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Abstract

Monomial ideals are widely studied in commutative algebra. In this thesis, we
study a special class of monomial ideals called polymatroidal ideals which admit
many nice algebraic and homological properties. They are distinguished by the
fact that they satisfy ”exchange property” and their powers have linear resolutions.
Another important property of polymatroidal ideals is that their monomial local-
ization at any monomial prime ideal is again a polymatroidal ideal. In [1], Bandari
and Herzog gave a conjecture that if all monomial localizations of a monomial ideal
I have linear resolution then [ is polymatroidal. In chapter 4, we discuss persistence
and stability properties of polymatroidal ideals and we see that their index of depth
stability and the index of stability for the associated prime ideals are bounded by
their analytic spread. Finally, we examine the strong persistence property of poly-
matroidal ideals.



POLIMATROIDAL IDEALLERIN CEBIRSEL VE HOMOLOJIK OZELLIKLERI
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Ozet

Tek-terimli idealler, degismeli cebirin temel konularindan biridir. Bu tezde, tek-
terimli ideallerin 6zel bir hali olan polimatroidal idealleri ve bu ideallerin sagladig: ce-
birsel ve homolojik ozellikleri inceledik. Polimatroidal idealler ”degisme ozelligi” ile
ayirt edilirler. Ayrica, polimatroidal ideallerin biitiin kuvvetleri lineer ¢oziiniirliige
sahiptir. Buideallerin sagladigi bagka onemli bir o6zellik de tek terimli yerellestirmedir.
Bir polimatroidal idealin herhangi bir asal idealdeki yerellestirmesi yine bir polima-
troidal idealdir. Bandari ve Herzog [1], makalelerinde tek-terimli bir idealin biitiin
tek-terimli yerellestirmeleri lineer ¢oziiniirliige sahipse bu idealin polimatroidal ideal
olduguna dair bir sanida bulundu. 4.boliimde, polymatroidal ideallerin devamlilik
ve kararlilik ozelliklerini inceledik ve polimatroidal ideallerin baglantili asal ideal-
lerinin kararlilik indeksleri ve derin kararlilik indekslerinin analitik yayilimi ile sinirh
oldugunu gordiik. Son olarak, polimatroidal ideallerin giiclii devamlilik 6zelligini
aragtirdik.
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Introduction

In this thesis, we study polymatroidal ideals which arise from discrete polyma-
troids. Discrete polymatroids can be characterized in terms of the exchange property
which is satisfied by their bases. Let {e;,...,e,} be the standard basis of Z7} and
let B(P) C Z7 be the base of a discrete polymatroid P on the ground set [n].
Then all elements of B(P) have the same modulus and if u = (uq,...,u,) and
v = (v1,...,v,) are elements of B(P) with u; > v; then there exists j with v; > u;
such that v —e; +e; € B(P). Discrete polymatroids like matroids and polymatroids
provides a connection between algebra and combinatorics. One can associate two
algebraic structures on discrete polmatroids, namely, the Ehrhart rings and poly-
matroidal ideals. In this survey, we focus on algebraic and homological properties of
polymatroidal ideals. We give detailed proof of the results given in [1, 11, 13, 14, 19].

In Chapter 1, we give basic definitions and notation which will be used in the
later chapters. In Chapter 2, we define discrete polymatroids, give their basic prop-
erties and give a detailed proof of symmetric exchange theorem, (Theorem 2.1.11).
In [16], Herzog and Takayama showed that all polymatroidal ideals have linear res-
olutions. Moreover, in [11] Herzog and Hibi gave the complete characterization
of Cohen-Macaulay polymatoridal ideals. Precisely, principal ideals, Veronese ideals
and squarefree Veronese ideals are the only classes of Cohen-Macaulay polymatroidal
ideals. We discuss these results in detail in Chapter 2. In [17], Hibi and Kokubo
introduced weakly polymatroidal ideals as a generalization of polymatroidal ideals.
These ideals are also discussed in [19] by Mohammadi and Moradi. We also give the
proof of the result mentioned in [19] that weakly polymatroidal ideals have linear
quotients.

In Chapter 3, we define monomial localization. Let I C S = Klzy,...,x,]
be a monomial ideal and P be a monomial prime ideal of I. Then we obtain a
new ideal I(P) by substituting variables z; ¢ P by 1. The ideal I(P) is called
as the monomial localization of I at P. If I is a polymatroidal ideal then we see
that I(P) is again a polymatroidal ideal. It follows that all monomial localizations
of polymatroidal ideals have linear resolution. The converse of the statement is
proposed as a conjecture by Bandari and Herzog [1]. They showed this conjecture
holds true under certain conditions on /.

In Chapter 4, we discuss the persistence and stability properties of polymatroidal
ideals. Broadmann showed that [3] associated prime ideals of an ideal I C S =
K|xy,...,z,] stabilizes which means Ass(I™) = Ass(/™) for all n > 0. The smallest



such ny is called the index of stability and denoted by astab(I). Also, it is known by
Broadmann [2] that depth S/I™ is constant for n > 0. The smallest n; which satisfies
depth S/I"™ = depth S/I™ is called the index of depth stability of I and denoted by
dstab(/). Depth function can be defined as f : N — N where f(n) = S/I™. Let
I C S be an ideal. If Ass(I) C Ass(I?) C --- C Ass(I") C ... then I satisfies
the persistence property. Herzog, Rauf and Vladoiu [13] proved that polymatroidal
ideals satisfy the persistence property. Later in [14], Herzog and Qureshi showed
that polymatroidal ideals also satisfy the strong persistence property and their index
of stability are bounded by their analytic spread. We give an overview of results
presented in [13] and [14].



Chapter 1

Preliminaries

In this chapter we will give the basic definitions that will be used in the upcoming

chapters.

1.1 Monomial ideals and their algebraic proper-
ties

Let K be a field and S = Klzy,...,z,| be a polynomial ring. The product of the
form x? = 2% ... 2% where b = (by,...,b,) € Z" is called a monomial in S. We
denote the set of all the monomials in S by Mon(S). The set Mon(S) is a K-basis

of S. If p € S then
p= Y bw b K.

vEMon(S)
and we set supp(p) = {v € Mon(S) : b, # 0}.
The ideal I C S is called a monomial ideal if it is generated by monomials.
Moreover, the ideal I is called a squarefree monomial ideal if it is generated by
squarefree monomials. Following proposition shows that monomial ideals have a

unique minimal generating set.

Proposition 1.1.1. Let G be the set of monomials in the monomial ideal I which
are minimal with respect to divisibility. Then G(I) is the unique minimal generating
set of I.

Proof. Let G1(I) = {uy,...,u;} and Go(I) = {v1, ..., v} be two minimal generating
set of I. Since u; € I there exists v, € I such that u; = wyv, for some monomial

wy. Similarly, there exists u; such that v; = wyu; for some monomial wy. Then

3



w = wiweu,. Since G1(I) is a minimal generating set of 7, it follows that j = { and
wiwe = 1. In particular, wy = 1 and v; = u; € G1([) and this shows G2(I) C G1(I).
By symmetry, also we have G1(I) C Gy(I). O

We will denote the minimal generating set of I by G(I). Following corollary

gives a characterization for monomial ideals.

Corollary 1.1.2. Let I C S. Then the following conditions are equivalent:
(a) I is a monomial ideal;
(b) g € I if and only if supp(g) C I for all g € S.

Proof. (a) = (b) Let I be a monomial ideal and let ¢ € I. Then there exists
monomials vy,...,v, € I and polynomials gy,...,g, € S such that g = >, _, gxvy.
It follows that supp(g) C UJ,_; supp(gxvy). Since each u € supp(gyv) is of the form
wvy, for some w € Mon(S), u € I. Thus, supp(g) C I.

(b) = (a) Let G(I) = {g1,...,9-}. Since supp(gx) C I for all k, it follows that

U;—, supp(gx) is a monomial generating set of /. Hence, I is a monomial ideal. O
Now, we will discuss the algebraic operations on monomial ideals.

Proposition 1.1.3. Let [ and J be two monomial ideals. Then [ N J is again a

monomial ideal. The minimal generating set for I N J is
G(INJ)={lem(v,w):ve GU),we G(J)}

Proof. Let g € INJ. By Corollary 1.1.2, supp(g) C INJ. Then INJ is a monomial
ideal. Let u € supp(g). Since supp(g) C I N J, there exists v € G(I) and w € G(J)
such that v|u and w|u. It follows that lem(v, w)|u. Since lem(v,w) C I N J for all
v e G(I) and w € G(J), we obtain that the set {lem(v,w) :v € G(I),w € G(J)} is
a generating set for I N J. O]

Definition 1.1.4. Let I, J C S be two ideals. Then the set
I:J={g9€eS:gfel foral feJ}
is called the colon ideal of I with respect to J.

Next proposition shows that colon ideal is a monomial ideal.



Proposition 1.1.5. Let I and J be monomial ideals. Then [ : J is a monomial
ideal and
I:J= ﬂ I:(w).
weG(J)

Also, the set {v/ged(v,w) : v € G(I)} is a generating set of I : (w).

Proof. Let g € I : J. Then gw € [ for all w € G(J). By Corollary 1.1.2, it follows
that supp(g)w = supp(gw) C I. Hence, supp(g) C I : J. This yields I : J is
a monomial ideal. It is clear that {v/ged(v,w) : v € G(I)} C I : (w). Now let
u € I : (w). Then there exists v € G(I) such that v|uw. Thus, v/ ged(v, w) divides

u, as desired. O

Definition 1.1.6. Let I C S be a graded monomial ideal and let m = (xq,...,z,)
denote the graded maximal ideal of S. Then

[:moo:[j[:mt
t=1

is called the saturation of I and it is again a monomial ideal.

In the end, we will discuss monomial prime ideals . Note that a monomial
prime ideal is generated by set of variables in S. A squarefree monomial ideal is an

intersection of monomial prime ideals.

Definition 1.1.7. Let I C S be a monomial ideal. A prime ideal P is called an

associated prime of I if P = Ann(u) for some u € I. The set of all associated primes
of I is denoted by Ass(I).

The set of associated prime ideals of a monomial ideal consists of monomial
prime ideals. Let I C S be an ideal. A prime ideal P is called a minimal prime ideal
of I if I is contained in P and there is no prime ideal containing I which is properly
contained in P. The set of minimal prime ideals of I is denoted by Min(/). Also,
the prime ideals which contain I is denoted by V (I).

1.2 Linear resolution

In this section, we will see that if an ideal has linear quotients then it has a linear

resolution.



Let M be a graded R-module which is generated by homogeneous generators
ma,...,mg with deg(my) = a; for k = 1,...,s. Then there exists a surjective

R-module homomorphism

Fy = @R@k — Mwith e, — my.
k=1
By assigning deg(ay) = e for k =1,...,k, the map Fy — M becomes a morphism
in M(R) and Fy = ;_, R(—ay). Hence we obtain the sequence which is exact

0— K — @ R(—j)™ — M — 0,
j
where fy; = [{i : a; = k}| and where K = Ker(¢p;, R(—7)P — M). The module K
is a graded submodule of Fy = P; R(— 4)%i. By Hilbert basis teorem, K is finitely
generated. Thus we obtain again an epimorphism @, R(—j)" — K. If we compose
this epimorphism with the inclusion map K — B, R(— §)%i we obtain the exact

sequence

P R(-j)* — P R(—j)* — M —0
J J
of graded R-modules. Continuing in this way we obtain a long exact sequence
F: o= F—F—F—M-—720

of graded R-modules with F; = @ i R(— §)%. Such an exact sequence is called a
graded free R-resolution of M.

Let M be a finitely generated R-module. A graded free R-resolution F of M
is called minimal if for all 7, the image of F;,; +— F; is contained in mF; where
m = (z1,...,x,). Since all free modules are projective module, the length of the
minimal graded free resolution is called projective dimension of R. The module M

has a d-linear resolution if the graded minimal free resolution of M is of the form

0— R(—d—t)" — .- — R(—d —1)"" — R(=d)* — M — 0.

1.2.1 Koszul complex

Let R be a commutative ring with a unit and g = ¢4, ..., g, be a sequence of elements
of R. Then we define Koszul complex K (g; R) attached to the sequence g as follows:

Let F be a free R-module with basis eq,...,e,. We let K;(g; R) be the jth
exterior power of F, that is, K,(¢g; R) = /\j F.

6



A basis of the free R-module K(g; R) is given by the wedge products
€F:€Z’1/\€i2/\"'/\€ij ZfF:{’ll <9 < ... <ZJ}

In particular, it follows that rank K;(g; R) = (;) We define the differential 0 :
K;(g; R) — K;_1(g; R) by the formula
J
Oew New Ao Ne) =D (1) gien Ney Ao Ney, Aeg, Ae- Ne.
k=1
One readily verifies that 0 o 0 = 0, so that K,(g; R) is indeed a complex. Now let
M be an R-module. We define the complexes

Ko(g: M) = Ko(g; R) ®r M and K*(g; M) = Homg(K.(g; R), M).

Definition 1.2.1. Let I C S be a graded ideal. Let g1,..., g, be the system of
homogeneous generators of 1. If the colon ideal (gi,...,¢;-1) : g; is generated by

linear forms for all j then I has linear quotients.

Proposition 1.2.2. Let I C S is a graded ideal generated in degree d and I has

linear quotients. Then [ has a linear resolution.

Proof. Let I = (p1,...,p,) where each p; of degree d, and suppose that for all [
M, = (p1,...,p—1) : p; is generated by linear forms. Then I, = (pi,...,p) has
a d-linear resolution. Indeed, we can show it by induction on [. It is obvious for
[ = 1. Assume that [ > 1 and let {my,...,m s} be the minimal set of linear forms
which generates M;. Then, one can easily see that mq, ..., m, is a regular sequence.
In fact, if we complete mq,...,m; to a K-basis mq,...,m, of S, then f: S — S
with f(z;) =m; for j =1,...,nis a K-automorphism. Since z1,...,2; is a regular
sequence, we obtain m; = f(xy),...,ms = f(xs) is a regular sequence as well. Since
mi, ..., mg is a regular sequence, the Kozsul complex K(my,...,mg,S) provides a

minimal graded free resolution of S/M,;. This implies that
Tor} (S/Mi(—d), K )iy = Tor; (S/M, K)i+(j-ay = 0
for j # d. Then our goal is to show
Tor;(I;, K);+; = 0 for all 4 and all j # d.
Since [;/1;—1 = (S/1;)(—d), we obtain the exact sequence
0— [,y — I, — (S/M;)(—d) — 0.

7



This sequence yields the exact sequence
TOI';S(Ilfl, K)Z'Jrj — TOT;S(][, K)z'+j — TOI'E(S/TTLL(—CZ), K)i+j

By our induction hypothesis, one can see that both ends in this exact sequence
vanish for j # d. Hence, this also holds for the middle term, as desired. O]

1.3 Cohen-Macaulay rings

Now we give definitions of the depth and the dimension of a ring R. In chapter 4,
we will be interested in non-increasing depth functions of a local ring. Depth is first
defined for Noetherian rings as a grade but our interest will be mostly restricted to

the local Noetherian rings.

Definition 1.3.1. Let R be a Noetherian ring, M a finite R-module. I an ideal
such that IM # M. Then the common length of the maximal M-sequences in [ is
called the grade of I on M and it is denoted by grade(I, M).

If IM = M then we say grade(/, M) = oc.

Definition 1.3.2. Let (R, m, k) be a Noetherian local ring and M a finite R-module.
Then the grade of m on M is called the depth of M and is denoted by depth(M).

In homological terms, one can define depth(M) as follows:
depth(M) = min{i : Ext%,(R/m, M) # 0} = min{i : H! (M) # 0}.
Definition 1.3.3. Let R be a ring. Then the dimension of R is defined as follows:
dim(R) = max{n: P, C P, C ... C P, where all P/s are prime ideals}.

The dimension of R is also known as the Krull dimension. Given a prime ideal

P in R, the height of P is defined by
height(P) = max{n: P, C P, C ... C P, C P where all P/s are prime ideals}.

The set of all prime ideals in R is denoted by Spec(R). Let R be a Noetherian
ring and M # 0 be a finite R-module. If projdim M < oo, then

proj dim(R) + depth M = dim R.



This theorem is known as [9, Corollary A.4.3] Auslander-Buchsbaum theorem.
Now we will define Cohen-Macaulay rings and Cohen-Macaulay ideals and in
chapter 4 we will give a characterization of polymatroidal ideals which are Cohen-

Macaulay.

Definition 1.3.4. Let R be a Noetherian local ring. If depth R = dim R then R is
called a Cohen-Macaulay ring. Let I C R be a monomial ideal. Then I is called a
Cohen-Macaulay ideal if the quotient ring R/I is Cohen-Macaulay.

1.4 Rees rings and normality

In the chapter 4, we will be interested in analytic spread of an ideal I.

Definition 1.4.1. Let I C S be a graded ideal generated by homogeneous polyno-

mials f1,..., f,, and let £ be a new indeterminate over the field K. Then

R(I) =PIt = S[fit, ..., ful]

i>0
is called the Rees ring of I which is a graded subring of S|t].
Now we give the definition of analytic spread.

Definition 1.4.2. Let m = (z1,...,x,) be a graded maximal ideal of S. Then the
analytic spread of I is the Krull dimension of the ring R(I)/mR(I). It is denoted
by ¢(1).

Let I be a monomial ideal generated in single degree. Then the analytic spread
of I is the rank of the matrix with row vectors which are the exponent vectors of
the minimal generators of I.

An ideal [ is called integrally closed if u* € I* for all u € Mon(S) and all k then
u € I. An ideal [ is called a normal ideal if all powers of I are integrally closed.
The Rees ring R([) is called normal ring if I is a normal ideal.

In general, it is not easy to see if a ring is normal. However, below we give a well-
known criterion which is given by Serre, known as Serre’s Condition For Normality:

Let R be a Noetherian ring and £ be a non-negative integer. Then

(Rr) R is said to satisty (Ry) if R, is a local ring for all P € Spec(R) with
height(P) < k.



(Sk) R is said to satisfy (S) if depth(R,) > min{k, height(P)} for all P € Spec(R).

It is known [18, Theorem 23.8| that if R satisfies both Ry and Sy then R is called

a normal ring.

10



Chapter 2

Polymatroidal Ideals

In this chapter, we will discuss the polymatroidal ideals. Polymatroidal ideals
form a very special class of monomial ideals which arise from discrete polymatroids

and their minimal generating set satisfies the so-called exchange property.

2.1 Discrete polymatroids

Let R% be the set of all positive real vectors and {ey, ..., e, } be the standard of R’}.
Let = (21, ...,2,) € R}. Then the modulus of x is

n
x| = le
i=1

Let x = (21,...,2,) and y = (y1,...,¥yn) be two vectors in Ry. We call y a subvector

of x if x; —y; > 0 for all 7 and write y < x. Also, we set
xVy = (max{z1,y1},...,max{z,, y, })

x Ay = (min{xy,y1 }, ..., min{x,, y, })

Definition 2.1.1. Let P C R?}. Then P is called a polymatroid if the following

conditions are satisfied:

(P1) for every y € P if z < y then z € P,

(P2) if 2,y € P with |z| < |y| then there exists z € P such that z < z <z V .

11



We call the elements of P as independent vectors. Let x € R”. Then an inde-
pendent vector y € P is called a maximal independent subvector of z if y < z and
y < z < x for no z € P. A maximal independent subvector of z € R’} exists since
P is compact. A base of a polymatroid P C R’} is a maximal independent vector of
P. Every base vector has the same modulus. This modulus is called the rank(P).
fMcC[n=A{1,...,n} and 2 = (21, ...,x,) € R} then we set

ieM

We define the ground set rank function of P on the ground set [n] by p : 2" — R,
and we set p(M) = max{z(M) : x € P} for all ) # M C [n] and p(0) = 0. Let
x € R%. Then we define {(x) = |y|, where y € P is maximal independent subvector

of z.

Lemma 2.1.2. [9, Lemma 12.1.2] Let u,v € R"}. Then

C(u) +¢(v) = ((u Vo) + ((uAv).

Proof. Let x € P be a maximal independent subvector of u A v. Since z < u V v,
there exists a maximal independent subvector of u V v, namely y € P such that
r <y <wuVo. SinceyA(uAv) € Pand z < yA (uAv) < uAwv, we have
r=yA(uAv). We claim
r+y=yANu-+yAv.

Indeed, since y < u V v, we have y(j) < max{u(j),v(j)} for each j € [n]. Let
u(j) < v(j). Then a(j) = minfy(j), u(j)} and y(j) = min{y(j),o(j)}. Thus
z(7) +y(j) = (yAu)(j) + (y Av)(j), as required. Since y A u € P is a subvector
of w and since y A v € P is a subvector of v, we obtain that |y A u| < ((u) and
ly Av| < ((v). Hence

Clunv) +C(uVo) =zl +lyl = ly Al + |y Av] < ((w) +C(v)
O

Theorem 2.1.3. [9, Theorem 12.1.3] Let P be a polymatroid and p be its ground set
rank function. If X C Y C [n], then p(X) < p(Y). Also p satisfies submodularity,
that is,

p(X) +p(Y) = p(XUY) +p(X NY)

for all X,Y C [n]. Moreover, P coincides with the compact set
{ue R} u(X) < p(X),X C [n]}.

12



Proof. Obviously, p is non-decreasing function. We set v4 € R, by
v(j), ifje A
0, if jen]\A

va(j) =

where A C [n] and v € R;. Let s =rankP and z = (s,...,s) € R}. Hence z < x
for all z € P.

Claim: For each A C [n], we have

p(A) = ((za).

Proof of Claim: Let y be a maximal independent subvector of z4. Then ((z4) =
lyl = y(A) < p(A). Also if p(A) = z(A), for z € P, then, since z4 < x4, we
have p(A) = 2(A) = |za] < ((x4). Hence p(A) = ((z4). Let X,Y C [n]. Then
p(XUY) =((zxuy) =((xx Vay) and p(X NY) = ((xxny) = {(za A zy). Thus,
by Lemma 2.1.2, we obtain the submodularity of p. Let () denote the compact set.
By definition of p we have P C ). We claim ) C P. Indeed, assume that there
exists y € QQ with y € P. Let x € P be a maximal independent subvector of y which

maximizes |M (z)|, where
M(z) ={j € [n] : 2(j) <y(j)}.
Let 2 = (z +y)/2 € R? and v € P with v(M(z)) = p(M(x)). Since z € Q, we have
z(M(x)) < 2(M(x)) < p(M(x)) = v(M(x)).

Since |Tr(z)| < |V, there is @’ € P, with xpam) < 2’ < Ty V Vme). Hence,
Trz) < T'A2m(e) < Zum(@)- Thus, £h(;) can not be a maximal independent subvector
of Zyr(z). Let 2" € P with /() < 2" be a maximal independent subvector of zy;(a).
Let z* € P be a maximal independent subvector of z with #” < z*. Since each of
and z* is a maximal independent subvector of z, we have |z| = |z*|. However, since
r(M(z)) < 2"(M(x)) < z*(M(x)), there is i € [n]\ M (z) with 2*(i) < z(i)(= y(1)).
Since z*(j) < 2(j) < y(j) for all j € M(x), we have |M(z*)| > |M(z)|. This is a

contradiction since |M (z)| is maximal. O

Let P, ..., P be polymatroids on the ground set [n]. Then the polymatroid sum
which is denoted by P, V...V Py, is the compact subset of R} . Let x € P1V...VP,,
then it is of the form .

xr = Z X
i=1

where x; € P;.
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Theorem 2.1.4. [9, Theorem 12.1.5] Let Py, ..., P,,, be polymatroids on the ground
set [n]. Then P; V ... V P, which denotes the sum of polymatroids is again a
polymatroid.

Proof. Let Py, ..., P, be polymatroids on the ground set [n]. Since all Pls are
polymatroids, they contain all their subvectors. Then the sum of those vectors
belongs to the polymatroid sum. Let x,y € Py V ...V P, with |z| < |y|. By
definition, x = > " x; and y = > ;" y; where 2; € P and y; € P. There exists w;
for i = 1,...,m with x; < w; < z; V y; since all Ps are polymatroids. If we take
the sum of wjs then x = Y " 2, <w =>" w, <z =Y " 5, Vy =Y Y.

Therefore, polymatroid sum is again a polymatroid. ]

Definition 2.1.5. Let P C Z be a nonempty finite set of positive integer vectors
on the ground set [n]. Then P is called a discrete polymatroid if it satisfies the

following conditions:
(1) for all y € P and & € Z7 with z <y then x € P,

(i1) for all y = (y1,...,yn) € P and = (21,...,2,) € P with |z| < |y| there is
t € [n] with z; < y; such that = + ¢, € P.

Let B(P) denote the base set for the discrete polymatroid P. If x is not a
subvector of any y € P then it belongs to B(P). It turns out if z,y € B(P)
then they have the same modulus. Discrete polymatroids can be characterized by

exchange property.

Example 2.1.6. (i) Let M C 2" be a matroid. Then the set {zr : ' € M} is
a discrete polymatroid where zp = (21, ..., 2,) are vectors with z; = 1 if i € F

otherwise z; = 0.

(ii) Let dy,...,d, and d be integers such that d; +... +d, < d. Let P be a discrete
polymatroid consist of the vectors x € Z7 such that x, < d, forall1 <t <n
and |z| < d. Then P is called a discrete polymatroid of Veronese type on the
ground set [n].

Lemma 2.1.7. [9, Lemma 12.2.3] Let P be a discrete polymatroid. Then we have
the following;:

(i) Let d < rank P. Then the set P' = {x € P : |z| < d} is again a discrete
polymatroid of rank d.
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(i) if rank P = d then for each u € P the set P, = {v—u:v € P,uv > u} is a

discrete polymatroid with rank d — |u].

Proof. (i): Suppose that P’ ={z € P : |z| < d}. Let 2,y € P and d > |y| > |z|.
Since P is a discrete polymatroid, there exists z € P such that z < z < x Vy. We
have z > x and since P contains all subvectors of z, there exists an integer ¢ such
that x +e; < z. Then x < x +¢; < 2V y and since |z + ¢;| < d, it belongs to P’.
This shows that P’ is a discrete polymatroid.

(ii): Let o',y € P, and |2'| < |y/|. Then, there exist z,y € P such that 2’ = z—u
and ¥ =y — u with |z| < |y|. Hence, there exists z € P such that z < z < z V y.
Take z/ = z — u. Then clearly, 2’ € P, and 2’ < 2/ < 2’ V. O

Theorem 2.1.8. [9, Theorem 12.2.4] Let P C R’ be a nonempty set of integer
vectors and for every vector x € P, it contains all of its integral subvectors and let

B(P) be its base set. Then the following are equivalent:
(i) P is a discrete polymatroid,
(ii) if z,y € P with |z| < |y| then 2 +¢; € P and x +¢; <z Vy,

(iii) (a) all vectors in B(P) have the same modulus,

(b) if z,y € B(P) with z; > y; for some i then there exists j with z; < y;
such that © —e; +e; € B(P).

Proof. ()= (ii) Let P be a discrete polymatroid and let = and y belongs to P with
|z| < |y|. By definition, there exists z such that © < z < zVy. Since P is a discrete
polymatroid, it contains all subvectors of z. Then there exists some ¢ such that
r+e <z andsince z<zVy,r+e <xVy.

(ii)=(i) It is obvious by definition.

(ii)=(iii) Let z,y € B(P) and x; > y; for some i. Then x; —1 > y;. Since = and
y are in the base set, they have the same modulus. Hence if 2 = (z4,...,2,) and
y=(Y1,...,Yn) then clearly, |x|—e; = x1+.. . +z;—14+.. 4z, = (1 +.. . +yn)—1 =
lyl =1 <yl

Then by (ii), there exists some j such that (z —e;) +e; < (v —e)Vy. lf j =1
then we would have z; = z; — 14+ 1= (z —e; + ¢;)(i) < max{x; — L,y;} = x; — 1
which is a contradiction. Hence z; + 1 = (x — ¢; + ¢;)(j) < max{z;,y;} < y; and
this yields y; > x;.

(iii)= (ii) Let z,y € P with |y| > |z|. Also, let 2’ € B(P) with < 2. Since
/
|.

2 is in the base set and it has the maximum modulus, |y| < |2/|. Then, because
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every subvector of 2’ belongs to P, take z € P as a subvector of 2’ with x < z and
|2l = lyl. O

The property (iii)(b) is called the exchange property. Before giving proposition,
we need to define the distance between two vectors x and y in the set of bases of a

discrete polymatroid P by

dist(z, y) Z |2y —

If x; > y; and z; < y; then by exchange property we know that '’ =z —e; +¢; €
B(P). Then, clearly dist(z, 2") < dist(z,y).

Proposition 2.1.9. [9, Proposition 12.2.6] Let P be a discrete polymatroid and
B(P) be its set of bases. For z,y € B(P) and z; < y; there exists j with z; > y;
such that = + ¢, —e; € B(P).

Proof. Take ¢ with x; < y;. If 2y, < y, for some t; # i then there exists s; with
Ts, > Ys, such that z = y — e, + €5, € B(P). Then z; = y; and dist(x, z) >
dist(x,y). If 2y, < z, for some ty # ¢ then there exists sy with xs, > zg, such that
2 =z—e, +es, € B(P). Then 2z} = y; and dist(z, 2’) < dist(x, z). Repeating these
operations, we get 2 = y; > x; where 2* € B(P) and z} < z; for all j # i. Choose
J1 # i with 25 < ;. By exchange property,  — e;, +¢; € B(P). H

If P C Z7 be a discrete polymatroid then we define pp : 2"l — R, with respect
to P by setting
pp(A) = max{z(A) : z € B(P)}

for all nonempty subset A of [n] with pp(0) = 0.

Lemma 2.1.10. |9, Lemma 12.3.2] If A} C Ay C ... C A; C [n] is a sequence of
subsets of [n], then there is € B(P) such that x(A4;) = pp(4;) for all 1 <1 < t.

Proof. By induction on t. Assume that there is © € B(P) such that x(A4;) = pp(4))
for all 1 <[ < t. Take y € B(P) with y(A;) = pp(As). If x(A;) < y(A;), then there
is j € [n] with 7 € A; such that z({j}) > y({j}). Then by exchange property,
there is i € [n] with x(i) < y(i) such that z; = z —¢; + ¢ € B(P). Since
(A1) = pp(Ai—1), it turns out ¢ &€ A;_q. Thus, z1(A;) = pp(A4;) forall 1 <1 < t.
Moreover, x1(A;) > x(A;) and dist(z,y) > dist(xy,y). If 1(A;) = y(A;) then we're
done. If 21(A;) < y(A;), then by the above method, we obtain z1(A4;) = pp(A)

16



for all 1 <1 < t, z9(Ay) > x1(A;) and dist(xq,y) > dist(ze,y). If we repeat this
applications, it is clear that there always exists an z, € B(P) such that x,.(4;) =
pp(A;) for all 1 <1 <t. O

Theorem 2.1.11. (Symmetric Exchange)|9, Theorem 12.4.1] If x = (x4, ..., x,)
and y = (y1, ..., Yn) are bases of a discrete polymatroid P C Z7, then for each i € [n]
with z; > y;, there is j € [n] with x; < y; such that both © —e; +¢; and y —e; +¢;
belongs to B(P).

Proof. Let B'(P) ={z€ P:x ANy < z<uaVy}. Then B satisfies the exchange
property and it is the base set for the discrete polymatroid P’ C Z7. Instead of
and y take 2/ = —x Ay and ¥y =y — 2 Ay. Suppose that P’ C Z! is a discrete
polymatroid, where ¢t < n and x = (21, ..., 24,0...0) € Z'_, y = (0, ..., 0, Ypt1, ..., Yt) €
7! where x; and y; are nonzero and positive. Also |z| = |y| = rank(P’). We need
to show that for each 1 < ¢ < k there is £ +1 < j < ¢ such that both x —¢; + ¢;
and y — e; + e; are bases of P'. Let, say i = 1.

Case 1: Assume that  — e; + e; are bases of P’ for all k+1 < j < t. By the
exchange property, given k integers x, ..., z; with each 0 < ) < z;, there is a base
2" of P' of the form 2" = (2, ..., 2}, Y} 11, -, ¥;), Where each yi € Z with 0 <y < y;.
In particular there is kK +1 < j; < t such that y —e;, + e, is a base of P’. Since
r —e; +e;is a base of P’ foreach k+1 < j <tbothz—e;+e€; andy —ej, +¢
are bases of P’ as desired.

Case 2: Let k > 2 and k£ + 2 < t. Then assume that there is k + 1 < j < t with
r—e +e ¢ P. Let N C {k+1,...,t} denote the set of those k +1 < j < ¢
with © — e; +¢; € P’. We know that Conv(P") N Z" = P'. Let p = pp denote
the ground set rank function of the integral polymatroid Conv(P’) C R’,. Thus
p(M) = max{z(M) : z € B’} for 0 # M C [t] together with p()) = 0. In particular
pM) =az(M)if M C{1,....k} and p(M) = y(M) if M C {k+1,...,t}. For each
j € N since x — e; + e; € Conv(P’), there is a subset N; C {2,3, .., k} with

p(N; U {4}) < 2(A;). Thus,

p({2,3, ..k} U{j}) < p(N; U{j}) + p({2,3, ... K} \ Nj)
< 2(N;) +2({2,3, ...k} \ )

< 2({2,3,...k})

p({2,3, ..., k}).
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Hence, for all j € N, p({2,3,....,k} U{j}) = 2({2,3, ..., k}).
Claim: p({2,3,....,k} UN) = z({2,3, ..., k}).
Proof of Claim: We use induction on |[A]. The claim holds trivially if |[A| = 1. Let
IN| > 1 and take j; € N.Let L = {2,3,...,k}. Then by assumption,

By squeeze theorem, p(LUN) = p(L) and this proves our claim. By Theorem 2.1.3

we have,

p({2,3,.. ..k} UN)+ p({1}UN) > p(N) + p({1,2,...,k} UN)
= y(N) + rank(P’).

Thus 2({2,3, ..., k})+p({1}UN) > y(N)+rank(P’). Since rank(P')—x({2,3, ..., k}) =
ar and p(LUN) < p({1}) + p(N) = a1 + y(N), we obtain p({1} UN) = a; + y(N).
Hence, for all N/ C N, we have

a1 +yWN) = a1 + yWN') +y(NV \N)
p({1}) + pN') + p(N\N)
> p({1}UN) + pN \ N7
p({1}UN)

= a1 +y(N').

v

Thus, for all NV C¢ N, p({1} UN’) = a; + 2(N’). By Lemma 2.1.10, there is
a base z € P’ with z(1) = a; and with z(j) = y(j) (= p({j})) for all j € N.
By the exchange property (for z and y) for each 1 < i < k with z; > 0 there is
j€{k+1,...,t} \ N such that z — e; + ¢; is a base of P’. Thus, after repeating
these procedure, we obtain a base of 2’ € P’ of the form 2’ = y — e;, + e; where
g1 € {k+1,...,t}\W. Thus, both z —e; +¢;, and y —e;, + ¢; are bases of P’ O
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2.2 Polymatroidal ideals

Definition 2.2.1. Let I be a monomial ideal in the polynomial ring S = K|[xzy, ..., ]
and G(I) be the minimal generating set of I. Then I is called polymatroidal ideal if

the following conditions are satisfied:
(i) all the elements of the G(/) have the same degree,

(i) let v = x* with a = (a1, ...,a,) € Z} and v = x* with b = (by,...,b,) € Z1
belong to G(I). If a; > b; for some i then there exits some j with a; < b; such
that x;(u)/x; belongs to G(I).

It is shown that all powers of polymatroidal ideals have linear quotients. To give
the proof, we need the following:

Theorem 2.2.2. [9, Theorem 12.6.3] Let / and J be polymatroidal ideals. Then
1J is polymatroidal.

Proof. Let I be a polymatroidal ideal with G(I) = {x"!,...,x" } and J be a poly-
matroidal ideal with G(J) = {x",...,x"}. Clearly, B(I) = {uy, ..., u,} and B(J) =
{v1,...,vs} are the base sets of the discrete polymatroids with respect to I and J.
Since the polymatroid sum is again a polymatroid, the base set for the product is
B(1J) = {u; +v;,u; € B(I),v; € B(J),i =1,...,r,j =1,...,s} and it satisfies the

symmetric exchange property. Hence I.J is polymatroidal ideal. O
Theorem 2.2.3. [9, Theorem 12.6.2] A polymatroidal ideal has linear quotients.

Proof. Let I be a polymatroidal ideal with G(I) = {u1, ..., u,} and vy > ... > u, with
respect to reverse lexicographic order. We need to show that @ = (uq,...,u4-1) :
u, is generated by variables where 2 < ¢ < s. Since this quotient is equal to
(ur/[ur, ug), ..o ur /[ur, uy), it is enough to show that for each 2 < ¢ < ¢ there exists
some ry € @ such that z;, divides (u;/[ug, uy]). Let uy = 2% and u, = 2° with 2% > z°
where a = (a1, ...,a,) and b = (by,...,b,). Since u; > u,, and we have a reverse
lexicographic order there is an integer 1 < [ < n with a; < b;. Hence by symmetric
exchange property, there exists k£ <1 < n with ay > by such that zy(u,/z;) € G(I).
Since k < [, xp € () and it follows that z; divides every component of Q. n

Corollary 2.2.4. [9, Corollary 12.6.4] All powers of polymatroidal ideals have linear

quotients and they admit linear resolution.
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Proof. Since product of polymatroidal ideals is again polymatroidal and polyma-
troidal ideals have linear quotients, it implies that all powers of polymatroidal ideals

have linear quotients. By the Proposition 2.2.4, they have linear resolution. O

If I is a monomial ideal of S, it is known that I can be written as intersection of
minimal prime ideals of I. Also we know that minimal prime ideals P are generated
by subsets of variables. An ideal I is called unmixed if all minimal prime ideals
of I have the same height. A Cohen-Macaulay ideal is always unmixed. If P is a
monomial prime ideal and 6(P) denote the number of variables which generate P,
then we set ¢(I) = min{0(P) : P € Min(I)}. It gives

dim(S/I) =n — c(I).

Additionally, if I is generated in one degree and has linear quotients then the colon
ideal is generated by subsets of variables. Let r; denote the number of variables

which is required to generate each quotient. Then r(I) = maxr;. It follows that
depth(S/I)=n—r(I)+1

Let I be a monomial ideal generated in one degree and has linear quotients. Then
I is Cohen-Macaulay if and only if ¢(1) = r(I) + 1.

Example 2.2.5. (i) An ideal which is generated by all monomials of S of degree

d is called Veronese ideal and it is polymatroidal and Cohen-Macaulay.

(ii) An ideal which is generated by all square-free monomials of S of degree d is
called square-free Veronese ideal and it is matroidal ideal. It is also polyma-
troidal and Cohen-Macaulay.([11, Example 3.2])

Lemma 2.2.6. [9, Lemma 12.6.6] Let I C S be a Cohen-Macaulay polymatroidal

ideal. Then radical of I is square-free Veronese ideal.

Proof. Let I be a Cohen-Macaulay polymatroidal ideal in S. Suppose that

Uyea(n supp(v) = {z1,..., 2, }. Let v € Mon(S) such that |supp(v)| is minimal. We
can assume that supp(v) = {zp_g4+1,...,2n}. Let uw € G(I) with u >,., v generate
the monomial ideal J. Then it is known that the colon ideal J : v is generated by
variables. Let us call the set of these variables A which is a subset of {xy,...,x,}.
Our claim is {z1,...,%, 4} is a subset of A. There is w € G(I) which is divided
by x; for each 1 < i < n —d. Then by Proposition 2.1.9, there exists x; where
n—d+1 < j < nsuch that w = z;v/x; € G(I). This yields w € J. Then
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z; € J:vasxzjw=uzov € J. Hence, r(I) > n —d. Since I is Cohen-Macaulay, we
know that ¢(/) = r(I) + 1. It turns out ¢(I) > n — d + 1. Consequently, for each
M C {zy,...,z,} with |[M| = d, we have [ C ({z1,...,2,} \ M). Hence, for each
M we have a monomial m € G(I) such that supp(m) C M. Since |supp(m)| >
| supp(v)| = d, we obtain supp(m) = M. Then the radical of I is generated by all

square-free monomials which have degree d in x1,. .., z,. O
The following theorem characterizes the Cohen-Macaulay polymatroidal ideals.

Theorem 2.2.7. [9, Theorem 12.6.7] Let I be a polymatroidal ideal. I is Cohen-
Macaulay if and only if

(i) a principal ideal
(ii) a Veronese ideal
(ili) a square-free Veronese ideal.

Proof. By applying Lemma 2.2.6, suppose that v/T is generated by all square-free
monomials which have degree d for 2 < d < n. Then we have ¢(I) = ¢(\/I)
n —d+ 1. Assume that [ is not square-free. This means that each u € G(I

~—

has degree > d. Let v = [],_, .., ¥ € G(I) be a monomial where supp(v)
{Zn—at1, Tn—ds2, ..., Tn}. Claim: There is a monomial u = [[,_, :I;ZI‘ € G(I) where
bn—d+1 > Qn—d1-

Proof Of Claim: Let 0 = {z;,,...,2;,} C {x1,...,2,} be subsets which have d
elements. Then for each # we have a monomial vy € G(I) such that supp(vg) = 6.
If @ and § are subsets of {z1,...,z,} with d elements and if we take an element
in the intersection of # and 3, namely x;, and a;, < b, where xlaolo € vy and Z‘Zl)o €
vg. Then after relabelling the variables, we can assume that 0 = {z,_4t1,..., 25}
with lp = n — d + 1. Then our claim is satisfied. If it fails to be satisfied, then
there exists a positive integer ¢ > 2 such that v = (21, -~ 2,)" € G(I). Let
u = xp_gzt ([T are@)) € G(I). Let J denote the monomial ideal which is
generated by w € G(I) such that w >, u. Since [[/=. 2t € G(I), by applying
Prop 2.1.9, we have ug = ,,_qu/z, € J and u; = x,_qr1u/x, € J. Hence, the colon
ideal J : u is generated by a subset A C {z1,...,x,} where {x1,...,Tp_gq, Tpn_gs1} C
A. Thus r(I) > n—d+ 1 and this yields ¢(I) < r(I) + 1 which is a contradiction.

Now, let J be a monomial ideal which generated by u € G(I) such that u >,
v. In the proof of previous lemma, we saw that J : v is generated by a subset
A C {xy,...,z,} where {z1,..., 2,4} C A. We claim that z,,_4.1 € J : v. By
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using our claim and Prop 2.1.9, there is a variable x; with n —d 4+ 1 < k < n such
that vg = z,_q.1v/xx € G(I). Since vy € J we have x,_ 441 € A. Consequently,
r(I) >n—d+ 1. Hence, ¢(I) < r(I)+ 1 and I is not Cohen-Macaulay ideal. O

2.3 Weakly polymatroidal ideals

Weakly polymatroidal ideals are defined first by Hibi and Kokubo [17] as a general-
ization of polymatroidal ideals. Then Mohammadi and Moradi [19] showed in their

paper some applications to vertex cover ideals.

Definition 2.3.1. Let I be a monomial ideal. Then [ is called weakly polymatroidal
if for all w = x* € G(I) with a = (a1,...,a,) and v = x* € G(I) with b =
(b1,...,by) if a3 = by, ... a1 = b1 and ay > by for some k, there exists t > k
such that xyv/x; € I.

Example 2.3.2. Let I be a monomial ideal. Then I is called stable if for any v € 1
and j < max(v), ;(V/Tmax(w)) € I where max(v) = max{i : z;|v}. Stable ideals are

weakly polymatroidal.
Theorem 2.3.3. [9, Theorem 12.7.2] Let I be a weakly polymatroidal ideal. Then

I has linear quotients.

Proof. Let I = (vy,...,v,) be a weakly polymatroidal ideal with vq >ep ... >1ex Un
and 1 > ... > x,. Let u € Mon(S) where u € (vq,...,v4-1) : vx. Then uvy € (v))
for some j < k. Let v; = 25" ... 2% and v, = 24" ... 2. Then there exists s < n
such that a; = by ...as_1 = bs_1 and a5 > bs. Hence, z4|u and there exists t > s
such that zsv,/z, € I. Therefore, the set M = {v; : z,up/x; € (vj)} is nonempty.
Let v; € M be the unique element such that degv; > degv, or degv; = degv; and
Vj <iep vy for any v; € M with j # . Then z,v;/z, = vyw for some w € S. If
zs|w then v, = yw' for some w’ € S. This contradicts with v, € G(I). Hence,
:UZS“ divides v;. We claim that v; > v;. Assume not which means v; < vi. Then
let v = ' -+ 2% where ¢; = by,...c,—1 = b,_1 and ¢, < b, for some 1 < r < n.
Since xz%*1|v; we have r < s. Then, by definition of weakly polymatroidal ideals,
h = vz, /x; € I for some j > r. Since r < ¢, z,|w and this yields z;w/z, € S.
As h(zjw/x,) = xs(vp/2t), v <jex h and degh = degv;, we have h & G(I) . Let
h = vpw' for some I’ and w’ € S, w' # 1. Then degvy < degh = degv;. This is
a contradiction, since vy € M. Therefore, we have vyw € (vy,...,v;,_1), and thus

v € (v1,...,v-1). Since xs|u, we are done. O
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Chapter 3

Monomial Localizations of

Polymatroidal Ideals

In this chapter, monomial localizations of polymatroidal ideals will be discussed.
Let P be a polymatroid and [ = (x* : u € B(P)) € S = Klxy,...,x,]. We
set u = (u(l),...,u(n)). If we substitute x; by 1 in I then we obtain a new
monomial ideal I3 = (x* : u € B(P)) in Sy = K[@1,. ., %j1,Tjr1, - - - T

’ Wi
where x* = x"/x;7.

Definition 3.0.1. Let I C S be a monomial ideal and let P C S be a monomial
prime ideal. Then by substituting the variables z; — 1 such that z; € P we obtain
a new monomial ideal I(P) C S(P) = K|x; : z; € P] which is called the monomial

localization of I with respect to the monomial prime ideal P.

One can also define the monomial localization of I with respect to monomial

prime ideal P as follows:
I(Py=1:(]] =)™
z; P

Indeed, for any u € I(P), it is easy to see that qung z; € I. Conversely, let
J = (HI]&P x;). If w € I : J then there exists v € J such that uv € I. We can write
u = v'w, where v’ € I(P) and w € Mon(S). It shows that u € I(P) because u'|u.

Our goal is to show that if I is polymatroidal ideal then I(P) is again poly-
matroidal. First, in the following proposition, we show that Iy;; is polymatroidal.

Then by repeated application of this proposition, one obtains that required result.
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Proposition 3.0.2. [13, Proposition 3.1] Let I be a polymatroidal ideal in Kz, ..., z,].
Then Iy is again polymatroidal ideal.

Proof. Let I be a polymatroidal ideal generated in degree d with G(I) = {a"*,... 2"},
We know that B(P) = {u,...,u,} is the base set of the discrete polymatroid P
with respect to /. Then I = (a:“j/a:?j(l) tuj € B(P)). Our first claim is

G(L;) = {z" [z} : if maxu;(i) = a; for u; € B(P)}

is generated in one degree. Let us € B(P) with us(i) < a;. We need to show that
there exists u; € B(P) with w;(i) = a; such that "¢ /2" divides z"/z{". To prove
this, we use induction on a; — us(i). If a; — us(i) = 0 then we're done. Assume
that us(i) < a; and let ug(i) = a; for some u, € B(P). By Theorem 2.1.11, there
exists an integer | € [n] with ug(l) < us(l) such that uy —e; + e, € B(P) and
ul = us—e,+e; € B(P). Hence 2% /2" divides 2% /z{". Since a i — (i) < a; —us,
by induction hypothesis there exists u; € B(P) with w;(i) = a; such that z*/z{"

a;
7

that the set B’ = {u},...,u, : % € G(Iy), j = 1,...,r} is the base set for a
discrete polymatroid P’ with rank P’ = d — a; on [n] \ {i}. Firstly, for all v} € B’
we have |uj| = d — a;. Now let u,u; € B' with u((k) > ui(k). Then k # i. By
applying the exchange property, for us,u; € B(P), us(k) = ul(k) > uy(k) = u(k)
then there exists | € [n] such that us(l) < w(l) and w,, = us—ex+¢; € B(P). Since

us(1) = wy(i) = a;, it follows [ # i and w,, (i) = a;. Hence, we obtain u/, € B’ where

divides 2% /z{i. Consequently, 2% /z% divides z" /z%, as well. Secondly, we claim

I
um—us—ek—i-el. ]

As discussed before, one obtains the following

Corollary 3.0.3. [13, Corollary 3.2] Let I be polymatroidal ideal. Then I(P) is

also polymatroidal for all monomial prime ideals which contain I.

Next, we will discuss the relation between polymatroidal ideals and the ideals
with the property that their all monomial localizations have linear resolutions. It
appears that in case of polynomial rings in upto 3 variables, the before mentioned

properties are equivalent. Below we give the proof of these equivalence.

Lemma 3.0.4. [1, Lemma 2.2] Let I be a graded ideal in S such that I has a linear
resolution and ¢(S/I) < oo. Then I = (xy,...,x,)" for some t.

Proof. Since £(S/I) < oo, it implies that reg(S/I) = max{i : (S/I); # 0}. Suppose
that I has a t-linear resolution. Hence reg(S/I) =t — 1. Therefore, (S/I); = 0 for
i >t Then I = (z1,...,2,)" O
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Proposition 3.0.5. [1, Lemma 2.4] Let J be a polymatroidal ideal which is gen-
erated in degree d. If J contains at least n — 1 pure powers of variables then the

following are equivalent:

(i) The ideals J and J(Pj,y) have a linear resolution.

(1) J = Jad,...ak for some k.

Proof. Let S" = K|[xy,...,2,-1] and J; be a monomial ideal for all 7 in S’. Then we
can write J = Jy + Jix, + ... + Jixl. Let I be a monomial ideal which has a linear
resolution. Let bq,...,b, be positive integers. Then I’ which is generated by those
monomials v € G(I) where deg,,v < b; for j = 1,...,n has a linear resolution as
well. This will be called as 'restriction lemma’.

Let us apply the restriction lemma to J. Then it turns out that Jy has a d-linear
resolution. By our assumption, z¢,...,2¢ | € Jy. In particular, £(S"/Jy) < oco.
By Lemma 3.0.4, it follows that Jy = m? where m = (z1,...,2,_1). Now we show

d=t+i For i = 0, we need to show J, = m?*. By

by induction on ¢ that J,_; = m
assumption, J(Pg,y) = Jo+J1+. ..+ J; has a linear resolution. Since I; is generated
in degree d—i, I(Py,y) = J; and m® = Jy C J,. Hence J, has a d—t linear resolution
and ¢(S’/J;) < oo. By applying Lemma 3.0.4, it follows that J; = m™".

Now, suppose that i > O(and < t — 1). Suppose also that J;_, = m?* for
k=0,...,i—1. Then weset I = Jo+J1xp+...+Js 2t " and K = md-tHi-tgl=itly
R
restriction lemma to .J, we have I has a d-linear resolution. Then I N K = (Jy N
K)+ (Jizo,NK)+...+ (J_jzpyt —iNK) = Joxb " Jial 4 J izl =
(Jo+ J1 + ... + Ji_y)xt""". Hence, reg(I N K) > d + 1. On the other hand,

n

K is polymatroidal, and has d-linear resolution. By applying the

t
n

by the exact sequence 0 — INK — [ & K — J — 0, we have that reg(/ N
K) < max{reg(/ ® K),reg(J) + 1} = d+ 1. Then reg(I N K) = d + 1. Therefore
INK = (Jo+Ji+...+ Ji_)at- = J_ ;a1 Hence J;_; has a (d —t +4)-linear

resolution and m? = Jy C J;_;. So €(S'/J;—;) < co. By Lemma 3.0.4, J,_; = m4~t*.

Therefore, J = m® +m¥ 'z, +... + md_txfl = Jiad,..dk)- O

Corollary 3.0.6. [1, Corollary 2.5] I € K[z, 25] is a polymatroidal ideal if and

only if for all monomial prime ideals P the ideal I(P) has a linear resolution.

Proof. (=) By Corollary3.0.3, it is trivial.
(<) Let I be a polymatroidal ideal with G(I) = {u1, ..., u,}. If ged(uy, ..., u,.) = w,

then I = wJ for some ideal J. It turns out [ is polymatroidal if and only if J is a
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polymatroidal ideal. Hence, if we suppose that ged(uy, ..., u,) = 1 then this implies

I contains pure power of x; or xs. Thus by Prop 3.0.5, we are done. O

Definition 3.0.7. (Strong Exchange Property) Let I = (uq,...,u,) be a monomial
ideal in S. Then [ satisfies the strong exchange property if:

(i) I is generated in a single degree,

(it) For all deg, (ux) > deg, (u;) and for all deg, (uy) < deg, (u;) where 1 <
kot <r, z;(ug/z;) € G(I).

Proposition 3.0.8. [1, Proposition 2.7] Let I C K|[x1,x2, 23] be a monomial ideal.

Then the following are equivalent:
(a) I is a polymatroidal ideal,
(b) I satisfies the strong exchange property,
(c) For all monomial prime ideals P, I(P) has a linear resolution.

Proof. The conditions (a)< (b) is known.

(b)= (c) Let I be a monomial ideal satisfying strong exchange property. Obvi-
ously, I is a polymatroidal ideal. Then, by Proposition 3.0.2 and Corollary 3.0.3,
I(P) is polymatroidal. Since I(P) is polymatroidal, it has linear quotients. Hence,

I(P) has a linear resolution.

(¢)= (b) Let I = (uy,...,u,;). Then we can assume that I = wJ where
ged(ug, ..., u,) = w. We need to show that J is of Veronese type. Since I(P)
has a llnear resolution for all P, J(P) has also a linear resolution. Without losing
of generality, we may assume that w = 1. Then it remains to show I is of Veronese
type. Let b; = max{deg, u; : u; € G(),1 <t <r,i=1,2,3}. Then

Claim: I = I(gp, p,5,) Where d is the degree of the generators of 1.

First step: We claim that the set

M; ={v € Klzy,22,23] : degv = d, deg,,(v) = b;, deg, (v) <b;if j#1} €l

Since I(P) has a linear resolution, I(Ppy) has a linear resolution. Then I(Py;)
is generated by the monomials u € K[z;, 24 such that uz? € I. Hence, by Corol-
lary 3.0.6, I(Ppy) is polymatroidal Thus, there exists integers 0 < s <t < d -
such that I(Pyy) = (5 xl e+ f=d—b,e<b;, f<b.ands<e<t).

Now suppose that M & I for some i. Then s > 0 or t < d — b;. Assume

s > 0. Thus, z§{ "2 ¢ I. Also, since ged(uy, ..., u,) = 1, there exists monomial
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2§ 2 € I with a < b;. Therefore, 2{ * € I(Py;). This is a contradiction, since

I(Py;) does not contain a pure power of xy.

To finish the proof of our claim, we define the ideals J,, 4,4, for b; < a; < d for
i =1,2,3. The ideal J,, 4,44 is generated by all generators of I and all monomials
o'l w2 2% of degree d such that I; < a; for all j and there exists ¢ € [3] with b; < I; <
a;. Our aim is to show that J,, 4, ¢, has a linear resolution for all a;, in particular
Jid,4.4y has a linear resolution. We will use induction on a; + as + as:

Basis Step: a1 + as + az = by + by + b3. Then a; = b; for all 7. By the definition
of the ideal J, p, p,, we have that Jy, p, 4, = I + (M;) for some . Since M; C I, we
have that Jy, 4, 5, = I and by our assumption, has a linear resolution. Suppose that
a1 + as + az > by + by + b3. Then b; > a; for some 7. Let us assume ¢ = 1. Then
by the induction hypothesis, the ideal L = J,,_1 4,45 has a d-linear resolution. Let
J = Juy as.as- Then we have the exact sequence 0 - L — J/L — 0.

The module J/L is annihilated by x5 and x3. Thus, J/L is an S/(x2, x3) module
generated by the residue classes of the elements ux{' where u € K[z, x3] of degree
d — a;. Since no power of x; annihilates the generators of J/L, we obtain that J/L
is a free S/(x9, x3)-module. Consequently, J/L has a d-linear resolution. Therefore,
from the exact sequence above , J has a d-linear resolution. Hence, by Lemma 3.0.4,
since Jgg44 contains the pure powers of z¢, Jyga4 = (71,72,23)% This implies

I'=Tap by

Next, we show that under certain conditions on monomial ideal I in a polynomial
ring with n variables, the property of admitting a linear resolution for all monomial

localizations of I implies that I is a polymatroidal ideal.

Definition 3.0.9. Let M be a nonempty subset of [n]. Then the monomial prime
ideal Py = (x; : j € M). [ is called transversal polymatroidal ideal if it is of the
form

I = Py, Py, -+ Py,

where Mj, ..., M is a collection of nonempty subsets of [n] with s > 1.

Proposition 3.0.10. [1, Proposition 2.8] Let I be a monomial ideal with no embed-
ded prime ideals and the monomial localization at P for all P has a linear resolution.
Let Ass(S/I) ={Py,..., P} and let m = (xy,...,x,) be a graded maximal ideal of
S. Then

(i) If P;N P, =m for all j # k then [ is polymatroidal ideal.
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(ii) If s < 2 then I is transversal polymatroidal ideal. If s = 3, then either
I is again transversal polymatroidal ideal or [ is matroidal ideal generated
in degree 2 of the form I = P, N P, N P3 such that ﬂ?zl G(P;) = (0 and
G(P;)) UG(P,) = {x1,...,x,} for all j # k.

(iii) If height(I) =n — 1 then [ is polymatroidal.

Proof. Let P € Ass(S/I). P is a minimal prime ideal of I since I is a monomial
ideal with no embedded prime ideals. Hence, ¢(S(P)/I(P)) < co. Since I(P) has a
linear resolution, by Lemma 3.0.4, I(P) = P for some t. Thus I = P' ... N PY.

(i) Since [ is generated in a single degree, by a result of Adam Van Tuyl and
Francisco [7, Theorem 3.1], I is polymatroidal.

(ii) If s = 1 then I = P is obviously transversal polymatroidal ideal.

If s =2, then I = Plb1 N PQZ’Z. Since [ is generated in a single degree, we obtain
G(P)) N G(P,) = 0. Thus, I = PP and we are done.

Now, let s =3 so [ = Plb1 N PQI’2 N P§3. Without losing of generality, suppose
that I is fully supported, that is {z1,...,z,} = UUGG(I) suppv. Assume that, P; ¢
Py, + P; for all j, k,i. Since I(P, + F;) = P,f’“ N PZb is generated in a single degree,
G(P,) NG(P,) = 0 for k # i. Thus I = P PP is a transversal polymatroidal
ideal.

Now suppose that P, C P, N Ps. Since [ is fully supported, P, + P3 = m.

Claim: P; + P, = m for all j # k. Then by part (i), we obtain that [ is
polymatroidal. We need to show that P, + P, = m and P; + P; = m. Assume that
P+ P, #mand P = P+ P,. Then I(P) = P NP, Since I(P) is generated in a
single degree, G(P;) N G(P,) = (). Then P, C P, + P3, so we obtain P; C P; which
is a contradiction. Hence P, + P, = m. Also, by similar argument, P; + P; = m.

Now, we have to show that G(P;) N G(P;) € G(B;) for distinct j, k,i. Suppose
that G(P;) N G(Py) C G(F;) for some j, k,i. Let x; be a variable. If z; € G(P;) N
G(Py), then x; € G(FP;). Conversely, if z; & G(P;) N G(Pg), then we can assume
that =, ¢ G(P;). Hence we obtain x, € G(P;) since P; + P, = m. Thus, P, = m,
which is a contradiction.

Next, suppose that b; = by = bs. Without losing of generality, we may assume
that by > by > bg and [ is generated in degree d. Let z, € G(P) N G(P) \ G(Ps)
and x,, € G(P;)\ G(P,). Then, since b, > by, 272 € I. There exists integers
I < by and s < bs such that otz8, € G(I). Since 223, € PP and x; ¢ P, it follows
that 2%, € P? and s = bs. On the other hand, since z}z?, € P* and z,, € P;, we
obtain 2! € P and [ = b;. Thus, 25'2% € G(I). Hence, d = by + bs. Now let
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z, € G(P)NG(P)\ G(P,) and z,,, € G(Py)\ G(Py). Then similarly, 2%'2% € G(I),
and d = by +by. Hence, by = b3. Now set b = by = b3. We need to show that b; < 2b.
Suppose on the contrary, by > 2b. Let z, € G(P,)NG(P,) and z,,, € G(P1) NG(Ps).
Then 22 ~°zb € I. Thus, by = deg(2?%2%) > d = by + b, so b < 0, which is a
contradiction.

Now, let 2 € G(P,) N G(P,) and z,, € G(P) N G(P3) and z; € G(Ps). Then
a1t~ ¢ [ Therefore, 2b = deg(xbal~b27*"") > d = by + b; hence b > b,
and then by = b.

Now, we have I = PPN P¢ N P?. We may assume that b = 1. This assumption
implies I = P, N P, N P5. Thus, I is generated in a single degree, we obtain
G(P)NG(P)NG(P3) = 0.

To prove our assumption, suppose to contrary that b > 1. Let z;, € G(P;) N
G(P), 7 € G(P)) NG(P3) and 7, € G(P) N G(3). Then 2t '2b~1x, € I, since
bttt e Pboab e, € PP and 2 lx, € PY. So 2b— 1 = deg(zb 12t tay) > d = 20,
a contradiction.

(iii) If s = 1, then I = P is polymatroidal, and if s > 1 then from (i), we are
done.

Based on Proposition 3.0.5, Corollary 3.0.6, Proposition 3.0.8 and Proposi-
tion 3.0.10, Bandari and Herzog gave the following conjecture.([1, Conjecture 2.9])

Conjecture 3.0.11. A monomial ideal I is polymatroidal if and only if 7(P) has a

linear resolution for all monomial prime ideals P.
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Chapter 4

Persistence and Stability
Properties of Polymatroidal Ideals

4.1 Polymatroidal ideals and persistence property

Let R be a Noetherian ring and I C R be an ideal. If P € Ass(I™) for all
n > 0, then P is called a persistent prime ideal. In [3], Brodmann showed that
Ass(I™) = Ass(I™) for all n > ny. The smallest n; which satisfies this equality is
called the index of stability and denoted by astab(l). Moreover, Ass(I™) is called
the stable set of associated prime ideals of I and denoted by Ass™([I). Also, it
is known by Broadmann that depth of R/I™ is constant for n > 0. The smallest
ny which satisfies depth R/I"™ = depth R/I™ is called the index of depth stability of
I and is denoted by dstab(/). After discussing persistence property, we will show
that this holds true for polymatroidal ideals.

Definition 4.1.1. (Persistence Property) An ideal I in a ring R is said to satisfy
persistence property if Ass(I) C Ass([?) C ... C Ass(I") C ...

Proposition 4.1.2. [13, Proposition 2.1] Let I be a graded ideal of a Noetherian
ring R, and m be the graded maximal ideal of R. Then we have the following:

(a) If depth R/I™ < depth R/I™ for all ny > n, then m is a persistent prime ideal,

(b) If depth R/I™ < depth R/I™ for all n; > n, then I satisfies the persistence
property,
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(c) maxpeasse(ry{dstab(/R,)} < astab(/). Moreover, if depth R/I™ < depth R/I™
for all ny > n, then astab(l) < maxpey(n{dstab(/Ry)}.

Proof. (a) Let m € Ass(I™), then depth R/I™ = 0. Since depth R/I"™ < depth R/I™
for all ny > n, depth R/I* = 0 for all ¢ > n. Thus m € Ass(I") for all ¢ > n. This
yields the desired conclusion.

(b) We have P € Ass(I") if and only if PRp € Assg, (I"R,). By part(a), one
obtains that PR, € Assg, (I'R,) for all t > n. Hence, P € Ass(I") for all t > n.

(c) Let s = astab(I). Then, by definition, if P € Ass®(I), one has P € Ass(I")
for all ¢ > s. This shows that depth R,/I*R, = 0 for all ¢t > s. Thus dstab(/R,) < s.

Now let r = maxpey(n{dstab(/R,)} and assume that s > r. Then there exists
P € Ass™([I) such that P € Ass(I®). Let P € Ass(I"). Then depthR,/I"R, = 0
for all P € Ass®™(I). Hence, by our hypothesis we obtain astab(l) < r < s, a

contradiction.
Thus depth R, /I"R,, > depth R,/I* R, = 0, which contradicts with the definition
of r. O

Proposition 4.1.3. [13, Proposition 2.2] Let I C S = K{zy,...,x,] be a graded
ideal which is generated in degree d. If there exists an integer n; such that I has
a linear resolution for all n > ny then depth I™ > depth I™*! for all n > n;.

Proof. Let f € I be a homogeneous polynomial of degree d. Then fI™ is generated
in degree (n + 1)d and fI™ C I"™'. The short exact sequence

0— fI" — "™ — "/ fI" — 0
induces the long exact sequence
A TOI'iJrl(K, In+1/f[n)i+1+(j_1) —— TOI'i(K, f[n)H,J — TOI',L'(K, ]'n+1>i+j — ...,

where for a graded S-module, Tor;(K, M); denotes the jth graded component of
Tor; (K, M).

Both fI™ and I"*! have a (n + 1)d-linear resolution. Hence
TOI'Z'<K, f[n)l+] = TOI'i(K, [n+1)i+j =0

for j # (n+ 1)d and all i. Moreover, Tor; (K, I""/fI™);114(-1) = 0 for j = (n+
1)d, because the module I"™!/fI™ is generated in degree (n + 1)d. This shows that
the natural maps Tor;(K, fI") — Tor;(K, I"™!) are injective for all 7. It follows
that projdim I" = projdim fI" < projdim I""*. Consequently, depth S/ <
depth S/I", by Auslander-Buchsbaum theorem. O
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Let I C S be a monomial ideal. If G(I) C F = K|z, ..., x| we denote by an
abuse of notation the ideal G(I)F by I. Then by following this notation, we obtain
Assg(I) = Assp(I). Let v =1]]

jer Tj be a square-free monomial in 5. Then

(S/I), = S'{aF : i€ FY|/IpS'[{zF i € F},

where S = K[{z; : j ¢ F] and where Ir C S’. We obtain the ideal Ir from [
by using the K-algebra homomorphism S — S" with z; — 1 for all j € F. Let
I C S any monomial ideal and P = (w,,...,zx,). Then I(P) C S(P) where
S(P) = K|xg,,...,ox] and I(P) = Ip with F = [n]\ {ki,..., ks}.

We need the following lemma for the later proofs.

Lemma 4.1.4. [13, Lemma 2.3] Let I C S be a monomial ideal. Then
(a) P € Ass(I) if and only if depth S(P)/I(P) = 0;
(b) Ass(Ip) ={P € Ass(I) : x; & P for all i € F'} for all subsets F' C [n].

Proof. (a) Let I C S be a monomial ideal. To simplify our notation let P =
(1,...,2,) with S(P) = K[P] = Klzy,...,2z,;]. We claim that P € Ass(S/I) if
and only if P € Ass(S(P)/I(P)). This will finish our proof since P is the graded
maximal ideal in S(P) and this implies that depth S(P)/I(P) = 0.

Indeed, suppose that P € Ass(S/I) for some k. Then there exist a monomial
w such that I : v = P. We can write u = ujuy where u; € S(P) and uy €
{Trs1,. -, 20}

For any monomial v in the variables {x,,1,...,z,}, we claim that [ : uv = I : .
Let wv € I. If uv belong to I, then v € I : w = P, which is a contradiction since
v & P. For any z; € P, (uv)x; = (ux;)v € I since uz; € I. Hence, P C I : uw.

Finally, take any monomial w € S such that w € I : uv. If w is a monomial only in

the variables {z,41, ..., 2, }, then (uwv)w = u(vw) € I implies that vw € P, which is
again a contradiction since neither v nor w is divisible by any of {x1,...,z,}. Thus,
I:uv=P.

For any z; € P, we have ux; € I(P). So wyz; € I(P). Thus, the maximal
ideal (x1,...,2,) C I(P) : uy, since uy ¢ I(P), we have I(P) : u; = (x1,...,2,), as
desired. This yields that depth S(P)/I(P) = 0 since P is the maximal ideal.

Conversely, let depth S(P)/I(P) = 0. This implies that P = (xq,...,x,) €
Ass(S(P)/I(P)). Then there exists a monomial u € S(P) with u ¢ I(P) such
that I(P) : w = P. We claim that I : w(z,41---x,) = (21,...,2,). Indeed, let
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w(Zpy1 - xy) € I. Then there exists v € I such that u(z,,q---x,) = vw for some

w € S. By rewriting v = vyv, with v; € S(P) and vy is a monomial in the variables

{Z;11,...,2,}, we have vy |u. It follows that u € I(P), a contradiction.
(b) Let ' = K[{z; : j € F}| and set M = S'[{z;" : i € F}]. Then M = S,
where v =[] jer Tj. Hence by extending polynomial ring and applying localization

one can see that
Asspy (IpM) = Ass(IM) = {PM : P € Asss(I),z; ¢ P for all i € F}.

On the contrary,
Assy(IpM) = {PM : P € Assg(Ir)}.

Since the map ¢ : P — PM gives a bijection between the set Asss(Ir) and {PM :
P € Assg(Ir)}, we have the conclusion which is required. O

Proposition 4.1.5. [13, Proposition 2.4] Let I C S be a monomial ideal.If depth R/I™ <
depth R/I™ for all ny > n then

I(P))} < I) < I(P
Perjilsz:&gm{dstab( (P))} < astab(l) < Pg%/ag(%){dstab( (P))}

In particular, if Ass™ (/) = V*([I), one has astab(I) = maxpcy+){dstab(I(P))}.

Proposition 4.1.6. [13, Proposition 3.3] Let I be a polymatroidal ideal. Then I

has the persistence property.

Proof. Let n > 1 be an integer. By Lemma 4.1.4, we have P € Ass(I") if and only if
depth S(P)/I"(P) = 0. Note that I*(P) = I(P)* for all k > 1. By Corollary 3.0.3,
we know that I(P) is again a polymatroidal ideal. By Theorem 2.2.2 and Corol-
lary 2.2.4, we conclude that I(P)* have a linear resolution for all & > 1. Now by
Prop 4.3.3, we obtain depth S(P)/I*(P) = 0 for all k£ > n. But this implies that
P € Ass(I%) for all k > n as desired. O

Theorem 4.1.7. [13, Theorem 3.4] Let I C S be a polymatroidal ideal. Then R(I)

is a normal ring.

Proof. Tt is a well-known fact that R([) is a normal ring if and only if I is a normal
ideal. By definition, I is normal if I* is integrally closed for all £ > 1. Since I is
polymatroidal ideal, by Theorem 2.2.2, it is sufficient to show that I are integrally
closed. Because I is in particular a monomial ideal, I is integrally closed, if and
only if for v € Mon(S) and ¢t € Z* such that v* € I* we have v € I.
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Let v € Mon(S) which has degree k and ¢t € Z* such that v € I'. Assume [
is generated in degree d. If v' € I' then kt > dt, that is, k > d. Let I, be the
K-subspace of I spanned by v € Mon(S) of degree s. Then

(It = Skt—ar(INar = (Sk—a)" (1a)" = (Sk—ala)".

Notice that Sy_qI; = J; where J = m* %[ is a polymatroidal ideal generated in

degree k. Hence,

vt e (It)kt = (Jk)t

Thus, v belongs to the integral closure of the base ring K[J]. Since K[J] is normal,
it follows that v € K[J]. This yields that v € J. Consequently, v € I, as desired.
m

Corollary 4.1.8. Let I C S = K|xy,...,2,| be a polymatroidal ideal. Then

lim depth S/I™ =n — ¢(I).

m—o0

4.2 Strong persistence property

In [14], authors gave a stronger condition for an ideal to satisfy the persistence
property.

Definition 4.2.1. Let P be a prime ideal which contains the ideal I. Then [ is
said to satisty the strong persistence property with respect to P if for all n and all
g € (I} : my) \ I} there exists h € I, such that gh ¢ I»*'. If I satisfies the strong
persistence property for all prime ideals P which contain I, then we say that [

satisfies the strong persistence property.

Note that the strong persistence property implies persistence property but the

converse does not hold.

Proposition 4.2.2. [14, Proposition 1.2] Let I be a graded ideal of S. If I* have
a linear resolution for all k, then [ satisfies the strong persistence property with

respect to m.
Proof. Let f € (I' : m) \ I'. Since (I* : m) \ I' is nonzero, we obtain that depth(S/I*) =

0. Let I be a graded ideal generated in degree d. Then, since I* has a linear resolu-

tion for all k£ > 1, we obtain that the last module in the minimal graded free resolu-
tion of I' is of the form S(—(dt+n — 1))Pmar+n=1_ It implies that Tor® (S/m, S/I*) =
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S(—(dt +mn —1))Pnartn-1 where S(—(dt +mn — 1))Pndar+n—1 is a graded K-vector space.

Accordingly, we have the following isomorphisms of graded K-vector spaces
Tor, (S/m, S/1%) = ((I' : m)/I*)(—n)

This means that f = f; + fy where f; € I' : m is a non-zero homogeneous element
of degree dt — 1 and f, € I'. Let g € I which has degree d. Consequently, gf ¢ I**!
since degree of deggf = d(t + 1) — 1, as desired. ]

Theorem 4.2.3. [14, Theorem 1.3] Let I C R be an ideal. Then [ is said to satisfy

the strong persistence property if and only if /"' : I = I" for all n.

Proof. Suppose that I satisfies the strong persistence property, but It : [ # "
for some n > 1. Then the ideal (I"™' : I)/I" is non-zero. Hence, there exists
P e supp[(I™*! : I)/I"] where P is a minimal prime ideal. Then the ideal (/"' :
I,)/I} is nonzero. Hence there exists g € (I : I,)/I} with m,g € I7. By our
assumption, there exists h € I, such that gh & Ig“. This is a contradiction because
g€ [g“ .

On the other hand, let [**' : [ = I" for all n > 1. Then I}*! : I, = I} for all
n > 1. Hence, changing R by R, and I by I,, it is sufficient to show that I satisfies
the strong persistence property with respect to m. Assume that m € Ass(I™) for
some n and f € (I" : m)\ I". Conversely, suppose that fg € I"™! for all g € I.

Then f € I" since I"™! : I = I", a contradiction.

Theorem 4.2.4. [14, Theorem 1.4] Let R be a Noetherian ring and I C R a proper
ideal of R with grade(/) > 0. Assume that Rp/m, is an infinite field for all prime
ideals P which contain I, and that R([) satisfies Serre’s condition Ss. Then [

satisfies the strong persistence property. In particular, I**! : I = I* for all t.

Proof. Let P be a monomial prime ideal which contains I and set L = P&, I".
Then R(I)/L = R/P, and thus L € Spec(R([)). Besides that, R(I), = R_(Ip).
Because grade(/) > 0, we obtain dimR(/), = dim R, +1 > 2, . The S, condition
then provides that depthR(I,) > 2. Hence if we localize R then one can suppose
that R is local with maximal ideal m with depthR(I) > 2, and we need to prove
that I satisfies the strong persistence property with respect to m. (Localization
preserves our assumptions with respect to R and I) We set S(I) = @, (1" : m)/I".
Clearly, S(I) is a graded R(I) = R(I)/mR(I)-module. We may establish S(I)
with the graded Kozsul homology R(I)-module H, i(x1,...,7,;R(I)). The ideal
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m is generated by the minimal set {x1,...,z,}. The tth graded component of

Hy1(z1, ..., 2, R(I)) is given as
Hy 1(z1,.. ., 20, RD)y = Hy_ 1 (21, .. 2 1Y) = Hy oy (21, ..., 203 R/ TY)

~ (I':m)/I' = S(I),.

It means that S(I) is a finitely generated R (I)-module.
We set Q(I) = R(I) : m = P, I' : m and we obtain the exact sequence

0—R(I)— Q) —S()—0

of R(I)-modules. Because S(I) is finitely generated R(/)-module, as a result of this
exact sequence we obtain Q(I) is finitely generated R(I)-module, as well.

Because depth R > 0, there exists a non-zero divisor g € m of R. Clearly, f is
also a non-zero divisor on Q(I), then depth Q(I) > 0. Thus because depthR(I) > 2,
it follows that depth S(I) > 0. Since R([) is a standard graded K-algebra, where
K is the residue class field of R, and that K is an infinite field, there exists a
homogeneous element h + mI of degree 1 in R(I) with h € I, which is regular on
S(I). Thus the multiplication map (I* : m)/I* — (I'*' : m)/I**! induced by h is
an injective map for all ¢ > 0. Consequently, if g € (I* : m)/I" for some ¢, then
hg € ¢g*1, as desired. O

Remark 4.2.5. [14, Remark 1.5] The hypothesis of Theorem 4.2.4 implies more
than just the strong persistence. Clearly, theorem proves that there exists f € I/m/
such that for all ¢,s > 0 and all g € (I* : m)/I" one has gf* ¢ I'*'. The hypothesis
of Theorem 4.2.4 also shows that dimg (' : m)/I* < dimg((I : m) /I for all ¢.

Corollary 4.2.6. [14, Corollary 1.6] Let R be a Noetherian ring and let I be a proper
ideal of R with grade(I) > 0. Assume that R([/) is normal or Cohen-Macaulay. Then
I satisfies the strong persistence property. Additionally, P € Ass>([) if and only if
((1,) = dim R,

Proof. By Theorem 4.2.4, one can observe [ satisfies the strong persistence property.
Let P be a monomial prime ideal which contains I. Changing I by I, and R by R,
we may suppose that P = m and need to prove that m € Ass™([) if and only if
¢(I) = dim R.

One can notice that m € Ass™([) if and only if R(I) : m # R(I). Also
one has R(I) : m = R(I[)/mR(I). Since R(I) is Cohen-Macaulay, it follows
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that grademR(I) = height mR(I) and height mR () = dimR(I) — dimR(I) >
dimR([) — dim gr;(R) = 1. On the contrary, the exact sequence

0 — mR(I) — R(I) — R(I) — 0
induces the exact sequence
0 — R(I) — R(I) : mR(I) — Ext'(R(I),R(I)) — 0.

This shows that R([) : m # R(I) if and only if grademR (/) = 1. This is equivalent
to dimR(I) = dimR(I) — 1. Since dim R = dim R(I) — 1, the assertion follows.
[l

In case of monomial ideals, in [14], an equivalent definition of strong persistence
in terms of monomial localization is introduced. We give this definition in form of

the following Lemma.

Lemma 4.2.7. [14, Lemma 2.1] Let I be a monomial ideal. Then [ satisfies the
strong persistence property if and only if for all monomial prime ideals which contain
I and ¢, and all v € (I(P)' : m,) \ I(P)" there exists a w € I(P) such that vw ¢
I(P)t+!,

Proof. Let I C S be a monomial ideal and let P € Ass(I). By Lemma 4.1.4, we
know that depth S(P)/I(P) = 0. This occurs if and only if m, € Ass(I(P)), where
m, is the graded maximal ideal of S(P). We obtain that P € Ass™([) if and only
if m, € Ass™(I(P)). O

Based on the above definition, one see the following

Proposition 4.2.8. [14, Proposition 2.4] Let I C S be a polymatroidal ideal. Then

I satisfies the strong persistence property.

Proof. Let I be a polymatroidal ideal. By Corollary 3.0.3, we know that I(P)
is again polymatroidal for all monomial prime ideals which contain I. By The-
orem 2.2.2 and Corollary 2.2.4, we conclude that I(P)* have a linear resolution
for all £ > 1. Then by Proposition 4.2.2 and Lemma 4.2.7, I satisfies the strong

persistence property. ]

37



4.3 Stability indices of polymatroidal ideals

In this section, we discuss the index of stability of associated prime ideals and depth

for polymatroidal ideals. To do this, we need some preparations.

Definition 4.3.1. Let G(I) = {v1,...,v,}. Then I is called the linear relation
graph of I if the following are the vertex and the edge set of I :

E(') = {{k,1} : there exist vs,v; € G(I) such that zxvs = x;v;}
v = |J {1
{kI}eE(T)

Example 4.3.2. Let I be the edge ideal of the finite simple graph G on the vertex
set [n]. Then I' of I has

E) ={{k,1l} : k,l € V(G) and k,[ have a common neighbor € G}.

Specifically, let G be an odd cycle with E(G) = {{k,k+ 1} for k =1,...,n}. Then
[ is an odd cycle with E(I") = {{k,k+2} for k =1,...,n}.
Conversely, if GG is an even cycle, then I' has two connected components I'; and

I's where I'; is a cycle with
ETy) ={{2k,2k+2}:k=1,...,n/2}
and I'y is a cycle with
ETy) ={{2k—1,2k+2} : k=1,...,n/2}

Theorem 4.3.3. [14, Theorem 3.3] Let I C S = K[xy,...,x,] be a monomial ideal
generated in a single degree and I' of I has p vertices and ¢ connected components.
Then

depthS/I* <n—k—1fork=1,...,p—q.

Proof. 1t is sufficient to prove that Hy(xy,...,2,;1%) #0for k=1,...,p—q. Let
F C T be a spanning forest of I'. This means that F' is a subgraph of I" which is a
forest. Also vertices of F' are equal to vertices of I'. F' has p — ¢ (distinct) edges,
namely,

{ilaj1}7 {i2vj2}v T {ip—q>jp—q}-
For the purpose of an appropriate labeling of the edges suppose that for all ¢, j; is a
free vertex of the forest with edges {i1, j1}, {i2, 72}, .- ., {is, J¢:}. Specifically, we have

jt ¢ {ila'--aibjl?"'ajt—l}-
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By the definition of I', this means that for each edge {i, j;} belongs to a cycle
wy = vy, €5, —Vs,€;, iIn K(z1,...,2,; 1) where v,, and v, are suitable elements in G(I).
Then w = wy Aws A -+ Awy is a non-trivial cycle in Ky (z1,...,z,; I*). Precisely,
w # 0, since in w the basis element ej, Aej;, A---Aej, appears in the expansion of

the wedge product only once (with coefficient v,,, vy, - - - v, ). The cycle w can not

be a boundary of Ki(x1,...,z,; I¥) since its coefficients all belong to I* /mI*, since
I is generated in a single degree. Then we obtain [w] # 0 in Hy(z1,...,x,; %), as
desired. 0

Theorem 4.3.4. [14, Theorem 4.1] Let [ C S = K|[xy,...,z,] be a polymatroidal
ideal. Then
astab(I),dstab(I) < (1)

In particular, astab(I),dstab(I) < n.

In transversal polymatroidal ideals and ideals of Veronese type, astab(l) =
dstab(l). One can conjecture that if I is polymatroidal ideal then their stability

indexes are equal. For the proof, we need the following.

Lemma 4.3.5. [14, Lemma 4.2] Let I be a monomial ideal and I' be the linear
relation graph of I. Suppose that I' has p vertices and ¢ connected components.
Then

((I)>p—q+1

and additionally, if I is a polymatroidal ideal then equality holds.

Proof. Let I = (z"*,... 2% ) be a monomial ideal and
Uy

B = {u; : 1 < i < k,u; are the exponent vectors of G(I)}. Let U = | : | be
Uk

the k x n matrix where uy, ..., u; are the row vectors of U. Then ¢(/) = rank U.

Let FF C Q" a Q-vector space and let spanU = {u, — us : u,,us € Byu, — us =
+e;; for some ¢ < j}. Moreover, let I'y, ..., I'; be the connected components of I'([).
Then ' = F1®© F>o® ... D Fy, where F}, is Q-subspace of F' and span U is a generating
set for all Fy, and {i,j} € E(I')).

Claim: dim Uy, = |V (T'y)| — 1.

Proof of Claim: Let i € E(I'y). Since for each vector Fj, the sum of components
is zero, e; ¢ Fj. Hence from the identity Fy + Qe; = Gaje\/(l“k) Qe;, we obtain the
desired formula for dim Fj. Now we need to show this identity holds, let j € V().
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Because I'y is connected, there exist vertices ¢ = 49, %1,...,% = j in [y such that
{igig+1} € E(I'y) for all ¢. We will proceed by induction of the length ¢ of this
path connecting ¢ and j that e; € Fi, + Qe;. If t = 1, then ¢;; = ¢, — ¢; € [y,
and thus e; € Fj, + Qe;. Now let ¢ > 1. By what we obtained so far, we have
that e; € Fy + Qe;. Because i is connected to 7 by a path of length ¢ — 1, by our
induction hypothesis, it follows that e; € Fj + Qe;.

By reviewing, we see that dim F' = p — ¢ where ¢ is the connected components
of I'(I). Since all vectors in F' have component sum equal to zero, it follows that F’
is a proper subspace of the vector space which is spanned by the column vectors of
U. It follows that p — ¢ = dim F' < rank(U) — 1 = ¢(I) — 1.

Now suppose that I is polymatroidal. Then B is the basis of a polymatroid. We
claim that dim F' = rank(U) — 1. Before proving our claim , we first observe that
u, —us € F for all u,,u, € B. We will show this by induction on the distance of wu,.

and us. By definition of distance
dist (ur, 1) = 1/20  [un (i) — us(5))).
i=1

If dist(u,,us) = 1, then by definition of F', we have u, — uy, € F. Assume now
that dist(u,,us) > 1. Then by the exchange property, there exist ¢ and j with
ur (1) > ug(i) and u,(j) < us(j) such that u := u, —e;; € B. Because dist(u — us) <
dist(u,., us) by our induction hypothesis, we obtain that u — us € F. Thus, since
u — u, € F, we deduce that u, — us € F' as well.

Now, by using that u, — ugs € F' for all u,,us € B, we obtain that
F 4+ Qu, = QB.

Thus, since us ¢ F(because its coefficient sum is not zero), we have rank(U) =
dim QB = dim(F + Qus) = dim F' + 1, as desired. O

Lemma 4.3.6. [14, Lemma 4.3] Let I be a polymatroidal ideal and P € V*(I).
Then ((I(P)) < ¢(I).

Proof. By Corollary 3.0.3, I(P) is a polymatroidal ideal. Let P (respectively P’)
be the polymatroid attached to I (respectively I(P)). Let U be the m x n with
the row vectors which comes from the bases of P. Because I(P) is obtained from [/
by the substitution z; — 1 for j € P, the matrix U’ whose row vector comes from
the bases of P’ is taken from U by removing the columns of U which coincide to
exponents z; € P and removing the rows of U which do not coincide to the minimal
generators of I(P). Then rank(U’) < rank(U), which completes the proof. O
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Proof Of Theorem 4.3.4. Applying Theorem 4.3.3 with Lemma 4.3.5, one has
depth S/T°D=1 = n — ¢(I).

By Corollary 4.1.8, depth S/I'* = n — {(I) for all t > 0 and by Proposition 4.1.6
I satisfies the persistence property. Consequently, dstab(l/) < ¢(I). We need
to show that astab(l) < ¢(I). One can notice that P € Ass*™([) if and only
if ((I(P)) = dimS(P). Now by Theorem 4.3.3 together with Lemma 4.3.5 we
have depth S(P)/I(P)"(F)=1 = ( which implies that P € Ass(I®/(P)=1) Thus,
astab(I) < max{((I(P)) —1 : P € Ass™(I)}. Hence, astab(l) < ¢(I) because
((I(P)) < ((I) for all P € Ass™(I). O

In the following with the light of Theorem 4.3.4, we will examine the analytic
spread of polymatroidal ideals that are attached to polymatroids.

Example 4.3.7. (a) Graphic Matroids: Let G be a graph with E(G) = {ey,...,e,}.
Then the set of bases B of graphic matroid G is defined as:

B={up:up= Z er, where F is a spanning forest of G}.
ke E(F)

(b) Transversal polymatroids: Let M be a collection of subsets My, ..., M, of [n]
and let P be a transversal polymatroid with respect to M. Then

B(P):{€j1+"’+€jd:jT€Mr7 ]_Srgd}

If in addition j,. # js for all 1 < j,s < d with r, s, then B(P) is a generating

set of a transversal matroid.

(c) Polymatroids of Veronese type: Given an integer d and a vector a = (ay, ..., a,)

with a; > 0. Let P be a polymatroid of Veronese type (d,a). Then
B(P)={b=(b1,...,b,) € Z : |b| =d, 0 <b; <a;}

Now, we will discuss the analytic spread of [ which is attached to a graphic

matroid. We begin with some information from graph theory:

(a) Let G be a finite simple graph with vertex set V(G) and edge set E(G). If
F C V(G) then Gp is the graph with V(Gp) = F. If v € V(G) then we set
G/v = Gy@G)\{o}- If number of connected components of G is less than the
number of connected components of G \ v then v is called a cutpoint. We call

a graph G biconnected if it is connected and has no cutpoints.
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(b) We call a biconnected subgraph of G biconnected component of G if it is
maximal. Let G be a graph. Then G is the union of biconnected components.

Any two distinct biconnected components intersect at most in a cutpoint.
(¢) Suppose G is biconnected. Then any two distinct edges belong to a cycle.

Proposition 4.3.8. [14] [Proposition 4.4] Let G be a graph and I be a matroidal
ideal attached to the graphic matroid of G. Let Gi,...,G, be the biconnected
components of G which contain more than one edge. Then ((1) = [E(U]_, G;)| —
qg—+1.

Proof. Let T' be the linear relation graph of I. By Lemma 4.3.5, it is sufficient to
prove that |V(T')| = |E(U]_, G;)| and p connected components. Then I C K[z;le; €
E(G)] is the matroidal ideal where I = (vr =[], cp(r) %, T is a spanning forest of G).
Let r be the number of biconnected components of G. To begin with notice that
each spanning forest T" of G can be written as U;:l F; where Fy, ..., F, are span-
ning trees of the distinct biconnected components of G. Since I' is a linear relation
graph, it follows that {7, j} is an edge of I' if there exists a spanning forest 7" with
e; € E(T) such that (E(T) \ {e;}) U {e;} is also a spanning forest of G. If e; and
e; are edges in different biconnected components of G, then any spanning forest
T with e; € T, the subgraph with edge set (E(T) \ {e;}) U {e;} contains a cycle.
This cycle is absolutely contained in the biconnected component which contains the
edge e;. Thus if Gy, ..., G,,, m > q, are all the biconnected components of G, then
I' = |2, Gi. Clearly, if G; contains only one edge, then I' = . Thus I' = | |I_, I

Now we claim that each I'; for j = 1,...,¢ is a complete graph, which will end
our proof. Indeed, if e; and e; belong to same biconnected component G of G, there
is a cycle C'in G which passes through e; and e;. We can produce a spanning forest
T of G such that E(C)\ {e;} C E(T). Then (E(T') {e;}) U{e;} is again a spanning
tree of Gp. Then we have {i,j} € E(I'), as required. O

Example 4.3.9. In Figure 1, G is the graph with 3 biconnected components. T’
shows the linear relation graph of the matroidal ideal I attached to G. By Proposi-
tion 4.3.8, one can see that ¢(I) = 6.

Now, we will discuss the analytic spread of transversal polymatroids. Answer is
not known for transversal matroids. If I be a transversal polymatroidal ideal, then
I =1T,_, Pe. If we bring together the monomial prime ideals P, which are generated
by varibles we obtain that I = vJ where v € Mon(S) and J is product of remaining
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Figure 4.1: figure 1

Py.. Thus J is also a transversal polymatroidal ideal. Because ¢(I) = ¢(J), we
suppose that v = 1. Thus if in the beginning we assume that none of the P; is a

principal ideal then for £k = 1,...,r, we set

A simplicial complex A is the collection of subsets of vertex set [n] such that if
F e A and F; C F then F; € A. Elements of a simplicial complex is called a face.
A is generated by the maximal faces. So if Fi,..., F, are the maximal faces of A
then A =< Fy, ..., Fr >.

Proposition 4.3.10. [14, Proposition 4.6] Let I" be the linear relation graph of the
transversal polymatroidal ideal I = [[,_, P, and let Aq,..., /A, be the connected
components of the simplicial complex A =< Fi, ..., F,. >. Then I" has ¢ connected
components I'y,...,I';, and for m = 1,...,¢, the connected component I';, is the

complete graph on the vertex set of A,,.

Proof. 1t is sufficient to prove that {k,l} € E(I") if and only if k£ and [ belong to
the vertex set of A, for some m. Let k and [ be two vertices of A,,. Suppose
that A, =< Fy,...,F, > with s < r. For A,,, we define the so-called intersection
graph G with V(G) = Fy and E(G) = {{Fy, F}}, F, N F; # (}. The graph G is
connected since A\, is connected. In particular, we may choose a spanning tree H
of G . Then |E(H)| = s — 1. Hence, there exist s — 1 distinct pairs (£}, F},) such
that I,, = F,NF, # 0 for z,y € {1,...,s}. Weset v € Mon(S) where degv =1 —1
whose support consists of s — 1 variables chosen with indices from each of I, and
the remaining variables chosen with indices from each of F; with s +1 < ¢ < r.
Then xpv, zjv € G(I) and give {k,l} € E(I'), as required. On the other hand, let
{k,l} be an edge of I. Let V(A) = {1,...,n} be the vertex set of A. Then [n]
is the disjoint union of V(A,,), m = 1,...,q. Hence any monomial has a unique

presentation z = z; - - - z, with supp(z,,) € V(4,,). Furthermore, if z € G(I) then
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deg z,, is the number of Fi’s which belong to A,,. Because {k,l} € E(I'), there
exist v,w € G(I) such that xpv = zyw. Assume that k € V(A,,) and | € V(4;)

with m # [. Then xyv,, = w,,, which is impossible by degree reasons. O

Next we search for the analytic spread of polymatroidal ideals of Veronese
type. Let I be a polymatroidal ideal of Veronese type generated in degree d. Let
a = (ay,...,a,) be an integer vector with a; > 0. Then the bases of the polyma-
troid of Veronese type are the integer vectors z = (21...,2,) with 0 < z; < q;.
Without lose of generality, suppose that Z?:1 a; > d. Obviously, I" has only one
connected component therefore V(I') = supp(/). We define supp(l) = {j € Z* :
z;|u, where v € G(I)}. Indeed, let k,l € supp(l) with k # [ and suppose that k =1
and [ = 2. Let v € G(I) with v = 2{'23* 'v where w € Mon(S) and has degree
d—ay; —ag+ 1 with 1,2 ¢ supp(w), and whose exponent vector is componentvise
bounded by (as,...,a,). Such a monomial exist because Y\ ,a; > d—a; —as + 1.
Hence the monomial zov/x; € G(I), it follows that {1,2} € E(I'). Specifically,

(1) = supp(I).
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