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Professor Yücel Saygın . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Thesis Advisor)

Assistant Professor Kamer Kaya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Räbiger, and my dad, Hartwig Räbiger, for their unconditional support over the years - be

it financially which allowed me to focus on my studies, be it morally, or through sending

me small items from Germany etc. Thanks to my brother, Michael Räbiger, for distracting
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Computer Science and Engineering

Ph.D. Thesis, 2018

Thesis Supervisor: Prof. Yücel Saygın
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Abstract

Crowdsourcing is a popular means to obtain high-quality labels for datasets at moder-

ate costs. These crowdsourced datasets are then used for training supervised or semi-

supervised predictors. This implies that the performance of the resulting predictors de-

pends on the quality/reliability of the labels that crowd workers assigned – low reliabil-

ity usually leads to poorly performing predictors. In practice, label reliability in crowd-

sourced datasets varies substantially depending on multiple factors such as the difficulty

of the labeling task at hand, the characteristics and motivation of the participating crowd

workers, or the difficulty of the documents to be labeled. Different approaches exist to

mitigate the effects of the aforementioned factors, for example by identifying spammers

based on their annotation times and removing their submitted labels.

To complement existing approaches for improving label reliability in crowdsourcing,

this thesis explores label reliability from two perspectives: first, how the label reliability

of crowd workers develops over time during an actual labeling task, and second how it is

affected by the difficulty of the documents to be labeled.

We find that label reliability of crowd workers increases after they labeled a certain

number of documents. Motivated by our finding that the label reliability for more difficult

documents is lower, we propose a new crowdsourcing methodology to improve label reli-

ability: given an unlabeled dataset to be crowdsourced, we first train a difficulty predictor

v



on a small seed set and the predictor then estimates the difficulty level in the remaining

unlabeled documents. This procedure might be repeated multiple times until the perfor-

mance of the difficulty predictor is sufficient. Ultimately, difficult documents are sepa-

rated from the rest, so that only the latter documents are crowdsourced. Our experiments

demonstrate the feasibility of this method.
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Özet

Kitle-kaynak, veri kümeleri için yüksek kaliteli etiketleri makul maliyetler ile elde etmek

için kullanılan popüler bir yöntemdir. Bu kitle-kaynak yöntemiyle etiketlenen veri set-

leri, sonrasında gözetimli veya yarı-gözetimli sınıflayıcıların eğitimi için kullanılır. Bu

da, bu prosedür sonucunda oluşan sınıflayıcı performanslarının kitle çalışanlarının atadığı

etiketlerin kalitesi/güvenirliliğine bağlı olduğu anlamına gelmektedir - düşük güvenirlilik

genellikle yetersiz çalışan sınıflayıcılara sebep olur. Pratikte, kitle-kaynak veri kümelerin-

deki etiket güvenirliliği, eldeki etiketleme işinin zorluğu, katılımcı kitle çalışanlarının

özellikleri ve motivasyonu, veya etiketlenecek dokümanların zorluğu gibi birçok faktöre

bağlı olarak büyük ölçüde değişkenlik gösterir. Bu bahsedilen faktörlerin etiketlerin

kalitesine etkisini hafifletmek için ise, verilen kitle-kaynak görevini tanımına uygun olarak

yerine getirmeyen (spammer) çalışanları, etiketleme sürelerine bakarak belirlemek ve

gönderdikleri etiketleri silmek gibi farklı yaklaşımlar mevcuttur.

Bu tez, kitle-kaynak yönteminden elde edilen etiket güvenirliliğini iyileştirerek mev-

cut yaklaşımları tamamlamak amacıyla, etiket güvenirliliği konusunu ilk olarak, gerçek

bir etiketleme işi süresince kitle çalışanlarının etiket güvenirliliğinin zamanla nasıl geliş-

tiği, ve ikinci olarak etiketlerin etiketlenecek dokümanların zorluğundan nasıl etkilendiği

olmak üzere iki açıdan incelemektedir.
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Kitle-kaynak yöntemi ile etiketlenen veri seti üzerinde yaptığımız analizler sonu-

cunda, kitle çalışanlarının etiket güvenirliliğinin belli sayıda dokümanı etiketledikten son-

ra arttığını gözlemledik. Bunun sonucunda ve daha zor dokümanlar için etiket güvenirli-

liğinin daha düşük olması bulgusundan yola çıkarak, etiket güvenirliliğini iyileştirmek

için yeni bir kitle-kaynak yöntembilimi önermekteyiz. Önerdiğimiz bu metodolojide,

kitle-kaynak yöntemiyle etiketlenecek olan elimizdeki etiketsiz veri setini kullanarak,

öncelikle küçük bir başlangıç seti üzerinde bir zorluk tahmin edici (predictor) eğitip, son-

rasında bu tahmin ediciden yararlanarak başlangıç seti dışında kalan dokümanların zorluk

derecesini tahmin etmeyi hedefliyoruz. Bu prosedür, eğitilen tahmin edicinin performansı

yeterli seviyeye ulaşana kadar birçok kez tekrarlanabilir. Son olarak, bu adımlar sonu-

cunda elde edilen tahmin edici kullanılarak tespit edilen zor dokümanlar, veri setinin geri

kalanından ayrılır ve sadece bu veri kümesinde kalan dokümanlar kitle-kaynak yöntemi

ile etiketlenir. Deney sonuçlarımız da, bu yöntemin kitle-kaynak yöntemi ile elde edilen

etiketlerin güvenirliliği üzerinde etkili olduğunu göstermektedir.
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Chapter 1

Introduction

Crowdsourcing is a popular means to obtain high-quality labels with a limited budget.

In crowdsourcing non-experts, so called crowd workers, complete micro-tasks, in which

they label small subsets of the whole dataset. For each completed micro-task they receive

a monetary compensation. The central idea of crowdsourcing is that multiple cheap crowd

workers assign a label to each document instead of requesting expensive experts to assign

a single label to all documents. As a result, datasets are faster labeled with crowdsourcing

as more workers than experts are available. Moreover, the monetary compensation for

crowd workers is substantially lower than for experts. Typically, a single expert assigns a

label to a document, which makes it automatically the final label (ground truth). However,

multiple labels exist per document (assigned by multiple crowd workers) in crowdsourc-

ing as crowd workers lack background knowledge. Thus, the labels must be aggregated

to single labels because, ultimately, this ground truth will be used for training supervised

and semi-supervised predictors. Multiple experiments, e.g. [1, 2], have demonstrated

the potential of crowdsourcing in that the ”wisdom of the crowd” effect, i.e. the aggre-

gated labels of multiple workers, rivals the quality of expert labels despite crowd workers

usually lacking background knowledge.

A typical crowdsourcing workflow is depicted in Figure 1.1. In the first step, the

requester1 designs the labeling task for the crowdsourcing platform, e.g. Amazon Me-

1In this thesis, we refer to a requester as an experimenter to highlight her role. An experimenter is a
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1. Requester designs labeling
task and uploads dataset with
appropriate instructions

6. Crowd workers receive
payment for completed
accepted/rejected* tasks

3. Eligible* crowd workers
select micro­tasks and complete

them

5. Requester rejects or accepts
completed micro­tasks

4. Crowd workers
submit micro­tasks

2. Requester (sometimes
crowdsourcing platform) splits
dataset into micro­tasks

7. Requester receives labeled
dataset when all micro­tasks are
completed

* decision of the requester

Crowdsourcing platform

Figure 1.1: Schematic illustration of a typical crowdsourcing workflow.

chanical Turk, to which she will upload the dataset to be labeled. This design process in-

volves creating instructions for crowd workers and deciding about how many documents

are contained in a micro-task, which contains a subset of the documents to be labeled.

Furthermore, the experimenter sets the payment per completed micro-task and whether

crowd workers should always be paid even if their submitted micro-tasks were deemed

inaccurate by the experimenter. Last but not least, the experimenter also identifies quality

criteria that interested crowd workers must meet before they are allowed to complete any

of these available micro-tasks. The requester might decide to split the unlabeled dataset

into micro-tasks herself and upload these instead of the dataset to the crowdsourcing plat-

special kind of requester, namely a person conducting crowdsourcing experiments for research.
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form in the second step. Alternatively, the crowdsourcing platform, assuming it provides

this feature, might perform this task of creating the micro-tasks from the uploaded dataset.

In the third step, only workers who meet the predefined quality criteria, that were defined

by the experimenter, are able to complete any of the available micro-tasks. In steps four

and five workers submit their micro-tasks upon completion and receive their payments.

Afterwards, in step seven, once all documents are labeled, the experimenter receives the

fully labeled dataset.

1.1 Motivation

Despite the popularity of crowdsourcing as a means to obtain large-scale, labeled datasets,

the quality of the datasets largely varies because the label reliability, that is the reliabil-

ity of the labels that crowd workers assigned, is unknown. This is problematic because

training predictors relies on a reliable ground truth – otherwise the resulting predictors

might poorly estimate the labels of unlabeled documents. This could happen as the pre-

dictor might be unable to extract relevant patterns from training documents which were

assigned unreliable labels by crowd workers. For example, suppose one wants to train a

predictor that distinguishes the sentiment (positive, neutral, negative) of tweets. Crowd

workers assigned each tweet one of the labels ”positive”, ”neutral”, or ”negative”. How-

ever, if they chose the wrong one for some reasons, the predictor might miss important

patterns because during the training procedure it does not have access to all truly ”posi-

tive”, ”neutral”, and ”negative” tweets to learn the differences between all three labels.

There are many reasons why crowd workers assign wrong labels to documents. For

one, crowdsourcing is most reliable in situations where a correct answer to a question

exists [3]. Moreover, low-quality workers like spammers, inexperienced and/or unmo-

tivated workers [4, 5, 6] are attracted to crowdsourcing platforms as workers are com-

pensated with monetary rewards for completing labeling tasks. One countermeasure to

remove any labels submitted by such low-quality workers is to leverage human factors,

i.e. traits of crowd workers, to analyze which worker characteristics are important for
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acquiring reliable labels. Examples for human factors include patterns in annotation be-

havior [7] to identify spammers, the level of expertise [8], age of workers [9], and many

others. Besides human factors, which only consider worker-related factors, there are also

task-related factors, e.g. a clear task specification contributes to more reliable labels [10],

and document-related factors like document difficulty [11] that affect label reliability.

It is difficult for experimenters to take all of these factors into consideration when

designing the labeling task because the analysis of these factors depends on the metadata

provided by crowdsourcing platforms – if a platform does not provide specific metadata,

the respective factor cannot be considered for determining the label reliability. To avoid

this limitation, one could implement one’s own crowdsourcing platform, but this imple-

mentation will take time to get adopted by requesters and crowd workers in the best case.

In the worst case, this new implementation will be ignored. Therefore, it is more promis-

ing for experimenters to use one of the popular crowdsourcing platforms like Amazon

Mechanical Turk or CrowdFlower which have a large number of crowd workers. This de-

pendency of experimenters on the metadata provided by existing crowdsourcing platforms

limits the quality of crowdsourced datasets. Hence, it is desirable to identify methods en-

hancing label reliability that are independent of the underlying crowdsourcing platform.

Translated to Figure 1.1, this means that methods to enhance label reliability should be

applied either in step one or seven. The goal of this thesis is to propose such a method

for step one, i.e. before the dataset is sent to a crowdsourcing platform. The only type

of metadata that would be leveraged by our proposed method during preliminary experi-

ments is the annotation time of each document, i.e. how long it took a worker to assign a

label to the document, to determine the length of a worker’s learning process. Fortunately,

this metadata is provided by popular crowdsourcing platforms like Amazon Mechanical

Turk and CrowdFlower by default.
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1.2 Thesis Scope and Research Questions

One neglected aspect in the discussion of label reliability in crowdsourcing is that crowd

workers gradually acquire experience and background knowledge in a labeling task over

time. In other words, they undergo a learning process. Thus, one would expect them to

become more accurate at assigning labels to documents over time. For example, if the task

is about assigning sentiment labels to tweets involving ”Dark Souls III”, workers might

initially know little about the topic. However, after reading and labeling some tweets,

they realize that it is a challenging role-playing computer game in a Dystopian world,

they also notice common key words that identify the dominant sentiment in a tweet, etc.

To the best of our knowledge, no one has analyzed the connection between label reliability

and the learning process. Another aspect that deserves consideration in this analysis is the

effect of document difficulty on label reliability. Intuitively, one would expect labels for

difficult documents to be less reliable. But is this assumption true? Or is it affected by

the learning process? Therefore, this thesis also studies how document difficulty affects

label reliability. Last but not least, if the difficulty of documents potentially affects label

reliability, it seems promising to identify these difficult documents and separate them from

the rest to improve label reliability in crowdsourcing. That is the key idea of our proposed

crowdsourcing methodology.

In this thesis, we use a hierarchical sentiment labeling task on Twitter as the acquisi-

tion of reliably labeled texts is a challenge, because tweets are posted continuously and

exhibit great diversity in language and content. Moreover, sentiment analysis is known to

be subjective and therefore sufficiently difficult. This difficulty is also perceived by crowd

workers [12], enforcing them to learn over time how to assess sentiment more accurately.

As topic for the sentiment analysis, we focus on tweets that were published during the

first debate between Hillary Clinton and Donald Trump during the US presidential elec-

tion 2016. Choosing such a hot, polarizing topic increases the chances of encountering

difficult tweets which we require for our analysis. In light of the above problems, this

thesis answers the following research questions:
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• RQ1. How does labeling behavior of crowd workers over time affect their label

reliability?

• RQ2. How does tweet difficulty affect the label reliability of crowd workers over

time?

• RQ3. Can we improve label reliability by utilizing findings from RQ1 and RQ2?

1.3 Contributions

It is known that crowd workers undergo a learning process, i.e. their annotation times

initially drop rapidly and then they converge to a stable level [13, 7]. We refer to the early

phase as learning phase and to the late phase as exploitation phase. The main contributions

of this thesis are:

1. We find that the label reliability of crowd workers is lower in the learning phase

than in the exploitation phase (Chapter 4).

2. We quantify the length of a crowd worker’s learning phase in terms of how many

documents she labeled before which helps estimating a worker’s label reliability

(Chapter 4).

3. We discover that document difficulty affects the label reliability of a crowd worker

in the exploitation phase negatively, while no effect can be observed in the learning

phase (Chapter 5).

4. We propose a workflow that filters out such difficult documents before crowdsourc-

ing the remaining documents (Chapter 6).

5. We create labeled benchmark datasets for sentiment analysis2 (Chapter 4) and doc-

ument difficulty 3 (Chapter 6) to help other researchers investigate document diffi-

culty.
2https://www.researchgate.net/publication/325180810_Infsci2017_

dataset
3https://www.researchgate.net/publication/326625792_Dataset_for_our_
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1.4 Thesis Outline

The overall goal of this thesis is to increase the reliability of crowdsourced datasets as

motivated in this chapter. After discussing existing literature in the field in Chapter 2, we

describe the Twitter dataset to be used throughout this thesis in Chapter 3 as well as intro-

duce fundamental concepts. Chapter 4 addresses RQ1 by analyzing the behavior of crowd

workers while they complete the sentiment labeling task. Chapter 5 builds on these find-

ings to examine RQ2, that is how tweet difficulty influences this label reliability of crowd

workers. The findings from Chapter 4 and 5 motivate a new crowdsourcing methodology

that is described in Chapter6, where we try to predict the difficulty of tweets to answer

RQ3. Chapter 7 concludes this thesis by summing up the main ideas and discussing po-

tential implications and applications of our findings including avenues for future research.

paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_

labeling

7

https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling
https://www.researchgate.net/publication/326625792_Dataset_for_our_paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_labeling


Chapter 2

Related Work

Although crowdsourcing has many benefits, it provides an uncontrolled environment [14]:

” As the entire [crowdsourcing] process, such as recruitment, task assignment and result

collection, is done on the Internet, the requester will not get a chance to meet any worker.

Hence, the requester will not know whether a worker is genuine or a spammer as he or

she does not have access to their personality data. ” This implies that low-quality workers

exist who assign unreliable labels. Thus it is crucial to identify them and remove their

submitted micro-tasks. We therefore discuss multiple indicators of crowd workers that

suggest good/bad worker performance and focus specifically on annotation time as this

is the aspect we use in this thesis. Similarly, we review literature that models document

difficulty, and in particular tweet difficulty in crowdsourcing and similar environments.

We also discuss in the context of crowdsourcing how worker disagreement on a document

is utilized to estimate the document’s difficulty.

While most of the work we discuss is about the domain crowdsourcing, some studies

come from the domain active machine learning1 [15]. Those fields differ in their objec-

tives, but the quality of the labels obtained from the workers is mission-critical in both

fields.
1We use this term instead of the more common one active learning to emphasize that we mean active

learning in machine learning and not students participating more actively in the learning process.
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2.1 Human Factors

Several human factors, which denote traits of crowd workers, have been analyzed in the

crowdsourcing literature, aiming to understand the characteristics of workers who submit

reliable labels. For example, when examining the effect of age on worker behavior, it

has been found that older workers tend to complete more tasks [9]. Sharing the fram-

ing/purpose of a labeling task with the crowd workers has been shown to improve their

performance [16]. The problem of obtaining labels from experts versus non-experts has

been investigated for diverse tasks [2, 17, 8]. The general trend emerging from these

works is that experts rarely provide more reliable labels than non-experts. Instead, most

of the time both groups provide labels of similar quality. Consistency, which might be

affected by training, expertise, or fatigue emerging during a crowdsourcing task, has been

proposed as a measure for workers’ reliability [18]. Consistency is measured by letting

workers label previous documents again and if they consistently assign the same label,

it indicates that their labels are generally more reliable. In [19], the authors report that

workers produce more reliable labels if they must explain their rationale for choosing a

specific label before assigning it. Psychological effects such as the Dunning-Kruger effect

[20] (crowd workers might overestimate their expertise w.r.t. a topic and therefore try to

compensate for it with general knowledge), also contribute to the reliability of workers.

In [21], Calma et al. point out that workers, called “oracles” in their work, can vary

in their expertise and be uncertain in their decisions for various reasons. Calma et al.

propose that oracles collaborate with each other and with the active machine learning

algorithm to achieve better performance [21]. Collaboration is out of scope of our work,

since we want to understand first whether and to what extend workers are (un)certain, but

we expect that some of the sources of uncertainty mentioned in [21], namely boredom

and fatigue, can be traced in the temporal dynamics of crowd workers that we investigate.

Several works attempt to predict the quality of the labels delivered by the workers

by analyzing solely behavioral features like annotation time, mouse clicks and scrolling

behavior [22, 23, 24, 25]. In [26], Han et al. combine behavior data with a worker’s

historical data, e.g. the performance over the last 10 submitted crowdsourcing tasks, and
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show that predictors trained on such data are more robust against cheating than predictors

trained on behavioral features alone. To avoid low-quality labels, Kara et al. propose

a new metric to measure worker quality in crowdsourcing settings which takes worker

behavior into account [6].

2.2 Annotation Time as a Human Factor

Annotation time is a behavioral feature of human workers and describes the time needed

for a worker to assign a label to a document. This feature is widely used to draw conclu-

sions on workers’ performance and on label quality, see e.g. [27, 28, 24, 29]. We denote

this time as annotation time or as labeling cost: this second term comes from active ma-

chine learning, see e.g. [30], [31], and [32] because the more time a worker needs for

the annotation, the higher costs incur if one assumes a limited time that is available for

finishing the whole labeling process. In that case higher annotation times imply less la-

beled documents. Zhu et al. show that workers’ behavior over time is indicatory of their

reliability [7]: they monitor the time needed to annotate a document and point out that the

time curve for ”normal” workers sinks rapidly in the beginning and then remains roughly

the same in the rest of the annotation task. Zhu et al. consider spikes as indicatory of

distractions from the annotation work, and cast doubts on the reliability of the labels thus

produced [7]. This is one of many studies that leverage annotation time to discriminate

between reliable and unreliable workers.

The analysis of the temporal dynamics of workers’ activities is a much rarer subject. In

[13], Settles et al. study annotation dynamics in order to optimize active machine learning

strategies. They report that after the annotation of only a few documents, the labeling

cost, defined as the time required to label a document, converged toward a constant value

[13]. This is in agreement with [7], who expect that the annotation time per document

converges rapidly and does not change thereafter.

Insights on the convergence process itself are even more seldom. An indirect find-

ing is reported by Baldridge et al., who investigate the performance of an active machine
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learning strategy when the labels are delivered by a human expert vs a human non-expert

[30]. These authors found that predictors trained on labels obtained from non-experts

caught up with predictors from expert labels after roughly 6 hours in the annotation pro-

cess [30]. This finding suggests that convergence of the annotation time is not always fast

and smooth. In RQ1, we drill into the temporal dynamics of workers’ behavior to shed

more understanding on how annotation time changes as a worker sees more and more

texts.

2.3 Worker Disagreement in Crowdsourcing

There are two schools of thought on worker disagreement in crowdsourcing. According

to the first one, worker disagreement is noise and therefore it should be minimized in

datasets as only datasets with low disagreement will be useful for training predictors that

generalize well. To minimize worker disagreement, an experimenter would have to pro-

vide labeling instructions for crowd workers that cover all possibilities in order to teach

workers to label the documents according to the instructions. For example, in the sub-

jective task of sentiment analysis, experimenters could reduce worker disagreement by

defining certain rules, e.g. ”if a document contains positive and negative sentiment, select

’negative’ as the label”. In contrast, according to the second interpretation, worker dis-

agreement may be harnessed: ”[crowd worker] disagreement is not noise, but signal” [33].

That means the fact, that workers disagree on the label of a document, indicates that this

document could be interpreted in multiple ways – it does not necessarily imply that any

of the crowd workers is unreliable. Aroyo et al. argue in [33] that worker disagreement

reflects the true labels of the documents better because providing instructions that cover

all possibilities artificially reduce disagreement, yet the resulting datasets might not result

in accurate predictors. Instead, the crowd workers’ subjective interpretations of the docu-

ments are more realistic and datasets labeled in this way eventually lead to more accurate

predictors. We adopt the idea that worker disagreement is a signal in this thesis. More

precisely, we interpret the presence of disagreement as an indicator for the difficulty of a
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document, i.e. the more workers disagree on a document, the more difficult we consider

it to be. This assumption forms the basis for Chapter 5 and Chapter 6.

Regardless of the two different interpretations of worker disagreement, disagreement

in crowdsourcing is analyzed in different contexts. For word sense annotations it was

found that it is easier to predict high disagreement than lower levels of disagreement [34],

which is why we model it as a binary classification task in RQ2 and RQ3. Generalizability

theory is employed to analyze different factors (called ”facets”) of an annotation experi-

ment to identify those factors that contribute most to high worker disagreement [35]. Oth-

ers find that training workers reduces disagreement [36] and that some strategies for train-

ing workers are more promising [37]. It was shown that high/low Kappa/Krippendorf’s

alpha values, which both measure worker disagreement, do not necessarily correlate with

predictor performance [38]. For example, low worker disagreement could have been ar-

tificially achieved by workers preferring one specific label over others due to the experi-

menters providing explicit labeling instructions that enforce the use of one label in certain

situations. These instructions might stem from the idea that worker disagreement is noise

and must be minimized as explained above. Predictors trained on these data would also

be biased and therefore perform poorly on unknown data. Hence, training workers comes

with its own risks: providing biased examples to workers might introduce biased labels,

s.t. one label is preferred over others. Since we are using a subjective sentiment anal-

ysis task on Twitter in this thesis, we do not provide sample tweets from the dataset to

explain the labels, just a short, general description with imaginary, simple tweets to avoid

introducing any bias.

2.4 Document and Tweet Difficulty

Martinez et al. utilize a predictor’s certainty to approximate the difficulty of a document

[39]. The underlying assumption is that a predictor is less certain about predicting labels

for difficult documents. We employ the same idea in this thesis to derive tweet difficulty

heuristically. Label difficulty has also been acknowledged and researched in the context
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of active machine learning [40] and crowdsourcing [41]. However, Gan et al. [41] focus

on modeling the difficulty of labeling tasks in crowdsourcing instead of single documents.

Paukkeri et al. [42] propose a method to estimate a document’s subjective difficulty for

each user separately based on comparing a document’s terms with the known vocabulary

of an individual.

Sameki et al. model tweet difficulty in the context of crowdsourcing [11] where they

devise a system that minimizes the labeling costs for micro-tasks by allocating more bud-

get to difficult, i.e. ambiguous, tweets and less to non-ambiguous ones. The authors argue

that more sentiment makes a tweet more difficult to understand. Hence, they formulate

the problem of estimating tweet difficulty as a task of distinguishing sarcastic from non-

sarcastic tweets. One of the factors that they utilize is worker disagreement - if more

individuals agree on a label, it is considered easier. That means they also treat worker dis-

agreement as a signal. An approach that is related in spirit to the idea expressed by Sameki

et al. [11] is estimating the difficulty of queries [43]: topic difficulty is approximated by

analyzing the performances of existing systems - a lower performance indicates more dif-

ficult topics. In our work, we also harness worker disagreement to approximate tweet

difficulty - lower worker disagreement is associated with non-ambiguous tweets. While

this thesis bears similarities with [11], the objectives differ: in RQ2 we are explicitly inter-

ested in analyzing how tweet difficulty affects the reliability of tweets that workers assign,

while Sameki et al. employ tweet difficulty as a feature to predict the number of workers

that should label a tweet. Furthermore, we combine worker disagreement with two more

factors to model tweet difficulty for RQ2. In terms of RQ3, the objective of Sameki et

al. is to identify tweets that must be labeled by more workers while our objective is to

find the tweets that may be treated differently before being given out for crowdsourcing

at all. Therefore, in RQ3 we are the first ones to demonstrate how predictor performance

is affected by removing tweets with Disagreement compared to allotting more workers to

them. Another approach related to this thesis is described in [44] where the authors pro-

pose a probabilistic method that takes image difficulty and crowd worker expertise into

account to derive a ground truth – the authors show that this idea is more accurate than
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majority voting. However, they do not consider that workers learn during a labeling task.

In addition, we focus on analyzing how the performance of predictors is affected by tweet

difficulty.

We do not adopt any of the proposed methods in text mining to model difficulty, e.g.

[45], although tweets are also texts. This is because tweets are too short to extract mean-

ingful grammatical features and sometimes they even do not contain any well-formed

sentences at all. Therefore, we model tweet difficulty using the abovementioned heuris-

tics from the crowdsourcing context which correlate intuitively with tweet difficulty.
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Chapter 3

Materials and Basic Methods

First, this chapter describes how we acquired the dataset used for analyses in the following

chapters. Parts of this work appeared in [46]. In addition, we describe how to compute

the pairwise similarity of tweets which is used to answer RQ2 and RQ3.

3.1 Building the Dataset for the Experiments

Experiments with human subjects require a careful design process in order to obtain a

reliable dataset for analysis. Figure 3.1 illustrates the different subtasks we performed to

produce our initial dataset TRAIN. After designing the annotation experiment, we de-

vised an annotation protocol, implemented our web-based annotation tool and collected

a Twitter dataset which is suitable for the labeling task we have chosen. After prepro-

cessing the Twitter dataset and storing it in a database, we recruited volunteers as crowd

workers who participated in the actual experiment in a controlled environment. The task

given to the workers was to label the tweets according to the hierarchical labeling scheme

described in Figure 3.2. We use the resulting labeled dataset for investigating our research

questions. The following subsections describe all aforementioned steps in more detail.
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Figure 3.1: Workflow for the annotation experiment and the analysis of the crowd work-

ers’ data.

3.1.1 Collecting the Dataset

We collected from Twitter 240k tweets with the Twitter Streaming API on 27 September

2016 during the first public debate (9-10.30pm EST) between Donald Trump and Hillary

Clinton using the hashtags #debatenight, #debates2016, and #debates. In the preprocess-

ing phase we kept only unique tweets which did not contain any URLs or attachments.

We also selected tweets to contain at least 23 words1. These tweets form dataset TRAIN.

Choosing tweets with a high number of words increased the probability that a sentiment

was expressed in those tweets. Tweets meeting the above preprocessing criteria but con-

taining fewer words were added to dataset C instead. As a result, TRAIN contains 500

tweets, while C comprises 19.5k tweets. In addition, we used a subset of 200 randomly

selected tweets from TRAIN to build TRAINS .
1We calibrated this number so that we have a significant number of words in a tweets and also making

sure that we have 500 tweets remaining in the dataset after the preprocessing.
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3.1.2 Designing the Annotation Experiment

Figure 3.2: Annotation scheme for the hierarchical labeling task. Labels with dashed

outline are removed from the dataset. Note that each hierarchy level corresponds to one

of the three label sets: Relevant vs. Irrelevant, Factual vs. Non-factual, and Positive vs.

Negative.

To study the change of labeling costs over time, we prepared sets of tweets in three

different sizes, S (small set of 50 tweets), M (medium-sized set of 150 tweets), and L

(large set of 500 tweets) as explained below. With this, we could check whether the

number of tweets to be annotated affects labeling costs, e.g. because crowd workers learn

what makes a tweet negative (for example) and assign labels faster, or because they get

distracted or tired over time.

To build the set S of tweets, the annotation tool chose randomly 50 tweets from

TRAINS for each crowd worker belonging to group S and 150 tweets from TRAINS for

crowd workers of group M. The reason for sampling from TRAINS instead of TRAIN is

that we wanted each tweet to be labeled multiple times. Only workers of group L labeled

all tweets of TRAIN. Consequently, sets of tweets to be labeled by crowd workers from

S and M may be different but overlapping. Crowd workers from groups S and M labeled

tweets in an uninterrupted session of approximately 90 min, while workers from group L

performed their labeling tasks in three separate sessions of at most 90 min each. 150, 200,

and 150 tweets were labeled in the first, second, and third session respectively. Workers

had to take a break between each session for at least 30 min.
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The recruitment of crowd workers, see Figure 3.1, middle upper part, was the next

step. We recruited crowd workers from two geographic regions, namely from Magdeburg

(MD) in Germany and from Sabancı (SU) in Turkey to investigate the generalizability

of our results for RQ1. Since it is known that providing crowd workers with different

information about a task affects their labeling behavior [47], we prepared an annotation

protocol with the same information for all participants to ensure that they start with simi-

lar background knowledge. In addition, the annotation experiment was run in a controlled

setting, a class room in our case, where one of the designers of the experiment was avail-

able at all times to assist the participants if they encountered any problems and to ensure

that they did not influence each other by talking.

The annotation tool2, see Figure 3.1, right lowermost part, chose randomly the tweets

to be presented to each crowd worker. One such sample tweet from TRAIN is shown

below:

Did trump just say there needs to be law and order

immediately after saying that he feels justified not

paying his workers?? \#Debates

Figure 3.3 displays a screenshot of the web-based annotation tool we implemented.

Our annotation tool simulates a crowdsourcing environment where users log in to perform

specific labeling task. Crowd workers were given the task of determining the sentiment

expressed in each tweet presented to them.

To enforce the labeling scheme of Figure 3.2 and prevent contradictory label assign-

ments (e.g. labeling a tweet as Factual and Negative), our implemented annotation tool

presented first the pair of labels Relevant and Irrelevant as shown in Figure 3.3. Once a

crowd worker chose a label, Factual and Non-factual appeared. Similarly, Positive and

Negative were displayed if and only if crowd workers decided for Non-factual as Factual

represents Neutral tweets3. For each of the labels to be assigned, crowd workers had to

assess the confidence in their own label choices by selecting as a label either High or
2https://github.com/fensta/annotationtool
3We use Factual and Neutral interchangeably throughout this thesis.
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Low. This way, each crowd worker assigned either two or three annotation and confi-

dence labels to a tweet. Besides the labels, the annotation tool stored for each label set the

times needed for picking a label (which we call the annotation time) and the time needed

to select a confidence label (called confidence time). Additionally, we stored the order in

which a crowd worker labeled her tweets. Thus, we can easily identify the labels of the ith

tweet for a given worker. To display the next tweet to be labeled, the tool first randomly

picked a tweet from the backend (MongoDB in our case) and displayed it to the crowd

worker in the web frontend. Once a crowd worker finished labeling the given tweet, all

annotation and confidence labels as well as annotation and confidence times were stored

in the backend and the next tweet to be displayed was picked randomly again. The tool

stopped once the number of tweets specified by the crowd worker group had been labeled.

Figure 3.3: Screenshot of the annotation tool displaying all three sets of labels to be

assigned. The number in bold on top is the database ID of the tweet.
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Institution Group Total Labeled tweets

S M L

SU 13 9 3 25 3500

MD 10 8 1 19 2200

Table 3.1: Worker distribution and total number of labeled tweets per institution. Group

S labeled 50 tweets, group M labeled 150 tweets, and group L labeled 500 tweets.

3.1.3 Labeling the Dataset

In total, 44 students participated in our annotation experiments in MD and SU. The crowd

workers in both institutions were from different countries, with a similar gender distri-

bution (60% male), had heterogeneous working experiences, were of similar age (20-30

years old), bachelor or graduate students, but all with a background in computer science.

The main difference between both institutions was the way workers were recruited. The

annotation experiment was carried out as part of a lecture in SU, while it was conducted

with volunteering students in their spare time in MD. Thus, the motivation among work-

ers of MD might have been higher than in SU. The experiment was run over the course

of three weeks in MD, as opposed to SU where it was performed within one lecture. The

worker distributions of MD and SU are shown in Table 3.1 indicating that we had a simi-

lar number of participants per worker group. Two workers from MD participated in group

S and M with a break of more than one week in between both labeling sessions. Further-

more, they labeled different tweets in each session. Otherwise the groups S and M were

completely disjoint.

3.1.4 Analyzing the Dataset

In this section we explore the basic properties of TRAIN in MD and SU. Specifically, we

focus on the distribution of confidence and sentiment labels as well as the time required

for crowd workers to assign sentiment labels.
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Distribution of Sentiment and Confidence Labels

We first report the distributions of the sentiment and confidence labels in TRAIN for

MD and SU. These distributions are shown in Figure 3.4 separately for worker groups

S, M, and L respectively. It turns out that the trends are similar in MD and SU which

becomes more obvious in Figure 3.5 when group L is discarded due to the few number of

participants: most tweets are deemed Relevant (> 30%) and Negative (> 20%). However,

there are subtle differences in the sentiment label distributions, namely group S of SU

assigned Relevant more frequently than their counterparts in MD. In terms of confidence

labels, participants of group S in SU were more confident in their label choices than their

counterparts in MD. Nevertheless, the differences are minor and we interpret that as an

indicator that the crowd workers labeled the tweets faithfully.
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Figure 3.4: Distribution of sentiment and confidence labels for worker groups S, M, and

L. Left: label distribution. Right: confidence label distribution.

Median Annotation Times

Annotation times represent the costs for labeling tweets. The longer the annotation pro-

cess takes for a single tweet, the more expensive the acquisition of the label gets as crowd

workers need to be compensated appropriately. We report the labeling costs for each la-

bel separately. For aggregating the costs, we use medians instead of averages because the

former is more robust towards outliers which occur at times in TRAIN. Therefore, we

use median annotation times throughout the thesis when having to aggregate annotation
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Left: label distribution. Right: confidence label distribution.
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Figure 3.6: Median labeling costs per label. Left: MD. Right: SU.

times. In Figure 3.6, we visualize these median annotation times separately for each label

in MD and SU. Results show the same tendency in both SU and MD where most of the

annotation time (9 to 14 s) is spent on choosing a label from the first set of labels, while

selecting appropriate labels for the other label sets takes about 2 s each. This behavior is

expected since one first needs to read and understand a tweet before assigning labels. The

only difference between SU and MD is that workers in MD need approximately 4 s more

time to assign a label for the first set of labels.

3.1.5 Cleaning the Dataset

For all analyses throughout this thesis, we only consider ”cleaned” datasets, meaning

whenever a tweet was assigned the label Irrelevant by a crowd worker, only the anno-
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tation time for the first label set is considered as labeling cost and all other labels and

corresponding annotation times assigned to this tweet by that worker are discarded. Dur-

ing the annotation experiment we did not want our labeling hierarchy to be too skewed

as this could have biased the workers’ labeling behavior over time. For example, workers

could have been more likely to assign Irrelevant once they noticed that no other labels had

to be assigned in this case. Hence, we opted for letting workers also assign the remaining

label sets. However, in practice we would not proceed with labeling such tweets beyond

the first label because we are only interested in tweet sentiment of relevant tweets, which

is why we focus on the cleaned datasets.

3.2 Methods for Comparing the Similarity of Short Doc-

uments

In our experiments addressing RQ2 and RQ3, we employ a kNN predictor. Therefore we

must establish a similarity between any two tweets t1 and t2. Since tweets may exhibit

different lengths, we normalize this similarity by the longer tweet to avoid any influence

of the text length on the similarity. Therefore, this normalized similarity yields values

between zero (tweet texts are disjoint) and one (identical tweets). We refer to this normal-

ized similarity as NormSim and it is computed between t1 and t2 as:

NormSim(t1, t2) = sim(w1, w2)/max(|w1|, |w2|) (3.1)

where w1 and w2 represent the words in the tweets t1 and t2 and sim(w1, w2) com-

putes the number of shared words between t1 and t2 according to a similarity metric. In

this thesis, we utilize as metrics:

1. Longest common subsequence

2. Longest common substring

3. Edit distance
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These three metrics are typically defined on character-level, i.e. they compute the

similarity between two single words by comparing them character by character. Since

we deal with tweets containing multiple words, we apply the metrics on word-level in-

stead. Edit distance between two strings counts how many characters in one string need

to be changed to transform it into the other string on the character-level. However, when

focusing on the word-level, edit distance counts how many words in tweet t1 must be

replaced s.t. it results in tweet t2. Similarly, longest common subsequence counts how

many characters in both words are in the same relative, but not necessarily contiguous,

order in terms of character-level. Extending this to idea to word-level means this met-

ric now counts the words in t1 and t2 that are in the same relative, but not necessarily

contiguous, order. Last, but not least, longest common substring counts how many con-

tiguous characters both words share on the character-level. That means this metric counts

on the word-level the number of words that are contiguously shared among t1 and t2.

For NormSim to yield values between zero and one, the term sim(w1, w2) needs to

be inversed when using edit distance because large values indicate that t1 and t2 are differ-

ent as opposed to being similar. Thus, when using edit distance, we use 1− sim(w1, w2)

instead of sim(w1, w2) in Equation 3.1.
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Chapter 4

The Annotation Behavior of Crowd

Workers over Time

In this chapter we investigate RQ1, i.e. how the reliability of labels assigned by crowd

workers develops over time. To do so, we first analyze how workers learn during a label-

ing task. Specifically, we focus on the dynamics of annotation times, i.e. the times needed

by crowd workers to assign labels. With these identified patterns in mind, we investigate

how these affect the label reliability of crowd workers. First, we describe our assumptions

about how we expect crowd workers to learn in labeling tasks and we formulate specific,

refined research questions in Section 4.1. Section 4.2 describes the methods used for

answering these questions and Section 4.3 reports our results. Section 4.4 discusses ap-

plications of these results and possible avenues for future research. Parts of this chapter

appeared in [46].

4.1 Introduction

Crowdsourcing is a widely used means to label large-scale datasets, but the labels thus

produced by the human crowd workers often lack the desired quality: the studies of [4, 5,

6] attribute errors and inconsistencies to spammers, inexperienced workers and workers

without adequate motivation. How do workers behave when they assign labels though,
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assuming that they are neither spammers nor unmotivated? The temporal dynamics of

the text labeling task, namely the process of learning what makes a short piece of text

positive or negative with respect to sentiment have been rarely the subject of investigation

thus far.

To the best of our knowledge, the connection between labeling costs/annotation time

(total time needed to label one document) and the learning phase as well as label reliability

and learning phase have not been analyzed yet. Our aim is to investigate these issues in a

hierarchical crowdsourcing tweet labeling task. Our main assumption is that, for a given

complex labeling task, workers need to learn a conceptual model, to which we also refer

as worker’s model. We assume that such a model includes background knowledge about

the task. For example, if the task is about assigning sentiment labels to tweets involving

”Dark Souls III”, workers might initially know little about the topic. However, after

looking at some tweets, they could learn that it is a challenging role-playing computer

game in a Dystopian world. Learning a model in this context means that crowd workers

refine their initial conceptual models over the first few encountered documents. While

doing so, the labeling costs, which could be identified by a significant drop in annotation

times, are expected to decrease. We refer to this phase as worker’s learning phase. Then,

after some time these labeling costs are expected to converge to a roughly constant level,

to which we refer as worker’s exploitation phase. In short, the exploitation phase begins

directly after the learning phase.

We expect our assumption to hold if and only if the labeling task is sufficiently chal-

lenging, meaning that crowd workers do not have a perfect conceptual model at hand in

the beginning. Otherwise they can solve a task without requiring any additional knowl-

edge, therefore no learning phase would occur. For example, if the labeling task would be

to identify the picture that contains a human from a set of three pictures, workers would

easily solve the problem because they intuitively know the characteristics that describe

humans.

In light of the above discussion, we investigate the following research questions:

• RQ1.1. Which factors affect the duration of the labeling process?
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• RQ1.2. How do institution and worker group affect the labeling costs?

• RQ1.3. Does the variance of labeling costs reduce toward the end of the labeling

task?

• RQ1.4. How reliable are the labels obtained from the learning phase?

4.2 Methods for Analysis

Due to the low number of participants in group L we ignore all tweets labeled by these

crowd workers in our analysis. In the following, we first discuss the design of our analysis

that is common to all RQs (RQ1.1- RQ1.4), and then we discuss how we studied each RQ

separately.

4.2.1 Elements of the Data Analysis Common to all Research Ques-

tions

Modeling Labeling Costs of Individual Tweets For a given crowd worker, we approx-

imate her labeling costs for a single tweet as the total time needed to assign all tweet

labels.

From Individual to Aggregated Labeling Costs In RQ1.1, RQ1.2, and RQ1.3, we are

interested in labeling costs over time for worker groups and institutions. To aggregate

labeling costs of single workers, we consider medians instead of averages throughout this

chapter as the former are more robust to outliers as described in Section 3.1.4. The details

are given in the respective sections.

Significance tests Whenever we perform significance tests, we accompany them with

visual analyses. We always employ the two-tailed Wilcoxon rank sum test (cf. Ap-

pendix A.1) with significance level α = 0.05 since our labeling costs are not normally dis-

tributed. Only in RQ1.3 we use ANOVA (cf. Appendix A.2) after log-normal transform-
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ing the labeling costs. The two-tailed variant of Wilcoxon rank sum test is appropriate in

our case because we already know the direction of the relationship from visual inspection

and our ultimate goal is to tell if differences between labeling costs are significant, but

not if they are significantly larger or smaller. Unless otherwise stated, we compare the

first i and the last i labeling costs of workers because ultimately, we want to determine if

there are differences between the initial and final labeling costs. Since our annotation tool

randomly selected the tweets to be labeled by a crowd worker, our collected data could

suffer from order effects. For example, a crowd worker might have labeled most of the

ambiguous tweets at the beginning of the annotation session while non-ambiguous tweets

were labeled toward the end of the session. Assuming that annotating non-ambiguous

tweets is in general faster than labeling ambiguous ones, crowd workers’ labeling behav-

ior over time could be easily misrepresented in this case. We account for such potential

order effects in our user data by shuffling a worker’s first i annotation times and her last

i annotation times separately, thus turning the ordered annotation times into sets. In this

scenario the unpaired Wilcoxon rank sum test is applicable. Furthermore, we verified

that the positions of the tweets, as they were seen by individual crowd workers, were ran-

dom, i.e. they occurred with equal probability at any position during annotation sessions.

Therefore, our statistical results do not suffer from any bias introduced due to labeling

ambiguous tweets toward the beginning and most non-ambiguous ones toward the end of

an annotation session, assuming that non-ambiguous tweets are labeled faster than am-

biguous ones.

Cleaning the data As described in Section 3.1.5, we discard sentiment labels of Irrel-

evant tweets from our analysis. One might argue that this more skewed labeling scheme

could bias our data in favor of significant results, but we performed significance tests on

the raw and cleaned version of TRAIN and obtained identical results. We omit the raw

results to facilitate readability.
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Figure 4.1: Overview of how the median labeling costs for the first i and last i tweets of

workers in a specific group are computed, which then serve as input for significance tests.

4.2.2 Factors Affecting the Length of the Labeling Process

As mentioned in Section 4.1, RQ1.1 analyzes which factors affect the duration of the la-

beling process. We quantify the duration of a worker’s learning phase and exploitation

phase by the number of tweets she labeled in the respective phase. First, we perform a

significance test and afterwards, we complement these results with a visual analysis of

workers’ labeling behavior. In the significance tests, we compare the first i labeling costs

of workers with their last i labeling costs graphically by plotting the resulting p-values

when varying i. We expect to obtain significant differences in the labeling costs up to a

certain i. After reaching this value, which indicates that a worker finished learning her

worker’s model, the differences should remain non-significant for the remaining tweets.

That means i marks the end of a worker’s learning phase and the beginning of her ex-

ploitation phase. Since we are interested in observing labeling costs for worker groups

and institutions, we aggregate labeling costs by using the median cost for the ith tweet

labeled by workers of the respective group in an institution. For comparing the first i with

the last i labeling costs in group G, where G ∈ {S, M}, within an institution U , where
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U ∈ {SU, MD}, we create for G two sequences representing the first i and last i median

labeling costs respectively. Each sequence comprises exactly i values. This process is

illustrated in Figure 4.1. Assuming that there are m crowd workers in G, we obtain the

values for the first i (last i) median labeling costs as follows: for the ith labeled tweet,

where i ≤ first i (i ≥ last i), of each worker belonging to G, we select the median from

the labeling costs of all m workers and add it to the list for the first i (last i) median label-

ing costs. We then convert both sequences into sets by shuffling their values to account

for order effects. Our corresponding null hypothesis to test is:

1. H0: in G of U , there is no difference between the set of the first i median labeling

costs and the set of the last i median labeling costs, where U ∈ {SU, MD} and

G ∈ {S, M}.

We assume that the learning phase in a worker group is completed once a p-value for

a given i exceeds the significance level. However, since some p-values are close to the

significance level and could thus also be just outliers, we focus on the overall trends of

the p-values that we obtain from varying i.

To complement the significance tests, assuming that there are n tweets, we analyze

how the labeling costs for the first i and for the remaining n− i tweets develop. Specifi-

cally, we plot for each G the median labeling costs for the ith tweet. Then we fit a poly-

nomial of degree three to the first i tweets within a worker’s learning phase and another

polynomial of degree three to the remaining n − i tweets. The parameter i thus creates

two intervals. For both polynomials we compute and plot the second derivatives, which

represents acceleration. Since we expect a worker’s learning phase to be completed after

seeing the first i tweets, the slope of the corresponding acceleration should be negative.

Similarly, the slope of the acceleration should be roughly zero in the exploitation phase

for the remaining n − i tweets. We test our hypothesis by varying the parameter i and

creating multiple plots.
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4.2.3 The Effect of Worker Group and Institution on Labeling Costs

As mentioned in Section 4.1, RQ1.2 investigates if any of the factors worker group (either

S or M) and institution (either MD or SU) affects the workers’ labeling costs over time.

Therefore, we perform a graphical and statistical analysis. For visualizing the labeling

costs, we display per institution for each worker her median labeling costs, but the workers

are ordered according to their worker groups. In the statistical analysis, we examine if

there are any differences in the temporal learning behavior between the same groups of

MD and SU. We also test if there are differences in the median labeling costs of S and M

within an institution. In both cases, we use the first i and last i labeling costs per crowd

worker. Each time, we compare the first i labeling costs with each other and repeat the

same procedure for the last i labeling costs separately. We use the method described in

Section 4.2.2 to determine median labeling costs for the ith tweet that are converted into

sets. Our null hypotheses are:

• H1: in G, the set of the first i median labeling costs in SU is identical with the set

of the first i median labeling costs in MD, where G ∈ {S,M}.

• H2: in G, the set of the last i median labeling costs in SU is identical with the set

of the last i median labeling costs in MD, where G ∈ {S,M}.

• H3: in U , the set of the first i median labeling costs in S is identical with the set of

the first i median labeling costs in M, where U ∈ {SU, MD}.

• H4: in U , the set of the last i median labeling costs in S are identical with the set of

the last i median labeling costs in M, where U ∈ {SU, MD}.

4.2.4 Development of the Variance of Labeling Costs over Time

In RQ1.3, as mentioned in Section 4.1, we investigate for each institution if the consen-

sus of workers in terms of labeling costs is affected by their learning phase. One way to

express consensus is as variability, specifically as between-subjects and within-subjects
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Figure 4.2: Schematic representation of our ANOVA. We assume a worker labeled n

tweets in total. Depending on her worker group, a different analysis is performed: for S,

the levels Learn and Exploit are analyzed, while for M two cases are distinguished: using

(a) the same levels as in S, and (b) introducing an extra level, Fatigue. The tweets falling

into the respective intervals of a level are used in ANOVA. For example, for Learn, the

worker’s first i labeled tweets are used. Each level is then split into two sublevels and

the intervals are halved correspondingly before performing ANOVA. The parameter i is

determined in RQ1.1 and we set m to a reasonable value.

variability. Between-subjects variability here describes the variation of the median anno-

tation times over all workers between the different levels (e.g. ”Learn Start” vs. ”Learn

End” as shown in Figure 4.2). On the other hand, within-subjects variability represents

the variability of the median annotation times (of all workers) within a level (e.g. “Learn

Start”). To measure both kinds of variability, we essentially perform ANOVA for each

institution because the resulting F statistic is computed as F = between-subjects variability
within-subjects variability . Thus,

we only compute and report numerator and denominator. To determine a value for both

variabilities once in the learning phase - Learn - and once in the exploitation phase - Ex-

ploit - we perform ANOVA according to the scheme depicted in Figure 4.2. Assuming
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that a worker labeled n tweets in total, she labeled the first i tweets in her learning phase.

Thus, these i tweets are considered in the level Learn, while all remaining n − i tweets

belong to Exploit. The parameter i is set according to the results of RQ1.1. The depen-

dent variable in ANOVA is the median labeling cost, while the independent one is the

position at which a tweet was labeled by a worker. For each level, we choose per worker

her median labeling cost in the corresponding interval. Since we want to obtain between-

subjects and within-subjects variabilities for Learn and Exploit separately, we split both

intervals into sublevels as outlined in Figure 4.2, e.g. Learn is divided into Learn Start

and Learn End. In both cases, we split the intervals in the middle. For group M we also

want to test if workers suffered from fatigue towards the end, hence we split Exploit into

Exploit and Fatigue. Instead of halving the intervals, we assign m − i tweets to Exploit

and the remaining n −m tweets to Fatigue. We set the parameter m relatively close to i

since we expect fatigue to begin soon after group S finished their tweets. Then we perform

ANOVA separately for Learn, Exploit for groups S and M and if the worker belongs to M,

we additionally perform an ANOVA for Fatigue after splitting Exploit up. Since ANOVA

assumes the data to be normally distributed, we log-normal transform our labeling costs.

We expect the consensus to be initially lower than toward the end since workers are

still refining their conceptual models. For this hypothesis to hold, between-subjects vari-

ability must decrease after Learn, while within-subjects variability should remain largely

unaffected as individuals label differently. If workers fatigue, we expect between-subjects

variability in Fatigue to be higher than in Exploit but lower than in Learn because only

a few workers might be exhausted which should be reflected in an increased between-

subjects variability.

4.2.5 Label Reliability over Time

RQ1.4, as mentioned in Section 4.1, examines if labels obtained during a crowd worker’s

learning phase are as reliable as those collected later in her exploitation phase. We per-

form an experiment to measure the effect of the learning phase on a worker’s labeling

reliability by casting our problem as a hierarchical classification task. Given n tweets per
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Figure 4.3: Schematic representation of hierarchical classification task. Two predictors

are trained per hierarchy level (=label set) for a crowd worker who labeled n tweets. Each

predictor is trained on i tweets (marked by yellow) - either the i tweets from the worker’s

learning phase or her last i labeled tweets. Dashed lines indicate the labels of a tweet on

the next lower hierarchy level. In the cleaned dataset, we discarded all further labels if a

tweet was assigned Irrelevant.

worker, our goal is to predict all her sentiment labels. We do not train predictors across

workers since they develop their own subjective conceptual models. For each hierarchy

level we build two k-nearest neighbor (kNN) predictors per worker, one, called LEARN ,

trained on all i tweets encountered during a crowd worker’s learning phase and one, called

EXPLOIT , trained on the last i labeled tweets by this worker. The parameter i is chosen

according to Section 4.2.2, s.t. a worker’s learning phase is completed after she saw the

first i tweets. This scheme is illustrated in Figure 4.3. We estimate with both predictors all

labels of the remaining tweets. However, in EXPLOIT , we also discard all tweets from

this worker’s learning phase and predict only the remaining unknown tweets, i.e. if that

worker labeled n tweets, LEARN predicts the labels of n − i tweets and EXPLOIT
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predicts the labels of n− 2i tweets. We build the following predictors, where numbers at

the end of acronyms describe to which label set/level a predictor is applied.

Predictor 1: core learning algorithm: kNN; acronym: LEARN 1

Predictor 2: core learning algorithm: kNN; acronym: LEARN 2

Predictor 3: core learning algorithm: kNN; acronym: LEARN 3

Predictor 4: core learning algorithm: kNN; acronym: EXPLOIT 1

Predictor 5: core learning algorithm: kNN; acronym: EXPLOIT 2

Predictor 6: core learning algorithm: kNN; acronym: EXPLOIT 3

kNN is motivated by the idea that a worker assigns to a tweet the same label she

assigned to earlier seen, similar tweets. To measure the similarity of two tweets t1 and

t2, we compute the edit distance1 according to Equation 3.1 in Section 3.2. We note that

finding the best pairwise similarity measure for tweets is beyond the scope of this thesis.

But our chosen measure could be improved, e.g. by incorporating word sentiment of the

tweets in addition to edit distance. For example, if both tweets contain three negative

words, they become automatically more similar. However, one reason for choosing the

three metrics mentioned above is the fact that quotes are common in (sarcastic) tweets

[11] and the US presidential candidate debate was controversial, hence the chances for

encountering sarcastic tweets are high. Therefore, our selected metrics might be more

suitable than expected at first glance.

We measure the performance of the trained predictors in terms of hierarchical F1-

score [48] as this is the recommended performance metric for hierarchical classification

tasks [49]. By varying k, the number of neighbors to be considered to predict unknown

labels in kNN, we obtain multiple F1-scores that we plot.

1We also tested longest common subsequence and longest common substring as alternative similarity

measures, but the results remained the same.
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4.3 Results of Analysis

In this section we report the results obtained for RQ1.1 - RQ1.4 using the methods de-

scribed in Section 4.2.

4.3.1 Factors Affecting the Length of the Labeling Process

The resulting p-values for H0 are shown in Figure 4.4 for worker group S and in Figure 4.5

for group M when varying i.
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Figure 4.4: p-values when comparing the first i median annotation times with the last i

times in group S of both institutions. Left: MD. Right: SU. Missing p-values in both plots

for k > 28 are > 0.2 and hence not displayed.

It turns out that workers of group S require about 20 tweets for learning their concepts

in MD and SU, while workers of group M need around 40 tweets in SU and in case of MD

more than 50. Thus, our result indicates that the worker group determines the duration of

the learning phase. Therefore, merging the groups to obtain workers’ labeling behavior

over time for entire institutions would not be meaningful.

The accelerations of the learning curves in MD are shown in Figure 4.6 for group S

and in Figure 4.7 for group M. In group S, learning continues after having seen more

than 16 tweets, but it is completed before labeling 25 tweets. Since we computed the

accelerations for varying i, which represents the number of tweets in the learning phase,

we observe that the learning phase for workers of S is completed after seeing around 20
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Figure 4.5: p-values when comparing the first i median annotation times with the last i

times in group M of both institutions. Left: MD. Right: SU. In neither plot are there any

missing p-values.

tweets. In group M of MD, the learning phase continues beyond 30 tweets, but finishes

before seeing 41 tweets. According to our plots, the learning phase for workers of M

is completed after about 40 tweets. These plots confirm the overall trend indicated by

the p-values in Figure 4.4 and Figure 4.5, namely that workers of group S learn faster

than those of group M. At the same time, the plots also suggest that the learning phase

in M is completed quicker than indicated by the p-values, namely after seeing around 40

tweets. Furthermore, they confirm that the learning phase for workers of group S takes

about 20 tweets. The same observations also hold for SU, for which group S is depicted

in Figure 4.8 and group M in Figure 4.9.

In RQ1.1 we analyzed which factors affect the duration of the learning process. Sum-

marizing our results on RQ1.1, we found that there are at least two phases with distinct

labeling costs, namely a learning phase containing the first 20 (40) tweets and an ex-

ploitation phase consisting of 30 (110) tweets in worker group S (M). Thus, the number

of tweets to be labeled in an annotation session affects the length of the learning phase.

Under RQ1.1, we found that labeling costs change, because workers learn their concep-

tual model at the beginning and then annotate faster. To investigate RQ1.2, we therefore

have to control for this change. To this end, we study the influence of the institution and

of the worker group on the (i) first i tweets and separately (ii) on the last i tweets.
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Figure 4.6: Fitted polynomials of degree three and their accelerations for MD (S). Left:

the interval boundary (red dashed line) is at i = 16 and the change in acceleration in the

first interval is negative, so learning is still ongoing. Right: the interval boundary (red

dashed line) is at i = 25 and the change in acceleration in the first interval is practically

zero, so learning is completed.

4.3.2 On Worker Group and Institution Affecting Labeling Costs

The median labeling costs plotted in Figure 4.10 illustrate that there seems to be a connec-

tion between worker groups and median labeling costs in that the costs tend to be higher

for workers of group S than for subjects of M.

The p-values are visualized for H1, i.e. comparing the first i median labeling costs,

in Figure 4.11 and in Figure 4.12 for H2, where only the last i median labeling costs are

considered. We find for H1 that there are some significant differences when comparing

group S of MD with group S of SU and the same holds for group M. Interestingly, accord-

ing to RQ1, these intervals of significant differences (in S: between tweets 10-25, in M:

between tweets 30-48) coincide roughly with the transition of workers from their learning

phase to their exploitation phase. One possible explanation for the significant differences

in these particular intervals might be that workers learn differently, i.e. some learn faster

than others, but a more detailed analysis is necessary. For H2 we obtain non-significant

results for group S, but for group M, we obtain significant differences in the labeling costs

between MD and SU. From Figure 4.10 we can deduce that workers of SU labeled faster

than their counterparts in MD.
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Figure 4.7: Fitted polynomials of degree three and their accelerations for MD (M). Left:

the interval boundary (red dashed line) is at i = 30 and the change in acceleration in the

first interval is negative, so learning is still ongoing. Right: the interval boundary (red

dashed line) is at i = 41 and the change in acceleration in the first interval is practically

zero, so learning is completed.

The resulting p-values for H3, i.e. comparing the first i median labeling costs between

groups S and M in the same institution, are depicted in Figure 4.13 and for H4, i.e. com-

paring the last i median labeling costs between groups S and M in the same institution,

they are shown in Figure 4.14. For H3 we obtain non-significant differences for groups

S and M, again the p-values are closest to the significance level during the transition of

workers from their learning to their exploitation phase. For H4, we observe significant

differences between groups S and M in SU, but rarely in MD, although there are many

p-values close to the significance level threshold. In this case it would be necessary to

have more data available to see if the p-values decrease.

In RQ1.2 we analyzed how institutions and worker groups affect the labeling costs.

Overall, from a visual analysis our results indicate that the labeling costs per tweet are

lower for workers of group M, independent of any institution. However, from a statistical

point of view the results are inconclusive. Nevertheless, they hint at hidden factors affect-

ing the labeling process in different institutions: while there are initially differences in

labeling costs between the same worker groups of MD and SU (H1), no such differences

exist in the beginning between worker groups of the same institution (H3).
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Figure 4.8: Fitted polynomials of degree three and their accelerations for M (S). Left: the

interval boundary (red dashed line) is at i = 16 and the acceleration in the first interval is

negative, so learning is still ongoing. Right: the interval boundary (red dashed line) is at

i = 25 and the change in acceleration in the first interval is practically zero, so learning is

completed.

4.3.3 Development of the Variance of Labeling Costs over Time

MD SU

Learn Rest Fatigue Learn Rest Fatigue

Within 0.12 0.11 (0.11) 0.02 0.25 0.26 (0.29) 0.29

Between 0.65 0.04 (0.02) 0.04 1.84 0.07 (0.11) 0.15

Table 4.1: Between-subjects and within-subjects variability for the different institutions.

Values in brackets are obtained when Rest of group M is split into Rest and Fatigue,

otherwise only Learn and Rest are used.

After log-normal transforming the labeling costs in MD and SU, the resulting plots

yield a Gaussian shape. We omit the plot to facilitate readability. Therefore, as described

in Figure 4.2, we obtain two sublevels for each level. For group S, we set i = 20 ac-

cording to Section 4.3.1, meaning tweets 1-20 are used in level Learn and tweets 21-50

in Exploit. For group M, i = 40 according to Section 4.3.1, so Learn comprises tweets

1-40 and Exploit utilizes tweets 41-150. We set m = 80 based on the personal feedback
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Figure 4.9: Fitted polynomials of degree three and their accelerations for SU (M). Left:

the interval boundary (red dashed line) is at i = 30 and the change in acceleration in the

first interval is negative, so learning is still ongoing. Right: the interval boundary (red

dashed line) is at i = 41 and the change in acceleration in the first interval is practically

zero, so learning is completed.

we received from few students of group M in SU after the annotation experiment because

they mentioned that they felt tired and that they started to worry when the first students (of

group S) started to leave. In Table 4.1, the resulting between-subjects and within-subjects

variabilities of MD and SU are listed for the different levels.

In RQ1.3 we analyzed if the variance in the labeling costs decreased toward the end

of workers’ sessions. Our results indicate that the workers’ labeling costs become more

homogeneous after their learning phase since the between-subjects variability decreases

from Learn to Rest and Fatigue. In addition, we find no indicators that workers in group

M of MD fatigued, while there is potentially some weak evidence that workers in group

M of SU might have fatigued as the between-subjects variability increases from Rest to

Fatigue. This could also explain partially why in RQ1.2 workers of group M in SU labeled

faster than their counterparts in MD. However, this interpretation needs to be examined

more closely in the future.

41



0 5 10 15 20 25
Annotator ID

0
5

10
15
20
25
30
35
40

M
ed

ia
n 

an
no

ta
tio

n 
tim

e 
in

 s S
M
MD
SU

Figure 4.10: Median labeling costs per worker, sorted by worker groups and institutions.
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Figure 4.11: H1 with i indicating the ith tweet workers labeled. Left: MD (S) vs. SU (S).

Right: MD (M) vs. SU (M). Whenever p-values for k < 50 are not displayed, they are

larger than 0.2.

4.3.4 Development of Label Reliability over Time

Before reporting the results of examining the label reliability in the learning phase, we

want to give an intuitive idea about what type of neighboring tweets kNN identifies for

our given problem. We show in Figure 4.15 the most similar tweet for two tweets from

our dataset. In both cases the unknown tweets share a partial quote with their nearest

neighbors.

In our hierarchical classification task, we set i for the learning phase according to Sec-

tion 4.3.1, i.e. for worker group S, i is set to 20 and n to 50, and for M, i is set to 40 and
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Figure 4.12: H2 with i indicating the ith tweet workers labeled. Left: MD (S) vs. SU (S).

Right: MD (M) vs. SU (M). Whenever p-values for k < 50 are not displayed, they are

larger than 0.2.

n to 150. The resulting training sets with these parameters are visualized in Figure 4.3.

We show in Figure 4.16, the resulting hierarchical F1-scores for MD and SU. Regardless

how we vary k, the number of neighbors used in kNN to predict unknown tweets in SU

and MD, the predictors trained on tweets from a worker’s exploitation phase consistently

outperform the predictors trained on tweets from her learning phase. The performance

gap between both predictors is larger when considering less neighbors in kNN for pre-

dictions, while it decreases when the number of considered neighbors increases. When

increasing k beyond k = 7, the F1-scores remain the same as there are no further addi-

tional neighboring tweets available in the training set. Since the difference in F1-scores

between k = 1 and k = 9 is marginal and forms almost a horizontal line, we argue that

this illustrates that workers indeed learned a concept because otherwise there should have

been some ups and downs in the scores.

In RQ1.4 we analyzed the reliability of labels obtained during learning and exploita-

tion phase. Our result suggests that workers’ labeling quality increases after the learning

phase. The results of Section 4.3.2 also contribute to analyzing label reliability as ex-

plained in Section 4.4.
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Figure 4.13: H3 with i indicating the ith tweet workers labeled. Left: MD (S) vs. MD

(M). Right: SU (S) vs. SU (M). Whenever p-values for k < 50 are not displayed, they are

larger than 0.2.

4.4 Discussion

4.4.1 Summary of Findings

We started this chapter with the expectation that workers would learn a conceptual model

for each set of labels, so that labeling costs, in the form of total annotation time per tweet,

would be higher during a crowd worker’s learning phase and lower once the conceptual

model was learned (exploitation phase). Our results give indications in support of this ex-

pectation: the labeling costs stabilize after some time on a lower level than observed at the

beginning of each labeling session. Our results also indicate that this change from higher

to lower labeling costs can be traced to some extent in both locations for the experiments,

Sabancı (SU) and Magdeburg (MD). Furthermore, the reliability of labels assigned dur-

ing a crowd worker’s exploitation phase is higher than in her learning phase. All of these

findings agree with the literature [7, 29, 30, 13] and common sense: when humans repeat

a task multiple times they get better at it. Thus, our findings underscore the importance

of training workers properly before they start an actual labeling task. In contrast to prior

work, we determined in Sections 4.3.1 and 4.3.2 the length of a crowd worker’s learning

phase and quantified it in terms of how many documents she has labeled before. While

doing so, we also found that the duration of the learning phase depends on the total num-
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Figure 4.14: H4 with i indicating the ith tweet workers labeled. Left: MD (S) vs. MD

(M). Right: SU (S) vs. SU (M). Whenever p-values for k < 50 are not displayed, they are

larger than 0.2.

ber of tweets that the workers have been asked to label. Our observation indicates that the

workers of tweet sets of size M had to see more tweets than those labeling a set of size S

before they completed their learning phase. We suspect that this duration may have been

influenced by the presence of a progress bar as part of the user interface of our annotation

tool. On this bar, each worker could see how much each labeled tweet contributed to her

annotation session. The progress bar operated as an incentive for workers labeling sets

of size S: each labeled tweet incremented the progress bar substantially by two percent,

which acted like an incentive, thus leading to closer attention and to the tendency to learn

fast. Analyzing the metadata, e.g. gender, that our annotation tool collected about workers

showed that they were roughly equally distributed across S and M, so they do not explain

the observed differences. Therefore, we need to further investigate this effect.

According to Section 4.3.3, the labeling costs per tweet were more homogeneous in

MD than in SU. In SU, the group labeling a set of M tweets had significantly lower label-

ing costs per tweet during the exploitation phase than those labeling S tweets. Likewise,

the SU group labeling M tweets was significantly faster than their counterparts in MD.

One possible explanation may be in the experiment design at the two locations. In SU,

the workers of sets of size M were in the same room as the workers of sets of size S,

and working simultaneously with them. Hence, when the latter, having to annotate less
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Figure 4.15: Two examples of kNN using edit distance. The label of the upper tweet is to

be predicted and the lower tweet represents its nearest neighbor.

tweets, were done, the former may have gotten an incentive to work faster. In MD, most

workers of sets of size M had never worked simultaneously with those annotating sets of

size S 2. Therefore, it would be interesting to repeat the experiment, but having groups S

and M use separate rooms. If this result of artificially speeding up the annotation process

due to peer effects is reproducible, it would be interesting to analyze to what extent the

labeling quality is affected. If it remains largely unaffected, this would offer a chance to

reduce labeling costs by deliberately creating an environment similar to ours.

Our statistical tests indicated that initial labeling costs per tweet were identical be-

tween groups S and M at the same location. However, comparing the same groups across

the locations showed significant differences in the initial labeling costs. One interpretation

of this result is that there are certain hidden factors that we did not capture in our experi-

mental setup. For example, personality traits like curiosity or motivation could affect the

duration of a worker’s learning phase.

In conclusion with regards to RQ1, we found that crowd workers undergo a learning

phase which is followed by an exploitation phase. The learning phase is characterized

by a quick drop in annotation times (labeling costs) and lower label reliability, while the

annotation times in the exploitation phase converge to a stable level, that is lower than in

2The workers in MD used the same room, but at different times.
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Figure 4.16: Hierarchical F1-scores for kNN predictors trained on tweets from the learn-

ing phase (”LEARNING”) and on tweets from the exploitation phase (”EXPLOIT”) when

varying k. Left: MD. Right: SU.

the learning phase, and the label reliability is higher.

4.4.2 Applications

Knowing how many documents a crowd worker has labeled previously could be used as a

proxy to estimate label reliability. For example, it should be incorporated into cost mod-

els in active machine learning, whose task is to estimate the costs for labeling unlabeled

documents. This could improve the cost model’s predictive capabilities. A promising

candidate that could benefit from this idea is [30]. Similarly, it would be useful if crowd-

sourcing platforms stored, in addition to the assigned labels and annotation times, how

many documents a worker has labeled previously for the current task because this would

allow to estimate the reliability of her assigned labels. This information could then be

utilized when aggregating crowdsourced labels to a ground truth by weighting each label

according to its reliability. This could lead to more accurate labels than simple majority

voting.

Since label reliability increases during a crowd worker’s exploitation phase, it seems

useful to discard labels that were assigned during the learning phase, or alternatively

these documents should be relabeled during the exploitation phase as documents with

less reliable labels affect predictors trained on such data negatively.
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Knowing the duration of workers’ learning phases is beneficial for designing training

sessions of adequate length for specific labeling tasks. For example, the authors of [29]

find that training crowd workers in general improves label reliability and efficiency, while

in [36] it is found that person-oriented training strategies work particularly well. Com-

bining these findings with the additional information about the duration of the learning

phase, which is obtained by applying the methods from this chapter, it is possible to tai-

lor micro-tasks for training to the learning phase of workers instead of fixing the length

of such tasks arbitrarily. The methods we used for quantifying the length of the learning

phase are applicable to any labeling task and our source code is publicly available3. To de-

termine the length of the learning phase, one should first perform a preliminary study with

few participants to acquire annotation times for the labeling task at hand and afterwards

the length of the learning phase can be computed.

Furthermore, based on our findings, requesters in crowdsourcing should aim at keep-

ing a high retention rate of workers in their micro-tasks because this ensures that workers

reach their exploitation phase leading to mutual benefits - requesters receive high-quality

labels, while workers can complete more tasks in a shorter time, leading to higher rewards.

Employing a dynamic payment strategy, which yields higher rewards once workers reach

their exploitation phase, could facilitate this scenario to keep workers motivated.

4.4.3 Generalizability and the Role of the Experimental Setup

Besides the possible impact of the progress bar in our annotation tool, potentially fatigued

workers, and the slightly different experimental setup at the two locations, where workers

either labeled at the same time or at different times, the subject of the tweets could also

affect generalizability, because the US presidential election was a hot topic. In the next

step, we first plan to replicate our findings using a different dataset, which also drew a

lot of attention, namely the Turkish referendum in 2017. In the second step we would

analyze a less hotly debated topic. Since we focused on a single labeling task, we also

plan to use a crowdsourcing platform like Amazon Mechanical Turk to investigate if our

3https://github.com/fensta/InfSci2017
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findings also hold for larger datasets and different types of labeling tasks.

4.4.4 Future Work

An open question about the workers’ labeling behavior over time is how long gaps be-

tween annotation sessions could be such that workers still remember their learned con-

ceptual models. To address this question, we used our Twitter dataset TRAIN comprising

500 tweets described in Section 3.1. Workers performed their labeling tasks in three sep-

arate sessions of maximum 90 minutes each. 150, 200, and 150 tweets were labeled in

the first, second, and third session respectively. Workers had to take a break between each

session for at least 30 minutes. Using three sessions allowed us to investigate if workers

remembered their learned conceptual models from previous sessions or whether they had

to relearn them. In MD one volunteer labeled those 500 tweets whereas in SU three work-

ers completed this task. Our preliminary results suggest that workers still remember their

conceptual models after having a break of at most a day in between sessions. However,

after a break of three to four days in between sessions, we could observe that they had to

relearn their models. This is because when they started new sessions, their labeling costs

were initially high, but quickly converged back to the level of their previous sessions.

Nevertheless, more data is needed to analyze this particular aspect in more depth.

Two other open questions are related to the conceptual model of workers. First, since

the resulting F1-scores from Section 4.3.4 for k = 3 is comparable with the one for k = 9,

it suggests that workers do not need to remember many tweets to learn their conceptual

models. The question to be analyzed would then be how workers learn their conceptual

models. A follow-up question would be how does such a conceptual model look like?

In this chapter we assumed its existence and used kNN to model the expected worker

behavior, i.e. that the workers’ models are based on the similarity between the texts

they read, so that they transfer the label from one text to another. Our results indicate

that kNN may have been part of the workers’ models. However, kNN is based on a

formal notion of similarity, while people are known to be subjective about similarity [50,

51]. We plan to consider different ways of capturing tweet similarity to investigate how
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these measures affect the temporal dynamics (i.e. the speedup in tweet labeling time) of

workers’ behavior.

While setting up our annotation experiment, we already had additional research ques-

tions in mind that could be analyzed with our annotated dataset4. For example, assessing

the effect of ambiguous and non-ambiguous tweets on the annotation time and result-

ing predictor performance is an appealing topic for future work. The tweet ambiguity

could be derived from worker disagreement in the same way as proposed in [11], where

worker disagreement implies ambiguous tweets. If there are non-ambiguous and ambigu-

ous tweets in a dataset – are the labels assigned to such tweets equally reliable during

learning and exploitation phase? How do these tweets affect predictor performance? Is it

maybe even possible to predict the ambiguity of tweets in advance? This way it might be

reasonable for workers to not label ambiguous tweets at all because they might confuse

not only workers, but also the predictors trained on such data. This would ultimately lead

to a new crowdsourcing methodology which considers learning phase and exploitation

phase of workers as well as the ambiguity of documents like tweets. The basis for this

approach is knowledge about the interplay between tweet difficulty and label reliability,

which will be discussed in the next chapter.

4https://www.researchgate.net/publication/325180810_Infsci2017_

dataset
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Chapter 5

Influence of Difficult Tweets on

Annotation Behavior

To investigate RQ2, i.e. the extent to which tweet difficulty influences label reliability we

perform a preliminary simulation experiment using the dataset described in Section 3.1.

The main motivation for conducting a preliminary experiment on the existing dataset is

that we consider the recruited crowd workers faithful, while this is more challenging on

real crowdsourcing platforms like Amazon Mechanical Turk, where noise could mask

a potential connection between both factors. After stating our assumptions and refined

research questions in Section 5.1, we describe the methods we use for performing our

experiment in Section 5.2 and report the results in Section 5.3. This is concluded by

discussing the implications of our findings in Section 5.4. Parts of this chapter appeared

in [52].

5.1 Introduction

As shown in Chapter 4, labels assigned by crowd workers become more reliable in their

exploitation phase. Similarly, the time needed to assign labels to documents drops rapidly

in a worker’s learning phase until it converges to a roughly constant level in the exploita-

tion phase. Since annotation times are typically associated with labeling costs, shorter
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annotation times are preferred. Thus, when experimenters want to recruit workers on

a crowdsourcing platform who are likely to assign high-quality labels, suitable workers

should (a) have completed similar tasks before and (b) have reached the state where label-

ing costs are approximately constant to keep the time needed for task completion short.

In practice, however, we suspect that this strategy could be affected by the inherent

difficulty of the documents to be labeled since some documents are more difficult to label

than others. Therefore, we expect that labels assigned to difficult documents will be less

reliable. Using these difficult documents for training could affect the performance of the

resulting predictors adversely. In contrast, if the reliability of the labels in the training

set is high, resulting predictors could improve their performance. Investigating this idea

allows us to address RQ2 of this thesis.

Thus, we assume that label reliability can be inferred from measuring the performance

of predictors: given the performances of two predictors, we assume that the one achieving

better performance was trained on documents with more reliable labels. We define ”doc-

ument difficulty” informally as the set of factors that determine to what extend workers

are hesitant in choosing among the available labels for a document. These factors may

be features of the document, e.g. words in the document, but may also be in the eye of

the beholder, e.g. affected by the workers’ perception of and attitude towards the subject

matter. Since we cannot fix the factors making a document difficult as solely inherent

to the document, we rather rely on difficulty indicators, which are labeling cost, worker

disagreement [11] and predictor certainty [34].

Since modeling the difficulty of tweets has been rarely the subject of investigation, we

use the dataset from Section 3.1 to study the interplay between tweet difficulty and label

reliability in crowd workers’ learning phase and exploitation phase. To the best of our

knowledge, this problem has not been studied before.

Therefore, we investigate the following research questions:

• RQ2.1. How does document difficulty in the training set affect the performance of

resulting predictors in the learning phase and in the exploitation phase?

• RQ2.2. Are these effects from RQ2.1 meaningful?
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Our analysis should be considered as a preliminary experiment to see if any interesting

connection between tweet difficulty and label reliability exists. If there is a connection,

in the next step real crowdsourcing experiments can be performed. This is a common

approach in crowdsourcing, e.g. [53, 54, 55], for multiple reasons. For one, budget may

be saved if proposed methods turn out not to work. Another reason is that one might want

to run an experiment first in a controlled environment to avoid external influence factors

which cannot be ensured in crowdsourcing.

5.2 Methods for Analysis

This section describes the methods we employ for designing our experiment to address

the two research questions.

5.2.1 Modeling Crowd Workers and Tweets

In our analysis we utilize TRAIN from Section 3.1, i.e. we use the datasets from both

geographical regions, Magdeburg (MD) and Sabancı (SU), with 500 tweets labeled hier-

archically in terms of sentiment. Therefore, each tweet is either Relevant or Irrelevant

and Factual or Non-factual. If a tweet is considered Non-factual, it is also either Positive

or Negative. Similar to Section 3.1.5, additional labels and annotation times of Irrelevant

tweets are ignored.

5.2.2 Modeling Tweet Difficulty

In the remainder of this chapter, we refer to difficult tweets as ambiguous tweets and to

the remaining, easier tweets as non-ambiguous tweets. Since there is no ground truth

for tweet difficulty available, we approximate the difficulty of a tweet t by computing

its difficulty score DS. DS(t) combines three heuristics, namely worker agreement (A)

[11], predictor certainty (PC) [39], and labeling cost (L):

DS(t) = A+ PC + L (5.1)
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where A,PC,L ∈ [0, 1]. We define higher difficulty scores in this equation to correspond

to non-ambiguous tweets.

Using worker agreement in Equation 5.1 instead of worker disagreement is more ap-

propriate because, according to our definition, higher difficulty scores imply non-ambiguous

tweets. For determining the worker agreement A of tweet t, we devise a scoring function

A(t) yielding values between 0 (no agreement) and 1 (perfect agreement). The worker

agreement of each hierarchy level must contribute toA. Specifically, we use majority vot-

ing to assign a label to each hierarchy level. A level should contribute more to A if more

workers agreed on the label. Since lower hierarchy levels might have been labeled by

less workers than the first level (namely if workers deemed a tweet Irrelevant or Factual),

higher levels tend to contribute more to A. This reasoning is reflected in the following

equation:

A(t) =
∑

i∈ Levels

|workersmaj|
|workersi|

∗ |workersmaj|
totalmaj

(5.2)

where workersmaj are the crowd workers who assigned the majority label on hierarchy

level i, workersi are the workers who labeled t on level i, totalmaj is the total number

of workers across all hierarchy levels that assigned majority labels, and Levels is the set

of hierarchy levels in the labeling scheme, in our case Levels = {1, 2, 3}. The first term

in Equation 5.2 describes the fraction of workers who agreed on the majority label at

level i, while the second expression accounts for the overall contribution of level i to the

agreement score. Whenever there is a tie between majority labels at level i, totalmaj is

incremented by one. This reduces the contribution of hierarchy levels, that have no ties,

to the overall agreement score, which generally leads to lower scores for tweets with ties.

The following two examples illustrate how Equation 5.2 approximates worker agreement.

First, suppose that four workers labeled tweet t1 and assigned the labels:

• First hierarchy level: Relevant, Relevant, Relevant, Relevant

• Second hierarchy level: Factual, Non-factual, Non-factual, Non-factual

• Third hierarchy level: -, Negative, Negative, Positive
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Therefore, the majority labels for t1 are Relevant, Non-factual, and Negative, leading

to A(t1) = 4/4 ∗ 4/9+ 3/4 ∗ 3/9+ 2/2 ∗ 2/9 = 0.92. In total, nine workers assigned the

majority labels (four on the first level, three on the second level, two on the third level),

so totalmaj = 9. In the second example, suppose there was a tie on the second level of t1,

i.e.

• First hierarchy level: Relevant, Relevant, Relevant, Relevant

• Second hierarchy level: Factual, Non-factual, Non-factual, Factual

• Third hierarchy level: -, Negative, Negative, -

This time there are two possibilities for the majority labels: either Relevant and Fac-

tual or Relevant, Non-factual, and Negative. In this case the majority labels would be

chosen randomly. Suppose the latter one is chosen; then the resulting worker disagree-

ment score would be A(t1) = 4/4 ∗ 4/9+2/4 ∗ 2/9+2/2 ∗ 2/9 = 0.78. Note that in this

case totalmaj = 9 instead of totalmaj = 8 because exactly one tie occurred on the second

hierarchy level, leading to a lower agreement score than in the first example. Converting

worker agreement A(t) for tweet t into worker disagreement DA(t) is accomplished in a

straightforward manner:

DA(t) = 1− A(t) (5.3)

The resulting values of DA will be again between 0 (perfect agreement) and 1 (no agree-

ment), but compared to A, the meaning of the values has now switched.

A higher predictor certainty PC for a tweet indicates non-ambiguous tweets. To com-

pute it, we build a kNN1 predictor for each worker separately since sentiment is subjective.

The predictor is trained on 40% of a worker’s labeled tweets and the longest common sub-

string2 according to Equation 3.1 is used to compute the similarity between any pair of

1We opted for kNN as it considers neighborhoods and we believe that the type of difficulty we investigate

is a local phenomenon (”Are similar tweets difficult or easy to label?”), so we do not want to use an SVM

or similar predictors as they learn globally optimal models (”Is the tweet easy or difficult to label?”); the

latter could be investigated in the future separately.
2We obtained similar results when choosing edit distance or longest common subsequence.
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tweets. Since kNN does not naturally provide a certainty for the predicted label j of tweet

t, we approximate it as follows:

certaintyj(t) =
nj + s

k + c
(5.4)

where nj is the number of the k neighbors that share label j, s being a smoothing factor to

avoid zero probabilities, and c being the number of possible classes that exist on a certain

hierarchy level. In our experiment we set s = 1. We store for each tweet of a worker’s

test set (60% of the labeled tweets) the certainty PC of the predicted labels. Repeating

this process for all workers yields a list of predictions per tweet on each hierarchy level.

To obtain a single certainty per tweet, we first average the certainties (of the different

workers who labeled the tweet) per level and from these certainties we pick the maximum

certainty per level, i.e. this process yields three values. Each of these three certainties

corresponds to the predicted majority label on the respective hierarchy level. Averaging

these three values yields PC(t). This procedure is reflected in the following equation:

PC(t) =
1

3

∑
i∈Levels

max
j∈Labeled

∑
k∈Workers certaintyj(t)

|Workers|
(5.5)

where Labeled is the set of predicted labels for t on hierarchy level i, Workers is the

set of crowd workers who labeled t in their test sets, and Levels is the set of hierarchy

levels in the labeling scheme, in our case Levels = {1, 2, 3}. Note that in this procedure

we are not accessing the sentiment labels which kNN predicts for a tweet. Instead, we

only use the predictor certainties of the sentiment labels that kNN assigned to the tweets.

Therefore, we are not leaking any information about the actual sentiment labels to the

sentiment predictors (cf. Section 5.2.5). Table 5.1 illustrates how PC(t1) is obtained

for t1. In this case two workers have t1 in their test set, hence we have four predictor

certainties (two predicted labels per worker) per hierarchy level. For example, kNN is

80% certain, according to Equation 5.4, that worker 1 (first row, first column) would

assign Relevant to t1 on the first hierarchy level. In contrast, kNN is only 20% certain

for her to assign Irrelevant. The certainties are averaged per label and per level (row

3), e.g. the average certainty of kNN to assign Relevant on the first hierarchy level is
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(80% + 70%)/2 = 75%, while it is (20% + 30%)/2 = 25% for Irrelevant. Averaging

these three remaining certainties results in PC(t1) = 68%.

First level Second level Third level

Worker 1 (R, .8), (IR, .2) (F , .4), (NF , .6) (P , .3), (N , .7)

Worker 2 (R, .7), (IR, .3) (F , .2), (NF , .8) (P , .5), (N , .5)

Avg. certainty (R, .75), (IR, .25) (P , .5), (N , .5) (P , .4), (N , .6)

Maximum certainty .75 .7 .6

PC(t1) (.75 + .7 + .6)/3 = .68

Table 5.1: Example how Equation 5.5 aggregates the predicted certainties for tweet t1.

The columns represent the hierarchy levels in the labeling task. We use the following

acronyms to represent the predicted sentiment labels: R: Relevant, IR: Irrelevant, F :

Factual, NF : Non-factual, P : Positive, N : Negative. Suppose two workers labeled t1 in

their test sets and kNN predicted for each worker a tuple of (sentiment label, certainty)

according to Equation 5.4 per hierarchy level. ”Avg. certainty” averages the predicted

certainties per label per hierarchy level. ”Maximum certainty” shows which certainty

would be kept according to Equation 5.5 and the last row shows the final result of the

computation, thus PC(t1) = 0.68 in this case.

The labeling cost L for tweet t corresponds to t’s median annotation time. The higher

it is, the more ambiguous a tweet is. However, since high values of DS(t) are associated

with non-ambiguous tweets, L must be inverted. We choose as labeling cost for t the

median annotation time across all workers who labeled it. The median is more appropriate

than the average in our case due to its robustness toward outliers because some workers

had a few random spikes in their annotation times. After normalizing the labeling cost,

the following equation follows:

L(t) = 1− costt − costmin

costmax − costmin

(5.6)

where costt is the median labeling cost of tweet t, costmin (costmax) is the lowest (highest)

median labeling cost across all tweets.
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After computing DS for each tweet, we apply k-means with k = 2 to cluster the

difficulty scores. Each tweet is now assigned a difficulty label according to its cluster

membership – either Disagreement, which indicates difficult tweets, or No Disagreement

for the remaining tweets.

5.2.3 Design of the Simulation Experiment

By training predictors we want to answer RQ2.1, i.e. if difficult tweets affect label reli-

ability in the learning phase and in the exploitation phase. We use the dataset described

in Section 3.1 to simulate the effect of tweet difficulty on label reliability. The goal is to

predict the hierarchical sentiment labels (Relevant, Irrelevant, Factual, Non-factual, Posi-

tive, Negative) according to Section 3.1.2. We measure predictor performance in terms of

hierarchical F1-score, which is recommended by Kiritchenko et al. for hierarchical label-

ing tasks [48]. Specifically, we analyze the effect of the following independent variables

on predictor performance:

• difficulty: ambiguous (difficult) or non-ambiguous (easy) tweets

• phase: learning phase or exploitation phase

• training set size: number of tweets in the training set

• neighbors: number of nearest neighbors in kNN

• institution: either MD or SU

We expect meaningful patterns observed in this simulation to hold despite varying the

abovementioned variables. Otherwise the patterns might be due to chance. For example,

if one predictor outperforms another one, this result should hold even if the size of the

training set changes.

The core assumption in this simulation experiment is that the reliability of labels can

be inferred from measuring the performance of trained predictors: if predictors achieve

higher F1-scores, the sentiment labels in their training sets are considered more reliable.
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In other words, we use F1-score as a proxy for the reliability of labels. Therefore, we

train two predictors per crowd worker, PredND trained only on easy, i.e. non-ambiguous,

tweets and PredD which is trained solely on difficult, i.e. ambiguous, tweets. We fix all of

the abovementioned variables, so that only the variable difficulty of the training set differs

between both predictors. This allows us to draw conclusions about the effect of tweet

difficulty on label reliability.

5.2.4 Learning Phase & Exploitation Phase in Worker Behavior

For the experiment in Section 5.2.5, our dependent variable, predictor performance, is

affected by two parameters: the number of tweets used in the training set and tweet dif-

ficulty. That means we plot a curve of the predictor performances once for ambiguous

and once for non-ambiguous tweets while varying the number of tweets in the training

set. However, workers undergo a learning phase [56, 7, 46], i.e. a drop in annotation

times occurs in the beginning of an annotation session. Thus, the phase – either learning

phase or exploitation phase– is also an independent variable that we need to control for

in our experiment. Therefore we perform the experiment once for the learning phase and

once for the exploitation phase because within these phases the annotation times can be

considered similar.

Originally, workers labeled either S, M, or L tweets of TRAIN according to their

worker group in Section 3.1.2 and we found in Section 4.3.1 that the length of the learning

phase differs across the worker groups. To avoid having to control for this variable as

well, i.e. repeating the experiment with the two phases once for each worker group, we

fix the length of the learning phase across all three worker groups. When aggregating

all annotation times per institution, either MD or SU, we obtain for the length of the

learning phase approximately 25 tweets, i.e. the first 25 labeled tweets of each worker

are used for their learning phase and their next 25 labeled tweets are utilized for their

exploitation phase to have a balanced experimental setup. Therefore, we use in total the

first 50 labeled tweets of each crowd worker in both institutions. Any other labeled tweets

are discarded. Another reason for not using more tweets for the exploitation phase is
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to avoid uncontrollable side effects such as fatigue because in Section 4.3.3 we found

possible indicators for fatigued workers.

5.2.5 Building Predictors

One sentiment predictor (kNN) is trained per crowd worker in MD and SU because sen-

timent analysis is subjective. The exact training procedure of PredND and PredD for a

single crowd worker is illustrated schematically in Figure 5.1. The training set (containing

only ambiguous or only non-ambiguoustweets) is derived from tweets 1-25 in the learn-

ing phase and once from tweets 26-50 in the exploitation phase. This leads effectively to

four datasets per worker to which we refer in the remainder as strata, namely:

1. LEARN NONAMBIGUOUS: non-ambiguous tweets that were labeled in a worker’s

learning phase

2. LEARN AMBIGUOUS: ambiguous tweets that were labeled in a worker’s learning

phase

3. EXPLOIT NONAMBIGUOUS: non-ambiguous tweets that were labeled in a worker’s

exploitation phase

4. EXPLOIT AMBIGUOUS: ambiguous tweets that were labeled in a worker’s ex-

ploitation phase

Hierarchical learning is performed by training in total six predictors (two predictors are

trained per level and we have three levels). Note that we introduced an extra label besides

the sentiment labels to indicate that no label exists on a certain hierarchy level. This

is necessary as Irrelevant tweets have only a label on the top-most hierarchy level. To

assess the performance of the trained predictors in terms of hierarchical F1-scores (micro-

averaged over all workers in a stratum), the labels of the remaining tweets in a worker’s

stratum are estimated per hierarchy level. For example, if PredND is trained on five

tweets that a worker labeled in LEARN NONAMBIGUOUS, it will be evaluated on her

remaining 20 labeled tweets.
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Figure 5.1: Overview how predictors, using x tweets for training, are built for a single

crowd worker.

5.2.6 Testing the Meaningfulness of Observed Patterns

Since we vary many parameters in our simulation (see Section 5.2.3), it will be hard to

depict all plotted configurations. Instead, our main goal is to identify patterns that hold

over different configurations as these are more likely to be meaningful. We will report all

our results in an encoded form to make finding patterns more straightforward. Instead of

showing how the F1-scores of the predictors develop when varying the size of the training

set, we simply state if one of the two resulting F1-curves dominates the other one. In that

case there are three possible outcomes: either curve dominates the other one or there is

a tie. The details about the encoding are explained in Section 5.3.2. However, reporting

these encoded results permits us to test if there are significant differences in the propor-

tions of the three outcomes using the two-tailed Fisher’s exact test (cf. Appendix A.3).

Fisher’s exact test (instead of a chi-square test) is suitable since some of the outcomes

occur rarely.
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5.3 Results of Analysis

First we report the observed patterns of the simulation experiment and then we address

their meaningfulness, that is how likely they occurred by chance.

5.3.1 Observed Patterns in the Simulation Experiment

This section addresses RQ2.1. In our dataset, non-ambiguous and ambiguous tweets are

roughly equally distributed, with non-ambiguous tweets (according to Eq. 5.1) account-

ing for 50% to 57% of the tweets depending on the stratum as illustrated in Table 5.2.

That means the classes are sufficiently balanced, thus there is no need to take any special

countermeasures in the classification task.

MD SU

non-ambiguous 68 (50.4%) 93 (57.4%)

ambiguous 67 (49.6%) 69 (42.6%)

Learning phase

MD SU

non-ambiguous 78 (55.3%) 86 (54.3%)

ambiguous 63 (44.7%) 72 (45.7%)

Exploitation phase

Table 5.2: Absolute numbers and percentages of non-ambiguous/ambiguous tweets per

stratum for both groups, MD and SU.

First, we show some sample F1-curves of the trained predictors because afterwards

we encode them into a compressed form to be able to report all of our results. This allows

to identify certain trends whose statistical significance we examine thereafter.

We show the F1-curves of the kNN predictors trained on eight tweets per worker for

the four strata while varying k, the number of neighbors in kNN. The predictors utilize
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edit distance as a similarity metric. In Figure 5.2, the F1-curves of PredND trained on

LEARN NONAMBIGUOUS and PredD trained on LEARN AMBIGUOUS are shown

for MD and SU. In that case both predictors perform equally well. This observation holds

in both groups and will be encoded as (T)ie in the compressed form. We note that the dif-

ferences between the F1-curves in the learning phase are generally small. The correspond-

ing F1-scores for the exploitation phase of MD and SU are depicted in Figure 5.3 using the

same setup as described before. This means that now the performances of PredND trained

on EXPLOIT NONAMBIGUOUS and PredD trained on EXPLOIT AMBIGUOUS are

evaluated. This time, PredND outperforms PredD. This behavior is consistent in MD and

SU and will be encoded as (N)o disagreement in the compressed representation. In this

specific case, the F1-scores of PredND in SU are between 1.5% and 4.5% higher than in

PredD. In MD, PredND achieves between 2% and 6% better F1-scores than PredD. We

note that the differences between the F1-curves tend to be larger if PredND outperforms

PredD. If PredD wins, both F1-curves are close to each other. In both figures it seems that

considering more neighbors for predictions mainly improves the F1-scores of PredD but

not PredND. This could indicate that less workers are necessary to label non-ambiguous

tweets as opposed to ambiguous ones.
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Figure 5.2: F1-scores of kNN with varying k. For each worker the training set comprises

eight (non-ambiguous/ambiguous) tweets of the learning phase.

We report the outcomes of the remaining F1-curves of the predictors for the four strata
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Figure 5.3: F1-scores of kNN with varying k. For each worker the training set comprises

eight (non-ambiguous/ambiguous) tweets of the exploitation phase.

with varying training sets containing between two and ten tweets as follows. At all times

we compare in a stratum the F1-scores of PredND and PredD while varying k. We encode

each outcome as follows (abbreviation in parentheses):

• (T)ie (both predictors exhibit the same F1-scores),

• (N)o disagreement (PredND outperforms PredD),

• (D)isagreement (PredD outperforms PredND).

We determine if predictor A outperforms predictor B by visually inspecting both F1-

curves and if one curve yields a higher F1-score for some k and its scores are not lower

than B’s for all other k, A is considered to outperform B.

Each table contains the encoded outcomes over training sets comprising between two

and ten tweets using different distance metrics. More specifically, Table 5.3 depicts the

outcomes for the edit distance, Table 5.4 shows the outcomes for the longest common

subsequence, and Table 5.5 gives the results for the longest common substring. One ten-

dency in these tables is that the likelihood of seeing T drops as the number of tweets used

for learning increases. We suspect that this phenomenon occurs because a small number

of training tweets leads to a poor predictor performance anyway, no matter whether these
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tweets were non-ambiguous or ambiguous. As soon as the number of training tweets in-

creases, the difference becomes apparent, whereupon it becomes more likely that PredND

is the best one.

We juxtaposed the winner predictors between the two groups MD and SU once for the

learning phase and once for the exploitation phase. The numbers are too small to deliver

robust results, but we observe a general tendency: PredND is more often the winner in the

exploitation phase for SU than for MD. This could be seen as an indication that SU learned

faster, but the phenomenon can also be explained by differences in size between the two

groups: MD is smaller and thus more vulnerable to variations in the performance of the

individual workers. Another related pattern across all groups is that T occurs frequently

in the learning phase, while N tends to appear more often in the exploitation phase.

Phase

#Tweets
2 3 4 5 6 7 8 9 10

Learning phase T T T D D D N N N

Exploitation phase T T T N N N N N N

MD

Phase

#Tweets
2 3 4 5 6 7 8 9 10

Learning phase T T T T T D D T N

Exploitation phase T N N N N N N N N

SU

Table 5.3: Outcomes for the different strata using kNN with edit distance and a varying

number of tweets in the training set of each worker.
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Phase

#Tweets
2 3 4 5 6 7 8 9 10

Learning phase T T T D T T N N N

Exploitation phase T D T T T N N N N

MD

Phase

#Tweets
2 3 4 5 6 7 8 9 10

Learning phase T T T T T D D T E

Exploitation phase T N N D N D N N N

SU

Table 5.4: Outcomes for the different strata using kNN with longest common subsequence

and a varying number of tweets in the training set of each worker.

5.3.2 Significance of Observed Patterns

To analyze the meaningfulness of these patterns according to RQ2.2, we run the two-

tailed Fisher’s exact test to see if the differences in the proportions of the outcomes are

significant as described in Section 5.2.6. For comparing all pairwise proportions, our null

hypotheses to be tested are: there is no difference in the proportion of N and D (T and N)

(T and D) between learning phase and exploitation phase. The proportions are displayed

in Table 5.6 and were obtained by adding up the outcomes from Tables 5.3-5.5. Using

α = 0.05 as significance level , we obtain the following results.

The proportions of N and T are significantly different in the learning phase and ex-

ploitation phase (p < 0.0001). This suggests that ties between predictors occur more

frequently in the learning phase, while PredND outperforms PredD significantly more of-

ten in the exploitation phase. Likewise, the proportions of N and D differ significantly

(p < 0.02) across both phases, which means that neither of PredND nor PredD wins sig-
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Phase

#Tweets
2 3 4 5 6 7 8 9 10

Learning phase T T T T T N N N N

Exploitation phase T D T N N T N N N

MD

Phase

#Tweets
2 3 4 5 6 7 8 9 10

Learning phase T T T T T D D T N

Exploitation phase T N N N N D N N N

SU

Table 5.5: Outcomes for the different strata using kNN with longest common substring

and a varying number of tweets in the training set of each worker.

nificantly more frequently in the learning phase, while in the exploitation phase PredND

outperforms PredD significantly more often. When it comes to the proportions of T and

D, no significant differences exist in the proportions (p > 0.5). Thus, the significance

tests confirm our intuition about the existing patterns in the results, namely that T occurs

mainly in the learning phase, N in the exploitation phase and D appears rarely in both

phases.

5.4 Discussion

The results of our preliminary study in this chapter suggest for RQ2 that there is indeed

a connection between the difficulty of tweets and the reliability of the labels that workers

assigned to them. More specifically, the label reliability of easy, non-ambiguous tweets

seems higher, because predictors trained on them achieve higher F1-scores. However,

this holds only for a worker’s exploitation phase, i.e. after workers have already labeled
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LEARN EXPLOIT

T 31 12

N 13 36

N vs. T

LEARN EXPLOIT

N 13 36

D 10 6

N vs. D

LEARN EXPLOIT

T 31 12

D 10 6

T vs. D

Table 5.6: Occurrences of the encoded outcomes in a worker’s learning (LEARN) and

exploitation (EXPLOIT) phase.

some tweets (25 tweets in this work). In the learning phase, i.e. for the first 25 tweets, our

results do not show any evidence for such a relationship. One possible explanation for this

result could be that the labels workers assign in their learning phase [13, 7, 29, 56, 46] are

generally of lower quality during that period [56, 46] as shown in Chapter 4. Therefore,

the higher level of low-quality labels in the learning phase could be masking the effect of

tweet difficulty on label reliability in a worker’s learning phase.

It would be interesting to examine this hypothesis using a slightly different experiment

setup than our current one in a new study: first, workers complete a labeling task in their

first annotation session (same setup as in Section 3.1) and after a short break, they repeat

the task with new tweets in a second session. If the noisy, low-quality labels due to the

learning phase masked the relationship between tweet difficulty and label reliability in the

learning phase of the first session, in the second session we would expect to see a pattern

similar to the one we reported for the exploitation phase in this chapter, because workers

should not have to go through another learning phase, assuming the break between two

sessions is not too long. However, given that crowd workers tend to complete many

micro-tasks, they will quickly reach their exploitation phase, meaning that labeling easier
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tweets will increase the reliability of assigned labels in practice.

This motivates the idea of devising a tweet difficulty predictor to estimate the diffi-

culty of unknown tweets for which a host of applications exist. We plan to apply this

predictor as a filter before an actual crowdsourcing task. Given a large dataset, one could

crowdsource a small seed first to train the difficulty predictor. It then estimates the level

of difficulty in the unlabeled dataset and only tweets which are estimated to be easy would

be crowdsourced. This idea is explored further in Chapter 6. Building such a difficulty

predictor on a small seed set would also benefit active machine learning techniques, as

they could be invoked only on easy tweets to obtain reliable labels from experts. Here the

difficulty predictor would be used before invoking an active machine learning algorithm

only for easy tweets. Furthermore, incorporating tweet difficulty into cost models in ac-

tive machine learning, that estimate the costs for acquiring labels for unlabeled tweets,

could enhance the models’ accuracy.

Reducing the dataset size by filtering out difficult tweets could potentially increase the

retention rate of the crowdsourcing task as workers might become less frustrated since

micro-tasks can be completed with more ease. Furthermore, crowdsourcing a smaller

dataset could save budget that will not be spent on difficult tweets. Even more budget

could be saved if less crowd workers would be allocated to easy tweets, similar to [11].

Another way of using such a tweet difficulty predictor would be to assign easy tweets

for labeling to inexperienced workers and difficult ones to experts [57]. The associated

monetary compensation could possibly also vary depending on the level of expertise of

crowd workers. This is related to the problem of optimal task routing in crowdsourcing

where suitable workers should be identified for micro-tasks. For example, in [45] work-

ers’ cognitive abilities are used to match them to suitable tasks. This works for language

fluency and visual tasks, but has not been tested for other types of tasks, such as senti-

ment analysis. If tweets are involved, a tweet difficulty predictor could complement this

approach.

We note several limitations in our preliminary study. First, we used a relatively small

dataset. Nevertheless, the tweets we used were diverse and we performed our experiment
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independently in two different locations. Second, we investigated a single labeling task

and it could bias the results. For example, in other tasks easy tweets might not be diverse

enough to train good predictors. However, if sufficiently diverse tweets exist for a labeling

task, we believe that our results will hold. Third, we evaluated only one predictor, kNN.

Thus, replicating this experiment on a larger scale with more diverse predictors would

help establish our findings.

To be able to utilize labels assigned by crowd workers during their training session,

one should provide non-ambiguous tweets as the label reliability for this kind of docu-

ments is higher than for ambiguous ones. Once workers have reached their exploitation

phase, they have a stable conceptual model which allows them to label more reliably and

faster. Our dataset3 and source code4 are publicly available

Building on the finding that tweet difficulty affects label reliability, we introduce in

the next chapter a multi-stage approach that separates difficult tweets from the rest using

a difficulty predictor.

3https://www.researchgate.net/publication/325180810_Infsci2017_

dataset
4https://github.com/fensta/PrelimStudy
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Chapter 6

Predicting Tweet Difficulty

This chapter addresses RQ3 by proposing a new crowdsourcing methodology that takes

the difficulty of documents (here: tweets) into account to produce more reliable crowd-

sourced datasets. This methodology utilizes the findings from Chapter 4 and Chapter 5.

In Section 6.1 we explain our assumptions and the refined research questions to address

RQ3. While Section 6.2 explains our crowd sourcing methodology, Section 6.3 describes

the datasets we acquired for evaluation. Then Section 6.4 tests the feasibility of the pro-

posed methodology and Section 6.5 points out open questions and possible future im-

provements. Parts of this chapter appeared in [58].

6.1 Introduction

Crowdsourcing is a popular mechanism to obtain large-scale labeled datasets for super-

vised learning techniques. Hence, it is crucial that crowd workers are reliable and provide

accurate labels. To that end, multiple reliability indicators like the annotation behavior

over time [46] or consistency [18], have been proposed for workers. Consistency might

be affected by training, expertise, or fatigue emerging during a crowdsourcing task. In

[19], the authors report that workers produce more reliable labels if they must explain

their rationale for choosing a specific label before assigning it. Psychological effects such

as the Dunning-Kruger effect [20] (crowd workers might overestimate their expertise w.r.t.
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a topic and therefore try to compensate for it with general knowledge), also affect the re-

liability of workers and the labels they assign. These studies among others assume that

the key factors of success in crowdsourcing are properties of the workers - either intrinsic

ones like experience, or extrinsic ones like adequate training (having positive influence)

or fatigue (negative influence). Task-related properties such as a clear task specification

[10] also improve label reliability. However, in our preliminary study in Chapter 5, we

showed that the success of a crowdsourcing task also depends on properties of the doc-

uments to be labeled by the workers, specifically that document difficulty affects label

reliability. Consider for example the typical crowdsourcing scenario of deciding whether

a short text document like a tweet has positive or negative sentiment, and assume that a

worker encounters the following tweet:

Quoting Michelle. More points! "Go low.

Shawty, I go high" while I bring up

your racist past. #debatenight

Evidently, this tweet is rather difficult to label, so it might be fair to have the ex-

perimenter look at it and decide whether it should indeed be labeled or not. Obviously,

inspecting all documents in advance is impractical, hence the goal of our proposed method

is to identify those documents to be inspected because they are expected to provoke high

disagreement (and thus are difficult to label which would waste worker budget) if labeled.

Our contribution is a new crowdsourcing methodology that a) improves the reliability

of crowdsourced datasets and b) enhances the predictor performance that is learned on

those datasets. Our method is based on the assumption that tweet difficulty can be de-

rived from worker disagreement, i.e. the more workers disagree on the label of a tweet,

the more difficult we consider it. This reasoning is in line with Aroyo et al. who argued

that ”[crowd worker] disagreement is not noise, but signal” [33]. Based on this reason-

ing, our method trains a disagreement predictor on a small seed set that separates among

different levels of disagreement, learning on the properties of the documents, rather than

the properties of the workers. The size of the seed set is then iteratively increased based
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on the disagreement predictor. The predictor then estimates the level of disagreement

in each unlabeled document of the dataset and all documents with worker disagreement

are considered ambiguous (difficult) and it is left to the experimenter how to deal with

them, e.g. by removing them or letting experts label them. Only those documents with

no disagreement will be crowdsourced. Evaluating this approach lets us address RQ3, i.e.

how document (here: tweet) difficulty can be leveraged to improve the label reliability in

crowdsourced datasets. In terms of In light of the above discussion, we refine RQ3 by

studying the following research questions in this chapter:

• RQ3.1. How does the disagreement predictor perform?

• RQ3.2. Does the disagreement predictor improve gradually?

• RQ3.3. What is the effect of ambiguous tweets on sentiment classification?

• RQ3.4. What is the effect of allocating more budget to ambiguous tweets on senti-

ment classification?

While the first two RQs deal directly with our devised predictor, the last two RQs examine

the overall potential of our approach given that it is feasible to predict worker disagree-

ment. Hence, we address RQ3.3 and RQ3.4 by conducting simulations.

Unlike existing studies that have investigated the link between document difficulty

and label reliability in crowdsourcing [44], our method is applied as a preprocessing step

before crowdsourcing the remaining documents. Hence both methods complement each

other. Upon combination, the prior for document difficulty in the method proposed by

Whitehall et al. could be adjusted toward non-ambiguous documents due to our method

being applied as a preprocessing step. Our approach aligns with the methods that investi-

gate the issue of aleatoric uncertainty as opposed to epistemic uncertainty: as the authors

of [59] point out, epistemic uncertainty on a given outcome (here: the document’s label)

can be reduced by acquiring additional expert opinions, while aleatoric uncertainty cannot

be reduced, because the additional experts will have also diverging opinions on the label.

Thus, our method allows that documents with disagreement are not given to the workers.
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Our results using a sentiment analysis task on Twitter suggest that removing tweets

with disagreement improves the sentiment predictor’s performance, while acquiring more

labels for tweets with disagreement does not.

6.2 Methods for Analysis

We propose a multi-stage iterative methodology, which is depicted in Figure 6.1. Given

an unlabeled dataset U , we start with a small, randomly sampled seed set (see top part

of Figure 6.1) to be labeled by the crowd workers w.r.t. a certain labeling task, e.g. sen-

timent analysis (see top-right corner of Figure 6.1). For each document in the seed set,

we count the labels assigned to it by the workers and assess whether there is disagree-

ment in the workers’ decisions. We thus turn the seed set into a training set on worker

disagreement (see right part of Figure 6.1). Then, we train a disagreement predictor (see

bottom-right corner of Figure 6.1) which estimates the worker disagreement in the un-

labeled documents. Documents on which workers are expected to agree are moved to

dataset C. Otherwise they are moved to dataset R and it is the experimenter’s choice how

to proceed with them, e.g. removing them, letting experts label them, labeling every nth

document, etc. The experimenter may also decide for a further iteration with an expanded

seed set (see middle part of Figure 6.1), thus refining the disagreement predictor. After

all iterations are completed, only documents remaining in dataset C will be labeled by

crowd workers. In the following subsections, we describe the details of our approach.

6.2.1 Modeling Disagreement among Crowd Workers

A worker assigning a label to a document is called a vote. If there are n votes for a

document, n different workers labeled it. Since the true label of a document might be

unknown, we use the majority label according to the majority voting scheme instead. We

employ two levels of disagreement in this chapter: Disagreement and No Disagreement.

Definition 1. Provided that there are n votes available for a document, there is Disagree-

ment if the majority label received not more than 50% of the votes. Otherwise there is No
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Figure 6.1: Schematic overview of our proposed methodology to obtain a more reliable

dataset C for crowdsourcing, where i refers to the ith iteration as described in the text.

Disagreement.

This definition depends only on the number of workers who labeled a document, but

not on the number of classes that exist. For example, if a document received eight votes,

i.e. eight workers labeled it, we conclude that the workers disagree on its label if the

majority label was assigned four or less times. This is independent of the number of

classes in the labeling task. Based on the above definition we consider documents with

Disagreement as ambiguous and others as non-ambiguous. Note that Definition 1 takes

only worker disagreement into account as opposed Equation 5.1, which also considers

labeling costs and predictor certainty as additional factors. We focus on worker disagree-

ment because it is the most intuitive of the three factors following the argument ”[crowd

worker] disagreement is not noise, but signal” given by Aroyo et al. [33]. Moreover, we

found evidence in our controlled experiment (cf. Section 3.1.4) that the crowd workers

are faithful which lends more power to the previous argument. However, in the future we

would also utilize the other two factors.
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6.2.2 Disagreement Predictor

The disagreement predictor DAP i plays an important role in our method as it reduces the

size of the dataset to be labeled by the crowd by filtering out ambiguous documents. The

initial seed set S0 is created from the unlabeled dataset U by randomly selecting a set of n

documents, N0 (line 8 in Algorithm 1), which are then labeled by crowd workers. Algo-

rithm 2 then derives the disagreement labels (Disagreement, No Disagreement) according

to Definition 1 turning N0 into S0. DAP0 is trained on S0 before predicting the disagree-

ment labels for all unlabeled documents U \ S0. These documents are then either moved

to dataset R (Disagreement) or dataset C (No Disagreement) (line 14-17 in Algorithm 1).

Therefore, C contains only the tweets U \ (R ∪ S0), which are those document with

predicted No Disagreement. If the experimenter prefers to increase the performance of

DAP0 (line 21), another iteration begins, but this time documents are randomly sampled

from C instead of U (line 19). The stopping criterion is discussed separately in the next

section. In the next iteration, S1 is created by sampling another n documents from C, N1.

After crowdsourcing and deriving the disagreement labels,N1 is merged with S0 resulting

in S1. In general, we obtain Si in the ith iteration as Si = Ni∪Si−1. DAP i is then trained

on Si and predicts the disagreement of the remaining tweets in C to further reduce the

size of C. After all iterations only the documents remaining in C will be crowdsourced.

The ambiguous documents in dataset R allow experimenters to decide on a case-by-case

basis if it is beneficial to let experts label those documents, label only every nth document,

completely remove them etc. We evaluate the initial effectiveness of DAP0 according to

RQ3.1 (see Section 6.1) to test how well disagreement may be predicted.
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Algorithm 1 Iteratively estimating the level of disagreement to remove ambiguous docu-

ments.
1: Input: Dataset of unlabeled documents (U ).

2: Output: Set of documents to be labeled via crowdsourcing (C), set of ambiguous

documents (R)

3: S ← Ø . seed set of previous iteration

4: R← Ø

5: iteration i = 0;

6: repeat

7: C ← Ø

8: Ni ← randSample(U \ S, n) . pick n documents

9: crowdsource(Ni)

10: Si ← createTrainingSet(Ni, S) . see Algorithm 2

11: DAP i.train(Si) . train on disagreement labels

12: for each document d in U \ Si do

13: label← DAP i.predict(d)

14: if label == ’yes’ then

15: R← R ∪ d

16: else

17: C ← C ∪ d

18: S ← Si

19: U ← C . label propagation

20: i = i + 1

21: until experimenter stops . see section about the stopping crite-

rion
22: return C, R
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Algorithm 2 Creation of S for the disagreement predictor.
1: Input: Set of documents with crowdsourced labels (N ), seed set with one disagree-

ment label per document (S)

2: Output: Set of documents with one disagreement label each.

3: function createTrainingSet(N , S)

4: for each document d in N do

5: n← allVotes(d) . total votes

6: m← majVotes(d) . #votes for majority label

7: label← ’no’ . No Disagreement

8: if m ≤ n/2 then

9: label← ’yes’ . Disagreement

10: d.setDisagreement(label)

11: return N ∪ S

6.2.3 Stopping Criterion for Expanding the Seed Set

It might be necessary to expand Si iteratively (line 6 in Algorithm 1) to improve the per-

formance of DAP i, e.g. due to high class imbalance or feedback from crowd workers

who identified flaws in the task design. One simple option to stop the expansion would

be the experimenter’s budget constraints: crowd labeling Ni consumes a certain amount

of the budget in each iteration i, thus an experimenter could know in advance when to

stop expanding Si. Another possible stopping criterion for practical use would be mon-

itoring dataset R, which stores removed documents, and checking after each iteration if

the number of documents with predicted Disagreement has decreased. This information

might suffice for experimenters to decide about continuing with the expansion or not. We

implicitly assume that training DAP i on the expanded Si yields better performance as

more training data becomes available. Since our method relies on this assumption, we

test it in RQ3.2 (see Section 6.1).
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6.3 Evaluation Framework

This section describes how we created a crowdsourced dataset for a hierarchical sentiment

analysis task on Twitter. Additionally, we describe the features used in the disagreement

predictor and the sentiment predictor. Both are necessary for evaluating our approach.

Since sentiment analysis is subjective and tweets are short, ambiguity is likely to occur,

which makes it a suitable task for testing our methodology. Formulating the task as a

hierarchical one allows us to focus on the sentiment of relevant tweets only. Specifically,

workers assigned as sentiment labels for relevant tweets either Positive, Negative, Neutral

(which corresponds to Factual). Irrelevant tweets are given the label Irrelevant.

6.3.1 The Dataset

We use TRAIN (cf. Section 3.1.1) as the seed set S0. The dataset encompasses 500 tweets

labeled hierarchically in terms of sentiment. Since the emerged trends in the dataset

labeled by MD and SU are similar, we merge both datasets. This way, each of the 500

tweets received between 4-30 votes. The labeling procedure is described in Section 3.1.2.

In addition, we utilize C (cf. Section 3.1.1), which contains 19.5k unlabeled tweets about

the same topic. The main difference between both datasets is that tweets in C are shorter

than those in TRAIN. To illustrate how these additional tweets look like, we present two

tweets. On the first one from the dataset the crowd workers agreed:

Please tell me we have other options

for president. These 2 are fruit loops!

\#DebateNight \#Doomed \#VoteForPedro

On the second one below the workers disagreed:

I can’t take either seriously until

Lester Holt asks the real question

in this debate: is a hot dog a

sandwich? \#debatenight \#teachthetruth
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6.3.2 Building Crowdsourced Datasets

To test how well our proposed methodology works, we want to collect a real-world crowd-

sourced dataset. At the same time, this crowdsourced dataset should be used to evaluate

the performance of DAP0 in practice. This leads to the following idea. To address the first

requirement, we select unlabeled tweets from C and DAP0 will be used to select these

tweets. Instead of creating one crowdsourced dataset, we create three, namely one that

contains only tweets with predicted LOW disagreement, one that comprises only tweets

with predicted MEDIUM disagreement, and one that includes only tweets with predicted

HIGH disagreement. Evaluating the disagreement levels allows us to draw conclusions

about the performance of DAP0, which was trained on S0.

The detailed procedure for obtaining the three datasets to be crowdsourced is as fol-

lows. To obtain disagreement labels for all tweets in S0, we estimate the worker dis-

agreement DA in S0 for tweet t by employing Equation 5.3. We then bin the result-

ing scores to three disagreement levels: LOW, MEDIUM, and HIGH and train DAP0

on S0 with those derived labels. In the next step, DAP0 predicts the worker disagree-

ment in the remaining 19.5k tweets of C. To test the performance of DAP0, we created

three datasets - LOW, MEDIUM, and HIGH. LOW (MEDIUM) (HIGH) contains 1k

randomly selected tweets with predicted disagreement LOW (MEDIUM) (HIGH). To

evaluate how well DAP0 performs, we request labels from Amazon Mechanical Turk

for all three datasets where each tweet in HIGH is labeled by eight different workers,

whereas tweets from MEDIUM and LOW are labeled by four workers each. We allo-

cate more budget to HIGH since it is the most promising dataset to contain tweets with

Disagreement, which we want to analyze. Building these three datasets allows us to an-

alyze DAP0’s performance on real data in RQ3.2 (see Section 6.1). We note that we

initially chose the worker disagreement labels for S0 as LOW, MEDIUM, and HIGH.

For our crowdsourcing experiment we converted the hierarchical labeling scheme from

Section 3.1.2 into a more suitable flat one using the labels Positive, Negative, Neutral

(which corresponds to Factual) for Relevant tweets, and Irrelevant otherwise. At this

time we also changed worker disagreement from three to two levels because we are only
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interested in tweets with Disagreement and tweets with No Disagreement. These two

corrections allowed using the more intuitive majority voting scheme (see Definition 1)

because Equation 5.3 does not yield continuous scores for a flat labeling scheme. In other

words, Equation 5.3 was only used for creating the three datasets, but otherwise the flat

scheme and binary worker disagreement labels were used throughout the chapter. The flat

scheme was also applied to S0 after the three datasets were created.

6.3.3 Features for Disagreement and Sentiment Classification

Table 6.1 shows the features that are used by the sentiment predictor STP and the dis-

agreement predictor DAP i. We note that due to hyperparameter optimization not neces-

sarily all features are utilized by each predictor. Since we are only interested in sentiment

w.r.t. a specific topic (presidential debate), we exploit the similarity between a query and

tweets to determine a tweet’s relevance. The query is the same for all tweets and we set it

to ”donald trump hillary clinton political election discussion campaign” in this chapter.

As shown in Table 6.1, we exploit tweet sentiment and compute polarity values from

the given text by using four different resources: two online tools, namely Watson3 and

TextBlob4, and two lexicons, SentiWordNet (SWN) [64] which is a domain-independent

lexicon and the SemEval-2015 English Twitter Lexicon (TWL) [65] which is specifically

tailored to Twitter. In terms of sentiment, we also utilize subjective word lists proposed

by [66]. Please note that we computed features F2 − F42 for the whole tweet as well as

for the first and second half separately. Otherwise 13 features instead of 39 would have

sufficed for our representation. The reason for using these extended features is to account

for mixed sentiment. Regarding the syntactic features, we obtain POS tags from Rosette5

and NERs from Rosette and Watson.
1http://saifmohammad.com/WebPages/SCL.html#ETSL
2https://nlp.stanford.edu/IR-book/html/htmledition/

query-term-proximity-1.html
3https://www.ibm.com/watson/developercloud/natural-language-understanding/

api/v1
4https://textblob.readthedocs.io/en/dev
5https://developer.rosette.com/api-guide
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Group Name Feature Description

F1 Watson Sentiment

F2-F7 Avg. pol. and ratio (TextBlob)

Polarity F8-F21 Min/Max/Avg/Dominant pol. and ratio (SWN )

F22-F33 Min/Max/Avg pol. & ratio (TWL1)

Subjective Words F31-F42 #Pos./Neg. words and their ratio

TF*IDF F43-F47 Sum/Mean/Min/Max variance of TF*IDF scores of words

F48-F55 #POS tags (nn, jj, rb, vb) and ratio

Syntactic F56 #NERs

F57 Stop word ratio measured in words

F58 Diversity [60]

Punctuation F59-F62 #“?”, #“!” and their ratio

F63-F64 #Suspension points & #Quotes

Keywords F65-F66 #Comparison words (e.g. ”like”)

F67 #“yet” & #“sudden”

Writing F68-F69 #All-uppercase WORDS and ratio

Style F70-F71 #Words with repeating characters and their ratio

F72 Query-term proximity 2

F73-F75 #Extra/missing/overlapping terms

F76 Levenshtein distance

Text F77 Jaro Winkler distance

Similarity F78 Longest common subsequence

(between F79 Dot product

query& F80 Cosine similarity

tweet) F81 Jaccard sim. of unigram shingles

F82 Jaccard sim. of bigram shingles

F83 Unit match feature [61]

F84 Agreement AG (text, query) [62]

Topic F85-F94 10 topics according to LDA

Word Embedding F95-F294 Pre-trained Glove vectors [63]

Twitter F295 #Texting lingos, e.g. haha, OMG

-specific F296-F299 #Pos./Neg. emoticons and their ratio

F300 Being retweet or not

Length F301 Tweet length ratio (in characters)

F302-F304 #Words

Table 6.1: Overview of features used for sentiment and disagreement predictors.
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Since there is a correlation between sarcastic tweets and worker disagreement [11],

we include sarcasm-related features (F59 − F67) as sarcasm increases ambiguity. On

top of these, we generate ten topics from the whole dataset by using LDA [67], since

topic features may also convey sarcasm-related information. Finally, we include word

embeddings, specifically pre-trained Glove vectors [63] for Twitter6, which may preserve

semantic information.

Evaluating STP allows to investigate our core claim with RQ3.3 and RQ3.4 (see Sec-

tion 6.1), namely that documents (here: tweets) affect predictor performance negatively

and removing them might be helpful.

6.3.4 Label Distributions

For the classification experiments, it is necessary to consider the distribution of the sen-

timent labels which are shown in Figure 6.2 and Figure 6.3 respectively. In the former,

four votes per tweet are used for the three crowdsourced datasets while all votes per tweet

in S0 are utilized. S0 exhibits a similarly skewed label distribution as the three crowd-

sourced datasets, thus S0 is representative. In all datasets similar patterns emerge in that

the majority of tweets is considered negative while only a few tweets are irrelevant. Since

the three crowdsourced datasets appear internally consistent, we interpret this as a hint

toward the reliability of the labels. To see how the label distribution is affected if more

budget is allocated to tweets, we show the resulting distribution in Figure 6.3 for HIGH

according to majority voting using four and eight votes respectively. Despite increasing

the number of votes, the distribution remains almost identical. We interpret this as another

clue that crowd workers were honest.

6.4 Results of Analysis

Before reporting the results of the four research questions, we first analyze how well our

definition of worker disagreement matches reality because results based on an unsuitable

6https://nlp.stanford.edu/projects/glove/
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Figure 6.2: Label distribution across all four labeled datasets - three crowdsourced

datasets using four votes per tweet and the seed set using all votes.

decision would render any findings meaningless. Afterwards we discuss all four research

questions separately. We choose TRAIN as S0 throughout all conducted experiments.

6.4.1 Analyzing the Appropriateness of Definition 1

Before performing the actual experiments, we investigate how well Definition 1 captures

the notion of ambiguous tweets to ensure that the findings of our experiments are valid.

Therefore, we create a ground truth for TRAIN, LOW, MEDIUM, and HIGH and com-

pare these labels with those derived from Definition 1. After a manual inspection of

all 3.5k tweets, we identified four main sources that could induce worker disagreement.

When including one additional marker for tweets which do not exhibit any of these char-

acteristics, we end up with the following five classes:

• (A)mbiguity: a tweet is difficult because it either contains mixed sentiment for

one or multiple entities or the sentiment could be interpreted in different ways.

Example: ”I keep thinking Trump’s winning, but he’s also kinda acting like a clown

so idk... #debatenight”
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Figure 6.3: Label distribution in HIGH when computing majority labels using four and

eight votes per tweet.

• Lack of (B)ackground knowledge: a tweet is difficult because it requires back-

ground knowledge, either in the sense of semantics, e.g. unknown entities like

people or events in a tweet, or due to the lack of context. Example: ”If I could

ask the presidential candidates one question tonight, it would be ”Would there be

justice for Harambe?” #debates”

• (I)rrelevance: a tweet is difficult to label because it is irrelevant to the subject matter,

e.g. a tweet that praises the clothing of the moderator. Example: ””I wait for

the Lord, my whole being waits, and in His word I put my hope.” Psalm 139:5

#debatenight”

• (O)ther: a tweet that is difficult to label for other reasons, i.e. it is relevant to the

subject matter but it is not possible to infer what the author wants to say, e.g. due

to sarcasm. Example: ”I can’t take either seriously until Lester Holt asks the real

question in this debate: is a hot dog a sandwich? #debatenight #teachthetruth”

• (S)implicity: tweets which do not include any of the disagreement indicators. Ex-

ample: ”The fact that Trump cuts Lester off every time he asks a question goes to
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Figure 6.4: Distribution of the indicators inducing worker disagreement across 3.5k

tweets.

show that he has no respect for people #debatenight”

Two of the authors labeled all tweets independently in terms of these five classes. Af-

terwards the labels were merged in case of agreement and otherwise the authors discussed

to choose a label unanimously. The resulting label distribution is visualized in Figure 6.4

and suggests that most tweets are straightforward to label, while the four disagreement

sources are roughly equally distributed. Since A, B, I, O indicate ambiguous tweets, we

aggregate them into ambiguous. while S indicates non-ambiguous tweets. It turns out that

327/1106 ambiguous tweets according to Definition 1 are considered as non-ambiguous

by the ground truth. One possible explanation for the differences could be that some

crowd workers assigned low-quality labels. In terms of non-ambiguous tweets according

to Definition 1, the ground truth considers 295/2394 non-ambiguous tweets as ambiguous.

This suggests that crowd workers performed more reliably on these tweets. Nevertheless,

overall our analysis suggests that Definition 1 captures the difference between ambiguous

and non-ambiguous tweets sufficiently well.

86



Worker disagreement on sentiment labels
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge

disagreement

no disagreement

HIGH
MEDIUM
LOW
S0

Figure 6.5: Worker disagreement distributions across all four labeled datasets - three

crowdsourced datasets using four votes per tweet and the seed set using all votes.

6.4.2 Performance of the Disagreement Predictor

For analyzing RQ3.1, we use area under the ROC curve (AUC) which takes the skewness

of the data into account, hence it is a suitable metric for us (see Figure 6.5). DAP0 sep-

arates ambiguous from non-ambiguous tweets. As dataset we employ S0 and optimized

DAP0 for 15 min in Auto-Weka [68] using 10-fold cross-validation and averaged the

AUC over five independent runs. While performing the experiment, we noticed overfit-

ting in multiple runs, indicated by nearly perfect AUC scores. In those cases, we ignored

the run and manually repeated it using Weka [69] with the optimized parameters reported

by Auto-Weka. The results are shown in the first row of Table 6.2. The averaged AUC

of 0.55 indicates that DAP0 performs slightly better than chance which partially sup-

ports RQ3.1. However, the performance could be improved by tweaking the feature space

which is beyond the scope of this chapter as we are mainly interested in general trends.

To analyze the performance of DAP0 on unseen data, we computed the worker dis-

agreement according to Definition 1 for each of the three crowdsourced datasets and illus-

trate the disagreement distribution in Figure 6.5. Four votes per tweet were used for the
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three crowdsourced datasets as well as all votes per tweet in S0. One would expect that the

fraction of ambiguous tweets is highest in HIGH and lowest in LOW. However, it turns

out that similar trends emerge in all datasets, namely workers disagree on around 30%

of the tweets, which leads to a rejection of RQ3.1. In other words, DAP0 did not learn

meaningful patterns from S0 to distinguish different levels of disagreement. However, by

expanding S0 DAP0’s performance might improve, which is tested in the next section.

6.4.3 Gradual Improvement of the Disagreement Predictor

For our proposed method to work, the most important assumption is that DAP i improves

if Si is expanded which is examined in RQ3.2. We test it by comparing the performances

of DAP0 trained on S0 and DAP1 trained on S1, where S1 = S0 ∪ LOW ∪MEDIUM ∪

HIGH. Expanding S1 in this particular way allows us to analyze if our proposed method

works in principle or not. In practice, however, S0 should be expanded by fewer tweets at a

time. Classes to be separated are the same as in RQ3.1 – ambiguous and non-ambiguous.

As evaluation metric we utilize AUC and we train DAP0 and DAP1 as described in

RQ3.1 using Auto-Weka. The results are shown in Table 6.2. An improvement in DAP1

over DAP0 of 6% supports RQ3.2 that our proposed methodology gradually refines the

disagreement predictor over multiple iterations.

Run 1 2 3 4 5 Avg. AUC

DAP0 0.57 0.57 0.47 0.57 0.57 0.55

DAP1 0.56 0.7 0.53 0.63 0.65 0.61

Table 6.2: AUC scores obtained in five Auto-Weka runs for DAP0 trained on S0 and

DAP1 trained on S1 respectively.

Although the performance of DAP1 shows room for improvement, e.g. by altering

the feature space and identifying the most predictive features, an important remaining

question is if this optimization is worth the effort? That is the reason why we run a simu-

lation in the next section to assess the effect of difficult tweets on predictor performance
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Figure 6.6: Influence of tweets with Disagreement on sentiment classification.

assuming that we can identify difficult tweets.

6.4.4 Effect of Ambiguous Tweets on Sentiment Classification

For analyzing RQ3.3, we devise the following simulation. We use S1 from RQ3.2 to

train STP that separates the classes Positive, Negative, Neutral, and Irrelevant. We use

all votes in S1 per tweet, i.e. all votes in S0, LOW etc. We utilize worker disagree-

ment according to Definition 1 to create two datasets from S1: D containing 1.1k tweets

with Disagreement and ND comprising 2.2k tweets with No Disagreement. That means

disagreement labels are only exploited to group the tweets initially. Other than that senti-

ment labels are to be predicted. In the simulation, we increase the fraction of tweets with

Disagreement in ND by randomly choosing m tweets from ND with no disagreement

and replacing them by m random tweets from D with disagreement. This way, the size

of ND is fixed while the fraction of tweets with Disagreement in ND increases up to

50%7, allowing us to train multiple versions of STP on ND. We employ 10-fold cross-

7We obtained similar results in that the performance of STP dropped by 8% when using 1.1k tweets in

ND to analyze what happens if the dataset is comprised of up to 100% tweets with disagreement. Since
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validation to avoid introducing any bias and we report the performance in terms of AUC

averaged over three independent runs to make the results more robust. As a predictor we

select a random forest and optimize it to deal with class imbalance (see Figure 6.2). The

reason for choosing random forest is that it is a predictor ensemble which tends to give

more stable results than single predictors [70]. The result of our simulation is shown in

Figure 6.6 and supports RQ3.3: STP ’s performance drops by up to 8% when the fraction

of tweets with Disagreement increases. Repeating this experiment with an unoptimized

random forest predictor leads to the same result and AUC drops by up to 13%. One pos-

sible explanation for the performance drop of the predictor could be that difficult tweets

were assigned a more or less random majority label due to worker disagreement. This

majority label could then introduce noise in the respective set of documents that share

the same label because existing patterns might be weakened or artificially introduced due

to the random majority labels. Thus, discarding these difficult tweets from the training

set could be a viable option. Another possible option for improved label reliability is re-

questing more labels for difficult tweets. This alternative strategy is evaluated in the next

section by devising another simulation.

6.4.5 Effect of Allocating More Budget to Ambiguous Tweets on Sen-

timent Classification

To address RQ3.4, we first analyze how worker disagreement develops when labeling

budget is increased. If the labeling budget in HIGH is doubled from four to eight votes

per tweet, worker disagreement decreases by 5% from 33% to 28%. This suggests that

assigning more budget to ambiguous tweets can be helpful.

This is further supported by Figure 6.7 in which we plotted the fraction of tweets with

Disagreement over all three crowdsourced datasets considering only the first n labels,

where n = 2...8. For n = 2...4 we computed the disagreement for each of the three

datasets, while starting from n = 5 only HIGH is used because the other datasets received

only four votes. The plot illustrates that the valleys and peaks start to converge when

this scenario is less realistic, we show the results only in Appendix B.
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Figure 6.7: Fraction of tweets with Disagreement when using only the first n votes for

deriving majority labels. For n = 2, 3, 4 we depict the fractions separately for LOW,

MEDIUM, and HIGH, while for n > 4 only tweets from HIGH are available.

increasing the number of votes. This suggests that adding more budget helps resolve

some disagreement, especially if only few votes are available, but then the disagreement

starts to converge and acquiring additional labels leads to diminishing returns. The valleys

and troughs are most likely an artifact of our definition of majority because for an even

number of votes the likelihood for worker disagreement increases as opposed to an odd

number of votes.

In a last step, to analyze how the performance of STP is affected by more budget

allocated to tweets with disagreement, we designed another simulation similar to RQ3.3

as follows. From HIGH we select only tweets whose agreement never changes when

using the first n votes, where n = 4...8 to generate two datasets. This way, the same

tweets are used in all runs of the experiment and only the sentiment labels of tweets with

Disagreement might change due to more votes. We split the tweets into ND (586 tweets)

and D (87 tweets) and fix the dataset size to 174 tweets8, initially all tweets are from ND

8Repeating the experiment with the same settings as in RQ3.3, now using only 87 tweets instead of 174
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and then we gradually replace them by tweets from D in the same manner as in RQ3.3.

The resulting performances of STP , for which we used again an optimized random for-

est predictor, are shown in Figure 6.8. They support RQ3.4 since the use of more votes

does not improve the AUC scores. Surprisingly, contrary to RQ3.3, STP ’s performance

improves by 1-5% as the fraction of tweets with disagreement increases. However, re-

peating the experiment with an unoptimized random forest predictor supports RQ3.4 in

that more votes do not improve AUC scores and in line with RQ3.3 the AUC drops by

4-9% when the fraction of tweets with disagreement increases. Therefore, we believe the

increased AUC scores of the optimized predictor to be an artifact of the small dataset size

and the randomized cross-validation splits because the other seven experiments in RQ3.3

and RQ3.4 using optimized and unoptimized predictors point to the opposite pattern in

agreement with RQ3.3. Overall, our results support RQ3.4; only if tweets received less

than four votes, allocating more budget to them resolves some disagreement. However,

not all disagreement can be resolved which hints at the presence of aleatoric uncertainty.

6.5 Discussion

In this chapter, we first investigated whether disagreement among the labels assigned to

tweets by crowd workers can indeed be alleviated by acquiring more labels. We designed

an iterative process that involves disagreement prediction and uses polarity classification

as the crowd labeling task. We have shown experimentally that disagreement among

the labels assigned to tweets by crowd workers impacts polarity classification quality

negatively. This finding agrees with earlier studies on the behavior of crowd workers.

However, our results also indicate that such a disagreement cannot be always alleviated by

acquiring more labels for the tweets, for which disagreement occurs. Indeed, Figure 6.7

shows that as votes (labels for tweets) are added, the disagreement oscillates instead of

converging fast towards zero. The slow shift to lower levels of oscillation implies that

tweets in ND (which leads to up to 100% of tweets with disagreement), we observe a drop in STP ’s AUC

by 2-6% and more votes per tweet do not remedy these drops. The results are depicted in Appendix C.
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Figure 6.8: Influence of tweets with Disagreement on the predictor performance if the

number of votes used for majority voting increases. The AUC scores in the legend are

averaged per curve.

for some tweets it is beneficial to add more labels, but not for all of them because some

tweets are inherently controversial. We expect that acquiring more labels for tweets with

disagreement is only beneficial if tweets have few votes. Otherwise the additional labeling

costs outweigh the reduced worker disagreement. However, finding the optimal trade-off

between removing tweets and allocating more budget to them is future work.

Our iterative process allows the experiment designer to allocate crowd workers for

fractions of the unlabeled dataset, so that the amount of disagreement is monitored. Our

results show that our disagreement predictor separates between tweets with and without

disagreement to some extent, and that it improves as it sees more labeled data. Hence,

the experimenter can stop the crowd labeling process when the predictor converged and

then decide how tweets with Disagreement should be treated, while tweets with No Dis-

agreement are given to the crowd workers. Nevertheless, we plan to experiment with

different tweet representations like [71] to improve the performance of the disagreement

predictor. Another potential avenue for identifying a better feature space for the disagree-
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ment predictor is indirectly described in Section 6.4.1 as we identified four main sources

that induce crowd worker disagreement. Extracting more features related to these sources

seems promising. Furthermore, analyzing why crowd workers consider certain tweets as

ambiguous in contrast to the ground truth and vice versa is worth more research. This

way one could tease apart aleatoric and epistemic uncertainty. Another possible outcome

from such an analysis could be a more suitable definition of worker disagreement as Defi-

nition 1 becomes less reliable for ambiguous tweets with a discrepancy of 29.5% between

crowd workers and the ground truth. Multiple factors could account for this to some ex-

tent, e.g. low-quality labels or aleatoric uncertainty. However, perhaps this observation

indicates that ambiguous tweets should not be labeled by crowd workers, but experts if

one requires reliable labels. Especially analyzing why some tweets are considered non-

ambiguous by crowd workers but not experts demands a detailed analysis, e.g. workers

might agree due to chance as they employ similar backup strategies in case of uncer-

tainty like assigning Neutral sentiment. Being able to identify and prevent such situations

would improve label quality. One idea for an alternative definition of worker disagree-

ment would be quantifying a majority label in terms of the difference, epsilon, between

the most frequent and second most frequent label. Then a tweet is considered ambiguous

if the actual difference between those labels is smaller than epsilon, where epsilon could

be a constant or a relative number, e.g. twice as much as the least frequently chosen label.

Our finding on the non-alleviatable disagreement for some tweets has implications

on the design of crowdsourcing experiments. Although such experiments are often very

well-designed, it is possible that the set of labels needed to characterize the tweets must be

larger or different than the one originally anticipated, e.g. to accommodate a label ”con-

troversial” or ”bipolar”. Our iterative methodology allows the experimenter to identify

such a phenomenon at an early iteration, before using up the whole budget.

A shortcoming of our findings concerns the convergence of the disagreement predic-

tor: in each iteration, it assigns labels without learning from past misclassifications. We

intend to replace this predictor by an incremental one, to ensure faster convergence. We

also plan to investigate the relationship between convergence speed and budget usage,
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which here translates to the number of tweets being labeled at each iteration.

A further shortcoming of our findings concerns the separation between disagreement

due to internal features of the tweets and disagreement due to features of the crowd work-

ers. The oscillation of disagreement indicates the presence of such internal features, while

the reduction of disagreement indicates the influence of the crowd workers themselves.

A step towards discerning the two aspects is the inspection of the tweets, but this is a

strenuous, non-automated step. However, our approach of measuring disagreement over

time can help an experimenter see the impact of more labels on the agreement oscillation,

as it was shown here in Figure 6.7. By fitting a line to the oscillating curve and comput-

ing the slope of this line, we may provide an estimate of convergence. In this work, we

have studied the oscillation in one experiment; more experiments on different datasets are

needed to understand when and how the disagreement may converge.

Our tweet dataset has been built on the basis of keywords. It is likely that some

tweet collections contain less disagreement-provoking tweets. Hence, we plan to run our

experiments on more collections, with different keywords, and seek to identify features

that are predictive of disagreement. Nonetheless, disagreement does show up in crowd

labeling experiments. We have shown that our methodology helps in identifying it. Our

dataset9 and source code10 are both publicly available.

9https://www.researchgate.net/publication/326625792_Dataset_for_our_

paper_titled_Predicting_worker_disagreement_for_more_effective_crowd_

labeling
10https://github.com/fensta/DSAA2018
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Chapter 7

Conclusion and Future Work

This chapter first sums up the thesis and then discusses implications of our findings of

our findings. Afterwards, future research directions that go beyond the topics discussed

in Chapters 4-6 are outlined.

7.1 Summary

Although crowdsourcing is a popular mechanism to obtain large-scale labeled datasets for

training supervised predictors, it is still problematic to obtain accurate and reliable labels

despite the use of various human factors on crowdsourcing platforms. Therefore, we set

out in this thesis to improve the reliability of crowdsourced datasets.

We started with an analysis of how crowd workers label documents. This was moti-

vated by the idea that crowd workers undergo a learning process, which was measured in

terms of annotation time, i.e. the time workers required to assign labels. We studied how

this process evolved over time and how it affected the reliability of the labels that crowd

workers assigned. To increase the validity of our resuls, we performed the crowdsourcing

experiment in two different geographic locations independently – once in Sabancı, SU,

(Turkey) and once in Magdeburg, MD, (Germany) – to distinguish local from potentially

global patterns. However, most of the identified temporal patterns were similar in both

locations indicating that the crowd workers were faithful and that the observed patterns
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were not a coincidence. Most importantly, the results suggested that the learning process

affects crowd workers’ label reliability.

Since the effect of document difficulty on label reliability has not been investigated

before, we examined this connection in a preliminary study using the dataset from our

previous analysis. First, we derived difficulty labels for all documents before training

sentiment predictors. The results suggest that difficult documents reduce label reliability.

Combining the findings of these two studies allowed us to propose a new crowd-

sourcing methodology that separates difficult from easy documents. To maximize label

reliability, only easy documents are to be labeled by the crowd, while the remaining doc-

uments are to be handled differently depending on the task, e.g. by discarding them or

labeling only a subset of them. The main advantage of our proposed methodology is that

it is applied as a preprocessing step before crowdsourcing. Thus, it complements exist-

ing approaches that increase label reliability in a postprocessing step, e.g. by identifying

spammers and removing their submitted labels.

7.2 General Conclusion

In Chapter 4 we found that label reliability increases in the exploitation phase. This

emphasizes the importance of training crowd workers in advance so that they always la-

bel micro-tasks in this phase. Therefore, experimenters should provide crowd workers

with a training session of appropriate length allowing them to reach their exploitation

phase before they start labeling actual micro-tasks. Estimating the appropriate length of

the learning phase depends on the labeling task, so experimenters should perform pre-

liminary experiments to approximate the length accurately, for example by applying our

methods from Sections 4.3.1 and 4.3.2. However, this works only if the crowdsourcing

platform shares the annotation times of the crowd workers with the experimenter, which

is usually the case, e.g. for Amazon Mechanical Turk and CrowdFlower. Otherwise the

length of the learning phase must be estimated, e.g. by setting the length based on a sim-

ilar labeling task for which the length of the learning phase is known. At the same time,
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our finding motivates the necessity of retaining experienced crowd workers (i.e. those

who have reached their exploitation phase) motivated for the current labeling task, so that

they keep on completing related micro-tasks. Motivation can be increased to some extent

by providing extrinsic incentives such as gradually increasing the rewards for completing

more micro-tasks. However, it is known that higher monetary rewards do not necessarily

lead to more reliable labels [72]. Thus, there is a trade-off between intrinsic and extrinsic

motivation and a mixture of of both types of motivation seems more promising. A pos-

sible idea for intrinsic motivation would be allowing more experienced workers to rate

the quality of the micro-tasks of inexperienced workers to build up their reputation as

experts. An alternative to that strategy would be using a peer-dependent reward scheme

[73], where crowd workers are paired up and exchange some personal information like

their names and nationality. Either working as a team or competitively against each other,

their motivation to submit high-quality labels increases leading to an improved label reli-

ability.

When analyzing the interplay between document difficulty and label reliability, our

preliminary study in Chapter 5 demonstrated that difficult documents reduced the label

reliability in the exploitation phase of crowd workers. This motivates the idea that difficult

documents should not necessarily be labeled by inexperienced crowd workers, but rather

experts or not at all depending on the type of difficulty encountered in the documents

– either aleatoric (a document is inherently ambiguous, i.e. additional labels will not

converge to a majority label) or epistemic (a document is difficult, so requesting more

labels could make the majority label converge) uncertainty.

Our proposed crowdsourcing methodology in Chapter 6 implements this idea of sep-

arating difficult documents from the rest, so that difficult documents are excluded from

crowdsourcing to increase label reliability. The result obtained in Section 6.4.4 shows

that excluding difficult documents from the training set improves the performance of the

resulting predictor. This might be due to difficult tweets introducing noise that prevents

the sentiment predictor from estimating the polarity more accurately. Our result from

Section 6.4.5 offers an alternative explanation for this finding: many difficult tweets from
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our dataset are inherently ambiguous therefore requesting more labels for difficult doc-

uments does not resolve crowd worker disagreement. This interpretation suggests that

it is insufficient to separate difficult documents from the rest. Instead, one might have

to increase the granularity of worker disagreement and distinguish between aleatoric and

epistmic uncertainty among difficult documents.

7.3 Future Work

Besides raising many unanswered questions in Chapters 4-6, there are two additional

avenues for future research that have been briefly mentioned in the previous section. First,

our results suggest that removing difficult documents is a viable option and better than

requesting more labels – but is this finding limited to our dataset or not? We found that

many tweets are inherently difficult in our dataset, which would explain why removing

them is more promising than requesting more labels for them. However, the question

for future research is how common is aleatoric uncertainty in datasets? We suspect that

the fraction of inherently difficult documents depends on the topic and labeling task. For

example, longer text documents might be less likely to exhibit aleatoric uncertainty as

opposed to short texts such as tweets. Similarly, the popularity of a topic could contribute

to aleatoric uncertainty. If the fraction of epistemic uncertainty is higher in a dataset, we

expect that requesting more labels for difficult documents will be superior to removing

them.

This leads to the second research direction, namely training a predictor that teases

apart aleatoric from epistemic uncertainty. Depending on which type of uncertainty is

prevalent, a different strategy (removing a document vs. requesting more labels) could

be utilized. However, before tackling this problem, one should improve the disagreement

predictor (DAP ), e.g. by exploring different feature spaces, because at the moment it

is unclear how difficult it is to estimate the level of crowd worker disagreement. In this

thesis we have implicitly assumed that it is easier to predict worker disagreement than the

labels of the actual labeling task (here: sentiment analysis). Provided that our assumption
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holds, the simulations in Sections 6.4.4 and 6.4.5 demonstrate the benefits of discarding

difficult documents before crowdsourcing the rest given that a dataset contains inherently

difficult documents.
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Appendix A

Statistical Tests

In this section we list the statistical tests we use with their null hypotheses and underlying

assumptions. If a test is used only for one specific experiment, we give specific examples

from the main text for the variables involved in the computation of the tests. The term

”population”, which we use frequently in the explanations of the tests below, refers to the

set of observations that are relevant for an experiment [74].

A.1 Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is the non-parametric version of the unpaired student-t test,

which compares the differences in two populations. All information in this section is

taken from [75].

Null Hypothesis: The medians of the two populations are the same.

Assumptions:

1. The two samples are independent

2. The two populations have equal variance (homoscedastic)
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A.2 ANOVA

It tests the difference between group means after any other variance in the dependent

variable (here: median annotation time) is accounted for. The different sources of variance

are called levels. All information in this section is taken from [76].

Null Hypothesis: The means of the dependent variable are the same for the different

levels (here: Learn, Rest, Fatigue) of the given data.

Assumptions:

1. The samples are independent

2. The populations have equal variance (homoscedastic)

3. The populations are normally distributed

4. Each group in the ANOVA table should contain at least around 10 samples.

A.3 Fisher’s Exact Test

This test is performed on a 2x2 contingency table with two nominal variables and the goal

is to determine if the proportions of one variable are different depending on the value of

the other variable. All information in this section is taken from [76].

Null hypothesis: the relative proportions of one variable are independent of the other

variable.

Assumptions:

1. The samples are independent

2. Row and column totals of the contingency table are fixed
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Appendix B

RQ3.3: Additional Results
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Figure B.1: Influence of tweets with Disagreement on sentiment classification using 1100

tweets for ND and D.
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Appendix C

RQ3.4: Additional Results
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Figure C.1: Influence of tweets with Disagreement on the predictor performance if the

number of votes used for majority voting increases. The AUC scores in the legend are

averaged per curve. 87 tweets are used for ND and D.
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