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Abstract

In this thesis, we consider concatenated codes and their generalizations as the

main tool for two different purposes. Our first aim is to extend the concatenated

structure of quasi-cyclic codes to its two generalizations: generalized quasi-cyclic

codes and quasi-abelian codes. Concatenated structure have consequences such as

a general minimum distance bound. Hence, we obtain minimum distance bounds,

which are analogous to Jensen’s bound for quasi-cyclic codes, for generalized quasi-

cyclic and quasi-abelian codes. We also prove that linear complementary dual

quasi-abelian codes are asymptotically good, using the concatenated structure.

Moreover, for generalized quasi-cyclic and quasi-abelian codes, we prove, as in

the quasi-cyclic codes, that their concatenated decomposition and the Chinese

Remainder decomposition are equivalent.

The second purpose of the thesis is to construct a linear complementary pair

of codes using concatenations. This class of codes have been of interest recently

due to their applications in cryptography. This extends the recent result of Carlet

et al. on the concatenated construction of linear complementary dual codes.



Bazı Kod Ailelerinin Birleştirmeli Yapıları ve İnşaları

Elif Saçıkara

Matematik, Doktora Tezi, 2018

Tez Danışmanı: Prof. Dr. Cem Güneri

Anahtar Kelimeler: Birleştirmeli kodlar, genelleştirilmiş birleştirmeli kodlar,

sanki devirsel kodlar, genelleştirilmiş sanki devirsel kodlar, sanki değişmeli

kodlar, doğrusal bütünleyici dual kodlar, doğrusal bütünleyici kod ikilileri.

Özet

Bu tez çalışmasında birleştirmeli kodlar ve genelleştirmeleri iki ana amaç için

kullanılmışlardır. İlk amacımız sanki devirsel kodların birleştirmeli yapılarını, bu

kodların iki farklı genellemesi için genişletmektir: genelleştirilmiş sanki devirsel

kodlar ve sanki değişmeli kodlar. Birleştirmeli yapının genel minimum uzaklık

sınırı gibi sonuçları vardır. Dolayısıyla, genelleştirilmiş sanki devirsel kodlar ve

sanki değişmeli kodlar için, Jensen’in sanki devirsel kodlarda elde ettiği sınıra

benzer minimum uzaklık sınırları elde edilmiştir. Ayrıca, birleştirmeli yapı kul-

lanılarak, doğrusal bütünleyici dual sanki değişmeli kodların asimptotik olarak

iyi oldukları kanıtlanmıştır. Bunlara ek olarak, sanki devirsel kodlarda olduğu

gibi, genelleştirilmiş sanki devirsel kodlar ve sanki değişmeli kodların birleştirmeli

ayrışmaları ile Çinlilerin Kalan ayrışmalarının denk oldukları gösterilmiştir.

Tezin ikinci amacı, birleştirme kullanarak doğrusal bütünleyici kod ikilileri

inşasıdır. Bu kod ailesi son zamanlarda şifrelemedeki uygulamaları sebebiyle ilgi

çekmiştir. Bu sonucumuz Carlet ve diğerlerinin birleştirme yoluyla elde ettikleri

doğrusal bütünleyici dual kod inşalarını genişletmiştir.
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Introduction

To obtain a new code either from an old one, or as a combination of two codes

is a common technique in algebraic coding theory, and concatenation is one of the

methods for this purpose. Defined by Forney ([16]), the idea of concatenation is

to construct a new code by combining two component codes. In other words, for

an [N,K,D] linear code C over Fqk , and an [n, k, d] linear code A over Fq, consider

an Fq-linear isomorphism between Fqk and A. Via this isomorphism, each symbol

in C can be identified by a codeword of A. Carrying out this operation for every

codeword of C, a linear code over Fq with parameters [nN, kK,D∗] can be obtained,

where D∗ ≥ dD. Here, C is called the outer code, A is called the inner code and

the resulting code, which is usually denoted by A2C, is the concatenated code.

Later, generalized concatenated codes were introduced by Blokh and Zyablov

([2]), extending the construction of Forney from one inner and one outer code to

several inner and outer codes. A generalized concatenated code can be written as

a direct sum of “simple” concatenations (in the sense of Forney). Moreover, the

minimum distance of a generalized concatenated code is also bounded from below

by a quantity determined by the minimum distances of the inner and outer codes

in the construction.

A variant of concatenation, among other things, has been introduced by Chen

et al. ([10]), where a single outer code C over Fqk is considered, but each symbol

in a codeword is identified with codewords of varying lengths. Description of the

dual code in this construction is also obtained in the same work.

In addition to constructing new codes via concatenation, describing a family

of codes, defined by other means, in concatenated form is also of interest. On one

hand, a concatenated view yields a general minimum distance bound for the code

family in consideration. On the other hand, asymptotic conclusions can be made

using the concatenated structure. Moreover, examples of good codes in the family
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could be searched using the concatenated structure.

This thesis studies both the concatenated description of certain code families

and a concatenated construction of new codes which have applications in cryptog-

raphy. The content of the thesis comes from parts of three articles, one of which is

published ([19]), and the other two are submitted ([3], [20]). Parts of these articles

which are not directly related to the concatenation theme are not included in this

thesis.

The starting point for this thesis is the family of quasi-cyclic (QC) codes, which

is one of the various generalizations of classical cyclic codes. As it is well-known,

cyclic codes are one of the central topics in coding theory and their structure is

very well-understood. One way of defining algebraically an index ` and co-index

m QC code over Fq is to consider Fq[Cm] submodules in Fq[Cm × C`], where Cm

and C` are cyclic groups of order m and ` respectively. Note that when ` = 1,

one has an ideal in the group algebra Fq[Cm], which is nothing but a cyclic code

of length m. Alternatively, a length m` and index ` QC code can be viewed as an

Fq[Cm] submodule of Fq[Cm]`.

Two generalizations of QC codes are considered in this thesis. The first of these

is the generalized quasi-cyclic (GQC) codes, which are introduced in [15] and in

[33]. The main difference is that GQC codes have several co-indices rather than

one co-index m as described above for QC codes. Hence, the length of a GQC code

need not be a multiple of co-index m (or index `) as in the QC case. In particular,

there are GQC codes of prime length.

The second generalization of QC codes we study is quasi-abelian (QA) codes,

which are introduced by Wasan ([34]). If G is a finite abelian group and H is a

subgroup of index ` in G, then an Fq[H] submodule of Fq[G] (equivalently, Fq[H]

submodule of Fq[H]`) is a QA code of index `. Note that H = Cm and G = Cm×C`
case amounts to a QC code. As described in Chapter 3, it is also possible to view

a QA code in QC form, so they coincide as a class. Let us note that in the study of

both QC and QA codes, the order of the group H is assumed to be relatively prime

to q (i.e. Fq[H] is semisimple). This is similar to the assumption usually made

on the length of cyclic codes in order to avoid repeated roots (inseparability). Let

us note that a special class of QA codes is also studied in [21], which are called

multidimensional QC codes, or quasi nD cyclic codes.
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The concatenated decomposition of QC codes is given by Jensen ([23]). Another

decomposition of QC codes is given by Ling and Solé in [26], which is based on the

Chinese Remainder Theorem (so-called CRT decomposition). It is shown in [18]

that the CRT components (constituents) of a QC code in the CRT decomposition

and the outer codes in its concatenated structure are the same. On the other hand,

the CRT decomposition for GQC codes and a CRT type decomposition for QA

codes are obtained in [15] and [24], respectively.

Here, we obtain the concatenated description for GQC and QA codes and

prove, as in [18], that the concatenated structures are compatible with the CRT or

CRT type decompositions of these codes. Hence, consequences of the concatenated

structure follow for both code families as a general minimum distance bound. A

minimum distance bound on GQC codes is obtained by Esmaeili and Yari ([15]) but

it only applies to one generator GQC codes. Our bound applies to all GQC codes.

For QA codes, our minimum distance bound is, to the best of our knowledge, the

first general minimum distance bound on QA codes. In addition, the concatenated

structure of QA codes also allows us to obtain asymptotic results.

The last chapter of the thesis contains our contribution in the direction of

construction of codes using concatenation, hence has a different goal compared to

the other chapters. Namely, we use concatenation and generalized concatenation to

construct linear complementary pair (LCP) of codes. Linear complementary dual

(LCD) and LCP of codes have been proposed, in the context of masking schemes,

as a protection against side channel and fault injection attacks ([1, 5]). A pair of

linear codes (C,D) of length n over Fq is called an LCP of codes if they intersect

trivially and C ⊕D = Fnq . The security parameter of an LCP of codes is defined as

the minimum of d(C) and d(D⊥), where the dual is considered with respect to the

Euclidean inner product. Let us note that the special case of D = C⊥ amounts to

LCD codes, where the security parameter simply becomes d(C).
LCD codes have been more extensively studied in the literature compared to

LCP of codes. Carlet et al. showed that for q > 3 and for any Fq-linear code C,
there is an LCD code equivalent to C ([9]). Hence, the search for LCD and LCP of

codes is particularly interesting for binary and ternary fields. Moreover, by a result

of Sendrier ([32]), the density of LCD codes over Fq among all Fq-linear codes is

much bigger for large values of q. Hence, it is natural to search for constructions
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of LCD and LCP of codes from extension fields to smaller fields. For this purpose,

certain concatenation methods are applied in the LCD case ([6, 22]), although the

inner codes in these settings are poor (codes of minimum distance 1). Later, Carlet

et al. constructed LCD codes via concatenation with potentially better inner codes

(so-called isometry codes) in [8] and extended the results in [6, 22].

Here, we extend the result in [8] to LCP of codes. Namely, we obtain an LCP

of codes over Fq from an LCP of codes over an extension field. Moreover, we also

provide such a construction via generalized concatenated codes. Hence, our result

here differs from the concatenated code constructions in [6, 22, 8]. Let us note

that binary LCP QC codes are also studied and constructed in [7] with different

methods. To obtain LCD codes via concatenation, a special class of inner codes

called isometry codes are used in [8]. In our constructions, we show the existence of

linear inner codes that guarantee to carry complementary codes to the base field.

Finally, in order to have a generalized concatenated code construction of LCP of

codes, we need to describe the dual code for a generalized concatenated code. This

was done by Chen et al. in [10] for a simple concatenation (i.e., one inner, one

outer code). So, we also extend the result of Chen et al. along the way.

Basic definitions from algebraic coding theory, background material on con-

catenated codes and their applications to the class of QC codes are presented in

Chapter 1. Chapter 1 also contains the description of the dual of generalized con-

catenated codes, which extends the result of Chen et al. We study GQC codes in

Chapter 2 and QA codes in Chapter 3. The final Chapter is on the construction of

LCP of codes via concatenation and contains numerical results of this construction.
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Chapter 1

Preliminaries

In the beginning of this dissertation, we find it useful to recall some funda-

mental definitions in algebraic coding theory. Then, we recall the generalized

concatenated code construction due to Blokh and Zyablov ([2]). We present its

application structural understanding of quasi-cyclic codes, which motivates our

work in Chapters 2 and 3. A variant of the concatenation idea, due to Chen et al.

[10] is also presented. In the aforementioned work, the authors describe the dual

of a concatenated code with only one outer code. We extend the dual description

to the generalized concatenated codes with more than one outer code in Section

1.4.

1.1 Linear Codes

In this first section, we briefly review certain well-known definitions in algebraic

coding theory. We refer the reader to [29] for further details.

From now on, Fq denotes a finite field of order q, where q is a prime power,

and Fnq denotes the n dimensional vector space over Fq for n ∈ Z+. The Hamming

distance on Fnq is defined as

d(x, y) := |{0 ≤ i ≤ n− 1 : xi 6= yi}|,

for vectors x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1) in Fnq , where |.| denotes the

cardinality of a finite set. Similarly, the Hamming weight of a vector x is defined
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as

wt(x) := d(x,0),

where 0 denotes the zero vector in Fnq .

A linear code C is defined to be a subspace in Fnq . We call C ⊂ Fnq an [n, k, d]

code if it has dimension k and minimum distance d. By the minimum distance,

we mean

d = d(C) := min
x 6=y
{d(x, y) : x, y ∈ C},

where d(x, y) denotes the Hamming distance. Let us note that the minimum

distance of a linear code C is nothing but the minimum nonzero weight of it, that

is

d = d(C) := min
x 6=0
{wt(x) : x ∈ C}.

Each vector in C is called a codeword in C.
Let us note that the parameters n, k, and d of a linear code C over Fq depend

upon each other. One of the bounds which explains this dependence is the Griesmer

bound, which is stated as

n ≥
k−1∑
i=0

⌈ d
qi

⌉
,

for a linear [n, k, d] code C over Fq ([17]).

An [n, k, d] code C is also defined as a row space of a given k × n full rank

matrix and such a matrix is called a generator matrix of C and denoted by GC.

The (Euclidean) dual of a linear code C is given by

C⊥ = {x ∈ Fnq : 〈x, c〉 = 0 for all c ∈ C},

where 〈c, x〉 :=
∑n−1

i=0 cixi denotes the Euclidean inner product of x = (x0, . . . , xn−1)

and c = (c0, . . . , cn−1) in Fnq .

Let Bq(n, d) denote the maximum cardinality of a linear code C of length n and

minimum distance d over Fq. A linear code C over Fq of length n and distance d

is said to be optimal if it contains exactly Bq(n, d) codewords.

If we consider a family of q-ary linear codes {C(n)}∞n=1 with parameters [n, kn, dn],

then the relative rate and the relative distance of the family are defined, respec-
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tively, as

r := lim sup
n→∞

kn/n,

δ := lim inf
n→∞

dn/n.

A family of q-ary linear codes {C(n)}∞n=1 is called asymptotically good if r and

δ are both nonzero. The asymptotic conclusions proved in Section 3.2 are based

on this definition.

1.2 Generalized Concatenated Codes

In this section, we recall a generalized concatenated (GC) codes, which are

also referred to as multilevel codes, introduced by Blokh and Zyablov, ([2]). Our

presentation follows that of Dumer in [14]. The idea of this construction is to

extend simple concatenation with one inner and outer code to several outer codes,

which are of the same length but defined over possibly different finite extensions

of Fq.

Definition 1.2.1. [14] For i = 1, . . . , s, let Ci be linear codes over Fqki of length

N and dimension Ki. Consider the set

C :=

c =


c11 . . . c1N
...

...
...

cs1 . . . csN

 : (ci1, . . . , c
i
N) ∈ Ci for 1 ≤ i ≤ s

 . (1.2.1)

Denote by c1, . . . , cN the columns of an element c in C and note that cj lies in

Fqk1 × · · · × Fqks for all j. Let π : Fqk1 × · · · × Fqks → Fnq be an Fq-linear injection

whose image A = im(π) is a linear code over Fq of length n and dimension k1 +

· · ·+ ks. Then the set

π(C) = {(π(c1), . . . , π(cN)) : c ∈ C} ,

is called a GC code with outer codes C1, . . . , Cs and the inner code A.

This concatenation of an inner code A with outer codes Ci’s is denoted through-

out by π(C). Let us note that simple concatenation is obtained if we choose a GC
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code with only one outer code C, which is denoted by A2C.
In the next proposition, we present some properties of a GC code. The proofs

are outlined for completeness.

Proposition 1.2.2. ([14])

Let π(C) be a GC code as described above. Then the following conditions hold:

(i) The GC code π(C) is a linear code over Fq with parameters [nN,
∑s

i=1 kiKi].

(ii) The GC code π(C) can be written as a direct sum of simple concatenations.

Namely,

π(C) = (A12C1)⊕ · · · ⊕ (As2Cs),

where Ai = π(0, . . . , 0,Fqki , 0, . . . , 0) is a ki-dimensional subcode of A for all

i.

(iii) Conversely, let Ai’s be q-ary linear codes of parameters [n, ki, d(Ai)] with

Ag ∩
∑
i 6=g

Ai = {0}, and let Ci’s be Fqki -linear codes with parameters [N,Ki, d(Ci)],

for each i, g ∈ {1, . . . , s}. Then the direct sum of simple concatenations
s⊕
i=1

Ai2Ci can be described as a GC code.

(iv) If the outer codes are arranged such that d(C1) ≤ · · · ≤ d(Cs), then

d(π(C)) ≥ min{d(A1 ⊕ · · · ⊕ Ai)d(Ci) : i = 1, . . . , s}.

Proof. (i) Let π(c) be a codeword from a GC code which is obtained from an s×N -

matrix c ∈ C. Since there exists N columns in c and the image of each column is

a codeword in A ⊆ Fnq , the length of π(c) is equal to n×N.
On the other hand, injectivity of π yields

|π(C)| = |C| = |C1| × · · · × |Cs| = q
∑s
i=1 kiKi .

Hence, the dimension of π(C) is
∑s

i=1 kiKi, which is the sum of dimensions of outer

codes over Fq.

(ii) Note that A = im(π) is a linear code with parameters [n,
∑s

i=1 ki, d(A)]. It
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is clear that A can be written as a direct sum of its subcodes Ai’s, where

Ai := im{π(0, . . . , 0, αi, 0, . . . , 0) : αi ∈ Fqki}

is an [n, ki, d(Ai)] code for each i. Since π is an Fq-linear map, for any (α1, α2, . . . , αs) ∈
Fqk1 × · · · × Fqks , we have

π(α1, α2, . . . , αs) = π(α1, 0, . . . , 0) + π(0, α2, 0, . . . , 0) + · · ·+ π(0, 0, . . . , 0, αs).

Moreover, the image of π has unique such representation for every (α1, α2, . . . , αs)

since π is injective. Using this observation, one can show that any element of π(C)
is an element of the direct sum of Ai2Ci’s. Since these two codes have the same

dimension the result follows.

(iii) For 1 ≤ i ≤ s, let πi : Fqki → Ai be the concatenation map for Ai2Ci, for

each i = 1, . . . , s. If we define C as in (1.2.1) using Ci’s and set

π : Fqk1 × · · · × Fqks −→ Fnq
(α1, . . . , αs) 7−→ π1(α1) + · · ·+ πs(αs)

, (1.2.2)

then the result follows.

(iv) For ease of the notation, we explain how to obtain a lower bound for the

minimum distance of a GC code with two outer codes C1 over Fqk1 and C2 over Fqk2
under the assumption d(C1) ≤ d(C2). However, the same idea can be extended to

arbitrary number of outer codes.

In order to count nonzero components of a codeword π(c) ∈ π(C) with a con-

catenation map π : Fqk1×Fqk1 7→ Fnq , we discuss the following three cases for c ∈ C.

Case 1: Assume that a nonzero codeword π(c) comes from c ∈ C in the form of

c =

 0 . . . 0

c21 . . . c2N

 ,

where (c21, . . . , c
2
N) is a nonzero codeword in C2. Hence, there exists at least d(C2)

columns in c ∈ C. Here, also note that the images of columns in C under π are

codewords in the subcode A2. Hence the weight of π(c) in this case is bounded
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from below by d(C2)d(A2).

Case 2: Following the argument in Case 1, it is easy to see that the image of

c =

 c11 . . . c1N

0 . . . 0

 ,

under π contains at least d(C1)d(A1) nonzero entries.

Case 3: Now consider

c =

 c11 . . . c1N

c21 . . . c2N

 ,

where both (c11, . . . , c
1
N) and (c21, . . . , c

2
N) are nonzero codewords from C1 and C2,

respectively. By the assumption d(C1) ≤ d(C2), there exits at least d(C2) nonzero

columns in c whose images under π belongs to A. Hence, we have wt(π(c)) ≥
d(C2)d(A), where A = A1 ⊕A2.

These three cases cover the type of any codeword c ∈ C. Hence,

wt(π(c)) ≥ min{d(C1)d(A1), d(C2)d(A2), d(C2)d(A1 ⊕A2)}.

On the other hand, since A2 is a subcode of A we have d(A2) ≥ d(A1 ⊕ A2).

Therefore the weight of a codeword π(c), for any c ∈ C, is at least

min{d(C1)d(A1), d(C2)d(A1 ⊕A2)}.

Example 1.2.3. Let F8 = F2(α) be a degree 3 extension of the binary field, where

α is a root of the irreducible polynomial x3 + x+ 1 over F2. Let β = {1, α, α2} be

a basis for F2(α) over F2. Consider a GC code with a binary [2, 2, 1] outer code C1
and an outer code C2 over F8 with the generator matrix [1 α], which is a [2, 1, 2]

code.

As a concatenation map, consider an F2-linear isomorhism π from F2 × F8 to

F8
2 which maps the elements of the basis {(1, 0), (0, 1), (0, α), (0, α2)} for F2 × F8
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to the rows of the generator matrix

GA =


1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

 ,

for the linear code A, respectively. By setting A1 := π(F2 × {0}), which is the

binary repetition code of length 8 and A2 := π({0}× F8), which is the linear code

with the generator matrix

GA2 =


1 0 0 1 0 1 1 0

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

 ,
we can observe that the GC code π(C) = A12C1 ⊕ A22C2 is a binary linear

code of length 16, and of dimension 5. By the minimum distance bound, we have

d(π(C)) ≥ min{d(A1)d(C1), d(A1 ⊕ A2)d(C2)} = 8. Let us note that 8 is the best

known minimum distance for a linear code of length 16, and of dimension 5, by

the Griesmer bound ([17]). Hence, the minimum distance bound is sharp in this

example.

1.2.1 Quasi-Cyclic Codes

A linear code over Fq is said to be a quasi-cyclic (QC) code of index ` and

length n = m`, if it is closed under cyclic shifts of its codewords by ` units. Hence,

QC codes are natural generalizations of cyclic codes, which amounts to the case

` = 1. Recall that a cyclic code of length m also has a description as an ideal

in the quotient ring R := Fq[x]/〈xm − 1〉, which can also be viewed as the group

algebra Fq[Cm] with the cyclic group Cm of order m. Similarly, QC codes can be

described in an algebraic way.

For the vectorial view of a QC code C of index `, and of length m`, we view
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the codewords as m× ` matrices as follows

c =


c00 . . . c0,`−1
...

...

cm−1,0 . . . cm−1,`−1

 . (1.2.3)

Then being invariant under the shift by ` units amounts to being closed under row

shift.

For the algebraic description of QC codes, consider the Fq-linear isomorphism

φ : Fm`q −→ R`

c =


c00 . . . c0,`−1
...

...

cm−1,0 . . . cm−1,`−1

 7−→ ~c(x),
(1.2.4)

where ~c(x) := (c0(x), c1(x), . . . , c`−1(x)) ∈ R` and

cj(x) := c0,j + c1,jx+ c2,jx
2 + · · ·+ cm−1,jx

m−1 ∈ R (1.2.5)

for 0 ≤ j ≤ `− 1.

Observe that componentwise multiplication by x in R` corresponds to row shift

in Fm`q . Therefore QC codes, when viewed algebraically in R`, are nothing but

R-submodules in R`.

One of the decomposition techniques for QC codes of length m` and index `

over Fq into shorter codes over extensions of Fq was given by Ling and Solé ([26])

using the Chinese Remainder Theorem. This decomposition is also called the CRT

decomposition. Assume that gcd(m, q) = 1 and factor the polynomial xm − 1 into

pairwise distinct irreducible polynomials in Fq[x] as

xm − 1 = f1(x)f2(x) · · · fs(x). (1.2.6)

Hence, by Chinese Remainder Theorem, we have the following ring isomorphism:

R ∼=
s⊕
i=1

Fq[x]/〈fi(x)〉. (1.2.7)
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Since each fi(x) divides xm− 1, their roots are powers of some fixed primitive mth

root of unity ξ. For each i = 1, . . . , s, let ui be the smallest nonnegative integer

such that fi(ξ
ui) = 0. Since fi(x)’s are irreducible, direct summands in (1.2.7) are

field extensions of Fq. If Ei := Fq[x]/〈fi(x)〉 for 1 ≤ i ≤ s, then we have

R` ∼= E`1 ⊕ · · · ⊕ E`s. (1.2.8)

Hence, a QC code C ⊂ R` can be viewed as an (E1 ⊕ · · · ⊕ Es)-submodule of

E`1 ⊕ · · · ⊕ E`s and decomposes as

C = C1 ⊕ · · · ⊕ Cs, (1.2.9)

where Ci is a linear code of length ` over Ei, for each i. These length ` linear codes

over extensions of Fq are called the constituents (or, CRT components) of C.
If C ⊂ R` is generated as an R-module by

{
(
a10(x), . . . , a1`−1(x)

)
, . . . ,

(
ar0(x), . . . , ar`−1(x)

)
} ⊂ R`,

then it is not difficult to observe from the CRT isomorphism that

Ci = SpanEi

{(
ab0(ξ

ui), . . . , ab`−1(ξ
ui)
)

: 1 ≤ b ≤ r
}
, for 1 ≤ i ≤ s. (1.2.10)

1.2.2 Concatenated Structure of QC Codes

We present Jensen’s concatenated description of QC codes in this section ([23]).

We follow the notation so far.

Let C be an R-submodule in R`, where R = Fq[x]/〈xm − 1〉 for (m, q) = 1. Let

us recall that

R ∼=
s⊕
i=1

Ei, (1.2.11)

where Ei = Fq[x]/〈fi(x)〉. For each 1 ≤ i ≤ s, consider the minimal cyclic code of

length m over Fq, whose check polynomial is fi(x). Let θi denote the generating

primitive idempotent for each minimal cyclic code in consideration.
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Note that each field Ei is isomorphic to 〈θi〉, for each 1 ≤ i ≤ s, via the maps

ϕi : 〈θi〉 −→ Ei
a(x) 7−→ a(ξui)

ψi : Ei −→ 〈θi〉

δ 7−→
m−1∑
k=0

akx
k

, (1.2.12)

where

ak =
1

m
TrEi/Fq(δξ

−kui).

The map ψi is commonly called the discrete Fourier transform (DFT). It can be

observed that ϕi and ψi are inverse to each other. For each i, the concatenation of

the minimal cyclic code 〈θi〉 and a linear code Ci over Ei is carried out by the map

ψi, which identifies the field Ei with the minimal cyclic code. In other words, by

choosing the DFT ψi as a concatenation map, a codeword (c0, . . . , c`−1) in some

Ci is mapped to (ψi(c0), . . . , ψi(c`−1)) in R`.

Theorem 1.2.4. [23] With the notation so far, the following conditions hold:

(i) Let C be a length m` and index ` QC code over Fq. Then there exist linear

codes Ci of length ` over Ei such that C =
s⊕
i=1

〈θi〉2Ci.

(ii) Conversely, let Ci be an Ei-linear code of length ` for each i ∈ {1, . . . , s}.

Then, C =
s⊕
i=1

〈θi〉2Ci is a q-ary QC code of length m` and index `.

By Proposition 1.2.2, the concatenated view of QC codes leads a general min-

imum distance bound. So, we give the following corollary without a proof.

Corollary 1.2.5. Let C be a QC code of index ` with the concatenated structure

C =

g⊕
t=1

〈θit〉2Cit ,

where Cit’s are the nonzero outer codes of C for {i1, . . . , ig} ⊆ {1, . . . , s}. Assume

that d (Ci1) ≤ d (Ci2) ≤ · · · ≤ d
(
Cig
)
. Then, we have

d (C) ≥ min
1≤v≤g

{d(Civ)d(〈θi1〉 ⊕ · · · ⊕ 〈θiv〉)} .

Remark 1.2.6. It is proved in [18] that for a given QC code C, the constituents Ci’s
in (1.2.9) and the outer codes Ci’s in the concatenated structure are equal to each

14



other (see [18, Theorem 4.1]). In other words, the concatenated decomposition

and the CRT decomposition of QC codes are the same.

The concatenated structure of QC codes can be used to give the trace repre-

sentation of QC codes, using the DFT concatenation maps.

Theorem 1.2.7. [26, Theorem 5.1] [18, Theorem 4.2] Consider the QC code C
with the constituents (outer codes) C = C1 ⊕ · · · ⊕ Cs, where Ci ⊂ E`i = Fq(ξui)` is

linear over Ei of length ` for each 1 ≤ i ≤ s. Then an arbitrary codeword c ∈ C as

an m× ` array has the form

c =


c0(λ1, . . . , λs)

c1(λ1, . . . , λs)
...

cm−1(λ1, . . . , λs)

 ,

where λi = (λi,0, . . . , λi,`−1) is a codeword in Ci for each i and

ck(λ1, . . . , λs) =

(
s∑
i=1

TrEi/Fq
(
λi,jξ

−kui
))

0≤j≤`−1

,

for each 0 ≤ k ≤ m− 1.

1.3 A Variant of Concatenated Codes and Its

Generalized Version

In [10], Chen, Ling and Xing study, among other things, a variant of concate-

nation. We introduce their concatenation in this Section. Moreover, we define this

constructions generalized version, mimicing the GC code construction of Blokh

and Zyablov.

Recall that in GC codes, symbols in the codewords of the outer codes are

mapped to inner codes of the same length. The main difference here is that there

will be inner codes of different lengths. This feature allows us to relax the length

of inner codes, so does the length of the resulting concatenated code. Despite

the aforementioned differences, we will refer to Chen-Ling-Xing construction as

concatenation as well.
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Definition 1.3.1. Let C be a linear code with parameters [N,K, d(C)] over Fqk

for k ≥ 1. For each 1 ≤ i ≤ N, let ni ≥ k and consider an Fq-linear injection

πi : Fqk 7→ Fniq , whose image Ai = im(πi) is an [ni, k, d(Ai)] linear code over Fq.

Then the set

π(C) = {(π1(c1), . . . , πN(cN)) : (c1, . . . , cN) ∈ C} , (1.3.1)

is called a concatenated code with outer code C, and inner codes Ai’s.

Remark 1.3.2. (i) The concatenated code π(C) described above is a linear code

of length
N∑
i=1

ni and of dimension kK.

(ii) Note that if we choose identical Fq-linear injections πi’s into Fnq for each

1 ≤ i ≤ N, a simple concatenated code π(C) = A2C is obtained with length nN

and dimension kK.

Example 1.3.3. Consider F4 = F2(α), where α is a root of the irreducible poly-

nomial x2 + x + 1 over F2. Let C be the [2, 1, 2] linear code over F4 given as

C = {(0, 0), (1, α), (α, α + 1), (α + 1, 1)}. Define F2-linear injections

π1 : F4 −→ F2
2

0 7−→ (0, 0)

1 7−→ (1, 0)

α 7−→ (0, 1)

α + 1 7−→ (1, 1)

, and

π2 : F4 −→ F3
2

0 7−→ (0, 0, 0)

1 7−→ (1, 0, 1)

α 7−→ (0, 1, 1)

α + 1 7−→ (1, 1, 0)

. (1.3.2)

Note that images of π1 and π2 are binary codes with parameters [2, 2, 1] and [3, 2, 2],

respectively.

If we apply π1 and π2 on the first and second coordinates of codewords in C,
we obtain the binary linear code

π(C) = {( 0, 0︸︷︷︸
π1(0)

, 0, 0, 0︸ ︷︷ ︸
π2(0)

), ( 1, 0︸︷︷︸
π1(1)

, 0, 1, 1︸ ︷︷ ︸
π2(α)

), ( 0, 1︸︷︷︸
π1(α)

, 1, 1, 0︸ ︷︷ ︸
π2(α+1)

), ( 1, 1︸︷︷︸
π1(α+1)

, 1, 0, 1︸ ︷︷ ︸
π2(1)

)},

with parameters [5, 2, 3].

We can extend Chen et al. concatenation in Definition 1.3.1 to a generalized
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concatenation. We use the term generalized concatenation for this technique as

well. This new construction plays an important role in the concatenated structure

of GQC codes in Chapter 2.

Definition 1.3.4. For i = 1, . . . , s, let Ci’s be linear codes with parameters

[N,Ki, d(Ci)] over Fqki , where Fqki is a degree ki extension of Fq for each i. Consider

the set of s×N - matrices

C :=

c =


c11 . . . c1N
... . . .

...

cs1 . . . csN

 : (ci1, . . . , c
i
N) ∈ Ci for 1 ≤ i ≤ s

 . (1.3.3)

For each 1 ≤ j ≤ N, consider Fq-linear injections πj : Fqk1×· · ·×Fqks 7→ Fnjq whose

image Aj = im(πj) is a linear code with [nj,
s∑
i=1

ki, d(Aj)] with k1 + . . .+ ks ≤ nj.

Then the set

π(C) = {(π1(c1), . . . , πN(cN)) : cj’s are columns of c ∈ C, for j = 1, . . . , N} ,
(1.3.4)

is called a generalized concatenation code with outer codes Ci’s and inner codes

Aj’s.

Remark 1.3.5. (i) The concatenated code π(C) described above is an Fq-linear

code of length
∑N

j=1 nj, and dimension
∑s

i=1 kiKi.

(ii) A GC-code in Definition 1.2.1 is obtained when π1 = · · · = πN and hence

n1 = · · · = nN .

(iii) A minimum distance bound for this extended concatenation can be ob-

tained with the technique in the proof of Proposition 1.2.2. We will state this in

Section 2.2 for GQC codes.

1.4 Dual of Concatenated Codes

The dual of a concatenated code (as in Definition 1.3.1) is described by Chen

et al. in [10]. Here, we recall this result and also extend it to the generalized

concatenated codes.

The following fact is needed for this description and also for the description
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of various concatenations reviewed in Sections 1.2 and 1.3. It is also useful for

explicit computations, hence we prove it.

Proposition 1.4.1. Let {a1, . . . , ak} ⊆ Fnq be a linearly independent set over Fq.

Then there exists a linearly independent set of vectors {b1, . . . , bk} ⊆ Fnq over Fq
such that

bj.ai = δij,

for all 1 ≤ i, j ≤ k. Here, δij denotes the Kronecker symbol which is defined as

δij =

 1, i = j

0, i 6= j
.

Proof. For each 1 ≤ i ≤ k, define the Fq-linear maps

ψi : Fnq −→ Fq
x 7−→ x.ai

.

Linear independence of aj’s implies that ai 6= 0 for all i. Hence, each ψi is surjective

and if we denote Ker(ψi) by Wi, then dimFq(Wi) = n − 1, for all 1 ≤ i ≤ k.

Moreover, due to linear independence of aj’s again, we also have

dimFq(Wi1 ∩ . . . ∩Wis) = n− s, (1.4.1)

for any s ≤ k and {i1, . . . , is} ⊆ {1, . . . , k}. Therefore,

⋂
i 6=j

Wi 6⊆ Wj

for any j, since otherwise we would have (by (1.4.1))

n− k = dim

(
Wj ∩

(⋂
i 6=j

Wi

))
= dim

(⋂
i 6=j

Wi

)
= n− (k − 1).

Hence, for each j, there exists a nonzero vector

xj ∈

(⋂
i 6=j

Wi

)
\Wj,

which means, by definition of Wj’s, that xj ·ai = 0 for all i 6= j and xj ·aj = uj 6= 0.
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Setting bj := u−1j xj, we have the desired list of nonzero elements b1, . . . , bk.

Suppose βi’s are elements in Fq such that

β1b1 + . . .+ βkbk = 0.

Then taking the inner product with aj for any j, and noting that aj’s and bi’s are

all nonzero, we obtain βj = 0. Hence, the set {b1, . . . , bk} is linearly independent

over Fq.

Now, assume that β = {e1, . . . , ek} is an ordered basis for Fqk over Fq and let

β′ = {e′1, . . . , e′k} be its dual basis. Recall that this means

Trk(ei.e
′
j) = δij, (1.4.2)

for 1 ≤ i, j ≤ k, where Trk denotes the trace map from Fqk to Fq.

Since π is a linear injection, the set {π(e1), . . . , π(ek)} is Fq-independent in Fnq .

Let b1, . . . , bk be an Fq-independent list of elements in Fnq as in Proposition 1.4.1.

Define another Fq-linear injection π′ from Fqk to Fnq by setting π′(e′j) = bj for all

1 ≤ j ≤ k. By construction, we have

π(ei).π
′(e′j) = δij. (1.4.3)

Moreover, im(π
′
) can be considered as a linear [n, k] code over Fq, which we will

denote by A′ . The following is a consequence of (1.4.3) and it is stated in [10,

Lemma 2.2].

Lemma 1.4.2. [10] Let β = {e0, . . . , ek−1} be a basis for Fqk over Fq, and let

β′ = {e′1, . . . , e′k} be its dual basis. Let A be a linear code which is generated by

the image set {π(e1), . . . , π(ek)} of β under an Fq linear injection π : Fqk 7→ Fnq .

Consider a linear code A′ , which is generated by the image set {π′(e′1), . . . , π
′
(e
′

k)},
where π

′
: Fqk 7→ Fnq is a map satisfying

π(ei).π
′(e′j) = δij.

Then, A⊥ ∩ A′ = {0}.

The next result is due to Chen et al. ([10, Theorem 2.3]) and it uses the
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preparation so far to describe the dual of the concatenated code π(C).

Theorem 1.4.3. [10] With the notation so far, the dual of π(C) is

π(C)⊥ = (A2C)⊥ = E ⊕ π′(C⊥) = E ⊕ (A′2C⊥),

where E = A⊥ × · · · × A⊥ := (A⊥)N .

In a similar way, now we extend the dual code of a simple concatenation to

concatenations described in Section 1.3. For ease of notation, we will consider C
with two outer codes C1 and C2, and we assume that inner codes are of the same

length. Hence, we will study an [nN, k1K1 + k2K2] GC-code π(C) = (A12C1) ⊕
(A22C2), where A1,A2 ⊆ Fnq . However, our results can be extended to the all

variants of concatenations considered in Definition 1.3.4.

Let {e1, . . . , ek1} be an ordered basis of Fqk1 and consider its dual basis {e′1, . . . , e′k1}.
Similarly, let {f1, . . . , fk2} be an ordered basis of Fqk2 and {f ′1, . . . , f ′k2} be its dual

basis. Note that the sets

{(e1, 0), . . . , (ek1 , 0), (0, f1), . . . , (0, fk2)},

and

{(e′1, 0), . . . , (e′k1 , 0), (0, f ′1), . . . , (0, f
′
k2

)}

are bases for Fqk1×Fqk2 over Fq. Hence, {π(e1, 0), . . . , π(ek1 , 0), π(0, f1), . . . , π(0, fk2)}
is linearly independent in Fnq . If we name π(ei, 0) = ai for 1 ≤ i ≤ k1 and

π(0, fj) = ak1+j for 1 ≤ j ≤ k2, then by Proposition 1.4.1, there exist linearly

independent vectors b1, . . . , bk1 , bk1+1, . . . , bk1+k2 in Fnq such that au · bv = δuv for all

1 ≤ u, v ≤ k1 + k2.

Define an Fq-linear map π′ : Fqk1 × Fqk2 → Fnq by setting

π′(e′i, 0) = bi for 1 ≤ i ≤ k1 and π′(0, f ′j) = bk1+j for 1 ≤ j ≤ k2,

and extending linearly. By linear independence of bi’s, the map π′ is an Fq-linear

injection and by construction we have

π(ei, 0) · π′(e′u, 0) = δiu,

π(0, fj) · π′(e′u, 0) = 0,
(1.4.4)
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and

π(ei, 0) · π′(0, f ′v) = 0,

π(0, fj) · π′(0, f ′v) = δjv,
(1.4.5)

for all i, j, u, v. Let us denote the image of π′ by A′ , which is an Fq-linear code of

length n and dimension k1 + k2.

Consider the set

C̄ :=

c =

 c11 . . . c1N

c21 . . . c2N

 : (ci1, . . . , c
i
N) ∈ C⊥i for i = 1, 2

 , (1.4.6)

and the GC-code

π′(C̄) = {(π′(c1), . . . , π′(cN)) : c ∈ C̄} (cf. Definition 1.2.1),

which is a linear code over Fq of length nN and dimension k1.(N−K1)+k2.(N−K2).

Note that π′(C̄) can also be written in the form of (A′12C⊥1 ) ⊕ (A′22C⊥2 ), where

A′1 = π′(Fqk1 , 0) and A′2 = π′(0,Fqk2 ) are subcodes of A′ .
The following is a generalization of Lemma 1.4.2.

Lemma 1.4.4. Let β be a basis for Fqk1×Fqk2 and β′ be its dual basis. Let A = imπ

and A′ = imπ′ be linear codes which are generated by the images of the elements of

the basis β and its dual β′ under Fq-linear injections π and π
′
, respectively, which

are introduced as in the equations 1.4.4 and 1.4.5. Then A⊥ ∩ A′ = {0}.

Proof. Let x be an element in A⊥ ∩ A′ and write it as x = π′(α, β) for (α, β) ∈
Fqk1 × Fqk2 . Let

α =

k1∑
j=1

αje
′
j and β =

k2∑
j=1

βjf
′
j,

where αj, βj ∈ Fq, so that

x = π′(α, β) =

k1∑
j=1

αjπ
′(e′j, 0) +

k2∑
j=1

βjπ
′(0, f ′j).

Since x belongs to A⊥, we also have π(a, b)·π′(α, β) = 0 for any (a, b) ∈ Fqk1×Fqk2 .
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In particular

π(ei, 0) · π′(α, β) = αi = 0,

π(0, fi) · π′(α, β) = βi = 0,

for all 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2 (by (1.4.4) and (1.4.5)). Hence x = 0.

We are ready to describe the dual of a GC code.

Theorem 1.4.5. With the notation so far, the dual of π(C) is

π(C)⊥ = E ⊕ π′(C̄),

where E = A⊥ × · · · × A⊥ = (A⊥)N .

Proof. Note that π(C) is an [nN, k1K1 + k2K2] code in FqnN . Hence we have

dimFq π(C)⊥ = nN − (k1K1 + k2K2). (1.4.7)

Moreover,

dimFq E = N(n−(k1+k2)) and dimFq π
′(C̄) = k1(N−K1)+k2(N−K2). (1.4.8)

By (1.4.7) and (1.4.8), we have

dimFq π(C)⊥ = dimFq E + dimFq π
′(C̄). (1.4.9)

Since π(C) ⊆ A× · · · × A, we clearly have

E = A⊥ × · · · × A⊥ ⊆ π(C)⊥. (1.4.10)

Let π′(c) = (π′(c1), . . . , π
′(cN)) ∈ π′(C̄), with c =

 c11 . . . c
1
N

c21 . . . c
2
N

 ∈ C̄, where the

first row is a codeword in C⊥1 and the second row is a codeword in C⊥2 . Let π(x) =

(π(x1), . . . , π(xN)) be an arbitrary element of π(C), where x =

 x11 . . . x
1
N

x21 . . . x
2
N

 ∈ C
whose first row is in C1 and the second row is in C2. With our earlier notation for
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bases of Fqk1 × Fqk2 , we can write

x1g =

k1∑
i=1

x1g,iei and c1g =

k1∑
j=1

c1g,je
′
j in Fqk1 ,

x2g =

k2∑
s=1

x2g,sfs and c2g =

k2∑
t=1

c2g,tf
′
t in Fqk2 ,

where x1g,i, x
2
g,s, c

1
g,j, c

2
g,t are elements in Fq for all g ∈ {1, . . . , N}. Then we have

π(x) · π′(c) =
N∑
g=1

π(x1g, x
2
g) · π′(c1g, c2g)

=
N∑
g=1

(π(x1g, 0) + π(0, x2g)) · (π′(c1g, 0) + π′(0, c2g))

=
N∑
g=1

([
k1∑
i=1

x1g,iπ(ei, 0) +

k2∑
s=1

x2g,sπ(0, fs)

]
·

[
k1∑
j=1

c1g,jπ
′(e′j, 0) +

k2∑
t=1

c2g,tπ
′(0, f ′t)

])

=
N∑
g=1

(

k1∑
i=1

x1g,ic
1
g,i +

k2∑
s=1

x2g,sc
2
g,s) (by (1.4.4) and (1.4.5))

On the other hand, we have x1 · c1 = x11c
1
1 + · · ·+ x1Nc

1
N = 0, since x1 ∈ C1 and

c1 ∈ C⊥1 . Hence

0 = Trk1(x
1
1c

1
1) + · · ·+ Trk1(x

1
Nc

1
N)

= Trk1

((
k1∑
i=1

x11,iei

)(
k1∑
j=1

c11,je
′
j

))
+ · · ·+ Trk1

((
k1∑
i=1

x1N,iei

)(
k1∑
j=1

c1N,je
′
j

))
=
(
x11,1c

1
1,1 + · · ·+ x11,k1c

1
1,k1

)
+ · · ·+

(
x1N,1c

1
N,1 + · · ·+ x1N,k1c

1
N,k1

)
,

where the last equality follows from the duality of the bases of Fqk1 ((1.4.2)). One

can similarly conclude that

(
x21,1c

2
1,1 + · · ·+ x21,k2c

2
1,k2

)
+ · · ·+

(
x2N,1c

2
N,1 + · · ·+ x2N,k2c

2
N,k2

)
= 0.

Hence we have

π′(C̄) ⊆ π(C)⊥ (1.4.11)

Combining Equations 1.4.9, 1.4.10 and 1.4.11, it only remains to show that E∩π′(C̄)
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is trivial. This follows from Lemma 1.4.4 since π′(C̄) lies in (A′)N .
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Chapter 2

Generalized Quasi-Cyclic Codes

In this chapter we present the concatenated structure of generalized QC (GQC)

codes and its consequences. The work in this chapter appeared in [19]. Let us

note that the article [19] also contains results on characterization of self-dual and

linear complementary dual GQC codes, and asymptotic conclusions which are not

presented here.

GQC codes were introduced in [33], where their description is given as follows.

Definition 2.0.1. Letm0, . . . ,m`−1 be positive integers and setRj := Fq[x]/〈xmj−
1〉 for each j = 0, . . . , `− 1. An Fq[x]-submodule of R′ := R0× · · · ×R`−1 is called

a generalized quasi-cyclic (GQC) code of block lengths (m0, . . . ,m`−1), which is a

linear code of length m0 + · · ·+m`−1 over Fq.

Note that if m0 = · · · = m`−1 = m, then we obtain a quasi-cyclic code of length

m` and index `.

The factorization of GQC codes into constituents, analogue of which is pre-

sented for QC codes in Section 1.2.1, is given by Esmaeili and Yari in [15]. We will

review this decomposition and introduce a notation which is suitable for presenta-

tion of our results in the next section.

Let gcd(mj, q) = 1 for each j = 0, . . . , ` − 1, then each xmj − 1 factors into

distinct irreducible polynomials. Suppose that the total number of distinct irre-

ducible factors over all xmj − 1 decompositions is s and let f1(x), . . . , fs(x) denote

these irreducible polynomials. Then for each j we have

xmj − 1 = f1(x)v1,jf2(x)v2,j · · · fs(x)vs,j , (2.0.1)
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where vi,j ∈ {0, 1}. Since fi(x)’s are irreducible, Fq[x]/〈fi(x)〉 is a finite field

extension of Fq. Set Ei := Fq[x]/〈fi(x)〉 for 1 ≤ i ≤ s and for 1 ≤ i ≤ s,

0 ≤ j ≤ `− 1, define

Ei,j :=

 Ei, if vi,j = 1,

{0}, if vi,j = 0.
. (2.0.2)

Let us fix a root αi of each fi (1 ≤ i ≤ s). For a(x) ∈ Rj and 1 ≤ i ≤ s, set

ai,j =

a(αi), if Ei,j = Ei,

0, if Ei,j = {0}.
(2.0.3)

By (2.0.1), (2.0.2) and the Chinese Remainder Theorem, we get the following ring

isomorphism for each j = 0, . . . , `− 1:

Rj
∼=

s⊕
i=1

Ei,j, (2.0.4)

where the isomorphism maps a(x) ∈ Rj to (a1,j + · · ·+as,j) (cf. (2.0.3)). Therefore

we have

R′ = R0× · · ·×R`−1 ∼=

(
s⊕
i=1

Ei,0

)
× · · ·×

(
s⊕
i=1

Ei,`−1

)
∼=

s⊕
i=1

(Ei,0× · · ·×Ei,`−1),

(2.0.5)

where
(
a0(x), . . . , a`−1(x)

)
∈ R′ is mapped to

s∑
i=1

(
a0i,0, a

1
i,1, . . . , a

`−1
i,`−1

)
. In particu-

lar, a GQC code C ⊂ R′ can be viewed inside
s⊕
i=1

E`i since for each j, Ei,j is either

Ei or {0} ⊂ Ei.

Proposition 2.0.2. Suppose the GQC code C ⊂ R′ is generated as an Fq[x]-module

by {(
a1,0(x), . . . , a1,`−1(x)

)
, . . . ,

(
ar,0(x), . . . , ar,`−1(x)

)}
⊂ R′.

Then C, as a subset of
s⊕
i=1

E`i, can be written as

C = C1 ⊕ · · · ⊕ Cs, (2.0.6)

26



where each Ci (constituent) is an Ei-linear code of length ` and described as

Ci = SpanEi

{(
ab,0i,0 , . . . , a

b,`−1
i,`−1

)
: 1 ≤ b ≤ r

}
, for 1 ≤ i ≤ s. (2.0.7)

Proof. Observe that C, as a subset of R′, can be written as

C =
{
g1(x)

(
a1,0(x), . . . , a1,`−1(x)

)
+ · · ·+ gr(x)

(
ar,0(x), . . . , ar,`−1(x)

)
: g1, . . . , gr ∈ Fq[x]

}
.

Then by (2.0.5), Ci is of the form

Ci =
{
g1(αi)

(
a1,0i,0 , . . . , a

1,`−1
i,`−1

)
+ · · ·+ gr(αi)

(
ar,0i,0 , . . . , a

r,`−1
i,`−1

)
: g1, . . . , gr ∈ Fq[x]

}
.

Since αi is a root of fi(x), we have Ei = Fq(αi). Therefore the elements g1(αi), . . . , gr(αi)

take all possible values in Ei as the polynomials g1, . . . , gr range over Fq[x]. Hence

the result follows.

Remark 2.0.3. Depending on vi,j’s in the factorization (2.0.1), some Ei,j’s can

be {0} and hence corresponding coordinates of all the codewords in the related

constituent will be 0.

Example 2.0.4. Let q = 2, m0 = 3, m1 = 5, m2 = 9 and hence ` = 3. We have

R′ = R0 ×R1 ×R2 = F2[x]/〈x3 − 1〉 × F2[x]/〈x5 − 1〉 × F2[x]/〈x9 − 1〉

and

x3 − 1 = (x+ 1)(x2 + x+ 1),

x5 − 1 = (x+ 1)(x4 + x3 + x2 + x+ 1),

x9 − 1 = (x+ 1)(x2 + x+ 1)(x6 + x3 + 1).

Let f1(x) = x + 1, f2(x) = x2 + x + 1, f3(x) = x4 + x3 + x2 + x + 1 and f4(x) =

x6 + x3 + 1. Then we have E1 ' F2, E2 ' F4, E3 ' F16 and E4 ' F64. Moreover,

with the notation in (2.0.2), we have the following:

E1,0 = E1 E2,0 = E2 E3,0 = {0} E4,0 = {0}
E1,1 = E1 E2,1 = {0} E3,1 = E3 E4,1 = {0}
E1,2 = E1 E2,2 = E2 E3,2 = {0} E4,2 = E4
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Hence,

R′ ' (E1 × E1 × E1)⊕ (E2 × {0} × E2)⊕ ({0} × E3 × {0})⊕ ({0} × {0} × E4).

Let us fix roots of f1, . . . , f4 as α1 = 1, α2, α3, α4. If C ⊂ R′ is a GQC code

generated by 〈~g1(x), . . . , ~gr(x)〉, where

~gb(x) =
(
gb,0(x), gb,1(x), gb,2(x)

)
, 1 ≤ b ≤ r,

then C has the following constituents:

C1 = SpanF2

{(
gb,0(1), gb,1(1), gb,2(1)

)
: 1 ≤ b ≤ r

}
,

C2 = SpanF4

{(
gb,0(α2), 0, g

b,2(α2)
)

: 1 ≤ b ≤ r
}
,

C3 = SpanF16

{(
0, gb,1(α3), 0

)
: 1 ≤ b ≤ r

}
,

C4 = SpanF64

{(
0, 0, gb,2(α4)

)
: 1 ≤ b ≤ r

}
.

2.1 Concatenated Structure of GQC codes

Our goal is to obtain, as in the QC codes (Section 1.2.2), a concatenated

description and its relation to constituent decomposition for GQC codes. For this

purpose, some further notation needs to be introduced. We will also continue using

the notation of the previous section.

For i, j such that fi(x) | xmj − 1, let θi,j denote the primitive idempotent

generator of the minimal cyclic code of length mj in Rj, whose check polynomial

is fi(x). Let 0j denote the zero codeword of length mj (or the zero polynomial in

Rj). Then define the following polynomials for each i and j:

Ii,j :=

θi,j(x), if fi(x) | xmj − 1,

0j otherwise.
(2.1.1)

Now, we can define the following analogues of the maps in (1.2.12) for each
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block of length mj and each 1 ≤ i ≤ s:

ϕi,j : 〈Ii,j〉 −→ Ei,j
a(x) 7−→ ai,j

ψi,j : Ei,j −→ 〈Ii,j〉

δ 7−→
mj−1∑
kj=0

akjx
kj

, (2.1.2)

where

akj =
1

mj

TrEi/Fq(δα
−kj
i ).

Note that 〈Ii,j〉 = 〈0j〉, Ei,j = {0} and ai,j = 0 are equivalent and all amount

to fi(x) - xmj − 1. Then, ϕi,j and ψi,j are well-defined Ei-linear isomorphisms

and they are inverses to each other for all i and j. Moreover, when Ei,j = Ei,

hence Ii,j = θi,j, ψi,j and φi,j are known to be field isomorphisms. In particular, if

m0 = · · · = m`−1, then we obtain the isomorphisms in (1.2.12) for the QC case.

Note that R′ = R0 × · · · ×R`−1 and Ei,0 × · · · × Ei,`−1 (for each 1 ≤ i ≤ s) are

rings with coordinate-wise addition and multiplication. The multiplicative identity

of R′ is clearly 1R′ := (1, . . . , 1). For all 1 ≤ i ≤ s, 0 ≤ j ≤ `− 1, set

1i,j :=

1Ei , if Ei,j = Ei,

0, if Ei,j = {0}.
(2.1.3)

Then, 1i := (1i,0, . . . , 1i,`−1) is the multiplicative identity of Ei,0 × · · · × Ei,`−1 for

each 1 ≤ i ≤ s. Note also that ψi,j(1i,j) = Ii,j for all i, j.

For i = 1, . . . , s, we now define two other maps (cf. (2.0.3) and (2.1.2)).

Φi : R0 × · · · ×R`−1 −→ Ei,0 × · · · × Ei,`−1(
a0(x), . . . , a`−1(x)

)
7−→

(
a0i,0, . . . , a

`−1
i,`−1

) (2.1.4)

Ψi : Ei,0 × · · · × Ei,`−1 −→ R0 × · · · ×R`−1

(δ0, . . . , δ`−1) 7−→ (ψi,0(δ0), . . . , ψi,`−1(δ`−1))
(2.1.5)

Note that for each i, Φi and Ψi are Fq-linear maps and they are also ring

homomorphisms. Moreover, when Φi is restricted to 〈Ii,0〉× · · · × 〈Ii,`−1〉, they are

inverse to each other (cf. (2.1.2)). For i = 1, . . . , s, we set Ii := (Ii,0, . . . , Ii,`−1) ∈
R′. We have Ψi (1i) = Ii and the ideal generated by Ii in R′ is nothing but

〈Ii,0〉 × · · · × 〈Ii,`−1〉. The next result follows immediately from the definition of

Ii’s and the analogous results on primitive idempotents of cyclic codes (cf. [29,
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Theorem 6.4.4]). Recall that the multiplication and addition in R′ are coordinate-

wise.

Lemma 2.1.1. The following identities hold in R′:

(i) Ii · Ii = Ii, for all i = 1, . . . , s.

(ii) Iu · Iv = 0, if u 6= v.

(iii) I1 + · · ·+ Is = 1R′.

The next result will be used in proving the concatenated structure of GQC

codes.

Theorem 2.1.2. With the notation above, we have

R′ =
s⊕
i=1

〈Ii〉.

Proof. We first show that the sum is direct in R′. Let (g0(x), . . . , g`−1(x)) be an

element of 〈Iu〉∩〈Iv〉 for some u 6= v ∈ {1, . . . , s}. Since 〈Iu〉 = 〈Iu,0〉×· · ·×〈Iu,`−1〉
and 〈Iv〉 = 〈Iv,0〉× · · ·×〈Iv,`−1〉, we have gj(x) ∈ 〈Iu,j〉∩〈Iv,j〉 for all 0 ≤ j ≤ `−1.

If one of the irreducible polynomials fu(x) or fv(x) does not divide xmj − 1, say

fu, then 〈Iu,j〉 = 〈0j〉. Therefore gj(x) = 0 in this case. If both fu(x), fv(x) divide

xmj − 1, then 〈Iu,j〉 (respectively, 〈Iv,j〉) is the minimal cyclic code generated by

(xmj − 1)/fu(x) (respectively, (xmj − 1)/fv(x)). Since these minimal cyclic codes

intersect trivially, we have gj(x) = 0 in this case too. Hence, (g0(x), . . . , g`−1(x)) =

(0, . . . , 0) and the sum is direct.

Clearly 〈Ii〉 ⊂ R′ for each i. Recall that when Φi is restricted to 〈Ii〉, Φi and

Ψi are inverse Fq-linear maps. Hence, Ψi (Ei,0 × · · · × Ei,`−1) = 〈Ii〉 and

dimFq〈Ii〉 = dimFq (Ei,0 × · · · × Ei,`−1) =
∑

0 ≤ j ≤ `− 1

fi(x) | (xmj − 1)

deg fi,
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for all 1 ≤ i ≤ s. Then,

dimFq

s⊕
i=1

〈Ii〉 =
s∑
i=1

∑
0 ≤ j ≤ `− 1

fi(x) | (xmj − 1)

deg fi

=
`−1∑
j=0

∑
1 ≤ i ≤ s

fi(x) | (xmj − 1)

deg fi.

For each 0 ≤ j ≤ `− 1, we have

∑
1 ≤ i ≤ s

fi(x) | (xmj − 1)

deg fi = mj,

since gcd(q,mj) = 1 and hence xmj − 1 is separable. Therefore

dimFq

s⊕
i=1

〈Ii〉 =
`−1∑
j=0

mj.

Note that (m0 +m1 + · · ·+m`−1) is also the Fq-dimension of R′ and therefore the

result follows.

Remark 2.1.3. For any i ∈ {1, . . . , s} and an Ei-linear code Ci ⊂ Ei,0×· · ·×Ei,`−1
of length `, concatenation with 〈Ii〉 = 〈Ii,0〉 × · · · × 〈Ii,`−1〉 ⊂ R′ is carried out by

the map Ψi in (2.1.5). Namely,

〈Ii〉2Ci := {(ψi,0(c0), . . . , ψi,`−1(c`−1)) : (c0, . . . , c`−1) ∈ Ci} .

After this preparation, we can now generalize Theorem 1.2.4 for a GQC code

C ⊂ R′ of length m0 + · · ·+m`−1 over Fq.

Theorem 2.1.4. With the notation so far, the following conditions hold:

(i) Let C ⊂ R′ be a GQC code and C̃i := C · Ii ⊂ R′ for each 1 ≤ i ≤ s. Then,

C =
s⊕
i=1

C̃i.
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Moreover, for the Ei-linear code Ci := Φi(C̃i) ⊂ Ei,0 × · · · × Ei,`−1 of length `, we

have C̃i = 〈Ii〉2Ci (for all i), so that

C =
s⊕
i=1

〈Ii〉2Ci.

(ii) Conversely, let Ci ⊆ (Ei,0 × · · · × Ei,`−1) be an Ei-linear code of length `

for each i ∈ {1, . . . , s}. Then, C =
s⊕
i=1

〈Ii〉2Ci is a q-ary GQC code of length

m0 + · · ·+m`−1.

Proof. (i) By Lemma 2.1.1, we have

C = C · 1R′ = C ·
s∑
i=1

Ii =
s∑
i=1

C̃i.

Since C̃i ⊂ 〈Ii〉 for each i and 〈Ii〉’s are pairwise intersecting trivially (Theorem

2.1.2), we conclude that C = ⊕iC̃i.
We have

C̃i =
{(
c0(x), . . . , c`−1(x)

)
· (Ii,0(x), . . . , Ii,`−1(x)) :

(
c0(x), . . . , c`−1(x)

)
∈ C
}

=
{(
c0(x)Ii,0(x), . . . , c`−1(x)Ii,`−1(x)

)
:
(
c0(x), . . . , c`−1(x)

)
∈ C

}
⊂ 〈Ii〉.

Since Φi restricted to 〈Ii〉 is an isomorphism ((2.1.4) and (2.1.5)), the last expres-

sion is equal to

{(
ψi,0

(
d0i,0
)
, . . . , ψi,`−1

(
d`−1i,`−1

))
:
(
d0(x), . . . , d`−1(x)

)
∈ Φi(C̃i)

}
,

which is nothing but 〈Ii〉2Φi(C̃i) (cf. (Remark 2.1.3).

(ii) The concatenation has the form

〈Ii〉2Ci = {(ψi,0(c0), . . . , ψi,`−1(c`−1)) : (c0, . . . , c`−1) ∈ Ci} .

Note that each ψi,j(cj) is an element of 〈Ii,j〉. By Fq-linearity of Ci and ψi,j’s, it

is clear that the concatenation is an additive subgroup of R′ which is closed under

scalar multiplication by elements of Fq. Note that for a nonzero coordinate cj of

a codeword in Ci, ψi,j identifies αicj ∈ Ei,j = Ei with xψi,j(cj) ∈ Ii,j, since it is a

field isomorphism between Ei and 〈Ii,j〉 = 〈θi,j〉 in this case (see (2.1.2) and the
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discussion following it). Therefore we have

x · (ψi,0(c0), . . . , ψi,`−1(c`−1)) = (ψi,0(αic0), . . . , ψi,`−1(αic`−1))

= αi (ψi,0(c0), . . . , ψi,`−1(c`−1))

Since Ci is an Ei-linear code, αi(c0, . . . , c`−1) is also a codeword of Ci. Hence,

x · (ψi,0(c0), . . . , ψi,`−1(c`−1)) = x ·Ψi (c0, . . . , c`−1)

is also a codeword of 〈Ii〉2Ci and this concatenation is an Fq[x]-submodule of R′.

If we take the direct sum of several such concatenations, the result is again an

submodule of R′, i.e. a GQC code.

Remark 2.1.5. Note from the proof of Theorem 2.1.4 (i) that the outer codes of

the GQC code C are of the form (for each 1 ≤ i ≤ s):

Ci =
{(
ϕi,0

(
c0(x)Ii,0(x)

)
, . . . , ϕi,`−1

(
c`−1(x)Ii,`−1(x)

))
:
(
c0(x), . . . , c`−1(x)

)
∈ C
}

=
{(
ϕi,0

(
c0(x)

)
, . . . , ϕi,`−1

(
c`−1(x)

))
:
(
c0(x), . . . , c`−1(x)

)
∈ C
}
,

where the last equality follows from ϕi,j(Ii,j(x)) = 1i,j. The outer code Ci is nothing

but the constituent C of C (Proposition 2.0.2). Hence, the analogous result for QC

codes extends to GQC codes.

As in Theorem 1.2.7, we can obtain a trace representation for the codewords of a

given GQC code, which is straightforward by using the isomorphism (concatenation

map) in (2.1.5).

Theorem 2.1.6. Consider the q-ary GQC code C of length m0 + · · ·+m`−1 with

the constituents C = C1 ⊕ · · · ⊕ Cs, where Ci ⊂ E`i is linear over Ei of length ` for

each 1 ≤ i ≤ s. Assume that each mj is relatively prime to q and let α1, . . . , αs be

fixed roots of the polynomials f1, . . . , fs, describing the fields E1, . . . ,Es. Then an

arbitrary codeword c ∈ C has the form

c = (c0(λ1, . . . , λs) | c1(λ1, . . . , λs) | · · · | c`−1(λ1, . . . , λs)) ,

where λi = (λi,0, . . . , λi,`−1) is a codeword in C, for each i = 1, . . . , s, and for
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j ∈ {0, . . . , `− 1}, the jth column has length mj and it is of the form

cj(λ1, . . . , λs) =
1

mj

(
s∑
i=1

TrEi/Fq

(
λi,jα

−kj
i

))
0≤kj≤mj−1

.

Remark 2.1.7. Note that for m0 = · · · = m`−1, this coincides with the trace

representation of a length m` QC code (cf. Theorem 1.2.7). However, the trace

representation in Theorem 1.2.7 describes codewords by their rows whereas Theo-

rem 2.1.6 provides a column-wise description of codewords in a GQC code.

Example 2.1.8. Let m0 = 3, m1 = 5 and q = 2. We will consider a binary GQC

code C of length 3 + 5 = 8. We have

R′ = R0 ×R1 = F2[x]/〈x3 − 1〉 × F2[x]/〈x5 − 1〉

and

x3 − 1 = (x+ 1)(x2 + x+ 1) x5 − 1 = (x+ 1)(x4 + x3 + x2 + x+ 1). (2.1.6)

Therefore, s = 3 and R′ decomposes as follows:

R′ ∼= (F2[x]/〈x+ 1〉 × F2[x]/〈x+ 1〉)

⊕
(
F2[x]/〈x2 + x+ 1〉 × {0}

)
⊕
(
{0} × F2[x]/〈x4 + x3 + x2 + x+ 1〉

)
.

Let 1, ξ1, ξ2 be the fixed roots of the irreducible factors in (2.1.6), respectively. Let

C1 ⊆ F2
2, C2 ⊆ F2

4, C3 ⊆ F2
16 be the constituents of C. Note that the second (first)

coordinate of every codeword in C2 (in C3) must be zero due to the decomposition

R′ above. We write TrF16/F2(α) = Tr(α) as short. Then, by Theorem 2.1.6, the

codewords of C are of the form (cf. Theorem 6.7 and 6.14 in [26])

(z1+2a−b|z1−a+2b|z1−a−b|z2+Tr(y)|z2+Tr(yξ−12 )|z2+Tr(yξ−22 )|z2+Tr(yξ−32 )|z2+Tr(yξ−42 )),

where (z1, z2) ∈ C1, a+ ξ1b ∈ C2 (a, b ∈ F2) and y ∈ C3.
Moreover, we can simplify this expression further, by using the fact 2a = 2b = 0
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in F2 and by setting y = c+ ξ2d+ ξ22e+ ξ32f , for some c, d, e, f ∈ F2, as follows:

(z1+b|z1+a|z1+a+b|z2+d+e+f |z2+c+e+f |z2+c+d+f |z2+c+d+e|z2+c+d+e+f),

where (z1, z2) ∈ C1, a+ ξ1b ∈ C2 and c+ ξ2d+ ξ22e+ ξ32f ∈ C3.

2.2 Multilevel View of GQC Codes and a Mini-

mum Distance Bound

Our goal is to adapt the multilevel concatenated approach to GQC codes and to

obtain a minimum distance bound as Jensen did for QC codes (cf. Section 1.2.2).

For this purpose, we adapt a variant of concatenation introduced in Section 1.3

(see Definition 1.3.4) to GQC codes. We continue with the notation introduced so

far in this chapter.

Let C be a q-ary GQC code of length m0 + · · ·+m`−1 with the outer codes (or

constituents) C1, . . . , Cs. Recall that Ci ⊂ Ei,0 × · · · × Ei,`−1 is an Ei-linear code of

length ` for each i. Consider the following set:

B :=




c1,0 . . . c1,`−1
...

...
...

cs,0 . . . cs,`−1

 : (ci,0, . . . , ci,`−1) ∈ Ci for 1 ≤ i ≤ s

 .

We can view B as a length ` code over a mixed alphabet (E1,0× · · ·×Es,0)× · · ·×

(E1,`−1 × · · · × Es,`−1), which is Fq-linear with |B| =
s∏
i=1

|Ci|. We note that B will

be the outer code in the multilevel concatenation scheme.

For each j = 0, . . . , ` − 1, we use the maps ψi,j’s in (2.1.2) as a concatenation

map to define the following Fq-linear isomorphisms:

ψj : E1,j × · · · × Es,j → 〈I1,j〉 ⊕ · · · ⊕ 〈Is,j〉 ⊂ Rj

(a1,j, . . . , as,j) 7→ ψ1,j(a1,j) + · · ·+ ψs,j(as,j)
(2.2.1)
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By Definition 1.3.4, the multilevel concatenated code is defined as

ψ(B) :=


(
ψ0 (c1,0, . . . , cs,0) , . . . , ψ`−1 (c1,`−1, . . . , cs,`−1)

)
:


c1,0 . . . c1,`−1

...
...

...

cs,0 . . . cs,`−1

 ∈ B
 .

(2.2.2)

Observe that the maps ψ0, . . . , ψ`−1 concatenate each symbol in the codewords of

B, which comes from mixed cross-product alphabets as described above, to length

m0, . . . ,m`−1 words respectively. It is also clear that dimFq ψ(B) =
s∑
i=1

dimFq Ci =

dimFq C.

Proposition 2.2.1.

ψ(B) =
s⊕
i=1

〈Ii〉2Ci.

Proof. A codeword in ψ(B) is of the form

((
ψ1,0(c1,0) + · · ·+ ψs,0(cs,0)

)
, . . . ,

(
ψ1,`−1(c1,`−1) + · · ·+ ψs,`−1(cs,`−1)

))
,

which can be rewritten as

(
ψ1,0(c1,0), . . . , ψ1,`−1(c1,`−1)

)
+ · · ·+

(
ψs,0(cs,0), . . . , ψs,`−1(cs,`−1)

)
.

This expression also belongs to
s⊕
i=1

〈Ii〉2Ci (cf. Proposition 1.2.2), hence ψ(B) ⊆

s⊕
i=1

〈Ii〉2Ci. The result follows since both codes have the same Fq-dimension.

So, we obtained another way of presenting the GQC code C. The advantage

of this is that it makes it possible to prove the minimum distance bound on GQC

codes.

Theorem 2.2.2. Let C be a GQC code with nonzero constituents Ci1 , . . . , Cig , where

{i1, . . . , ig} ⊆ {1, . . . , s}. Let du denote the minimum distance of Ciu, for each

1 ≤ u ≤ g and assume that d1 ≤ d2 ≤ · · · ≤ dg. If we set

Du := min
J ⊂ {0, 1, . . . , `− 1}

|J| = du

{∑
t∈J

d
(
〈Ii1,t〉 ⊕ 〈Ii2,t〉 ⊕ · · · ⊕ 〈Iiu,t〉

)}
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for 1 ≤ u ≤ g, then

d(C) ≥ min{D1, D2, . . . , Dg}.

Proof. Codewords in B have g rows coming from the constituents of C. For

any u ∈ {1, . . . , g}, consider a codeword b ∈ B whose first u rows are nonzero

codewords from the corresponding constituents and the remaining rows are the

zero codewords. Let us denote the columns (symbols in the mixed alphabets)

of b by (b0, . . . , b`−1). By assumption on the ordering of minimum distances of

the constituents, b has at least du nonzero columns. By linearity of Ψ, a zero

(nonzero) column in b is mapped to the zero (nonzero) codeword in the corre-

sponding image. Again due to linearity, zero entries in nonzero columns (e.g. the

last g − u entry in each nonzero column) are also mapped to zeros in the im-

age. Therefore, if 0 ≤ t1, . . . , tdu ≤ ` − 1 denotes nonzero columns of b, then

Ψ(b) =
(
ψ0(b0), . . . , ψ`−1(b`−1)

)
lies in

(
〈Ii1,t1〉 ⊕ · · · ⊕ 〈Iiu,t1〉

)
× · · · ×

(
〈Ii1,tdu 〉 ⊕ · · · ⊕ 〈Iiu,tdu 〉

)
(cf. (2.2.1) and (2.2.2)).

Hence the weight of Ψ(b) is at least

du∑
k=1

d
(
〈Ii1,tk〉 ⊕ · · · ⊕ 〈Iiu,tk〉

)
.

If we consider all possible choices of du nonzero columns for b ∈ B as above, code-

words obtained this way in the image of Ψ (i.e. C) have weights greater than or

equal to Du. Applying the same argument with each u = 1, . . . , g, we see that code-

words of C arising this way fromB have weights at leastD := min{D1, D2, . . . , Du}.
Now suppose c = Ψ(b) is a codeword in C, where b ∈ B has different configura-

tion of nonzero rows, µ1 < µ2 < · · · < µe ∈ {1, . . . , g}. Arguing as above, for some

subset J of {0, 1, . . . , ` − 1} of cardinality |J | = dµe , the weight w(c) of such C is

at least ∑
t∈J

d
(
〈Iiµ1 ,t〉 ⊕ 〈Iiµ2 ,t〉 ⊕ · · · ⊕ 〈Iiµe ,t〉

)
.

For each t ∈ J we have

(
〈Iiµ1 ,t〉 ⊕ 〈Iiµ2 ,t〉 ⊕ · · · ⊕ 〈Iiµe ,t〉

)
⊂
(
〈Ii1,t〉 ⊕ 〈Ii2,t〉 ⊕ · · · ⊕ 〈Iiµe ,t〉

)
.

37



Hence w(c) ≥ Dµe ≥ D. Therefore D is a lower bound for the weights of all

codewords in C.

Remark 2.2.3. Suppose C is a QC code with nonzero constituents Ci1 , . . . , Cig ,
whose minimum distances are ordered as in Theorem 2.2.2. If C is of length m` and

index `, then m0 = · · · = m`−1 = m and 〈Iiu,t〉 = 〈θiu〉 for any t ∈ {0, . . . , ` − 1}
and any u ∈ {1, . . . , g}. (cf. Section 1.2.2). Then for any J ⊂ {0, 1, . . . , ` − 1}
with |J | = d(Ciu), we have

∑
t∈J

d
(
〈Ii1,t〉 ⊕ 〈Ii2,t〉 ⊕ · · · ⊕ 〈Iiu,t〉

)
=
∑
t∈J

d
(
〈θi1〉 ⊕ 〈θi2〉 ⊕ · · · ⊕ 〈θiu〉

)
= d(Ciu)d

(
〈θi1〉 ⊕ 〈θi2〉 ⊕ · · · ⊕ 〈θiu〉

)
.

Hence the bound in Theorem 2.2.2 takes the form

d(C) ≥ min
1≤u≤g

{
d(Ciu)d

(
〈θi1〉 ⊕ 〈θi2〉 ⊕ · · · ⊕ 〈θiu〉

)}
,

for a QC code C, which is exactly Jensen’s bound (cf. Corollary 1.2.5; also see [23,

Theorem 4], [18, Theorem 3.3]).

Remark 2.2.4. Esmaeili and Yari also found a minimum distance bound for GQC

codes but their bound only applies to one-generator GQC codes ([15, Theorem 4]).
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Chapter 3

Quasi-Abelian Codes

This chapter contributes to the structural understanding of quasi-abelian (QA)

codes by giving their concatenated structure, presenting the relation of this struc-

ture with earlier decomposition of QA codes by Jitman and Ling ([24]), and con-

sequences of the concatenated structure. The material in this chapter appears in

[3]. Let us note that [3] also contains numerical results for examples of QA codes

and the relation of QA codes to the so-called additive abelian codes, which are not

presented here.

We first review basic facts on QA codes, following [24] closely (see also [12]).

We refer the reader to these articles for further details. Let us note that in the

special case of QC codes, the material presented in this chapter has analogues

which are presented in Sections 1.2.1 and 1.2.2.

LetG be a finite (additive) abelian group of order n. Consider the group algebra

Fq[G], whose elements are of the form
∑

g∈G αgY
g for αg ∈ Fq. The multiplicative

identity of Fq[G] is Y 0. Note that Fq[G] can be considered as a vector space over

Fq of dimension |G|.
We call C a linear code in Fq[G] of length n if it is an Fq-subspace of Fq[G]. Note

that such a code can be viewed as a linear code of length n over Fq by indexing

the symbols in codewords with the elements in G.

For an element v =
∑

g∈G vgY
g ∈ Fq[G], the Hamming weight of v is defined

to be the number of nonzero terms vg and it is denoted by wt(v). As usual, the

minimum distance of C is defined by

d(C) := min{wt(v)|v ∈ C, v 6= 0}.
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Definition 3.0.1. A code C in Fq[G] is called an H quasi-abelian code (H-QA) of

index ` if C is an Fq[H]-module, where H is a subgroup of G with [G : H] = `.

We will only refer to these codes as QA codes, unless it is needed to specify the

subgroup H and the index.

Let {g1, . . . , g`} be a fixed set of representatives of the cosets of H in G. Note

that a QA code of index ` in Fq[G] can be seen as an Fq[H]-submodule of Fq[H]`

by the following Fq[H]-module isomorphism.

Φ : Fq[G] −→ Fq[H]`∑̀
i=1

∑
h∈H

αh+giY
h+gi 7−→

(∑
h∈H

αh+g1Y
h, . . . ,

∑
h∈H

αh+g`Y
h

)
.

(3.0.1)

Remark 3.0.2. It is clear that an H-QA code is QC if H is cyclic. Moreover, if

H = J×K with |K| = t and J is cyclic, then an H-QA code of index ` is a QC code

of index t ·`. By Fundamental Theorem of finite abelian group, every abelian group

H can be decomposed in such a way, so that the class of QA codes is a subclass

of QC codes. For instance, if we choose H = Cm1 × Cm2 , here Cmi ’s denote cyclic

group Z/miZ of order mi, for i = 1, 2, such a H-QA code can be viewed as a QC

code of co-index m1 or co-index m2. Moreover, as mentioned before in [23] and [21]

for certain special cases, we have various QA structures with different indices for a

given QA code, since an Fq[H]-module in Fq[H]` is also an Fq[H
′
]-module, for any

H
′ ≤ H ≤ G.

Jitman and Ling ([24]) call a QA code C strictly QA (SQA) if H is not a cyclic

group. If H is a cyclic group then such a code has only one way of QC structure.

Correspondingly, if ` = 1 and H is not cyclic, we refer to strictly abelian (SA)

codes.

The following diagram shows the relations among the families of codes that are

discussed above. Here, A and C denote abelian codes and cyclic codes, respectively.
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SQA A
SA C

QA=QC

We find it useful to illustrate with a very explicit example how QA codes can

be seen as QC codes.

Example 3.0.3. Let H := C2 × C2 = {(0, 0), (1, 0), (0, 1), (1, 1)}. Consider an

H-QA code of index 2, C ⊆ Fq[C2 × C2]
2 with

Fq[C2×C2] := {a := a0(0, 0) +a1(1, 0) +a2(0, 1) +a3(1, 1) : ai ∈ Fq for 0 ≤ i ≤ 3},

where q is any odd prime power. Choose representatives (0, 0) and (0, 1) of the

cosets of C2×{0} in C2×C2, and identify C2×{0} with C2 in the following. Then

by (3.0.1), we have the following Fq[C2]-module isomorphism:

ϕ : Fq[C2 × C2]
2 −→ Fq[C2]

4

(a, b) 7−→ (a0(0, 0) + a1(1, 0), a2(0, 1) + a3(1, 1),

b0(0, 0) + b1(1, 0), b2(0, 1) + b3(1, 1)) .

(3.0.2)

The image ϕ(C) is clearly an Fq[C2]-module since (3.0.2) is an Fq[C2]-module iso-

morphism. Hence, ϕ(C) is an index 4 and co-index 2 QC code over Fq. Moreover,

being closed under multiplication by (0, 1) in Fq[C2 ×C2]
2 yields invariance under

permutation (1, 2)(3, 4) in Fq[C2]
4. Hence, the QC code ϕ(C) corresponding to the

SQA code C has additional symmetry that an arbitrary QC code does not have.

Now, we continue with explaining the CRT decomposition of H-QA codes of

index `, which is introduced in [24].

For a semisimple algebra Fq[H], where H is a subgroup of a finite abelian G

with |H| = m, let M be the exponent of H and let K be an extension of Fq which

contains a primitive M -th root of unity ξ. Finally, R := Fq[H] throughout.

A character χ from H to the multiplicative group of K is a group homomor-

phism. The set Hom(H,K∗) of characters forms a group which is isomorphic to
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H. So, we can denote the characters in Hom(H,K∗) as χa, a ∈ H. If we view the

abelian group H as a direct product of finite cyclic groups,

H =
s∏
i=1

Cmi ,

then an element h ∈ H can be represented as h = (h1, · · · , hs), where hi ∈ Cmi
and Cmi denotes the additive cyclic group Z/miZ of order mi. In this case, it is

well-known that the character χa can be written as

χa(h) = ξ
∑s
i=1 aihiM/mi , (3.0.3)

for any a ∈ H.

Recall that a primitive idempotent of a ring is a nonzero element e such that

e2 = e and for any other idempotent f , either ef = 0 or ef = e. To present the

decomposition of QA codes, we will need to use idempotents in R = Fq[H]. For this

purpose, one first considers the group algebra K[H], whose primitive idempotents

are given by

Ex =
1

m

∑
a∈H

χx(−a)Y a ∈ K[H], (3.0.4)

for each x ∈ H. The primitive idempotents of K[H] are orthogonal, i.e. ExEy = 0

if x, y ∈ K and x 6= y.

The q-cyclotomic class of H containing h ∈ H is defined as

Sq(h) := {qih : 0 ≤ i < vh}, (3.0.5)

where qih denotes addition of h with itself qi times (recall that G and hence H are

additive groups), and vh is the smallest positive integer such that qvh ≡ 1 (ord h).

Primitive idempotents in Fq[H] are of the form

eh =
∑

x∈Sq(h)

Ex, (3.0.6)

where h ∈ H and Ex is a primitive idempotent in K[H] as in (3.0.4). The idempo-

tent eh is called the primitive idempotent induced by Sq(h). Orthogonality of the

primitive idempotents of K[H] implies orthogonality of the primitive idempotents
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in Fq[H]:

eheh′ = 0, if h, h′ ∈ H have distinct q-cyclotomic classes. (3.0.7)

If Sq(h1), . . . , Sq(ht) are all q-cyclotomic classes of H and eh1 , . . . , eht are the

corresponding primitive idempotents of Fq[H], then we have

t∑
i=1

ehi = 1. (3.0.8)

Moreover, primitive idempotents of R = Fq[H] yields the decomposition

R =
t⊕
i=1

Rehi . (3.0.9)

The ideal Rehi generated by ehi in the group algebra R is an abelian code ([23]).

Moreover, Rehi is an extension field of Fq with the extension degree Sq(hi) (for all

1 ≤ i ≤ t). The maps yielding the identification of Rehi with the extension Ei of

Fq are

ϕi : Rehi −→ Ei(∑
h∈H

αhY
h

)
ehi 7−→

∑
h∈H

αhχhi(h),
(3.0.10)

ψi : Ei −→ Rehi

δ 7−→
∑
k∈H

αkY
k,

(3.0.11)

where αk = 1
m

Tr(δχhi(−k)). Here, Tr denotes the trace map from Ei to Fq. Note

that ϕi and ψi are nontrivial ring homomorphisms and they are inverse to each

other for every 1 ≤ i ≤ t. Moreover, ϕi(ehi) = 1 and hence ψi(1) = ehi .

By (3.0.8), any element r ∈ R can be written as r = reh1 + · · · + reht . For an

element (r1, . . . , r`) ∈ R`, we have

(r1, . . . , r`) = (r1eh1 + · · ·+ r1eht , . . . , r`eh1 + · · ·+ r`eht)

= (r1eh1 , . . . , r`eh1) + · · ·+ (r1eht , . . . , r`eht).
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Using the isomorphisms ϕ1, . . . , ϕt, we can identify R` and ⊕ti=1E`i :

R` −→ E`1 ⊕ · · · ⊕ E`t
(r1, . . . , r`) 7−→

(
ϕ1(r1eh1), . . . , ϕ1(r`eh1)

)
+ · · ·+

(
ϕt(r1eht), . . . , ϕt(r`eht)

)
Consequently, anR-submodule ofR` can be viewed as⊕ti=1Ei-submodule of⊕ti=1E`i .

Therefore, a QA code C ⊆ R` decomposes as

C = C1 ⊕ · · · ⊕ Ct, (3.0.12)

where Ci ⊂ E`i is a linear code of length ` over the field Ei for every 1 ≤ i ≤ t.

We call C’s the constituents of C. The preceding arguments yield the explicit

description of the constituents (for 1 ≤ i ≤ t):

Ci =
{(
ϕi(c1ehi), . . . , ϕi(c`ehi)

)
: (c1, . . . , c`) ∈ C

}
. (3.0.13)

3.1 Concatenated Structure of QA Codes

In this section, we explain the concatenated structure of QA codes in terms of

GC codes. This structure can be seen as an extended version of Section 1.2.2. We

continue with the notation used for QA codes so far.

Consider the rings R` = Fq[H]` and E`i (for 1 ≤ i ≤ t), where the ring operations

are clearly componentwise addition and multiplication. Using the maps ϕi and ψi

in Equations 3.0.10 and 3.0.11, we define

Ψi : E`i −→ R`

(a1, . . . , a`) 7−→ (ψi(a1), . . . , ψi(a`))
(3.1.1)

and

Φi : R` −→ E`i(∑
h∈H

α1
hY

h, . . . ,
∑
h∈H

α`hY
h

)
7−→

(∑
h∈H

α1
hχhi(h), . . . ,

∑
h∈H

α`hχhi(h)

)
.

(3.1.2)

Note that Ψi and Φi are Fq-linear ring homomorphisms (for 1 ≤ i ≤ t). Moreover

they are inverse to each other when Φi is restricted to the image of Ψi. Next we
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describe the primitive idempotents of R`.

Theorem 3.1.1. For each 1 ≤ i ≤ t, let Θi := Ψi(1, . . . , 1) = (ehi , . . . , ehi). Then

〈Θi〉 = Ψi(E`i) and R` =
t⊕
i=1

〈Θi〉. Moreover,

ΘiΘj =

Θi if i = j,

0 if i 6= j,

and
t∑
i=1

Θi = (1, . . . , 1) in R`.

Proof. The equality 〈Θi〉 = Ψi(E`i) follows immediately from the definitions of ψi

and Ψi. Suppose (f1, . . . , f`) in R` belongs to the intersection of 〈Θi〉 and 〈Θj〉 for

i 6= j. This implies that for all 1 ≤ u ≤ `, fu ∈ Rehi ∩ Rehj , which is trivial by

(3.0.9). So,
t⊕
i=1

〈Θi〉 is indeed a direct sum in R`. Since 〈Θi〉 = Ψi(E`i), we have

dimFq〈Θi〉 = `[Ei : Fq]. Hence,

dimFq

t⊕
i=1

〈Θi〉 = `
t∑
i=1

[Ei : Fq]

= `
t∑
i=1

dimFq Rehi by (3.0.10)

= ` dimFq R by (3.0.9).

Hence, R` =
t⊕
i=1

〈Θi〉. The other assertions easily follow from (3.0.7) and (3.0.8).

Next, we describe the concatenated structure of QA codes. In the following,

we use the set defined as

Cs := {cs : c ∈ C},

for C ⊆ R` and an element s ∈ R`.

Theorem 3.1.2. With the notation above, the following conditions hold:

(i) Let C be an R-submodule of R` and C̃i := CΘi ⊆ R` for all i = 1, . . . , t.

Then, for some subset I ⊆ {1, . . . , t}, we have C =
⊕

i∈I C̃i. Moreover,

C̃i = Rehi2Ci, where Ci = Φi(C̃i) is an Ei-linear code of length ` for each i.
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(ii) Conversely, let Ci be a linear code over Ei of length ` for all i in some subset

I of {1, . . . , t}. Then, C =
⊕
i∈I

Rehi2Ci is an H-QA code of index `.

Proof. (i) By Theorem 3.1.1 we have

C = C
t∑
i=1

Θi =
∑
i∈I

C̃i,

where I consists of indices i for which C̃i 6= {0}. Since C̃i lies in the ideal 〈Θi〉 and

the sum of these ideals is direct, the sum
∑
i∈I

C̃i is also direct.

On the other hand, for all i ∈ I, we have

C̃i = CΘi

= {(c1, . . . , c`) (ehi , . . . , ehi) : (c1, . . . , c`) ∈ C}

= {(c1ehi , . . . , c`ehi) : (c1, . . . , c`) ∈ C}.

Hence,

Ci = Φi

(
C̃i
)

=
{(
ϕi(c1ehi), . . . , ϕi(c`ehi)

)
: (c1, . . . , c`) ∈ C

}
. (3.1.3)

Since C̃i and Φi are Fq-linear, each Ci is an Fq-linear code of length `. The map

ϕi in (3.0.10) is bijective. Therefore for any δ ∈ Ei, there exists f ∈ R such that

ϕi(fehi) = δ. So, for any (ϕi(c1ehi), . . . , ϕi(c`ehi)) ∈ Ci, we have

δ(ϕi(c1ehi), . . . , ϕi(c`ehi)) = (ϕi(fehi)ϕi(c1ehi), . . . , ϕi(fehi)ϕi(c`ehi))

= (ϕi(fc1ehi), . . . , ϕi(fc`ehi)). (3.1.4)

Since C is an R-module, (fc1, . . . , fc`) lies in C. Therefore, (3.1.4) belongs to Ci,

which shows that Ci is Ei-linear.

Now, consider the concatenated code Rehi2Ci determined by ψi : Ei → Rehi

in (3.0.11):

Rehi2Ci = {(ψi(ϕi(c1ehi)), . . . , ψi(ϕi(c`ehi))) : (c1, . . . , c`) ∈ C} .
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Since ψi and φi are inverse to each other, we have

Rehi2Ci = {(c1ehi , . . . , c`ehi) : (c1, . . . , c`) ∈ C} = C̃i,

which completes the proof.

(ii) Let Ci be an Ei linear code of length ` and consider the concatenation

Rehi2Ci = {(ψi(λ1), . . . , ψi(λ`)) : (λ1, . . . , λ`) ∈ Ci}

for each i ∈ I. By linearity of Ci and ψi, this set becomes an additive subgroup of

R`. We need to show that Rehi2Ci is closed under multiplication by elements of

R. For this, it is enough to show that it is closed under multiplication by Y x ∈ R,

for any x ∈ H. Since ϕi is surjective, we can write an element (λ1, . . . , λ`) ∈ Ci as

(ϕi(f1ehi), . . . , ϕi(f`ehi)) for some f1, . . . , f` ∈ R. Then,

Y x(ψi(λ1), . . . , ψi(λ`)) = Y x(f1ehi , . . . , f`ehi) (ψi and ϕi are inverse) (3.1.5)

=
(
Y xehif1ehi , . . . , Y

xehif`ehi
)

(using ehiehi = 1)

=
(
ψi

(
ϕi
(
Y xehif1ehi

))
, . . . , ψi

(
ϕi
(
Y xehif`ehi

)))
=
(
ψi

(
ϕi
(
Y xehi

)
ϕi
(
f1ehi

))
, . . . , ψi

(
ϕi
(
Y xehi

)
ϕi
(
f`ehi

)))
.

Since ϕi
(
Y xehi

)
is in Ei and Ci is Ei-linear,

(
ϕi
(
Y xehi

)
ϕi
(
f1ehi

)
, . . . , ϕi

(
Y xehi

)
ϕi
(
f`ehi

))
belongs to Ci. Therefore (3.1.5) is in Rehi2Ci.

Finally, Rehi2Ci lies in (Rehi)
` (for each i) and Rehi ’s intersect trivially (cf.

(3.0.9)). Therefore the sum of the concatenations Rehi2Ci, for i ∈ I, is direct.

Hence the result follows.

Remark 3.1.3. For a QA code C, the constituent Ci and the outer code Ci in its

concatenated form coincide, for each i. This follows from (3.0.13) and (3.1.3).

The concatenated view of QA codes in Theorem 3.1.2 results in a general

minimum distance bound (cf. Proposition 1.2.2), as will be shown in the following

corollary.

Corollary 3.1.4. Let C be a QA code of index ` in R` with the concatenated

structure

C =

g⊕
j=1

Rehij2Cij ,
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where Cij ’s are the nonzero outer codes (constituents) of C for {i1, . . . , ig} ⊆
{1, . . . , t}. Assume that d (Ci1) ≤ d (Ci2) ≤ · · · ≤ d

(
Cig
)
. Then, we have

d (C) ≥ min
1≤v≤g

{
d(Civ)d(Rehi1 ⊕ · · · ⊕Rehiv )

}
.

Now, we find it useful to explain the concatenated structure of a strictly QA

code and the resulting minimum distance bound with the following example, con-

firmed by Magma ([4]). In this example, we also aim to explain how good the

bound obtained is and to show the existence of optimal strictly QA codes. We

refer the reader to [3] for further examples.

Example 3.1.5. Let F2[C7 × C7] be a semisimple algebra. Then, all cyclotomic

cosets in this semisimple algebra can be computed, and their cardinalities give the

degrees of the extension fields over the binary field. Hence, this computation allows

us to consider the extension field F8 ' F2(α) be a degree 3 extension field, where

α is a roof of x3 + x + 1 over F2. Now, consider a strictly QA C in F2[C7 × C7]
2

which has the concatenated form

C = Re(3,0)2C1 ⊕Re(3,3)2C2.

Here, (the outer codes) C1 and C2 are linear [2, 1, 2] codes over F8, with respective

generator matrices [1 1] and [1 α] , and (the inner codes) Re(3,0) and Re(3,3) are

binary [49, 3, 28] abelian codes with respective generator matrix

GRe(3,0) :=[
1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1
0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0
0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1

]
,

and

GRe(3,3) :=[
1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1
0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 1
0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1

]
.

Then, the minimum distance d(C) is bounded from below by

min{d(Re(0,3))d(C1), d(Re(3,0) ⊕Re(3,3))d(C2)} = 48.
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Note that 48 is the best known minimum distance for a linear code of length

98, and of dimension 6, by the Griesmer bound ([17]).

3.2 Asymptotic Results on QA Codes

The class of binary self-dual doubly even strictly QA codes has been shown to

be asymptotically good ([24]).

We first show that strictly QA codes are asymptotically good over any finite

field Fq. Note that H being a non-cyclic abelian group is enough for this purpose

(cf. Remark 3.0.2).

Theorem 3.2.1. For any prime power q, the class of strictly QA codes over Fq is

asymptotically good.

Proof. Let p be a prime different than char(Fq) and set H = Cp × Cp so that

it is not cyclic and gcd(|H|, q) = 1. Note that the q-cyclotomic class of 0 ∈ H

consists of itself only. Let us denote the primitive idempotent corresponding to

this cyclotomic class by e0. Hence in the decomposition (3.0.9) of Fq[H], there

exists the field Fq, which is isomorphic to the ideal Fq[H]e0. This implies that an

H-QA code over Fq of any index ` has a constituent which lies in F`q.

Let F := (F1,F2, . . .) be an asymptotically good family of Fq-linear codes and

let the parameters of any member Fi in the family be (ni, ki, di). Define the groups

Gi := H × Cni ,

for all i ≥ 1. We can construct H-QA codes Ei in Fq[Gi] (or, in Fq[H]ni) for all i

using Theorem 3.1.2 as follows:

Ei := Fq[H]e02Fi.

Note that any member Ei of the family E := (E1, E2, . . .) of H-QA codes has param-

eters (p2ni, ki,≥ ddi), where d is the minimum distance of the fixed abelian code

Fq[H]e0 of length p2. Hence, the relative parameters of Ei’s also have positive limit,

namely 1/p2 multiple of the limit relative rate of F and at least d/p2 multiple of

the limit relative distance of F .
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We can extend the preceding asymptotic conclusion to the LCD class over any

finite field. Let us note that the decomposition of the dual of a QA code is given in

[24]. Based on this, a characterization of self-dual QA codes is obtained in terms

of the constituents of the code ([24, Corollary 4.1]). The analogous result for QA

LCD codes can be obtained in a straightforward way, so we do not prove it. One

can consult [22, Theorem 3.1] for the special case of LCD QC codes.

Theorem 3.2.2. For any prime power q, the class of strictly QA LCD codes over

Fq is asymptotically good.

Proof. Let H be as in the proof of Theorem 3.2.1 and choose F to be an asymp-

totically good family of LCD codes this time. Such codes exist by [31] and [32].

Consider the family E of strictly QA codes as in the same proof. The fact that

this family is asymptotically good follows as above. For any i ≥ 1, the code Ei has

unique nonzero constituent (namely, Fi) which is LCD by construction. All other

constituents of Ei are {0}, which is trivially LCD with respect to the Euclidean

inner product. Hence, by the dual QA code description [24, p. 519], and the dis-

cussion preceding this theorem, each Ei is LCD. Therefore E is an asymptotically

good family of strictly QA LCD codes.

We note that the codes presented in Theorems 3.2.1 and 3.2.2 resemble the

asymptotically good QC codes presented in [28], since the “co-index” (i.e. length/index)

of each code in the families considered is fixed (unlike the asymptotically good fam-

ily presented in [24, 25]).
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Chapter 4

Linear Complementary Pair of

Codes

A concatenated construction for LCD codes was given by Carlet et al. using

a special type of inner codes called isometry codes ([8]). The construction in [8]

extends the earlier concatenated LCD code constructions in [6, 22], where the

inner codes in consideration are poor from minimum distance perspective. Here,

we extend the concatenated construction to linear complementary pair (LCP) of

codes. Hence we develop a method to construct LCP of codes over small finite

fields from LCP of codes over extension fields. The work in this chapter comes

from [20].

Recall that a pair of linear codes (C,D) of length n over Fq is called an LCP

of codes if C ⊕ D = Fnq . As mentioned in the Introduction, the security parameter

is defined as min{d(C), d(D⊥)} due to their applications in cryptography. Here,

the dual of a linear code is considered with respect to Euclidean inner product.

The special case of D = C⊥ amounts to LCD codes, where the security parameter

simply becomes d(C).

4.1 Concatenation for LCP of codes

We continue with the notation and definitions in Section 1.4, in particular about

the maps π and π′. For this purpose, we find it useful to remind these notations

again.

Let β = {e0, . . . , ek−1} be a basis for Fqk over Fq, and let β′ = {e′1, . . . , e′k}
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be its dual basis. Let (C,D) be an LCP of codes in FN
qk

(i.e. C ∩ D = {0} and

C ⊕ D = FN
qk

), with the security parameter min{d(C), d(D⊥)}. We concatenate C
with the (inner) code A, which is generated by the image set {π(e1), . . . , π(ek)} of

β under a linear injection π : Fqk 7→ Fnq . We also concatenate D⊥ with A′ , which

is generated by the image set {π′(e′1), . . . , π
′
(e
′

k)}, where π
′

: Fqk 7→ Fnq is a map

satisfying

π(ei).π
′(e′j) = δij,

where δij denotes the Kronecker delta.

Theorem 4.1.1. Let (C,D) be an LCP of codes in FN
qk

and let A = im(π),A′ =

im(π′), which are Fq-linear codes of length n and dimension k. Then (π(C), π′(D⊥)⊥) =

(A2C, (A′2D⊥)⊥) is an LCP of codes of length nN over Fq with the security pa-

rameter

dsec = min{d(π(C)), d(π′(D⊥))} ≥ min{d(A)d(C), d(A′)d(D⊥)}.

Proof. Let K1 and K2 denote the dimensions of C and D over Fqk , respectively.

Since these codes are complementary, we haveK1+K2 = N and hence dimF
qk

(D⊥) =

N −K2 = K1. Therefore, π(C) and π′(D⊥) are both [nN, kK1] codes over Fq and

we have

dimFq(π(C)) + dimFq(π
′(D⊥)⊥) = kK1 + (nN − kK1) = nN.

Hence, it remains to show that π(C) and π′(D⊥)⊥ intersect trivially.

Now, assume that there exists a codeword π(c) ∈ π(C)∩π′(D⊥)⊥, where c ∈ C.
By Theorem 1.4.3, we have

π′(D⊥)⊥ = (A′⊥ × · · · × A′⊥)⊕ π(D).

So, there exists a′ ∈ (A′⊥)N and d ∈ D such that

π(c) = a′ + π(d).

By linearity of π, we have π(c − d) = a′. Note that the left hand side is in AN

whereas the right hand side belongs to (A′⊥)N . However, A∩A′⊥ = {0} by Lemma
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1.4.4. Hence, a′ = 0, and by injectivity of π, this implies c = d. Therefore C lies

in C ∩ D, which implies that c = 0.

The lower bound on dsec follows from the lower bound on the minimum distances

of the two concatenated codes π(C) and π′(D⊥) (cf. Section 1.2).

Remark 4.1.2. If D = C⊥ and the concatenation map π′ can be chosen equal

to π, then Theorem 3.1 in [8] becomes a special case of Theorem 4.1.1, and one

obtains an LCD code π(C). Isometry maps and inner codes are introduced in [8],

which guarantee π = π′. As noted in [8], an isometry code need not exist for any

q, k and n.

4.2 Generalized Concatenation for LCP of codes

In this section, we extend the concatenated description for LCP of codes in

Section 4.1, using the dual code description for GC codes in Section 1.4. Namely,

starting with more than one LCP of codes over extension fields, we will obtain an

LCP of codes over the base field. For simplicity, as in the case of dual description for

GC codes, we will present the construction for two different pairs of complementary

codes but our result holds for more pair of complementary codes.

We let (C1,D1) be an LCP of codes of length N over Fqk1 and (C2,D2) be an

LCP of codes of length N over Fqk2 . If we let dimF
qki
Ci = Ki (for i = 1, 2), then

it is clear that dimF
qki
Di = N −Ki.

Consider the codes C and D over Fqk1 × Fqk2 as in Definition 1.2.1, where the

rows of C come from C1, C2 and the rows of D come from D1,D2. Define D̄ as in

(1.4.6) to be the code whose rows come from D⊥1 and D⊥2 . Let the bases and the

dual bases of Fqk1 and Fqk2 and the Fq-linear injections π and π′ be as in Section

1.4. Recall that the images of π and π′, denoted by A and A′ respectively, are Fq-

linear codes with parameters [n, k1 + k2]. Moreover, the subcodes of A and A′ are

defined as A1 = π(Fqk1 , 0), A2 = π(0,Fqk2 ), A′1 = π′(Fqk1 , 0) and A′2 = π′(0,Fqk2 ).

The following result generalizes Theorem 4.1.1.

Theorem 4.2.1. Let (Ci,Di) be an LCP of codes in FN
qki

for i = 1, 2. Then

(π(C), (π′(D̄))⊥) is an LCP of codes of length nN over Fq.

Proof. If dimFkiq
Ci = Ki, then dimFkiq

Di = N − Ki for i = 1, 2. By Proposition
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1.2.2, we have

dimFq(π(C)) = k1K1 + k2K2 and dimFq(π
′(D̄)⊥) = nN − (k1K1 + k2K2),

where both of the codes π(C) and π′(D̄)⊥ lie in FnNq . Hence it is enough to show

that these codes intersect trivially.

Let c ∈ C be such that π(c) is an element in the intersection π(C) ∩ π′(D̄)⊥.

By Theorem 1.4.5, we have

π′(D̄))⊥ = E ⊕ π(D),

where E = (A′⊥)N . So, there exists a′ ∈ (A′⊥)N and d ∈ D such that

π(c) = a′ + π(d).

By linearity of π, we have π(c − d) = a′, where the left hand side is in AN and

the right hand side is in (A′⊥)N . Hence, by Lemma 1.4.4, we have π(c − d) = 0

and by injectivity of π, this implies that c = d. Then the first row of C belongs to

C1 ∩ D1 and the second row belongs to C2 ∩ D2. Since (Ci,Di) is an LCP of codes

(for i = 1, 2), we have c = 0 and this concludes the proof.

4.3 Numerical Results

We present some numerical results, obtained using Magma ([4]), based on

Proposition 1.4.1, Theorem 4, and Theorem 4.2.1.

The first two examples are based on the simple concatenated construction pre-

sented in Section 4.1.

Let F4 = F2(α) be a degree 2 extension field over the binary field, where α

is a root of the irreducible polynomial x2 + x + 1 over F2. Let β = {1, α} be a

basis of F4 and β
′

= {α2, 1} be its dual basis. In the following examples, we start

with LCP of codes (C,D) over F4, concatenate C with an inner code A from the

class of Cordaro-Wagner Codes ([11]), and concatenate D⊥ with an inner code A′,
which is suitably chosen to guarantee that the resulting concatenated codes are

complementary over F2 (cf. Proposition 1.4.1 and Theorem 4).
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Example 4.3.1. Consider LCP of codes (C,D) in F3
4 with respective generator

matrices

GC =

1 0 α

0 α α

 and GD =
[
1 1 1

]
.

Choose the inner code A as the image of the map π : F4 → F3
2 such that π(1) =

(1, 0, 1) and π(α) = (0, 1, 1). By Proposition 1.4.1, there exists π′ which maps the

elements of the dual basis {α2, 1} to (1, 0, 1) and (0, 1, 1), respectively. Note that

π′ = π, hence it is an isometry map as introduced in [8]. Then, by Theorem 4, the

concatenated codes π(C) = A2C, of dimension 4, and (π(D⊥))⊥ yields a pair of

binary complementary dual codes. Here, the security parameter is greater than or

equal to min{d(A)d(C), d(A′)d(D⊥))} = 4. This is also the best known minimum

distance of a linear code of length 9, and dimension 4. Let us note that an LCD

code with parameters [9, 4, 3] is obtained in Table 2 of [13], and an LCP of codes

with parameters [9, 3, 4] is obtained in Table 1 of [7].

Example 4.3.2. Consider LCP of codes (C,D) in F2
4 with respective generator

matrices

GC =
[
1 α

]
and GD =

[
1 1

]
.

Choose the inner code A as the image of π : F4 → F8
2, which maps {1, α} to the

vectors

{(1, 1, 1, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1, 1, 1)}

(cf. [11]). By Proposition 1.4.1, there exists π′, which maps the elements of the dual

basis {α2, 1} to (0, 1, 1, 1, 0, 1, 1, 1), (1, 0, 1, 1, 1, 0, 0, 1), respectively. Here, π′ 6= π

and hence π′ differs from an isometry map as introduced in [8]. By Theorem 4,

the concatenated codes π(C) = A2C, of dimension 2, and (π(D⊥))⊥ = (A′2D⊥)⊥

yields a binary complementary pair of codes. The security parameter is bounded

from below by min{d(A)d(C), d(A′)d(D⊥))} = 10. This is also the best known

minimum distance of a linear code of length 16, and dimension 2. Note that Table

2 in [13] has an LCD code with parameters [16, 2,≥ 6].

In a similar way, we can construct binary LCP of codes (π(C), (π′(D⊥))⊥), with

the guaranteed security parameters:

• 9, where π(C) has parameters [14, 2, 9], and note that [14, 2, 7] is obtained in

Table 2 of [13],
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• 6, where π(C) has parameters [15, 4, 6], and note that [15, 4, 5] is obtained in

Table 2 of [13],

• 9, where π(C) has parameters [15, 2, 9], and note that [15, 2, 7] is obtained in

Table 2 of [13].

Next, we give an example of constructing LCP of codes in a generalized con-

catenated setting.

Let F16 = F2(α) be a degree 4 extension field over the binary field, where α is

a root of the irreducible polynomial x4 + x + 1 over F2. Let β = {1, α, α2, α3} be

a basis of F16 and β
′
= {α14, α2, α, 1} be its dual basis. In the following examples,

we start with LCP of codes (C1,D1) over F2, and (C2,D2) over F16, concatenate

C :=

c =

 c11 c12

c21 c22

 : (ci1, c
i
2) ∈ Ci for i = 1, 2

 , (4.3.1)

with an inner code A := A1 ⊕A2 with parameters [10, 5, 4], and concatenate

D̄ :=

d =

 d11 d12

d21 d22

 : (di1, d
i
2) ∈ D⊥i for i = 1, 2

 , (4.3.2)

with an inner code A′ := A′1 ⊕ A
′
2, which is suitably chosen to guarantee that

the resulting concatenated codes are complementary over F2 (cf. Section 1.4 and

Theorem 4.2.1).

Example 4.3.3. Consider LCP of codes (C1,D1) in F2
2, and (C2,D2) in F2

16, which

have generator matrices

GC1 =

1 0

0 1

 , GD1 =
[
0 0

]
, GC2 =

[
1 α

]
, and GD2 =

[
1 1

]
,

respectively.

By the settings (4.3.1) and (4.3.2), consider (C, D̄) in (F2 × F16)
2. Choose the

inner code A as the image of π : F2 × F16 → F10
2 , which maps the elements of

{(1, 0), (0, 1), (0, α), (0, α2), (0, α3)}
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to the corresponding rows of the matrix

GA =



1 1 1 1 1 1 1 1 0 0

0 1 0 1 0 1 0 1 0 0

0 0 1 1 0 0 0 0 1 1

0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 1 1 1


.

By Proposition 1.4.1, there exists π′, which maps the elements of

β
′
= {(1, 0), (0, α14), (0, α2), (0, α), (0, 1)}

to the corresponding rows of

GA′ =



1 0 1 1 1 1 0 0 1 1

0 1 1 0 1 0 1 0 1 0

0 0 1 1 1 0 0 1 0 1

0 0 0 1 1 1 1 0 1 0

0 1 1 1 1 1 0 1 1 1


.

Here, π′ 6= π and hence π′ differs from an isometry map as introduced in [8]. By

Theorem 4.2.1, the concatenated codes π(C) = A12C1 ⊕ A22C2, of dimension 6,

and (π(D̄))⊥ = (A′12D⊥1 ⊕A
′
22D⊥2 )⊥ yields a binary complementary pair of codes.

The security parameter is bounded from below by

min{d(A1)d(C1), d(A1 ⊕A2)d(C2), d(A′1)d(D⊥1 ), d(A′1 ⊕A
′

2)d(D⊥2 )} = 6.

Note that Table 2 in [13] has an LCD code with parameters [20, 5,≥ 6].

In a similar way, we can construct binary LCP of codes (π(C), (π′(D̄))⊥) with

the guaranteed security parameters:

• 6, where π(C) has parameters [15, 5, 6], and note that [14, 2, 7] is obtained in

Table 2 of [13],

• 5, where π(C) has parameters [15, 6, 4], and note that [15, 4, 4] is obtained in

Table 2 of [13],
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• 5, where π(C) has parameters [12, 5, 4], and note that [12, 4, 4] is obtained in

Table 2 of [13].
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[21] C. Güneri, B. Özkaya, “Multidimensional quasi-cyclic and convolutional

codes”, IEEE Trans. Inform. Theory, vol. 62, 6772-6785, 2016.
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