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ÜRÜN ÖMRÜ SONU ENVANTERİ PROBLEMİ ÜZERİNE

Sonya Javadi Khatab

Endüstri Mühendisliği, Doktora Tezi, 2018

Tez Danışmanı: Doç. Dr. Semih Onur Sezer, Prof. Dr. J.B.G. Frenk

Anahtar Kelimeler: Ürün ömrü sonu envanteri, servis parçaları, martingal

süreçleri.

Özet

Bu çalışmada, ürünleri servis yaşam döngüsünün son aşamasında olan bir üretici için,

ömür sonu envanteri problemini ele aldık. Bu aşama parça üretimi sonlandırıldığında

başlar ve son hizmet sözleşmesi sona erinceye kadar devam eder. Bu problemi çözmek

için kullanılan taktiklerden en popüleri, son sipariş miktarı olarak adlandırılan,

son aşamanın başında yeterli miktarda yedek parça üretmek ya da yerleştirmektir.

Bunu takiben tamir-değişim politikası defolu ürünleri tamir ederek veya değiştirerek

müşterilere hizmet vermektedir. Diğer taraftan günümüzde, ürünlerin fiyatları hızlıca

düşerken tamir ve hizmet maliyetleri zaman içinde genelde sabit kalmaktadır. Böyle

bir durumda, müşterilerin hizmet taleplerini karşılamak için alternatif bir politika

uygulamak mali bakımdan daha etkili bir seçim olabilir. Bu politika müşterilere yeni

nesil ürünlerde fiyat indirimi veya benzer tipte yeni bir ürün önerme şekilinde olabilir.

Bu çerçevede amaç, en iyi son sipariş miktarı ve alternatif politikaya geçiş zamanı ik-

ilisini beklenen toplam maliyeti minimuma indirecek şekilde bulmaktır. Bu tezde

bu problemi farklı matematiksel teknikler gerektiren statik ve dinamik yaklaşımler

kullanarak incelemekteyiz.
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Abstract

We consider the so-called End-of-Life inventory problem for a manufacturer of spare

parts in the final phase of the service life cycle. The final phase starts when the part

production is terminated and continues until the last service contract expires. One of

the most popular tactics to cope with this problem is to place a sufficient volume of

spare parts at the beginning of the final phase which is called the final order quantity.

Then the repair-replacement policy serves the costumers by repairing or replacing the

defective items. On the other hand, nowadays, a considerable price erosion happens

for the products while repair and service costs stay steady over time. If so, it is more

cost effective to consider an alternative policy to meet the service demands after some

time. This policy may offer the costumers a new product of similar type or a discount

on a next generation product. In this setup, the purpose is to find an optimal pair of

final order quantity and switching time to an alternative policy which minimizes the

total expected discounted costs. We study this problem under the static and dynamic

approaches which require different mathematical techniques.
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Chapter 1

Introduction

1.1 End-of-Life Inventory Management

Today our lives are surrounded by a huge variety of goods. Most of our individual

and social needs are nourished by many different brands and commodities. The

rapid improvement of technology has increased the competition for companies to

produce new goods. In fact, companies need huge number of satisfied customers to

quench their thirst to earn more profits. One way of obtaining satisfied customers for

companies is to offer tempting service options. Hence, calling the recent decades the

“golden age” of services is not far from the fact. In a recent benchmark study covering

more than 120 companies from different sectors including aerospace and defense,

automotive, and consumer goods, Deloitte Research Glueck et al. [2007] shows that

business units related to service provide on average 75% higher profitability compared

with the overall business profitability. Although the revenues of these units amount

to only a quarter of total revenues, they yield almost 50% of the total profit.

From operational and managerial perspectives, providing an efficient service to

customers is challenging. This is due to demand variability and service part invento-

ries over service period. The main challenge is to fulfill service obligations and at the

1
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same time to avoid a huge number of obsolete service parts at the end of the service

phase. Service parts may be associated with capital products that call for rapid ser-

vice in the case of failure, in particular, telecommunications, healthcare, utilities, or

consumable products which the customer uses recurrently, i.e. items which get used

up or discard such as office supplies and electronic items. The original equipment

manufacturers (OEMs) are dealing with the inventory management of service parts.

It would be worthwhile to introduce some of the terminology of service part in-

ventory management. It is a primary concern to identify in which phase of the service

life cycle the part is. Phases are identified according to the demand pattern the part

is following. The life cycle of a spare part does not mimic the product life cycle

necessarily. In general, there are three phases of the service life cycle of spare parts,

namely, the initial, normal, and final phases. In the initial phase, the production of

spare parts starts and the first demand for service arrives. However, demand in this

phase is low, adaption for demand fluctuations is allowed by changing the production

rates. During the normal phase the production of service parts is up and running

which provides management with the ability to adjust production rate to meet de-

mand. Final phase starts when the part production is terminated and ends when the

last service (or warranty) contract expires. In general, the final phase is the longest

period within the life cycle of a service part. For instance, in the electronic industry

this phase may last four up to thirty years, while the production of electronic appli-

ances is normally terminated after less than two years as pointed out in Teunter and

Haneveld [2002]. On the other hand, increasing rate of innovation, especially in the

electronics market, makes a very short life cycle of production. As a consequence,

the final order of service parts is typically placed within a year after final production.

The main challenge of this phase, for the manufacturer, is the acquisition of parts

with a huge functional demand. Basically, the manufacturer tries to avoid a massive

number of obsolete units at the end of this phase while its primary aim is to meet all
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customer’s requests. Various strategies have been applied in recent decades to cope

with the final phase inventory problem, for instance substituting another part for the

obsolete one, obtaining the discontinued part from another manufacturer, redesign-

ing the product, and purchasing a sufficient volume of the obsolete part to sustain

production. To satisfy product replacement during the final phase, the manufacturer

needs to procure a certain amount of service parts at once to cover the demand during

the remaining period. This is called a last-time or a life-time buy; see Bradley and

Guerrero [2008].

In the literature of service parts inventory management, the inventory control of

service parts in the final phase of the service life cycle is known as the end-of-life

(EOL) inventory problem, the final buy problem (FBP), or the end of production

problem (EOP). Another important concept in the literature of service parts inven-

tory management is the repair-replacement policy. Under this policy, the defective

product is either repaired or replaced by a functioning part depending on its condi-

tion. This part may either be a new part or a repaired returned item. In a recent

study, Pourakbar et al. [2012] propose a new methodology which introduces the pos-

sibility of switching to an alternative policy, such as offering a discount on a new

model of the product, giving credit to customers, or swapping the defective product

with the same or a similar one. They call this policy an alternative policy . This

policy has recently received an extensive attention in the literature as a compelling

policy to the meet demand.

The term of contract, or warranty, is also a crucial concept in this field. The

warranty may be considered as either one-dimensional or multi-dimensional. Under

a one-dimensional policy, the warranty will expire when a single attribute threshold,

like age, is passed while in a multi-dimensional policy, the warranty will expire if the

first criteria will be passed.

Research on the end-of-life inventory management is rich and extensive. Re-
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searchers have considered various strategies and assumptions to cope with this prob-

lem. In general, the research can be divided into three main categories: service-driven,

cost-driven and forecasting based approaches. In a service-driven approach, a service

level is optimized regardless of the cost incurred by the system. A cost-driven ap-

proach gives a monetary value to different operations related to service and then tries

to minimize the total cost. A forecasting based view, focuses only on mimicking the

demand behavior during the final phase to meet the demand. The cost-driven ap-

proach is the most relevant one to our study and as a result, we will go into the detail

of this policy in the next chapter.

1.2 Outline

In this study, we consider the end-of-life inventory problem for the manufacturer of

service parts in its final phase of the service life cycle. Following Pourakbar et al.

[2012], the manufacturer may switch to an alternative policy during the final phase

which is a more cost effective policy. In this setup, the objective is to find an op-

timal pair of final order quantity and switching time to an alternative policy which

minimizes the total expected discounted cost. In fact, the switching time is a stop-

ping time based on the realization of the arrival process of defective items where the

arrival process is given by a non-homogenous Poisson process. Mathematically, we

formulate the problem much more generally by considering the class of all possible

stopping times. This means that our decision time to switch to an alternative policy

at a certain point, also depends on the realization of the demand process up to that

time. As such the approach of Pourakbar et al. [2012] considering only determinis-

tic switching time is a very special case of our model. Four optimization problems

are introduced based on different strategies. In each problem, we analyze rigorously

the properties of the objective function to propose an exact or ε-optimal algorithm
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to solve. Finally we give some numerical examples to understand how sensitive the

polices are on different parameters.

In the next part of the study, we study this problem under a general continuous

switching time structure. In fact, we consider the end-of-life inventory problem as an

optimal stopping problem. This gives a solution which is optimal within the class of

all static and dynamic policies. To approximate the optimal stopping problem, there

are different techniques in the literature, among which we consider the standard tool

of discrete time Markov dynamic programming. To apply this technique appropri-

ately, we assume that the stopping times take values on some pre-determined discrete

set. Indeed, we approximate the continuous stopping times set with a discrete one by

introducing an ε-error level mesh. Then the Bellman optimality equations are con-

structed to find optimal final order quantity and stopping region. Finally numerical

results are given to compare the performance of optimal dynamic policy with other

policies.



Chapter 2

Literature Review

2.1 Introduction

“ Business absolutely devoted to service will have only one worry about profits. They

will be embarrassingly large. Henry Ford, founder of one of the world’s largest manu-

facturing companies, once said. Decades later, however, companies are still struggling

to heed this advice. Manufacturers are looking for growth and profits in all corners of

the globe, but they often neglect the very large opportunities much closer to home in

their own service businesses ” Glueck et al. [2007]. However, a major task in service

management is the timely and cost efficient provision of spare parts. The traditional

strategy of spare parts acquisition is to place a large amount of final orders at the

initial phase, causing major holding costs and a high level of obsolescence risk. There

are different strategies from different perspectives to solve the problem. In fact, there

is an extensive pool of researches related to those strategies. In general, research on

the end-of-life inventory problem can be divided into three groups: service-driven,

cost-driven and forecasting based approaches. More recent papers take into account

other sources of meeting the demand and also there are other researches which con-

sider the different types of warranty as their assumptions. In this chapter, the pioneer

6
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and most recent papers of the different approaches will be discussed in detail, and a

short review of other papers on the service inventory management literature also is

given. In Table 1, we classify the papers by their research focus.

2.2 Service-Driven Approach

Many researches on the service inventory management literature belong to the service-

driven approach. Basically, in the service-driven approach, the purpose of research

is to optimize some service measures such as the proportion of customers receiving

spare parts and the filling rate -probability of running out of the stock- to meet

the demand in the final phase. In other words, in this approach, a service level is

optimized regardless of the cost incurred by the system. The leading papers on this

approach (Fortuin [1980], Fortuin [1981]) describe a service level approach and address

non-repairable items or consumable spare parts. The latter is refereed those parts

which leave the system permanently after satisfying demand. He drives a number

of curves by which the optimal final order quantity for a given service level can

be obtained. He considers an exponentially decreasing demand pattern and applies a

normal approximation to derive expression for several service levels. In another study,

Hill et al. [1999] address the problem of determining stock replacement policies to meet

the demand for spare parts in the final phase of service life cycle. The authors solve

this problem under assumptions that the number of items still in use is decreasing

and the parts fail randomly according to a Poisson process with an underlying rate

decreasing exponentially. They use the dynamic programming approach in continuous

time to derive optimal policies which minimize the mean total discounted cost of set-

up order, production, unsatisfied demand, and left spare parts over the final phase.

In fact, they propose a newsvendor approach to determine the optimal replenishment

size if there is only one option to place a final order.
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Another remarkable paper in this approach is given by Van Kooten and Tan [2009].

They consider a final ordering situation for a single spare part that does not interact

with other parts, specifically taking the effect of condemnation into account. They

model the problem under a continuous-time Markov chain which the failures of a

spare part occur due to a Poisson process and the repair lead times are distributed

exponentially. A defective spare part is immediately attempted to be repaired upon

its arrival to a repair shop. After designing the model as a transient Markov chain,

they define the actual service level that the customers receive and also calculate the

first and second moment of the time until absorption. Accordingly, a final order

size is obtained that guarantees a certain service level during the final phase. They

compare the final order quantity that are obtained by the Markovian model and

the approximated model on the other hand, and the optimal one which is obtained

through simulation. They observe that in most cases the Markovian results are close

to the simulation ones. They apply this methodology for a manufacturer of complex

technological machines in the Netherlands.

Inderfurth and Mukherjee [2008] develop another service-driven approach. They

consider three options to satisfy demand in the final phase of life cycle or as they call

post product life cycle period. They assume the option of setting up a single large

order within the final lot of regular production, performing extra production runs until

the end of service and using remanufacturing to gain spare parts from used products.

Obtaining the optimal combination of these three options is the main challenge of this

paper. To overcome this difficulty, they use the decision tree and stochastic dynamic

programming methods simultaneously and propose a heuristic method. The decision

tree approach is a suitable tool in the case of limited size, while their heuristic method

reduces the problem’s complexity to a simple two-parameter order-up-to policy.

There are other papers indirectly related to the service-driven approach. Indeed,

they address production planning and control of remanufacturing products. They
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suggest the idea that returned items may be provided as spare parts for the original

equipment manufacturers (OEMs). One of these papers which considers the reman-

ufacturing or recycling returned items is Souza et al. [2002]. As reported in the

paper, remanufacturing has been characterized as ”... an industrial process in which

worn-out products are restored to like-new condition. Through a series of industrial

processes in a factory environment, a discarded product is completely disassembled.

Useable parts are cleaned, refurbished, and put into inventory. Then the new product

is reassembled from the old and, where necessary, new parts to produce a fully equiv-

alent -and sometimes superior- in performance and expected lifetime to the original

new product”. Lund [1983] develops an analytical model to maximize profits and

minimize average flow time and as-well-as a simulation method. In particular, his

model is a decision support tool for a manager to make decision for mixed products.

2.3 Cost-Driven Approach

A cost-driven approach gives a monetary value to different service-related operations,

and then adopts to a policy to minimize the total cost. In other words, all the

costs associated with serving customer during the final phase of spare parts, holding

inventory, scrapping spare parts, procurement cots, etc. are taken into account. The

purpose is to find an optimal final order quantity which will minimize the total cost.

Basically, a cost-driven approach decides on the quantity purchased by weighting the

cost of ordering too many against the cost of buying too few, or in other words,

a newsvendor type approach. Research on the cost-driven approach is much more

extensive than the previous approach. There are other classifications inside of this

category, like product’s type, merely consumable and capital, or the sourcing options

to satisfy the demand.

Over this category of research, the most pertinent to ours is Fortuin and Martin
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[1999]. They discuss extensively how to control the service parts in the final phase

of the product’s life cycle. They start by emphasizing the service parts importance

in the maintenance of industrial systems and consumer products. Continuing that

the control of service parts is a complex matter due to the difficulty of forecasting

the demand and logistic of service parts. They try to answer the main questions of

managing service parts, such as which items are needed as service parts? which service

parts have to be stocked? when do we need to (re)order? how much do we need to

(re)order?. They give some suggestion, from a management point of view, to answer

the questions, however, they admit that to answer those questions mathematically

is not easy. In the paper, Teunter and Haneveld [1998] address the final order for

the spare parts of an expansive machine. This machine contains a number of the so-

called critical components. A failure of such a component causes the machine to break

down. During the first part of life cycle of the machine, before the service contact

expires, spare parts can be bought at any time, while after this time the supplier

offers the customer a final chance to order spare components. That is the customer is

allowed to place one final order. Their purpose in this paper is to minimize the total

expected discounted costs including holding costs, procurement costs and out-of-order

costs in case of a shortage. They assume that the customer is arriving according to

a Poisson process. They show that a multi-component final order problem can be

approximately decomposed into single component final order problem. After that,

they derive a simple optimality condition for calculating optimal final order. To

implement their approach, they use a real life example, a company which sells Gas

Turbines, Reciprocation Compressors and Centrifugal Compressors and this company

allows their customers to place one final order when it stops supplying spare parts.

Another cost-driven approach is developed by Teunter and Fortuin [1998]. In

this paper, they introduce Philips company and its productions. The service period

depends on the type of product involved in this company. Like other companies, the
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main problem of Philips to meet the demand at this period is the long duration of

service period in comparison to the production period. In this paper, for the first

time, they introduce the terminology of end-of-life period and define as the part of

the service period after the product has been taken out of production. In Philips,

Logistics Operations Philips Consumer Service (LOPCS) is in charge of supplying

the spare parts. According to the company, the products are classified into two

types: professional and non-professional which the first one is refereed to the most

expensive equipments while the second one indicates that the equipment is sold, for

the larger part, to private customers. They apply their method to find a near optimal

final order in a cost minimization problem for the non-professional equipments in

Philips. Actually, this paper is a case-study of their previous paper to understand

how successful this method is in reality as well. To predict the demand distribution,

in this paper, they develop a method based on the demand history of a component at

the moment of final ordering. Then, using the expected cost calculations, the optimal

shortage probability, i.e. the optimal probability the final order is smaller then the

EOL demand, is been calculating and they give three examples to depict the accuracy

of their method.

Next, Teunter and Fortuin [1999] consider two types of policies in the end-of-life

period, the so-called simple and remove policies. A simple policy places a final order

at the beginning of the end-of-life period and removes all remaining stock at the end.

A remove policy adds the feature of a remove-down-to levels at the end of each month.

These levels are used to reduce cost by removing stock before all the service contracts

have expired. Their purpose is finding optimal and close to optimal final orders using

a minimal cost approach. Given the production, holding, removing and shortage

cost parameters, by applying a dynamic programming technique, they try to find

those order quantities. They seek the final orders that minimize the accumulate cost

functions over the entire EOL by considering a discounted cost criteria. In sensitivity
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analysis section, they show that in all cases the expected discounted cost associated

with the optimal remove strategy is at most the cost associated with the optimal

simple strategy. They contribute also that the simple policy suffices since it has low

administration cost.

Besides these authors, Teunter and Haneveld [2002] consider an appliance man-

ufacturer’s problem of controlling the inventory of a service part in the final phase.

They assume that if the part is not ordered at the beginning of the final phase, its

price will be higher in the later stages. They propose an ordering policy consisting of

an initial order-up to level at time zero like the beginning of the final phase, and a

subsequent series of decreasing order-up-to levels for various intervals of the planning

horizon. Also, Cattani and Souza [2003] develop another cost-driven approach that

studies the effect of delaying a last-time buy. In fact, if the decision can be delayed,

the expected overage and underage costs can be reduced. They build a model to

understand the relation. Their results provide an insight on the effect of the final

order quantity under various scenarios of demand. They observe that benefits of a

delay to the manufacturer of last time buy are non-decreasing and concave in the

delay time. A longer delay is always as good as or better than a shorter delay. They

illustrate that it is necessary for the manufacturer to compensate the supplier for the

losses incurred!

Bradley and Guerrero [2008] address the life-cycle mismatch problem when the life

cycles of parts end before the life cycles of the products in which those parts are used.

Their contribution in this paper is to extend the research on the life-time buys to

the more complex and realistic circumstance with one product having multiple parts

that become obsolete over its lifetime. They prove the existence and uniqueness of

the optimal solution for this problem and drive an implicit analytical solution. They

claim that there is not any closed-form expression for the optimal solution and instead

they drive simple closed-form heuristic policies which one of them is lower bound and
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the other is upper bound on the optimal solution. They evaluate the accuracy of

the heuristic performances by using simulation of demand behavior while observing

which heuristics perform best in different scenarios. Indeed, they develop an accurate

metastatic by observing the heuristics performances. Managerially, they find out

that while lifetime buys can be an effective tactic for sequential obsolete parts when

demand is stationary, their effectiveness is greatly diminished in some scenarios with

non-stationary life cycle demand patterns.

In more recent works, Inderfurth and Kleber [2013] address multiple-options like

extra production and re-manufacturing to meet the demand during the final phase,

however, this problem yields a complicated stochastic dynamic decision. They suggest

a heuristic procedure for parameter determination which accounts the main stochastic

and dynamic interactions in decision making. They develop two steps to build their

heuristic models: firstly they select a simple policy for period-period decision making

and secondly they propose a heuristic procure to determine all policy parameters such

that they are close-optimal. They apply their method on an automotive sector.

Leifker et al. [2014] investigate a contract extension on a regular strategy to meet

the demand during the final phase, while the advantages and disadvantages of this

decision need to be considered by both parties: the customer and supplier. As a

result, the company should answer these two questions: under which conditions will

both the manufacturer and customer prefer a contract extension? and what is the

value of extending the contact? They assume that there is a probability that the

customer may request a contract extension at the end of the contract period and this

probability depends on the number of active products in operations at the end of the

initial contract period. They also consider some other assumptions to construct their

model, the manufacturer knows how many units of the products are in operation at

any time, the length of any potential contract extension is known at the beginning

and the period under examination by the end-of-life problem does not necessarily
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end with the manufacturers required to supply replacement parts. They examine two

potential models for solving the problem: a dynamic programming model in which the

possibility of salvage is taken into account and a simple two-stage stochastic model in

which salvage is not allowed. They investigate their models from managerial insights

and explain that the two-stage algorithm for the final order quantity is a useful tool

for the managers in increasing their profits in the case where the possibility of contract

extension occurs. An increase in the initial contract life results in an increase in the

optimal order quantity as well as a corresponding decrease in the expected profit.

Another study is by Behfard et al. [2015], they develop a heuristic method to find

the near-optimal last time buy quantity in presence of an imperfect repair option

of the failed parts that can be returned from the filed. The supplier is for advanced

capital goods, for instance, mainframe computer systems, aircraft, chemical plans and

medical systems, they collaborate with two industrial partners (computer machinery

and printing machines). To construct their model, they make trade-offs between one

alternative supply option, namely repair of the filed parts that are returned from the

filed. Since stochastic dynamic programming can not solve the large scale problems

efficiently, they propose an efficient heuristic method assuming a base stock policy for

the repair decisions. A numerical experiment to test the performance in terms the

accuracy of the method is given and according to their results, alternative policy is

worth considering even if it is expensive and also they indicate that reduction of the

demand variability significantly reduces the last time buy quantity.

As mentioned before, there are some papers in this section which indirectly are

related to the cost-driven approach. Most of them take other aspects of service

management into account. A short summary of those are given to understand the

importance of this field.

As Iskandar and Murthy [2003] define ”a warranty is a contractual agreement

between the manufacturer and customer, which requires the manufacturer to rectify
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all item failures either through repair or replacement should failure occur within the

period specified in the warranty. Warranty serves a dual role it protects the buyer

from being sold defective items and at the same time, restricts unreasonable claims

on the manufacture by buyers. Over the last few years, manufacturers have used

warranty as an effective advertising tool to promote their product.” There are two

types of warranty: one - and two- dimensional policies. A one-dimensional warranty

policy is characterized by a one-dimensional time line called the warranty period,

while two-dimensional warranty policy is indicated by a region in a two-dimensional

plane with one dimension representing time and the other representing usage. The

origin time corresponds to the time of a sale. A typical example is an automobile

warrantied for three years or 100,000 kilometers for travel. In this paper, they consider

the repair-replacement strategies for products sold with two-dimensional failure free

warranty policies. Under this policy, the manufacturer may either repair the failed

item or replace it with a new one. Their strategy divides the warranty region into

two sub-regains and they study for every sub regions, different repair-replacment

strategies by assuming a constant cost to repair failed item over the warranty region.

Another paper, Atasu and Cetinkaya [2006] focus on the reverse supply chain

process used for product returns to recover value by re-processing them via re-

manufacturing operations. They try to develop analytical models for the efficient

use of the returns in making production, inventory, and re-manufacturing decisions

during the active market, which refers to the sale’s period of the product. This model

considers a stylistic setting where a collector collects used product returns and ships

them to the manufacturer who, in turn, recovers value by re-manufacturing and sup-

plies products. They investigate the impact of timing and quality of the collector

shipments of used product returns. They indicate that the fasted reverse supply

chain many not always be the most efficient one.

Samatlı-Paç and Taner [2009] study and investigate different repair strategies for



16 CHAPTER 2. LITERATURE REVIEW

one- and two-denominational warranties with the objective of minimizing manufacture

expected warranty cost. They propose static, improved and dynamic repair strategies.

Actually, the quaso-renewal processes are used to model the product failures along

with the associated repair actions. It is worth reminding that a two-dimensional

warranty is a natural extension where the warranty period is characterized by a

region defined simultaneously by time and usage. And the quasi-renewal process is

characterized by a scaling parameter that alters the random variable corresponding

to time until next failure after each renewal. They generalize the univariate quasi-

renewal process to multivariate distributions to model two-dimensional warranties on

a cost warranty function. They draw a conclusion that according to the computation

results the dynamic policy generally outperforms both static and improved policies

on highly reliable products whereas the improved policy is the best for products with

the low reliability.

Kleber et al. [2012] propose a buy-back broken products strategy in order to

improve control of both the demand for spare parts and supply of recoverable parts.

This strategy specifically target dysfunctional products. They introduce a dynamic

approach and consider a strategy which includes re-manufacturing complemented by a

final order as a benchmark in their work. A numerical example is given to compare the

potential gains of both strategies and it shows that both strategies can be beneficial

for the OEM. This paper is the first attempt to investigate the value of buying back

for the broken products for spare parts management.

2.4 Forecasting Based Approach

Forecasting-based approach focuses on forecasting the demand for a discontinued

service part instead of dealing with the production or inventory cost. The major aim

of this area is to provide the probabilistic tools to estimate the customer demand in
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the final phase of spare parts to meet the demand.

The approach was first developed by Moore Jr [1971] who tries to forecast the

demand for the past-model replacement parts during the life-cycle of the products.

For controlling manufacturing, inventory and obsolescence costs of past-model re-

placement parts (he calls the spare parts as past-model parts), all-time requirements

forecasting is suggested. He introduces a new forecasting technique based on the

principle of estimating sales requirements for all-time into the future along with a

dynamic inventory model to meet the demand during the final phase. He also intro-

duces the concept of an all-time requirement, i.e., the cumulative demand for a part

from the present for all time into the future, in the development of generating long

range forecasts of replacement part demand, then he transforms these foretastes into

manufacturing schedules by using a dynamic inventory model. His idea to forecast

the demand after the first peak demand is a transformation of sales data from an

arithmetic scale to a logarithmic scale. He obtains the year of peak demand accord-

ing to the actual annual sales data, then for parts which indicate sales decay, a plot

of sale after the peak year against the index number of the year of those sales is ob-

tained on a fully logarithmic scale. Consecutively, he determines the ellipse, parabola

and starlight line which fit best the transformed sales data. Finally, he transforms

the curve from the logarithmic to an arithmetic sale to provide yearly sales forecasts.

For implementation, he applies his technique to an American auto manufacture, and

shows that for 100 complete parts histories, the average error in cumulative demand

estimates for the last four years of sales activity is less than 6 percent of the actual

sales.

Following Moore Jr [1971], Ritchie and Wilcox [1977] try to forecast the spare

demand, this time, by using the renewal theory. They claim that there must be a

relationship between machine sales and demand for spare parts of the machine. They

find out that if one part is less essential to the functioning of a machine the quicker
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demand for it declines. They use these arguments to count the number of effective

machines in a month, i.e. those machines which give rise to a demand for spares.

Then, they estimate the expected demand for spares in month n by two parameters,

one is the rate at which a component fails per unit time per machine, and the other is

the effective machine numbers per month. As they indicate in the conclusion section,

the main drawback of this method is the computational burden to determine the

model parameters for each item and the costs of providing and updating the records

needed for this purpose. Solomon et al. [2000] address a methodology to forecast life

cycles of an electronic part in which both years of obsolescence and life cycle stages are

predictable. This methodology embeds both market and technology factors according

to the dynamic assessment of the sales data. This paper also introduces a new concept

as the life cycle mismatch problem for the first time, which is defined as a lack of

synchronization between the part and product life cycles.

One of the more mathematical and technical papers of this category is Iida [2002].

In this paper, he considers a non-stationary periodic dynamic production-inventory

model with an uncertain production capacity and uncertain demand. The production

capacity varies stochastically according to the uncertainties in the production process,

for instance, unexpected breakdowns and unplanned maintenance. To minimize the

total discounted expected costs, he obtains the upper and lower bounds on optimal

policies for infinite horizon problems which are derived by considering some finite

horizon problems.

Hong et al. [2008] estimate and forecast the demand for a service part on the

final phase by considering three factors: the failure rate of a part, the replacement

of a failed part and the number of the units of a product population which are

operational during the final phase. They estimate the demand by using these factors

in a stochastic model. They give the prediction interval of the number of effective part

demand, as well as the expected value of the part demand, and closed-from solutions
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in the case of a constant failure rate are provided. Their numerical results show the

capabilities of their approach in comparison with the Ritchie-Wilcox model.

Most recent paper in this topic is Kim et al. [2017]. In this research, they try to

forecast the spare part demand for the consumer goods using the so-called installed

base of the product, that is, the number of products still in use. This type of in-

formation is retentively easily available in the case of maintenance contracts. They

propose a set of installed base concepts with associated simple empirical forecasting

mythologies that can be applied in practice.
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Table 2.1: Overview of the existing literature on the end-of-life inventory
management

Approach

Literature cost-driven service-driven forecasting other

Moore Jr [1971] X�
Ritchie and Wilcox [1977] X�
Fortuin [1980] X�
Fortuin [1981] X�
Lund [1983] X�
Teunter and Haneveld [1998] X�
Teunter and Fortuin [1998] X�
Teunter and Fortuin [1999] X�
Hill et al. [1999] X�
Fortuin and Martin [1999] X�
Solomon et al. [2000] X�
Souza et al. [2002] X�
Teunter and Haneveld [2002] X�
Iida [2002] X�
Cattani and Souza [2003] X�
Iskandar and Murthy [2003] X�
Atasu and Cetinkaya [2006] X�
Bradley and Guerrero [2008] X�
Hong et al. [2008] X�
Inderfurth and Mukherjee [2008] X�
Samatlı-Paç and Taner [2009] X�
Van Kooten and Tan [2009] X�
Bradley and Guerrero [2009] X�
Van Kooten and Tan [2009] X�
Pourakbar et al. [2012] X�
Kleber et al. [2012] X�
Leifker et al. [2012] X�
Inderfurth and Kleber [2013] X�
Leifker et al. [2014] X�
Leifker et al. [2014] X�
Behfard et al. [2015] X�
Kim et al. [2017] X�



Chapter 3

The End-of-Life Inventory Problem

In this chapter we introduce the end-of-life inventory problem of a consumer electron-

ics manufacturer as discussed in (Pourakbar et al. [2012]) . In the first section we

give a description of the problem under the repair-replacement and alternative poli-

cies, and we introduce all costs which the manufacturer incurs over the final phase.

In the second section a detailed derivation of the objective function and the corre-

sponding optimization problem are provided. In the same section we also derive some

additional useful properties for the analysis of this problem in the following chapters.

21



22 CHAPTER 3. THE END-OF-LIFE INVENTORY PROBLEM

3.1 Introduction

In the end-of-life inventory problem, the defective products arrive according to a

Poisson point process to a repair or replacement. To introduce this arrival process

let pΩ,H,Pq be a probability space hosting the point process pTi, RiqiPN. The random

variable Ti, i P N denotes the arrival time of the ith customer having a defective

product and requesting repair. The counting process of defective products N �

tNptq : t ¥ 0u defined by

Nptq :�
¸8

i�1
1tTi¤tu, t ¥ 0, (3.1)

is assumed to be a non-homogeneous Poisson process with a bounded Borel arrival

intensity function λ. The random variables Ri, i P N, on the other hand, are indepen-

dent and identically distributed Bernoulli random variables indicating the condition

of the defective items. They are defined as

Ri �

$'&
'%

1 if i’th product can be repaired

0 if i’th product cannot be repaired

(3.2)

with probability q P r0, 1s of being one. The thinned arrival processes

N0ptq :�
¸8

i�1
p1�Riq1tTi¤tu and N1ptq :�

¸8

i�1
Ri1tTi¤tu, (3.3)

count the number of non-repairable and repairable products over time and it is well

known Çınlar [2011] that the arrival processes N0 and N1 are independent non-

homogeneous Poisson processes having intensity functions λ0 � p1 � qqλ, λ1 � qλ

respectively. In the sequel, we let F � pFtqt¥0 � H denote the filtration of the point

process pTi, RiqiPN; that is, the flow of information associated with both the arrival

times of the products and their conditions. Next to the arrival process of defective
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products let T denote the time at which all service obligations with respect to this

product of the supplier expires, and x P Z� � t0, 1, 2, . . .u be the initial inventory

level available at the repair facility. It is assumed that keeping inventory is costly

and so we incur inventory holding cost of h ¡ 0 per spare part per unit of time. At

the same time, we use in our model both the total cost and the net present value ap-

proach with discount rate δ ¡ 0. At time zero we need to order an inventory of spare

parts and the cost of obtaining/producing the final batch of spare parts is given by a

so-called procurement cost function c : Z� ÞÑ R�. It is assumed that the function c

is non-decreasing and satisfies cp0q � 0 and limxÑ8 cpxq � 8. Starting with x units,

the supplier uses the repair-replacement policy until some (possibly random) time

τ ¤ T . In the most general case τ is a stopping time with respect to the filtration F.

The set of all bounded stopping times with respect to this filtration is also denoted

by F.

Under the considered policy, if an arriving item is repairable, it is repaired at

some repair cost cre plus some service cost cse. If the item is non-repairable and

the inventory level of spare parts is non-zero, the item is replaced with a spare one

from the inventory at service cost cse only. However, if no spare part is available in

inventory, then the defective item is replaced using an alternative policy and the cost

of this alternative policy is given by the function ca. An example of an alternative

policy is the possibility to replace the defective item by a substitutable product. If

this happens at time u the total cost is given by capuq plus some additional penalty

cost ppuq. This penalty cost is added to penalize the nonavailability of a spare part

during the repair replacement policy. In practice the penalty cost can for example

represent the additional cost of an emergency order for this substitutable product to

be transported from a different location. Due to the availability of an alternative pol-

icy with known cost function ca during the operation interval r0, T s, it might become

more cost effective to abandon the repair-replacement policy at a certain moment in
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time and start using from that moment on the alternative policy. Due to this, we

incorporate the possibility that at a (possibly stochastic) time τ ¤ T , the supplier

completely switches to the alternative policy and discards the existing inventory (if

there is any) at a scrapping cost of cscr per item. If a service request arrives at time

u after the switching time τ , then the alternative policy is used at cost capuq. Here,

the functions ca and p are both non-increasing. Namely, the alternative method (e.g.,

a substitutable product) as well as the penalty associated with unscheduled use of it

become cheaper over time. Unless stated otherwise this condition will always hold in

this thesis.

For ease of notation, we denote the total cost of applying the alternative policy

before the switching time as

cappuq :� capuq � ppuq, u ¥ 0. (3.4)

In the above model, a final order order quantity of size x of spare parts and even-

tually switching at time τ ¤ T to an alternative policy are decisions to be determined

by the decision maker. Such a policy is called an px, τq-policy. Clearly, the first vari-

able x is static, and its value is determined at time zero. The switching decision, on

the other hand, can be dynamic, and in the general formulation of the problem τ is a

stopping time of the filtration F. The set of all these stopping times is also denoted

by F.

In our formulation, only the scrapping cost can be negative, all other cost terms

are positive. If there is a net revenue associated with scrapped parts, we have cscr   0,

otherwise it is non-negative. To avoid pathological cases where ordering is profitable

because of scrapping, we assume that the function x ÞÑ cpxq � c�scrx is increasing

where

c�scr :� �mintcscr, 0u (3.5)
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and the limit value as xÑ 8 is infinity. Also for the scrapping action to be econom-

ically justifiable, we must have h � δcscr ¥ 0. If this condition fails to hold, instead

of scrapping an item at some time τ , we can keep it indefinitely in the inventory at

a total cost of h
³8
τ
e�δudu � ph{δqe�δτ which would be less than cscre

�δτ . Since the

actions repair or replacement by an non-defective spare part from inventory within

the repair-replacement policy cost at least cse it is natural to assume that the penalty

cost of using the alternative policy within the repair-replacement period has also at

least at cost of cse. This means by the positive cost of the alternative policy that

cappuq ¡ cse for every 0 ¤ u ¤ T . These three conditions on the cost functions and

the parameters always hold in this study unless stated otherwise.

In the next table we list for completeness the main cost components of the end-

of-life problem.

Table 3.1: Notation summary

Notation Definition

cp.q Procurement cost function
cap.q Cost function of using the alternative policy
pp.q Penalty cost function of using alternative policy before switching time τ
capp.q Cost function cap.q � pp.q of using alternative policy before switching time τ
h Holding cost per item per unit of time
cse Service cost per item
cre Repair cost per repairable item
cscr Scrapping cost per item
δ Discount rate of net present value
q Repair probability of a defective product

3.2 The Objective Function For px, τq Policies

In this section we derive the expected discounted cost of any px, τq-policy, x P Z�,

τ P F and introduce the optimization problem to be solved. To make it easier to the

reader to distinguish the different cost components and the structure of a px, τq-policy
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we list in Figure 3.1 the timing of the different actions and their costs. In this figure

the random variable σx denotes the (random) time of inventory depletion in case we

order x spare parts at time 0. This is given by the stopping time

σx :� inftt ¡ 0 : N0ptq ¥ xu. (3.6)

As shown in the figure, the total expected discounted cost is the sum of the pro-

curement cost and expected discounted operation costs. The procurement cost of

ordering a final batch of x spare parts at time 0 is given by cpxq. The expected

discounted operation costs, of any px, τq-policy, on the other hand, consist of the

following components:

Figure 3.1: Decisions and costs over the time line.

• Inventory holding costs: As shown in Figure 3.1 we switch to the alternative

policy at time τ ¤ T and scrap at that time (possibly) leftover inventory of spare

parts. Hence it is clear that the random discounted inventory holding costs are
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given by

h

» τ

0

e�δupx�N0puqq
�du (3.7)

with pzq� :� maxpz, 0q. This shows that the expected discounted holding costs

equal

hE
�» τ

0

e�δupx�N0puqq
�du



. (3.8)

• Service costs: As shown in Figure 3.1 the service costs consist of service costs

for both repairable and non-repairable products. For repairable products service

costs only occur during the repair-replacement phase from time 0 to time τ in

any px, τq-policy. For non-repairable products service costs additionally only

occur if at the time of arrival of a defective product the stock of spare parts is

positive. Hence for these non-repairable products these service costs only occur

from time 0 to time τ ^ σx with

τ ^ σx :� mintτ, σxu (3.9)

and σx given in relation (3.6). This shows that the random discounted service

costs are given by

cse

» τ

0

e�δudN1puq � cse

» τ^σx

0

e�δudN0puq.

Since it is well know for any bounded Borel measurable function k that the

stochastic processes Mi � tMiptq : t ¥ 0u, i � 0, 1 given by

Miptq �

» t

0

kpuqdNipuq �

» t

0

kpuqλipuqdu

are F-martingales (Çınlar [2011]) and τ ¤ T is a bounded stopping time it

follows by Doob’s stopping theorem (Çınlar [2011]) that the expected discounted
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service costs equal

cseE
�³τ

0
e�δuλ1puqdu

�
� cseE

�³τ^σx
0

e�δuλ0puqdu
�

� qcseE
�³τ

0
e�δuλpuqdu

�
� p1� qqcseE

�³τ^σx
0

e�δuλpuqdu
�
.

(3.10)

• Repair costs: As shown in Figure 3.1 we only incur repair costs during the

repair-replacement phase from time 0 to time τ . Hence the random discounted

repair costs are given by

cre

» τ

0

e�δudN1puq. (3.11)

By a similar martingale argument as used for the service cost case and applying

Doob’s stopping theorem, the expected discounted repair costs equal

creE
�» τ

0

e�δuλ1puqdu



� qcreE

�» τ

0

e�δuλpuqdu



. (3.12)

• Alternative policy costs: As shown in Figure 3.1 the random discounted costs

of applying the alternative policy consist of the cost of applying the alternative

policy before time τ due to the nonavailability of spare parts before the switching

time τ and the cost of applying the alternative policy after the switching time.

Hence the random discounted cost of using the alternative policy are given by

» τ

τ^σx

e�δucappuqdN0puq �

» T

τ

e�δucapuqdNpuq. (3.13)

Again by a similar martingale argument as used for the service costs, apply-

ing Doob’s stopping theorem, and using cappuq � capuq � ppuq, the expected

discounted costs of the alternative policy equal

p1� qqE
�³τ

τ^σx
e�δucappuqλpuqdu

	
� E

�³T
τ
e�δucapuqλpuqdu
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�

$''&
''%

p1� qqEp
³τ
0
e�δucappuqλpuqduq � p1� qqE

�³τ^σx
0

e�δucappuqλpuqdu
�

�E
�³T

τ
e�δucapuqλpuqdu

	

�

$''&
''%

³T
0
e�δucapuqλpuqdu� E

�³τ
0
e�δurp1� qqppuq � qcapuqsλpuqdu

�
�p1� qqE

�³τ^σx
0

e�δucappuqλpuqdu
�
.

(3.14)

• Scrapping costs: As shown in Figure 3.1 the random discounted scrapping

costs at time τ are given by

cscre
�δτ px�N0pτqq

�.

This shows that the expected discounted scrapping costs in a px, τq policy equal

cscrEpe�δτ px�N0pτqq
�q. (3.15)

Adding up the separate operation cost components in relations (3.8), (3.10),

(3.12),(3.14) and (3.15) the expected discounted operation cost Cpx, τq of any px, τq-

policy is given by
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Cpx, τq :�

$''''''''''''''''''''''''&
''''''''''''''''''''''''%

hE
�» τ

0

e�δupx�N0puqq
�du



loooooooooooooooooomoooooooooooooooooon

expected holding cost

� qcreE
�» τ

0

e�δuλpuqdu



loooooooooooooomoooooooooooooon

expected repair cost

�qcseE
�» τ

0

e�δuλpuqdu



� p1� qqcseE

�» τ^σx

0

e�δuλpuqdu



looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

expected service cost

�p1� qqE
�» τ

τ^σx

e�δucappuqλpuqdu



� E

�» T

τ

e�δucapuqλpuqdu



loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

expected alternative policy cost

�cscrEpe�δτ px�N0pτqq
�qloooooooooooooomoooooooooooooon

expected scrapping cost

(3.16)

This implies using relation (3.14) that

Cpx, τq �

$'''''''&
'''''''%

hEp
³τ
0
e�δupx�N0puqq

�du� cscrEpe�δτ px�N0pτqq
�q

�E
�³τ

0
e�δurqpcre � cse � capuqq � p1� qqppuqsλpuqdu

�
�p1� qqE

�³τ^σx
0

e�δuλpuqrcse � cappuqsdu
�
�
³T
0
e�δucapuqλpuqdu.

(3.17)

To rewrite the expression in relation (3.17) in a more suitable form we first observe

by the chain rule for the stochastic process t ÞÑ e�δtpx�N0ptqq that

e�δτ px�N0pτqq
� � e�δpτ^σxqpx�N0pτ ^ σxqq

� x� δ
³τ^σx
0

e�δupx�N0puqqdu�
³τ^σx
0

e�δudN0puq

� x� δ
³τ
0
e�δupx�N0puqq

�du�
³τ^σx
0

e�δudN0puq.

(3.18)

This implies by Doob’s stopping theorem

Epe�δτ px�N0pτqq
�q � x� δE

�» τ

0

e�δupx�N0puqq
�du



� p1� qqE

�» τ^σx

0

e�δuλpuqdu



.

(3.19)
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Replacing now the expectation for the scrapping value in (3.16) with the expression

in (3.19), we obtain after some simple re-arrangement of the terms the following more

suitable alternative representation of the expected discounted operation costs

Cpx, τq �

$'''''''&
'''''''%

cscrx� p1� qqE
�³τ^σx

0
e�δuλpuqrcse � cscr � cappuqsdu

�
�E

�³τ
0
e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�
�ph� δcscrqE

�³τ
0
e�δupx�N0puqq

�qdu
�
�
³T
0
e�δuλpuqcapuqdu.

(3.20)

Together with the procurement cost component, the optimization problem associated

with the end-of-life inventory problem is therefore given by

υpPFq � infxPZ�,τPF,0¤τ¤T tcpxq � Cpx, τqu, (PF)

and one needs to find a px, τq-policy, if it exists, attaining the infimum above. Note

by relation (3.17) or (3.20) that

Cp0, 0q �

» T

0

e�δuλpuqcapuqdu

and this is the cost of the policy of not ordering and at time 0 immediately applying

the alternative policy. Since the cost
³T
0
e�δucapuqλpuqdu in relation (3.20) of this

policy is independent of x and τ one can also solve the optimization problem

υp rPFq � infxPZ�,τPF,0¤τ¤T tcpxq � rCpx, τqu ( rPF)

with

rCpx, τq :� Cpx, τq �

» T

0

e�δuλpuqcapuqdu. (3.21)
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This means using relation (3.20) that the objective function is given by

rCpx, τq �

$'''''''&
'''''''%

cscrx� p1� qqE
�³τ^σx

0
e�δuλpuqrcse � cscr � cappuqsdu

�
�E

�³τ
0
e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�
�ph� δcscrqE

�³τ
0
e�δupx�N0puqq

�du
�
.

(3.22)

Also it is obvious that

υpPFq � υp rPFq �

» T

0

e�δuλpuqcapuqdu. (3.23)

Note by using rC as our operation cost function we actually measure the difference in

cost between any px, τq-policy and the policy of not ordering and using immediately

at time 0 the alternative policy. In the next chapter we will also consider px, τ ^ σxq

policies with

τ ^ σx :� mintτ, σxu. (3.24)

It is well known that this is also a stopping time with respect to the filtration F. This

means we consider the subclass of policies where we switch to the alternative policy

at the stopping time τ or at the time the inventory level hits 0 whichever occurs

first. This class of policies is considered since under these policies we will never incur

the (possibly high) penalty costs of using the alternative policy during the repair-

replacement phase. Before writing down an expression for the objective function for

this class of policies we observe that for any stopping time τ P F

» τ

0

e�δupx�N0puqq
�du �

» τ^σx

0

e�δupx�N0puqq
�du.
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This shows

E
�» τ

0

e�δupx�N0puqq
�du



� E

�» τ^σx

0

e�δupx�N0puqq
�du



. (3.25)

Also it is easy to check that

e�δτ px�N0pτqq
� � e�δpτ^σxqpx�N0pτ ^ σxqq

�

and so

Epe�δτ px�N0pτqq
�q � Epe�δpτ^σxqpx�N0pτ ^ σxqq

�q. (3.26)

Replacing now τ by τ ^ σx in relation (3.17) and applying relations (3.25) and

(3.26) we obtain for every τ P F

Cpx, τ ^ σxq �

$'''''''&
'''''''%

hE
�³τ

0
e�δupx�N0puqq

�du
�
� cscrEpe�δτ px�N0pτqq

�q

�E
�³τ^σx

0
e�δuλpuqrcse � qcre � capuqsdu

�
�
³T
0
e�δuλpuqcapuqdu.

(3.27)

An alternative expression for Cpx, τ ^σxq applying relation (3.20) and replacing τ by

τ ^ σx is given by

Cpx, τ ^ σxq �

$'''''''&
'''''''%

cscrx� p1� qqEp
³τ^σx
0

e�δuλpuqrcse � cscr � cappuqsdu

�Ep
³τ^σx
0

e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�ph� δcscrqE
�³τ

0
e�δupx�N0puqq

�qdu
�
�
³T
0
e�δuλpuqcapuqdu

�

$''&
''%

cscrx� p1� qqEp
³τ^σx
0

e�δuλpuqrcse � qcre � p1� qqcscr � capuqsdu

�ph� δcscrqE
�³τ

0
e�δupx�N0puqq

�du
�
�
³T
0
e�δuλpuqcapuqdu

(3.28)
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Hence, if we like to determine the optimal policy among all px, τ ^ σxq-policies, we

need to solve the optimization problem

υpPF^σq � infxPZ�,τPF,0¤τ¤T tcpxq � Cpx, τ ^ σxqu. (PF^σ)

As for the previous problem we rescale the above optimization problem using relation

(3.21) and so we need to solve the equivalent optimization problem

υp rPF^σq � infxPZ�,τPF,0¤τ¤T tcpxq � rCpx, τ ^ σxqu. ( rPF^σ)

Again we obtain as before

υpPF^σq � υp rPF^σq �

» T

0

e�δuλpuqcapuqdu. (3.29)

To compare the expressions for Cpx, τ ^ σxq and Cpx, τq it follows replacing τ by

τ ^ σx in relation (3.17) that

Cpx, τq�Cpx, τ ^σxq � E
» τ

τ^σx

e�δuλpuqrqpcse� cre� capuqq� p1� qqppuqsdu (3.30)

Hence in case

qpcse � cre � capuqq � p1� qqppuq ¥ 0

for every 0 ¤ u ¤ T there exists an optimal solution of optimization problem (PF)

among the set of policies τ ^ σx, τ P F and x P Z�. Observe the integral in relation

(3.30) can have a positive or negative value. To explain the formula in relation (3.30)

we observe the following. If we apply the repair-replacement policy until time τ

instead of time τ ^ σx we will still have the repair option within the time interval

rτ ^ σx, τ s and we need to pay for any item arriving at u on average the cost qpcre �

cseq � p1 � qqcappuq. In case we already started with the alternative policy at time
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τ ^σx we need to pay for any arriving item at time u the cost capuq and this explains

the formula in relation (3.30).

Since it is also clear that in some pathological cases we will not order anything

due to the low cost of the alternative policy at time 0 we mention the following result.

Lemma 1. If capp0q ¤ cse�c
�
scr with c�scr listed in relation (3.5) then it is optimal not

to order in optimization problem (PF). If this holds then the optimal switching time

τ�PF
belongs to D, the set of deterministic stopping times in r0, T s, and is a solution

of the optimization problem

infτPD

"» τ

0

e�δuλpuqrqpcre � cse � capuqq � p1� qqppuqsdu

*
. (3.31)

Proof. To verify the result it is sufficient to show for every τ P F that the function

x ÞÑ cpxq�Cpx, T q is non-decreasing. If cscr ¥ 0 then by our assumption capp0q ¤ cse.

Since the function cap is non-increasing we obtain cappuq ¤ cse for all u P r0, T s. This

implies that the function x ÞÑ Ep
³τ^σx
0

e�δuλpuqrcse � cappuqsdu is non-decreasing in

x and we obtain by relation (3.17) that for every τ P F the function x ÞÑ Cpx, τq

is non-decreasing. Since the procurement cost function c is by assumption also non-

decreasing we obtain that the function x ÞÑ cpxq � Cpx, τq is non-decreasing and we

have verified the monotonicity for cscr ¥ 0. If cscr ¤ 0 we obtain by our assumption

and cap non-increasing that cappuq ¤ cse� cscr for every 0 ¤ u ¤ T . This implies that

the function x ÞÑ Ep
³τ^σx
0

e�δuλpuqrcse � cscr � cappuqsdu is non-decreasing. Hence

by relation (3.20) the function x ÞÑ Cpx, τq � cscrx is also non-decreasing. Since for

cscr ¤ 0 the function x ÞÑ cpxq � cscrx is non-decreasing it follows by adding that the

function x ÞÑ cpxq � Cpx, τq is non-decreasing. Hence we may conclude

vpPFq � infτPF

"
E
�» τ

0

e�δuλpuqrqpcre � cse � capuqq � p1� qqppuqsdu


*
.

Since the integrand in the above integral does not depend on the stopping time it
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follows easily that an optimal stopping time of the above optimization problem is

given by an deterministic stopping time and the result is shown. �

Since the cost of using the alternative policy is always positive it is obvious that

under the natural condition ppuq ¥ cse the (sufficient) condition in Lemma 1 does not

hold. A similar result can be derived for optimization problem pPF^σq. Also in this

optimization problem it is clear that in some pathological cases we will not order due

to the low cost of the alternative policy at time 0. Using a similar proof as in Lemma

1 one can verify the following result.

Lemma 2. If cap0q ¤ cse � qcre � p1 � qqc�scr with c�scr listed in relation (3.5) then it

is optimal not to order in optimization problem (PF^σ) and to start immediately at

time 0 with the alternative policy.

Proof. It is sufficient to show that the function x ÞÑ cpxq � Cpx, τ ^ σxq is non-

decreasing. If cscr ¥ 0 then cap0q ¤ cse � qcre . Since ca is non-increasing it follows

that capuq ¤ cse � qcre for every 0 ¤ u ¤ T. This shows that the function x ÞÑ

E
³τ^σx
0

e�δuλpuqrcse�qcre�capuqsdu is non-decreasing and by relation (3.27) it follows

for every τ P F that the function x ÞÑ Cpx, τ ^ σxq is non-decreasing. Since by

assumption c is non-decreasing, the function x ÞÑ cpxq�Cpx, τ^σxq is non-decreasing

and we have shown the result for cscr ¥ 0. If cscr ¤ 0 then cap0q ¤ cse�qcre�p1�qqcscr

and hence capuq ¤ cse � qcre � p1 � qqcscr for every 0 ¤ u ¤ T . This shows that the

function x ÞÑ E
³τ^σx
0

e�δuλpuqrcse � qcre � p1 � qqcscr � capuqsdu is non-decreasing

Applying now relation (3.28) yields xÑ Cpx, τ ^ σxq � cscrx is nondecreasing. Since

x ÞÑ cpxq � cscrx is nondecreasing, we conclude that x ÞÑ cpxq � Cpx, τ ^ σxq is

non-decreasing and we have shown the result for cscr ¤ 0. �

In the next section we investigate the global properties of the objective function.
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3.3 On the Global Behavior of the Objective Func-

tion

In this section we investigate under which sufficient conditions on the cost functions

and the parameters the objective functions x ÞÑ cpxq�Cpx, τq and x ÞÑ cpxq�Cpx, τ^

σxq are discrete convex for every τ P F. This property is useful in solving optimization

problems (PF) or (PF^σ) for some special subset of policies to be considered in the

next chapter. Before mentioning the next result observe a function f : Z� Ñ R is

called discrete convex on Z� if its first order difference

∆xfpxq :� fpx� 1q � fpxq, x P Z�

is a non-decreasing function on Z�. The function f is called discrete concave if the

function �f is discrete convex.

Lemma 3. If the Borel measurable function f is non-decreasing and non-positive on

r0, T q, then for every τ P F,0 ¤ τ ¤ T the function

x ÞÑ F pxq :� E
�» τ^σx

0

fpvqλ0pvqdv



(3.32)

is non-increasing and discrete convex on Z�. If the function f is non-increasing and

non-negative on r0, T s, then this function is non-decreasing and discrete concave on

Z�.

Proof. It is sufficient to give the proof of the first result only. The second claim

follows replacing f by �f . Since f is non-positive it is obvious that the function F

is non-increasing. To show that the function F is discrete convex, we note by Doob’s
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stopping theorem

E
�» τ^σx

0

fpvqλ0pvqdv



� E

�» τ^σx

0

fpvqdN0pvq



� E

�¸x

k�1
fpσkq1tσk¤τu

	
.

Hence for every x P Z� it follows

∆xF pxq :� F px� 1q � F pxq � E
�
fpσx�1q1tσx�1¤τu

�
. (3.33)

This shows using σx�1 ¤ σx�2 implying 1tσx�1¤τu ¥ 1tσx�2¤τu and f non-decreasing

and non-positive on [0,T] and τ ¤ T that

fpσx�1q1tσx�1¤τu ¤ fpσx�2q1tσx�2¤τu.

This shows applying relation (3.33) that for every x P Z�

∆F pxq � Epfpσx�1q1t1tσx�1¤τu
q ¤ Epfpσx�2q1t1tσk�2¤τu

q � ∆F px� 1q,

and we have verified the discrete convexity property. �

If the stopping time τ is deterministic then by the same proof for convexity it is

easy to verify that we only need to assume that the function f is non-positive and

non-decreasing on r0, τ s. Applying the above lemma one can show under some general

(sufficient) conditions on the cost function cap and the cost parameters cse and cscr

that both functions x ÞÑ cpxq � rCpx, τq and x ÞÑ cpxq � Cpx, τq are discrete convex

on Z�.

Lemma 4. If the procurement cost function c is discrete convex on Z� and cappT q ¥

cse � cscr, then for every τ P F, 0 ¤ τ ¤ T the functions x ÞÑ cpxq � Cpx, τqand

x ÞÑ cpxq � rCpx, τq are discrete convex on Z�.

Proof. By relation (3.21) it is sufficient to show the result for the function with C.
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Since cap is non-increasing and cappT q ¥ cse � cscr, it follows that cappuq ¥ cse � cscr

for every u ¤ T . This implies that the function u ÞÑ e�δupcse � cscr � cappuqq is

non-positive and non-decreasing. Hence, by Lemma 3 the function

x ÞÑ E
�» T^σx

0

e�δuλ0puqpcse � cscr � cappuqqdu




is discrete convex. Since the random function x ÞÑ ppx � N0puqq
�q is also discrete

convex and h�δcscr ¥ 0 it follows from relation (3.20) that the function x ÞÑ Cpx, T q

is discrete convex again. Finally, the discrete convexity of c completes the proof. �

Since we always assume (unless stated otherwise) that ppuq ¥ cse and cap is non-

increasing, it follows for cscr ¥ 0 that the condition cappT q ¥ cse � cscr is always

satisfied. Note also for a deterministic stopping time 0 ¤ τ ¤ T one only need to

assume in the above lemma that

cappτq ¥ cse � cscr. (3.34)

We will now investigate under which conditions on the cost function ca and the

parameters cse, cre and cscr, the function x ÞÑ cpxq � Cpx, τ ^ σxq is discrete convex.

Lemma 5. If the procurement cost function c is discrete convex on Z� and capT q ¥

cse � qcre � p1 � qqcscr, then for every τ P F, 0 ¤ τ ¤ T , the functions x ÞÑ cpxq �

Cpx, τ ^ σxq and x ÞÑ cpxq � rCpx, τ ^ σxq are discrete convex on Z�.

Proof. Since ca is non-increasing and capT q ¥ cse � qcre � p1 � qqcscr, it follows that

capuq ¥ cse � qcre � p1 � qqcscr for every 0 ¤ u ¤ T . This implies that the function

u ÞÑ e�δupcse � qcre � p1 � qqcscr � capuqq is non-positive and non-decreasing and by

Lemma 3 the function x ÞÑ E
³τ^σx
0

e�δuλpuqrpcse � qcre � p1 � qqcscr � capuqqsdu is

discrete convex on Z�. Applying relation (3.28) and using h � δcscr ¥ 0 yields the

desired result. �
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As for Lemma 4 the above result also hold for a deterministic stopping time τ P D

if

capτq ¥ cse � qcre � p1� qqcscr. (3.35)

In the last section of this chapter we construct a lower bound on the optimal minimal

cost. This lower bound will be useful in solving the End-of-Life problem by replacing

the stopping times by stopping times only attaining values in a discrete finite subset

of r0, T s to be determined beforehand.

3.4 A Lower Bound on the Optimal Objective

Value.

To solve the optimization problem (PF) by replacing the stopping times by stopping

times having only a finite number of values and controlling the relative error by doing

so, we need a positive lower bound on the optimal objective value of optimization

problem (PF). To construct such a lower bound, we introduce the function g : Z� �

F ÞÑ R given by

gpx, τq �

$''&
''%

cpxq � cscrx� c�scrp1� qqEp
³T^σx
0

e�δuλpuqduq

�E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�
�
³T
0
e�δuλpuqcapuqdu

(3.36)

with c�scr � maxtcscr, 0u. In the next lemma we derive some useful properties of the

function g and at the same time show that gpx, τq is a lower bound on the cost of any

px, τq policy τ P F.

Lemma 6. For every τ P F, τ ¤ T the function x ÞÑ gpx, τq listed in relation (3.36)

is non-decreasing and limxÒ8 gpx, τq � 8. Also for every x P Z� and τ P F, τ ¤ T it
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follows in case ppuq ¥ cse for every 0 ¤ u ¤ T that

cpxq � Cpx, τq ¥ gpx, τq. (3.37)

Proof. By the monotone convergence theorem (Çınlar [2011])

limxÒ8 E
�» T^σx

0

e�δuλpuqdu



�

» T

0

e�δuλpuqdu.

This shows by the definition of g in relation (3.36) that for every τ P F

limxÒ8 gpx, τq � cpxq � cscrx   8.

Since by assumption limxÒ8 cpxq � c�scrx � 8 we obtain limxÒ8 cpxq � cscrx � 8 and

this implies

gp8, τq � limxÒ8 gpx, τq � 8.

To show that the function x ÞÑ gpx, τq is non-decreasing for every τ P F we observe

for cscr ¥ 0 that by relation (3.19)

x�p1�qqE
�» T^σx

0

e�δuλpuqdu



� e�δTEppx�N0pT qq

�q�δ

» T

0

e�δuEppx�N0puqq
�qdu.

This shows for cscr ¥ 0 that the function x ÞÑ cscrx� cscrp1� qqE
�³T^σx

0
e�δuλpuqdu

	
is non-decreasing. Using that the procurement cost function c is non-decreasing we

obtain by relation (3.36) the result for cscr ¥ 0. For cscr ¤ 0 the result is obvious

since by assumption the function x ÞÑ cpxq � cscrx is non-decreasing. To show for

every τ P F that cpxq �Cpx, τq ¥ gpx, τq we first observe using cappuq ¥ cse that the

cost p1 � qqEp
³τ
τ^σx

e�δuλpuqcappuqduq of applying the alternative policy before the
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switching time satisfies

p1� qqE
�» τ

τ^σx

e�δuλpuqcappuqdu



¥ p1� qqcseE

�» τ

τ^σx

e�δuλpuqdu




This implies by relation (3.16) that

Cpx, τq ¥

$''&
''%

hE
�³τ

0
e�δupx�N0puqq

�du
�
� cscrEpe�δτ px�N0pτqq

�q

�pcse � qcreqE
�³τ

0
e�δuλpuqdu

�
� E

�³T
τ
e�δuλpuqcapuqdu

	

¥

$''&
''%

hE
�³τ

0
e�δupx�N0puqq

�du
�
� cscrEpe�δτ px�N0pτqq

�q

�E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�
�
³T
0
e�δuλpuqcapuqdu.

Using relation (3.19) and h� δcscr ¥ 0 we obtain

Cpx, τq ¥

$'''''''&
'''''''%

cscrx� ph� δcscrqE
�³τ

0
e�δupx�N0puqq

�du
�

�cscrp1� qqEp
³τ^σx
0

e�δuλpuqduq

�E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�
�
³T
0
e�δuλpuqcapuqdu

¥

$''&
''%

cscrx� c�scrp1� qqEp
³T^σx
0

e�δuλpuqduq

�E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�
�
³T
0
e�δuλpuqcapuqdu.

This shows the desired result. �

To construct a computable positive lower bound on the optimal objective value

υpPFq we introduce

ζ � inft0 ¤ u ¤ T : cse � qcre � capuq ¥ 0u (3.38)

with the convention inf H � T . Since the function ca is non-increasing the function
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u ÞÑ cse � qcre � capuq is non-decreasing and so in the general case the constant ζ

is easy to determine numerically by bisection. Using Lemma 6 one can show the

following result.

Lemma 7. If cappuq ¥ cse for every 0 ¤ u ¤ T then the optimal objective value υpPFq

of optimization problem (PF) satisfies

υpPFq ¥ pcse � qcreq

» ς

0

e�δuλpuqdu�

» T

ς

e�δuλpuqcapuqdu (3.39)

with ς listed in relation (3.38).

Proof. By Lemma 6 it follows that

υpPFq � infxPZ�,τPF,0¤τ¤T tcpxq � Cpx, τqu

¥ infxPZ�,τPF,0¤τ¤T tgpx, τqu

¥ infτPF,0¤τ¤T tgp0, τqu

� infτPF,0¤τ¤T
 
E
�³τ

0
e�δuλpuqrcse � qcre � capuqduq

�(
�
³T
0
e�δuλpuqcapuqdu.

(3.40)

Since the integrand in the above optimization problem does not depend on the stop-

ping time τ it is easy to see that an optimal stopping time of this optimization problem

is given by some τ P D, 0 ¤ τ ¤ T and so

infτPF,0¤τ¤T
 
E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�(
� infτPD,0¤τ¤T

 ³τ
0
e�δuλpuqrcse � qcre � capuqsdu

(
.

Using that the function ca is non-decreasing it follows that the function τ ÞÑ³τ
0
e�δuλpuqrcse � qcre � capuqsdu is convex and by standard first order arguments
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the solution of this problem is given by ς defined in relation (3.38). Hence we obtain

υpPFq ¥ pcse � qcreq

» ς

0

e�δuλpuqdu�

» T

ς

e�δuλpuqcapuqdu

and we have shown the result. �

Since

pcse�qcreq

» ς

0

e�δuλpuqdu�

» T

ς

e�δuλpuqcapuqdu ¥

» T

0

e�δuλpuqmintcse�qcre, capuqudu

the result in Lemma 7 also implies the weaker lower bound

vpPFq ¥ L :�

» T

0

e�δu mintcse � qcre, capuqudu ¡ 0 (3.41)

In the next chapters, we will consider in more detail different subclasses of px, τq

policies. We will start in the following chapter with the subclass of static and related

policies and in the last chapter we will consider the class of all stopping times.



Chapter 4

On Static and Related Policies

In this chapter we study the end-of-life inventory problem under a general framework

where both the final order quantity and switching time are static and they are de-

termined initially at the beginning of the final phase. To cover all possible policies,

we consider four subclasses of px, τq-policies. These policies are differentiated from

each other by their restrictions on selecting the switching time. In each problem,

we study conditions under which the objective function is convex in the final order

quantity. This enables us to determine for a given fixed switching time the optimal

final order quantity using the first order conditions. If convexity does not hold, we

provide an upper bound for the final order quantity to devise an enumeration based

search algorithm. Having determined for each switching time how to compute the

optimal order quantity we then discuss how a near optimal switching time can be

obtained by selecting a cleverly chosen finite set of deterministic switching times and

evaluating for each of these switching times the objective value and selecting the best

one. Since this induces an error we also derive an upperbound on this error and this

bound is used to predetermine beforehand the error in objective value of the selected

near optimal switching time. Finally some numerical examples are given to study

how sensitive the policies and expected costs are with respect to different values of

45
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parameters.

4.1 Introduction

In this section we first introduce the set of px, τq-policies with τ being a deterministic

time. For notational convenience the set of deterministic switching times is denoted

by D. Any px, τq-policy with τ P D is called as a static policy. Static policies are

simple to use in practice since at time zero it is known at which time we will discard

possible inventory of spare parts and replace after that time the repair-replacement

policy with the alternative policy. The optimal policy within this class of policies is

called an optimal static policy. Note that an optimal static policy only depends on the

probability law of the arrival process and it does not depend on the realizations of the

arrival process as is the case for stopping times τ P F. This means if we decide at time

0 to switch to the alternative policy at the fixed time τ we apply this rule irrespective

of the realizations of the arrival process up to that time. The more general class of

dynamic policies depend on the realization of the arrival process and these policies

will be discussed in the next chapter. Restricting ourselves to a static px, τq-policy

we have the following options with respect to the selection of the switching time τ .

I. The most primitive class of px, τq policies is that policy in which we never switch

to the alternative policy; that is, we set τ � T and simply apply the repair-

replacement policy to all the defective items during the whole final phase and

select the minimal expected discounted cost policy among all px, T q policies.

In case a zero inventory level occurs before the end of the period (i.e. the

event σx   T happens), we incur a cost of cappuq serving a request of a non-

repairable item arriving at time σx ¤ u ¤ T via the alternative policy. In this

formulation, the final order quantity x is the only decision variable, and the

problem of finding the minimal expected discounted cost reduces to solving the
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optimization problem

υpPT q :� infxPZ�tcpxq � Cpx, τqu (PT )

This one-dimensional problem is considered in Teunter and Fortuin [1999] in a

discrete-time setting. To find the optimal order quantity, the authors use a dy-

namic programming approach to formulate the problem but propose a heuristic

approach based on marginal analysis to obtain a ”near” optimal order quantity.

Using now the definiton of the function rC in relation (3.21) for τ � T it follows

that the set of optimal solution of optimization problem (PT ) is the same as the

set of optimal solutions of the rescaled optimization problem

υp rPT q � infxPZ�tcpxq � rCpx, τqu. ( rPT )

Clearly by relation (3.21) we also obtain

υpPT q � υp rPT q � » T

0

e�δuλpuqcapuqdu. (4.1)

In Section 4.3 we will discuss in detail the optimization problem ( rPT ) under the

extended discounted cost structure of Pourakbar et al. [2012].

II. A natural extension of optimization problem (PT ) is to allow at any deterministic

time between 0 and T to switch to the alternative policy. In other words, we

select the switching time from the set r0, T s. This set of deterministic stopping

times is denoted by D. In this case we consider the subclass of all static px, τq

policies, x P Z� ,τ P D, 0 ¤ τ ¤ T . Among this class we now select a static

px, τq-policy with minimal expected discounted cost. In this formulation both x
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and τ are decision variables and we need to solve the optimization problem

υpPDq :� infxPZ�,0¤τ¤T,τPDtcpxq � Cpx, τqu. (PD)

This problem is discussed in Pourakbar et al. [2012] and a heuristic method is

proposed without any rigorous analysis on how well the proposed policy performs

compared to the optimal static policy. In Frenk et al. [2018] a rigorous analysis

of this problem is given. Using again the definition of the function rCpx, τq in

relation (3.21) for any 0 ¤ τ ¤ T , it follows that the set of optimal solutions

of optimization problem (PD) is the same as the set of optimal solutions of the

rescaled optimization problem

υp rPDq � infxPZ� ,τPD,0¤τ¤T tcpxq � rCpx, τqu. ( rPD)

Clearly by relation (3.21) we also obtain

υpPDq � υp rPDq �

» T

0

e�δuλpuqcapuqdu. (4.2)

In Section 4.4 we will discuss in detail the optimization problem ( rPD) under the

extended discounted cost structure of Pourakbar et al. [2012].

III. The next two classes of policies to be considered in this chapter are the so-

called pseudo-static policies. We start with the simplest one and assume that

we only switch to the alternative policy before time T if the inventory level

drops to zero. This means we consider the class of policies T ^ σx, τ P D with

x ^ y :� mintx, yu introduced in relation (3.9). Using these type of policies we

avoid the (possibly high) penalty costs of applying the alternative policy during

the repair-replacement phase. The price we have to pay for this is that the

switching time is not known in advance and depends on future realization of the
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arrival process. The final order quantity x is now the only decision variable, but

this time the minimal cost is obtained by solving

υpPT^σq � infxPZ�tcpxq � Cpx, T ^ σxqu (PT^σ)

This one-dimensional optimization problem is considered in Pourakbar et al.

[2012] as an approximation of the original optimization problem (PD). Pourakbar

et al. [2012] provide a heuristic procedure to solve optimization problem (PT^σ)

and the paper does not contain any argument indicating how close the objective

value of the solution generated by this heuristic is to the objective value of the

optimal static policy within the class of px, τq-policies, τ P D. Using now the

definition of the function rCpx, τq in relation (3.21) replacing τ by T^σx we know

that all optimal solutions of the optimization problem (PT^σ) are the same as

the optimal solutions of the optimization problem

υp rPT^σq :� infxPZ�tcpxq � rCpx, T ^ σxqu. ( rPT^σ)

Clearly by relation (3.21) we also obtain

υpPT^σq � υp rPT^σq � » T

0

e�δuλpuqcapuqdu. (4.3)

In Section 4.5 we will discuss in detail the optimization problem ( rPT^σ) under

the extended discounted cost structure of Pourakbar et al. [2012].

IV. A natural generalization of the above policy is given by the class τ ^ σx with

0 ¤ τ ¤ T , τ P D. In this case we apply the alternative policy after the

deterministic switching time τ or after we hit inventory level zero, which ever

occurs first. To determine the optimal policy within this class of policies we
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need to solve the optimization problem

υpPD^σq :� infxPZ�,0¤τ¤T,τPDtcpxq � Cpx, τ ^ σxqu. (PD^σ)

This problem is discussed in Pourakbar et al. [2012] and a heuristic method is

proposed without any rigorous analysis on how the proposed heuristic performs

in comparison to the optimal static policy. Using the definition of the function

rCpx, τq in relation (3.21) replacing τ by τ ^ σx we know that the set of opti-

mal solutions of optimization problem (PD^σ) is the same as the set of optimal

solutions of the rescaled optimization problem

υp rPD^σq :� infxPZ�,0¤τ¤T,τPDtcpxq � rCpx, τ ^ σxqu. ( rPD^σ)

Clearly by relation (3.21) we also obtain

υpPD^σq � υp rPD^σq �

» T

0

e�δuλpuqcapuqdu. (4.4)

In Section 4.6 we will discuss in detail the optimization problem ( rPD^σ) under the

extended discounted cost structure of Pourakbar et al. [2012].

It is obvious from the relations between the different optimization problems that

the optimal objective values satisfy

υpPDq ¤ υpPT q and υpPD^σq ¤ υpPT^σq. (4.5)

Also the policies px, τq � p0, 0q and px, τ^σxq � p0, τ^0q � p0, 0q for every 0 ¤ τ ¤ T

are feasible policies for the optimization problems (PD) and (PD^σ). These policies

represent not ordering and at time 0 starting with the alternative policy, and by the

interpretation of rC this implies that υp rPDq ¤ 0 and υp rPD^σq ¤ υp rPT^σq ¤ 0.
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4.2 The Objective Function for Static Policies.

To simplify the formula for the objective function for the class of static px, τq-policies,

x P Z�,τ P D we observe by relation (3.22) and Fubini theorem that

rCpx, τq �

$'''''''&
'''''''%

cscrx� p1� qqE
�³τ^σx

0
e�δuλpuqrcse � cscr � cappuqsdu

�
�
³τ
0
e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu.

(4.6)

Hence for x � 0 it follows

rCp0, τq � » τ

0

e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu (4.7)

and we obtain from relation (4.6) the alternative expression

rCpx, τq �
$''&
''%

cscrx� p1� qqE
�³τ^σx

0
e�δuλpuqrcse � cscr � cappuqsdu

�
� rCp0, τq � ph� δcscrq

³τ
0
e�δuEppx�N0puqq

�qdu.

(4.8)

To rewrite the integral E
�³τ^σx

0
e�δuλpuqrcse � cscr � cappuqsdu

�
we observe for any

τ P D and Lebesgue integrable Borel measurable function f that by Fubini theorem

E
�³τ^σx

0
fpuqdu

�
� E

�³τ
0
fpuq1tσx¡uudu

�
�

³τ
0
fpuqEp1tσx¡uuqdu

�
³τ
0
fpuqPpN0puq   xqdu.

(4.9)
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This shows using relation (4.6) that for any static px, τq policy

rCpx, τq �

$'''''''&
'''''''%

cscrx� p1� qq
³τ
0
e�δuλpuqrcse � cscr � cappuqsPpN0puq   xqdu

�
³τ
0
e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu

(4.10)

or

rCpx, τq �
$''&
''%

cscrx� p1� qq
³τ
0
e�δuλpuqrcse � cscr � cappuqsPpN0puq   xqdu

� rCp0, τq � ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu.

(4.11)

Since we are also interested in the global behavior of the function x Ñ rCpx, τq for

any τ P D, we introduce the first order difference operator

∆x
rCpx, τq :� rCpx� 1, τq � rCpx, τq, x P Z�. (4.12)

The next lemma is easy to show.

Lemma 8. For every τ P D and x P Z�

∆x
rCpx, τq �

$''&
''%

cscr � p1� qq
³τ
0
e�δuλpuqrcse � cscr � cappuqsPpN0puq � xqdu

�ph� δcscrq
³τ
0
PpN0puq ¤ xqdu.

(4.13)

Proof. It follows that

Eppx� 1�N0puqq
�q � Eppx�N0puqq

�q � Eppx� 1�N0puqq
��

px�N0puqq
�1tN0puq¤xuq

� PpN0puq ¤ xq.

(4.14)
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Applying now relation (4.10) yields the desired result. �

To simplify the objective function for pτ^σxq policies, τ P D we observe by relation

(3.28) and the definition of for every stopping time τ P D that

rCpx, τ ^ σxq �

$'''''''&
'''''''%

cscrx� p1� qqEp
³τ^σx
0

e�δuλpuqrcse � cscr � cappuqsdu

�Ep
³τ^σx
0

e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu

�

$''&
''%

cscrx� p1� qqEp
³τ^σx
0

e�δuλpuqrcse � qcre � p1� qqcscr � capuqsdu

�ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu.

(4.15)

By relation (4.9) and (4.15) this yields

rCpx, τ^σxq �
$''&
''%

cscrx� p1� qq
³τ
0
e�δuλpuqrcse � qcre � p1� qqcscr � capuqsPpN0puq   xqdu

�ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu.

(4.16)

We are also interested in the global behavior of the function xÑ rCpx, τ ^σxq for any

τ P D. Again we introduce the first order difference operator

∆x
rCpx, τ ^ σxq :� rCpx� 1, τ ^ σx�1q � rCpx, τ ^ σxq, x P Z�. (4.17)

One can now show the following result for ∆x
rCpx, τ ^ σxq.

Lemma 9. For every τ P D and x P Z� it follows

∆x
rCpx, τ ^ σxq �

$''&
''%

cscr � p1� qq
³τ
0
e�δuλpuqrcse � qcre � p1� qqcscr � capuqs

PpN0puq � xqdu� ph� δcscrq
³τ
0
PpN0puq ¤ xqdu

(4.18)
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Proof. Applying relation (4.16) and using relation (4.14) we obtain the desired result.

�

In the next subsections we will analyze for the considered classes of static and

pseudo-static policies the corresponding optimization problems of selecting the opti-

mal one within these classes.

4.3 Analysis of Optimization Problem (PT)

In this section we propose an algorithm to select among the class of all px, T q-policies

the optimal one having minimal expected discounted cost and so we need to solve

optimization problem (PT ) given by

υpPT q :� infxPZ�tcpxq � Cpx, τqu. (PT )

As shown in section 4.1 the optimal solutions of optimization problem (PT ) are the

same as the optimal solutions of

υp rPT q :� infxPZ�tcpxq � rCpx, T qu. ( rPT )

with rCpx, T q given by (see relation (4.11))

rCpx, T q �
$''&
''%

cscrx� p1� qq
³T
0
e�δuλpuqrcse � cscr � cappuqsPpN0puq   xqdu

� rCp0, T q � ph� δcscrq
³T
0
e�δuEppx�N0puqq

�qdu.

(4.19)

Also by relation (4.1) we know

υpPT q � υp rPT q � » T

0

e�δuλpuqcapuqdu. (4.20)
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Note that the value rCp0, T q in relation (4.19) is simply a constant and hence we

need to find that value of x which minimizes the remaining expressions. Due to the

previous remarks we will analyze in this section optimization problem ( rPT ). Since

immediately switching to the alternative policy can be optimal if the cost of using

the alternative policy in comparison to the repair-replacement option is already low

at time 0 we first show under which sufficient conditions on the parameters this can

be concluded. The next result is a special case of Lemma 1.

Lemma 10. If capp0q ¤ cse � c�scr with c�scr listed in relation (3.5) then it is optimal

not to order in optimization problem (PT ) and the optimal objective value of the

optimization problem (PT ) equals

υpPT q �

» T

0

e�δuλpuqrqpcse � crerq � p1� qqcappuqsdu. (4.21)

In the general case, the optimization problem ( rPT ) does not seem to exhibit a

convenient discrete convexity structure (in x) for a fast identification of an optimal

solution. Hence we need to do a complete enumeration over the decision variable

x and so it is convenient to compute beforehand a computable upper bound on the

optimal order quantity. Observe that such a upper bound should exists since in the

case of revenue of leftover spare parts at the end of the horizon this revenue will be

less than the procurement cost and the cost of holding these spare parts in inventory.

Hence it is never profitable to order at time 0 a large number of spare parts knowing

the probability law of the demand arrival process. For numerical implementations,

we next discuss how we can construct a finite upper bound for this optimal order

quantity. To that end, we introduce for x P Z� and 0 ¤ τ ¤ T the functions

kpx, τq :� cpxq � cscrx� ph� δcscrq

» τ

0

e�δupx� Λ0puqq
�du (4.22)

g1px, τq :� p1� qqE
�» τ^σx

0

e�δuλpuqpcappuq � cscr � cseq
�du



, (4.23)
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where Λ0puq �
³u
0
λ0psq ds � EpN0puqq, for u ¥ 0. Clearly, for fixed τ ¤ T the function

x ÞÑ g1px, τq is non-decreasing, and due to the monotone convergence theorem we have

g1p8, τq � p1� qq

» τ

0

e�δuλpuqpcappuq � cscr � cseq
�du   �8.

Lemma 11. There exists an optimal solution of problem ( rPT ) and any optimal solu-

tion x�
rPT

of optimization problem ( rPT ) satisfies x�
rPT
¤ u

rPT
with

u
rPT

:� mintx P Z� : kpx, T q ¡ g1p8, T qu   �8. (4.24)

Proof. Since by our standard assumption the function x ÞÑ cpxq � c�scrx is non-

decreasing with limit value 8 at infinity it follows that the function x ÞÑ cpxq�cscrx is

also non-decreasing with limit value8 at infinity. By this observation and h�δcscr ¥ 0

it follows that the function x ÞÑ kpx, T q in relation (4.22) is non-decreasing and sat-

isfies kp0, T q � 0 and kp8, T q :� limxÑ8 kpx, T q � �8. This shows that the value

u
rPT

in relation (4.55) is finite and hence well-defined. By Jensen’s inequality, we have

Eppx � N0puqq
� ¥ px � Λ0puqq

� for every u ¥ 0. Using this inequality in relation

(4.19) yields

cpxq � rCpx, T q ¥

$''&
''%

cpxq � rCp0, T q � cscrx� ph� δcscrq
³T
0
e�δupx� Λ0puqq

�du

�p1� qq
³T
0
e�δuλpuqpcappuq � cscr � cseq

�PpN0puq ¤ x� 1qdu

¥

$''&
''%

cpxq � rCp0, T q � cscrx� ph� δcscrq
³T
0
e�δupx� Λ0puqq

�du

�p1� qq
³T
0
e�δuλpuqpcappuq � cscr � cseq

�du

(4.25)

and so the lower-bound in relation (4.25) is equal to rCp0, T q � kpx, T q � g1p8, T q.
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This shows for every x ¥ u
rPT

that

cpxq � rCpx, T q ¥ rCp0, T q � kpx, T q � g1p8, T q

¡ rCp0, T q
� cp0q � rCp0, T q.

Since no ordering at time zero and using the repair-replacement up to time T is

feasible in optimization problem ( rPT ) this proves the existence of an optimal solution

and the constructed upperbound. �

By Lemma 29 it follows immediately that solving problem ( rPT ) is the same as

solving

υp rPT q � minxεZ�,x¤uPT

!
cpxq � rCpx, T q) . (4.26)

By relation 4.26 we may now solve optimization problem ( rPT ) by complete enumer-

ation over the finite feasible set. However, the constructed upperbound u
rPT

might

be large and so we need to evaluate the objective function in a lot of feasible points.

Since the function x ÞÑ g1px, T q is non-decreasing, there is a possibility to improve

the upper bound in Lemma 29 iteratively. As already observed this might reduce the

number of possible function evaluations in our complete enumeration.

Lemma 12. If u
rPT ,0

:� u
rPT

and for every n P Z�

u
rPT ,n�1 :� mintx P Z� : kpx, T q ¡ g1pu rPT ,n

, T qu, (4.27)

then the sequence u
rPT ,n

, n P Z� is non-increasing and any optimal solution x�
rPT

of

optimization problem ( rPT ) satisfies x�
rPT
¤ u

rPT ,n
for every n P Z�.

Proof. By Lemma 29 the result holds for n � 0. Suppose now by induction that the

sequence u
rPT ,n

, n ¤ m is non-increasing and there exists an optimal solution x�
rPT

of
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optimization problem ( rPT ) satisfying x�
rPT
¤ u

rPT ,m
. Since the function x ÞÑ g1px, T q

is non-decreasing, we obtain by our induction hypothesis and relation (4.27) that

kpu
rPT ,m

, T q ¥ g1pu rPT ,m�1, T q ¥ g1pu rPT ,m
, T q.

This shows again by relation (4.27) that u
rPT ,m�1 ¤ u

rPT ,m
. As in the proof of Lemma

29 it follows for every x P tu
rPT ,m�1, ..., u rPT ,m

u that

cpxq � rCpx, T q ¥

$''&
''%

cpxq � rCp0, T q � cscrx� ph� δcscrq
³T
0
e�δupx� Λ0puqq

�du

�p1� qq
³T
0
e�δuλpuqpcappuq � cscr � cseq

� PpN0puq   xq du

¥

$''&
''%

cpxq � rCp0, T q � cscrx� ph� δcscrq
³T
0
e�δupx� Λ0puqq

�du

�p1� qq
³T
0
e�δuλpuqpcappuq � cscr � cseq

� PpN0puq   u
rPT ,m

q du,

which is equal to rCp0, T q � kpx, T q � g1pu rPT ,m
, T q. This implies for any x P

tu
rPT ,m�1, ..., u rPT ,m

u that

cpxq � rCpx, T q ¥ rCp0, T q � kpx, T q � g1pu rPT ,m
, T q

¡ rCp0, T q
� cp0q � rCp0, T q

(4.28)

and so by our induction hypothesis and relation (4.28) the result follows. �

For any given functions ca, c, p, λ and the constants cse, cscr, q, h, δ it is possible to

compute the sequence u
rPT ,0

, u
rPT ,1

, . . . of non-increasing upper bounds. The procedure

will stop if at a certain iteration step the new computed upper bound is the same as

the previous upper bound, and since the upperbounds are integers this takes at most

u
rPT ,0

iteration steps. After having stopped at some upper bound, call it u
rPT

, we can
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carry out a complete enumeration and evaluate for x=0, ..., u
rPT

the function values

cpxq � rCpx, T q
to determine an optimal solution of this optimization problem. To compute the value

rCpx, T q at a given point x we consider the first order difference operator for τ � T

given by (see Lemma 8)

∆x
rCpx, T q � rCpx� 1, T q � rCpx, T q

�

$''&
''%

cscr � ph� δcscrq
³T
0
e�δuPpN0puq ¤ xqdu

�p1� qq
³T
0
e�δuλpuqrcse � cscr � cappuqsPpN0puq � xqdu

(4.29)

and observe

rCpx, T q �¸x�1

k�0
∆x

rCpk, T q � rCp0, T q. (4.30)

To simplify for a differentiable function cap the numerical computation of ∆x
rCpx, T q

listed in relation (4.46) we first list the following useful result of non-homogeneous

Poisson processes.

Lemma 13. Let N be a non-homogeneous Poisson process with arrival rate function

β which β is piecewise continuous and ψ a differentiable function and ψ1 its derivative

function. Then for every x P Z� and τ ¤ T ,τ P D we have

» τ

0

ψpuqβpuqPpNpuq � xqdu �

» τ

0

ψ1puqPpNpuq ¤ xqdu� ψp0q � ψpτqPpNpτq ¤ xq.

(4.31)

Proof. It is well known (Ross [2014]) for a non-homogeneous Poisson process with an

intensity function β that, for every k P Z�, the function ϕpuq :� PpNpuq ¤ kq, for
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u ¥ 0, is differentiable and satisfies

ϕ1puq � �βpuqPpNpuq � kq

with the initial condition ϕp0q � PpNp0q ¤ kq � 1. Applying now the chain rule of

differentiation yields

ψpτqϕpτq � ψp0q �
³τ
0
ψ1puqϕpuqdu�

³τ
0
ψpuqϕ1puqdu

�
³τ
0
ψ1puqϕpuqdu�

³τ
0
ψpuqβpuqPpNpuq ¤ kqdu

(4.32)

from which (4.31) follows after re-arranging the terms. �

Using the above lemma it is now possible to give the following formula for the first

order difference ∆x
rCpx, T q and this formula is more stable for numerical calculation.

Lemma 14. For every x P Z� we have

∆x
rCpx, T q �

$''&
''%

cse � capp0q � e�δT pcappT q � cscr � cseqPpN0pT q ¤ xq

�
³T
0
e�δurh� c1appuq � δpcappuq � cseqsPpN0puq ¤ xqdu.

(4.33)

Proof. Applying Lemma 13 with ψpuq � e�δurcse � cscr � cappuqs gives

³T
0
e�δuλ0puqrcse � cscr � cappuqsPpN0puq � xqdu

�

$'''''''&
'''''''%

�
³T
0
e�δuc1appuqP pN0puq ¤ xqdu

�δ
³T
0
e�δurcse � cscr � cappuqsP pN0puq ¤ xqdu

�rcse � cscr � capp0qs � e�δT rcse � cscr � cappT qsP pN0pT q ¤ xq

(4.34)

and finally using (4.34) in (4.13) for τ � T yields the desired result after straightfor-

ward simplifications. �
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By Lemma 14 it is obvious that one can calculate the first order difference

∆x
rCpx, T q by evaluating numerically the integral

» T

0

e�δurh� c1appuq � δpcappuq � cseqsPpN0puq � kqdu

for different values of k. In case the function cap is an elementary function and our

arrival intensity function is given by a piecewise constant arrival intensity function

one can write this integral as a sum of elementary functions avoiding numerical inte-

gration.

Under some additional sufficient conditions on the function cap and the parameters

cse, cscr, one can show that the function x ÞÑ cpxq � rCpx, T q is discrete convex.

In general one only needs to use the upper bounding technique discussed above in

combination with complete enumeration in case the procurement cost function c is

not discrete convex or if the function c is discrete convex and the function cap and

the parameters cse, cscr satisfy the inequality

capp0q ¡ cse � c�scr and cappT q   cse � cscr.

If cappT q ¥ cse � cscr and the procurement cost function is discrete convex, one can

show the following result and this is a special case of Lemma 4. Observe a different

proof using directly the first order differences is given in (Frenk et al. [2018]).

Lemma 15. If the procurement cost function c is discrete convex on Z� and cappT q ¥

cse � cscr, then the function x ÞÑ cpxq � rCpx, T q is discrete convex on Z�.

If it is costly to scrap the inventory (cscr ¡ 0) and the cost of serving a customer

via the alternative policy is higher than the regular service cost at all times (i.e.,

ppuq ¥ cse for all u ¤ T ) as assumed in our standard assumptions then the conditions

of Lemma 15 hold. Observe, under the convexity condition, we do not need to evaluate
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an upper bound u
rPT

as discussed above. An optimal solution of optimization problem

( rPT ) is obtained simply by the first order condition

x�
rPT

:� mintx P Z� : cpx� 1q � cpxq �∆x
rCpx, T q ¥ 0u (4.35)

with ∆x
rCpx, T q given in relation (4.33) in Lemma 14. As before by computing iter-

atively these first order differences until the first order condition is satisfied one can

also easily calculate the optimal objective value using

rCpx, T q �¸x�1

k�0
∆x

rCpk, T q � rCp0, T q.
In the next section we will discuss how to select the optimal static policy among the

set of all static px, τq policies.

4.4 Analysis of Optimization Problem (PD)

In this section we propose an algorithm to select among the class of all px, τq-policies,

x P Z�, τ P D, 0 ¤ τ ¤ T the optimal one having minimal expected discounted cost.

This means we assume that at any deterministic time between 0 and T we can switch

to the alternative policy and so our class of policies is given by all px, τq-policies with

x P Z� and τ P D, 0 ¤ τ ¤ T . Hence we need to solve optimization problem (PD).

As shown in Section 4.1 the optimal solutions of optimization problem (PD) are the

same as for optimization problem

υp rPDq � infxPZ�,τPD,0¤τ¤T tcpxq � rCpx, τqu. ( rPD)
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with rCpx, τq given by (see relation 4.10)

rCpx, τq �

$'''''''&
'''''''%

cscrx� p1� qq
³τ
0
e�δuλpuqrcse � cscr � cappuqsPpN0puq   xqdu

�
³τ
0
e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu.

(4.36)

Also from relation (4.2) we know that

υpPDq � υp rPDq �

» T

0

e�δuλpuqcapuqdu. (4.37)

In this section we will solve optimization problem ( rPD) by means of a bi-level approach

using the representation

υp rPDq � inf
0¤τ¤T

Φpτq (4.38)

with

Φpτq :� infxPZ�tcpxq � rCpx, τqu. ( rPΦpτq)

Note that optimization problem ( rPΦpτq) is a generalization of optimization problem

( rPT ) for any switching time τ P D, 0 ¤ τ ¤ T . Before discussing how to solve for the

general case the optimization problem (PD) we first identify under which parameter

settings in the optimization problem (PD) it is optimal not to order. Again the next

result is a special case of Lemma 1.

Lemma 16. If capp0q ¤ cse � c�scr with c�scr listed in relation (3.5), then it is optimal

not to order in optimization problem (PD) and the optimal objective value of (PD)

equals

υpPDq � infτPD

"» τ

0

e�δuλpuqrqpcre � cse � capuqq � p1� qqppuqsdu

*
. (4.39)
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In almost all cases the sufficient conditions of Lemma 16 are not satisfied by

our problem parameters and so we need to give an algorithm to solve optimization

problem ( rPD). In the general case we will use the approach as suggested by relation

(4.38) and so part of the algorithm will consist of a procedure determining the optimal

order size in case the closing time τ is known in advance. We can only execute this

procedure solving problem ( rPΦpτq) a finite number of times. This means that we first

need to construct from the set r0, T s a finite set D � tτ1, τ2, ...τNu satisfying 0 ¤

τ1   ...τN ¤ T such that with a known error bound we can replace the optimization

problem in relation (4.38) by its discrete version inf
τPD Φpτq. To select this finite set

D we first introduce the set

D :� t0 ¤ τ ¤ T : cappτq ¥ cse � cscru. (4.40)

Since cap is non-increasing the set D is a (possibly empty) convex subset of r0, T s. In

particular, if cscr ¥ 0 and we assume the natural condition pp0q ¥ cse then it follows

that 0 belongs to D. Hence it follows under these natural conditions that the set D

is nonempty and we introduce

τD :� supt0 ¤ τ ¤ T : cappτq ¥ cse � cscru ¤ T.

The next result yields some upperbound on the rate of growth of the function τ ÞÑ

rCpx, τq. Note the so-called indicator function of the set A � R is given by

1Apτq �

$''&
''%

1 if τ P A

0 if τ R A

(4.41)
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Lemma 17. For every τ, s ¥ 0 with τ � s ¤ T, and x P Z�,we have

rCpx, τ � sq � rCpx, τq ¥
$''&
''%

rCp0, τ � sq � rCp0, τq
�e�δτ pcse � cscr � cappτqqpΛ0pτ � sq � Λ0pτqq1Dpτq.

(4.42)

Proof. By relation (4.11) and h� δcscr ¥ 0 it follows

rCpx, τ � sq � rCpx, τq �

$'''''''''&
'''''''''%

p1� qq
³τ�s
τ

e�δuλpuqprcse � cscr � cappuqs

PpN0puq   xqdu� rCp0, τ � sq � rCp0, τq
�ph� δcscrq

³τ
0
e�δuEppx�N0puq

�qdu

¥

$''&
''%

p1� qq
³τ�s
τ

e�δuλpuqrcse � cscr � cappuqs

PpN0puq   xqdu� rCp0, τ � sq � rCp0, τq.
Hence for τ not belonging to D or cappτq   cse � cscr and using cap is decreasing we

obtain

rCpx, τ � sq � rCpx, τq ¥ rCp0, τ � sq � rCp0, τq,
while for τ belonging to D or cappτq ¥ cse � cscr it follows

rCpx, τ � sq � rCpx, τq ¥

$''&
''%

p1� qq
³τ�s
τ

e�δuλpuqrcse � cscr � cappuqsdu

� rCp0, τ � sq � rCp0, τq

¥

$''&
''%

e�δτ rcse � cscr � cappτqspΛ0pτ � sq � Λ0pτqq

� rCp0, τ � sq � rCp0, τq.

This shows the result. �
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For τ, s ¥ 0 with τ � s ¤ T , the first difference in the right hand side of the

inequality in (4.42) can be evaluated by simple integration as

rCp0, τ � sq � rCp0, τq � » τ�s

τ

e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu.

(4.43)

Using Lemma 17, we provide a growth condition for the function τ ÞÑ Φpτq in terms

of this difference.

Lemma 18. For every τ, s ¥ 0 with τ � s ¤ T we have

Φpτ � sq � Φpτq ¥

$''&
''%

rCp0, τ � sq � rCp0, τq
�e�δτ pcse � cscr � cappτqqpΛ0pτ � sq � Λ0pτqq1Dpτq.

(4.44)

Proof. Let x�
rPΦpτ�sq

P Z� denote the optimal order level of optimization problem

( rPΦpτ�sq). It follows by the definition of Φpτ � sq that

Φpτ � sq � cpx�
rPΦpτ�sq

q � rCpx�
rPΦpτ�sq

, τ � sq.

Since x�
rPΦpτ�sq

is also a feasible solution for the optimization problem problem pΦpτqq

it is obvious that

Φpτq ¤ cpx�
rPΦpτ�sq

q � rCpx�
rPΦpτ�sq

, τq.

Applying both the above equality and inequality and using Lemma 17 we obtain the

inequality in relation (4.44). �

To identify a region on which the function Φ is increasing we introduce the (pos-

sibly empty) convex set

D1 :� t0 ¤ τ ¤ T : cse � cre � capτq ¥ 0u
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(due to ca being non-increasing) and let

τD1 :�

$''&
''%

inft0 ¤ τ ¤ T : cse � cre � capτq ¥ 0u if D1 � ∅

T if D1 � ∅.

An immediate consequence of Lemma 18 is given by the following result.

Lemma 19. If τ � maxtτD, τD1u then the function Φ is non-increasing on rτ , T s.

Proof. For every τ, τ � s P rτ , T s and s ¥ 0 it follows that τ does not belong to D.

Hence by Lemma 18 and cse � cre � capuq ¥ 0 for every τ ¤ u ¤ τ � s we obtain

Φpτ � sq � Φpτq ¥ rCp0, τ � sq � rCp0, sq
�

³τ�s
τ

e�δuλpuqrqpcse � cre � capuqq � p1� qqpppuqsdu

¥ 0

and this shows the result. �

Note for τ R D we have

cse ¡ capτq � ppτq � cscr ¥ capτq � cscr.

This means, if an item arrives at time τ and is non-repairable and we have a spare

one in the inventory, it is better to scrap the item in the inventory immediately and

use the alternative policy. Clearly, we also have capτq � ppτq ¥ capτq at all times.

Hence, D1, denoting the complement of D over r0, T s, is essentially the set of times

where serving non-repairable items is more expensive under the repair-replacement

policy. Also note that when cse � cre ¥ capτq, the cost of serving a repairable item at

time τ under the repair-replacement policy is higher than (or equal to) that of using

the alternative policy. Clearly, when this inequality holds for some τ , it also holds
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for all time points u ¥ τ . Then, Lemma 19 above gives sufficient conditions (on τ -

values) under which serving a customer under the alternative policy is always better

regardless of the repairability of the arriving item or the availability of a spare one in

the inventory. Hence, we should not consider any value of τ ¥ τ̄ in the minimization

problem ( rPD) and so we may conclude

υp rPDq � inf0¤τ¤τ Φpτq. (4.45)

Before applying the result of Lemma 18 to construct a finite set D � r0, τ s having a

predetermined error bound we first discuss solving optimization problem ( rPΦpτq) for

some given 0 ¤ τ ¤ T . This procedure can only be applied a finite number of times

and so it is crucial to construct this finite set D � r0, τ s. For the general case as in

the previous section we need to determine first an upperbound on the optimal order

quantity for any fixed τ . By a similar proof as used in Lemma 12 replacing T by τ

one can show the following result.

Lemma 20. If

u
rPΦpτq,0

:� mintx P Z� : kpx, τq ¥ g1p8, τqu   �8

and

u
rPΦpτq,n�1 :� mintx P Z� : kpx, τq ¥ g1pu rPΦpτq,n

, τqu

with the functions k and g1 defined in relation (4.22) and (4.23) respectively then

the sequence u
rPΦpτq,n

, n P Z� is non-increasing, and any optimal solution x�
rPΦpτq

of

optimization problem ( rPΦpτq) satisfies x�
rPΦpτq

¤ u
rPΦpτq,n

for every n P Z�.

For any given 0 ¤ τ ¤ T and functions ca, c, p, λ and the constants cse, cscr, q, h,

δ it is possible to compute the sequence u
rPΦpτq,0

, u
rPΦpτq,1

, . . . of non-increasing upper

bounds. The procedure will stop if at a certain iteration step the new computed
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upper bound is the same as the previous upper bound, and this takes at most uΦpτq,0

iteration steps. After having stopped at some upper bound, call it u
rPΦpτq

, we can

carry out a complete enumeration and evaluate the function values

cpxq � rCpx, τq, x � 0, ...., u
rPΦpτq

to determine an optimal solution of this optimization problem. To compute the

value rCpx, τq at a given point x we introduce the first order difference operator for

τ ¤ T ,τ P D given by (see Lemma 8)

∆x
rCpx, τq � rCpx� 1, τq � rCpx, τq

�

$''&
''%

cscr � ph� δcscrq
³τ
0
e�δuPpN0puq ¤ xqdu

�p1� qq
³τ
0
e�δuλpuqrcse � cscr � cappuqsPpN0puq � xqdu.

(4.46)

Once we have computed these differences iteratively we may also compute the objec-

tive value observing

rCpx, τq �¸x�1

k�0
∆x

rCpk, τq � rCp0, τq. (4.47)

For some values of τ it is possible to avoid calculating these upperbounds and

do a complete enumeration. Under some conditions one can show that the function

x ÞÑ Cpx, τq is discrete convex for a given τ . Observe that if cscr ¥ 0 and ppuq ¥ cse

it follows that cappT q ¥ cse and the condition in the next lemma is always satisfied

for every 0 ¤ τ ¤ T . Also in this case it follows that D � r0, T s. The following result

is a special case of Lemma 4.

Lemma 21. If the procurement function c is discrete convex on Z� and cappτq ¥

cse � cscr or equivalently τ P D, then both the functions x ÞÑ cpxq � Cpx, τq and
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x ÞÑ cpxq � rCpx, τq are discrete convex on Z�.

Proof. Apply the observation after Lemma 4. �

Under the conditions of Lemma 21, we obtain that an optimal solution of opti-

mization problem ( rPΦpτq) is given by

x�
rPΦpτq

� mintx P Z� : cpx� 1q � cpxq �∆x
rCpx, τq ¥ 0u (4.48)

with ∆x
rCpx, τq :� rCpx � 1, τq � rCpx, τq, for x P Z�. Using this difference operator

we can also easily evaluate the optimal objective value Φpτq and this is given by

Φpτq � cpx�
rPΦpτq

q � rCpx�
rPΦpτq

, τq � cpx�
rPΦpτq

q � rCp0, τq �¸x�
rPΦpτq

�1

k�0
∆ rCpk, τq. (4.49)

We finally conclude this section with an algorithm describing how to solve problem

( rPD). The algorithm brings a clever discretization of the interval r0, T ^ τ̄ s to search

for the best switching time. Recall that the function τ ÞÑ Φpτq by Lemma 18 satisfies

the growth condition (4.44). Using this inequality, we construct the finite collection

of discretization points D0 � tτ1, . . . , τNu where τ1 � 0, and for i ¥ 1, we set

τi�1 � min
!
s ¡ τi : rCp0, sq � rCp0, τiq � e�δτipcse � cscr � cappτiqq (4.50)

�
Λ0psq � Λ0pτiq

�
1Dpτiq ¤ �ε

)
, (4.51)

where N is the iteration number for which the resulting point in (4.50) exceeds T ^ τ̄ ,

and we set τN � T ^ τ̄ (see Lemma 19 for the definition of τ̄). It follows by (4.44)

that

Φpsq � Φpτiq ¥ �ε for every s P rτi, τi�1s.
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This further implies

min
τiPD

Φpτiq ¥ inf
τPr0,T s

Φpτq � υp rPDq ¥ min
τiPD

Φpτiq � ε.

Hence, for a given numerical tolerance level ε ¡ 0, if we search the best switching

time τ in D, the loss in the objective value is no more than ε. This observation gives

us the following algorithm.

Algorithm 1. Numerical Algorithm to Solve Optimization Problem p rPDq

1. Select ε ¡ 0 and construct on the interval r0, T ^ τ̄ s the finite discretization

D � tτ1, . . . , τNu described in (4.50) with τ1 � 0 and τN � T ^ τ̄ .

2. For every τi P D, if the convexity conditions of Lemma 21 hold, compute x�
rPΦpτiq

using (4.48) and evaluate Φpτiq via (4.49). Otherwise, find the smallest upper

bound u
rPΦpτiq

following Lemma 20 and compute

x�
rPΦpτiq

� arg minx¤u
rPΦpτiq

tcpxq � rCpx, τiqu
and

Φpτiq � cpx�
rPΦpτiq

q � rCpx�
rPΦpτiq

, τiq.

3. Find the best τ�i attaining minτiPD0 Φpτiq. Report px�
rP
Φpτ�

i
q

, τ�i q as the ε -optimal

policy.

In the next subsection we will start analyzing the class of pseudo static policies.
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4.5 Analysis of Optimization Problem pPT^σq

In this section we propose an algorithm to select among the class of all pseudo static

policies of the form T ^σx the optimal one having minimal expected discounted cost.

This means we assume that we will apply the repair-replacement policy up to the time

that the inventory level drops to zero. In this problem we only need to determine the

optimal order quantity and so we need to solve optimization problem (PT^σ) given

by

υpPT^σq � infxPZ�tcpxq � Cpx, T ^ σxqu. (PT^σ)

As shown in Section 4.1 the optimal solution of optimization problem (PT^σ) is the

same as for optimization problem

υp rPT^σq � infxPZ�tcpxq � rCpx, T ^ σqu. ( rPT^σ)

with rCpx, T ^ σxq given by (see relation (4.16) for τ � T )

rCpx, T^σxq �
$''&
''%

cscrx�
³T
0
e�δuλpuqrcse � qcre � p1� qqcscr � capuqsPpN0puq   xqdu

�ph� δcscrq
³T
0
e�δuEppx�N0puqq

�qdu.

(4.52)

Also from relation (4.3) we know that

υpPT^σq � υp rPT^σq � » T

0

e�δuλpuqcapuqdu. (4.53)

Due to the previous remarks we will analyze in this section the optimization problem

( rPT^σ). The analysis is similar to the problem ( rPT ) discussed in subsection 4.3

since both problems are essentially one dimensional problems with the same decision

variable x P Z�. Since not ordering and immediately applying the alternative policy

is feasible within the class of considered pT ^ σxq policies, x P Z� we first list some
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set of sufficient conditions on the cost function ca and the parameters cse, cre and cscr

under which this is optimal. The next result is a special case of Lemma 2.

Lemma 22. If cap0q ¤ cse � qcre � p1� qqc�scr, then it is optimal not to order in op-

timization problem (PT^σ) and immediately apply the alternative policy. The optimal

objective value is equal to
³T
0
e�δuλpuqcapuqdu.

As for the optimization problem ( rPT ) we first construct in the general case with

no restrictions on the parameters an upper bound for the optimal order quantity in

problem rPT^σ. The construction is similar to that described in Lemmas 12 and 29

above for the optimization problem ( rPT ). We first introduce for x P Z�, τ P D, τ ¤ T

the function

g2px, τq :� E
�» τ^σx

0

e�δuλpuqpcapuq � cse � qcre � p1� qqcscrq
�du



. (4.54)

Clearly this function is non-decreasing in x. By the monotone convergence theorem

we obtain

g2p8, τq �

» τ

0

e�δuλpuqpcapuq � cse � qcre � p1� qqcscrq
�du   �8.

Using a similar proof as in Lemma 29 one can show the following result.

Lemma 23. There exists an optimal solution of problem ( rPT^σ) and any optimal

solution x�
rPT^σ

of optimization problem ( rPT^σ) satisfies x�
rPT^σ

¤ u
rPT^σ

with

u
rPT^σ

:� mintx P Z� : kpx, T q ¡ g2p8, T qu   �8. (4.55)

The next result follows a similar line of proof as the one followed in Lemma 12.

Lemma 24. If u
rPT^σ ,0

� u
rPT^σ

and for every n P Z�

u
rPT^σ ,n�1 � mintx P Z� : kpx, T q ¥ g2pu rPT^σ ,n

, T qu (4.56)
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where the function k is defined in (4.22), then the sequence u
rPT^σ ,n

, n P Z�, is non-

increasing and any optimal solution x�
rPT^σ

of optimization problem ( rPT^σ) satisfies

x�
rPT^σ

¤ u
rPT^σ ,n

for every n P Z�.

For any selection of the functions ca, c0, p, λ and the constants cse, cscr, q, h, δ, it

is easy to evaluate the sequence of non-increasing upper bounds u
rPT^σ ,0

, u
rPT^σ ,1

, . . ..

The procedure stops if in a certain iteration step the new computed upper bound is

the same as the previous one, and this procedure takes at most u
rPT^σ ,0

iterations.

After having stopped at some upper bound u
rPT^σ

we evaluate the function values

cpxq � rCpx, T ^ σxq, x � 0, ..., uP
rPT^σ

to identify an optimal procurement quantity. Here, the cost term rCpx, T ^ σxq can

be obtained via the difference operator (see Lemma 9 for τ � T )

∆x
rCpx, T ^ σxq :� rCpx� 1, T ^ σx�1q � rCpx, T ^ σxq

�

$'''&
'''%
cscr � ph� δcscrq

» T

0

e�δuPpN0puq ¤ xqdu

�

» T

0

e�δuλpuqrcse � qcre � p1� qqcscr � capuqsPpN0puq � xqdu.

(4.57)

Under some additional conditions on the function ca and the parameters cse, cre, cscr

and q, one can show that the function x ÞÑ cpxq � rCpx, T ^ σxq is discrete convex.

This simplifies the computation of an optimal procurement amount. The next result

is a special case of Lemma 5.

Lemma 25. If the procurement cost function c is discrete convex on Z� and capT q ¥

cse � qcre � p1 � qqcscr, then the function x ÞÑ cpxq � rCpx, T ^ σxq is discrete convex

on Z�.

Under the convexity structure of Lemma 25, an optimal procurement quantity is
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given by

x�
rPT^σ

:� mintx P Z� : cpx� 1q � cpxq �∆x
rCpx, T ^ σxq ¥ 0u (4.58)

with ∆ rCpx, T ^ σxq listed in relation (4.57).

In the next subsection we will analyze the last optimization problem discussed in

Section 4.1.

4.6 Analysis of Optimization Problem pPD^σq.

In this final subsection, we consider the problem of minimizing the cost function over

the initial procurement amount x P Z� and policy switching time of the form τ ^ σx

for τ P D, 0 ¤ τ ¤ T . That is, we fix a deterministic time τ , and the alternative

policy is adopted at time τ or at the time the inventory is depleted, whichever occurs

first. As shown in Section 4.1 the optimal solutions of optimization problem (PD^σ)

are the same as for optimization problem

υp rPD^σq � infxPZ�,τPF,0¤τ¤T tcpxq � rCpx, τ ^ σqu. ( rPD^σ)

with rCpx, τ ^ σq given by (see relation 4.16)

rCpx, τ^σxq �
$''&
''%

cscrx�
³τ
0
e�δuλpuqrcse � qcre � p1� qqcscr � capuqsPpN0puq   xqdu

�ph� δcscrq
³τ
0
e�δuEppx�N0puqq

�qdu.

(4.59)

Also from relation (4.3) we know that

υpPD^σq � υp rPD^σq �

» T

0

e�δuλpuqcapuqdu. (4.60)
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Due to the previous remarks we will analyze in this section optimization problem

( rPD^σ) As in Section 4.4, this joint minimization problem can be solved in two stages;

we first find the best procurement quantity for a given τ , and then search for the best

τ . In the first stage, we follow the arguments of Section 4.5. The proofs for the first

stage follow mostly by simple modification of those in Section 4.5 by replacing T with

τ . For the second stage, we follow the footprints of the analysis of Section 4.4. To

start our analysis we define

Ψpτq :� infxPZ�tcpxq � rCpx, τ ^ σxqu. ( rPΨpτq)

It now follows that

υp rPD^σq � inf0¤τ¤T Ψpτq. (4.61)

Before discussing the solution procedure for the above optimization problem we first

give some sufficient conditions on the cost functions and the parameters under which

it is optimal not to order and start at time 0 with the alternative policy. The next

result is a special case of Lemma 2.

Lemma 26. If cap0q ¤ cse � qcre � p1 � qqc�scr with c�scr given by relation p3.5q, then

it is optimal not to order in optimization problem (PD^σ) and to start immediately at

time 0 with the alternative policy. In this case the optimal objective value of problem

(PD^σ) is given by
³T
0
e�δuλpuqcapuqdu.

In almost all cases the sufficient conditions of Lemma 26 are not satisfied by

our problem parameters and so we need to give an algorithm to solve optimization

problem ( rPD^σ). In the general case we will use the approach as suggested by relation

(4.61) and so part of the algorithm will consist of a procedure determining the optimal

order size in case the switching time τ is known in advance. We can only execute

this procedure by solving problem ( rPΨpτq) a finite number of times. This means

that we first need to construct from the set r0, T s a finite set D � tτ1, τ2, ...τNu
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satisfying 0 ¤ τ1   ...τN ¤ T such that with a known error bound we can replace the

optimization problem in relation (4.61) by its discrete version inf
τPD Ψpτq. To select

this finite set D introduce the set

S :� t0 ¤ τ ¤ T : capτq ¥ cse � qcre � p1� qqcscru. (4.62)

The next result yields some upperbound on the rate of growth of the function τ ÞÑ

rCpx, τ ^ σxq for a fixed x P Z�.

Lemma 27. For every τ, s ¥ 0 with τ � s ¤ T and x P Z�, we have

rCpx, pτ � sq ^ σxq � rCpx, τ ^ σxq

¥ e�δτ pcse � qcre � p1� qqcscr � capτqqpΛpτ � sq � Λpτqq1Spτq

(4.63)

with 1S the indicator function of the set S defined in relation (4.41).

Proof. By relation (4.15) and h� δcscr ¥ 0 we obtain

rCpx, pτ � sq ^ σxq � rCpx, τ ^ σxq

¥ E
�³pτ�sq^σx

τ^σx
e�δuλpuqpcse � qcre � p1� qqcscr � capuqqdu

	

� E
�³pτ�sq^σx

τ
e�δuλpuqpcse � qcre � p1� qqcscr � capuq1tσx¡τudu

	
.

(4.64)

Since the function ca is non-increasing it follows for τ not belonging to the set S that

cse � qcre � p1� qqcscr � capuq ¥ 0 for every u ¥ τ . This implies by relation (4.64)

rCpx, pτ � sq ^ σxq � rCδpx, τ ^ σxq ¥ 0. (4.65)

Using again ca is non-increasing we obtain for every τ belonging to the set S and
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u ¥ τ that

e�δupcse � qcre � p1� qqcscr � capuqq ¥ e�δτ pcse � qcre � p1� qqcscr � capτqq

and

e�δτ pcse � qcre � p1� qqcscr � capτqq ¤ 0.

This shows by relation (4.64) that

E
�³pτ�sq^σx

τ
e�δτλpuqpcse � qcre � p1� qqcscr � capτqq1tσx¡τudu

	

¥ e�δτ ppcse � qcre � p1� qqcscr � capτqqE
�³pτ�sq^σx

τ
λpuq1tσx¡τudu

	

¥ e�δτ ppcse � qcre � p1� qqcscr � capτqpΛpτ � sq � Λpτqq.

This shows the result. �

Applying Lemma 27 the following result follows immediately using a similar proof

as in Lemma 18.

Lemma 28. For every τ, s ¥ 0 with τ � s ¤ T we have

Ψpτ � sq�Ψpτq ¥ e�δτ pcse� qcre�p1� qqcscr� capτqqpΛpτ � sq�Λpτqq1Spτq. (4.66)

An immediate consequence of Lemma 28 is given by the following important corol-

lary.

Corollary 2. The function τ ÞÑ Ψpτq is non-decreasing on the complement of the set

S on r0, T s.

An important consequence of the above corollary is given by the observation that

an optimal solution of optimization problem ( rPD^σ) belongs to the set S and so we
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obtain

υp rPD^σq � infτPS Ψpτq. (4.67)

Before applying the result of Lemma 28 to construct a finite set D � S having a

predetermined error bound we first discuss solving optimization problem ( rPΨpτq) for

some given τ belonging to the set S. This procedure can only be applied a finite

number of times and so it is crucial to construct this finite set D � S. In case the

function c is not discrete convex one can show in a similar way as done in Lemma 29

with some obvious modifications the following upper bounding result.

Lemma 29. There exists an optimal solution of problem ( rPΨpτq) and any optimal

solution x�
rPΨpτq

of optimization problem ( rPΨpτq) satisfies x�
rPΨpτq

¤ u
rPΨpτq

with

u
rPΨpτq

:� mintx P Z� : kpx, τq ¡ g2p8, τqu   �8 (4.68)

with the function g2 listed in relation (4.54) and the function k in relation (4.22).

As for the other problems one can improve the above upper bound. The next

result can also be verified in similar way as done in Lemma 12 with some obvious

modifications.

Lemma 30. If u
rPΨpτq,0

:� u
rPΨpτq

and

u
rPΨpτq,n�1 :� mintx P Z� : kpx, τq ¥ g2pu rPΨpτq,n

, τqu, (4.69)

then the sequence u
rPΨpτq,n

, n P Z� is non-increasing, and any optimal solution x�
rPΨpτq

of optimization problem ( rPΨpτq) satisfies x�
rPΨpτq

¤ u
rPΨpτq,n

for every n P Z�.

After at most u
rPΨpτq

many iterations, the upper bound at an iteration will be the

same as the previous one. Hence, the construction will stop at some upper bound

u
rPΨpτq

, and we can search for the minimal procurement amount in ( rPΨpτq) over the set

t0, 1, . . . , u
rPΨpτq

u. We leave the details to the reader.
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If the procurement cost function c is discrete convex on Z� we do not need to use

the upper bounding procedure. The next convexity result is a special case of Lemma

5.

Lemma 31. If the procurement function c is discrete convex on Z� and capτq ¥ cse�

qcre�p1� qqcscr or equivalently τ P S, then both the function x ÞÑ cpxq�Cpx, τ ^σxq

and x ÞÑ cpxq � rCpx, τ ^ σxq are discrete convex on Z�.

Proof. Apply relation (3.35). �

Lemma (31) eases the search for the minimal procurement amount for the problem

( rPΨpτq) for τ P S under the discrete convexity of the procurement cost function c. The

first order condition

x�
rPΨpτq

:� mintx P Z� : cpx� 1q � cpxq �∆x
rCpx, τ ^ σxq ¥ 0u (4.70)

in terms of the difference operator in (4.57) is simply sufficient, and no upper bound

is needed. It is also easy to evaluate the objective value at x�
rPΨpτq

by observing

rC �
x�
rPΨpτq

, τ ^ σx�
rPΨpτq



�
¸x�

rPΨpτq
�1

k�0
∆x

rCpk, τ ^ σkq. (4.71)

Under the assumption of discrete convexity of the procurement cost function c stated

in Lemma 31, one can establish sufficient conditions for which optimal order quantity

x�Ψpτq is equal to zero for τ P S. Clearly, x�Ψpτq � 0 if and only if c0p1q�∆ rCp0, τ^σ0q ¥

0 by (4.70). Since PpN0puq � 0q � e�Λ0puq, u ¥ 0, we have

∆ rCp0, τ ^ σ0q � cscr �

» τ

0

e�rδu�Λ0puqs
�
λpuqpcse � qcre � p1� qqccsr � capuqq

h� δcscr

�
du.

(4.72)

The following is now immediate from the integral term in (4.72). No proof is
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needed.

Lemma 32. If the function τ ÞÑ λpτqpcse�qcre�p1�qqccsr�capτqq is non-decreasing

on S, then the function τ ÞÑ ∆ rCp0, τ ^ σ0q is unimodal, if not monotone, on S. Let

us define

qu � inftτ P r0, T s ; λpτqpcse � qcre � p1� qqccsr � capτqq ¥ 0u (4.73)

with the convention inf H � 0. Then, τ ÞÑ ∆ rCp0, τ ^ σ0q is non-increasing on r0, qus,
and it is non-decreasing on rqu, T s.

Since on S the function τ ÞÑ cse � qcre � p1 � qqcscr � capτq is non-positive and

non-decreasing, a sufficient condition for the monotonicity assumption in Lemma 32

is to assume that the arrival rate function is decreasing. This is indeed a realistic

assumption since the number of products/items (with a warranty contract) owned by

customers is clearly non-increasing over time.

Corollary 3. Recall that to avoid pathological cases we assume that c0pxq � cscrx is

increasing, hence we have cp1q � cscr ¡ 0. Then, if

∆ rCp0, τ ^ σ0q � cscr ¥ 0 (4.74)

we have x�Ψpτq � 0 and Ψpτq � 0. Under the stronger condition ∆ rCp0, qu^σ0q� cscr ¥

0, the inequality (4.74) holds for every τ P S, and x�
rPΨpτq

� 0, and Ψpτq � 0 for every

τ P S again.

We now conclude our analysis with the following algorithm to solve optimization

problem ( rPD^σ). As in the optimization problem ( rPD), we discretize the space S to

search for a value of τ within a given computational tolerance level ε ¡ 0. For that

we define the set D :� tτ1, . . . , τ pNu � S where τ1 � 0, and for i ¥ 1,
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τi�1 � min
!
s ¡ τi : e�δτircse � qcre � p1� qqcscr � capτiqspΛpsq � Λpτiqq ¤ �ε

)
.

(4.75)

Here, pN is the iteration number for which the relation (4.75) exceeds supS, and

at which we set τ
pN � supS. By Lemma 28, we have for every s P rτi, τi�1s

Ψpsq �Ψpτiq ¥ e�δτ rcse � qcre � p1� qqcscr � capτqspΛpτ � sq � Λpτqq,

which further implies that

min
τiPD

Ψpτiq ¥ υpP
rPΨpτq

q ¥ min
τiPD

Φpτiq � ε.

Hence, the error associated with searching the best τ in the set D is no more that

the given error level ε ¡ 0.

Algorithm 4. Numerical Algorithm to Solve Optimization Problem ( rPD^σ):

1. Select ε ¡ 0 and construct on the compact interval S the finite discretization D �

tτ1, . . . , τ pNu with τ1 � 0 and τi’s are as defined using (4.75). The construction

(4.75) continues until supS is exceeded, and we set τ
pN � supS.

2. For every τi P D, if the function c is convex (see Lemma 31), find x�
rPΨpτq

using

(4.70) and evaluate Ψpτiq via (4.71). Otherwise find the smallest upper bound

described in u
rPΨpτq

and compute

x�
rPΨpτq

� arg minx¤u
rPΨpτiq

tcpxq � rCpx, τi ^ σxqu
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with

Ψpτiq � cpx�
rPΨpτq

q � rC�x�
rPΨpτiq

, τi ^ σx�
rPΨpτiq

	
.

3. Find the value of τ�i attaining minτiPD Ψpτiq, and output px�
rPΨpτiq

, τ�i q as an ε-

optimal solution.

Using now the lower bound in Chapter 3 one can also set a predetermined relative

error.

4.7 Numerical Examples

In this section, we give examples for the problems analyzed in the Sections 4.3 -

4.6. For that, we adopt the experimental setup discussed in Pourakbar et al. [2012],

which originated from a case study of a well-known supplier of consumer electronics

products in the European market. The product under consideration is the cathode

ray tube (CRT) which is an essential component of old generation TV sets or monitors

in the 1990s. Due to the introduction of liquid crystal display (LCD), plasma and

organic light emitting diode (OLED) screens, CRTs have become obsolete and their

production has been terminated. So, for the company the end-of-life problem of this

service part is an essential challenge.

The parameters and their values for the base case scenario are summarized in

Table 4.1.

The planning horizon (or the time all warranties expire) is taken as T � 66

months. The procurement cost function is linear and has the form cpxq � cpx for

some constant cp. The cost of the alternative policy/product decays exponentially

and is given by capuq � cae
�γu for some constants ca and γ. The penalty cost of using

the alternative policy stays steady and is given by a constant p. It simply represents
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Table 4.1: Parameter setting for the base case scenario

Notation Definition Cost

cp Procurement cost per item 225
h Holding cost per item per time 3.25
cse Service cost per item 30
cre Repair cost per repairable item 20
p Penalty cost per item 100
ca Alternative policy cost per item 645
cscr Scrapping cost per item 30
γ Price erosion factor per month 0.02
δ Discounting factor per month 0.005
q Repair probability of an item 0.5

the additional costs associated with an emergency order for the alternative product.

As in Pourakbar et al. [2012], we assume that the customer arrival process N (see

(3.1)) has the arrival intensity λpuq � au2e�bu, u ¥ 0. This implies

Λpuq �

» u

0

λpsqds �
2a

b3

�
1� e�bu

�
1� bu�

b2u2

2


�
. (4.76)

Below, we set b � 1, and for a we consider two different values 100 and 1000. For

a � 100 the expected total demand over r0, 66s is Λp66q � 200, and for a � 1000 it

is approximately 2000 (the expected demand is proportional to a). Tables 4.2 and

4.3 report our results for the various choices of the problem parameters. Table 4.2

summarizes our results for the case a � 100, and Table 4.3 is for a � 1000. In

constructing these tables, we select the base case scenario whose parameter values

are given in Table 4.1. In each row of Tables 4.2 and 4.3, consisting of three lines,

we increment and decrement the value of one of the parameters by several folds

(compared to the base case) while fixing the others. In Tables 4.2 and 4.3 the lines

with δ � 0.005 correspond to our base case scenario. Column headers in Tables 4.2

and 4.3 are the labels of the problems discussed in Sections 4.3 - 4.6. For a given

parameter set in these tables, the first number indicates the optimal initial order
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quantity and the second is the minimal expected total cost. In columns/problems

(PD) and (PD^σ) the optimal τ values are given as the last entries. Recall that we

apply the Algorithms 1 and 4 to solve the problems ( rPD) and ( rPD^σ) respectively. In

(PD) we know that the value L given in (3.41) yield a lower bound for the minimal

expected cost when ppuq ¥ cse for all u P r0, T s (as in the examples that we consider

in this section). Moreover, it is straightforward to verify that L is proportional to

a. Therefore in Algorithm 1 we set ε ¤ pL{aq{100 to fill in the entries of (PD) in

Tables 4.2 and 4.3. The number L does not act as a lower bound for the minimal

cost in ( rPD^σ) since the pair p0, τq is not a feasible solution in that problem. Hence,

in Algorithm 4 we simply set ε ¤ cp{1000 to obtain the results in Tables 4.2 and 4.3.

Also, in most of the considered cases, the convexity conditions of Lemmas 15, 21, 25,

and 31 hold. Therefore the optimal order quantities are easily identified using first

order conditions. In the remaining cases, the order quantity is searched over the set

of values restricted with an upperbound; see Lemmas 12, 24, 20, and 30.
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Table 4.2: Optimization problem (a,b)=(100,1) (x�, Cost, τ�)

PT PT^σ PD PD^σ
δ � 0.001 (99, 34754.0) (104, 36297.5) (102, 34155.0, 12.70) (106, 35149.2, 11.90)
δ � 0.005 (99,34561.0) (104, 35918.9) (101, 33984.7, 12.85) (106, 34984.3, 11.85)
δ � 0.025 (99, 33640.2) (104, 34516.8 ) (100, 321585.3, 13.00) (105, 34172.6, 11.60)
γ � 0.05 (98, 34090.2) (102, 35349.9) (100, 33611.4, 12.40) (104, 34566.2, 11.45)
γ � 0.09 (95, 33476.9) (100, 34614.7) (97, 33115.4, 11.70) (102, 34010.5, 10.90)
γ � 0.13 (93, 32886.8) (97, 33826.5) (95, 32621.0, 10.95) (99, 33401.2, 10.40)
q � 0.2 (159, 48283.0) (159, 48437.0) (162, 47702.3, 11.90) (162, 47702.3, 11.90)
q � 0.4 (119, 39157.7) (122, 40110.0) (121, 38525.9, 12.65) (125, 39262.4, 11.85)
q � 0.8 (40, 20511.4) (46, 22728.6) (41, 20147.7, 12.85) (48, 21768.4, 11.80)
cp � 100 (103, 21923.4) (107, 22774.1) (107, 21004.9, 12.35) (110, 21484.1, 12.00)
cp � 350 (95, 46724.5) (101, 48695.1) (97,46367.5, 12.95) (103, 48049.2, 11.35)
cp � 450 (92, 56088.8) (99, 58700.9) (93, 55852.2, 12.95) (100, 58193.7, 11.05)
ca � 345 (93, 32989.9) (97, 34034.6) (95, 32743.6, 12.05) (99, 33613.2 , 10.45)
ca � 945 (102, 35485.3) (107, 36908.8) (105, 34671.0, 13.00) (109, 35685.5, 12.30)
ca � 1245 (104, 36135.4) (109, 37579.1) (107, 35139.6, 13.15) (111, 36155.7, 12.65)
cse � 0 (100, 28778.0) (104, 30126.3) (102, 28168.4, 13.00) (106, 29161.2, 11.95)
cse � 60 (99, 40339.1) (103, 41655.9) (101, 39794.3, 12.20) (106, 40806.9, 11.80)
cse � 90 (98, 46107.5) (103, 47429.5) (100, 45603.7, 11.70) (105, 46582.3, 11.70)
h � 5 (98, 35347.5) (102, 36938.0) (101, 34560.2, 12.35) (106, 35656.7, 11.70)
h � 10 (95, 37299.1) (99, 39543.1) (99, 36148.4, 12.00) (104, 37425.5, 11.00)
h � 15 (93 ,38981.9) (97, 41782.2) (98, 37670.1, 12.00) (103, 39156.2, 10.55)
cre � 0 (99, 32590.7) (104, 33988.0) (101, 32014.9, 12.85) (106, 33043.1, 11.90)
cre � 40 (99, 36531.3) (104, 37849.8) (101, 35954.7, 12.65) (106, 36925.1, 11.85)
cre � 60 (99, 38501.6) (103, 39731.3) (101, 37924.9, 12.45) (106, 38866.2, 11.80)
cscr � 0 (100, 34483.2) (104, 35766.8) (102, 33844.6, 12.65) (107, 34772.3, 11.80)
cscr � 40 (99, 34586.9 ) (104, 35969.6) (101, 34027.3, 12.85) (106, 35064.8, 11.85)
cscr � 60 (99, 34638.8) (103, 36019.8) (101, 34112.4, 12.90) (105, 35186.3, 11.90)
p � 0 (97, 34084.4) (104, 35918.9) (100, 33622.2, 13.00) (106, 34984.3, 11.85)
p � 300 (102, 35296.2) (104, 35918.9) (104, 34522.2, 12.45) (106, 34984.3, 11.85)
p � 500 (104, 35852.2) (104, 35918.9) (106, 34917.0, 12.25) (106, 34984.3, 11.85)

The results in Tables 4.2 and 4.3 numerically illustrate the sensitivity of the solu-

tions with respect to the problem parameters. For example, as expected, we observe

that the total costs are decreasing when the discount factor δ increases. We see that

the order quantities are non-increasing in δ. Roughly speaking, we order less at time

zero to protect ourselves against future costs when these costs are discounted at a

heavier rate. On the other hand, when the price erosion factor γ increases, we know

that the price of the alternative product decreases faster. As a result, we observe that

we switch to the alternative policy earlier in problems (PD) and (PD^σ) as expected,

and this causes us to order less initially. In problem (PT^σ), we also order less because
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the lower the initial inventory is, the sooner it will be depleted and the alternative

policy will be adopted. In problem (PT ), we order less again since an unscheduled

use of the alternative product in the future has a lower cost impact. Compared to the

erosion factor γ, we see that the total expected cost is more sensitive to the repair

probability q. In particular, when q increases, on the average more products will be

repairable and we therefore need to order less to satisfy the customer requests during

the repair replacement phase. This in turn decreases the total cost. Note that lower

initial inventory does not necessarily imply an earlier switching time since it may be

cost efficient to take advantage of the repairability of the items. The sensitivity in cp

is also as expected. The higher cp is, the higher the total expected costs and the lower

the initial order quantities are. We observe the opposite effect for ca on the order

quantity, since the alternative product becomes more expensive as ca increases, we

switch to the alternative policy later and therefore we order more initially. Obviously

the total cost is increasing in ca.

Recall that in the repair replacement policy, the service cost cse is incurred if an

arriving item is repairable or there is a spare item in inventory if it is not. Clearly,

when we increase the value of cse we observe that the total cost increases and the

initial order quantity decreases in each problem. In our base case scenario we have

q � 0.5, which means on the average half of the arriving items are repairable. As

a result, cse has a significant impact on the total costs in our examples. Compared

to cse, the repair cost cre has a similar effect on the total cost and on the order

quantity x. However, its effect on the total cost is relatively less since it applies

to repairable items only. The sensitivity of our solutions to the holding cost is as

expected. As h increases, the total cost increases, and so we order less. Compared to

other parameters, we observe that the solutions reported in Table 4.2 are less sensitive

to h. The impact of the cost of scrapping cscr is also as expected, and the solutions

are not highly sensitive to it. We believe that this is mainly because of the fact in the
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Table 4.3: Optimization problem (a,b)=(1000,1) (x�, Cost, τ�)

PT PT^σ PD PD^σ
δ � 0.001 (996, 324613.4) (1011, 329315.5) (1004, 322866.3, 14.10) (1018, 325978.5, 13.60)
δ � 0.005 (996, 323301.7) (1011, 327431.0) (1004, 313645.4, 14.10) (1018, 324704.8, 13.65)
δ � 0.025 (996, 317022.5) (1011, 319598.5) (999, 315458.3, 14.70) (1015, 318611.7, 13.95)
γ � 0.05 (990, 321450.7) (1004, 325292.6) (996, 320113.9, 13.80) (1011, 323108.9, 13.30)
γ � 0.09 (980, 319020.1) (994, 322306.2) (986, 318042.2, 13.70) (1001, 320818.5, 12.80)
γ � 0.13 (969, 316624.5) (982, 319115.3) (973, 316030.3, 12.00) (988, 318247.2, 12.40)
q � 0.2 (1595, 454789.6) (1597, 455216.1) (1603, 452638.8, 15.00) (1606, 453064.3, 13.65)
q � 0.4 (1196, 367200.2) (1207, 370157.9) (1203, 365326.6, 14.70) (1214, 367605.0, 13.65)
q � 0.8 (398, 190799.6) (420, 197617.9) (402, 189719.1, 14.90) (424, 194615.8, 13.75)
cp � 100 (1009, 197963.8) (1020, 200491.8) (1019, 195234.7, 14.70) (1031, 196726.2, 14.00)
cp � 350 (984, 447079.6) (1002, 453245.3) (988, 446028.7, 14.55) (1008, 451284.1, 13.80)
cp � 450 (972, 544870.0) (996, 553163.0) (974, 544162.8, 14.95) (1000, 551662.2, 13.65)
ca � 345 (975, 318267.4) (990, 321530.5) (980, 317551.2, 14.00) (997, 320293.5, 13.25)
ca � 945 (1007, 326208.9) (1021, 330529.0) (1013, 323781.2, 15.00) (1027, 326910.8, 13.95)
ca � 1245 (1013, 328240.5) (1027, 332589.9) (1020, 325284.2, 15.50) (1033, 328368.6, 14.15)
cse � 0 (998, 264603.2) (1012, 268767.0) (1004, 262832.7, 16.00) (1019, 265918.0, 13.70)
cse � 60 (995, 381972.9) (1009, 386051.1) (1001, 380357.2, 14.15) (1016, 383457.5, 13.60)
cse � 90 (993, 440617.1) (1008, 444650.0) (1000, 439104.9, 14.05) (1015, 442193.8, 13.55)
h � 5 (992, 329254.3) (1007, 334226.5) (1001, 326953.7, 14.50) (1016, 330334.8, 13.15)
h � 10 (982, 345287.0) (997, 352376.1) (995 , 342061.9, 14.50) (1012, 346198.2, 12.40)
h � 15 (974, 36040.1) (990, 369325.5) (989, 356861.0, 14.35) (1008, 361788.7, 12.00)
cre � 0 (997, 303598.8) (1011, 307875.4) (1003, 301883.3, 14.20) (1018, 305108.3, 13.65)
cre � 40 (997, 343004.7) (1010, 346970.5) (1003, 341286.2, 14.10) (1017, 344385.0, 13.60)
cre � 60 (997, 362707.7) (1010, 366519.1) (1003, 360987.6, 14.10) (1017, 363879.5, 13.55)
cscr � 0 (997, 323053.3) (1012 ,327014.8) (1005, 321170.4, 14.05) (1020, 324022.7, 13.50)
cscr � 40 (996, 323381.5) (1011, 327572.8) (1002, 321717.3, 14.20) (1017, 324920.0, 13.70)
cscr � 60 (996, 323540.8) (1010, 327833.5) (1001, 321971.4, 14.30) (1016, 325348.9, 13.80)
p � 0 (990, 321730.3) (1011, 327431.0) (997, 320374.9, 14.45) (1018, 324704.8, 13.65)
p � 300 (1005, 325677.8) (1011, 327431.0) (1012, 323354.2, 14.00) (1018, 324704.8, 13.65)
p � 500 (1011, 327444.8) (1011, 327431.0) (1017, 324627.2, 13.60) (1018, 324704.8, 13.65)

optimal solution the initial order is set so that a considerable portion of this inventory

will be used by the time the alternative policy is adopted, or if not, by the end of the

horizon T .



Chapter 5

On Dynamic Policies

In this chapter, we study the dynamic policies for end-of-life inventory problem. In

this framework, the final order quantity is a static variable and its value is determined

initially at the beginning of the final phase as before. The switching time, on the other

hand, is a stopping time of the arrival process. In this chapter, we re-work on some

of the cost expressions to make the analysis easier. Then, a lower bound on the

objective function is given, and an easily computable upper bound on the optimal

order quantity is driven. After that we discuss how to approximate the continuous

stopping problem with a discrete one, and try to solve this discrete optimal stopping

problem by using the standard arguments of discrete time dynamic programming. We

consider the case where the intensity function of the non-homogenous Poisson process

is piecewise constant. Finally, we apply our method on some numerical examples and

conduct some sensitivity analysis over the problem parameters, and also compare our

optimal dynamic policy with the static policies of Teunter and Fortuin [1998] and

with one of the static policies studies in Chapter 4.

89
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5.1 Introduction

To solve any optimal stopping time problem, one can consider two classes of stopping

times, and they yield two different formulations requiring different techniques. In the

first one, the switching decision can be made at any point in time. This gives rise to a

continuous time optimal stopping problem which is relatively more difficult to analyze;

see Gugerui [1986] and Davis [1993] for the theory of optimal stopping for piecewise

deterministic Markov process. In the second formulation, on the other hand, the

stopping times are assumed to take only values on some pre-determined discrete set

Θ � t0, t1, t2, . . . , T u, where T denotes the time when all service obligations expire.

This second formulation is called a discrete time optimal stopping problem which

is easier to analyze as it requires standard tools of discrete time Markov dynamic

programming; see for example Bertsekas [1995]. Since in our problem it is possible

to give a computable error bound beforehand replacing the continuous time optimal

stopping problem by a discrete time optimal stopping problem and compute the size

of the mesh of the set Θ, we will use the second approach to solve the most general

formulation given by optimization problem (PF) of the end-of life inventory problem.

To start with the analysis of this problem we recall using relation (3.20) in Chapter

3 that the expected discounted operation cost of an arbitrary px, τq-policy, x P Z�,

τ P F, 0 ¤ τ ¤ T is given by

Cpx, τq �

$'''''''&
'''''''%

cscrx� p1� qqE
�³τ^σx

0
e�δuλpuqrcse � cscr � cappuqsdu

�
�E

�³τ
0
e�δuλpuqrqpcse � cre � capuqq � p1� qqppuqsdu

�
�ph� δcscrqE

�³τ
0
e�δuppx�N0puqq

�qdu
�
�
³T
0
e�δucapuqλpuqdu,

(5.1)

and we need to solve the optimization problem pPFq given by

υpPFq � infxPZ�,τPF,τ¤T tcpxq � Cpx, τqu. (5.2)
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In relation (3.22) in Chapter 3 we introduced the function

rCpx, τq :� Cpx, τq �

» T

0

e�δuλpuqcapuqdu (5.3)

and so the set of optimal solutions of optimization problem pPFq is the same as the

set of optimal solutions of optimization problem

υp rPFq � infxPZ�,τPFtcpxq � rCpx, τqu. ( rPF)

Also it follows that

υpPFq � υp rPFq �

» T

0

e�δuλpuqcapuqdu. (5.4)

In this chapter (as in the previous chapter for static policies) we solve the equiv-

alent optimization problem p rPFq. To do so, we use a bi-level approach and introduce

for every x P Z� the optimization problem

rϕpxq :� infτPF,τ¤T tcpxq � rCpx, τqu ( rPFpxq)

and observe that solving optimization problem ( rPF) is the same as solving problem

infxPZ�trϕpxqu (5.5)

For every x the minimization problem ( rPFpxq) can be considered as continuous time

optimal stopping problem with initial inventory level x in which all the costs are

accumulated until the policy switching time τ ; beyond τ no additional cost is incurred.
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5.2 An Upperbound on the Optimal Order Quan-

tity

In this section we derive a computable upper bound on the optimal order quantity for

the general version of the end-of-life problem. Note in this section we always assume

our basic assumptions given at the end of Section 3.1. hold. To start with deriving

such a bound introduce the function g� : Z� Ñ R given by

g�pxq :� infτPF gpx, τq (5.6)

with the function g listed in relation (3.36). Recall that

gpx, τq �

$''&
''%

cpxq � cscrx+c�scrp1� qqEp
³T^σx
0

e�δuλpuqduq

�E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�
�
³T
0
e�δuλpuqcapuqdu

(5.7)

with c�scr listed in relation (3.5). Since by Lemma 6 the function x Ñ gpx, τq is non-

decreasing for every τ P F it follows that the function g� is non-decreasing. Also by

the same lemma we obtain for every τ P F that

cpxq � Cpx, τq ¥ gpx, τq. (5.8)

This shows

infτPFtcpxq � Cpx, τqu ¥ infτPF gpx, τq � g�pxq (5.9)

To obtain an elementary expression for g� we observe by the definition of gpx, τq that

g�pxq �

$''&
''%

cpxq � cscrx� c�scrE
�³T^σx

0
e�δuλpuqdu

	

�
³T
0
e�δuλpuqcapuqdu� infτPF

 
E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�(
.
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As in the last part in the proof of Lemma 6 one can show that

infτPF
 
E
�³τ

0
e�δuλpuqrcse � qcre � capuqsdu

�(
� infτPD

 ³τ
0
e�δuλpuqrcse � qcre � capuqsdu

(
�
³ς
0
e�δuλpuqrcse � qcre � capuqsdu

with ς listed in relation (3.38). Hence we obtain that

g�pxq �

$''&
''%

cpxq � cscrx� c�scrE
�³T^σx

0
e�δuλpuqdu

	

�pcse � qcreq
³ς
0
e�δuλpuqdu�

³T
ς
e�δuλpuqcapuqdu.

(5.10)

Introducing now the function g : Z� Ñ R given by

gpxq �

$''&
''%

cpxq � cscrx� c�scrE
�³T^σx

0
e�δuλpuqdu

	

�
³T
0
e�δuλpuqmintcse � qcre, capuqudu

(5.11)

it follows easily from relation (5.10) that

g�pxq ¥ gpxq (5.12)

for every x P Z�. Also since we know that x ÞÑ cpxq�cscrx�c
�
scrE

�³T^σx
0

e�δuλpuqdu
	

is nondecreasing (see proof of Lemma 6 ) we obtain that the function g is non-

decreasing and again by our standard assumptions gp8q � 8. One can now show the

following result.

Lemma 33. Let px, τq be an arbitrarily selected policy with τ P D, and for such a

policy define

xUpx, τq :� mintx P Z� : gpxq ¡ cpxq � Cpx, τqu. (5.13)

Then any optimal order quantity of optimization problem pPFq is bounded above by

xUpx, τq.
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Proof. By relations (5.8) and (5.12) it follows for a policy px, τq with x ¡ xUpx, τq

that cpxq � Cpx, τq ¥ gpxq ¡ cpxq � Cpx, τq ¥ υpPFq. This shows the result. �

Clearly the same result also applies to problem p rPFq since both problems have the

same set of optimal solutions.

An obvious choice for the policy px, τq in Lemma 33 is x � 0 and τ � 0. For this

policy we obtain

cpxq � Cpx, τq � Cp0, 0q �

» T

0

e�δuλpuqcapuqdu. (5.14)

If we select another policy px, τq, τ P F0, with a lower expected cost than Cp0, 0q, it

follows by Lemma 33 that the value xUpx, τq for that selected policy will be smaller.

This improves the computational efficiency of our proposed algorithm. However it

may require additional computational time to obtain such an alternative policy. In

the remainder, we assume that the policy px, τq is fixed and leave the exact choice

open. Applying Lemma 33 it is equivalent to solve the optimal stopping problem

rϕpxq :� infτPF,τ¤T tcpxq � rCpx, τqu ( rPFpxq)

for each x � 0, 1, ...., xUpx, τq. In the next section we will propose a discretization

scheme to approximately solve this continuous time optimal stopping problem by a

discrete time optimal stopping problem.

5.3 An Approximation Argument

Let Θ be a discrete set of time points tt0, ...., tNu � r0, T s with t0 � 0, tN � T , and

mesh

∆ :� max0¤j¤N�1 | tj�1 � tj | . (5.15)
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The stopping times taking values in Θ are denoted by τ P Θ. Also define

rϕΘpxq :� infτPΘtcpxq � rCpx, τqu. ( rPΘpxq)

The function rϕΘpxq can be regarded as an approximation for rϕpxq in problem rPFpxq,

and it is immediate that rϕΘpxq ¥ rϕpxq. The quality of the approximation is de-

termined by the selection of the set Θ. To measure the approximation error, let us

introduce the supnorm of a function f on r0, T s as

‖ f ‖8:� sup0¤u¤T | fpuq | . (5.16)

Using the modified cost expression for rCpx, τq in relation (5.1) and (5.3)and intro-

ducing for notational convenience the functions fi : r0, T s Ñ R, i � 1, 2 given by

f1puq :� p1� qqpcse � cscr � cappuqq, u ¥ 0 (5.17)

and

f2puq :� qpcse � cre � capuqq � p1� qqppuq, u ¥ 0, (5.18)

one can show the following result.

Lemma 34. If f0 : Z� ÞÑ R is given by

f0pxq :� ph� δcscrqx� ‖ λf1 ‖8 � ‖ λf2 ‖8 (5.19)

with λ denoting the arrival intensity function of the Poisson arrival process and fi,

i � 1, 2, listed in relation (5.17) and (5.18) then for the set Θ � tt0, ..., tNu with mesh

∆ in (5.15) it follows

0 ¤ rϕΘpxq � rϕpxq ¤ f0pxq∆ (5.20)
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for every x P Z� and δ ¥ 0.

Proof. If the discrete set Θ is given by Θ � tt0, ..., tNu with t0 � 0 and tN � T and

mesh ∆ it is easy to see that for every stopping time τ P F , τ ¤ T there exists a

stopping time τθ P θ satisfying 0 ¤ τθ � τ ¤ ∆ with probability 1. As an example

take τθ � dθpτq with the function dθ : r0, T s Ñ R given by

dθprq �
¸N�2

k�0
tk�1 1rtk,tk�1qprq � T 1rtN�1,T sprq.

Using these two stopping times it is sufficient to show for every x P Z� and δ ¥ 0

that

| rCpx, τθq � rCpx, τq |¤ f0pxq∆ (5.21)

with f0 defined in relation (5.19). To verify this inequality it follows by relations (5.1)

and (5.3) for every δ ¥ 0 that

| rCpx, τθq � rCpx, τq |¤
$''&
''%

���E�³τθ^σx
τ^σx

e�δuλpuqf1puqdu
	���� ��E �³τθ

τ
e�δuλpuqf2puqdu

���
�ph� δcscrq

��E �³τθ
τ
e�δupx�N0puqq

�du
���

(5.22)

Since 0 ¤ px � N0puqq
� ¤ x and 0 ¤ τθ � τ ¤ ∆ with probability 1 we obtain for

every δ ¥ 0 ����E
�» τθ

τ

e�δupx�N0puqq
�du


���� ¤ xEpτθ � τq ¤ x∆

Similarly it can be verified for every δ ¥ 0

E
�» τθ

τ

e�δuλpuqf2puqdu



¤ }λf2}8∆ and

E
�» τθ^σx

τ^σx

e�δuλpuqf1puqdu



¤ }λf1}8∆

Using these upper bounds in relation (5.22) yields relation (5.21). �
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Corollary 5. With our usual notation let us define

υp rPΘq :� infx¤xU px,τq , τPΘtcpxq � rCpx, τqu � infx¤xU px,τq rϕΘpxq ( rPΘ)

approximating the value υp rPFq of optimization problem p rPFq. It follows from Lemmas

33 and 34 that

0 ¤ υp rPΘq � υp rP q ¤ f0pxUpx, τqq∆. (5.23)

Hence, for a given absolute tolerance level ε ¡ 0, selecting a mesh ∆ ¤ ε{f0pxUpx, τqqwill

guarantee that υp rPΘq is no more than ε away from the compensated minimal cost υp rP q.
Corollary 6. Clearly, we have υp rPΘq � υp rPFq � υpPΘq � υpPFq since Cpx, τq and

rCpx, τq differ by the same constant (for any px, τq). Hence, the upper and lower

bounds in (5.23) also holds for the difference υpPΘq � υpP q. Re-arranging these in-

equalities and using the inequality υpP q ¥ gp0q (see Lemma 7 and relation (5.11)

give

1 ¤
υpPΘq

υpP q
¤ 1�

f0pxUpx, τqq∆

υpP q
¤ 1�

f0pxUpx, τqq∆

gp0q
. (5.24)

These inequalities indicate that to achieve a relative error of 100 � ε % (relative to the

magnitude of the objective function) we may simply set ∆ ¤ gp0q
f0pxU px,τqq

ε.

5.4 The Discrete Optimal Stopping Problem

Let us now assume that the set Θ is fixed. For a given Θ, the problem ( rPΘ) is

Markovian in both the current inventory level and also the time (or the time index)

and hence we can solve this problem by using the standard and powerful arguments

of discrete time dynamic programming. For that, we let Vnpxq denote the minimum

expected incremental discounted cost that the supplier incurs given that the current

time is tn and the inventory level at the current time is x. Also we let Bnpxq denote

the expected discounted one period costs from tn to tn�1 consisting of the inventory
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cost and compensated service costs during that period if the inventory level at the

current time is x and the current time is not a switching time. Clearly, for tN � T ,

we have the boundary condition

VNpxq � cscrx, (5.25)

and for n � 0, ..., N � 1 and x � 0, 1, . . . , xUpx, τq, in terms of the difference term

∆tn � tn�1 � tn, we have the following Bellman optimality equation

Vnpxq � min
 
cscrx , Bnpxq � E

�
e�δ∆tnVn�1ppx�N tn

0 ptn�1qq
�q
�(

(5.26)

where

N
ptnq
0 :� tN

ptnq
0 psq : s ¥ 0u � tN0ps� tnq �N0ptnq : s ¥ 0u (5.27)

is a non-homogeneous Poisson process with arrival intensity λ0ptn � uq, for u ¥ 0.

In (5.26), cscrx gives the immediate cost of stopping. Then, we simply compare the

cost of immediate stopping with the value of continuing, and we select the minimum

to identify the best action at time tn. The value of continuing consists of multiple

components: i) inventory cost from tn until tn�1, ii) compensated service cost from tn

until tn�1, and iii) minimal cost from time tn�1 onwards. The first two is given by the

term Bnpxq and the third is given by the expectation term in (5.26). All costs should

be discounted to time tn for a proper comparison. We iterate the Bellman equation

(5.26) recursively backwards for n � 0, ..., N � 1 and x � 0, 1, . . . , xUpx, τq, and at

n � 0, we set rϕθpxq � V0pxq. The value of x solving the problem

υp pPΘq � min
x¤xU px̄,τ̄q

cpxq � pϕθpxq � min
x¤xU px̄,τ̄q

cpxq � V0pxq (5.28)
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gives the optimal initial order quantity. In general, the function x ÞÑ pϕθpxq does

not give useful properties (like convexity) for the sufficiency of first order conditions.

Therefore a numerical search method should be employed to find the best order

quantity (depending on the problem size, even a complete enumeration can be used).

In implementation, one starts with this order quantity and continue serving customers

with repair-replacement policy until the first time the value Vn is equal to the cost

of scrapping. More precisely, let x� be the optimal order quantity and let Xt �

px��N0ptqq
� be the level of the corresponding inventory process at time t. Then the

optimal stopping time can be represented as

τ� � minttn P Θ : VnpXtnq � cscrXtnu. (5.29)

Below, in the next subsection, we explain how Bnpxq (and its inventory and service

components) can be computed.

5.4.1 Computing the Expected One Period Discounted Cost

Bnpxq

At time tn, with x-many items in the inventory, the expected discounted inventory

holding cost (until tn�1) is given by

Hnpxq :� hE
�» tn�1

tn

e�δpu�tnqpx�N
ptnq
0 puqq�du



� h

» ∆tn

0

e�δsE
�
px�N

ptnq
0 psqq�

	
ds.

This can be obtained by evaluating the increments ∆Hnpxq :� Hnpx� 1q�Hnpxq for

x � 0, ..., xUpx, τq having the simpler form

∆Hnpxq � h

» ∆tn

0

e�δsPpN ptnq
0 psq ¤ xqds. (5.30)
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On the other hand, using Doob’s stopping theorem, the expected total discounted

compensated service costs from time tn until time tn�1 can be written as

Snpxq �

$'''''''''''''&
'''''''''''''%

E
�³tn�1

tn
e�δpu�tnqλpuqqpcse � creqdu

	
�

E
�³tn^σptnqx

tn
e�δpu�tnqλpuqp1� qqcsedu



�

E
�³tn�1

tn^σ
ptnq
x

e�δpu�tnqλpuqp1� qqcappuqdu
	
�

E
�³tn�1

tn
e�δpu�tnqλpuqcapuqdu

	
(5.31)

with σ
ptnq
x denoting the arrival time of the x’th non-repairable item after time tn. By

standard re-arrangements of the expressions in (5.31) it follows that

Snpxq �

$''&
''%

³∆tn
0

e�δsλps� tnqrqpcse � cre � caps� tnqq � p1� qqpps� tnqsds

�
³∆tn
0

e�δsλps� tnqp1� qqrcse � capps� tnqsPpN ptnq
0 psq   xqds.

(5.32)

This shows for every x � 0, ..., xUpx, τq and ∆Snpxq :� Snpx � 1q � Snpxq, for x �

0, ..., xUpx, τq, that

∆Snpxq �

» ∆tn

0

e�δsλps� tnqp1� qqrcse � capps� tnqsPpN ptnq
0 psq � xqds. (5.33)

Clearly, Bnpxq � Hnpxq�Snpxq. Then for x � 0 it follows by relation (5.31) that the

one period expected discounted costs is given by

Bnp0q � Hnp0q � Snp0q � Snp0q �

» ∆tn

0

e�δsλps� tnq

rqpcse � cre � caps� tnqq � p1� qqpps� tnqsds.

(5.34)
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Also by relations (5.30) and (5.33) we obtain

∆Bnpxq :� Bnpx� 1q �Bnpxq �

$'''''''&
'''''''%

h
³∆tn
0

e�δsPpN ptnq
0 ¤ xqds

�
³∆tn
0

e�δsp1� qqλps� tnqrcse � capps� tnqs

PpN ptnq
0 psq � xqds.

(5.35)

Hence Bnpxq values can be computed starting with Bnp0q and evaluating ∆Bnpxq for

x � 0, ..., xUpx, τq.

5.5 Explicit Results with Piecewise Constant Ar-

rival Rate Functions

In this section, we restrict ourselves to the case where the arrival rate function is

piecewise constant. To construct a piecewise continuous arrival intensity function,

for some integer K P N, let us introduce the time points 0 � a1   a2....   aK  

aK�1 � T , the intervals Ak � rak, ak�1q for k � 1, ...K � 1 with AK � raK , aK�1s,

and also the constants λ1, . . . λK . For k ¤ K, the rate function is constant over Ak

and its value is λk. With this notation, we have the representation

λptq �
¸K

k�1
λk1Akptq, t ¥ 0. (5.36)

Lemma 35. For the arrival intensity function λ in (5.36), the cumulative intensity

function Λptq �
³t
0
λpuq du has the explicit form

Λptq �
¸K

k�1
pλkt� βkq1Akptq, t ¥ 0, (5.37)
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with the intercepts βk given by

β1 � 0 and βk �
¸k

i�2
aipλi�1 � λiq, for k � 2, ..., K. (5.38)

For the cost of procurement, cost of the alternative policy, and the penalty cost, we

adopt the functions in Pourakbar et al. [2012] and we set cpxq � cpx, capuq � cap0qe
�γu

with cap0q ¡ cse and ppuq � p with p ¥ cse. For a fixed static policy px̄, τ̄q with

τ P F0 (for example x̄ � 0, τ̄ � 0), we need to evaluate the function gpxq in (3.36) for

consecutive x values in order to find an upper bound xUpx̄, τ̄q on the order quantity;

see Lemma 33. For x � 0 we have

gp0q �

» T

0

e�δuλpuqmintcse � qcre, cap0qe
�γuudu (5.39)

and if cap0qe
�γT ¥ cse � qcre we obtain by straightforward integration that

gp0q � pcse � qcreqδ
�1

¸K

k�1
λkpe

�δak � e�δak�1q. (5.40)

For the case cap0qe
�γT   cse� qcre and cap0q ¡ cse� qcre again by some standard and

yet lengthier calculations, gp0q has the following elementary expression
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gp0q �

$''''''''''''''''''''''''''''''''''''''''''''&
''''''''''''''''''''''''''''''''''''''''''''%

$''''''''&
''''''''%

λ1δ
�1pcse � qcreq

�
1� p cse�qcre

cap0q
qδγ

�1
	
�

�cap0qλ1pδ � γq�1

��
cse�qcre
cap0q

	δγ�1�1

� e�pδ�γqa2




�cap0qpδ � γq�1
°K
k�2 λk

�
e�pδ�γqak � e�pδ�γqak�1

�
i� � 1

$'''''''''''''&
'''''''''''''%

pcse � qcreqδ
�1

°i��1
k�1 λkpe

�δak � e�δak�1q

�λi�pcse � qcreqδ
�1

�
e�δai� � p cse�qcre

cap0q
qδγ

�1
	

�λi�cap0qpδ � γq�1

��
cse�qcre
cap0q

	δγ�1�1

� e�pδ�γqai��1




�cap0qpδ � γq�1
°K
k�i��1 λkre

�pδ�γqak � e�pδ�γqak�1s

2 ¤ i� ¤ K � 1

$''''''''&
''''''''%

pcse � qcreqδ
�1

°K�1
k�1 λkpe

�δak�1 � e�δakq

�λKpcse � qcreqδ
�1

�
e�δaK � p cse

cap0q
qδγ

�1
	

�λnpcse � qcreqpδ � γq�1

��
cse�qcre
cap0q

	δγ�1�1

� e�pδ�γqaK�1



i� � K.

(5.41)

with i� :� max
!

1 ¤ i ¤ K � 1 : ai ¤ γ�1 ln
�

cap0q
cse�qcre

	)
.

Finally for cap0q ¤ cse � qcre and hence automatically cap0qe
�γT   cse � qcre it

follows that

gp0q � pcse � qcreqpγ � δq�1
¸K

k�1
λkpe

�pδ�γqak � e�pδ�γqak�1q. (5.42)

To evaluate gpxq for other values of x, we use iteratively the relation gpxq � gpx �

1q �∆gpx� 1q in which, by (3.36), we have

∆gpx� 1q � cp � cscr � c�scr
³T
0
e�δuλ0puqPpN0puq � x� 1qdu. (5.43)
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For x P Z� and t ¥ 0 define the function

Gpx, tq :�

» 8

t

e�s
sx

x!
ds � e�t

¸x

j�0

tj

j!
, (5.44)

and the constants

β�k :� pδλ�1
k � 1� qqβk, λ�k :� δ � p1� qqλk, k � 1, ..., K. (5.45)

Also introduce for every x P N and k � 1, ..., K the function

Hpx� 1, kq :� Gpx� 1, λ�kak � β�k q �Gpx� 1, λ�kak�1 � β�k q ¥ 0 (5.46)

with ak the points of discontinuity of the piecewise constant arrival intensity function

λ listed in relation (5.36). In terms of the function H above, the integral term in

(5.43) can be computed explicitly again by standard integration as

» T

0

e�δuλ0puqPpN0puq � x� 1qdu �
¸K

k�1
eδβkλ

�1
k

�
1�

δ

p1� qqλk � δ


x

Hpx� 1, kq.

(5.47)

Once xUpx̄, τ̄q is determined, for a given absolute/relative error ε ¥ 0, we have to

determine the upper bound on the mesh size of the discrete set Θ; see Corollaries 5

and 6. For that, we need to evaluate ‖ λfi ‖8 for i � 1, 2 with fi given by relation

(5.17) and (5.18). For our particular choice of functions it follows that

f1puq � p1� qqpcse � cscr � p� cap0qe
�γuq and

f2puq � qpcse � creq � p1� qqp� qcap0qe
�γu, for u ¥ 0.

(5.48)

Since p ¥ cse and cscr ¥ 0 and hence p ¥ cse� cscr the function f1 is non-positive and
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increasing, and f2 is increasing. This implies

‖ λf1 ‖8� max1¤k¤K t�λkf1pakqu and

‖ λf2 ‖8� max1¤k¤K λk maxt| f2pakq |, | f2pak�1q |u,

(5.49)

in terms of which f0pxUpx̄, τ̄qq is computed using (5.19). Having computed the upper

bound on ∆ as in either Corollary 5 or 6, we can set ∆ equal to this upper bound

and construct the discrete set Θ � tt0, ...., tNu as follows. Let M0 :� 0 and Mk :�Pak�1�ak
∆

T
, k � 1, ..., K. For each k � 1, ..., K introduce

∆k �
ak�1 � ak

Mk

¤ ∆. (5.50)

We define the sequence tn, n � 1, ..., N with N :�
°K
j�1Mj as

tn � ak � pn�
¸k�1

j�0
Mjq∆k for

¸k�1

j�0
Mj ¤ n  

¸k

j�0
Mj, k � 1, ..., K

(5.51)

and tN � T . By construction, the mesh of the set Θ is less than or equal to ∆. Also,

it follows that on every interval rtn, tn�1s the arrival rate of the Poisson process is

a constant. In particular, N
ptnq
0 is a homogeneous Poisson process on rtn, tn�1s with

constant arrival rate λk for
°k�1
j�0 Mk   n ¤

°k
j�0Mj, k � 1, ..., K. This simplifies

the calculation of the Bellman operator and the expected one period discounted cost

function Bn in (5.26). This is explained in the remainder of this section as the last

step.

Lemma 36. If the sequence tn is given by relation (5.51) then for every
°k�1
j�0 Mj ¤

n  
°k
j�0Mk, k � 1, ..., K

Bnp0q � rqpcse�creq�p1�qqpsλkδ
�1p1�e�δ∆kq�qcap0qe

�γtnλkpδ�γq
�1

�
1� e�pδ�γq∆k

�
.
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Proof. It follows by relation (5.34) that

Bnp0q � rqpcse�creq�p1�qqps

» ∆tn

0

e�δsλps�tnqds�qcap0qe
�γtn

» ∆tn

0

e�pδ�γqsλps�tnqds.

Since for
°k�1
j�0 Mj ¤ n ¤

°k
k�0Mk, k � 1, ...K it follows by relation (5.51) that

∆tn � ∆k, λps� tnq � λk for all s ¤ ∆tn, and the result follows. �

For nk �
°k
j�0Mj � 1 we evaluate

Bnkp0q �

$''&
''%

rqpcse � creq � p1� qqpsλkδ
�1p1� e�δ∆kq

�qcae
�γpak�1�∆kqλkpδ � γq�1r1� e�pδ�γq∆ks

(5.52)

and for
°k�1
j�0 Mj   n  

°k
j�0Mj we compute

Bn�1p0q � Bnp0q � qcap0qλkpδ � γq�1e�γtn�1p1� e�γ∆kqp1� e�pδ�γq∆kq. (5.53)

This gives us an easy and fast recursive procedure for updating Bnp0q for
°k�1
j�0 Mj ¤

n  
°k
j�0Mj. To obtain Bnpxq values for x � 1, . . . , xUpx̄, τ̄q, we can use the relation

Bnpxq � Bnpx�1q�∆Bnpx�1q; see (5.35). In our case, ∆Bn values can be even more

conveniently obtained using the second order difference terms ∆Bnpxq�∆Bnpx� 1q.

To pave the way, we introduce for θ ¥ 0, x P Z�

Jnpθ, xq :�

» ∆tn

0

e�θsPpN ptnq
0 psq � xqds.

Since the sequence tn, n � 1, ..., N with N �
°K
j�0Mj is given by relation (5.51) it

follows for every
°k�1
j�0 Mj ¤ n  

°k
j�0Mj, k � 1, ..., K that

Jnpθ, xq �

» ∆k

0

e�pθ�λkqs
pλksq

x

x!
ds � λ�1

k

�
λk

θ � λk


x�1

p1�Gpx,∆kpθ � λkqq
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with G defined in relation (5.44). The next result follows after a lengthy and

tedious application of the chain rule for ∆Bnp0q. The proof is skipped for conciseness,

we only give the result.

Lemma 37. If the sequence tn is given by relation (5.51) and

θk :�
cap0qλk

δ � γ � λk
p1� e�pδ�γ�λkq∆kq, k � 1, ..., K, (5.54)

then for every
°k�1
j�0 Mj ¤ n  

°k
j�0Mj, k � 1, ..., K

∆Bnp0q � �θke
�γtn �

�
cse � p�

h� δpp� cseq

δ � λk



p1� e�pδ�λkq∆kq. (5.55)

Once again we use a recursive procedure for updating ∆Bnp0q for
°k�1
j�0 Mj ¤ n  °k

j�0Mj. More precisely, applying Lemma 37 it follows for nk �
°k
j�0Mj � 1 that

∆Bnkp0q � �θke
�γpak�1�∆kq �

�
cse � p�

h� δpp� cseq

δ � λk



p1� e�pδ�λkq∆kq (5.56)

while for
°k�1
j�0 Mj � 1 ¤ n  

°k
j�0Mj

∆Bn�1p0q � ∆Bnp0q � θke
�γtn�1p1� e�γ∆kq ¤ ∆Bnp0q. (5.57)

Finally, by another application of the chain rule and (5.44), we obtain after some

calculations the following expression for ∆Bnpxq �∆Bnpx� 1q and x P N.

Lemma 38. If the sequence tn is given by relation (5.51) and we introduce for every

k � 1, ..., K the functions

Dkpxq � λ�1
k cap0qpδ � γq

�
λk

δ � γ � λk


x�1

r1�Gpx,∆kpδ � γ � λkqqs (5.58)
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and

Dkpxq � λ�1
k ph� δpp� cseqq

�
λk

δ � λk


x�1

r1�Gpx,∆kpδ � λkqqs (5.59)

then for every
°k�1
j�0 Mj ¤ n  

°k
j�0Mj, k � 1, ..., K and x P N

∆Bnpxq �∆Bnpx� 1q �

$''&
''%

�e�δ∆krcse � p� cap0qe
�γtn�1se�λk∆k pλk∆kq

x

x!

�Dkpxq � e�γtnDkpxq.

(5.60)

Applying Lemma 38 it follows for nk �
°k
j�0Mj � 1 and x P N

∆Bnkpxq �∆Bnkpx� 1q �

$''&
''%

�e�δ∆krcse � p� cap0qe
�γak�1se�λk∆k pλk∆kq

x

x!

�Dkpxq � e�γtnDkpxq

(5.61)

while for
°k�1
j�0 Mj � 1 ¤ n  

°k
j�0Mj

∆Bn�1pxq �∆Bn�1px� 1q �

$'''''''&
'''''''%

∆Bnpxq �∆Bnpx� 1q

�cae
�γtnp1� e�γ∆kqe�λk∆k pλk∆kq

x

x!
�

e�γtn�1p1� e�γ∆kqDkpxq.

(5.62)

5.6 Numerical Examples

In this section, we give some numerical examples, carry out a sensitivity analysis

over problem parameters, and compare our results with those produced by other

policies. For that, we consider a setup where the arrival intensity function is piecewise

continuous and we set the functions cpxq, capuq and ppuq as in Pourakbar et al. [2012].

More precisely, we take cpxq � cpx, capuq � cap0qe
�γu with ca ¡ cse and ppuq � p with

p ¥ cse. For this case, the results are derived explicitly in Section 5.5 above. Due
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to these explicit results, it is possible to solve a problem instance within seconds (for

our computational experiments, we used a computer with a 2.20 GHz processor). As

the data in Pourakbar et al. [2012] come from a case study for a consumer electronics

company as in Chapter 4.7, we adopt the similar cost parameters and we set up the

base case scenario as in Table 5.1. The time horizon r0, T s is split into three equal

intervals over which the arrival rate is constant. With the notation of Section 5.5 we

have K � 3, ak �
pk�1q

3
T for k � 1, . . . , 4, and Ak � r pk�1q

3
T, k

3
T s for k � 1, 2, 3. The

constant arrival rate λk over Ak is taken as `βk�1. The value of β is equal to 0.5 in

the base case and ` is set so that the over all expected number of customer arrivals

over r0, T s is 10T (i.e., on average 10 customer requests per unit interval).

Table 5.1: Problem parameters for the base case scenario

T cscr cse cre h q cp cap0q γ p δ β
66 (months) 30 30 20 3.25 0.5 225 645 0.02 1290 0.003 0.5

In the base case scenario, we set a relative error level of ε � 1{250; see Corollary 6.

For this tolerance level, the mesh ∆ of our discretization set Θ � tt1, t2, . . . , T u is no

larger than 0.004. This gives a very fine discretization of the interval r0, T s. Starting

with the boundary condition (5.25) at tn � T , we iterate the Bellman equation (5.26)

backwards to compute Vnpxq values. Finally at t1 � 0, we numerically solve the

problem υp pPΘq � minx cpx � pϕθpxq � minx cpx � V0pxq to find the optimal initial

order quantity x�, and in the base case scenario this is equal to 287. With this initial

inventory level, we serve customers using the repair-replacement policy until τ� given

in (5.29) at which time the value of continuing is equal to the value of scrapping.

The first plot in the second row of Figure 5.2 illustrates the stopping region of the

problem. The colored/shaded region (the upper right corner and the x-axis) is the

set of points px, tnq’s for which Vnpxq � cscrx. In plain words, it is optimal to stop

at the first time point tn at which the stochastic process ptn, Xtnq enters this region

which X denoting the inventory process.
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(a) (b) (c)

Figure 5.1: Sensitivity of the solution in the base case on the cost param-
eters γ, h, and p.

In Figure 5.1, we report graphically the dependence of the solution on the cost

parameters γ, h, and p. The curves are obtained by changing one parameter at a time

and keeping all others fixed in the base case scenario. In each panel of the figure, the

upper curve is the minimal cost and the lower one is the optimal initial order quantity

both as functions of the changing parameter. In panel (a) of Figure 5.1, we observe

that both the optimal cost and the initial order quantity are decreasing in the decay

factor γ of the price of the alternative policy. Both curves exhibit first concave and

then convex behaviors. That is, for low values of γ, incremental increase in the decay

factor (or equivalently slightly faster decrease in the price of the alternative policy)

has higher effect compared to the case where there is already a significant pace of

reduction in the price. Further increments still affect the cost and order quantity but

the effect is less.

In panel (b), we see the dependence of the inventory holding cost h on the solution.

As the holding cost increases, the optimal cost increases and we start with less items

to control this increase. Similar to the one by γ, the marginal effect of the holding

cost is decreasing as its value gets higher. The dependence on the penalty terms p
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Figure 5.2: Stopping regions for different γ and h values obtained from
the base case scenario.

is given in panel (c). As the penalty increases, the optimal cost naturally increases.

We also order more to avoid high penalties. Yet, these effects/dependences become

negligible after some value of p. We believe that this is because, in the optimal policy,

the supplier can adjust the policy variables px, τq in order to reduce the probability

of incurring a penalty to low levels (especially when the penalty is very high). If

the inventory is depleted soon, an early switching decision can always be used as a

solution. Although it is a static decision, the initial inventory also acts as a tool to

control this cost. As a result, we see that additional increments in p does not effect

the costs any further after a point. When we compare the y-axes of the plots in

Figure 5.1, we note that the solution has higher sensitivity to γ and h than p. We

would expect that these two parameters affect the stopping region of the problem as

well. We indeed observe this in Figure 5.2, where we plot the changes in the stopping

region as we change these two parameters. Recall that the shaded regions in the plots

are the regions where we have Vnpxq � cscrx in the Bellman equation (5.26). The

first row of the figure is for three different values of γ, and the second row is for three

different values of h. As γ increases, the alternative policy becomes more attractive



112 CHAPTER 5. ON DYNAMIC POLICIES

(a) (b)

Figure 5.3: Optimal cost and order quantities as functions of q (panel (a))
and β (panel (b)) in the base case.

and as a result the stopping region gets larger. When the holding cost h increases,

the repair-replacement policy becomes more expensive and it is more cost effective to

switch to the alternative policy. Hence, we have larger stopping regions again.

In Figure 5.3, we illustrate the dependence of the solution on the demand param-

eters q and β. As the repair probability q increases, arriving items are more likely

to be repairable. As a result, total cost decreases and the supplier starts with lower

number of items. Note that in the extreme case with q � 1, there is no need to have

any inventory and the cost is 30787. On the other hand, with q � 0, the initial order

quantity is 428 and the cost is 182513 (almost six times more compared to the case

with q � 1). These numbers indicate that the solution is indeed very sensitive to

the quality of the sold items and this observation highlights the importance of the

quality control efforts during the production phase. Panel (b) illustrates the effect

of β. Recall that β is the growth factor in the arrival intensity over the intervals

r0, T
3
s, rT

3
, 2T

3
s, r2T

3
, T s and the cumulative demand over r0, T s is fixed at 10T. Hence,

when β ¡ 1 and gets higher, most of the demand arrive later (the opposite happens

when β   1 and gets lower). As β increases, the inventory holding cost component
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increases the total costs. In order to control the costs, the optimal policy then adjusts

the initial inventory and starts with less items. This is what we observe in panel (b),

and when we look at the y-axes of the plots in panel (b), we see that the optimal

order quantity is more sensitive than the total costs.

Next, we compare the dynamic policy given by our optimal stopping formulation

with other alternative policies in a number of different problem instances. The results

are given in Table 5.2. The table reports in each problem instance the optimal initial

order quantity and the switching time (if exists) along with the corresponding total

expected cost for all policies. In the table, P denotes to the solution of our stopping

problem. The first alternative P1 refers to the policy in which we never switch to the

alternative method; that is; τ � T . This problem is studied in Teunter and Fortuin

[1999], Teunter and Fortuin [1998], and also in Section 4.3 above. In this problem, we

simply solve the problem minx cpxq �Cpx, T q. The second alternative policy P2 is a

static policy in which the supplier can switch to the alternative policy before T and

the (deterministic) switching time is the value of t solving the minimization problem

minpx,tqPF0 cpxq�Cpx, tq. This problem gives us the best static policy and it is solved

in Section 4.4. These three policies are naturally ordered; P is the best, it is followed

by P1 and then by P2. The table shows how and to what extent they differ from

each other in different settings. Along with other results, the last two columns give

the percentages

P vs Pi � 100�
cost given by Pi� cost given by P

cost given by P
%

for both policies P1 and P2. In these problem instances, we observe that P1 and P2

yield on average 17.39% and 5.24% higher costs compared to P respectively. Also,

P1 starts with 33.92% more items and P2 starts with 2.99% more items in the initial

inventory, both compared to P again. These numbers show the importance of using
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an optimal dynamic policy in practice. Although lower compared to its improvement

over P1, the cost improvement of P over P2 is also significant.

In the table, we note that as the price erosion factor γ of the alternative method

increases (i.e., the alternative method of serving customers becomes more attractive

over time), policies P and P2 significantly deviate from P1. They start with less

number of items and their total costs drop remarkably. For example, when γ is very

high (row with γ � 0.1), P and P2 start with less than half of the initial inventory of

P1, and they have an expected cost which is less than half of the cost given by P1. In

general, the policy P1 is not effected much by the ca function (hence by the value of γ)

as this cost is incurred (together with the penalty p) only when an item is not available

and the arriving item is irreparable. Hence, there is some effect but it is negligible.

Also note that the percentage cost improvement of P over P1 and P2 is increasing in

γ. The option to make a dynamic switching decision proves more valuable when the

price of the alternative policy decays faster. As the table illustrates, the effect of the

parameter cap0q is similar to that generated by γ as they both determine the cost of

the alternative policy. As the penalty cost p increases, all policies start with more

items to avoid high penalties. Since all policies adjust their initial order quantities

accordingly, we do not observe a drastic change in the total expected costs. This is also

observed in Figure 5.1 for the policy P alone. Here we also observe that the percentage

cost reduction by P is higher with high values of p since the supplier can easily avoid

high penalties by observing the inventory levels and taking the switching decision

timely. Compared to the penalty p, we observe that the costs are more sensitive to

the inventory holding cost term h. Clearly, starting with less items and switching

to the alternative policy earlier can be used as a tool to control high inventory costs

(as we scrap all the inventory upon switching). In the table, as h increases all costs

increase and all policies start with less items. In return, the switching decision is made

sooner. In the optimal static policy, the deterministic exit time is smaller. Similarly,
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Table 5.2: Solutions of different problem instances for different policies

P1 P2 P P vs P1 P vs P2
x cost x tau cost x cost (%) (%)

γ
0.005 339 132233.4 339 65.934 132197.6 327 128299.8 3.07 3.04
0.01 338 131848.2 338 65.934 131784.5 318 125944.6 4.69 4.64
0.02 337 131299 296 45.606 126469.9 287 119240.1 10.11 6.06
0.05 335 130664.7 201 22.506 95400.2 193 89839.4 45.44 6.19
0.1 334 130534.1 115 12.408 62673.7 110 58644.3 122.59 6.87
cap0q
250 334 130604.7 176 19.404 87301.4 172 82035.6 59.20 6.42

322.5 335 130934.3 199 22.044 106980.8 194 101242.4 29.33 5.67
1290 339 131941.2 338 65.934 131829.3 322 126766.3 4.08 3.99
2580 342 132967.6 342 65.934 132875.2 337 131248.6 1.31 1.24
p

322.5 307 123691.7 284 49.83 121398.6 287 119236.4 3.74 1.81
645 325 127778.7 290 47.058 124017.5 287 119238.3 7.16 4.01
2580 346 134401.2 301 44.418 128736.1 287 119240.9 12.71 7.96
5160 353 137171.6 307 44.088 130819.9 287 119241.5 15.04 9.71
h

0.8125 343 111900.2 325 57.552 111330.5 308 105306.2 6.26 5.72
1.6125 341 118646.9 314 52.998 116801.7 302 110228.7 7.64 5.96

6.5 330 155959.1 262 37.488 142208.5 259 134162.4 16.25 6.00
13 317 201776.6 220 28.38 164158.8 219 154790.9 30.35 6.05
cscr
-30 338 130732.4 297 45.342 125775.6 287 119238.1 9.64 5.48
10 337 131113.5 296 45.408 126244.9 287 119239.5 9.96 5.88
60 336 131564.2 295 45.474 126795.3 287 119241.3 10.33 6.34
90 335 131826.8 295 45.738 127109.1 287 119242.1 10.55 6.60
q

0.4 403 150495.1 335 40.986 141841.6 327 133738.3 12.53 6.06
0.6 270 112016.9 248 52.008 110027.4 240 103745.8 7.97 6.05
0.8 136 73036.1 136 65.934 73032.5 130 70792.6 3.17 3.16
1 0 30787.7 0 66 30787.7 0 30787.7 0.00 0.00
β

0.25 338 125902.6 325 44.022 124053.3 309 117442.1 7.20 5.63
1 336 139706.8 238 45.606 128344.5 235 121536.7 14.95 5.60

1.5 336 144883.2 194 45.804 128595.2 192 122346.3 18.42 5.11
2 336 148130.7 162 45.87 128360.9 161 122578.1 20.85 4.72
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in the dynamic policy, we observe that the stopping/switching region becomes larger

as h increases. This was illustrated in Figure 5.2 for the policy P. The percentage cost

reduction of P over the other two policies is also increasing in h. The effect is more

visible when we compare P with P1. There is still some improvement but less when P

is compared with P2. This is mainly because P2 also has the option to switch but can

only do it statically. The cost of scrapping cscr seems to be the parameter which has

the lowest effect in the table. We believe that this is because all policies determine

their initial order quantities by taking the demand information into account so that

not many items are scrapped at the end. Unlike cscr, the repair probability q has

considerable effect in all policies. This was noted in Figure 5.3 for the policy P alone.

Here, as q increases, all policies start with less items in the inventory. For low values

of q, the initial inventories in P and P2 are relative lower than that in P1, and the

differences between the expected revenues are more apparent. These gaps close as q

increases. When q increases, policies behave similarly. In the case where q � 1, all

policies give the same solution; they don’t store any initial inventory and never switch

to the alternative policy. Starting with no inventory is mainly because all products

are repairable. P and P2 never switch to the alternative policy because repairing an

item is always more cost effective in this setup; the lowest price for the alternative

policy is cap0qe
�γT � 172.30 whereas repairing an item costs cse� cre � 50. When we

increase the value of γ to 0.07 to make the alternative policy more attractive, we see

that both P and P2 start with zero inventory again but they switch to the alternative

policy before T . In particular, P uses the same (static) switching time with P2 since

both policies face the same uncertainty, all items are repairable with probability one

and there is no inventory and no penalty costs involved.

Finally, as β increases, recall that we have the same expected cumulative demand

over the horizon r0, T s but customers are more likely to arrive later. The initial order

quantity in P1 is not effected much by β since the initial inventory is the only (static)
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decision variable. However, as β increases, the inventory holding costs increase for

the same initial inventory level, and P and P2 start with less items in the inventory in

order to avoid high holding costs (as noted in Figure 5.3 for P alone). In return, total

costs are less effected. In the table, the percentage cost improvement of P over P1 is

more visible as β increases whereas the effect is less compared to P2. From β � 0.25

to β � 2 is a significant change, yet (unlike P1) neither the actual costs of P and

P2 nor the percentage improvement of P over P2 vary much. This is mainly because

both P and P2 can respond to changes in the time component of the demand, and P

does it slight better as it is a dynamic policy.



Chapter 6

Concluding Remarks

In this study we focus on the so-called end-of-life inventory problem of a service part in

its final phase. The final phase starts when the production of spare part terminates

and lasts until the last service obligation expires. This phase is the longest phase

in the service life cycle and the main challenge is the availability of service parts

which are not produced anymore. Hence it is a challenge for companies to meet the

demand during that phase and to face this challenge, companies use various tactics.

In practice, one of the most popular tactics is to order a sufficient amount of service

parts at the beginning of the final phase. However, due to the difficult statistical

problem of giving a proper estimate of the demand for service parts, companies face

a huge risk of a large number of left over parts at the end of the service obligation

phase or on the other hand of not being able to satisfy the demand. This is the main

difficulty in applying the above tactic. Moreover, a rapid development in technology

and innovation imposes the parts to enter their final phases earlier. For example,

consumer electronics parts start their final phase usually after one year of production,

while the usual service obligations for such a product last for three to five years.

In Chapter 1, we consider service management and its importance in today’s

business world. The after-market became a profitable sector for companies and the
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operational problems of this sector received recently a lot of attention within the sci-

entifc community. The literature in this so called service management expanded and

can be classified into different categories. Hence in Chapter 1 we did this classification

and also discuss the life cycle of service parts.

In Chapter 2, the literature on the end-of-life inventory problem is reviewed. As

mentioned before, the end-of-life inventory problem deals with the control of inventory

of service parts in the final phase and many researchers have studied this problem

from different points of views. Some researchers have developed mathematical models

describing the problem and depending on the complexity of the model have either

used heuristic or exact mathematical solution procedures. Other researchers have paid

more attention to the management side of this problem. Generally, the literature on

the end-of-life inventory problem can be divided into a service-driven approach, a

cost-driven approach or a forecasting based approach. In a service driven approach

the aim is to optimize the service to the customers regardless of the cost incurred by

the system. In a cost-driven approach one tries to identify the cost components of a

given policy and by doing so identify that policy optimal with respect to the total costs

incurred by the company during the final phase. And finally, in the forecasting based

approach one ignores the production and inventory costs and only tries to estimate

the demand for service parts. In Chapter 2 we reviewed the existing literature within

this field. Since our research belongs to the cost driven approach we however did

focus more on the existing literature in this subfield.

In Chapter 3, we introduce the end-of-life inventory problem with its cost struc-

ture. In the consumer electronic market, for example, thanks to a rapid development

in technology, the price of new generation products decrease remarkably over years.

This happens while the repair costs may stay constant over time. As a result, chang-

ing the current strategy to a more cost effective policy may be more appealing for

companies. Instead of only using a repair policy we may combine this policy with
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an alternative policy to replace a defective item by a new generation model or offer

to the customer a discount on this new generation model. In our model we assume

that customers with defective items arrive according to a non-homogenous Poisson

process and these customers request for repairing or replacing the items. Also in this

model we not only consider the repair-replacement policy but also offer an alternative

policy to cope with the demand in the final phase. In particular, at the beginning of

the service phase we apply the repair-replacement policy until a (possibly random)

time after which it becomes more cost effective to apply the alternative policy. After

this so called switching time, we completely switch until the end of the service phase

to the alternative policy. The incurred different costs of using both policies are calcu-

lated and the total expected cost is given by adding all these costs. This defines for

each policy the objective function and its costs depends on the final order quantity

and the (possibly stochastic) switching time. The switching time in general depends

on the realizations of the arrival process of demands. Optimizing over these decision

variables we obtain the optimal policy within this large class of feasible policies. The

main contributions of Chapter 3 can be listed as follows:

• The demand for service parts arrive according to a non-homogenous Poisson

process. During the repair-replacement phase of the considered policy two dif-

ferent stochastic processes count the number of non-repairable and repairable

items. If during this phase the defective item is repairable we repair it at a

certain repair cost and if not we need a service part. If such a service part is

available we incur a service cost and if not we need to apply the alternative

policy earlier then expected at a huge penalty cost. At the switching time we

switch to the alternative policy and if at that time we still have inventory of

service parts we discard this inventory and incur scrapping costs.

• The holding cost, repair cost, service cost, alternative cost and scrapping cost

are calculated for each feasible policy and added up to obtain the total expected
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cost for that policy.

• Depending on the class of subpolicies (static or dynamic) we need to minimize

the objective function with respect to the final order quantity and switching

time. Within the class of static policies this results in solving a nonlinear opti-

mization problem while for the larger class of dynamic policies we use dynamic

programming techniques.

Chapter 4 deals in more detail with the subclass of static and closely related

policies in the end-of-life inventory problem. Observe for all considered policies the

manufacturer knows the optimal order quantity for service parts at the beginning of

the final service phase. An important feature of a so-called static policy is that the

manufacturer also knows the switching time at the beginning of the final service phase.

Although such a policy is not optimal within the class of all polices this additional

knowledge of knowing the switching time in advance is important in practice. In

this chapter, four different policies are considered according to their restrictions on

how the switching time is selected. The first policy simply assumes that during the

service phase we never switch to the alternative policy and so we need to solve a one

dimensional optimization problem in the order quantity. The second one selects the

switching time at any time between the start and the end of the service phase. In

fact, this is a natural extension of the first policy. The third one assumes that we

switch to the alternative policy at the time the inventory level drops to zero during

the service phase. And the last policy is a natural generalization of the third policy.

It selects the switching time at a fixed time from the start or end of the service

phase like in the second policy unless before that selected time the inventory level

drops to zero. If this happens the alternative policy is initiated at the time the

inventory level drops to zero. Deriving for all these policies the objective value we

investigate the behavior of this function as a function of the order quantity keeping

the switching time fixed. For almost all reasonable values of the cost parameters
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this one dimesional function is discrete convex in the order quantity and this enables

us solving the optimization problem in an efficient way. For all the other values of

the parameters we derive an upper bound on the optimal order quantity and apply

a complete enumeration procedure to solve the problem. Our contributions in this

chapter can be summarized as follows:

• We consider four sub classes of policies for the end-of-life problem. These poli-

cies differentiate in the way they select the switching time to the alternative

policy.

• We study conditions under which the objective function is discrete convex in

the order quantity. This enables us for each switching time to compute the

optimal order quantity applying a simple first order condition.

• We provide an upper bound on the optimal order quantity and propose an

enumeration based search algorithm for all the parameter selections for which

the discrete convexity property cannot be shown.

Chapter 5 discusses the selection of the optimal dynamic policy for the end-of-

life inventory problem. In such a policy the final order quantity is known at the

beginning of the final phase, while the switching time is determined by the realizations

of the arrival process of customers. In this chapter we solve this general problem by

approximating the class of dynamic policies taking values at any point in time during

the final service phase by the class of dynamic polices which only take values at a

finite set of points within the final service phase. Solving the original problem is

a difficult continuous optimal control problem while the approximated problem can

be solved by standard Markov decision theory techniques. By replacing our original

problem by an approximation we also incur an error and in this chapter we also give

a bound on this error. Hence after deciding on the size of the error we first construct

a finite subset of time points within the final service phase and apply to the subclass
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of dynamic policies taking only values in that predetermined finite set the Bellman

optimality equations to compute the optimal dynamic switching time and final order

quantity. In this chapter, we also study the special case of an arrival intensity function

of a non-homogeneous Poisson arrival process being a a piece-wise constant function.

The main contributions of this chapter are the following.

• We consider the general class of dynamic policies for the end-of life problem and

propose a solution procedure for this problem replacing the set of all dynamic

policies by a set of dynamic policies taking only a finite number of possible

realized switching times. For this approximation we also compute the error.

• The optimal final order quantity is determined at the beginning of the final ser-

vice phase while the switching time is a so-called stopping time of the stochastic

arrival process. For each realization of this process we compute a so-called op-

timal policy table.

• We compare the optimal static policy with the optimal dynamic policy and try

to understand these solutions.

Although the end-of-life inventory problem did arise from a practical application

and as a consequence some heuristic ways were proposed to solve this problem its

exact optimal solution has not been given in the literature. This thesis studies this

problem and proposes an algorithm to solve this problem in its most general form. At

the same time it also discusses the practical important class of static policies and how

to determine among this class the optimal policy thereby improving existing heuristic

procedures proposed in the literature.
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