tracked by variables 𝑌Bi. 

Finally, binary decision variable 𝑥BCi  takes value 1 if arc (𝑖, 𝑗) is traversed by EV 𝑘 and 0 

otherwise. The notation of the first-stage model is provided in Table 5.1.  

Table 5.1. Notation for the first-stage problem 
  
Sets:  

𝑉 Set of the customers 
𝐹 Set of the recharging stations 
𝐾 Set of the available EVs 
𝑉4 Set of the departure depot and the customers 

𝑉c67 Set of the customers and the arrival depot 
𝑉° Set of the customers and the recharging stations (𝑉 ∪ 𝐹) 
𝑉4° Set of the departure depot, customers and stations (𝑉° ∪ 0) 

𝑉c67°  Set of the customers, stations, and the arrival depot (𝑉° ∪ (𝑁 + 1)) 

  Parameters: 
𝑑BC Distance from vertex 𝑖 to vertex	𝑗 
𝑡BC Travel time from vertex	𝑖 to vertex	𝑗 
𝑞B Demand of customer 𝑖 
𝑠B Time required to serve customer 𝑖 

[𝑒B, 𝑙B] Service time window of customer 𝑖 
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Parameters: 
C Cargo capacity of the vehicles 
Q Battery capacity of the vehicles 
𝜔öB Expected waiting time at station 𝑖 
𝑐� Unit energy cost 
𝑐Ù Driver wage per unit time 
𝑐} Fixed vehicle acquisition cost 

  Decision variables: 
𝜏Bi Service start time of vehicle 𝑘 at vertex	𝑖 
𝑢Bi Remaining cargo in vehicle 𝑘 at vertex	𝑖 
𝑦Bi Battery SoC of vehicle 𝑘 upon its arrival at vertex	𝑖 
𝑌Bi Battery SoC of vehicle 𝑘 at its departure from station 𝑖 
𝑥BCi  1 if vehicle 𝑘 traverses arc (𝑖, 𝑗); 0 otherwise 

 

The mathematical model of the first stage problem is formulated as follows: 

 

𝑓(𝑥, 𝜏, 𝑦, 𝑌) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒		𝑐� Y Y Y𝑑BC𝑥BCi

i·ÃC·Z\]^¹B∈Z[¹
+ 𝑐ÙY𝜏c67i

i·Ã

+ 𝑐} YY𝑥4Ci

i·ÃC·Z¹

+Y𝐸[𝑄ia𝑥, 𝜉(𝜔)b]
i·Ã

 
(5.1) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜   

 Y Y𝑥BCi = 1
i∈ÃC∈Z\]^¹

 𝑖 ∈ 𝑉 (5.2) 

 Y 𝑥BCi

C∈Z\]^¹

≤ 1 𝑖 ∈ 𝐹, 𝑘 ∈ 𝐾 (5.3) 

 Y𝑥BCi

B·Z[¹
= Y 𝑥CBi

B·Z\]^¹

 𝑗 ∈ 𝑉°, 𝑘 ∈ 𝐾 (5.4) 

 𝜏Bi + a𝑡BC + 𝑠Bb𝑥BCi 	− 𝑙4a1 − 𝑥BCi b ≤ 𝜏Ci 𝑖 ∈ 𝑉4, 𝑗 ∈ 𝑉c67° , 𝑘 ∈ 𝐾 (5.5) 

 𝜏Bi + 𝑡BC𝑥BCi + 𝑔a𝑌Bi − 𝑦Bib + 𝜔öB − 𝑀(1 − 𝑥BCi ) ≤ 𝜏Ci 𝑖 ∈ 𝐹, 𝑗 ∈ 𝑉c67, 𝑘 ∈ 𝐾 (5.6) 

 𝑒C Y 𝑥BCi

B∈Z[¹
≤ 𝜏Ci ≤ 𝑙C Y 𝑥BCi

B∈Z[¹
 𝑗 ∈ 𝑉c67, 𝑘 ∈ 𝐾 (5.7) 

 0 ≤ 𝑢Ci ≤ 𝑢Bi − 𝑞B Y 𝑥BCi

i∈Ã

+ 𝐶 ã1 −Y𝑥BCi

i∈Ã

ä 𝑖 ∈ 𝑉4°, 𝑗 ∈ 𝑉c67°  (5.8) 
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 0 ≤ 𝑢Ci ≤ 𝐶Y 𝑥BCi

B∈Z[¹
 𝑗 ∈ 𝑉c67° , 𝑘 ∈ 𝐾 (5.9) 

 0 ≤ 𝑦Ci ≤ 𝑌Bi − (ℎ ∙ 𝑑BC)𝑥BCi + 𝑄(1 − 𝑥BCi ) 𝑖 ∈ 𝑉4,° , 𝑗 ∈ 𝑉c67,° 	𝑘 ∈ 𝐾 (5.10) 

 0 ≤ 𝑦Ci ≤ 𝑦Bi − (ℎ ∙ 𝑑BC)𝑥BCi + 𝑄(1 − 𝑥BCi ) 𝑖 ∈ 𝑉, 𝑗 ∈ 𝑉c67,° 	𝑘 ∈ 𝐾 (5.11) 

 𝑦Ci ≤ 𝑌Ci ≤ 𝑄Y 𝑥BCi

B∈Z[¹
 𝑗 ∈ 𝑉c67° , 𝑘 ∈ 𝐾 (5.12) 

 Y Y 𝑥BCi ≤ 1
C·Z\]^¹B·¸

 𝑘 ∈ 𝐾 (5.13) 

 𝑥BCi ∈ {0,1} 𝑖 ∈ 𝑉4,° , 𝑗 ∈ 𝑉c67,° 	𝑘 ∈ 𝐾 (5.14) 

 

The objective function minimizes the sum of energy cost, vehicle acquisition cost, driver wage, 

and expected recourse cost. Constraints (5.2) ensure that each customer is visited exactly once 

whereas constraints (5.3) guarantee that each station is visited at most once by each EV. 

Constraints (5.4) ensure the connectivity of all vertices. Service start times of the EVs at a 

vertex after departing from the depot or any customer are tracked by constraints (5.5) while the 

service start times at a customer or arrival time at the depot after departing from a station are 

tracked by constraints (5.6). Constraints (5.7) make sure that service start times are within the 

time windows of the vertices. Constraints (5.8) and (5.9) observe the load on the EVs and ensure 

that total load does not exceed the cargo capacity of the vehicle. Battery SoC of the EVs are 

tracked by constraints (5.10) and (5.11). Constraints (5.12) set the lower and upper bounds of 

the SoC at the departure from a vertex. Constraints (5.13) limit each EV with a single recharge 

during its journey. Finally, constraints (5.14) define the binary decision variables. 

𝜔öB  in constraints (5.6) represents the expected waiting time at recharging station 𝑖. Hence, in 

some realizations, it may lead to infeasibility in terms of time windows of the customers or the 

depot if the realized time is longer than the expected value. In this case, a corrective action 

should be taken in order to service the customers whose time windows are violated.  

5.3.2.  Recourse Action  
When an EV visits a recharging station, the random waiting time in the queue is realized. If it 

is longer than the expected value, then the time windows of some customers visited following 

the station may not be caught if the EV continues the journey using the sequence of the first 

stage solution. In this case, a decision should be made to select a subset of the customers visited 

after recharging in the first stage solution. The customers in this subset are removed from the 
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route and serviced by using additional EVs. This selection is made such that the remaining 

customers can be visited by satisfying the time window constraints. However, servicing the 

customers from the selected subset will incur a special service cost which includes serving each 

customer by a separate EV. On the other hand, since the route length may decrease due to 

removal of these customers, the driver wage and energy recharged at the station may decrease. 

Figure 5.1 illustrates the solutions of the first and second stage problems using a small instance 

involving 8 customers and 4 stations. Considering the expected waiting times at the stations, 

the first stage solution involves 3 routes. However, after the random times are realized, some 

customers become infeasible to visit because of the waiting times which happen to be longer 

than expected. EV1 faces a long queue in S1 and it cannot catch the time window of customer 

1. So, it decides to skip that customer and continue its route with customer 2 which can still be 

visited. Hence, for EV1 the recourse cost includes serving customer 1 with a separate EV minus 

the savings from the energy cost and driver wage since the route involves one less customer. 

However, EV2 has to skip both customer 4 and customer 10 paying special service penalty for 

these two customers. Finally, EV3 does not make any changes in its route since the actual 

waiting time at S3 allows visiting customers 5 and 6 within their time windows. Hence, recourse 

cost for the third route is zero. 

  

a. Optimal solution of the first stage problem b. Solution of the second stage problem 

Figure 5.1. Illustration of the recourse action and the resulting solution after the recourse 

 

Sometimes, although the infeasible customers are skipped from the solution, the EV may still 

be late for the depot. This happens especially when the EV visits a recharging station right 

before returning to the depot. In this case, late arrival to the depot is allowed with a penalty 

which is an overtime wage paid to the driver. Hence, the recourse cost includes also the 

overtime cost. Figure 5.2 illustrates this case for a route which includes 4 customers. The EV 

arrives at the depot at time 100 which is later than the due date, 90. Since the station is visited 
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just before the depot, this recharging should be made to return to the depot and cannot be 

skipped. Hence, the only corrective action in this case would be allowing late arrival to the 

depot with a penalty. 

 

Figure 5.2. A route in which the EV arrives at the depot later than its due date 

 

  

a. First stage solution b. Second stage solution of scenario 1 

 

c. Second stage solution of scenario 2 

Figure 5.3. First stage solution and the second stage solutions of two different scenarios 

Figure 5.3 shows the details of the first route in Figure 5.1 as well as two different final solutions 

according to two different scenarios. The first stage solution is constructed considering the 

expected waiting time at the station, which is 50, and is illustrated in Figure 5.2.a. In the first 
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scenario given in Figure 5.2.b, the realized waiting time is 70, 20 units longer than expected. 

Since customer 1 has only 5 units of slack time, the EV cannot arrive at this customer before 

its late service time. So, customer 1 is serviced by another vehicle and the EV continues its 

route with customer 2. Because customer 1 is skipped, there is a decrease in the energy needed 

to return to the depot and the recharge amount at station 1 is decreased accordingly. The 

recharging time also decreases and the EV arrives at customer 2 and the depot on time. 

In the second scenario, as shown in Figure 5.2.c, the actual waiting time is 40 time units longer 

than expected and is equal to 90. Customer 1 is again skipped since the arrival time would be 

120, which is later than its late service time of 85. If the EV travels to customer 2 from the 

station, then the recharge amount is decreased since it will not visit customer 1. Considering 

the time saved from the recharging, the arrival time at customer 2 is updated to 135, which is 

still later than its late service time. Hence, customer 2 is also skipped and the vehicle directly 

returns to the depot following the station. In this case, the recharge amount is again decreased 

since one more customer is removed from the route. On the other hand, since the vehicle arrives 

at the depot 5 time units after its due date, an overtime wage is incurred. In this scenario, the 

recourse cost is then serving customers 1 and 2 with separate vehicles, overtime wage paid to 

the driver minus the cost of 10 units of energy saved by skipping customers 1 and 2. 

5.3.3.  Formulation of the Second Stage Problem 
When the first stage problem is solved, we have the optimal solution and the second stage model 

reoptimizes this solution route by route considering the actual waiting times. Let 𝑖i∗  be the index 

of the recharging station visited in route 𝑘. Let 𝑉i denote the set of customers visited by vehicle 

𝑘 according to the first stage solution. Let 𝑉i ⊂ 𝑉i and 𝑉fi ⊂ 𝑉i denote the subset of customers 

which are visited before and after the recharging station. Let 𝑐B be the cost of serving customer 

𝑖 with a separate EV. The randomness of the waiting times at the recharging stations is modeled 

using a set of scenarios. A scenario represents the joint realization of the waiting times at all 

visited recharging stations. For the second stage problem, 𝜉r = (𝜔Br) denotes the realization of 

the random waiting time at station 𝑖 under scenario 𝑠 = 1,… ,𝑁. Here we have an additional 

continuous decision variable to keep track of the lateness if an EV returns to the depot after its 

due date. 𝑙c67ri  denotes the lateness of vehicle 𝑘 under scenario 𝑠. Table 5.2 presents the notation 

of the second-stage problem for vehicle 𝑘 and scenario 𝑠. 

Table 5.2. Notation for the second-stage problem 
  
Sets:  
𝑉i Set of customers on route 𝑘 
𝑉i,4 Set of departure depot and customers on route 𝑘 
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Sets: 
𝑖i∗  Index of the recharging station on route 𝑘 
𝑉i Set of customers visited before recharging at 𝑖i∗  
𝑉i,4 Set of departure depot and customers visited before recharging at 𝑖i∗  
𝑉°i Set of recharging station 𝑖i∗  and customers visited before recharging 
𝑉fi Set of customers visited after recharging at 𝑖i∗  
𝑉fi° Set of recharging station 𝑖i∗  and customers visited after recharging at 𝑖i∗  

𝑉fi,c67 Set of customers visited after recharging at 𝑖i∗  and arrival depot 
𝑉i,c67°  Set of recharging station 𝑖i∗ , all customers and arrival depot 
   
Parameters: 
𝜔𝑖𝑘∗
ri Realized waiting time at recharging station 𝑖i∗  
𝑐B Cost of serving customer 𝑖 with a separate EV 
𝑐Û Overtime wage per unit time 

  Decision variables: 
𝜏B̅ri Service start time at vertex	𝑖 
𝑢fBri Remaining cargo level at vertex	𝑖 
𝑦fBri Battery SoC upon arrival at vertex	𝑖 
𝑌fBri Battery SoC at the departure from station 𝑖 
�̅�BCri 1 if the vehicle traverses arc (𝑖, 𝑗); 0 otherwise 
𝑙c67ri  Lateness of the depot 

 

The mathematical model of the second-stage problem for EV 𝑘 under scenario 𝑠 = 1,… ,𝑁 is 

given below. 

															𝑄i(𝑥, 𝜉r) = 

														𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒				𝑐Ù Y ú𝜏c̅67ri − 𝜏Bû∗
i ü + 𝑐� Y Y Y a�̅�BCri − 𝑥BCi b

C·Zû,\]^
¹B∈Zû,[i∈Ã	i∈Ã

+ 𝑐B YY Y a1 − �̅�BCrib
C∈Z(û,\]^B∈Z(û

¹

	
i∈Ã

+ (𝑐Û − 𝑐Ù)Y 𝑙c67ri

i∈Ã

 

(5.15) 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜  

 Y �̅�BCri

B∈𝑉(𝑘
′

≤ 1 𝑗 ∈ 𝑉fi (5.16) 

 Y �̅�B,c67ri

B∈𝑉(𝑘
′

= 1  (5.17) 

 Y �̅�BCri

B∈Z(û
¹

= Y �̅�CBri

B∈Z(û,\]^

 𝑗 ∈ 𝑉fi (5.18) 

 �̅�BCri = 𝑥BCi  𝑖 ∈ 𝑉i,4, 𝑗 ∈ 𝑉°i (5.19) 
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 �̅�Bri +Ya𝑡BC + 𝑠Bb
i∈Ã

�̅�BCri − 𝑙4 ã1 −Y �̅�BCri

i∈Ã

ä ≤ 𝜏C̅ri 𝑖 ∈ 𝑉fi, 𝑗 ∈ 𝑉fi,c67 (5.20) 

 𝜏Bû∗
ri + 𝑡Bû∗C�̅�Bû∗C

ri + 𝑔 ú𝑌fBû∗
ri − 𝑦fBû∗

riü + 𝜔Bû∗
ri − 𝑀(1 − �̅�Bû∗C

ri ) ≤ �̅�Cri 	𝑗 ∈ 𝑉fi,c67 (5.21) 

 𝑒C ≤ �̅�Cri ≤ 𝑙C  𝑗 ∈ 𝑉fi (5.22)  

 �̅�c67ri − 𝑙4 ≤ 𝑙c67ri   (5.23)  

 0 ≤ 𝑦fCri ≤ 𝑌fBû∗
ri − (ℎ ∙ 𝑑Bû∗C)�̅�Bû∗C

ri + 𝑄(1 − �̅�Bû∗C
ri ) 𝑗 ∈ 𝑉fi,c67 (5.24) 

 0 ≤ 𝑦fCri ≤ 𝑦fBri − (ℎ ∙ 𝑑BC)�̅�BCri + 𝑄(1 − �̅�BCri) 𝑖 ∈ 𝑉fi, 𝑗 ∈ 𝑉fi,c67 (5.25) 

 �̅�BCri ∈ {0,1} 𝑖 ∈, 𝑗 ∈ 𝑉fc67i¹  (5.26) 

 �̅�Bri, 𝑦fBri, 𝑌fBri, 𝑙c67ri ≥ 0 𝑖 ∈ 𝑉°i, 𝑗 ∈ 𝑉i,c67 (5.27) 

 

The objective function of the second stage problem minimizes the total cost of drivers, energy, 

skipped customers and late arrivals at the depot. Note that, the driver wages and energy costs 

of the first stage problem are subtracted to prevent double counting. Constraints (5.16)−(5.18) 

are connectivity and flow conservation constraints. Since the sequence of the customers visited 

prior to recharging does not change in the second stage, the values of the flow variables related 

to these customers are fixed by constraints (5.19). Constraints (5.20) and (5.21) keep track of 

the time when EV 𝑘 departs from a customer/depot and from station 𝑖i∗ . 𝜔Bû∗
i  is now the realized 

waiting time when EV 𝑘 arrives at station 𝑖i∗ . Constraints (5.22) set the customer service time 

windows. Constraints (5.23) determine the lateness when the vehicle arrives at the depot after 

its due date. Constraints (5.24) and (5.25) keep track of the SoC and determine the energy 

transferred at the station if any customer is removed from the route. Finally, (5.26) and (5.27) 

define the domain of the decision variables. 

5.3.4.  Modeling the Waiting Times 

In this study, we assume an M/G/1  queueing system at recharging stations. The arrivals of the 

EVs at stations follow a Poisson distribution with mean 𝜆 and the service time may be drawn 

from any distribution with known mean and standard deviation. Here, service rate is the 

recharging rate. In the first stage model, we use expected waiting times which are calculated 

using the	M/G/1 queueing system equations. The random variable 𝜔B is replaced with its 

expected value 𝔼[𝜔B]. However, in the second stage, we generate random waiting times 

following the properties of their distribution. 
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5.4. Solution Methodology 
We propose an ALNS approach to solve the problem. In the first stage, an initial solution is 

constructed first using a greedy algorithm and improved using the destroy and repair 

mechanisms. In the second stage, we utilize another procedure along with stochastic simulation 

to determine the final solution. The stochastic simulation is used to calculate probabilities in 

some operators and to calculate the expected cost of the second stage solution. 

5.4.1.  Stochastic Simulation for Computing the Expected Values and Probabilities 

In this study, the waiting times at the recharging stations are random variables. Second stage 

problem relies on the realized values of these random variables and the first stage problem uses 

the expected value of the objective function of the second stage problem. In addition, in some 

operators of the ALNS, some probability measures have to be calculated. We use simulation to 

calculate these probabilities and the expected costs. This technique performs sampling in the 

probability space and estimates the probabilities based on the law of large numbers. Li et al. 

(2010), Shi et al. (2018) and Gutiemez et al. (2018) also used this technique in their studies. 

The procedures will be explained in sections 5.4.2 and 5.4.5. 

5.4.2.  Destroy Operators 
We use two types of destroy operators to remove customers and recharging stations from a 

solution. 

5.4.2.1. Customer Removal (CR) Operators 

We use random, worst-distance, worst-time, Shaw, proximity-based, demand-based, time-

based, zone, random route, and greedy route removals, which are commonly used in the 

literature. In addition, we implement probabilistic worst removal, which is introduced in Chen 

et al. (2014) with some problem specific adaptations. 

Probabilistic worst removal: This operator aims to remove the customers that potentially cause 

delay for their successor customers. For each customer, the probability that the time window of 

its successor customer will be violated is calculated. Since the random waiting times are 

revealed at the recharging stations, this probability is zero for the customers that are visited 

before the recharging station. After calculating the probabilities, 𝛾 customers having the highest 

probabilities are removed from their routes. Procedure 5.1 provides the details of the simulation 

procedure to calculate this probability for customer 𝑖, i.e., 𝑃(𝑖).  

After the customer removal operation, an idle station check operation is performed for each 

changed route. If there is a station in the route, it may become idle since the route is now shorter 
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due to the absence of some customers. In this case, these stations are also removed from their 

routes. 

 

5.4.2.2. Station Removal (SR) Operators 

We use random station removal which is introduced in Chapter 2 as well as the following new 

operator that we propose: 

Longest Waiting Time Removal: Since the stations have different waiting time distributions, 

some have longer expected waiting times. Hence, removing such stations would help decrease 

the violations and the objective function value. This operator selects 𝜎 stations having the 

longest waiting times and removes them from the solution. 

5.4.3.  Repair Operators 
Similar to the destroy operators, we use two types of repair operators specific to customers and 

recharging stations.  

5.4.3.1. Customer Insertion (CI) Operators 

Customer insertion is applied after the customer removal to reinsert the removed customers to 

the partial solution. We adapt the greedy insertion of Chapter 2 and also use two probabilistic 

insertion operators inspired from Chen et al. (2014). 

Deterministic Greedy Insertion: This operator does not consider the stochastic part of the 

problem. It does not include the recourse cost in the evaluation of an insertion. For all (𝑖, 𝑗) 

pairs in the partial solution, the removed customer is inserted between 𝑖 and 𝑗 and the increase 

in the deterministic part of the objective function is calculated. Specifically, the recourse cost 

of the first stage solution is not calculated, i.e., 𝑄(𝑥, 𝜉(𝜔)) term in the objective function is 

excluded. After determining the costs of all feasible insertions, the customer that leads to the 

Chapter chapter

5 Chapter

Procedure 5.1 Simulation to calculate probability that the next customer is infeasible

1: Set iter Ω 1, p Ω 0 and N to be a su�ciently large number

2: Determine the index of the station visited, i.e., s
3: while iter 6 N do
4: Generate a waiting time, Ês from sample space according to the probability distribution of

station s.

5: Using Ês update the arrival times of the customers from s to the successor of i, i.e., i + 1.

6: if ·i+1 > li+1 then
7: p = p + 1

8: end if
9: iter = iter + 1

10: end while
11: P (customer i+1 is infeasible) = p/N
12: Return P (i) = P (customer i+1 is infeasible)

Procedure 5.2 Simulation to calculate probability that the route is feasible

1: Set iter Ω 1, p Ω 0 and N to be a su�ciently large number

2: Determine the index of the station visited on route k, i.e., s
3: while iter 6 N do
4: Generate a waiting time, Ês from sample space according to the probability distribution of

station s.

5: Using Ês update the arrival times of the vertices visited after s.

6: for all vertex i, visited after the station do
7: if ·i > li then
8: p = p + 1

9: break
10: end if
11: end for
12: iter = iter + 1

13: end while
14: P (route k is feasible) = (1 ≠ p)/N
15: Return P (k) = P (route k is feasible)

1
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least cost increase is inserted to its least costly position. After each insertion, the insertion costs 

of other removed customers to that modified route are updated and this procedure is repeated 

until all removed customers are reinserted to the solution. 

Probabilistic Greedy Insertion: In this insertion, the expected cost of the second stage problem 

is also considered in the evaluation of an insertion. For each customer removed, all possible 

positions in the fleet are determined and the first stage costs as well as the expected recourse 

costs are calculated. The calculation of the expected recourse cost will be explained in Section 

5.4.5. Then, the insertion cost becomes the difference between the first stage costs before and 

after the insertion plus the expected recourse cost. The customer with the lowest cost is selected 

and it is inserted to its lowest cost position.  

Probabilistic Greedy Insertion with Confidence: This operator is an extension to the 

deterministic greedy insertion. For each customer and its feasible insertion positions, the 

insertion cost is determined by calculating the first stage objective function value. Moreover, 

the probability that the route is still feasible after the insertion of the removed customer into 

that position is also calculated as described in Procedure 5.2. Then, the positions that have a 

probability lower than the confidence level 𝛿 are discarded. Among other alternatives, the 

customer having the least cost is selected and the least cost insertion is performed.  

Sometimes, customers may need recharging stations to be inserted along with them since the 

battery is not sufficient to cover this extension. In this case, a station is inserted by Greedy 

Station Insertion mechanism which is proposed in Chapter 2. 
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1: Set iter Ω 1, p Ω 0 and N to be a su�ciently large number
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9: iter = iter + 1

10: end while
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1: Set iter Ω 1, p Ω 0 and N to be a su�ciently large number

2: Determine the index of the station visited on route k, i.e., s
3: while iter 6 N do
4: Generate a waiting time, Ês from sample space according to the probability distribution of

station s.

5: Using Ês update the arrival times of the vertices visited after s.

6: for all vertex i, visited after the station do
7: if ·i > li then
8: p = p + 1

9: break
10: end if
11: end for
12: iter = iter + 1

13: end while
14: P (route k is feasible) = (1 ≠ p)/N
15: Return P (k) = P (route k is feasible)

1
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5.4.3.2.  Station Insertion (SI) Operators 

After the station removal, the solution may become infeasible with respect to battery SoC. Then, 

a station insertion method is applied to repair the solution. We use Deterministic Best Station 

Insertion and Probabilistic Best Station Insertion. The former is proposed in Chapter 2 and here 

the insertion is performed considering only the first stage objective function values. Hence, 

insertion cost of a station to a position is the difference of the first stage costs of the solutions 

before and after the insertion. The station which has the least insertion cost is inserted to its best 

position. On the other hand, Probabilistic Best Station Insertion considers the recourse costs, as 

well. For each feasible insertion, total expected cost is also calculated and the insertion cost 

becomes the difference between the first stage costs plus the expected recourse cost. The station 

which increases the total cost least is then inserted to its best position. This new mechanism is 

outlined in Procedure 5.3.   

 

5.4.4.  Initial Solution 
The initial solution is constructed by putting all customers in a list randomly and applying the 

Deterministic Greedy Insertion method. 

 

Procedure 5.3 Simulation to calculate expected recourse cost and construct second stage solution

1: Set iter Ω 1, Ck Ω 0 and N to be a su�ciently large number

2: Determine the index of the station visited on route k, i.e., s
3: Determine the arrival time at the depot, i.e., ·n+1
4: while iter 6 N do
5: Generate a waiting time, Ês from sample space according to the probability distribution of

station s.

6: Using Ês update the arrival times of the vertices visited after the station.

7: for all customer i, visited after the station do
8: if ·i > li then
9: Remove customer i from the route

10: Update the arrival times of the vertices after customer i
11: Determine the energy saved after removal of i, i.e., �yi

12: Ck = Ck + ci ≠ ce�yi

13: end if
14: end for
15: iter = iter + 1

16: if ·depot > l0 then
17: Ck = Ck + cd(l0 ≠ ·n+1) + co(·depot ≠ l0)

18: else
19: Ck = Ck + cd(·depot ≠ ·n+1)

20: end if
21: end while
22: E[Ck] = Ck/N
23: Return E[Ck] and the resulting route

2
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5.4.5.  Solving the Second Stage Problem 

Given a first stage solution, ALNS is utilized to solve also the second stage problem. The second 

stage problem relies on the realized values of the random waiting times and the first stage 

problem uses the expected objective function value of the second stage problem. Procedure 5.3 

provides the steps for calculating the expected recourse cost and constructing the second stage 

solution.  

If the first stage solution is infeasible, i.e., one of the customers cannot be visited within its time 

window, then the customers visited after the recharging are checked in an iterative way starting 

from the first customer visited following the station. If the EV arrives at customer 𝑖 after its late 

service time, then this customer is skipped with penalty 𝑐B. After removing this customer from 

the route, the arrival times of the subsequent vertices are updated, and the same procedure is 

applied until all customers become feasible. This simulation is performed 𝑁 times with different 

waiting times belonging to different scenarios. Finally, the expected cost is calculated as the 

average of all the simulated costs.  

5.4.6.  Waiting Time Adjustment  
The algorithm finds the first stage solutions assuming fixed waiting times at the recharging 

stations. If the fixed value is much less than the average waiting time, then the first stage cost 

will be low, but the recourse cost will be high since many customers will be skipped due to long 

realized waiting times. This is a risk seeking strategy and it may yield low quality solutions if 

the realized waiting times are long. On the other hand, a risk averse strategy may be followed 

by assuming much longer waiting times than the averages. This will increase the cost of the 

first stage decisions because the fleet size may grow to cover all customers in the presence of 

long queue times. However, the recourse cost will be low. So, if the fixed waiting time at a 

station is increased, the first stage cost will be higher, and the recourse cost will be lower. On 

the contrary, if it is decreased, the first stage cost will be lower, and the recourse cost will be 

higher. So, based on this tradeoff we propose an adaptive mechanism to adjust these fixed 

waiting times after every 𝑁" iterations. Let 𝔼[𝑄] and 𝔼[𝑄ÿ] denote the total expected costs of 

the best-found solutions in the last 𝑁" iterations and previous 𝑁" iterations, respectively. If 

𝔼[𝑄] > 𝔼[𝑄ÿ] then the quality of the deterministic solution deteriorates in terms of estimating 

the stochastic solution because the total cost has increased. In other words, the fixed waiting 

times underestimate the real values and may be increased in a more risk averse setting. In 

contrast, if 𝔼[𝑄] < 𝔼[𝑄ÿ], then we conclude that the fixed times overestimate the real values 

and may be decreased. In this way, we tune the waiting times in an attempt to reduce the total 
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cost. The tuning is performed by multiplying the average waiting times with a constant 𝛼 

calculated as follows: 

𝛼 =
𝔼[𝑄]
𝔼"𝑄ÿ#

 (5.28) 

If 𝛼 is less than 1, it means that the waiting times will be decreased for the next 𝑁" iterations.  

Conversely, if it is greater than 1, they will be increased for the next 𝑁" iterations. In the latter 

case, the current solution may become infeasible when the routes are updated using new waiting 

times. Since the waiting times are increased, some customers which are visited after the station 

may not be covered within their time windows. In this case, the Solution Correction procedure 

is applied to make the current solution feasible. 

Solution Correction: Similar to the procedure when obtaining the final solution after random 

waiting times are revealed, this mechanism detects the customers whose time windows are 

violated. These customers are then removed from their routes and put in a list. Sometimes, the 

EV may be late for the depot, as well. In these cases, the customer visited before the depot is 

also removed even if the EV arrives at that customer on time. If the EV is still late, then the 

removal continues with the next customers until the route becomes feasible. Then the 

Deterministic Greedy Insertion is applied for the removed customers to include them in the 

solution. 

The general structure of the proposed metaheuristic is outlined in Procedure 5.4. 𝑓(𝑥) 

represents the objective function of the first stage solution 𝑥. 

5.5.  Computational Study 
We test the performance of the proposed ALNS using 100-customer EVRPTW-SP instances of 

Desaulniers et al. (2016). This study also assumed that each vehicle may visit at most one 

recharging station during its journey and its data set is compatible with our case. As highlighted 

in Desaulniers et al. (2016) and Chapter 4, wide time windows do not have much effect on 

recharging decisions since they can be easily satisfied. So, we focus on type-1 instances where 

the customers have narrow time windows in order to better observe the influence of the waiting 

times at recharging stations. The data set includes three different configurations, namely, C, R 

and RC. In type C problems, customers are geographically distributed within clusters whereas 

in type R problems, they are located randomly. In type RC problems, they are both clustered 

and randomly distributed. The metaheuristic is coded in Java and all experiments are conducted 

on an Intel Core i7-8700 CPU 3.2 GHz processor with 16 GB of RAM.  
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We also perform an analysis on the maximum number of iterations by recording the iteration 

number where the best solution is obtained. In many cases, the best solution is found close to 

25,000 iterations. Hence, the algorithm is terminated after 25,000 iterations. 

5.5.1.  Problem Settings 
We assume that the recharging (service) times follow exponential distribution with parameter 

𝜇. The arrivals of EVs at stations follow a Poisson distribution with mean 𝜆. Hence, the 

queueing systems at the recharging stations become 𝑀/𝑀/1 systems. We assume that the 

batteries are operated between 10% − 90% of their capacities to improve the battery life 

Procedure 5.4 General Structure of the Proposed Metaheuristic

1: Generate an initial solution x0, xbest Ω xcurrent Ω xprevious Ω x0
2: Initialize the scores and probabilities of the operators, iter Ω 1

3: Generate random utilization levels fli for each station i œ F using the uniform distribution

U [fl ≠ fl̄]

4: Calculate the expected waiting times at the stations and set Êi Ω E[Êi] for all i œ F
5: while iter < Maximum number of iterations do
6: if iter is a multiple of � then
7: Select a Station Removal Operator and remove “s stations from xcurrent

8: Select a Station Insertion Operator and repair the solution

9: else
10: Select a Customer Removal operator and remove “c customers from xcurrent

11: Select a Customer Insertion operator and repair the solution

12: end if
13: Calculate the expected recourse cost, E[Q], using stochastic simulation

14: f(xcurrent) Ω f(xcurrent) + E[Q]

15: if f(xcurrent) < fprevious then
16: xprevious Ω xcurrent, fprevious Ω f(xcurrent)

17: if f(xcurrent) < fbest then
18: xbest Ω xcurrent, fbest Ω f(xcurrent)

19: end if
20: else
21: Accept the solution using Simulated Annealing Criterion

22: end if
23: if iter is a multiple of Nc then
24: Update adaptive weights of CR and CI operators and calculate new selection probabilities

25: end if
26: if iter is a multiple of Ns then
27: Update adaptive weights of SR and SI operators and calculate new selection probabilities

28: end if
29: if iter is a multiple of Nw then
30: Calculate the change factor – for the waiting times and set Êi Ω Êi ◊ –, ’i œ F
31: if – > 1 then
32: Apply Solution Correction
33: end if
34: end if
35: iter Ω iter + 1

36: end while
37: Return xbest

3



 

 113 

(Pelletier et al., 2017). Hence, if the recharge amount of different EVs is assumed to be 

distributed uniformly, then the average recharge amount will be 40% of the capacity and 

average recharging time will be the time required to increase the SoC by 40%. So, 

𝔼[Service	time] = 0.4 × 𝑔 × 𝑄 and 𝜇 = 1/𝔼[Service	time]. In 𝑀/𝑀/1 systems, the waiting 

time in the queue is 0 with probability 1 − 𝜌 whereas with probability 𝜌 it is an exponential 

random variable with parameter 𝜇(1 − 𝜌), where 𝜌 = 	𝜆/𝜇 is the utilization rate of the charger. 

Hence, upon arrival at a station, the expected waiting time in the queue can be calculated by 

the formula 𝜆/𝜇(𝜇 − 𝜆). In the first stage model, we use the expected waiting times calculated 

with this formula. However, in the second stage, we generate random waiting times following 

the properties of their distribution. 

We assume that all stations have identical chargers, i.e., their service rates are the same. 

However, the arrival rate 𝜆 may vary from one station to another depending on different factors 

such as location, traffic volume, and availability of the stations.  Hence, we assign different 

arrival rates to each station. We choose two utilization levels and use them as bounds of a 

uniform distribution, i.e. [𝜌, 𝜌]. Then, we generate a utilization level for each station using this 

distribution. In this way, a unique arrival rate is assigned to each station. In this study, we use 

[30%, 70%] as the utilization bounds. 

The probabilities and expected total costs are calculated using simulation which generates 𝑁 

replications. Hence, the precision of the values depends on this parameter. If it is large, then the 

precision would be better, but it leads to higher computational effort. We set 𝑁 = 1000 as in 

Li et al. (2010). 

5.5.2.  Parameter Tuning 
We used the same parameter values as in Chapter 2 for the ALNS. However, the number of 

iterations after which the average waiting times are adjusted, 𝑁", as well as the threshold 

confidence level, 𝛿, which is used in Probabilistic Greedy Insertion with Confidence, are new 

parameters. Hence, we tuned these parameters using the following subset of instances: C101, 

C104, R102, R105, RC103, RC107. We apply a similar methodology as in Ropke and Pisinger 

(2006a, b). For each parameter, we determine 10 candidate values and we perform 10 runs for 

each value and each instance. We calculate the average objective function values of 10 runs as 

well as their deviations from the minimum value attained in the computations. Then, the 

average of the average deviations is calculated for each parameter value and the one with the 

minimum deviation is selected. We first determine the value of 𝛿, next 𝑁" is tuned using the 

selected value of	𝛿. Table 5.3 shows the average deviations for each parameter value. The best 
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performing values are indicated in bold. Based on these initial experiments, we set 𝛿 = 80% 

and 𝑁" = 300. 

Table 5.3. Parameter tuning  

Parameter   Values Tested 

𝛿 
Value 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 

Deviation 871.3 902.0 1013.7 1042.1 1069.7 896.1 993.7 866.1 922.0 1046.8 

𝑁" 
Value 100 200 300 400 500 600 700 800 900 1000 

Deviation 1056.7 1107.3 1000.3 1136.4 1133.7 1067.6 1107.0 1182.0 1222.9 1242.0 
 

5.5.3.  Results  
For this problem, there are no benchmark results. Hence, we may compare our results with the 

costs obtained by first solving the deterministic problem with expected waiting times, and then 

computing the expected cost of recourse associated with the best-found solutions. To obtain the 

deterministic solutions we run the ALNS algorithm without the stochastic components. We use 

mean waiting time values and the search is based on the first stage objective function value. 

Hence, we do not consider the recourse costs. Then we compute the expected recourse cost 

using the best-found solutions. The comparison of these solutions with those obtained by the 

proposed heuristic is given in Table 5.4. Det(X) and Q(X) stand for the deterministic cost of the 

first stage solution and the expected recourse cost. 𝑓Ù(𝑋) and 𝑓r(𝑋) are the total costs of the 

deterministic and stochastic approaches. Imp(%) shows the percent improvement achieved by 

the stochastic approach compared to the deterministic approach. It is calculated as (𝑓Ù(𝑋) −

𝑓r(𝑋))/𝑓Ù(𝑋). The best results as well as the average computational times of 10 runs are 

presented.  

The results show that, in all types of instances, the solutions of the stochastic approach are 

better than those of the deterministic approach. This improvement comes from the decreased 

recourse costs in the stochastic case. Although the deterministic cost increases in all instances, 

since the recourse costs are much smaller, total cost decreases. The average improvement 

achieved is 13%. On the other hand, computational times are much shorter in the deterministic 

case. This is due to the lack of simulation of random variables both in the ALNS operators and 

in the objective function evaluation. 

5.5.3.1. Sensitivity of Results to Utilization Levels at the Stations 

We also perform experiments with relatively higher and lower utilization levels to investigate 

the sensitivity of the solutions to the average waiting times. [𝜌, 𝜌] is set equal to [10%, 50%] 

and [50%, 85%] for the low and high utilization settings, respectively. The results are provided 
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in Table 5.5 and Table 5.6. In the low utilization setting, the improvement obtained by the 

stochastic methodology decreases to 8% on average. Since the chargers are idle more often in 

this setting compared to the moderate setting, the realized waiting times are lower. So, 

infeasible solutions are observed more rarely. On the other hand, when the utilization levels are 

higher, the stations are more occupied and finding solutions considering the recourse costs 

becomes more crucial in order to reduce high penalties incurred due to the skipped customers. 

The improvement over the deterministic method is 16%.  

 

Table 5.4. Comparison of best deterministic and stochastic solutions 

 

 

Det(X) Q(X) f d (X) Time(sec) Det(X) Q(X) fs(X) Time(sec)

C101 29,197     8,879        38,076     36.9           30,605     3,456        34,061     338.2        11%
C102 28,349     8,367        36,716     78.7           29,710     2,064        31,774     517.9        13%
C103 27,299     5,089        32,388     120.3        28,012     2,917        30,930     1,063.7    5%
C104 25,821     6,620        32,441     164.2        25,664     2,296        27,960     942.5        14%
C105 27,881     7,804        35,686     48.4           29,916     2,263        32,179     381.3        10%
C106 28,877     7,213        36,090     60.5           29,533     2,203        31,736     413.6        12%
C107 27,352     7,039        34,392     62.1           29,633     1,727        31,360     479.9        9%
C108 27,227     6,417        33,644     77.6           29,197     1,139        30,337     511.6        10%
C109 26,752     7,552        34,303     108.6        27,397     1,613        29,010     611.6        15%

C - Average 27,639     7,220        34,859     84                28,852     2,187        31,039     584             11%

R101 30,037     8,283        38,319     45.9           31,648     2,516        34,164     499.3        11%
R102 25,679     7,571        33,250     72.5           25,863     4,278        30,141     662.2        9%
R103 21,515     8,277        29,792     94.7           22,996     3,103        26,099     702.9        12%
R104 17,402     7,757        25,159     119.4        18,749     3,271        22,021     844.5        12%
R105 24,319     8,137        32,456     55.0           25,953     3,280        29,233     645.7        10%
R106 21,506     8,349        29,855     82.3           22,965     3,424        26,388     663.8        12%
R107 18,785     8,533        27,318     105.2        21,676     2,173        23,848     768.4        13%
R108 17,281     7,132        24,413     122.2        18,561     3,521        22,082     834.4        10%
R109 21,501     8,414        29,915     78.4           21,734     4,304        26,038     671.6        13%
R110 18,703     5,683        24,386     106.0        20,011     2,558        22,569     762.2        7%
R111 18,772     6,928        25,700     102.8        20,053     3,071        23,124     783.0        10%
R112 17,423     6,833        24,255     132.8        18,675     3,759        22,434     858.7        8%
R - Average 21,077     7,658        28,735     93                22,407     3,271        25,678     725             11%

RC101 26,021     8,075        34,096     50.5           27,579     2,368        29,947     508.2        12%
RC102 24,472     6,912        31,384     73.5           24,697     2,261        26,957     507.4        14%
RC103 20,299     7,494        27,793     87.1           21,806     1,485        23,290     578.7        16%
RC104 17,680     7,223        24,904     101.4        18,875     836             19,711     635.3        21%
RC105 23,158     11,166     34,324     66.4           24,744     2,023        26,767     587.9        22%
RC106 21,571     9,012        30,583     66.3           23,253     1,035        24,288     629.7        21%
RC107 18,830     8,394        27,225     87.3           20,383     1,071        21,454     600.9        21%
RC108 18,852     7,748        26,600     98.2           18,911     2,097        21,008     628.8        21%
RC - Average 21,360     8,253        29,613     79                22,531     1,647        24,178     585             19%

Average All 23,359     7,710        31,069     85                24,597     2,368        26,965     631             13%

Deterministic Stochastic
Instance Imp  (%)



 

 116 

5.5.3.2. Effect of Parameter 𝑵𝒘 

We propose a new adaptive mechanism which adjusts the fixed waiting times used in the ALNS 

after each 𝑁" iterations. To investigate the contribution of this mechanism to the solution 

quality, we perform experiments keeping expected waiting times fixed throughout the search. 

Table 5.7 gives the results obtained in both cases. The values in column “Diff. (%)” show the 

percentage difference between the total costs. Negative values indicate that the cost obtained in 

the “without adjustment” setting is better than that obtained in the “with adjustment” setting. 

The average improvement obtained by adjusting the waiting time is 1%. Although the 

adjustment deteriorates the solution in few instances, its contribution can be up to 4.1%. Note 

that all RC-type problems benefited from this mechanism.  

Table 5.5. Results for low utilization levels at stations 

 

Det(X) Q(X) f d (X) Time(sec) Det(X) Q(X) fs(X) Time(sec)
C101 28,714     5,914        34,628     40                29,236     2,061        31,296     320             10%
C102 26,971     7,242        34,212     81                27,176     2,348        29,524     438             14%
C103 25,798     6,362        32,160     128             27,309     1,982        29,292     776             9%
C104 24,967     3,583        28,550     165             25,189     904             26,094     827             9%
C105 25,593     5,174        30,768     48                27,200     2,411        29,610     393             4%
C106 25,428     5,757        31,185     64                27,044     2,336        29,381     408             6%
C107 25,327     4,444        29,770     65                26,529     2,341        28,870     425             3%
C108 25,050     5,594        30,644     82                26,789     1,486        28,275     489             8%
C109 24,719     4,044        28,763     112             24,772     2,323        27,095     610             6%
C - Average 25,841     5,346        31,187     87                26,805     2,021        28,826     521             7%

R101 28,646     5,418        34,064     48                28,798     2,480        31,278     415             8%
R102 24,277     5,344        29,622     75                25,785     1,671        27,456     512             7%
R103 20,098     5,197        25,294     98                21,493     2,316        23,808     636             6%
R104 17,254     3,875        21,128     129             17,371     1,866        19,237     728             9%
R105 22,950     4,304        27,254     58                23,119     2,739        25,858     436             5%
R106 20,094     5,338        25,432     81                21,524     2,076        23,600     499             7%
R107 18,627     3,648        22,275     104             18,728     2,436        21,165     616             5%
R108 15,921     4,017        19,938     121             17,303     1,570        18,873     745             5%
R109 20,128     4,376        24,504     77                21,536     1,348        22,885     510             7%
R110 17,302     3,910        21,212     107             18,658     1,447        20,105     625             5%
R111 17,437     4,404        21,841     104             18,735     1,524        20,259     610             7%
R112 17,240     3,139        20,380     130             17,284     2,036        19,321     799             5%
R - Average 19,998     4,414        24,412     94                20,861     1,959        22,820     594             6%

RC101 24,593     6,607        31,200     51                26,082     1,312        27,394     372             12%
RC102 23,023     5,249        28,272     74                23,209     1,476        24,685     421             13%
RC103 18,918     4,091        23,009     90                20,248     1,257        21,505     466             7%
RC104 17,469     3,991        21,460     102             18,812     536             19,348     594             10%
RC105 21,701     5,446        27,146     67                23,227     1,300        24,527     450             10%
RC106 20,228     5,171        25,399     66                21,778     851             22,629     438             11%
RC107 17,473     3,276        20,748     86                18,910     817             19,727     525             5%
RC108 17,464     5,272        22,736     97                17,576     990             18,565     606             18%
RC - Average 20,108     4,888        24,996     79                21,230     1,067        22,297     484             11%

Average All 21,982     4,883        26,865     87                22,965     1,683        24,648     533             8%

Instance
Deterministic Stochastic

Imp  (%)
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Table 5.6. Results for high utilization levels at stations  

 

 

 

 

 

 

 

 

 

 

Det(X) Q(X) f d (X) Time(sec) Det(X) Q(X) fs(X) Time(sec)
C101 34,337     9,347        43,685     39                34,615     4,138        38,753     375             11%
C102 32,109     11,577     43,685     76                32,533     2,657        35,191     642             19%
C103 30,437     9,658        40,096     120             31,625     3,923        35,547     1,312        11%
C104 29,285     8,900        38,185     169             28,172     2,879        31,050     1,016        19%
C105 32,349     7,710        40,059     51                32,407     2,904        35,311     557             12%
C106 31,651     10,486     42,137     59                30,563     2,823        33,385     458             21%
C107 31,164     9,595        40,759     63                30,147     3,807        33,954     452             17%
C108 30,097     9,573        39,670     81                29,809     3,372        33,181     495             16%
C109 28,991     7,901        36,892     106             29,437     2,691        32,129     598             13%
C - Average 31,158     9,416        40,574     85                31,034     3,244        34,278     656             15%

R101 33,086     10,903     43,989     50                35,953     5,490        41,443     645             6%
R102 28,770     10,015     38,785     72                31,582     3,916        35,498     747             8%
R103 23,127     8,987        32,115     96                24,534     4,251        28,785     772             10%
R104 20,124     8,184        28,308     129             21,613     1,762        23,374     946             17%
R105 27,277     11,448     38,726     60                28,853     4,160        33,012     714             15%
R106 24,344     9,213        33,556     86                24,539     5,774        30,313     738             10%
R107 21,610     9,297        30,908     105             22,986     4,878        27,865     974             10%
R108 20,019     10,358     30,377     124             20,036     4,861        24,897     956             18%
R109 23,154     12,803     35,956     76                25,908     5,786        31,694     858             12%
R110 20,240     7,935        28,175     109             21,475     3,400        24,876     915             12%
R111 21,564     10,646     32,210     106             24,257     1,741        25,997     1,011        19%
R112 20,186     10,764     30,949     136             21,388     4,092        25,479     1,023        18%
R - Average 23,625     10,046     33,671     96                25,260     4,176        29,436     858             13%

RC101 29,068     11,095     40,163     53                30,728     3,411        34,139     600             15%
RC102 26,159     8,471        34,630     72                26,276     3,328        29,604     611             15%
RC103 22,001     11,437     33,438     86                23,302     2,943        26,245     650             22%
RC104 20,399     10,361     30,760     105             21,792     1,053        22,845     698             26%
RC105 26,071     12,487     38,558     68                27,676     3,009        30,685     764             20%
RC106 23,333     10,511     33,843     66                23,430     3,182        26,611     645             21%
RC107 21,683     8,022        29,704     89                21,875     2,116        23,991     688             19%
RC108 21,745     11,492     33,237     96                23,194     904             24,098     749             27%
RC - Average 23,807     10,484     34,292     79                24,784     2,493        27,277     675             21%

Average All 26,197     9,982        36,179     87                27,026     3,304        30,331     730             16%

Instance
Deterministic Stochastic

Imp  (%)
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Table 5.7. The results with and without adjusting waiting times 

 

 

5.6.  Conclusions  
In this study, we introduced the Electric Vehicle Routing Problem with Time Windows and 

Stochastic Waiting Times at Recharging Stations. We modeled the problem as a two-stage 

stochastic program with recourse. The randomness is incorporated using scenarios. We 

developed an ALNS method by introducing some problem-specific mechanisms. We tested the 

performance of the proposed method by comparing its results with those obtained by solving 

the deterministic problem using the proposed framework without the stochastic components 

and computing the expected recourse cost. We used stochastic simulation to calculate the 

Instance Det(X) Q(X) f d (X) Time(sec) Det(X) Q(X) fs(X) Time(sec)
C101 30,605     3,456        34,061     338             30,557     3,688        34,245     356             0.5%
C102 29,710     2,064        31,774     518             30,023     1,862        31,885     487             0.3%
C103 28,012     2,917        30,930     1,064        28,127     2,836        30,963     790             0.1%
C104 25,664     2,296        27,960     942             26,069     1,817        27,886     1,036        -0.3%
C105 29,916     2,263        32,179     381             30,424     1,883        32,307     410             0.4%
C106 29,533     2,203        31,736     414             29,960     1,064        31,025     411             -2.2%
C107 29,633     1,727        31,360     480             29,894     1,582        31,476     453             0.4%
C108 29,197     1,139        30,337     512             29,149     1,933        31,082     546             2.5%
C109 27,397     1,613        29,010     612             28,807     1,178        29,985     634             3.4%
C - Average 28,852     2,187        31,039     584             29,223     1,983        31,206     569             0.6%

R101 31,648     2,516        34,164     499             31,661     2,507        34,167     464             0.0%
R102 25,863     4,278        30,141     662             25,940     4,517        30,458     763             1.1%
R103 22,996     3,103        26,099     703             23,045     2,803        25,848     715             -1.0%
R104 18,749     3,271        22,021     844             20,086     1,710        21,796     849             -1.0%
R105 25,953     3,280        29,233     646             25,919     3,972        29,891     613             2.2%
R106 22,965     3,424        26,388     664             22,999     3,537        26,536     688             0.6%
R107 21,676     2,173        23,848     768             21,667     2,492        24,159     808             1.3%
R108 18,561     3,521        22,082     834             18,641     2,906        21,548     975             -2.4%
R109 21,734     4,304        26,038     672             23,061     2,902        25,962     692             -0.3%
R110 20,011     2,558        22,569     762             20,064     2,264        22,328     756             -1.1%
R111 20,053     3,071        23,124     783             20,147     3,056        23,202     831             0.3%
R112 18,675     3,759        22,434     859             20,054     2,901        22,955     952             2.3%
R - Average 22,407     3,271        25,678     725             22,774     2,964        25,738     759             0.2%

RC101 27,579     2,368        29,947     508             27,663     3,034        30,696     508             2.5%
RC102 24,697     2,261        26,957     507             24,731     2,303        27,033     529             0.3%
RC103 21,806     1,485        23,290     579             21,844     2,304        24,147     613             3.7%
RC104 18,875     836             19,711     635             18,997     1,521        20,519     634             4.1%
RC105 24,744     2,023        26,767     588             24,744     2,398        27,141     610             1.4%
RC106 23,253     1,035        24,288     630             23,303     994             24,297     528             0.0%
RC107 20,383     1,071        21,454     601             20,284     1,984        22,268     610             3.8%
RC108 18,911     2,097        21,008     629             20,254     1,431        21,685     673             3.2%
RC - Average 22,531     1,647        24,178     585             22,727     1,996        24,723     588             2.4%

Average All 24,597     2,368        26,965     631             24,908     2,314        27,222     639             1.0%

With Adjustment Without Adjustment
Diff . (%)
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probabilities and evaluate the objective function values. The results showed that proposed 

method is efficient in finding good solutions in reasonable amount of time. 

Future research on this topic may address obtaining the distribution functions for each node in 

the route and calculating the expected values exactly. Since the waiting times at the stations are 

random variables, the arrival times at the subsequent customers are random, too. Because each 

arrival time is affected by the waiting time at the station. Hence, if their distribution functions 

are determined, then the expected arrival times can be calculated instead of simulating them. 

Moreover, we assumed that EVs may recharge at most once. This assumption may be relaxed 

by allowing multiple visits to stations during an EV’s journey. The stations may also have 

different recharge technologies, such as fast and slow chargers with different distributions. 

Then, the EVs have to decide which recharging stations to visit as well as the charger types 

according to their queue lengths. Finally, we used exponentially distributed service and arrival 

times. Different distributions may be used to represent the arrival and service processes at the 

recharging stations.  
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Chapter 6 
_____________________________________________ 
 

 

Conclusions  
 
 
This thesis investigates four variants of the electric vehicle routing problem with time windows. 

It is assumed that a homogeneous fleet of BEVs is used in all the problems. 

Chapter 2 studies the most basic version where the EVs are allowed to recharge their batteries 

up to any level. The objective is to minimize the total distance with the minimum fleet size. To 

solve the problem, an Adaptive Large Neighborhood Search approach is proposed. It uses some 

efficient mechanisms from the literature as well as new operators which are developed specific 

to the problem. The proposed method improves some of the best-known solutions from the 

literature by 0.4% on average, and it provides new benchmark results for the EVRPTW with 

partial recharges.  

Chapter 3 studies a special case of the problem where the stations are equipped with different 

types of chargers which differ by the recharging rates and unit recharging costs. The objective 

is minimizing total energy cost with the minimum fleet size. Two mathematical formulations 

are proposed to represent the charger types. To solve the large instances, a matheuristic 

approach is developed. It is based on ALNS and the solution of a mathematical model by a 

mixed integer programming solver. ALNS is used to search the solution space. After a 

predetermined number of iterations, the routes of the best solution found within these iterations 

are optimized in terms of the recharging decisions. To be used in the route optimization, another 

mathematical model is developed. The results show that using multiple chargers is 

advantageous to save from the energy cost. This is because of the presence of time windows. 

When recharging takes less time, more customers can be visited by the same EV. It is also 

pointed out that having fast chargers has little effect on the solutions of the instances with wide 

time windows.  
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Chapter 5 considers the possibility that EVs may wait in the queue at the recharging stations 

before being recharged due to limited number of chargers. Since some time intervals are more 

crowded due to the rush hours, these waiting times are assumed to be dependent to the time of 

the day. Then, the planning horizon is split into five time intervals, namely morning, noon, late 

afternoon, evening, and night and each one is assigned a waiting time. Hence, the stations have 

deterministic waiting times which depend on the time of the day. It is assumed that the stations 

have M/G/1 queueing system and the average waiting time equations of M/G/1 are used to 

determine the waiting times. The linear recharging time function is also relaxed, and its 

nonlinear behavior is approximated with a piecewise linear function. The problem is modeled 

as a mixed integer linear program and a matheuristic approach is proposed to solve it. The 

methodology is similar to one in the previous chapter. ALNS searches the solution space and a 

mixed integer programming solver is utilized to optimize the routes of the best solution found 

within a predetermined number of iterations. ALNS is also equipped with problem-specific 

mechanisms. The results show that the waiting times are essential for the problem and they 

should be considered in the planning.  

Finally, Chapter 6 studies the EVRPTW in the presence of stochastic waiting times at the 

recharging stations. Unlike the previous case where the waiting times are known in advance, 

here the EVs have the information about the waiting time at a station when they arrive at that 

station. Hence, an a priori route may become infeasible if the planned station has longer queue 

than expected since the customers and the depot have time windows. Then the solution may be 

repaired by skipping the customers whose time windows are missed with a penalty and paying 

an overtime wage to the driver if the EV is late for the depot, as well. The problem is modeled 

as a two-stage stochastic program with recourse. The randomness of the waiting times is 

modeled using a set of scenarios. The objective is to minimize the total cost which includes 

energy cost, driver wage, vehicle operating cost and expected recourse cost which comes from 

correcting the infeasible solution. To solve the problem, an ALNS algorithm is developed. To 

evaluate the expected value of the objective function and calculate some probabilities, 

simulation is used.  Results show that planning with expected waiting times usually gives poor 

results and ALNS performs well since it considers the stochasticity to guide the search. 

The solution methodologies used in this thesis are based on heuristic approaches. In two 

chapters, the heuristics are combined with a mixed integer programming solver. Hence, future 

research may focus on exact solution methodologies which are rarely addressed in the EVRP 

literature. In addition, it is assumed in all problems that the recharging stations are already 

installed, and they are public stations. However, the company which owns the EV fleet may 
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want to optimize the locations of the stations such that its transportation costs are minimized. 

This extension may be addressed in a future research.  Furthermore, the energy consumption 

rate is also assumed constant but in reality, it is affected by various factors, such as ambient 

temperature, slope of the road, and load of the vehicle. It is also known that the EVs have 

regenerative braking which enables the battery to be recharged while going downhill. These 

energy features may be included in the planning and more realistic results may be obtained. 
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Appendix A. ALNS Parameters 

All parameters are summarized in Table A.1 and the results of the parameter tuning procedure 

for solving the EVRPTW-PR are given in Table A.2. The tuning sequence is from top to bottom. 

All parameters were initially set to the values given in the “Initial Value” column. We first 

considered ten different values for 𝜎l shown in the first row and performed ten runs on the six 

instances selected for tuning. Next, we calculated the average percentage deviation ‘Dev%’ of 

the average solution achieved with that value from the best solution found in all runs. Then, we 

determined 0.22% as the least deviation and fixed the value of the parameter 𝜎l to 20, which 

had achieved this best average performance. We repeated this procedure for the remaining 

parameters in the order given until all parameter values had been tuned. The best parameter 

values (the ones yielding the minimum deviations) are indicated in bold. Note that the initial 

values in Table A.2 are the values we determined when we applied the parameter tuning for 

solving the EVRPTW. We do not give the detailed setting for that case since the tuning 

approach and the values considered are same.  

Table A.1. Notation and description of the parameters 

𝜎l score of the better solution 
𝑁n  # of iterations between which adaptive weights of CR and CI algorithms are 

updated  
𝜌 roulette wheel parameter 
𝜎7 score of the best solution 
𝜎m score of the worse solution 
𝜙7 first Shaw parameter 
𝜙l second Shaw parameter 
𝜙m third Shaw parameter 
𝜙� fourth Shaw parameter 
𝜀 cooling rate of SA 
𝜇 initial temperature control parameter of SA 
𝜅 worst removal determinism factor 
𝜂 Shaw removal determinism factor 
𝑛¢ number of zones in zone removal 
𝑁o¥ # of iterations between which SR is performed 
𝑁o # of iterations between which adaptive weights of SR and SI algorithms are 

updated  
𝑚� route removal upper bound 
𝑁¥¥ # of iterations between which route removal algorithms are performed 
𝑛¥¥ # of consecutive iterations during which route removal algorithms are performed 

 



 

 124 

Table A.2. Parameter tuning 

Parameter  Initial Value Values Tested 

𝜎l Value 6 0 2 4 9 12 14 16 18 20 
Dev% 0.30 0.27 0.25 0.28 0.27 0.28 0.25 0.25 0.28 0.22 

𝑁n  Value 500 50 100 150 200 250 300 350 400 450 
Dev% 0.28 0.33 0.27 0.25 0.23 0.32 0.30 0.27 0.25 0.32 

𝜌 Value 0.2 0.05 0.1 0.15 0.25 0.3 0.35 0.4 0.45 0.5 
Dev% 0.30 0.33 0.25 0.30 0.25 0.27 0.32 0.27 0.25 0.30 

𝜎7 Value 33 25 30 35 40 45 50    
Dev% 0.32 0.25 0.32 0.32 0.37 0.30 0.28       

𝜎m Value 21 3 6 9 12 13 15 24 27 30 
Dev% 0.37 0.42 0.40 0.45 0.47 0.42 0.45 0.43 0.47 0.48 

𝜙7 Value 5 0.5 1 3 7 9 11 13 15  
Dev% 0.55 0.55 0.60 0.55 0.58 0.63 0.57 0.65 0.63   

𝜙l Value 1 0.25 3 5 7 9 11 13 15  
Dev% 0.57 0.62 0.57 0.62 0.63 0.60 0.62 0.55 0.67   

𝜙m Value 13 0.15 1 3 5 7 9 11 15  
Dev% 0.60 0.53 0.58 0.53 0.57 0.55 0.53 0.62 0.53   

𝜙� Value 0.25 1 2 3 4 5 6 7 8 9 
Dev% 0.57 0.62 0.58 0.62 0.68 0.62 0.63 0.58 0.67 0.62 

𝜀 Value 0.9995 0.999 0.9991 0.9992 0.9993 0.9994 0.9996 0.9997 0.9998 0.9999 
Dev% 0.48 0.57 0.48 0.43 0.53 0.38 0.42 0.48 0.42 0.42 

𝜇 Value 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Dev% 0.55 0.60 0.58 0.58 0.65 0.58 0.58 0.55 0.58 0.62 

𝜅 Value 1 2 3 4 5 6         
Dev% 0.57 0.63 0.58 0.55 0.60 0.57         

𝜂 Value 10 2 4 6 8 12         
Dev% 0.58 0.55 0.60 0.62 0.63 0.55         

𝑛¢ Value 15 5 7 9 11 13 19 21 25 30 
Dev% 0.60 0.60 0.65 0.55 0.58 0.63 0.60 0.57 0.53 0.58 

𝑁o¥ Value 10 20 30 40 50 60 70 80 90 100 
Dev% 0.75 0.78 0.82 0.80 0.80 0.72 0.82 0.73 0.77 0.77 

𝑁o Value 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 
Dev% 0.70 0.78 0.75 0.77 0.77 0.83 0.73 0.80 0.77 0.70 

𝑚� Value 0.4 0.3 0.5 0.6             
Dev% 0.58 0.57 0.67 0.65             

𝑁¥¥ Value 6000 2000 2500 3000 3500 4000 4500 5000 5500 6500 
Dev% 0.85 0.77 0.87 0.78 0.77 0.85 0.80 0.78 0.80 0.88 

𝑛¥¥  
Value 1000 750 1250 1500 1750 2000 2250 2500 2750 3000 
Dev% 0.43 0.43 0.40 0.45 0.53 0.47 0.48 0.48 0.43 0.48 

 

  



 

 125 

Appendix B. Outline of the Matheuristic 

In Algorithm B.1, we provide the pseudocode of the proposed methodology. 
 
Algorithm B.1: Pseudocode of the proposed matheuristic 

1: Generate an initial solution, current solution ← initial solution 
2: Initialize the scores and probabilities of the operators, 𝑖𝑡𝑒𝑟 ← 1 
3: while termination criterion is not met do 
4:      if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁o¥ then 
5:            Select an SR operator and remove stations  
6:            Select an SI operator and repair solution 
7:      else if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁¥¥ then 
8:            for 𝑛¥¥ iterations do 
9:                   Select RRR or GRR operator and remove customers 

10:                   Select a CI operator and repair solution 
11:                   if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁o¥ then 
12:                         Select an SR operator and remove stations  
13:                         Select an SI operator and repair solution 
14:                   end if 
15:                   Accept/reject the solution using Simulated Annealing criterion 
16:             																				𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 
17:                   if 𝑖𝑡𝑒𝑟 is a multiple of Ω then  
18:                        Apply Route Enhancement to the best solution found in Ω iterations 
19:                   end if 
20:            end for 
21:      else   
22:            Select a CR operator and remove customers 
23:            if the destroyed solution is infeasible then Perform Greedy Station Insertion 
24:            Select a CI operator and repair solution 
25:      end if 
26:      Accept/reject the solution using Simulated Annealing criterion  
27:      𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 
28:      if 𝑖𝑡𝑒𝑟 is a multiple of Ω then 
29:            Apply Route Enhancement to the best solution found in Ω iterations 
30:      end if 
31:      if 𝑖𝑡𝑒𝑟 is a multiple of Ω then Apply Route Enhancement to current best solution 
32:      if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁n  then Update adaptive weights of CR and CI operators 
33:      if 𝑖𝑡𝑒𝑟 is a multiple of 𝑁o then Update adaptive weights of SR and SI operators 
34: end while 

SR: Recharging Station Removal        CR: Customer Removal     RRR: Random Route Removal 
SI: Recharging Station Insertion        CI: Customer Insertion     GRR: Greedy Route Removal 
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Appendix C. Comparison with Felipe et al. (2014) 

The detailed results of the experiments for the problem of Felipe et al. (2014) using FORT 

instances are presented in Tables C.1-C.3. The results were obtained by using IA2 with Ω=200 

and by implementing two configurations: (A) 25,000 iterations of ALNS for initialization and 

10,000 iterations of matheuristic; (B) 2500 iterations of ALNS and 1000 iterations of 

matheuristic. “S” shows the number of stations in the problem, “TC” and “Time” refer to the 

total cost and computation time (in seconds), respectively, and “% Imp” represents the 

percentage improvement achieved by our matheuristic for each configuration and calculated as 

(FORT −Matheuristic)/FORT.  Note that for the instances where TC of FORT is shown with 

“–” Felipe et al. (2014) did not report any results. 

 

Table C.1. Comparison of results on 100-customer instances of Felipe et al. (2014) 

 

 

 

 

 

 

FORT
S Instance TC TC Time % Imp TC Time % Imp
9 p1 73.42 65.12 197 11.31 65.43 22 10.88

p2 65.97 60.49 173 8.31 60.81 19 7.82
p3 66.98 62.95 175 6.01 61.46 21 8.24
p4 70.96 65.41 191 7.83 65.44 19 7.78
p5 78.22 73.82 190 5.63 75.27 19 3.77
p6 72.16 65.72 174 8.93 65.94 21 8.63
p7 73.87 65.40 171 11.46 67.33 20 8.86
p8 62.70 57.21 186 8.76 57.44 21 8.40
p9 72.45 62.80 186 13.32 63.15 21 12.83

p10 66.70 60.21 168 9.73 60.21 18 9.73
5 p1 73.79 65.29 197 11.52 65.47 32 11.28

p2 66.58 60.92 168 8.51 60.95 30 8.46
p3 66.92 63.12 189 5.68 63.28 33 5.44
p4 71.74 68.24 183 4.89 65.88 30 8.17
p5 82.02 76.28 165 7.00 76.37 29 6.88
p6 73.59 66.25 167 9.98 66.36 31 9.83
p7 74.00 67.65 180 8.59 67.91 30 8.23
p8 62.74 57.21 187 8.81 57.23 30 8.78
p9 73.28 65.37 196 10.79 65.54 31 10.56

p10 71.19 60.91 164 14.44 63.46 29 10.86

Matheuristic (A) Matheuristic (B)
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Table C.2. Comparison of results on 200-customer instances of Felipe et al. (2014) 

 

 
Table C.3. Comparison of results on 400-customer instances of Felipe et al. (2014) 

 

FORT
S Instance TC TC Time % Imp TC Time % Imp
9 p1 - 105.54 768 - 110.49 80 -

p2 108.24 96.40 757 10.94 97.47 83 9.95
p3 110.21 97.34 827 11.68 99.06 77 10.12
p4 108.69 95.78 794 11.87 99.54 77 8.42
p5 117.44 103.65 781 11.74 106.33 75 9.46
p6 111.26 98.17 869 11.76 101.66 83 8.62
p7 110.42 98.48 773 10.81 102.46 78 7.21
p8 102.37 93.66 813 8.51 94.65 84 7.54
p9 110.08 97.41 821 11.51 101.62 86 7.68

p10 114.71 101.06 780 11.90 104.86 73 8.59
5 p1 124.11 110.48 706 10.98 114.43 113 7.80

p2 110.15 98.49 788 10.59 101.97 126 7.43
p3 109.64 99.18 718 9.54 103.34 117 5.74
p4 112.65 99.03 769 12.09 100.29 122 10.97
p5 121.81 104.88 703 13.90 109.69 119 9.95
p6 115.05 102.23 831 11.14 103.10 127 10.38
p7 113.76 102.52 805 9.88 103.32 124 9.17
p8 106.70 92.42 835 13.38 96.71 129 9.36
p9 113.46 100.32 792 11.58 100.75 129 11.21

p10 116.23 103.12 749 11.28 106.60 117 8.28

Matheuristic (A) Matheuristic (B)

FORT
S Instance TC TC Time % Imp TC Time % Imp
9 p1 198.48 179.56 2715 9.53 182.81 333 7.90

p2 196.50 176.34 2928 10.26 180.94 341 7.92
p3 195.72 177.34 2631 9.39 183.52 335 6.23
p4 190.28 172.00 3292 9.61 179.11 329 5.87
p5 192.67 176.13 2880 8.59 181.20 348 5.95
p6 200.66 179.52 2810 10.53 184.82 311 7.89
p7 194.40 176.17 2903 9.38 182.97 318 5.88
p8 194.92 176.03 3103 9.69 183.16 332 6.03
p9 198.16 175.12 2976 11.63 182.46 334 7.92

p10 - 177.88 3123 - 183.30 311 -
5 p1 206.60 182.70 3265 11.57 189.73 545 8.17

p2 201.98 180.38 3393 10.69 181.00 542 10.39
p3 207.55 183.56 2780 11.56 188.32 539 9.27
p4 192.96 177.07 3765 8.24 187.02 555 3.08
p5 199.21 177.34 3386 10.98 184.44 556 7.42
p6 206.75 184.41 3200 10.80 188.15 505 9.00
p7 205.96 182.73 3261 11.28 190.41 541 7.55
p8 195.06 181.10 3203 7.16 191.48 509 1.84
p9 207.38 184.38 3173 11.09 191.94 531 7.44

p10 208.33 182.41 3046 12.44 189.35 503 9.11

Matheuristic (A) Matheuristic (B)
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