
  

  

SABANCI UNIVERSITY  

GRADUATE SCHOOL OF ENGINEERING AND 

NATURAL SCIENCES 

 

 

 

COMPUTATIONAL ASSESSMENT OF THE EFFECT OF 

ALLOSTERIC MUTATIONS ON THE DYNAMICS OF 

PDZ DOMAINS 

 

M.Sc. THESIS 

Nazlı KOCATUĞ  

 

 

Department of Molecular Biology-Genetics and Bioengineering 

 

Thesis Advisor: Prof. Dr. Canan Atılgan 

 

JULY 2018 



  

 



iii 

 

 

 

 

 

 

 

 

 

© NAZLI KOCATUĞ 2018 

All Rights Reserved 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To all the sparks that have shown courage to turn into flames 
 

 

 

 

 

 

 

 



 iii 

ABSTRACT 

 

Keywords: PDZ domains, allostery, molecular dynamics simulations, free energy 

calculations 

 

 

PDZ domain-containing proteins are involved in intercellular interactions such as 
trafficking, signaling, cell to cell communication and organization of signaling 
complexes. PDZ domains are themselves small proteins which typically consist of 90 to 
100 amino acids. However, the extra α helix structure at the carboxyl terminus introduces 
a selective structural feature to the third PDZ domain of PSD-95 which has a stabilizing 
effect and participates in allosteric communication. PDZ domains are the most commonly 
studied models to understand single domain allostery without resulting in significant 
structural changes. One change triggers another change at distal site, and the source of 
the ‘changes’ are localized perturbations such as a binding event, posttranslational 
modification, a mutation or light absorption. Mutations can alter the stabilization of the 
protein and result ON or OFF state for ligand binding. They can also cause a change in 
the active site and affect the ligand preference. Here we investigate the reasons leading to 
the allosteric regulation of mutations and their effect on the ligand preferences. 

By using third PDZ domain of postsynaptic density 95 (PSD-95) as a model 
system H372 directly connected to the binding site and G330 with a somewhat removed 
position were selected to assess the effect of allosteric mutations on the dynamics. In the 
literature, it was observed that the H372A and G330T/H372A mutations change ligand 
preferences from class I (T/S amino acid preference at position 2 of the ligand) to class II 
(hydrophobic amino acid preference at position 2 of the ligand). On the other hand, the 
G330T mutation leads to the recognition of both class I and class II types of ligands. 
Therefore, H372A is a ‘switching mutation’ while G330T mutation is ‘class bridging’. 
We have performed 200 ns molecular dynamics simulations for wild-type, H372A, 
G330T single mutants and a double mutant of third PDZ domain in the absence and 
presence of both types of ligands. The comparative study helps to identify the changes in 
the dynamics that are effective in the onset and prevention of allosteric communication. 
With the combination of free energy difference calculations and a detailed analysis of 
MD trajectories, the behavior of the PDZ domain under the mutations, which are ‘class 
bridging’(G330T) and ‘class changing’(H372A), and their effects on the ligand 
preferences and binding affinities are explained. We show that the ensemble view of 
allostery provides a better description of site-to-site coupling rather than a pathway view 
that assumes a direct connection between the effector and binding sites. 
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ÖZET 

 

Anahtar kelimeler: PDZ bölgeleri, allosteri, moleküler dinamik simülasyonları, serbest 

enerji hesaplamaları 

 

 PDZ bölgeleri içeren proteinler sinyalleşme, hücre-hücre iletişimi, sinyalleşme 
komplekslerinin organizasyonu gibi hücreler arası etkileşimlerde yer alırlar. PDZ 
bölgeleri 90 ila 100 aminoasit içeren küçük proteinlerdir. Bununla birlikte, karboksil 
terminalindeki ekstra alfa sarmal yapısı, PSD-95'in üçüncü PDZ bölgesine stabilize edici 
ve allosterik iletişime katılan seçici bir yapısal özellik kazandırır. PDZ bölgeleri, önemli 
yapısal değişikliklere yol açmayan allosteriyi anlamak için en çok çalışılan modeller 
moleküllerdir. Bir değişiklik, uzak bir bölgede başka bir değişikliği tetikler ve bu 
"değişikliklerin" kaynağı, bir molekül bağlama olayı, genetik çeviri sonrası 
modifikasyon, mutasyon veya ışık soğurumu gibi bölgesel sarsımlardır. Mutasyonlar 
proteinin stabilizasyonunu değiştirebilir ve proteini ligand bağlanması için açık veya 
kapalı duruma getirebilir. Ayrıca aktif bölgede değişikliğe sebep olarak ligand tercihini 
etkileyebilirler. Bu çalışmada, mutasyonların allosterik regülasyonlara yol açan sebepleri 
ve ligand tercihleri üzerindeki etkileri araştırılmıştır. 
 Postsinaptik yoğunluk 95 (PSD-95) proteininin üçüncü PDZ bölgesi model 
sistem olarak kullanılarak; doğrudan bağlanma bölgesiyle ilişkili H372 ve bağlanma 
bölgesinden biraz uzaktaki G330 amino asitleri, allosterik mutasyonların protein dinamiği 
üzerindeki etkisini anlamak için seçilmiştir. Literatürde H372A ve G330T / H372A 
mutasyonlarının ligand tercihlerini sınıf I'den (ligandın 2. pozisyonunda T / S kalıntı 
tercihi) sınıf II'ye (ligandın 2. pozisyonunda hidrofobik amino asit tercihi) değiştirdiği 
gözlenmiştir. Öte yandan G330T mutasyonu hem sınıf I hem de sınıf II tip ligandların 
kabul edilmesine yol açar. Bu sebeple, H372A ‘sınıf değiştirme mutasyonu’, G330T 
mutasyonu ‘sınıf köprüleyen mutasyon’ olarak adlandırılır. Üçüncü PDZ bölgesinin 
yabanıl tip, H372A ve G330T tek mutasyonlu ve her iki mutasyonu da barındıran 
durumları için, her iki tip ligandın varlığında ve yokluğunda 200 ns’lık moleküler 
dinamik simülasyonlarını ikişer defa gerçekleştirdik. Karşılaştırmalı çalışma, allosterik 
iletişimin tetiklenmesinde ve engellenmesinde etkili olan dinamiklerdeki değişimlerin 
belirlenmesine yardımcı olmaktadır. Serbest enerji değişimleri hesaplamaları ve 
simülasyon süreçlerinin detaylı analizleri ile, ‘sınıf birleştiren’ (G330T) ve ‘sınıf 
değiştiren’ (H372A) mutasyonların; PDZ bölgelerinin davranışı, ligand tercihleri ve 
bağlanma afiniteleri üzerindeki etkileri açıklanmıştır. Çalışmamız, bu proteinde 
gözlemlenen allosterinin “genel uyum” görüşünün, bölgeden bölgeye bağlantıyı 
tanımlamak için, efektör ve bağlanma alanları arasında doğrudan bir bağlantı olduğunu 
kabul eden “yolak anlayışı”na göre daha iyi bir tanım olduğunu göstermektedir. 
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Chapter 1 

 

Introduction and Motivation 

 

1.1 PDZ Domain Family 

PDZ domain-containing proteins were first recognized in the early 1990s.  Such 

proteins involve intercellular interactions such as trafficking, signaling, cell to cell 

communication and organization of signaling complexes [1, 2]. They are found in a wide 

variety of organisms from bacteria to vertebrates.  For instance, the human proteome has 

over 250 different variations of PDZ domain-containing proteins [1]. The domain’s 

abbreviation stems from the very first discovered PDZ-containing proteins –  PSD95 

(postsynaptic density protein 95) P, the Drosophila tumor suppressor protein Dlg-1 (discs 

large) D, and ZO-1 (zonula occludens protein) Z [3] (Fig 1.1). PSD-95 and Dlg-1 are 

homologous – mostly similar with respect to their sequences – insofar as they both have 

three PDZ domains with Src Homology 3 (SH3) and guanylate kinase (GK) domains at 

their C-termini [4]. SH3 domains are specific motifs, target proteins which have a role in 

signaling pathways [5]. GK domain is one of the members of Membrane-associated 

guanlylate kinases (MAGUKs) which are responsible for cell to cell interaction and cell 

polarity control [6]. However, in spite of extensive knowledge on MAGUK family, the 

information in the GK domain is very limited [6]. Unlike SH3 and GK domains, ZU5 

domain is found only in Zonula Occludens Protein (ZO-1), and it contributes to the 

stabilization of ZO-1 protein [7]. 
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Figure 1.1. Schematic representation of PDS-95, DLG-1, and ZO-1. 

 

PDZ domain-containing proteins consist of varying numbers of PDZ domains, 

demonstrating a great variety among species which account for the abundance of the PDZ 

domains [8]. However, it is yet to be determined if the number of domains has a 

significant effect on the function of PDZ domain-containing proteins. 

PDZ domains are themselves small proteins which typically consist of 90 to 100 

amino acids and have 6-7 β-strands and 2 α-helical structures as characteristic features 

[1-5]. Common structural motifs are consistent in the folding respect but differ in length 

amongst the PDZ domain family [9] (Fig. 1.3). In addition to its secondary structure, the 

loop at the binding cleft, referred to as the carboxylate-binding loop, is one of the 

hallmarks of the PDZ domain [10]. This loop consists of ‘GLGF’ amino acids, and, 

therefore, PDZ domains are also known as ‘GLGF repeats’ [8, 11]. However, there is a 

selective structural feature of the third PDZ domain of PSD-95 which makes it more 

interesting to work on; it is the extra α helix structure at the carboxyl terminus [12] (Fig 

1.2). Studies reveal the significance of the unusual α-helix, which has a stabilizing effect 

and participates in allosteric communication [12, 13]. 
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Figure 1.2. The third PDZ domain of PSD-95. 

 

Members of the PDZ domain family bind selectively to short amino acid patterns at 

the C-termini of binding proteins [14]. Therefore, the pattern of the target protein is the 

definitive factor for the classification of PDZ domains [1]. PDZ domain-binding protein 

interactions are categorized based on the amino acid at the second position of the binding 

protein downstream from the C-Terminus [10, 15]. - Class-I for Thr/Ser, Class-II for 

hydrophobic amino acids, and Class-III for Asp/Glu [10, 16, 17].  
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Figure 1.3. Schematic of the Secondary structure of third PDZ domain. Secondary 
structure, purple represents α helix, yellow shows β strands (A). Schematic representation 
of the secondary structure (B).  

 

For this study, the third PDZ domain of PSD-95 is used as a model protein. For 

this protein, Class I and Class II interactions are possible (Fig 1.4A). There are two 

determinant residues affecting ligand preference – His372 and Gly330 [18]. His372 is at 

the binding pocket of the protein and has direct contact with the ligand. On the other hand, 

Gly330 does not have direct contact with ligands, but it is located on the right loop of the 

binding pocket [18]. It has been proven that mutations on these two residues alter the 

protein’s affinity to different classes of ligands [18]. The wild-type (WT) third PDZ 

domain prefers to bind ligands of Class I (Fig. 1.4B). On the contrary, if His372 is 

mutated into Alanine, the binding protein can bind to Class II instead of Class I. Due to 

the resulting change in ligand preference, H372A mutations are called class changing 

mutations [18] (Fig. 1.4B). While the H372A mutation has the inhibitory effect on Class 

I, a Gly to Thr mutation at the 330th residue allows the binding protein to bind both 

Classes I and II ligands. Mutations such as G330T mutations are called class bridging 

mutations [18] (Fig. 1.4B). If the binding protein undergoes both H372A and G330T 
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mutations simultaneously as a double mutant (DM), the protein binds Class-II ligands 

only; i.e. the double mutation is also class changing [18] (Fig. 1.4B). 

 

Figure 1.4. Binding site and ligand preferences. Schematic of the binding pocket and 

ligand classes (A). The change of ligand preferences due to mutation types accordingly 

(B). 

1.2 PDZ Domains as Models of Allostery 

 Allostery is originated from Greek word, meaning "other sites", where 

perturbations at one site of the protein, can influence changes at a distal site, complicating 

deducing structure-function relationship in proteins, the concept has changed in the years 

[19, 20]. In 1904 the 'Bohr effect' concept which was describing the effect of CO2 on the 
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binding affinity of O2 to hemoglobin was proposed [21]. With the description of this new 

concept, the era leading to the naming of ‘allostery’ begun [21].  

 

 The word ‘allostery’ first appeared in 1961, and in 1963 the concept of 

‘allosteric sites’ was used instead of ‘regulatory sites’ by Jacques Monod [22]. In the 

1960s two significant concepts were described: the first one is the concerted model of 

Monod, Wyman, and Changeux (MWC) model and the second one is the sequential 

model which was proposed by Koshland, Némethy, and Filmer (KNF) [23]. Both models 

take cooperativity as the key regulatory. The conformational changes were taken as a 

signature of allostery until 1984 [21, 24]. In 1984, the ‘dynamic allostery’ concept was 

described by Cooper and Dryden which describes allostery without the need of 

conformational change by introducing the entropy contribution [21, 25]. With the 

introduction of non-conformational change allostery, in addition to multi-domain 

proteins, single domain ones started to be investigated for a better understanding of 

allostery. PDZ domains are the most commonly studied models to understand single 

domain allostery without resulting in significant structural changes [26]. 

  

 The required localized perturbation for allosteric regulation can cause by a 

binding event, post-transitional modifications or mutations [27]. Mutations attributes in 

two significant regulations. Firstly, it can alter the stabilization of the protein and result 

ON or OFF state for ligand binding [28]. Secondly, it can cause a change in the active 

site and affect the ligand preference [28]. In this study, the reason for the allosteric 

regulation is mutation and its effect on the ligand preferences.  

1.3 The Scope of the Thesis  

PDZ domains themselves are small proteins, typically composed of 90 to 100 

amino acids [1-5]. The extra α-helix structure at the carboxyl terminal is the specific 

structural property of the third PDZ domain of PSD-95, which is why it is widely studied 

[12]. To work on the third PDZ field of PSD-95 is appealing not only because of the 

additional α-helical structure but also due to its significance and abundance in the 

understanding of single domain allostery. In 1999, with the introduction of the allosteric 

networks of PDZ [29], PDZ domains became the preferred model to understand the single 

domain allostery 
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We performed 200 ns molecular dynamics simulations for wild-type, H372A, 

G330T single mutants and a double mutant of third PDZ domain in the absence and 

presence of both types of ligands described in figure 1.4. The comparative study helps to 

identify the changes in the dynamics that are effective in the onset and prevention of 

allosteric communication.  

 The first step in this work has been to use 50 ns apart snapshots from the MD 

trajectories to carry out free energy perturbation calculations. As a result, it is possible to 

make a thermodynamic assessment of ligand binding which is the key to understanding 

the function. With the combination of Free Energy Perturbation (FEP) results and a 

detailed analysis of MD trajectories, the behavior of the PDZ domain under the mutations, 

which are ‘class bridging’(G330T) and ‘class changing’(H372A), and their effects on the 

ligand preferences and binding affinities are explained. We conclude with a simple model 

for explaining PDZ domain allostery by considering entropy-enthalpy compensation. 
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Chapter 2 

 

Theory and Method 

 

2.1 Molecular Dynamics (MD) Simulations 

MD simulations were carried out with Nanoscale Molecular Dynamics (NAMD) 

program using CHARMM36 force field parameters.  The simulations were visualized 

using the molecular graphics program VMD [30]. 

The very first concept and keywords of the MD simulations to understand protein 

folding were introduced in 1975 [31]. MD is a Newtonian physics-based approach used 

for the understanding of molecular conformations, interactions and rearrangements 

[32][33].  

The first step in an MD simulation of a protein is to obtain its structural 

information (coordinates) from the Protein Data Bank (PDB). The protein is placed into 

a water box whereby a distance (10 Å) is maintained between each atom of the protein 

and the nearest edge of the water box by using the solvent plug-in in VMD 1.9.3. By 

adding a sufficient number of potassium chloride (KCl) to the system, the ionic strength 

is adjusted to 150 mM after achieving charge neutrality. Long-range electrostatics are 

calculated by the particle mesh Ewald method [34], with a cut-off distance of 12 Å. 

Temperature control is maintained by Langevin Dynamics. The system is run under 1 atm 

and 310 K in the NPT ensemble. The complete system is minimized for 10,000 steps and 

equilibrated for 100,000,000 steps. Each step is 2 fs.  

This procedure is repeated twice for 12 proteins. Their PDB codes are presented 

in Table2.1.  
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Table 2.1. PDB codes of model proteins. 

 

 

2.1.1 Trajectory Analysis 

Trajectory analysis was carried out considering two sets of simulations. For 

RMSF, cross-correlation, and hydrogen-bond occupancy analyses, the first 80 ns of the 

MD simulation (200 ns) were excluded for the molecule to get equilibrated. The 

remaining 120 ns was divided into three equal 40 ns chunks. Their average is used for 

RMSF and cross-correlation calculations. 

2.1.1.1 Root Mean Square Deviation (RMSD) 

For understanding the similarities and differences between two three-dimensional 

structures, calculating the root mean square deviation (RMSD) is one of the most widely 

used methods [1]. RMSD defined as:  



10 
 

𝑅𝑀𝑆𝐷 (𝑡ଶ, 𝑡ଵ) = ඨ
ଵ

ேഀ
෍ ൫ൻ𝑅ሬ⃗ ఈ𝑡ଶൿ − ൻ𝑅ሬ⃗ ఈ𝑡ଵൿ൯

ଶேഀ

ఈୀଵ
   (1) 

where 𝑁ఈ is the total number of 𝐶ఈ atoms in the molecule, 𝑅ሬ⃗ ఈ is the atomic position of 

the α atom in the predetermined time interval. By taking the first time-step as a reference 

point, the average atomic position is calculated throughout whole the trajectory. 

2.1.1.2 Root Mean Square Fluctuation (RMSF) 

Root mean square fluctuation (RMSF) gives the information about the local 

flexibility of the protein. RMSF is defined as:  

 

𝑅𝑀𝑆𝐹௜ = ට
ଵ

்
∑ (⟨𝑟௜(𝑡) − 𝑟పഥ⟩)ଶ்

௧     (2) 

 

where 𝑇 is the total frame number, 𝑟௜(𝑡) is the position of the ith atom in tth frame, and 

𝑟పഥ is the average position of the ith atom according to the frame. RMSF takes mean 

structure over the trajectory as a reference [36].  

2.1.1.3 Principal Component Analysis (PCA) 

Molecular Dynamics simulations can provide a considerable amount of data 

which needs to be processed. At this point, reducing produced data into smaller data 

without losing any crucial information via clustering methods is an essential step.   

Principle component analysis is a mathematical method based on the covariance 

matrix, useful for finding correlated motions by reducing the dimensionality of datasets 

[37, 38]. By diagonalizing the covariance matrix, the essential motions -principal 

components-  are extracted. 

The first step is superposing all the conformations through the trajectory. With the 

gathering of the displacement information from the first step, constructing a covariance 

matrix is the second step. For a system consists of N residues, which is the total number 

of atoms in the molecule, the covariance matrix has the size of 3Nx3N [39]: 
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                      (3)         

  

                                   

Where, C is the covariance matrix and xi and xj are the displacement of ith and jth 

atom respectively. 

Decomposition of the covariance matrix needs to be done to extract the 

information of direction and magnitude of the displacement. 

 

                                                                                                                                              (4) 

While is an orthonormal matrix whose columns are eigenvectors-also called as 

modes and is a diagonal matrix which has the eigenvalues. Eigenvectors(Q) have the 

information of the direction of the motion. While eigenvalues(λ) give the insight of the 

magnitude of the motion. In this work, we display the contribution of the slowest mode 

of motion (1st PCA) by projecting the eigenvectors on the protein structure. 

2.1.1.4 Cross-Correlation Analysis 

Cross-correlation analysis is used for identifying correlated motions of a protein 

in its equilibrated state [37]. Cross-correlation is defined as follows: 

 

𝑐௜,௝ =
ർ௱ோ೔⋅௱ோ಻̇඀

ට⟨௱ோ೔⋅௱ோ೔⟩ർ௱ோ಻̇⋅௱ோ಻̇඀
   (5) 

 

While ΔRi is the displacement vector of residue ⅈ and ΔRj represents the 

displacement vector of residue j. The cross-correlation value varies between -1, total 

anticorrelation, and 1, total correlation, and represents the level of variation between 

residues. In the representation of the cross-correlation maps, red and blue represents 

positive and negative correlation, respectively. The cross-correlation analysis is 

performed by considering only Cα atoms of the amino acids in the protein. 



12 
 

2.2 Free Energy Perturbation (FEP) Calculations 

Paramount in understanding the relationship between structure and function of a 

biological process are thermodynamic features, more specifically free energy change 

[38]. The thermodynamic features of a system may become altered due to ligand binding 

or protein side-chain mutations [39]. 

 

Figure 2.1. Thermodynamic cycle of H372A mutation. 

 

In 1954, Zwanzig revealed the relationship between the free energy of the system 

and the average of the potential energy differences [40].  

𝑒(ିఉ௱ீ) = ൻ𝑒(ିఉ௱௎)ൿ
଴

௘௤
      (6) 

 

The free energy difference is calculated between reference and target systems, 

which has the coupling parameter, λ, between 0 and 1, where 0 and 1 represent the 

initial and final states, respectively [41]. The potential energy difference between two 

states are calculated via the alchemical transformation equation as follows: 
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𝑈(𝜆௜) = 𝜆௜𝑈଴ + (1 − 𝜆௜)𝑈ଵ = 𝑈଴ + 𝜆௜𝛥𝑈   (7) 

 

If there are n number of intermediate states, windows, between the reference and 

target system, the partition function equals as follows: 

 

𝛥𝐺 = −
ଵ

ఉ
𝑙𝑛 ቀ

ொభ

ொమ
ቁ = −

ଵ

ఉ
𝑙𝑛 ቀ

ொಾ

ொబ

ொభ

ொಾ
ቁ = 𝛥𝐴଴,ெ + 𝛥𝐴ெ,ଵ   (8) 

 

Here 𝛥𝐺଴,ெ and 𝛥𝐺ெ,ଵ represent the free energy differences between 0 and M, and 

M and 1 intermediate states [42]. N number of windows allows calculating 𝛥𝛥𝐺.  

While calculating free energy changes, the system space is sampled in both ways, 

forward and backward. The ratio of the probability distribution equals the difference 

between free energy and potential energy. To increase the overlap of a probability 

distribution, sampling carries great significance [42]. Thereby, the window number is set 

as 32 between WT and mutated states in our simulations (Fig. 2.2). Each window is 200 

ps long with 50ps equilibration and 150 ps data generation.  
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Figure 2.2. Intermediate steps between the initial and final steps. Windows for 

H372A(A), intermediate states in the case of G330T(B). For intermediate steps, red color 

represents vanishing atoms and blue color represents appearing atoms. 
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Chapter 3 

 

Structural and thermodynamic information: Free Energy Perturbation 

Calculations 

 

To determine which states of the PDZ domain would be proper for free energy 

perturbation calculations, we first carry out 200 ns MD simulations on apo, and either 

ligand bound forms of PDZ domains for the wild type, G330T, H372A, and the double 

mutant forms of the protein. The initial structures for FEP calculations are taken from the 

50ns, 100ns, 150ns and 200ns time points of the samples. To decide whether the 

simulations and sampling are reliable, free energy perturbation calculations are compared 

with an experimental study reporting Kd values which shows the binding affinity of PDZ 

domain in the presence of ligand class I and II [18]. 

 

3.1 How the RMSD differed due to mutation types and ligand-bound/unbound 

states? 

The wild-type, H372A, G330T single mutants and double mutant cases were 

simulated to understand the dynamics of the PDZ domain in the presence and absence of 

both ligand types. The simulations were carried out for 200 ns and it is observed that the 

equilibration time varies considerably among different states. 

By comparing the RMSD results, it is aimed to understand whether the behavior 

of the protein has changed between the two simulations.  For each case, ligand unbound, 

ligand class-I bound, and ligand class-II bound conditions were compared. 

 For WT in the absence of ligand, the initial simulation has an RMSD range 

between 2 and 3 Å, while the repeated simulation has a range of 3 to 4 Å. In Figure 3.1A, 

the green shaded area shows a distinct state sampled between 80-120 ns. The reason is 

that, the N terminus is only twisted on α2 (regions are as defined in Fig. 1.3B) within this 
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interval (a sample snapshot is shown in Fig. 3.1B). Outside this range, the N terminus 

moves freely. Although the molecules have different states throughout the trajectory, the 

two simulations seem to have an almost identical endpoint (Figure 3.1A). 

  

 When the results are compared to the ligand-bound and unbound conditions of 

the wild type protein, it has been observed that ligand binding increases the RMSD values 

of the protein. RMSD was increased to 3.5 and 4 Å by ligand binding, in both simulations 

(Fig. 3.1C, 3.1D). However, the movement of the N terminus is different from the case 

where the ligand is absent. In the presence of ligand class II, the N terminus is packed on 

the C terminus in the range of 130-200 ns in one simulation (Fig. 3.1E, dark blue). Apart 

from these observations on RMSD, there is no significant difference in terms of ligand 

class I and ligand class-II bound status.  
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Figure 3.1. RMSD results and sample snapshots for WT in the absence of ligand 
and in the presence of both ligand types. RMSD result in the absence of the 
ligand(A). The state of the protein in the dark green shaded interval in the previous 
figure (B). RMSD results in the presence of ligand class I (C). RMSD results in the 
presence of ligand class II (D). The conformation of the protein in the dark blue shaded 
area in the previous figure(E). L stands for the ligand class I and L* represents ligand 
class II. 
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 As it has shown in the figure 3.2, the effect of the G330T mutation on the dynamics 

of the protein differs in the absence and presence of ligand.RMSD results show that the 

protein in Ligand class-I bound state has two different states, 1-120 ns and 120-200 ns 

(Fig. 3.2B). This difference is due to N terminus as it is in the case of WT. Until 120 ns, 

the N terminus is curled over the α2 region and after 120ns the N terminus moves freely 

and is not fixed to any region of the protein (Fig. 3.2 C). In the presence of ligand class 

II, due to N terminus movements, protein has a distinct equilibrated state between 75 and 

120ns (Fig. 3.2D). In this region, N terminus is packaged into the α2 region of the protein 

(Fig. 3.2E). 

 For the G330T mutation, in the absence of ligand (Fig. 3.2A) and in the presence 

of ligand II, the average value of RMSD is between 3 and 4 Å. This result is also valid 

for repeated simulations. Taking these results into consideration, there is no significant 

difference between the RMSD averages, in the absence of ligands and their presence.  
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Figure 3.2. RMSD results and sample snapshots for G330T in the absence of ligand 
and in the presence of both ligand types. RMSD results in the absence of ligand (A). 
RMSD in the presence of ligand class I (B). The conformational state between 120-150 
ns in the dark pink shaded region ligand class-I bound state (C). Ligand class-II bound 
condition RMSDs (D). Representation of N terminus position in the dark orange shaded 
region (E). L stands for the ligand class I and L* represents ligand class II. 
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 For the H372A mutation case, in the absence of ligand, the repeated simulation has 

a slightly lower RMSD when it is compared to the first simulation, but the variation 

pattern of the protein is similar (Fig. 3.3A). In the case of ligand class-I bound case, 

RMSD results are nearly identical and have the most equilibrated condition (Fig. 3.3B). 

In terms of ligand class-II bound instance, even though the fluctuations of the RMSD is 

high, its average is between 2 and 3 Å (Fig. 3.3C).  
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Figure 3.3. RMSD results for H372A in the absence of ligand (A) and in the presence 
of ligand class-I (B) and II (C). L stands for the ligand class I and L* represents ligand 
class II. 
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 As demonstrated in the figure 3.4, the effect of the DM mutation on the dynamics of 

the protein differs in the absence and presence of ligand. For the double mutant (DM) 

cases, when there is no ligand attached to the protein, protein has shown frequent 

fluctuations during the whole trajectory, that situation is also true for the repeat simulation 

(Fig. 3.4A). When the average RMSD value is taken into consideration, it varies between 

2.7 and 3 Å. Nevertheless, at ligand class I bound state, protein equilibrated a short while 

after simulation started and was fixed at 4 Å for both replica simulations (Fig. 3.4B). 

During the whole trajectory of ligand class-I bound state, N terminus is curled towards 

α2 region (Fig. 3.4C) In the case of ligand class-II bound state, simulations have different 

states, but have a similar endpoint (Fig. 3.4D). It is observed that N terminus curled on 

itself between 70 and 90 ns in the presence of ligand class II (Fig. 3.4D). As a second 

conformation, N terminus is close to C terminus between 90 and 200 ns (Fig. 3.4E). 
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Figure 3.4. RMSD results and sample snapshots for the G330T-H372A double 
mutation in the absence of ligand and in the presence of both ligand types. RMSD 
results when ligands are absent (A). Ligand class-I presence effect on the RMSD (B). N 
terminus location in the presence of ligand class I (C). RMSD results in the presence of 
ligand class-II (D). Different conformations of the protein in ligand class-II bound state 
(E and F). L stands for the ligand class I and L* represents ligand class II. 
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3.2 Free Energy Perturbation Calculations 

According to the results of RMSD, it was decided to take samples from 50ns, 

100ns, 150ns and 200 ns for the H372A, G330T and DM cases from the first set of 

simulations (the ones shown in dark colors in Figure 3.2-3.4). To understand how reliable 

the results obtained are, the calculations were compared with the experimental results and 

were observed to be consistent. 

3.2.1 G330T and DM cases 

 By taking the average of four FEP simulations, 𝛥𝛥𝐺 values are calculated in the 

presence of ligand class I and II for G330T and DM cases. FEP calculation results are 

then compared to experimental results. 

 

 

Figure 3.5 Kd results in the presence of ligand class-I and II with G330T and DM. 
L stands for the ligand class I and L* represents ligand class II. 
 

  

The Kd values that are obtained from the binding affinity experiments [18] (Fig. 

3.7) were again calculated via eq.7 and eq.8. 
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Figure 3.6. 𝜟𝑮 and 𝜟𝜟𝑮 results obtained from FEP simulations(blue) and 
experiments(red).  Calculations are done by eq.7 and eq.8. L stands for the ligand class 
I and L* represents ligand class II. 

 

 More negative results are obtained when it is compared to H372A mutant 

conditions since class bridging mutant, G330T, allows binding of both ligand types [18]. 

Ligand class II has a more negative 𝛥𝐺 value which shows that in the presence of the 

G330T mutation, ligand class-II binding is more favorable. 

 While the experimental 𝛥𝛥𝐺 is -4.7 kcal/mol, the FEP results is -5.2 kcal/mol. 

The fact that the FEP and the experimental results from G330T the mutation case are 

similar to each other shows the sampling for FEP and MD simulations are reliable. 

 In the Figure 3.6, cycles of G330T and DM is represented in the absence and 

presence of ligand classes. a value in the absence of ligand class I cycle is 5.2 kcal/mol 

and b value in the absence of ligand class I cycle is 12.6 kcal/mol. In the ligand class II 

cycle, a is 7.2 kcal/mol and b is 10.0 kcal/mol. Due to the sum of a and b values are 

almost equal in the condition of absence of ligands cases, they cancel out each other. 

3.2.2 H372A and DM cases 

 
 By taking the average of four FEP simulations, the 𝛥𝛥𝐺 values are calculated 

in the presence of ligand class I and II for H372A and DM cases and compared with the 

experimental results (Kd are listed in Figure 3.5) [18].  
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Figure 3.7 Kd results in the presence of ligand class-I and II with H372A and DM. 
L stands for the ligand class I and L* represents ligand class II. 

  

 

From the Kd values that are obtained from the binding affinity experiments [18] 

(Fig. 3.5) we calculate the relative free energy differences using the following relations:   

 

    𝛥𝐺 = 𝑅𝑇 𝑙𝑛(𝐾ௗ)    (7) 

 

   𝛥𝛥𝐺 = 𝑅𝑇 𝑙𝑛 ൬
௄೏మ

௄೏భ

൰    (8) 

  

  
 The more negative ΔG is, the better the ligand binds. The most negative results 

were calculated in cases where ligand class II was bound under H372A and DM 

conditions, indicating that ligand class-II is preferred to ligand class-I. It has also been 

shown by FEP calculations that the H372A mutation does not allow class I binding.  

 
 While 𝛥𝛥𝐺 of experimental results is -4.7 kcal/mol, FEP results is -8.1 kcal/mol. 

The fact that the FEP and the experimental results display non-contradicting trends 

suggests that the sampling for FEP simulations and MD simulations are reliable. 
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 In the Figure 3.8, cycles of H372A and DM is represented in the absence and 

presence of ligand classes. a value in the absence of ligand class I cycle is 13.0 kcal/mol 

and b value in the absence of ligand class I cycle is 4.9 kcal/mol. In the ligand class II 

cycle, a is 12.1 kcal/mol and b is 2.2 kcal/mol. Because of the close values of the sum of 

a and b in the thermodynamic cycle, they cancel out each other. 

 

 

Figure 3.8. 𝜟𝑮 results obtained from FEP simulations(blue) and experiments(red).  
Calculations are done by eq.7 and eq.8. L stands for the ligand class I and L* represents 
ligand class II. 
 

The fact that the results that are obtained from both the G330T and H372A 

mutations are close to the experimental results indicate that the examination of MD 

simulations is reasonable for determining the PDZ domain functions. 

The values a and b for the free energy cost of the mutation in ligand free protein 

may be calculated. However, we have not gone forward with this calculation as they 

cancel out while we compare the binding free energy differences. 
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Chapter 4 

 

Understanding the Effects of Mutations on the Dynamics of the Protein: Molecular 

Dynamics Simulations 

 

4.1 Results 

 

4.1.1 Entropic cost of mutations and ligand binding: RMSF Results 

 RMSF results show that there are certain regions of the protein that are affected due 

to ligand binding or mutations. Therefore, in the name of understanding the fluctuations 

completely, the cost of mutations and ligand binding are analyzed. We note that all the 

following results are averaged over 40 ns apart regions following equilibration of the both 

replica. Thus, the 80-120, 120-160 and 160-200 ns portions of the trajectories are utilized 

for each replica, resulting in a sample size of 6 sets. The displayed error bars are calculated 

accordingly. 

4.1.1.1 Cost of Mutations 

 In this subsection, we analyze the effect of adding mutations to the wild type 

protein in terms of the fluctuation patterns of the residues. 

 As demonstrated in Figure 4.1, the absence of ligand case, DM mutation increased 

the fluctuations in most of the regions. However, it loses its domination, especially on 

the N and C terminus sites. On the other hand, H372A mutation does not affect the WT 

as much as the other mutations. On the N terminal region, the H372A mutation leads to 

an appreciable decrease when it is compared to other mutations. In contrast to the N 

terminus, the C terminus results indicate that all mutations have a fluctuation-decreasing 

effect. 
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Figure 4.1. RMSF results in the absence of ligand. 

 

 Figure 4.2 represents the RMSF change regarding ligand class I presence. In terms 

of ligand class I binding, G330T has an additive effect of fluctuations on all the regions 

of the protein. Even though DM and H372A mutation inhibit the class-I type ligand 

binding, there is no significant difference from the WT in terms of residue fluctuations 

which bindins to the class-I ligand. Especially on the N terminus site, where the WT has 

been taken as a reference point, it can be concluded that G330T mutation results in an 

increase, but H372A and DM cause a decrease. Corresponding outcomes of H372A and 

DM mutation effects on the dynamics suggest that in the presence of class I ligand, 

H372A mutation is much more effective than the G330T mutation (Fig. 4.2). 
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Figure 4.2. RMSF results in the presence of ligand class I. 

 

  As it has shown in Figure 4.3, ligand class II can bind to all mutation types except 

WT, but this did not cause a significant difference in RMSF results. WT has shown only 

a slight increase, but there are no significant differences. On the N terminus site, only the 

DM case has a decreasing effect on the fluctuations (Fig. 4.3).   
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Figure 4.3. RMSF results in the presence of ligand class II. 

4.1.1.2 Cost of ligand preference and ligand binding 

 In this subsection, we repolt the data of the previous one, but by grouping them in 

terms of the changes caused by ligand binding. 

For WT, it is known that class I is preferable, but it does not bind to class II type 

ligand. As shown in figure 4.4, apart from the C terminus, the presence of ligand class II 

increases the fluctuations of the protein in all residues, but it is not a dramatic difference. 

On the C terminus site, the presence of both ligand reduce the fluctuation dramatically. It 

can be deduced that ligand presence decreases the variation and the presence of ligand 

class II slightly raises the fluctuations as a whole. Conversely,  ligand class I binding does 

not cause any noticeable effect compared to the lack of ligand (Fig 4.4). 
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Figure 4.4. RMSF results for WT case. 

G330T mutation allows to bind both classes of ligands, the only difference is their 

binding affinities. Regarding figure 4.5, If the absence of a ligand case is taken as a 

reference, ligand class I presence results in an insignificant rise. On the contrary, ligand 

class II binding, decreases the fluctuation in all residues, albeit in a minimal amount (Fig 

4.5). 
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Figure 4.5. RMSF results for the G330T case. 

H372A mutation inhibits the ligand class I binding, and only allows class II type 

ligand binding. However, as it has shown in the Figure 4.6, besides the N terminus, 

there is no consequential variance between the absence and the presence of the ligand. 

The presence of Ligand class I pacifies the N terminus when it is compared with the 

absence of ligand and presence of ligand class-II cases. 

 

Figure 4.6. RMSF results for H372A case. 
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DM approves only ligand class-II binding. However, as the results have shown in 

Figure 4.7, that there is an equivalent effect of both classes I and II type ligand presence 

on the fluctuation patterns. Apparently, the presence of a ligand decreases the fluctuation 

of overall protein, especially at the N terminus. It can be concluded that, for the DM case, 

ligand presence ease the fluctuation for all residues, in contrast to ligand absence (Fig. 

4.7). 

 

 

 

Figure 4.7. RMSF results for DM case. 

4.1.2 Deeper Understanding of Fluctuations: Cross-Correlation and PCA Results 

4.1.2.1 Absence of Ligand 

To have the better understanding of mutations on the dynamics of the protein, WT 

is taken as a reference structure. G330T mutation increases both negative and positive 

correlation for the whole protein. H372A mutation is more similar to WT, but between 

residues 330-350 this mutation decreases the positive correlations. DM has equivalent 

results with the G330T mutant condition. When all results are taken into consideration, 

in the absence of a ligand G330T is more effective than H372A when they are present 

together as DM (Fig 4.8). 
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Figure 4.8. Cross-correlation maps in the absence of ligand. (For Cross-correlation 
matrix calculations, first 80 ns parts of the simulations are excluded. Calculations belong 
only to the first set of simulations.) 
 

4.1.2.2 Presence of Ligand Class I 

In the presence of ligand class-I, only the G330T mutation intensifies both positive 

and negative correlations. Both H372A mutation and DM increases the negative 

correlation in N terminus region and slightly increases the positive correlation, but both 

have comparable results with the WT condition. The resemblance in H372A and DM 

maps suggest that H372A mutation is more impressive than G330T mutation in the 

presence of a ligand which explains the inhibitory effect of H372A mutation towards the 

ligand class I binding (Fig. 4.9). 

 

 

Figure 4.9. Cross-correlation maps in the presence of ligand class-I. (For Cross-
correlation matrix calculations, first 80 ns parts of the simulations are excluded. 
Calculations belong only to the first set of simulations.) 

 

The effectiveness of the H372A mutation in the presence of ligand class I is also 

observed via PCA results. We first note that the major mode of motion is always on the 
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N-terminus region. It is observed that H372A mutation introduces more fluctuation in the 

binding pocket which leads a distortion in the binding pocket and prevents the ligand 

binding (Fig. 4.10C). Because the H372A mutant is more effective than G330T mutant 

in the presence of ligand class I, binding inhibition is also effective in the DM condition 

(Fig. 4.10D). On the other hand, like the WT case, the binding pocket is stable in the 

condition of G330T mutant, so that ligand class I can bind to the protein (Fig. 4.10B).  

 

 

Figure 4.10. PCA results in the presence of ligand class-I. (For PCA calculations, 

first 80 ns parts of the simulations are excluded. Only first modes are considered) 

4.1.2.3 Presence of Ligand Class II 

 In ligand class II circumstance, G330T mutation increased both negative and 

positive correlation in the whole protein. Although not as much as the G330T mutation, 

the H372A mutation also increased positive and negative correlations. On the other hand, 

the DM condition shows the effects of both G330T and H372A mutation at the same time 

(Fig. 4.11).   
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Figure 4.11. Cross-correlation maps in the presence of ligand class-II. (For Cross-
correlation matrix calculations, first 80 ns parts of the simulations are excluded. 
Calculations belong only to the first set of simulations.) 

 

 The effects of mutants on the dynamics of the protein are observed in the 1st 

PCA. In the presence of ligand class-II, an intensive fluctuation on the binding site, 

especially at GLGF motif site, is observed for the WT condition (Fig. 4.12A). However, 

the disturbing fluctuation at the GLGF motif region is eased down with H372A and 

G330T mutation. Therefore, G330T, H372A and DM mutants all allow ligand class-II 

binding (Fig. 4.12B, C, D). 

 

 

Figure 4.12. PCA results in the presence of ligand class-II. (For PCA calculations, first 

80 ns parts of the simulations are excluded. Only first modes are considered) 
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4.1.3 How stable are the ligands during the simulation? Hydrogen Bond 

Occupancies  

  

 It has observed that, under different mutation presences the dynamics of the 

protein altered. Therefore, we also wanted to see the effect of the mutations on the 

stability of ligands.  

Hydrogen bonds between the ligand and the bonding pocket were observed for 200 ns 

and the hydrogen bond occupancies were calculated as a percentage, with the length of 

the hydrogen bond being limited to a maximum of 3 Å. 

 Hydrogen bond occupations have changed over mutation and ligand type. In the 

presence of ligand class I, occupations of residues 327, 329 and 339 appear to be 

strengthened (Figure 4.13 B, C, D). However, occupations of hydrogen bonds of 323, 325 

and 326 residues were significantly reduced compared to WT (Fig. 4.13 B, C, D). Given 

that only the WT and G330T mutants can bind ligand class I and their hydrogen bond 

occupancy results are equivalent, it is important to note that not only the amount of 

increase but also the residues in which the increase occurs matters. 

 

 

Figure 4.13. Hydrogen bond occupancy results under mutations and ligand class-I 
presence. H-bond occupancies for WT (A). In the presence of G330T mutation with 
ligand class I (B). H372A mutation effect on the hydrogen bond occupancies (C). The 
effect of double mutation on the occupancies (D). The representation of the interactions 
between binding pocket and ligand class I (E).  
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 In the case of ligand class-II, it is known that it does not bind to WT, but all 

introduced mutations allow the binding to this ligand [18]. From FEP calculations and 

ligand affinity assay results, it is known that the DM binds better to the class-II ligand. 

Hydrogen bond occupancy results also indicate that ligand class-II binds better to DM 

than others (Figure 4.14D). The hydrogen bond in WT shows weaker bonds at residue 

329 when compared to other conditions (Figure 4.14A). This may indicate the importance 

of the location of hydrogen bonds. 

 

 

Figure 4.14. Hydrogen bond occupancy results under mutations and ligand class-II 
presence. H-bond occupancies for WT (A). In the presence of G330T mutation with 
ligand class II (B). H372A mutation effect on the hydrogen bond occupancies (C). The 
effect of double mutation on the occupancies (D). The representation of the interactions 
between binding pocket and ligand class II (E). 
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Chapter 5 

 

A Simple Model to Explain Entropy-Enthalpy Compensation in PDZ Domain 

 

 PDZ domains are small proteins that are widely used for understanding the 

single domain allostery. Following the discovery that conformational change is not 

always necessary for allostery to occur [21][25], and with the first study of the allosteric 

pathways of the PDZ domain in 1999 [29], it became the favored model protein to 

understand single domain allostery. 

 Mutation may be thought of as a local perturbation, which may lead to a change 

in the ligand preference due to the alterations in the active site [28]. In this study, the third 

PDZ domain of the PSD-95 is used as a model molecule. Third PDZ domain has two 

possible ligand choices whose preferences may be modulated by perturbing two 

important residues, H372 and G330. It is observed that the H372A mutation, which is in 

the binding pocket and has a direct effect on the ligand binding, has an inhibitory effect 

on ligand class I [18] (Fig. 1.4). Therefore, it is known to be a ‘class changing’ mutation. 

On the other hand, G330T mutation allows the protein to bind both ligand class-I and II. 

Even though G330 is not located in the binding pocket, due to the indirect but significant 

effect of the mutation on this residue, it is considered as an ‘allosteric effect’[18] (Fig. 

1.4). Because G330T mutant allows binding both classes, it is called a ‘class bridging’ 

mutation[18]. 

 FEP simulations and experimental results [18] show the relationship between 

mutations and ligand binding affinities (Fig. 3.6, 3.8). As it is excepted, H372A and DM 

allow the binding of ligand class-II but not ligand class-I. In addition, PDZ domains which 

have G330T mutant can bind both ligand classes. 

 MD analysis showed the dynamic effects of the mutations. The new movements 

that are introduced in the binding pocket, especially at the region of GLGF motif, due to 

H372A and G330T mutation are the determinants of binding. Both PCA and cross-

correlation results are compatible with ligand binding affinity results. 
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 We find that the binding affinities are intimately related to entropy enthalpy 

compensation. Recalling 𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆, we first crudely associate 𝛥𝐻 of binding by 

the forming and disappearing H bonds between ligand and protein in the binding pocket 

(Section 4.1.3) as these bonds are expected to make the largest change in the energetic 

contributions. On the other hand, the fluctuations may be translated into conformational 

entropy change through the sum of the eigenvalues of the matrices visualized in figures 

4.9 and 4.10 for L and L* bound cases, respectively. 𝛥𝐺 has already been calculated, both 

experimentally and computationally (Section 3.2). These are summarized in Table 5.1. 

 

Table 5.1. 𝚫𝐇, 𝚫𝐒, 𝚫𝐆 values from FEP calculations and MD trajectory analysis. 

 Kd (M) 𝚫𝐆 (kcal/mol) Enthalpic 

contributionsa  

Entropic 

contributionsb 
WT(L) 0.8 -8.6 ± 0.1 48% 83 

WT(L*) 36 -6.3 ± 0.1 65% 111 

G330T(L) 2.2 -7.9 ± 0.2 85% 379 

G330T(L*) 1.8 -8.1 ± 0.2 76% 491 

H372A(L) 26.9 -6.5 ± 0.2 62% 97 

H372A(L*) 1.9 -8.1 ± 0.2 73% 186 

DM(L) 22.1 -6.6 ± 0.1 74% 95 

DM(L*) 0.5 -8.9 ± 0.1 80% 188 

a) quantified by hydrogen bond occupancies 
b) quantified by sum of the eigenvalues of correlation matrices 

 

As it is mentioned in discussing the free energy perturbation calculations, the more 

negative ΔG, the better the ligand binds. For the H372A mutation, L* binding is 

significantly better than L. In fact, this is directly associated with the increase in the 

number of hydrogen bond occurrences in the binding pocket (negative enthalpic 

contribution) and the increase in the sum of the eigenvalues (positive entropic 

contribution). The same is true for the DM. On the other hand, the case of the G330T 

mutation which allows both ligands to bind is subtler. While the change in the hydrogen 

bonding occupancies with respect to the WT is larger for the class I ligand than that of 

class II ligand, the conformational entropy change for the latter is dominant. Thus, the 

G330T mutant prefers to bind L due mainly to enthalpic gain, it bind L* due to the 
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entropic gain. We note that the N terminus has a great contribution in the allosteric 

modulation of ligand binding in the PDZ domains. Thus, rather than a pathway view that 

analyses the changes between the effector and binding sites in allosteric models, we 

suggest that the ensemble view of allostery provides a better description of site-to-site 

coupling [43].  
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