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URUN OMRU SONU ENVANTERI PROBLEMI UZERINE

Sonya Javadi Khatab
Endiistri Mithendisligi, Doktora Tezi, 2018

Tez Danigmani: Doc¢. Dr. Semih Onur Sezer, Prof. Dr. J.B.G. Frenk

Anahtar Kelimeler: Uriin 6mrii sonu envanteri, servis parcalari, martingal

siiregleri.
Ozet

Bu ¢aligmada, tirtinleri servis yagam dongiisiiniin son agamasinda olan bir tiretici i¢gin,
omiir sonu envanteri problemini ele aldik. Bu agsama parca iiretimi sonlandirildiginda
baglar ve son hizmet sézlesmesi sona erinceye kadar devam eder. Bu problemi ¢ozmek
icin kullanilan taktiklerden en popileri, son siparig miktar1 olarak adlandirilan,
son agsamanin baginda yeterli miktarda yedek parcga iiretmek ya da yerlegtirmektir.
Bunu takiben tamir-degigim politikasi defolu tirtinleri tamir ederek veya degistirerek
miisterilere hizmet vermektedir. Diger taraftan giiniimiizde, iiriinlerin fiyatlar: hizlica
diigerken tamir ve hizmet maliyetleri zaman i¢inde genelde sabit kalmaktadir. Boyle
bir durumda, miigterilerin hizmet taleplerini kargilamak igin alternatif bir politika
uygulamak mali bakimdan daha etkili bir secim olabilir. Bu politika miisterilere yeni
nesil tiriinlerde fiyat indirimi veya benzer tipte yeni bir tirtin 6nerme sekilinde olabilir.
Bu cercevede amacg, en iyi son siparis miktar1 ve alternatif politikaya gecis zamani ik-
ilisini beklenen toplam maliyeti minimuma indirecek sekilde bulmaktir. Bu tezde
bu problemi farkli matematiksel teknikler gerektiren statik ve dinamik yaklagimler

kullanarak incelemekteyiz.
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Abstract

We consider the so-called End-of-Life inventory problem for a manufacturer of spare
parts in the final phase of the service life cycle. The final phase starts when the part
production is terminated and continues until the last service contract expires. One of
the most popular tactics to cope with this problem is to place a sufficient volume of
spare parts at the beginning of the final phase which is called the final order quantity.
Then the repair-replacement policy serves the costumers by repairing or replacing the
defective items. On the other hand, nowadays, a considerable price erosion happens
for the products while repair and service costs stay steady over time. If so, it is more
cost effective to consider an alternative policy to meet the service demands after some
time. This policy may offer the costumers a new product of similar type or a discount
on a next generation product. In this setup, the purpose is to find an optimal pair of
final order quantity and switching time to an alternative policy which minimizes the
total expected discounted costs. We study this problem under the static and dynamic

approaches which require different mathematical techniques.
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Chapter 1

Introduction

1.1 End-of-Life Inventory Management

Today our lives are surrounded by a huge variety of goods. Most of our individual
and social needs are nourished by many different brands and commodities. The
rapid improvement of technology has increased the competition for companies to
produce new goods. In fact, companies need huge number of satisfied customers to
quench their thirst to earn more profits. One way of obtaining satisfied customers for
companies is to offer tempting service options. Hence, calling the recent decades the
“golden age” of services is not far from the fact. In a recent benchmark study covering
more than 120 companies from different sectors including aerospace and defense,
automotive, and consumer goods, Deloitte Research |Glueck et al.| [2007] shows that
business units related to service provide on average 75% higher profitability compared
with the overall business profitability. Although the revenues of these units amount
to only a quarter of total revenues, they yield almost 50% of the total profit.

From operational and managerial perspectives, providing an efficient service to
customers is challenging. This is due to demand variability and service part invento-

ries over service period. The main challenge is to fulfill service obligations and at the
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same time to avoid a huge number of obsolete service parts at the end of the service
phase. Service parts may be associated with capital products that call for rapid ser-
vice in the case of failure, in particular, telecommunications, healthcare, utilities, or
consumable products which the customer uses recurrently, i.e. items which get used
up or discard such as office supplies and electronic items. The original equipment
manufacturers (OEMs) are dealing with the inventory management of service parts.

It would be worthwhile to introduce some of the terminology of service part in-
ventory management. It is a primary concern to identify in which phase of the service
life cycle the part is. Phases are identified according to the demand pattern the part
is following. The life cycle of a spare part does not mimic the product life cycle
necessarily. In general, there are three phases of the service life cycle of spare parts,
namely, the initial, normal, and final phases. In the initial phase, the production of
spare parts starts and the first demand for service arrives. However, demand in this
phase is low, adaption for demand fluctuations is allowed by changing the production
rates. During the normal phase the production of service parts is up and running
which provides management with the ability to adjust production rate to meet de-
mand. Final phase starts when the part production is terminated and ends when the
last service (or warranty) contract expires. In general, the final phase is the longest
period within the life cycle of a service part. For instance, in the electronic industry
this phase may last four up to thirty years, while the production of electronic appli-
ances is normally terminated after less than two years as pointed out in [Teunter and
Haneveld| [2002]. On the other hand, increasing rate of innovation, especially in the
electronics market, makes a very short life cycle of production. As a consequence,
the final order of service parts is typically placed within a year after final production.
The main challenge of this phase, for the manufacturer, is the acquisition of parts
with a huge functional demand. Basically, the manufacturer tries to avoid a massive

number of obsolete units at the end of this phase while its primary aim is to meet all
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customer’s requests. Various strategies have been applied in recent decades to cope
with the final phase inventory problem, for instance substituting another part for the
obsolete one, obtaining the discontinued part from another manufacturer, redesign-
ing the product, and purchasing a sufficient volume of the obsolete part to sustain
production. To satisfy product replacement during the final phase, the manufacturer
needs to procure a certain amount of service parts at once to cover the demand during
the remaining period. This is called a last-time or a life-time buy; see Bradley and
Guerrero| |2008].

In the literature of service parts inventory management, the inventory control of
service parts in the final phase of the service life cycle is known as the end-of-life
(EOL) inventory problem, the final buy problem (FBP), or the end of production
problem (EOP). Another important concept in the literature of service parts inven-
tory management is the repair-replacement policy. Under this policy, the defective
product is either repaired or replaced by a functioning part depending on its condi-
tion. This part may either be a new part or a repaired returned item. In a recent
study, [Pourakbar et al. [2012] propose a new methodology which introduces the pos-
sibility of switching to an alternative policy, such as offering a discount on a new
model of the product, giving credit to customers, or swapping the defective product
with the same or a similar one. They call this policy an alternative policy . This
policy has recently received an extensive attention in the literature as a compelling
policy to the meet demand.

The term of contract, or warranty, is also a crucial concept in this field. The
warranty may be considered as either one-dimensional or multi-dimensional. Under
a one-dimensional policy, the warranty will expire when a single attribute threshold,
like age, is passed while in a multi-dimensional policy, the warranty will expire if the
first criteria will be passed.

Research on the end-of-life inventory management is rich and extensive. Re-
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searchers have considered various strategies and assumptions to cope with this prob-
lem. In general, the research can be divided into three main categories: service-driven,
cost-driven and forecasting based approaches. In a service-driven approach, a service
level is optimized regardless of the cost incurred by the system. A cost-driven ap-
proach gives a monetary value to different operations related to service and then tries
to minimize the total cost. A forecasting based view, focuses only on mimicking the
demand behavior during the final phase to meet the demand. The cost-driven ap-
proach is the most relevant one to our study and as a result, we will go into the detail

of this policy in the next chapter.

1.2 Outline

In this study, we consider the end-of-life inventory problem for the manufacturer of
service parts in its final phase of the service life cycle. Following Pourakbar et al.
[2012], the manufacturer may switch to an alternative policy during the final phase
which is a more cost effective policy. In this setup, the objective is to find an op-
timal pair of final order quantity and switching time to an alternative policy which
minimizes the total expected discounted cost. In fact, the switching time is a stop-
ping time based on the realization of the arrival process of defective items where the
arrival process is given by a non-homogenous Poisson process. Mathematically, we
formulate the problem much more generally by considering the class of all possible
stopping times. This means that our decision time to switch to an alternative policy
at a certain point, also depends on the realization of the demand process up to that
time. As such the approach of |[Pourakbar et al. [2012] considering only determinis-
tic switching time is a very special case of our model. Four optimization problems
are introduced based on different strategies. In each problem, we analyze rigorously

the properties of the objective function to propose an exact or e-optimal algorithm
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to solve. Finally we give some numerical examples to understand how sensitive the
polices are on different parameters.

In the next part of the study, we study this problem under a general continuous
switching time structure. In fact, we consider the end-of-life inventory problem as an
optimal stopping problem. This gives a solution which is optimal within the class of
all static and dynamic policies. To approximate the optimal stopping problem, there
are different techniques in the literature, among which we consider the standard tool
of discrete time Markov dynamic programming. To apply this technique appropri-
ately, we assume that the stopping times take values on some pre-determined discrete
set. Indeed, we approximate the continuous stopping times set with a discrete one by
introducing an e-error level mesh. Then the Bellman optimality equations are con-
structed to find optimal final order quantity and stopping region. Finally numerical
results are given to compare the performance of optimal dynamic policy with other

policies.



Chapter 2

Literature Review

2.1 Introduction

“ Business absolutely devoted to service will have only one worry about profits. They
will be embarrassingly large. Henry Ford, founder of one of the world’s largest manu-
facturing companies, once said. Decades later, however, companies are still struggling
to heed this advice. Manufacturers are looking for growth and profits in all corners of
the globe, but they often neglect the very large opportunities much closer to home in
their own service businesses ” |Glueck et al.| [2007]. However, a major task in service
management is the timely and cost efficient provision of spare parts. The traditional
strategy of spare parts acquisition is to place a large amount of final orders at the
initial phase, causing major holding costs and a high level of obsolescence risk. There
are different strategies from different perspectives to solve the problem. In fact, there
is an extensive pool of researches related to those strategies. In general, research on
the end-of-life inventory problem can be divided into three groups: service-driven,
cost-driven and forecasting based approaches. More recent papers take into account
other sources of meeting the demand and also there are other researches which con-

sider the different types of warranty as their assumptions. In this chapter, the pioneer
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and most recent papers of the different approaches will be discussed in detail, and a
short review of other papers on the service inventory management literature also is

given. In Table 1, we classify the papers by their research focus.

2.2 Service-Driven Approach

Many researches on the service inventory management literature belong to the service-
driven approach. Basically, in the service-driven approach, the purpose of research
is to optimize some service measures such as the proportion of customers receiving
spare parts and the filling rate -probability of running out of the stock- to meet
the demand in the final phase. In other words, in this approach, a service level is
optimized regardless of the cost incurred by the system. The leading papers on this
approach (Fortuin/[1980], |[Fortuin|[1981]) describe a service level approach and address
non-repairable items or consumable spare parts. The latter is refereed those parts
which leave the system permanently after satisfying demand. He drives a number
of curves by which the optimal final order quantity for a given service level can
be obtained. He considers an exponentially decreasing demand pattern and applies a
normal approximation to derive expression for several service levels. In another study,
Hill et al.|[1999] address the problem of determining stock replacement policies to meet
the demand for spare parts in the final phase of service life cycle. The authors solve
this problem under assumptions that the number of items still in use is decreasing
and the parts fail randomly according to a Poisson process with an underlying rate
decreasing exponentially. They use the dynamic programming approach in continuous
time to derive optimal policies which minimize the mean total discounted cost of set-
up order, production, unsatisfied demand, and left spare parts over the final phase.
In fact, they propose a newsvendor approach to determine the optimal replenishment

size if there is only one option to place a final order.
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Another remarkable paper in this approach is given by Van Kooten and Tan| [2009).
They consider a final ordering situation for a single spare part that does not interact
with other parts, specifically taking the effect of condemnation into account. They
model the problem under a continuous-time Markov chain which the failures of a
spare part occur due to a Poisson process and the repair lead times are distributed
exponentially. A defective spare part is immediately attempted to be repaired upon
its arrival to a repair shop. After designing the model as a transient Markov chain,
they define the actual service level that the customers receive and also calculate the
first and second moment of the time until absorption. Accordingly, a final order
size is obtained that guarantees a certain service level during the final phase. They
compare the final order quantity that are obtained by the Markovian model and
the approximated model on the other hand, and the optimal one which is obtained
through simulation. They observe that in most cases the Markovian results are close
to the simulation ones. They apply this methodology for a manufacturer of complex
technological machines in the Netherlands.

Inderfurth and Mukherjee [2008] develop another service-driven approach. They
consider three options to satisfy demand in the final phase of life cycle or as they call
post product life cycle period. They assume the option of setting up a single large
order within the final lot of regular production, performing extra production runs until
the end of service and using remanufacturing to gain spare parts from used products.
Obtaining the optimal combination of these three options is the main challenge of this
paper. To overcome this difficulty, they use the decision tree and stochastic dynamic
programming methods simultaneously and propose a heuristic method. The decision
tree approach is a suitable tool in the case of limited size, while their heuristic method
reduces the problem’s complexity to a simple two-parameter order-up-to policy.

There are other papers indirectly related to the service-driven approach. Indeed,

they address production planning and control of remanufacturing products. They
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suggest the idea that returned items may be provided as spare parts for the original
equipment manufacturers (OEMs). One of these papers which considers the reman-
ufacturing or recycling returned items is [Souza et al. [2002]. As reported in the
paper, remanufacturing has been characterized as ”... an industrial process in which
worn-out products are restored to like-new condition. Through a series of industrial
processes in a factory environment, a discarded product is completely disassembled.
Useable parts are cleaned, refurbished, and put into inventory. Then the new product
is reassembled from the old and, where necessary, new parts to produce a fully equiv-
alent -and sometimes superior- in performance and expected lifetime to the original
new product”. |Lund| [1983] develops an analytical model to maximize profits and
minimize average flow time and as-well-as a simulation method. In particular, his

model is a decision support tool for a manager to make decision for mixed products.

2.3 Cost-Driven Approach

A cost-driven approach gives a monetary value to different service-related operations,
and then adopts to a policy to minimize the total cost. In other words, all the
costs associated with serving customer during the final phase of spare parts, holding
inventory, scrapping spare parts, procurement cots, etc. are taken into account. The
purpose is to find an optimal final order quantity which will minimize the total cost.
Basically, a cost-driven approach decides on the quantity purchased by weighting the
cost of ordering too many against the cost of buying too few, or in other words,
a newsvendor type approach. Research on the cost-driven approach is much more
extensive than the previous approach. There are other classifications inside of this
category, like product’s type, merely consumable and capital, or the sourcing options
to satisfy the demand.

Over this category of research, the most pertinent to ours is Fortuin and Martin
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[1999]. They discuss extensively how to control the service parts in the final phase
of the product’s life cycle. They start by emphasizing the service parts importance
in the maintenance of industrial systems and consumer products. Continuing that
the control of service parts is a complex matter due to the difficulty of forecasting
the demand and logistic of service parts. They try to answer the main questions of
managing service parts, such as which items are needed as service parts? which service
parts have to be stocked? when do we need to (re)order? how much do we need to
(re)order?. They give some suggestion, from a management point of view, to answer
the questions, however, they admit that to answer those questions mathematically
is not easy. In the paper, Teunter and Haneveld| [1998] address the final order for
the spare parts of an expansive machine. This machine contains a number of the so-
called critical components. A failure of such a component causes the machine to break
down. During the first part of life cycle of the machine, before the service contact
expires, spare parts can be bought at any time, while after this time the supplier
offers the customer a final chance to order spare components. That is the customer is
allowed to place one final order. Their purpose in this paper is to minimize the total
expected discounted costs including holding costs, procurement costs and out-of-order
costs in case of a shortage. They assume that the customer is arriving according to
a Poisson process. They show that a multi-component final order problem can be
approximately decomposed into single component final order problem. After that,
they derive a simple optimality condition for calculating optimal final order. To
implement their approach, they use a real life example, a company which sells Gas
Turbines, Reciprocation Compressors and Centrifugal Compressors and this company
allows their customers to place one final order when it stops supplying spare parts.
Another cost-driven approach is developed by |Teunter and Fortuin [1998]. In
this paper, they introduce Philips company and its productions. The service period

depends on the type of product involved in this company. Like other companies, the
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main problem of Philips to meet the demand at this period is the long duration of
service period in comparison to the production period. In this paper, for the first
time, they introduce the terminology of end-of-life period and define as the part of
the service period after the product has been taken out of production. In Philips,
Logistics Operations Philips Consumer Service (LOPCS) is in charge of supplying
the spare parts. According to the company, the products are classified into two
types: professional and non-professional which the first one is refereed to the most
expensive equipments while the second one indicates that the equipment is sold, for
the larger part, to private customers. They apply their method to find a near optimal
final order in a cost minimization problem for the non-professional equipments in
Philips. Actually, this paper is a case-study of their previous paper to understand
how successful this method is in reality as well. To predict the demand distribution,
in this paper, they develop a method based on the demand history of a component at
the moment of final ordering. Then, using the expected cost calculations, the optimal
shortage probability, i.e. the optimal probability the final order is smaller then the
EOL demand, is been calculating and they give three examples to depict the accuracy
of their method.

Next, Teunter and Fortuin [1999] consider two types of policies in the end-of-life
period, the so-called simple and remove policies. A simple policy places a final order
at the beginning of the end-of-life period and removes all remaining stock at the end.
A remove policy adds the feature of a remove-down-to levels at the end of each month.
These levels are used to reduce cost by removing stock before all the service contracts
have expired. Their purpose is finding optimal and close to optimal final orders using
a minimal cost approach. Given the production, holding, removing and shortage
cost parameters, by applying a dynamic programming technique, they try to find
those order quantities. They seek the final orders that minimize the accumulate cost

functions over the entire EOL by considering a discounted cost criteria. In sensitivity



12 CHAPTER 2. LITERATURE REVIEW

analysis section, they show that in all cases the expected discounted cost associated
with the optimal remove strategy is at most the cost associated with the optimal
simple strategy. They contribute also that the simple policy suffices since it has low
administration cost.

Besides these authors, Teunter and Haneveld| [2002] consider an appliance man-
ufacturer’s problem of controlling the inventory of a service part in the final phase.
They assume that if the part is not ordered at the beginning of the final phase, its
price will be higher in the later stages. They propose an ordering policy consisting of
an initial order-up to level at time zero like the beginning of the final phase, and a
subsequent series of decreasing order-up-to levels for various intervals of the planning
horizon. Also, |Cattani and Souzal [2003] develop another cost-driven approach that
studies the effect of delaying a last-time buy. In fact, if the decision can be delayed,
the expected overage and underage costs can be reduced. They build a model to
understand the relation. Their results provide an insight on the effect of the final
order quantity under various scenarios of demand. They observe that benefits of a
delay to the manufacturer of last time buy are non-decreasing and concave in the
delay time. A longer delay is always as good as or better than a shorter delay. They
illustrate that it is necessary for the manufacturer to compensate the supplier for the
losses incurred!

Bradley and Guerrero| [2008] address the life-cycle mismatch problem when the life
cycles of parts end before the life cycles of the products in which those parts are used.
Their contribution in this paper is to extend the research on the life-time buys to
the more complex and realistic circumstance with one product having multiple parts
that become obsolete over its lifetime. They prove the existence and uniqueness of
the optimal solution for this problem and drive an implicit analytical solution. They
claim that there is not any closed-form expression for the optimal solution and instead

they drive simple closed-form heuristic policies which one of them is lower bound and
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the other is upper bound on the optimal solution. They evaluate the accuracy of
the heuristic performances by using simulation of demand behavior while observing
which heuristics perform best in different scenarios. Indeed, they develop an accurate
metastatic by observing the heuristics performances. Managerially, they find out
that while lifetime buys can be an effective tactic for sequential obsolete parts when
demand is stationary, their effectiveness is greatly diminished in some scenarios with
non-stationary life cycle demand patterns.

In more recent works, Inderfurth and Kleber| [2013] address multiple-options like
extra production and re-manufacturing to meet the demand during the final phase,
however, this problem yields a complicated stochastic dynamic decision. They suggest
a heuristic procedure for parameter determination which accounts the main stochastic
and dynamic interactions in decision making. They develop two steps to build their
heuristic models: firstly they select a simple policy for period-period decision making
and secondly they propose a heuristic procure to determine all policy parameters such
that they are close-optimal. They apply their method on an automotive sector.

Leifker et al.| [2014] investigate a contract extension on a regular strategy to meet
the demand during the final phase, while the advantages and disadvantages of this
decision need to be considered by both parties: the customer and supplier. As a
result, the company should answer these two questions: under which conditions will
both the manufacturer and customer prefer a contract extension? and what is the
value of extending the contact? They assume that there is a probability that the
customer may request a contract extension at the end of the contract period and this
probability depends on the number of active products in operations at the end of the
initial contract period. They also consider some other assumptions to construct their
model, the manufacturer knows how many units of the products are in operation at
any time, the length of any potential contract extension is known at the beginning

and the period under examination by the end-of-life problem does not necessarily
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end with the manufacturers required to supply replacement parts. They examine two
potential models for solving the problem: a dynamic programming model in which the
possibility of salvage is taken into account and a simple two-stage stochastic model in
which salvage is not allowed. They investigate their models from managerial insights
and explain that the two-stage algorithm for the final order quantity is a useful tool
for the managers in increasing their profits in the case where the possibility of contract
extension occurs. An increase in the initial contract life results in an increase in the
optimal order quantity as well as a corresponding decrease in the expected profit.

Another study is by Behfard et al. [2015], they develop a heuristic method to find
the near-optimal last time buy quantity in presence of an imperfect repair option
of the failed parts that can be returned from the filed. The supplier is for advanced
capital goods, for instance, mainframe computer systems, aircraft, chemical plans and
medical systems, they collaborate with two industrial partners (computer machinery
and printing machines). To construct their model, they make trade-offs between one
alternative supply option, namely repair of the filed parts that are returned from the
filed. Since stochastic dynamic programming can not solve the large scale problems
efficiently, they propose an efficient heuristic method assuming a base stock policy for
the repair decisions. A numerical experiment to test the performance in terms the
accuracy of the method is given and according to their results, alternative policy is
worth considering even if it is expensive and also they indicate that reduction of the
demand variability significantly reduces the last time buy quantity.

As mentioned before, there are some papers in this section which indirectly are
related to the cost-driven approach. Most of them take other aspects of service
management into account. A short summary of those are given to understand the
importance of this field.

As [Iskandar and Murthy| [2003] define "a warranty is a contractual agreement

between the manufacturer and customer, which requires the manufacturer to rectify
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all item failures either through repair or replacement should failure occur within the
period specified in the warranty. Warranty serves a dual role it protects the buyer
from being sold defective items and at the same time, restricts unreasonable claims
on the manufacture by buyers. Over the last few years, manufacturers have used
warranty as an effective advertising tool to promote their product.” There are two
types of warranty: one - and two- dimensional policies. A one-dimensional warranty
policy is characterized by a one-dimensional time line called the warranty period,
while two-dimensional warranty policy is indicated by a region in a two-dimensional
plane with one dimension representing time and the other representing usage. The
origin time corresponds to the time of a sale. A typical example is an automobile
warrantied for three years or 100,000 kilometers for travel. In this paper, they consider
the repair-replacement strategies for products sold with two-dimensional failure free
warranty policies. Under this policy, the manufacturer may either repair the failed
item or replace it with a new one. Their strategy divides the warranty region into
two sub-regains and they study for every sub regions, different repair-replacment
strategies by assuming a constant cost to repair failed item over the warranty region.

Another paper, Atasu and Cetinkaya| [2006] focus on the reverse supply chain
process used for product returns to recover value by re-processing them via re-
manufacturing operations. They try to develop analytical models for the efficient
use of the returns in making production, inventory, and re-manufacturing decisions
during the active market, which refers to the sale’s period of the product. This model
considers a stylistic setting where a collector collects used product returns and ships
them to the manufacturer who, in turn, recovers value by re-manufacturing and sup-
plies products. They investigate the impact of timing and quality of the collector
shipments of used product returns. They indicate that the fasted reverse supply
chain many not always be the most efficient one.

Samatli-Pag and Taner [2009] study and investigate different repair strategies for
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one- and two-denominational warranties with the objective of minimizing manufacture
expected warranty cost. They propose static, improved and dynamic repair strategies.
Actually, the quaso-renewal processes are used to model the product failures along
with the associated repair actions. It is worth reminding that a two-dimensional
warranty is a natural extension where the warranty period is characterized by a
region defined simultaneously by time and usage. And the quasi-renewal process is
characterized by a scaling parameter that alters the random variable corresponding
to time until next failure after each renewal. They generalize the univariate quasi-
renewal process to multivariate distributions to model two-dimensional warranties on
a cost warranty function. They draw a conclusion that according to the computation
results the dynamic policy generally outperforms both static and improved policies
on highly reliable products whereas the improved policy is the best for products with
the low reliability.

Kleber et al.| [2012] propose a buy-back broken products strategy in order to
improve control of both the demand for spare parts and supply of recoverable parts.
This strategy specifically target dysfunctional products. They introduce a dynamic
approach and consider a strategy which includes re-manufacturing complemented by a
final order as a benchmark in their work. A numerical example is given to compare the
potential gains of both strategies and it shows that both strategies can be beneficial
for the OEM. This paper is the first attempt to investigate the value of buying back

for the broken products for spare parts management.

2.4 Forecasting Based Approach

Forecasting-based approach focuses on forecasting the demand for a discontinued
service part instead of dealing with the production or inventory cost. The major aim

of this area is to provide the probabilistic tools to estimate the customer demand in
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the final phase of spare parts to meet the demand.

The approach was first developed by [Moore Jr| [1971] who tries to forecast the
demand for the past-model replacement parts during the life-cycle of the products.
For controlling manufacturing, inventory and obsolescence costs of past-model re-
placement parts (he calls the spare parts as past-model parts), all-time requirements
forecasting is suggested. He introduces a new forecasting technique based on the
principle of estimating sales requirements for all-time into the future along with a
dynamic inventory model to meet the demand during the final phase. He also intro-
duces the concept of an all-time requirement, i.e., the cumulative demand for a part
from the present for all time into the future, in the development of generating long
range forecasts of replacement part demand, then he transforms these foretastes into
manufacturing schedules by using a dynamic inventory model. His idea to forecast
the demand after the first peak demand is a transformation of sales data from an
arithmetic scale to a logarithmic scale. He obtains the year of peak demand accord-
ing to the actual annual sales data, then for parts which indicate sales decay, a plot
of sale after the peak year against the index number of the year of those sales is ob-
tained on a fully logarithmic scale. Consecutively, he determines the ellipse, parabola
and starlight line which fit best the transformed sales data. Finally, he transforms
the curve from the logarithmic to an arithmetic sale to provide yearly sales forecasts.
For implementation, he applies his technique to an American auto manufacture, and
shows that for 100 complete parts histories, the average error in cumulative demand
estimates for the last four years of sales activity is less than 6 percent of the actual
sales.

Following Moore Jr [1971], |[Ritchie and Wilcox! [1977] try to forecast the spare
demand, this time, by using the renewal theory. They claim that there must be a
relationship between machine sales and demand for spare parts of the machine. They

find out that if one part is less essential to the functioning of a machine the quicker
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demand for it declines. They use these arguments to count the number of effective
machines in a month, i.e. those machines which give rise to a demand for spares.
Then, they estimate the expected demand for spares in month n by two parameters,
one is the rate at which a component fails per unit time per machine, and the other is
the effective machine numbers per month. As they indicate in the conclusion section,
the main drawback of this method is the computational burden to determine the
model parameters for each item and the costs of providing and updating the records
needed for this purpose. [Solomon et al.| [2000] address a methodology to forecast life
cycles of an electronic part in which both years of obsolescence and life cycle stages are
predictable. This methodology embeds both market and technology factors according
to the dynamic assessment of the sales data. This paper also introduces a new concept
as the life cycle mismatch problem for the first time, which is defined as a lack of
synchronization between the part and product life cycles.

One of the more mathematical and technical papers of this category is Tida| [2002].
In this paper, he considers a non-stationary periodic dynamic production-inventory
model with an uncertain production capacity and uncertain demand. The production
capacity varies stochastically according to the uncertainties in the production process,
for instance, unexpected breakdowns and unplanned maintenance. To minimize the
total discounted expected costs, he obtains the upper and lower bounds on optimal
policies for infinite horizon problems which are derived by considering some finite
horizon problems.

Hong et al.| [2008] estimate and forecast the demand for a service part on the
final phase by considering three factors: the failure rate of a part, the replacement
of a failed part and the number of the units of a product population which are
operational during the final phase. They estimate the demand by using these factors
in a stochastic model. They give the prediction interval of the number of effective part

demand, as well as the expected value of the part demand, and closed-from solutions
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in the case of a constant failure rate are provided. Their numerical results show the
capabilities of their approach in comparison with the Ritchie-Wilcox model.

Most recent paper in this topic is Kim et al.| [2017]. In this research, they try to
forecast the spare part demand for the consumer goods using the so-called installed
base of the product, that is, the number of products still in use. This type of in-
formation is retentively easily available in the case of maintenance contracts. They
propose a set of installed base concepts with associated simple empirical forecasting

mythologies that can be applied in practice.
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Table 2.1: Overview of the existing literature on the end-of-life inventory
management

Approach
Literature cost-driven service-driven forecasting other
Moore Jr| [1971] A
Ritchie and Wilcox! [1977] 7
Fortuin, [1980 il
Fortuin| [1981 vl
Lund| [1983] ¢
Teunter and Haneveld []1998|] vl
Teunter and Fortuin 1998 v
Teunter and Fortuin 1999 il
Hill et al.| [1999) ¢
Fortuin and Martin| ﬂ1999ﬂ il
Solomon et al.| |]2000|] il
Souza et al. [2002)] il
Teunter and Haneveld| []2002" il
Tidal [2002] 4
Cattani and Souzal [2003)] il
Iskandar and Murthy| [2003 il
Atasu and Cetinkaya [2006 Vil
Bradley and Guerrero| [2008] il
Hong et al.| [2008] o
Inderfurth and Mukherjee| [|2008|] il
Samatli-Pag and Taner| [2009)] o
Van Kooten and Tan| [2009] vl
Bradley and Guerrerol || ¢
Van Kooten and Tan/ [2009) il
Pourakbar et al. [2012 i
Kleber et al.| 2012 il
Leifker et al. [2012 vl
Inderfurth and Kleberl []2013" il
Leifker et al.| [2014 it
Leifker et al. [2014 il
Behfard et al. [2015] g
Kim et al. [2017 A




Chapter 3

The End-of-Life Inventory Problem

In this chapter we introduce the end-of-life inventory problem of a consumer electron-
ics manufacturer as discussed in (Pourakbar et al.|[2012]) . In the first section we
give a description of the problem under the repair-replacement and alternative poli-
cies, and we introduce all costs which the manufacturer incurs over the final phase.
In the second section a detailed derivation of the objective function and the corre-
sponding optimization problem are provided. In the same section we also derive some

additional useful properties for the analysis of this problem in the following chapters.

21
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3.1 Introduction

In the end-of-life inventory problem, the defective products arrive according to a
Poisson point process to a repair or replacement. To introduce this arrival process
let (2, H,P) be a probability space hosting the point process (T}, R;)ien. The random
variable T}, i € N denotes the arrival time of the ¢th customer having a defective

product and requesting repair. The counting process of defective products N =

{N(t) : t = 0} defined by

0

N(t) := ZH Lin<y, 20, (3.1)

is assumed to be a non-homogeneous Poisson process with a bounded Borel arrival
intensity function A. The random variables R;, 7 € N, on the other hand, are indepen-
dent and identically distributed Bernoulli random variables indicating the condition

of the defective items. They are defined as

1 if i’th product can be repaired
R; = (3.2)

0 if i"th product cannot be repaired

with probability ¢ € [0, 1] of being one. The thinned arrival processes

e} e}
No(t):=>, (1= R)limay  and  Ni(t):=) = Riliney, (3.3)

count the number of non-repairable and repairable products over time and it is well
known |Cinlar| [2011] that the arrival processes Ny and N; are independent non-
homogeneous Poisson processes having intensity functions A\g = (1 — ¢)A, Ay = ¢A
respectively. In the sequel, we let F = (F;);=0 S H denote the filtration of the point
process (T;, R;)ien; that is, the flow of information associated with both the arrival

times of the products and their conditions. Next to the arrival process of defective



23 CHAPTER 3. THE END-OF-LIFE INVENTORY PROBLEM

products let T denote the time at which all service obligations with respect to this
product of the supplier expires, and = € Z, = {0,1,2,...} be the initial inventory
level available at the repair facility. It is assumed that keeping inventory is costly
and so we incur inventory holding cost of h > 0 per spare part per unit of time. At
the same time, we use in our model both the total cost and the net present value ap-
proach with discount rate § > 0. At time zero we need to order an inventory of spare
parts and the cost of obtaining/producing the final batch of spare parts is given by a
so-called procurement cost function ¢ : Z, — R,. It is assumed that the function ¢
is non-decreasing and satisfies ¢(0) = 0 and lim,_,o ¢(z) = co. Starting with = units,
the supplier uses the repair-replacement policy until some (possibly random) time
7 < T. In the most general case 7 is a stopping time with respect to the filtration F.
The set of all bounded stopping times with respect to this filtration is also denoted
by F.

Under the considered policy, if an arriving item is repairable, it is repaired at
some repair cost ¢, plus some service cost cs. If the item is non-repairable and
the inventory level of spare parts is non-zero, the item is replaced with a spare one
from the inventory at service cost cs only. However, if no spare part is available in
inventory, then the defective item is replaced using an alternative policy and the cost
of this alternative policy is given by the function ¢,. An example of an alternative
policy is the possibility to replace the defective item by a substitutable product. If
this happens at time u the total cost is given by ¢,(u) plus some additional penalty
cost p(u). This penalty cost is added to penalize the nonavailability of a spare part
during the repair replacement policy. In practice the penalty cost can for example
represent the additional cost of an emergency order for this substitutable product to
be transported from a different location. Due to the availability of an alternative pol-
icy with known cost function ¢, during the operation interval [0, 7], it might become

more cost effective to abandon the repair-replacement policy at a certain moment in
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time and start using from that moment on the alternative policy. Due to this, we
incorporate the possibility that at a (possibly stochastic) time 7 < T, the supplier
completely switches to the alternative policy and discards the existing inventory (if
there is any) at a scrapping cost of ¢ per item. If a service request arrives at time
u after the switching time 7, then the alternative policy is used at cost ¢,(u). Here,
the functions ¢, and p are both non-increasing. Namely, the alternative method (e.g.,
a substitutable product) as well as the penalty associated with unscheduled use of it
become cheaper over time. Unless stated otherwise this condition will always hold in
this thesis.

For ease of notation, we denote the total cost of applying the alternative policy

before the switching time as

A\%
o

Cap(1) = co(u) + p(u), u (3.4)

In the above model, a final order order quantity of size x of spare parts and even-
tually switching at time 7 < T' to an alternative policy are decisions to be determined
by the decision maker. Such a policy is called an (x, 7)-policy. Clearly, the first vari-
able z is static, and its value is determined at time zero. The switching decision, on
the other hand, can be dynamic, and in the general formulation of the problem 7 is a
stopping time of the filtration IF. The set of all these stopping times is also denoted
by F.

In our formulation, only the scrapping cost can be negative, all other cost terms
are positive. If there is a net revenue associated with scrapped parts, we have c,.. < 0,
otherwise it is non-negative. To avoid pathological cases where ordering is profitable
because of scrapping, we assume that the function x — c(z) — ¢« is increasing
where

Cop := —min{cye, 0} (3.5)

scr
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and the limit value as x — oo is infinity. Also for the scrapping action to be econom-
ically justifiable, we must have h — dc,., > 0. If this condition fails to hold, instead
of scrapping an item at some time 7, we can keep it indefinitely in the inventory at
a total cost of h{* e %"du = (h/§)e~°" which would be less than c,..e°". Since the
actions repair or replacement by an non-defective spare part from inventory within
the repair-replacement policy cost at least ¢, it is natural to assume that the penalty
cost of using the alternative policy within the repair-replacement period has also at
least at cost of cs. This means by the positive cost of the alternative policy that
Cap(w) > ¢4 for every 0 < u < T. These three conditions on the cost functions and
the parameters always hold in this study unless stated otherwise.

In the next table we list for completeness the main cost components of the end-

of-life problem.

Table 3.1: Notation summary

Notation Definition

c(.) Procurement cost function

ca(.) Cost function of using the alternative policy

p(.) Penalty cost function of using alternative policy before switching time 7
Cap(.) Cost function ¢,(.) + p(.) of using alternative policy before switching time 7
h Holding cost per item per unit of time

Cse Service cost per item

Cre Repair cost per repairable item

Cser Scrapping cost per item

) Discount rate of net present value

q Repair probability of a defective product

3.2 The Objective Function For (z,7) Policies

In this section we derive the expected discounted cost of any (z,7)-policy, © € Z,
7 € F and introduce the optimization problem to be solved. To make it easier to the

reader to distinguish the different cost components and the structure of a (x, 7)-policy
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we list in Figure the timing of the different actions and their costs. In this figure
the random variable o, denotes the (random) time of inventory depletion in case we

order z spare parts at time 0. This is given by the stopping time

o, = inf{t > 0: Ny(t) > z}. (3.6)

As shown in the figure, the total expected discounted cost is the sum of the pro-
curement cost and expected discounted operation costs. The procurement cost of
ordering a final batch of x spare parts at time 0 is given by c(x). The expected
discounted operation costs, of any (z,7)-policy, on the other hand, consist of the

following components:

Service and repair costs
for repairable parts and
Holding, alternative policy and

service and penalty costs for non- Altgrnative
repair costs repairable parts policy cost
Cost of E E Cost of scrapping E
purchasing I : the remaining |
I i stock !
¥ ¥ ¥
) A A
L Y
=: H X :
0 a. T T
L - N ‘l’ I
Repair-replacement policy Alternative policy
purchasing x Switching time to End of planning
units and alternative policy period
Start of the end-
of-life phase

Figure 3.1: Decisions and costs over the time line.

e Inventory holding costs: As shown in Figure [3.1] we switch to the alternative
policy at time 7 < T and scrap at that time (possibly) leftover inventory of spare

parts. Hence it is clear that the random discounted inventory holding costs are
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given by

h JO =5z — No(u))*du (3.7)

with (z)* := max(z,0). This shows that the expected discounted holding costs

equal

hE U e~y — No(u))+du> | (3.8)

0

Service costs: As shown in Figure [3.1] the service costs consist of service costs
for both repairable and non-repairable products. For repairable products service
costs only occur during the repair-replacement phase from time 0 to time 7 in
any (z,7)-policy. For non-repairable products service costs additionally only
occur if at the time of arrival of a defective product the stock of spare parts is
positive. Hence for these non-repairable products these service costs only occur

from time 0 to time 7 A o, with
T A 0y :=min{7,0,} (3.9)

and o, given in relation (3.6). This shows that the random discounted service

costs are given by

TAOL

csef e AN, (u) + Cse J e’éudNo(u).
0 0

Since it is well know for any bounded Borel measurable function k that the

stochastic processes M; = {M;(t) : t = 0},i = 0,1 given by

M;(t) = J E(u)dN;(u) — J k(u)\i(u)du

0 0

are F-martingales (Cinlar| [2011]) and 7 < T is a bounded stopping time it

follows by Doob’s stopping theorem (Cinlar|{[2011]) that the expected discounted
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service costs equal

cse B (Sg e %\ (u)d ) + c..E (STMI —ou )\ )du)
(3.10)

= qcsE (§) e AMu)du) + (1 = q)esE (§,77 e Au)du) .

Repair costs: As shown in Figure we only incur repair costs during the
repair-replacement phase from time 0 to time 7. Hence the random discounted

repair costs are given by

Cre JT e dN, (u). (3.11)

0
By a similar martingale argument as used for the service cost case and applying

Doob’s stopping theorem, the expected discounted repair costs equal

creE (L 6_5“/\1(u)du> = qc, E ( L ' e_‘suA(u)du> : (3.12)

Alternative policy costs: Asshown in Figure[3.I]the random discounted costs
of applying the alternative policy consist of the cost of applying the alternative
policy before time 7 due to the nonavailability of spare parts before the switching
time 7 and the cost of applying the alternative policy after the switching time.

Hence the random discounted cost of using the alternative policy are given by

JT e " Cap(u)dNo(u) + JTe‘S“ca(u)dN(u). (3.13)

TAOg T

Again by a similar martingale argument as used for the service costs, apply-
ing Doob’s stopping theorem, and using cq,(u) = c,(u) + p(u), the expected

discounted costs of the alternative policy equal

(1—qE (SZMI e_‘sucap(u))\(u)du) +]E(§ u. (u))\(u)du)
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(1 QE(§] e eup (A (u)du) — (1= ) (557 &y (u) A(u)dur)

| E (STT e_‘;“ca(u))\(u)du)

fo e calwA(w)du + E (57 e ([(1 = q)p(u) — gea(w) M (uw)du)
= < (3.14)

—(1=q)E (§,"7 e™cap(u)M(u)du) .

e Scrapping costs: As shown in Figure the random discounted scrapping

costs at time 7 are given by
Coere T (x — No(1)) 7.
This shows that the expected discounted scrapping costs in a (x, 7) policy equal

Coer (e 70T (2 — No(1))1). (3.15)

Adding up the separate operation cost components in relations (3.8)), (3.10)),
(3.12),(3.14) and (3.15]) the expected discounted operation cost C(z,7) of any (z, 7)-

policy is given by
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r TLE ( L ' e Uz — No(u))eru)J + i]CTeE ( L ' eauA(u)du)

N~ "

expected holding cost expected repair cost

+qcs E (j e_éuA(u)du) + (1 — @) E (J “ 6_5“)\(u)du>
0 0

Y
expected service cost

+(1—g)E U eaucap(u))\(u)du> IE ( f ' eﬁuca(u)A(u)du)

TAOyg T

Cz,7T) =<

~
expected alternative policy cost

+eserE(e T (@ — No(7))")

~
L expected scrapping cost

(3.16)
This implies using relation (3.14)) that

-

WE(S;

T e (@ — No(u) du + cooB(e7 (2 — No(1)))

Clr,7) = +E (§5 e [alcre + s — ca(w)) + (1 = @)p(w)] A (u)du)

+(1 = )E (§,77 e Au)[cse — Cap(u)]du) + Sg e %%y (u)A(u)du.
(3.17)

\

To rewrite the expression in relation (3.17)) in a more suitable form we first observe

by the chain rule for the stochastic process t — e % (z — Ny(t)) that
e (@ = No(r))" = ez — No(T A 02))
= z—6§"" ez — No(u))du — {7 e="dNy(u)  (3.18)
= r— 550 e %% (z — No(u STMI e "dNo(u).

This implies by Doob’s stopping theorem

(e~ (2 — No(r))*) = 2 — OF <L e~y — No(u))+du> (- qE <LU e_M)\(u)du) |
(3.19)
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Replacing now the expectation for the scrapping value in (3.16]) with the expression
in (3.19)), we obtain after some simple re-arrangement of the terms the following more

suitable alternative representation of the expected discounted operation costs

Cser® + (1= Q)E (§7777 e 72U Au) [Coe — Coor — Cap(u)]du)

Clz,7) =4 +E (5o e Mu)[g(cse + cre — calw)) + (1 — @)p(u)]du) (3.20)

| H(h = Gcar)E () €0 (x — No(w)")du) + §i e 2“A(u)cq(u)du.

Together with the procurement cost component, the optimization problem associated

with the end-of-life inventory problem is therefore given by

v(Pr) = infoez, rero<r<ric(z) + C(z, 7)}, (Pr)

and one needs to find a (z,7)-policy, if it exists, attaining the infimum above. Note
by relation (3.17)) or (3.20)) that

T
C(0,0) = J e () o (1) du
0
and this is the cost of the policy of not ordering and at time 0 immediately applying
the alternative policy. Since the cost SOT e %%, (u)M(u)du in relation 1) of this

policy is independent of x and 7 one can also solve the optimization problem

U(ﬁw) = ianIEZ+,TG]F,0<T<T{C(w> + 5($7 7')} (PJF)

with
C(x,7) = C(z,7) — f e (1) cq (u)du. (3.21)

0
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This means using relation (3.20]) that the objective function is given by

[ o+ (1= QB (577 e Aw) e — cuer — can(u)]du)

Cle,7) = § +E (55 e "Nw)a(cse + cre = ca()) + (1= @p(u)]du) — (3.22)

+(h = bcser)E (§; €7 (z — No(u))Tdu) .

Also it is obvious that

T

o(Pe) = v(By) + fo =5 (u) o (1) . (3.23)

Note by using C' as our operation cost function we actually measure the difference in
cost between any (z, 7)-policy and the policy of not ordering and using immediately
at time 0 the alternative policy. In the next chapter we will also consider (x,7 A o)
policies with

T A 0y i=min{T, o,}. (3.24)

It is well known that this is also a stopping time with respect to the filtration F. This
means we consider the subclass of policies where we switch to the alternative policy
at the stopping time 7 or at the time the inventory level hits 0 whichever occurs
first. This class of policies is considered since under these policies we will never incur
the (possibly high) penalty costs of using the alternative policy during the repair-
replacement phase. Before writing down an expression for the objective function for

this class of policies we observe that for any stopping time 7 € F

JT e 9 (z — No(u))*du = JU e 9 (x — No(u))*du.

0 0
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This shows

E (J e~y — No(u))+du> _E (J e~y — No(u))+du> | (3.25)

0 0

Also it is easy to check that
e (x — No(1))* = e %) (& — No(7 A 0,))*

and so

E(e™ (z — No(r))*) = E(e™7%) (z — No(7 A 0,))*). (3.26)

Replacing now 7 by 7 A 0, in relation (3.17) and applying relations (3.25) and

(3.26) we obtain for every 7 € F

E (§; e (x — No(uw))Tdu) + ¢y E(e™7(z — No(7))™)

Clr,7Anop) =4 +E (507 e Mu)[coe + qere — ca(u)]du) (3.27)

+ SOT e U\ (u)c, (u)du.

\

An alternative expression for C'(x, T A 0,) applying relation (3.20]) and replacing 7 by

T A 0, is given by
Cor + (1= QE(57 7 € A (u)[se — Coor — Caplu)]du
Clo.maoa) = 4 +E(" e Mu)lglcse + cre — calw)) + (1 = @)p(u)]du

+(h = coer)E (§7 7 (x — No(u))*)du) + §o e 0 Mu)eq(u)du

Csert + (1 —q)E STM“” e U\ (w)[cse + qcre — (1 — q)Coer — co(u)]du

+(h = bcser)E (§ €7 (x — No(uw))Tdu) + Sg e U \(u)cq(u)du
(3.28)
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Hence, if we like to determine the optimal policy among all (x,7 A 0,)-policies, we

need to solve the optimization problem

U(P]F/\O') = infer+,TeF,O<T<T{C(x) + C(LE, TN Ux)} (PIF/\0>

As for the previous problem we rescale the above optimization problem using relation

(3.21)) and so we need to solve the equivalent optimization problem

’U(ﬁ]F/\O') = inf:):eZ+,TeIF,0<T<T{C(x) + CN’(:L'? T A Ux)} (P]F/\O')

Again we obtain as before

T

W(Pers) = 0(Bens) + L e () (1) . (3.29)

To compare the expressions for C(z,7 A 0,) and C(x,7) it follows replacing 7 by

T A 0, in relation (3.17) that

T

Clz,7)—C(x, T AO,) = EJ 6_5“)\(11) [q(Cse + Cre — ca(u)) + (1 —q)p(u)]du (3.30)

TANOgx

Hence in case

Q(cse + Cre — ca(u)) + (1 - Q)p(u) = 0

for every 0 < uw < T there exists an optimal solution of optimization problem (|Pg
among the set of policies 7 A 0., 7€ F and x € Z,. Observe the integral in relation
(3.30) can have a positive or negative value. To explain the formula in relation ({3.30))
we observe the following. If we apply the repair-replacement policy until time 7
instead of time 7 A o, we will still have the repair option within the time interval
[T A 04, 7| and we need to pay for any item arriving at u on average the cost g(c,e +

cse) + (1 — @)cap(u). In case we already started with the alternative policy at time
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T A 0, we need to pay for any arriving item at time u the cost ¢,(u) and this explains
the formula in relation (3.30)).
Since it is also clear that in some pathological cases we will not order anything

due to the low cost of the alternative policy at time 0 we mention the following result.

Lemma 1. If ¢,,(0) < cs + ¢,

scr

with cg,,. listed in relation then it 1is optimal not
to order in optimization problem . If this holds then the optimal switching time
Th, belongs to D, the set of deterministic stopping times in [0, T], and is a solution

of the optimization problem

inf,ep {JT e P Nu)[q(cre + cse — calu)) + (1 — q)p(u)]du} : (3.31)

0

Proof. To verify the result it is sufficient to show for every 7 € F that the function
x — c(x)+C(x,T) is non-decreasing. If ¢y, = 0 then by our assumption cq,(0) < cq.
Since the function c¢,, is non-increasing we obtain c¢,,(u) < ¢ for all u € [0,T"]. This
implies that the function z — E({7"7 e™“A(u)[cse — Cap(u)]du is non-decreasing in
z and we obtain by relation that for every 7 € F the function z — C(x,7)
is non-decreasing. Since the procurement cost function ¢ is by assumption also non-
decreasing we obtain that the function z — c(z) + C'(z, 7) is non-decreasing and we
have verified the monotonicity for cs.. = 0. If cs, < 0 we obtain by our assumption
and cqp, non-increasing that cqp,(u) < ¢se — s for every 0 < u < 7. This implies that
the function z — E(§)"7 e “A(u)[cse — Cser — Cap(u)]du is non-decreasing. Hence
by relation the function z — C(z,T) — ¢serx is also non-decreasing. Since for
Cser < 0 the function x +— ¢(x) + ¢sx is non-decreasing it follows by adding that the

function z — c(x) + C(x, 7) is non-decreasing. Hence we may conclude

o) =t {B ([ M@t + o o) + (0 = )}

0

Since the integrand in the above integral does not depend on the stopping time it
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follows easily that an optimal stopping time of the above optimization problem is

given by an deterministic stopping time and the result is shown. =

Since the cost of using the alternative policy is always positive it is obvious that
under the natural condition p(u) > ¢, the (sufficient) condition in Lemma 1| does not
hold. A similar result can be derived for optimization problem (Fr,,). Also in this
optimization problem it is clear that in some pathological cases we will not order due
to the low cost of the alternative policy at time 0. Using a similar proof as in Lemma

one can verify the following result.

Lemma 2. If ¢,(0) < ¢se + qcre + (1 — q)c,,, with ¢, listed in relation then it
18 optimal not to order in optimization problem and to start immediately at

time O with the alternative policy.

Proof. Tt is sufficient to show that the function z — c¢(x) + C(z,7 A 0,) is non-
decreasing. If ¢, = 0 then ¢,(0) < ¢4 + qcre . Since ¢, is non-increasing it follows
that ¢,(u) < s + qcre for every 0 < uw < T. This shows that the function z —
E {577 e 2Nu)[cse +qCre—ca(u)]du is non-decreasing and by relation it follows
for every 7 € F that the function z — C(z,7 A 0,) is non-decreasing. Since by
assumption ¢ is non-decreasing, the function x — c(z)+C(z, 7 A 0,) is non-decreasing
and we have shown the result for ¢y = 0. If ¢4, < 0then ¢,(0) < et qCre— (1—q)Cser
and hence ¢,(u) < ¢se + qCre — (1 — q)Cser for every 0 < u < T'. This shows that the
function z — E § "7 e " A(u)[cse + qcre — (1 = @)Cser — Ca(u)]du is non-decreasing
Applying now relation yields © — C'(z, T A 0,) — ¢ser is nondecreasing. Since
x — ¢(x) + cserx is nondecreasing, we conclude that = — c(z) + C(z,7 A 0,) is

non-decreasing and we have shown the result for cg.. < 0. o

In the next section we investigate the global properties of the objective function.
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3.3 On the Global Behavior of the Objective Func-
tion

In this section we investigate under which sufficient conditions on the cost functions
and the parameters the objective functions x — ¢(x)+C(x, 7) and x — c(z)+C(x, T A
0,) are discrete convex for every 7 € F. This property is useful in solving optimization
problems or for some special subset of policies to be considered in the
next chapter. Before mentioning the next result observe a function f : Z, — R is

called discrete convex on Z, if its first order difference

Af(@) = fla+1) - fla), v € Ty

is a non-decreasing function on Z.. The function f is called discrete concave if the

function —f is discrete convex.

Lemma 3. If the Borel measurable function f is non-decreasing and non-positive on

[0,T), then for every T € F,0 <7 < T the function

v F(2) = E ( J o f(v)/\o(v)dv> (3.32)

0

s mon-increasing and discrete convex on Z, . If the function f is non-increasing and
non-negative on [0,T], then this function is non-decreasing and discrete concave on

Z.,.

Proof. 1t is sufficient to give the proof of the first result only. The second claim
follows replacing f by —f. Since f is non-positive it is obvious that the function F

is non-increasing. To show that the function F' is discrete convex, we note by Doob’s
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stopping theorem

B([ semae) == ([ o) =B (3, o0lnen)

0 0

Hence for every x € Z ., it follows
A F(z) == F(z + 1) — F(z) = E[f(0041) {0,412} ]- (3.33)

This shows using 0,41 < 0,40 implying 1, ., <s} = lfo,,.<-} and f non-decreasing

and non-positive on [0,T] and 7 < T that

f(o-$+1)1{Uz+1<T}' < f(acc+2)1{az+2<T}‘

This shows applying relation (3.33)) that for every = € Z..

AF(z) = E(f(0x+1)1{1{%+1<T}) < E(f(%w)l{l{%”sﬂ) = AF(x +1),

and we have verified the discrete convexity property. O

If the stopping time 7 is deterministic then by the same proof for convexity it is
easy to verify that we only need to assume that the function f is non-positive and
non-decreasing on [0, 7]. Applying the above lemma one can show under some general
(sufficient) conditions on the cost function ¢,, and the cost parameters cq. and cge
that both functions z — c(z) + C(z,7) and x — c¢(z) + C(x, ) are discrete convex

on Zy.

Lemma 4. If the procurement cost function c is discrete conver on Z, and cqp(T') =
Cse — Csery then for every 7 € F, 0 < 7 < T the functions x — c(x) + C(z,7)and

x> o(x) + Clz, 1) are discrete convex on 7.

Proof. By relation (3.21)) it is sufficient to show the result for the function with C.
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Since ¢, is non-increasing and cq, (1) = €5 — Cser, it follows that cqp(u) = cse — Coer

for every u < T. This implies that the function u +— e=%(

Cse — Cser — Cap(u)) is

non-positive and non-decreasing. Hence, by Lemma |3| the function

e ([ e — e — el

0

is discrete convex. Since the random function x — ((z — No(u))™) is also discrete
convex and h —dcg., = 0 it follows from relation (3.20)) that the function z — C(z,T)

is discrete convex again. Finally, the discrete convexity of ¢ completes the proof. o

Since we always assume (unless stated otherwise) that p(u) > cs and cq, is non-
increasing, it follows for ¢, = 0 that the condition cu,(T) = cse — Cser is always
satisfied. Note also for a deterministic stopping time 0 < 7 < T one only need to

assume in the above lemma that
Cap(T) = Cse — Cser- (3.34)

We will now investigate under which conditions on the cost function ¢, and the

parameters Cg, ¢ and ¢, the function z — c(x) + C(x, 7 A 0,) is discrete convex.

Lemma 5. If the procurement cost function c is discrete convex on Z, and co(T) =
Cse + qCre — (1 — @)Cser, then for every T € F, 0 < 7 < T, the functions x — c(x) +

Clz,7 A 0y) and © — c(z) + C(z, 7 A 0,) are discrete conver on 7, .

Proof. Since ¢, is non-increasing and ¢, (T) = ¢ge + q¢re — (1 — q)Cser, it follows that
Ca(U) = Cse + qCre — (1 — @)Cser for every 0 < w < T. This implies that the function

u — e %4

Cse + qCre — (1 — q)Cser — co(u)) is non-positive and non-decreasing and by
Lemma [3{ the function z — E {/"7 e™A(u)[(cse + qCre — (1 = q)Cser — Cal(u))]du is
discrete convex on Z,. Applying relation (3.28)) and using h — dcg, = 0 yields the

desired result. o
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As for Lemma[4] the above result also hold for a deterministic stopping time 7 € D
if

CG(T) 2 Cse + qCre — (1 - Q)Cscr- (335)

In the last section of this chapter we construct a lower bound on the optimal minimal
cost. This lower bound will be useful in solving the End-of-Life problem by replacing
the stopping times by stopping times only attaining values in a discrete finite subset

of [0,7] to be determined beforehand.

3.4 A Lower Bound on the Optimal Objective

Value.

To solve the optimization problem by replacing the stopping times by stopping
times having only a finite number of values and controlling the relative error by doing
so, we need a positive lower bound on the optimal objective value of optimization
problem . To construct such a lower bound, we introduce the function g : Z, x

F — R given by

c(x) + csppxr — et (1 — q)IE(S(?MZ e O\ (u)du)

SCr

g(x,7) = (3.36)
+E (§; e Au)[cse + qere — ca(u)]du) + S;F e~ \(u)cy(u)du

with ¢l = max{cs,0}. In the next lemma we derive some useful properties of the

function g and at the same time show that g(z, 7) is a lower bound on the cost of any

(x,7) policy 7 € F.

Lemma 6. For every 1 € F, 7 < T the function x — g(z,7) listed in relation

is non-decreasing and limg1o g(z, 7) = 00. Also for everyx € Z,. and 1€ F, 7 < T it
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follows in case p(u) = ¢y for every 0 < u < T that
c(x) +Clz,7) = gz, 7). (3.37)

Proof. By the monotone convergence theorem (Cimlar| [2011])

T Aoy T
limgo E (J e“suA(u)du) = J e\ (u)du.

0 0

This shows by the definition of ¢ in relation (3.36) that for every 7 € F
limyeo g(2,7) — () — Csert < 0.

Since by assumption lim,,o, ¢(x) — ¢, = 00 we obtain lim,yo, ¢(z) + ¢ x = 00 and
this implies

g(o0, 7) = limgye g(2, 7) = 00.

To show that the function x — g¢(z,7) is non-decreasing for every 7 € F we observe

for c4er = 0 that by relation (3.19))

1—(1—g)E ( JO o eéu(u)du) TR (2= No(T)) )46 fo (i No(u)) )

This shows for ¢y, = 0 that the function z > csep@ — Cser(1 — q)E (S(?MI 6_5“>\(u)du)
is non-decreasing. Using that the procurement cost function ¢ is non-decreasing we
obtain by relation the result for c,., = 0. For c,, < 0 the result is obvious
since by assumption the function z +— ¢(x) + ¢4 is non-decreasing. To show for
every 7 € F that c(z) + C(z,7) = g(x,7) we first observe using ¢,,(u) = cs that the

cost (1 — q)E({ e A u)cyp(u)du) of applying the alternative policy before the

TACg
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switching time satisfies

(1-E < f e_auA(u)cap(u)du) > (1= q)enE UU 6_5“)\(u)du>

This implies by relation (3.16]) that

[ BB ([T e %(x — No(u)*du) + e B (2 — No(r))*)
Clz,7) = <

| (e + qre) E (§5 e Au)du) + E (Sf 6_5“)\(u)ca(u)du>

-

hE (§5 ¢ (x — No(u)) " du) + s (e (x — No(7))*)

A\

E (7 e Mu)[coe + qere — ca(u)]du) + §o e 0 (u)eq (u)du.

Using relation (3.19)) and h — dcgr = 0 we obtain

-

Cser® + (h = 6cer)E (§] €72 (x — No(u)) T du)
@) > | el — QB e Aw)d)
E (§; e °“Au)[cse + qere — ca(u)]du) + Sg e U\ (u)cy(u)du

Coer® — L (1 — q)E STM“ e %\ (u)du)

A\

u T —ou
\ +E (§) e 2 Aw)[cse + qere — calw)]du) + §, e 2" Mu)c,(v)du.
This shows the desired result. o

To construct a computable positive lower bound on the optimal objective value

v(Pg) we introduce
¢(=inf{0 <u<T:cse + qcre — co(u) = 0} (3.38)

with the convention inf ¢§ = T'. Since the function ¢, is non-increasing the function
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U — Cse + qCre — cq(u) is non-decreasing and so in the general case the constant (
is easy to determine numerically by bisection. Using Lemma [0 one can show the

following result.
Lemma 7. If c,p(u) = cge for every 0 < u < T then the optimal objective value v(Pr)

of optimization problem satisfies

W(Be) > (oo + gene) J =T (w)du + f =00 () (1) (3.39)

0 S

with ¢ listed in relation .

Proof. By Lemma [0] it follows that

v(Pr) = infeez, rero<r<ric(z) + C(z, 7)}
= inf:peZ+,TeF,0<T§T{g(x7 T)}
> infrero<r<r{g(0,7)}

= infrerocr<r {E (§; € A(w)[cse + qre — ca(w)du)) } + Sg e %\ (u)cq(u)du.
(3.40)

Since the integrand in the above optimization problem does not depend on the stop-
ping time 7 it is easy to see that an optimal stopping time of this optimization problem

is given by some 7€ D, 0 < 7 < T and so

infer o<rer {]E (Sg e U\ (u)[coe + qCre — ca(u)]du)}
= infrepocr<r {§y € " AMu)[Cse + qere — calu)]du} .

Using that the function ¢, is non-decreasing it follows that the function 7 +—

§o € "“Mu)[cse + qCre — ca(u)]du is convex and by standard first order arguments
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the solution of this problem is given by ¢ defined in relation (3.38]). Hence we obtain

U(Pr) =2 (Cse + qcre) J€ e\ (u)du + J e\ (u)cq(u)du

0 S
and we have shown the result. o

Since

S T T
(cse—i-qcre)f 6_5“)\(u)du+f e_éuA(u)ca(u)du > J e_éuA(u) min{cse +qCre, co(u)tdu

0 S 0

the result in Lemma [7| also implies the weaker lower bound

T
v(Pr) = L = J e " min{cye + qCre, ca(u)}du > 0 (3.41)
0

In the next chapters, we will consider in more detail different subclasses of (z,7)
policies. We will start in the following chapter with the subclass of static and related

policies and in the last chapter we will consider the class of all stopping times.



Chapter 4

On Static and Related Policies

In this chapter we study the end-of-life inventory problem under a general framework
where both the final order quantity and switching time are static and they are de-
termined initially at the beginning of the final phase. To cover all possible policies,
we consider four subclasses of (z,7)-policies. These policies are differentiated from
each other by their restrictions on selecting the switching time. In each problem,
we study conditions under which the objective function is convex in the final order
quantity. This enables us to determine for a given fixed switching time the optimal
final order quantity using the first order conditions. If convexity does not hold, we
provide an upper bound for the final order quantity to devise an enumeration based
search algorithm. Having determined for each switching time how to compute the
optimal order quantity we then discuss how a near optimal switching time can be
obtained by selecting a cleverly chosen finite set of deterministic switching times and
evaluating for each of these switching times the objective value and selecting the best
one. Since this induces an error we also derive an upperbound on this error and this
bound is used to predetermine beforehand the error in objective value of the selected
near optimal switching time. Finally some numerical examples are given to study

how sensitive the policies and expected costs are with respect to different values of

45
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parameters.

4.1 Introduction

In this section we first introduce the set of (z, 7)-policies with 7 being a deterministic
time. For notational convenience the set of deterministic switching times is denoted
by D. Any (z,7)-policy with 7 € D is called as a static policy. Static policies are
simple to use in practice since at time zero it is known at which time we will discard
possible inventory of spare parts and replace after that time the repair-replacement
policy with the alternative policy. The optimal policy within this class of policies is
called an optimal static policy. Note that an optimal static policy only depends on the
probability law of the arrival process and it does not depend on the realizations of the
arrival process as is the case for stopping times 7 € F. This means if we decide at time
0 to switch to the alternative policy at the fixed time 7 we apply this rule irrespective
of the realizations of the arrival process up to that time. The more general class of
dynamic policies depend on the realization of the arrival process and these policies
will be discussed in the next chapter. Restricting ourselves to a static (x, 7)-policy

we have the following options with respect to the selection of the switching time 7.

I. The most primitive class of (x, 7) policies is that policy in which we never switch
to the alternative policy; that is, we set 7 = T' and simply apply the repair-
replacement policy to all the defective items during the whole final phase and
select the minimal expected discounted cost policy among all (x,T) policies.
In case a zero inventory level occurs before the end of the period (i.e. the
event o, < T happens), we incur a cost of cq,(u) serving a request of a non-
repairable item arriving at time o, < u < T via the alternative policy. In this
formulation, the final order quantity x is the only decision variable, and the

problem of finding the minimal expected discounted cost reduces to solving the
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I1.

optimization problem
v(Pr) :=inf,ez {c(x) + C(z, 1)} (Pr)

This one-dimensional problem is considered in Teunter and Fortuin| [1999] in a
discrete-time setting. To find the optimal order quantity, the authors use a dy-
namic programming approach to formulate the problem but propose a heuristic
approach based on marginal analysis to obtain a "near” optimal order quantity.
Using now the definiton of the function ' in relation 1) for 7 = T it follows
that the set of optimal solution of optimization problem is the same as the

set of optimal solutions of the rescaled optimization problem
v(Pr) = infyez, {c(x) + C(x,7)}. (Pr)

Clearly by relation (3.21f) we also obtain

v(Pr) = v(Pr) + L e (u) o (u)du. (4.1)

In Section we will discuss in detail the optimization problem {j under the

extended discounted cost structure of [Pourakbar et al.|[2012].

A natural extension of optimization problem (Pr) is to allow at any deterministic
time between 0 and 71" to switch to the alternative policy. In other words, we
select the switching time from the set [0,7]. This set of deterministic stopping
times is denoted by D. In this case we consider the subclass of all static (x, 7)
policies, v € Z, ;T € D, 0 < 7 < T. Among this class we now select a static

(x, 7)-policy with minimal expected discounted cost. In this formulation both x
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I1I.

and 7 are decision variables and we need to solve the optimization problem
’U(P]D)) = infxez+70<7—<T77—eD{C(lL') + C(ZL‘, 7')} (P]D)

This problem is discussed in [Pourakbar et al.| [2012] and a heuristic method is
proposed without any rigorous analysis on how well the proposed policy performs
compared to the optimal static policy. In Frenk et al.|[2018] a rigorous analysis
of this problem is given. Using again the definition of the function C (x,7) in
relation for any 0 < 7 < T, it follows that the set of optimal solutions
of optimization problem is the same as the set of optimal solutions of the

rescaled optimization problem
U(}Njn)) = infuez, ;rep0<r<r {c(T) + 5(% 7)}. (Pp)

Clearly by relation (3.21f) we also obtain

v(Pp) = v(Pp) + f e\ (1) cq () du. (4.2)

0

In Section we will discuss in detail the optimization problem 1' under the

extended discounted cost structure of [Pourakbar et al.|[2012].

The next two classes of policies to be considered in this chapter are the so-
called pseudo-static policies. We start with the simplest one and assume that
we only switch to the alternative policy before time T if the inventory level
drops to zero. This means we consider the class of policies T' A 0,, 7 € D with
x Ay = min{z,y} introduced in relation . Using these type of policies we
avoid the (possibly high) penalty costs of applying the alternative policy during
the repair-replacement phase. The price we have to pay for this is that the

switching time is not known in advance and depends on future realization of the
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IV.

arrival process. The final order quantity x is now the only decision variable, but

this time the minimal cost is obtained by solving

U(Prao) = infrez, {c(z) + C(x, T A 0,)} (Prao)

This one-dimensional optimization problem is considered in Pourakbar et al.
[2012] as an approximation of the original optimization problem . Pourakbar
et al.| [2012] provide a heuristic procedure to solve optimization problem (Pr .|
and the paper does not contain any argument indicating how close the objective
value of the solution generated by this heuristic is to the objective value of the
optimal static policy within the class of (z,7)-policies, 7 € D. Using now the
definition of the function ¢ (x,7) in relation (3.21)) replacing 7 by T' A o, we know
that all optimal solutions of the optimization problem are the same as

the optimal solutions of the optimization problem
U(Pr ) = infeez, {c(x) + C(x,T A 0,)}. (Pr.s)

Clearly by relation (3.21]) we also obtain

T

O(Pros) = 0(Pras) + L e () o (1) du. (4.3)

In Section we will discuss in detail the optimization problem |D under

the extended discounted cost structure of Pourakbar et al.| [2012].

A natural generalization of the above policy is given by the class 7 A o, with
0 <7 <T, e D. In this case we apply the alternative policy after the
deterministic switching time 7 or after we hit inventory level zero, which ever

occurs first. To determine the optimal policy within this class of policies we
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need to solve the optimization problem

U(Ppay) = infrez, o<r<rrenic(®) + Cla, 7 A 0,)}. (Poac)

This problem is discussed in [Pourakbar et al.| [2012] and a heuristic method is
proposed without any rigorous analysis on how the proposed heuristic performs
in comparison to the optimal static policy. Using the definition of the function
CNJ'(m, 7) in relation replacing 7 by 7 A 0, we know that the set of opti-
mal solutions of optimization problem is the same as the set of optimal

solutions of the rescaled optimization problem

~

’U(]B]D)/\U) = infxEZ+,O<T<T,TeD{C(x) + 5’($7 T A Ux)} (P]D)/\U)

Clearly by relation (3.21]) we also obtain

V(Ppro) = v(Pors) + f e TN (1) o (1) du. (4.4)

0
In Section we will discuss in detail the optimization problem 1’ under the
extended discounted cost structure of [Pourakbar et al.| [2012].

It is obvious from the relations between the different optimization problems that

the optimal objective values satisfy
v(Pp) < v(Pr) and V(Ppro) < U(Prag). (4.5)

Also the policies (x,7) = (0,0) and (z,7A0,) = (0,7A0) = (0,0) forevery 0 <7 < T
are feasible policies for the optimization problems (Fp)) and (Pp..)). These policies
represent not ordering and at time 0 starting with the alternative policy, and by the

interpretation of C' this implies that U(]BD) < 0 and U(ﬁ]]),\a) < U(f’TM) <0.
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4.2 The Objective Function for Static Policies.

To simplify the formula for the objective function for the class of static (x, 7)-policies,

x € Z,,m € D we observe by relation (3.22]) and Fubini theorem that

Coer® + (1= @)E (§77 €7 A(u)[cse — Cser — Cap(u)]du)

1) = 4+ 57 e Aw)[a(eae + cre — calw)) + (1 = p(u)]du (4.6)

+(h = bcser) § € *E((z — No(u))™)du.

Hence for z = 0 it follows

C0,7) = JT e " Nw)[q(cse + Cre — ca(u)) + (1 — @)p(u)]du (4.7)

0

and we obtain from relation (4.6) the alternative expression

Cser® + (1= )E (§777 e 72U Aw)[se — Coor — Cap(u)]du)
Cz, 1) = N (4.8)
+C(0,7) + (h — 6cser) § e E((z — No(u))*)du.

To rewrite the integral E (SMU” e\ (u)[Cse — Coer — cap(u)]du) we observe for any

7 € D and Lebesgue integrable Borel measurable function f that by Fubini theorem
E (5" fwdu) = B (§ f(u)lio,>udu)
= § fWE( g, >u)du (4.9)

= So (u) < z)du.
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This shows using relation (4.6 that for any static (x, 7) policy

-

Coor + (1= q) §7 €M) [ese — Caer — Cap(u)[P(No(u) < )du

Cla,7) =19 + {7 e Nu)[q(cse + cre — ca(w)) + (1 — q)p(u)]du (4.10)

+(h = dcser) §; e E((z — No(u)) ) du

or

N Coort + (1= q) §7 €PN [ese = Caer — Cap(u)JP(No(u) < )du
C(z,7) = (4.11)
+C(0,7) + (h — 8¢ger) §7 e E((x — No(u))*)du.

Since we are also interested in the global behavior of the function z — C(z,7) for

any 7 € D, we introduce the first order difference operator

~

AC(x,7):=Clz+1,7)=Clz,7),x€ 7. (4.12)

The next lemma is easy to show.

Lemma 8. For every T €D and x € Z,

Cser + (1= ) §5 €7 N [Cse — Coer — Cap(w)[P(No(u) = x)du

~

A Clx,T) =
+(h = bcser) § P(No(u) < z)du.
(4.13)

Proof. 1t follows that
E((z +1 = No(u))™) = E((x — No(u))") = E((x+1— No(u))"~

(I - NO(U))+1{N0(U)<JJ}) (414)
— P(No(u) < z).
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Applying now relation (4.10)) yields the desired result. D

To simplify the objective function for (7 Ao, policies, 7 € D we observe by relation

(3.28) and the definition of for every stopping time 7 € D that

Cser® + ]_ — q STAUI 76u)\ [Cse — Cser — Cap(u)]du

4

Cla,mroe) = § +E(" 7 e Au)[q(cse + cre — ca(w)) + (1 — q)p(u)]du
+(h — b¢ser) § € "E((x — No(u))™)du

Csert + (1 — q)IE(SSM“” e U\ (w)[coe + qere — (1 — q)Cser — co(u)]du

+(h — 5cm)§ e E((x — No(u))*)du.
(4.15)

By relation (4.9)) and (4.15)) this yields

N Cser® + (1= q) §) €7 Nw)[Cse + qCre — (1 = @)Cser — Ca(w)|P(No(u) < z)du
C(z,Tr0,) =
+(h — 6¢Cser) § € "E((z — No(u)))du.

(4.16)
We are also interested in the global behavior of the function # — C'(z, 7 A 0,) for any

7 € D. Again we introduce the first order difference operator
AC (2,7 Aoy)i=Cla+ 1,7 A0g1) —Cla, 7 Aoy), €L, (4.17)

One can now show the following result for A,C(z, 7 A 0,).

Lemma 9. For ecvery T € D and x € Z, it follows

Cscr (1 - C]) S —5u)\( )[Cse + qCre — (1 - q)cscr - Ca(u)]

~

A Clx, T Aoy) =

P(No(u) = x)du + (h — dcser) §) P

o P(No(u) < z)du

(4.18)
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Proof. Applying relation (4.16)) and using relation (4.14]) we obtain the desired result.

O

In the next subsections we will analyze for the considered classes of static and
pseudo-static policies the corresponding optimization problems of selecting the opti-

mal one within these classes.

4.3 Analysis of Optimization Problem (|Pr

In this section we propose an algorithm to select among the class of all (x, T')-policies

the optimal one having minimal expected discounted cost and so we need to solve

optimization problem given by
v(Pr) :=inf,ez {c(x) + C(x, 7)}. (Pr)

As shown in section the optimal solutions of optimization problem (Pr|) are the

same as the optimal solutions of
v(Pr) = inf ez, {c(z) + C(z,T)}. (Pr)
with C(z, T) given by (see relation (4.11))

X Coor + (1= ) |7 €AW [Car — Caer — Cap(u)P(No (1) < 2)du
C(z,T) = (4.19)
+C(0,T) + (h — dcser) §o € “E((x — No(u))*)du.

Also by relation (4.1)) we know

o(Pr) = u(Pr) + L =50 (u) o (1) du. (4.20)
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Note that the value C (0,7T) in relation is simply a constant and hence we
need to find that value of x which minimizes the remaining expressions. Due to the
previous remarks we will analyze in this section optimization problem 1D Since
immediately switching to the alternative policy can be optimal if the cost of using
the alternative policy in comparison to the repair-replacement option is already low
at time 0 we first show under which sufficient conditions on the parameters this can

be concluded. The next result is a special case of Lemma [I]

Lemma 10. If ¢,,(0) < ¢qe + ¢,

scr

with cg,, listed in relation then it is optimal
not to order in optimization problem and the optimal objective value of the

optimization problem equals

o(Pr) = fo N (W) [gcoe + rer) + (1 = q)cap(u)]dur (4.21)

In the general case, the optimization problem |D does not seem to exhibit a
convenient discrete convexity structure (in z) for a fast identification of an optimal
solution. Hence we need to do a complete enumeration over the decision variable
x and so it is convenient to compute beforehand a computable upper bound on the
optimal order quantity. Observe that such a upper bound should exists since in the
case of revenue of leftover spare parts at the end of the horizon this revenue will be
less than the procurement cost and the cost of holding these spare parts in inventory.
Hence it is never profitable to order at time 0 a large number of spare parts knowing
the probability law of the demand arrival process. For numerical implementations,
we next discuss how we can construct a finite upper bound for this optimal order

quantity. To that end, we introduce for x € Z, and 0 < 7 < T the functions

k(x,7) :=c(z) + cserx + (h — OCser) LT e (z — Ao(u))Tdu (4.22)

gi(z,7) = (1—¢qE (Jmom e\ () (Cap(tt) + Coer — cse)+du) : (4.23)

0
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where Ag(u) = §; Ao(s) ds = E(Ng(u)), for u = 0. Clearly, for fixed 7 < T the function

x +— g1(z, T) is non-decreasing, and due to the monotone convergence theorem we have

g1(00,7) = (1 —q) JOT e N (1) (Cap () + Coer — Cs0) Tdu < 400

Lemma 11. There exists an optimal solution of problem and any optimal solu-

tion JE;"BT of optimization problem satisfies xj‘ST < up, with
up, =min{z € Zy : k(z,T) > gi(0,T)} < +o0. (4.24)

Proof. Since by our standard assumption the function x — c¢(z) — ¢« is non-
decreasing with limit value oo at infinity it follows that the function z — c(z) +cser is
also non-decreasing with limit value oo at infinity. By this observation and h—dcg.. = 0
it follows that the function z — k(z,T') in relation is non-decreasing and sat-
isfies k(0,7) = 0 and k(o0,T) := lim,_, k(x,T) = +0o. This shows that the value
up, in relation is finite and hence well-defined. By Jensen’s inequality, we have
E((x — No(u))™ = (z — Ao(u))™ for every u = 0. Using this inequality in relation

(4.19) yields

N () + C(0,T) + coept + (h — 8cser) o €7 (z — Ag(u))*du
clx) + C(x,T) = X

—(1 =) §; & T Mw)(Cap(tt) + Coor — Coe) "P(No(u) < 2 — 1)du

c(z) + C(0,T) + coert + (h — dcer) o €7 (x — Ag(u))*du

A\

—(1—q) SOT e PN (1) (Cap(1) + Cser — Cse) Tdu
(4.25)

and so the lower-bound in relation (4.25) is equal to C(0,T) + k(z,T) — g1 (o0, T).
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This shows for every z = up _ that

~

o(z) +C(z, T) = C(0,T)+ k(z,T) — g1(0,T)

~

> C(0,7)
— ¢(0)+ C(0,7).

Since no ordering at time zero and using the repair-replacement up to time T is
feasible in optimization problem 1} this proves the existence of an optimal solution

and the constructed upperbound. O

By Lemma it follows immediately that solving problem 1’ is the same as

solving

U(]BT) = MiNyez, r<up, {c(m) + é(x, T)} ) (4.26)

By relation we may now solve optimization problem (]ST) by complete enumer-
ation over the finite feasible set. However, the constructed upperbound u Py might
be large and so we need to evaluate the objective function in a lot of feasible points.
Since the function z — g¢1(x,T) is non-decreasing, there is a possibility to improve
the upper bound in Lemma [29| iteratively. As already observed this might reduce the

number of possible function evaluations in our complete enumeration.

Lemma 12. Ifup = up_and for every n € Zy
Up, pyp i= min{zr € Zy : k(z,T) > gl(ulng,T)}7 (4.27)

then the sequence up_,.n € Z. is non-increasing and any optimal solution T of

optimization problem satisfies T Sup,, for everyn e Z. .
T b

Proof. By Lemma [29| the result holds for n = 0. Suppose now by induction that the

sequence up ., N < m is non-increasing and there exists an optimal solution T of
’ T
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optimization problem 1' satisfying Q:ET < up, - Since the function z — g (x,T)

is non-decreasing, we obtain by our induction hypothesis and relation (4.27)) that

k(uﬁT7m7T) = gl(uﬁT,mfla T) = gl(uﬁ%m?T)'

This shows again by relation (4.27) that up .. <wup_,,. Asin the proof of Lemma

it follows for every x € {up_, . 1,-,up .} that

c(z) + C(0,T) + coert + (h — dcer) §o €7"(x — Ag(u))*du

~

clx) + C(x,T) = X
—(1—q) §y & T Nw)(Cap(tt) + Coor — Coe) T P(No(u) < ) du

c(z) + C(0,T) + coert + (h — dcer) §y € (2 — Ag(u))*du

A\

—(1 =) § e A(w)(Cap(u) + Coor — cse)t P(No(u) < up, ) du,

which is equal to C(0,7T) + k(z,T) — gi(up, ,T).  This implies for any z €

{ulngH, ey uﬁT’m} that

~

c(@)+C(x,T) = CO,T)+k(@T)—gi(up, .. T)

~

> C(0,T) (4.28)
= ¢(0)+C(0,T)
and so by our induction hypothesis and relation (4.28)) the result follows. O

For any given functions ¢, ¢, p, A and the constants c., Cser, g, h, ¢ it is possible to
compute the sequence u Pr.oo Uy 1o - - of non-increasing upper bounds. The procedure
will stop if at a certain iteration step the new computed upper bound is the same as
the previous upper bound, and since the upperbounds are integers this takes at most

up, (o iteration steps. After having stopped at some upper bound, call it up , we can



59 CHAPTER 4. ON STATIC AND RELATED POLICIES

carry out a complete enumeration and evaluate for x=0,...,u Py the function values

~

c(z) + C(z,T)

to determine an optimal solution of this optimization problem. To compute the value

C(z,T) at a given point x we consider the first order difference operator for 7 = T

given by (see Lemma

~

AC(x,T) = Clz+1,T)—C(xz,7T)

C(
{ Cser + (B — 8Cser) Sg e OUP(No(u) < x)du

+(1 =) §3 ¢ T“Aw)[ese — Coor — Cap(w)|P(No(u) = x)du
(4.29)

and observe

C(a.T) = MOk T) + C(0.7). (4.30)

To simplify for a differentiable function ¢,, the numerical computation of A,C (x,T)
listed in relation (4.46) we first list the following useful result of non-homogeneous

Poisson processes.

Lemma 13. Let N be a non-homogeneous Poisson process with arrival rate function
B which B is piecewise continuous and v a differentiable function and i)' its derivative

function. Then for every x € Z. and 7 < T,7 € D we have

fo () B(u)P(N () = 2)du = f "W WPV () < 2)du + (0) — Y(P(N(r) < ).
(4.31)

Proof. 1t is well known (Ross| [2014]) for a non-homogeneous Poisson process with an

intensity function 8 that, for every k € Z,, the function ¢(u) := P(N(u) < k), for
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u = 0, is differentiable and satisfies

with the initial condition p(0) = P(N(0) < k) = 1. Applying now the chain rule of

differentiation yields

U(r)e(r) —(0) = §¢'(w)ew)du + §5 v (u)e (u)du

(4.32)
= S (we(u)du = §§ 1 (u)B(u)P(N (u) < k)du
from which (4.31) follows after re-arranging the terms. o

Using the above lemma it is now possible to give the following formula for the first

order difference A,C (,T) and this formula is more stable for numerical calculation.

Lemma 14. For every x € Z, we have

~ Cse — CGP(O) + 676T(Cap(T) + Cser — Cse)P(NO(T) < ZL’)
A,C(2,T) = (4.33)
+§5 €707 — ¢ () + 0(cap(t) — cse) [P(No(u) < z)du.

Proof. Applying Lemma |13 with 1(u) = e %“[cse — Coer — Cap(u)] gives

§o e No(u)[Cse — Cser — Cap(w) PNy (u) = z)du

[ _ S?; e U (u)P(No(u) < x)du

ap

(4.34)
= { =6 S(? e Coe — Cser — Cap(w)]P(No(u) < z)du

| Hlew = cuor = canO)] = € [ese — cuer — cap(T)P(No(T) < )

and finally using (4.34)) in (4.13]) for 7 = T yields the desired result after straightfor-

ward simplifications. O
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By Lemma it is obvious that one can calculate the first order difference

A,C (xz,T) by evaluating numerically the integral

L e [ — () + 6(cap(u) — cse) P(No(u) = K)du

for different values of k. In case the function c,, is an elementary function and our
arrival intensity function is given by a piecewise constant arrival intensity function
one can write this integral as a sum of elementary functions avoiding numerical inte-
gration.

Under some additional sufficient conditions on the function ¢, and the parameters
Cses Cser, ONE can show that the function = — c(x) + C (x,T) is discrete convex.
In general one only needs to use the upper bounding technique discussed above in
combination with complete enumeration in case the procurement cost function c is
not discrete convex or if the function c is discrete convex and the function c,, and
the parameters cg., ¢, satisfy the inequality

Cap(0) > oo + ¢,

o ANd Cap(T) < Coe — Cer-

If ¢op(T) = cse — cser and the procurement cost function is discrete convex, one can
show the following result and this is a special case of Lemma [l Observe a different

proof using directly the first order differences is given in (Frenk et al. [2018]).

Lemma 15. If the procurement cost function c is discrete convex on Z and cqp(T) =

Cse — Cser, then the function x — c(x) + CN’(x, T) is discrete convex on Z, .

If it is costly to scrap the inventory (cse > 0) and the cost of serving a customer
via the alternative policy is higher than the regular service cost at all times (i.e.,
p(u) = cqe for all u < T') as assumed in our standard assumptions then the conditions

of Lemma/[l5 hold. Observe, under the convexity condition, we do not need to evaluate
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an upper bound up_as discussed above. An optimal solution of optimization problem

1' is obtained simply by the first order condition

o5 =min{r e Z, : c(z + 1) — c(x) + AC(x,T) = 0} (4.35)

Pr

with A,C (x,T) given in relation 1' in Lemma As before by computing iter-
atively these first order differences until the first order condition is satisfied one can

also easily calculate the optimal objective value using

~

C(e.7) =Y AC(T) + C(0,7).

In the next section we will discuss how to select the optimal static policy among the

set of all static (z,7) policies.

4.4 Analysis of Optimization Problem (Fp

In this section we propose an algorithm to select among the class of all (x, 7)-policies,
relZ,, TeD, 0<7<T the optimal one having minimal expected discounted cost.
This means we assume that at any deterministic time between 0 and 7" we can switch
to the alternative policy and so our class of policies is given by all (z, 7)-policies with
reZyand Te D, 0 <7 <T. Hence we need to solve optimization problem .
As shown in Section [4.1] the optimal solutions of optimization problem are the

same as for optimization problem

U(ﬁ]D)) = infer+,TeD,0<T<T{c(x) + CN’(;U7 T)} (P]D))
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with C(z, 7) given by (see relation [4.10)

-

Coor + (1= q) §7 €M) [ese — Caer — Cap(u)JP(No(u) < )du

Cla.m) =9 +§7 e ™ ANw)[q(cse + re — ca(u) + (1 = q)p(u)]du (4.36)

+(h = 0cser) §5 € E((@ — No(u))™)du.

\

Also from relation (4.2) we know that

o(Py) = v(By) + L e () (1) . (4.37)

In this section we will solve optimization problem 1' by means of a bi-level approach

using the representation

v(Bp) = inf,___, ®(7) (4.38)
with
®(7) := infeez, {c(z) + C(z, 7)}. (Pary)

Note that optimization problem is a generalization of optimization problem
for any switching time 7 € D, 0 < 7 < T". Before discussing how to solve for the
general case the optimization problem we first identify under which parameter
settings in the optimization problem it is optimal not to order. Again the next

result is a special case of Lemma [T}

Lemma 16. If ¢,,(0) < ¢ + ¢, with ¢, listed in relation (3.5), then it is optimal
not to order in optimization problem and the optimal objective value of

equals

v(Fp) = infrep UT e Mu)[q(cre + e — calu)) + (1= Q)p(U)]dU} - (439)

0
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In almost all cases the sufficient conditions of Lemma are not satisfied by
our problem parameters and so we need to give an algorithm to solve optimization
problem . In the general case we will use the approach as suggested by relation
and so part of the algorithm will consist of a procedure determining the optimal
order size in case the closing time 7 is known in advance. We can only execute this
procedure solving problem ‘D a finite number of times. This means that we first
need to construct from the set [0,7] a finite set D = {1, 7o, ...7y} satisfying 0 <
71 < ...y < T such that with a known error bound we can replace the optimization
problem in relation by its discrete version inf__, ®(7). To select this finite set

D we first introduce the set
D:={0<7<T:cypT) = Cse — Cser}- (4.40)

Since ¢, is non-increasing the set D is a (possibly empty) convex subset of [0, T]. In
particular, if ¢, = 0 and we assume the natural condition p(0) = ¢, then it follows
that 0 belongs to D. Hence it follows under these natural conditions that the set D

is nonempty and we introduce
Tp = sup{0 < 7 < T : (7)) = Cse — Coer} < T

The next result yields some upperbound on the rate of growth of the function 7 —

C'(z, 7). Note the so-called indicator function of the set A < R is given by

1 ifreA
La(r) = (4.41)
0 ifrg A
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Lemma 17. For every 7,5 = 0 with 7 + s < T, and x € Z, ,we have

C(0,7+s)—C(0,7)

Clz, 7+ s)—Clx,7) =

+e707(Cse — Cser — Cap(T)) (Mo (T + 8) — Ao(7))1p(7).
(4.42)

Proof. By relation (4.11]) and h — dcger = 0 it follows

-

(1-4q) ST+S eiéu)‘(u)([cse — Cser — Cap(U)]

T

(z,7) = 4 P(No(u) < z)du + C(0,7 + s) — C(0, 7)

Qe
Qe

(x, 7+ s) —

+(h — 6¢Cser) § € "E((x — No(u)*)du

\

[ (1= ) " e AW e — Caer — ()]
= A

| P(No(u) < z)du+ C(0,7 + ) — C(0,7).

Hence for 7 not belonging to D or ¢,,(7) < ¢se — ¢sor and using c,, is decreasing we

obtain

~

Clz, 7+ s) = Clx,7) = C(0,7 + s) — C(0,7),

while for 7 belonging to D or ¢,,(T) = €5 — Cser it follows

-

N (1-4q) S:H e AMu)[ese — Coer — Cap(u)]du

C(QZ,T—i—s)—é(as,T) = X
| +C(0,7+5)—C(0,7)

-

¢ e = Cur = Cap(T)](Ao(T + 5) = Ao(7))

\Y

| +C(0,7+5) = C(0,7).

This shows the result. o
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For 7,8 = 0 with 7 + s < T, the first difference in the right hand side of the

inequality in (4.42)) can be evaluated by simple integration as

T+S

C0,7+s)—C(0,7) = J e Au)[q(cse + Cre — ca(u)) + (1 — @)p(u)]du.

T

(4.43)

Using Lemma [17] we provide a growth condition for the function 7 — ®(7) in terms

of this difference.

Lemma 18. For every 7,5 = 0 with 7 + s < T we have

C(0,7+s) — C(0,7)
O(r+s)— (1) = (4.44)

+e 07 (Cse — Cser — Cap(T))(Ao(T + 8) — Ao(7))1p(7).

Proof. Let x%

5 € Z, denote the optimal order level of optimization problem
D(T+s)

(]3@(T+S)). It follows by the definition of ®(7 + s) that

O(1+ 5) = C<x13@(f+s)) + C(xﬁcp(HS),T + ).
Since x% is also a feasible solution for the optimization problem problem (®(7))

D(7+s)

it is obvious that
< c(z* (2
O(7) < c(qu>(T+s)) + C(Ipq)(T+s),T).
Applying both the above equality and inequality and using Lemma [17 we obtain the

inequality in relation (4.44]). O

To identify a region on which the function ® is increasing we introduce the (pos-

sibly empty) convex set

Dy ={0<7<T ¢ + Cre — Ca(T) = 0}
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(due to ¢, being non-increasing) and let

{0 <7 <T:Coet+Cre—co(T) =20} it Dy #2
T if D = @.
An immediate consequence of Lemma [18]is given by the following result.
Lemma 19. If 7 = max{rp, 7p,} then the function ® is non-increasing on [7,T)].
Proof. For every 7,7 + s € [T,T] and s = 0 it follows that 7 does not belong to D.
Hence by Lemma |18 and ¢, + ¢e — ¢o(u) = 0 for every 7 < u < 7 + s we obtain
O(r+s)—0(r) = CO,7+s)—C(0,s)
= SZH e Au)[q(cse + cre — ca(u)) + (1 — @) (p(u)]du
= 0

and this shows the result. o

Note for 7 ¢ D we have
Cse > Co(T) + P(T) + Coer = Ca(T) + Cocr-

This means, if an item arrives at time 7 and is non-repairable and we have a spare
one in the inventory, it is better to scrap the item in the inventory immediately and
use the alternative policy. Clearly, we also have c¢,(7) + p(7) = c,(7) at all times.
Hence, D', denoting the complement of D over [0,T], is essentially the set of times
where serving non-repairable items is more expensive under the repair-replacement
policy. Also note that when ¢y + ¢, = ¢,(7), the cost of serving a repairable item at
time 7 under the repair-replacement policy is higher than (or equal to) that of using

the alternative policy. Clearly, when this inequality holds for some 7, it also holds
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for all time points v > 7. Then, Lemma [19] above gives sufficient conditions (on 7-
values) under which serving a customer under the alternative policy is always better
regardless of the repairability of the arriving item or the availability of a spare one in
the inventory. Hence, we should not consider any value of 7 = 7 in the minimization

problem |D and so we may conclude

~

'U(P]D)) = inf0<7<7 (D(T) (445)

Before applying the result of Lemma (18| to construct a finite set D < [0, 7| having a
predetermined error bound we first discuss solving optimization problem for
some given 0 < 7 < 7. This procedure can only be applied a finite number of times
and so it is crucial to construct this finite set D < [0,7]. For the general case as in
the previous section we need to determine first an upperbound on the optimal order
quantity for any fixed 7. By a similar proof as used in Lemma (12| replacing T" by 7

one can show the following result.

Lemma 20. If

Uy 0 = min{z € Z, : k(z,7) = ¢1(c0,7)} < 40

and

Upy e = min{x € Zy : k(x,7) = gl(ulg@m’n,r)}

with the functions k and g1 defined in relation (4.22) and (4.23) respectively then

the sequence Upy mr T E Z. is non-increasing, and any optimal solution x% of

Po(r)
optimization problem |D satisfies rF < Uy m for everyn e Z, .
@(7—) T)?

For any given 0 < 7 < T and functions ¢, ¢, p, A and the constants cg, cger, q, h,
0 it is possible to compute the sequence Uy 00 Uy 10 of non-increasing upper

bounds. The procedure will stop if at a certain iteration step the new computed
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upper bound is the same as the previous upper bound, and this takes at most ug(r),0
iteration steps. After having stopped at some upper bound, call it Up, ., We can

carry out a complete enumeration and evaluate the function values

~

c(x) + C(z, 1), xr =0,

....,g];q)m

to determine an optimal solution of this optimization problem. To compute the
value C (x,7) at a given point x we introduce the first order difference operator for

7 < T,7 € D given by (see Lemma

~

AC(z,7) = Clz+1,7)—Cla,7)
Cser + (h— 6Coer) §5 €7 P(No(u) < x)du

+(1—=q) §5 e AMu)[cse — Coor — Cap(t) JP(No(u) = x)du.
(4.46)

Once we have computed these differences iteratively we may also compute the objec-

tive value observing

~ z—1 ~

Cla,7) =, AuC(k,7) + C(0,7). (4.47)

For some values of 7 it is possible to avoid calculating these upperbounds and
do a complete enumeration. Under some conditions one can show that the function
x +— C(x,7) is discrete convex for a given 7. Observe that if cg.r = 0 and p(u) = cqe
it follows that c,,(T) = ¢ and the condition in the next lemma is always satisfied
for every 0 < 7 < T'. Also in this case it follows that D = [0,7"]. The following result

is a special case of Lemma [4]

Lemma 21. If the procurement function c is discrete conver on Zy and cqp(T) =

Cse — Cser OT equivalently 7 € D, then both the functions x — c(x) + C(x,7) and
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x> o(z) + Clz, 1) are discrete conver on Z..
Proof. Apply the observation after Lemma [4] O

Under the conditions of Lemma 21 we obtain that an optimal solution of opti-

mization problem 1} is given by

~

% =min{freZy :c(x +1) —c(x) + A,C(z,7) = 0} (4.48)

15@(7)

with A,C(z,7) := C(z + 1,7) — C(x,7), for € Z... Using this difference operator
we can also easily evaluate the optimal objective value ®(7) and this is given by

o(r) = c(wy, )+ 0y 1) =claly )+ 007+ Y e Ak, 7). (449)

Par) Pa(ry’ Par)

We finally conclude this section with an algorithm describing how to solve problem
(Pp). The algorithm brings a clever discretization of the interval [0, A 7] to search
for the best switching time. Recall that the function 7 — ®(7) by Lemma (18| satisfies

the growth condition (4.44)). Using this inequality, we construct the finite collection

of discretization points Dy = {71, ...,7n} where 7 = 0, and for i > 1, we set
Tit1 = min { §>T1; ¢ CN'(O, s) — 6’(0, 7i) 4+ €7 (Coe — Coer — Cap(Ti)) (4.50)
[Ao(s) — Ao(m)]1p(m) < —¢ } (4.51)

where N is the iteration number for which the resulting point in (4.50|) exceeds T A T,
and we set v = T A T (see Lemma [19| for the definition of 7). It follows by (|4.44))

that

O(s) —P(r;) = —e  for every s € [1i, Tis1]-
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This further implies

. . > . E ~ > . . _
min O(1;) = Tel[%,fT] O(1) =v(Pp) = min O(r;) —e.

Hence, for a given numerical tolerance level ¢ > 0, if we search the best switching

time 7 in D, the loss in the objective value is no more than €. This observation gives

us the following algorithm.

Algorithm 1. Numerical Algorithm to Solve Optimization Problem (Pp)

. For every m; € D, if the convexity conditions of Lemma|21| hold, compute x*%

. Find the best 7/ attaining min,cp, ®(7;). Report (x

. Select € > 0 and construct on the interval [0, T A T| the finite discretization

D ={rm,...,7n} described in (4.50) with 7 =0 and v =T A T.

Po(r;)

using (4.48) and evaluate ®(7;) via (4.49). Otherwise, find the smallest upper

bound Uy following Lemma and compute

T

~

73@(71') = s minxéﬁﬁ@(q) {C(ZE) + C(ZL’, TZ)}

and

& & N
Poss) 7*) as the £ -optimal

policy.

In the next subsection we will start analyzing the class of pseudo static policies.
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4.5 Analysis of Optimization Problem (Pr,,)

In this section we propose an algorithm to select among the class of all pseudo static
policies of the form T' A o, the optimal one having minimal expected discounted cost.
This means we assume that we will apply the repair-replacement policy up to the time
that the inventory level drops to zero. In this problem we only need to determine the
optimal order quantity and so we need to solve optimization problem given
by

U(Pr.,) = infez, {c(z) + C(x, T A 0,)}. (Pr.o)

As shown in Section [4.1] the optimal solution of optimization problem (Pr,,) is the

same as for optimization problem
V(Prag) = infuez, {c(x) + C(a, T A 0)}. (Pras)
with C(z, T A 0,) given by (see relation (4.16) for 7 = T)

Cser® + Sg e\ (u)[Cse + qCre — (1 — q)Cser — ca(u)P(No(u) < z)du

~

C(x,Troy) =
+(h = bcger) §o € E((z — No(u))*)du.
(4.52)
Also from relation (4.3) we know that
- T
o(Pras) = oPraa) + [ A w)eau)du (4.53)
0

Due to the previous remarks we will analyze in this section the optimization problem
1) The analysis is similar to the problem 1} discussed in subsection
since both problems are essentially one dimensional problems with the same decision
variable x € Z, . Since not ordering and immediately applying the alternative policy

is feasible within the class of considered (T" A o,) policies, x € Z, we first list some
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set of sufficient conditions on the cost function ¢, and the parameters cs., ¢, and ¢,

under which this is optimal. The next result is a special case of Lemma [2]

Lemma 22. If ¢,(0) < ¢cse + qcre — (1 — q)cs,,, then it is optimal not to order in op-

timization problem and immediately apply the alternative policy. The optimal

objective value is equal to Sg e~ \(u)c, (u)du.

As for the optimization problem 1) we first construct in the general case with
no restrictions on the parameters an upper bound for the optimal order quantity in

problem The construction is similar to that described in Lemmas (12| and
above for the optimization problem 1) We first introduce forx € Z,, 7e D, 7 < T

the function

g2(,7) = E ( [ et — e gen 1 - q>cw>+du) (s

0

Clearly this function is non-decreasing in x. By the monotone convergence theorem

we obtain

T

g2(00,7) = f e N(w)(ca(1) = Cse — qCre + (1 = q)Coer) Tdu < +00.
0

Using a similar proof as in Lemma [29| one can show the following result.

Lemma 23. There exists an optimal solution of problem and any optimal

solution x%  of optimization problem (Pr..|) satisfies v% < up  with
Pro Prao Thro

5 c=min{r € Z; : k(x,T) > g2(0,T)} < +00. (4.55)

UPT/\U

The next result follows a similar line of proof as the one followed in Lemma [12]

Lemma 24. Ifup o =wup  and for everyn € Z.

=min{z € Z, 1 k(z,T) = go(up. . T)} (4.56)

uﬁT,\g,n-'rl
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where the function k is defined in , then the sequence up_ ., n € Zy, is non-

increasing and any optimal solution x of optimization problem Pr,. satisfies

*
PT/\G‘

k)
N < ~
Ty SUBL n for everyn e 7.

For any selection of the functions c,, ¢y, p, A and the constants cs., Csery ¢, h, 0, it
is easy to evaluate the sequence of non-increasing upper bounds up g up ;...
The procedure stops if in a certain iteration step the new computed upper bound is
the same as the previous one, and this procedure takes at most up, , iterations.

After having stopped at some upper bound u B, we evaluate the function values

o(z) + Oz, T A oy), r=0,..,up

Prao

to identify an optimal procurement quantity. Here, the cost term C (x,T A 0,) can

be obtained via the difference operator (see Lemma [J] for 7 = T')

~

AC@,T Aoy =Cx+1,T A1) —Cla,T Aocy)

T

Cser + (R — 5cscr)f e P(No(u) < x)du
0

+ L e N(w)[ese + qCre — (1 = q)Cser — Ca(u)P(No(u) = x)du.

(4.57)

Under some additional conditions on the function ¢, and the parameters cq., Cre, Cser
and ¢, one can show that the function z — c(z) + C(z,T A 0,) is discrete convex.
This simplifies the computation of an optimal procurement amount. The next result

is a special case of Lemma [5]

Lemma 25. If the procurement cost function c is discrete conver on Z, and co(T) =
Cse + qCre — (1 — q)Cser, then the function x — c(z) + 5(1’, T A 0,) is discrete convex

on 7. .

Under the convexity structure of Lemma an optimal procurement quantity is
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given by

7% c=min{z e Zy oz + 1) — c(z) + A,C(x, T A 0,) = 0} (4.58)

PT/\O'

with AC(z, T A 0,) listed in relation (4.57).
In the next subsection we will analyze the last optimization problem discussed in

Section 4.1.

4.6 Analysis of Optimization Problem (Pp,,).

In this final subsection, we consider the problem of minimizing the cost function over
the initial procurement amount x € Z, and policy switching time of the form 7 A o,
for e D, 0 <7 < T. That is, we fix a deterministic time 7, and the alternative
policy is adopted at time 7 or at the time the inventory is depleted, whichever occurs
first. As shown in Section the optimal solutions of optimization problem (Pp,,))

are the same as for optimization problem
U(ﬁ)ﬂ)/\o) = inf:reZ+,TeF,0<T<T{c('r) + CN’(x> T A 0)} (PD/\<7>

with C(z, 7 A o) given by (see relation [4.16)

N Cser® + § €N (W) [Coe + qCre — (1 = q)Coer — Ca(w)[P(No(u) < x)du
C(z,Tr0,) =
+(h = 6¢cser) § € "E((z — No(u)) ") du.

(4.59)

Also from relation (4.3) we know that

T

V(Ppno) = 0(Poro) + j e\ (1) cq () du. (4.60)

0
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Due to the previous remarks we will analyze in this section optimization problem
1} As in Section , this joint minimization problem can be solved in two stages;
we first find the best procurement quantity for a given 7, and then search for the best
7. In the first stage, we follow the arguments of Section [4.5, The proofs for the first
stage follow mostly by simple modification of those in Section by replacing T" with
7. For the second stage, we follow the footprints of the analysis of Section [£.4] To

start our analysis we define

U(7) := infpez, {c(z) + C(z,7 A 0,)}. (Pyn)
It now follows that
V(Ppng) = infocrer U(7). (4.61)

Before discussing the solution procedure for the above optimization problem we first
give some sufficient conditions on the cost functions and the parameters under which
it is optimal not to order and start at time 0 with the alternative policy. The next

result is a special case of Lemma [2]

Lemma 26. If ¢,(0) < ¢se + gcre + (1 — q)cy,, with ¢, given by relation (3.5), then
1t 18 optimal not to order in optimization problem and to start immediately at
time 0 with the alternative policy. In this case the optimal objective value of problem
is given by Sg e U\ (u)cq (u)du.

In almost all cases the sufficient conditions of Lemma are not satisfied by
our problem parameters and so we need to give an algorithm to solve optimization
problem . In the general case we will use the approach as suggested by relation
and so part of the algorithm will consist of a procedure determining the optimal
order size in case the switching time 7 is known in advance. We can only execute
this procedure by solving problem a finite number of times. This means

that we first need to construct from the set [0,7] a finite set D = {7, 72,...7n}
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satisfying 0 < 71 < ...7x < T such that with a known error bound we can replace the
optimization problem in relation (4.61]) by its discrete version inf_ __ (7). To select

this finite set D introduce the set
S:={0<7<T :¢o(T) = Cse + qCre — (1 — q@)Cser}- (4.62)
The next result yields some upperbound on the rate of growth of the function 7 —

CN'(I,T A oy) for a fixed x € Z, .

Lemma 27. For every 7,5 =2 0 with 7 + s < T and x € Z,, we have

~

C(xz, (T+8) Aoy) — CN’(z,T A Og)

(4.63)
> e (Coe + qCre — (1 = q)Cser — a(T))(A(T + 8) — A(7))15(7)
with 1g the indicator function of the set S defined in relation .
Proof. By relation and h — dcger = 0 we obtain
Clx, (T +8) A og) — Cla, 7 A 0y)
> B (57500 e A (e + acre — (1= 0)er — calu))du) (464)

= E (SY“)MI e\ (u)(cse + qere — (1 — q)Coer — ca(u)l{%y}du) )

Since the function ¢, is non-increasing it follows for 7 not belonging to the set S that

Cse + qCre — (1 — q)Cser — co(u) = 0 for every u = 7. This implies by relation (4.64])

~ ~

C(z, (T +s) Aoyg) —Cs(z, 7 Aoy) = 0. (4.65)

Using again ¢, is non-increasing we obtain for every 7 belonging to the set S and
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u = 7 that

—5u(

€ Cse + qCre — (1 - Q)Cscr — Cq (U)) = 6_67—(086 + qCre — (1 - Q)Cscr - Ca(T))

and

757(

€ Cse + 4Cre — (]- - Q)Cscr - Ca(T)) < 0

This shows by relation (4.64]) that

E (SEHS)MI e " Au)(Cse + qere — (1 — q)Coer — ca(T))l{UPT}du)
> e ((Coo + qere — (1 — q)coor — ca(T))E (gﬁ”sm )\(u)l{UPT}du)
> e 9 ((Cse + qCre — (1 — @)Cser — ca(T)(A(T + 5) — A(T)).
This shows the result. u

Applying Lemma [27] the following result follows immediately using a similar proof

as in Lemma [18

Lemma 28. For every 7,5 = 0 with 7 + s < T we have
V(T +8)—U(T) = e " (Coe 4+ qCre — (1 — @) Coer — CalT))(A(T + 5) — A(T))15(T). (4.66)
An immediate consequence of Lemma [28]is given by the following important corol-

lary.

Corollary 2. The function T — U(7) is non-decreasing on the complement of the set

S on [0,T].

An important consequence of the above corollary is given by the observation that

an optimal solution of optimization problem 1) belongs to the set .S and so we
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obtain

V(Ppro) = infres ¥(T). (4.67)

Before applying the result of Lemma to construct a finite set D < S having a
predetermined error bound we first discuss solving optimization problem for
some given 7 belonging to the set S. This procedure can only be applied a finite
number of times and so it is crucial to construct this finite set D < S. In case the
function c is not discrete convex one can show in a similar way as done in Lemma

with some obvious modifications the following upper bounding result.

Lemma 29. There exists an optimal solution of problem and any optimal

. . o . . 5 .
solution xﬁ\ym of optimization problem (Py(y)) satisfies xﬁw(ﬂ < Up,., with

Upy,, = min{zx € Z, : k(x,7) > go(00,7)} < +00 (4.68)

with the function gy listed in relation (4.54]) and the function k in relation (4.22)).

As for the other problems one can improve the above upper bound. The next
result can also be verified in similar way as done in Lemma [12| with some obvious

modifications.

Lemma 30. [fulsq!( 0= and

UPy(r)
Uy mel = min{x € Z, : k(x,7) > gQ(Uﬁ\p(T)m,T)}, (4.69)

then the sequence up, n € Zy 1s non-increasing, and any optimal solution T3

()’ W (+)

of optimization problem (Py(r)|) satisfies x%5 < up for everyn e 7. .
Py (r) W(r)s"

After at most u Pay,, ANY iterations, the upper bound at an iteration will be the
same as the previous one. Hence, the construction will stop at some upper bound
u

_]5‘1’(7)

{0,1,...,us }. We leave the details to the reader.
W (r)

, and we can search for the minimal procurement amount in 1) over the set
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If the procurement cost function c is discrete convex on Z, we do not need to use
the upper bounding procedure. The next convexity result is a special case of Lemma

Bl

Lemma 31. If the procurement function c is discrete conver on Z, and c,(T) = Cse +
qCre — (1 — q)Cser 07 equivalently T € S, then both the function x — c(x)+ C(z, T A 0,)

and z — c(z) + C(x,7 A 0,) are discrete convex on Z., .
Proof. Apply relation (3.35). o

Lemma eases the search for the minimal procurement amount for the problem
1) for 7 € S under the discrete convexity of the procurement cost function ¢. The

first order condition

~

:c;gw( = min{r € Z, : c(x + 1) — ¢(z) + A,C(x,7 A 0,) = 0} (4.70)

in terms of the difference operator in (4.57) is simply sufficient, and no upper bound

is needed. It is also easy to evaluate the objective value at 2% by observing
W (r)

Py (r) =

~ ¥ -1 ~
C (x}“;@(T),T A O % ) —= Z Poe ALC(k, T A o). (4.71)

Under the assumption of discrete convexity of the procurement cost function ¢ stated
in Lemma 31} one can establish sufficient conditions for which optimal order quantity
xfpm is equal to zero for 7 € S. Clearly, :ETI,(T) = 0 if and only if ¢o(1) —|—AC~'(O, TAOY) =
0 by ([70). Since P(No(u) = 0) = e~*® 4 > 0, we have

AC(0,7 A 00) = Coer + J e~ [outAo(w] [)\(u)(cse + qcre — (1 = q)Cesr — Ca(u))
0 (4.72)

h — 503@«} du.

The following is now immediate from the integral term in (4.72). No proof is
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needed.

Lemma 32. If the function T — N(T)(cse +qcre — (1 —q)Cesr — €a(T)) is non-decreasing
on S, then the function T — ACN'(O, T A 0g) is unimodal, if not monotone, on S. Let

us define
= inf{T € [0,T]; M7)(cse + qCre — (1 — q)Cesr — ca(T)) = 0} (4.73)

with the convention inf ¢ = 0. Then, T — Aé(O, T A 09g) 1S non-increasing on [0, ],

and it is non-decreasing on [, T).

Since on S the function 7 — ¢ + ¢¢re — (1 — ¢)Cser — €o(7) is non-positive and
non-decreasing, a sufficient condition for the monotonicity assumption in Lemma
is to assume that the arrival rate function is decreasing. This is indeed a realistic
assumption since the number of products/items (with a warranty contract) owned by

customers is clearly non-increasing over time.

Corollary 3. Recall that to avoid pathological cases we assume that co(x) + Cser is

increasing, hence we have ¢(1) + cser > 0. Then, if

~

we have x3,) = 0 and V() = 0. Under the stronger condition AC(0, 7 A 0g) = Coer =
0, the inequality (4.74]) holds for every T € S, and :L'}"B\P(T) =0, and ¥(1) = 0 for every

T €S again.

We now conclude our analysis with the following algorithm to solve optimization

problem 1’ As in the optimization problem 1) we discretize the space S to

search for a value of 7 within a given computational tolerance level € > 0. For that

we define the set D := {ry,..., 75} < S where 7y = 0, and for i > 1,
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Tit1 = min { §>7; 1 e e + qCre — (1 = qQ)Cser — a(T)(A(s) — A(T)) < —¢ }

(4.75)

Here, N is the iteration number for which the relation (£.75) exceeds sup 9, and

at which we set 75 = supS. By Lemma , we have for every s € [7;, Ti11]
U(s) = U(n) = e [ege + qere — (1= @)cser — ca(M](A(T + 5) = A(7)),
which further implies that

min V(7;) = v(Pp ) = min &(1;) —e.
TE ¥ (r) €

Hence, the error associated with searching the best 7 in the set D is no more that

the given error level € > 0.

Algorithm 4. Numerical Algorithm to Solve Optimization Problem :

1. Select € > 0 and construct on the compact interval S the finite discretization D =
{T1,..., 75} with 7y = 0 and 7;’s are as defined using (4.75). The construction

([4.75) continues until sup S is exceeded, and we set Tg = sup S.

2. For every T; € D, if the function c is conver (see Lemma , find T using

v(r)

(4.70) and evaluate V(7;) via (4.71)). Otherwise find the smallest upper bound

described in up, and compute

= argmin, ;. {e(x) + CN'(x, Ti A Og)}

Py (7 “Py(r;)
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with
) = c(a% O 2% ,
V() c(xP\p(T)) + C(xpwm,n A ax;ksq’(m).
3. Find the value of T} attaining min,cp V(7;), and output (x%  ,77) as an e-

Py () T

optimal solution.

Using now the lower bound in Chapter 3 one can also set a predetermined relative

error.

4.7 Numerical Examples

In this section, we give examples for the problems analyzed in the Sections -
. For that, we adopt the experimental setup discussed in Pourakbar et al.| [2012],
which originated from a case study of a well-known supplier of consumer electronics
products in the European market. The product under consideration is the cathode
ray tube (CRT) which is an essential component of old generation TV sets or monitors
in the 1990s. Due to the introduction of liquid crystal display (LCD), plasma and
organic light emitting diode (OLED) screens, CRTs have become obsolete and their
production has been terminated. So, for the company the end-of-life problem of this
service part is an essential challenge.

The parameters and their values for the base case scenario are summarized in
Table 411

The planning horizon (or the time all warranties expire) is taken as 7' = 66
months. The procurement cost function is linear and has the form c¢(x) = ¢,z for
some constant ¢,. The cost of the alternative policy/product decays exponentially
and is given by ¢,(u) = c,e~ " for some constants ¢, and 7. The penalty cost of using

the alternative policy stays steady and is given by a constant p. It simply represents



84 CHAPTER 4. ON STATIC AND RELATED POLICIES

Table 4.1: Parameter setting for the base case scenario

Notation Definition Cost
Cp Procurement cost per item 225
h Holding cost per item per time 3.25
Coe Service cost per item 30
Cre Repair cost per repairable item 20
P Penalty cost per item 100
Ca Alternative policy cost per item 645
Cser Scrapping cost per item 30
v Price erosion factor per month 0.02
o Discounting factor per month 0.005
q Repair probability of an item 0.5

the additional costs associated with an emergency order for the alternative product.
As in |[Pourakbar et al|[2012], we assume that the customer arrival process N (see

(3.1)) has the arrival intensity A\(u) = au?e="", u > 0. This implies

Au) = f As)ds — i—fj l1 e (1 T bu+ ?)] | (4.76)

0

Below, we set b = 1, and for a we consider two different values 100 and 1000. For
a = 100 the expected total demand over [0,66] is A(66) ~ 200, and for a = 1000 it
is approximately 2000 (the expected demand is proportional to a). Tables and
report our results for the various choices of the problem parameters. Table
summarizes our results for the case a = 100, and Table is for @ = 1000. In
constructing these tables, we select the base case scenario whose parameter values
are given in Table [L.1 In each row of Tables and [4.3] consisting of three lines,
we increment and decrement the value of one of the parameters by several folds
(compared to the base case) while fixing the others. In Tables and the lines
with ¢ = 0.005 correspond to our base case scenario. Column headers in Tables
and [£.3] are the labels of the problems discussed in Sections [£.3] - [£.6] For a given

parameter set in these tables, the first number indicates the optimal initial order
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quantity and the second is the minimal expected total cost. In columns/problems
and the optimal 7 values are given as the last entries. Recall that we
apply the Algorithms [1{ and 4| to solve the problems and respectively. In
we know that the value L given in (3.41)) yield a lower bound for the minimal
expected cost when p(u) = ¢ for all u € [0,T] (as in the examples that we consider
in this section). Moreover, it is straightforward to verify that L is proportional to
a. Therefore in Algorithm || we set € < (L/a)/100 to fill in the entries of in
Tables [1.2] and [£.3l The number L does not act as a lower bound for the minimal
cost in since the pair (0, 7) is not a feasible solution in that problem. Hence,
in Algorithm 4| we simply set € < ¢,/1000 to obtain the results in Tables and .
Also, in most of the considered cases, the convexity conditions of Lemmas [15], 21] [25]
and [31] hold. Therefore the optimal order quantities are easily identified using first
order conditions. In the remaining cases, the order quantity is searched over the set

of values restricted with an upperbound; see Lemmas [12] [24] 20 and [30]
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Table 4.2: Optimization problem (a,b)=(100,1) (z*, Cost, 7*)
Pr Pro Pp Poro
[ =0.001 | (99, 34754.0) | (104, 36297.5) | (102, 34155.0, 12.70) | (106, 35149.2, 11.90)
§=0.005| (99,34561.0) | (104, 35918.9) | (101, 33984.7, 12.85) | (106, 34984.3, 11.85)
0 =0.025 | (99, 33640.2) | (104, 34516.8 ) | (100, 321585.3, 13.00) | (105, 34172.6, 11.60)
~ =005 | (93,34090.2) | (102, 35349.9) | (100, 33611.4, 12.40) | (104, 34566.2, 11.45)
~ =009 | (95,33476.9) | (100, 34614.7) | (97, 33115.4, 11.70) | (102, 34010.5, 10.90)
v =0.13 (93, 32886.8) (97, 33826.5) (95, 32621.0, 10.95) (99, 33401.2, 10.40)
g =02 | (159, 48283.0) | (159, 48437.0) | (162, 47702.3, 11.90) | (162, 47702.3, 11.90)
g=04 | (119, 39157.7) | (122, 40110.0) | (121, 38525.9, 12.65) | (125, 39262.4, 11.85)
g=08 (40, 20511.4) | (46, 22728.6) | (41, 20147.7, 12.85) | (48, 21768.4, 11.80)
¢, = 100 (103, 21923.4) | (107, 22774.1) | (107, 21004.9, 12.35) | (110, 21484.1, 12.00)
¢, =350 | (95,46724.5) | (101, 48695.1) | (97.46367.5, 12.95) | (103, 48049.2, 11.35)
cp = 450 (92, 56088.8) (99, 58700.9) (93, 55852.2, 12.95) (100, 58193.7, 11.05)
co =345 | (93, 32980.9) | (97, 34034.6) | (95, 32743.6, 12.05) | (99, 33613.2, 10.45)
cqo = 945 (102, 35485.3) | (107, 36908.8) | (105, 34671.0, 13.00) | (109, 35685.5, 12.30)
cq = 1245 | (104, 36135.4) | (109, 37579.1) | (107, 35139.6, 13.15) | (111, 36155.7, 12.65)
e =0 | (100, 28778.0) | (104, 30126.3) | (102, 28168.4, 13.00) | (106, 20161.2, 11.95)
Cse = 60 (99, 40339.1) | (103, 41655.9) | (101, 39794.3, 12.20) | (106, 40806.9, 11.80)
e =90 | (98, 46107.5) | (103, 47429.5) | (100, 45603.7, 11.70) | (105, 46582.3, 11.70)
h = (98, 35347.5) | (102, 36938.0) | (101, 34560.2, 12.35) | (106, 35656.7, 11.70)
h=10 (95, 37299.1) | (99, 39543.1) | (99, 36148.4, 12.00) | (104, 37425.5, 11.00)
h =15 (93 ,38981.9) (97, 41782.2) (98, 37670.1, 12.00) (103, 39156.2, 10.55)
p— (99, 32590.7) | (104, 33988.0) | (101, 32014.9, 12.85) | (106, 33043.1, 11.90)
Go =40 | (99, 36531.3) | (104, 37849.8) | (101, 35954.7, 12.65) | (106, 36925.1, 11.85)
Cre = 60 (99, 38501.6) | (103, 39731.3) | (101, 37924.9, 12.45) | (106, 38866.2, 11.80)
Cor =0 | (100, 34483.2) | (104, 35766.8) | (102, 33844.6, 12.65) | (107, 34772.3, 11.80)
Coor = 40 | (99, 34586.9 ) | (104, 35969.6) | (101, 34027.3, 12.85) | (106, 35064.8, 11.85)
Cor = 60 | (99, 34638.8) | (103, 36019.8) | (101, 34112.4, 12.90) | (105, 35186.3, 11.90)
p=20 (97, 34084.4) | (104, 35918.9) | (100, 33622.2, 13.00) | (106, 34984.3, 11.85)
p=300 | (102, 35296.2) | (104, 35018.9) | (104, 34522.2, 12.45) | (106, 34984.3, 11.85)
p =500 (104, 35852.2) | (104, 35918.9) | (106, 34917.0, 12.25) | (106, 34984.3, 11.85)

The results in Tables 4.2] and 4.3 numerically illustrate the sensitivity of the solu-
tions with respect to the problem parameters. For example, as expected, we observe
that the total costs are decreasing when the discount factor ¢ increases. We see that
the order quantities are non-increasing in 6. Roughly speaking, we order less at time
zero to protect ourselves against future costs when these costs are discounted at a
heavier rate. On the other hand, when the price erosion factor 7 increases, we know
that the price of the alternative product decreases faster. As a result, we observe that
we switch to the alternative policy earlier in problems and as expected,

and this causes us to order less initially. In problem (Pr,.,)), we also order less because
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the lower the initial inventory is, the sooner it will be depleted and the alternative
policy will be adopted. In problem (Pr]), we order less again since an unscheduled
use of the alternative product in the future has a lower cost impact. Compared to the
erosion factor v, we see that the total expected cost is more sensitive to the repair
probability ¢. In particular, when ¢ increases, on the average more products will be
repairable and we therefore need to order less to satisfy the customer requests during
the repair replacement phase. This in turn decreases the total cost. Note that lower
initial inventory does not necessarily imply an earlier switching time since it may be
cost efficient to take advantage of the repairability of the items. The sensitivity in ¢,
is also as expected. The higher ¢, is, the higher the total expected costs and the lower
the initial order quantities are. We observe the opposite effect for ¢, on the order
quantity, since the alternative product becomes more expensive as ¢, increases, we
switch to the alternative policy later and therefore we order more initially. Obviously
the total cost is increasing in c,.

Recall that in the repair replacement policy, the service cost ¢, is incurred if an
arriving item is repairable or there is a spare item in inventory if it is not. Clearly,
when we increase the value of ¢, we observe that the total cost increases and the
initial order quantity decreases in each problem. In our base case scenario we have
g = 0.5, which means on the average half of the arriving items are repairable. As
a result, cg has a significant impact on the total costs in our examples. Compared
to Cse, the repair cost c¢.. has a similar effect on the total cost and on the order
quantity . However, its effect on the total cost is relatively less since it applies
to repairable items only. The sensitivity of our solutions to the holding cost is as
expected. As h increases, the total cost increases, and so we order less. Compared to
other parameters, we observe that the solutions reported in Table |4.2| are less sensitive
to h. The impact of the cost of scrapping c... is also as expected, and the solutions

are not highly sensitive to it. We believe that this is mainly because of the fact in