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Abstract

In this thesis, we analyze existence of solutions for inextensible string equations. In

particular, we have results in two directions.

On one hand, we find explicit traveling wave solutions for a system of hyperbolic

conservation laws resulting from inextensible string equations via suitable change of

variables. Then, we relate this solution with entropy and shock-wave solutions for

which an established theory already exists.

On the other hand, we consider the problem with periodic boundary conditions and

show local existence of solutions using well-studied results related to the wave equation.



Uzamayan Sicim Denklemlerine Ait Çözümlerin Varlığı Üzerine

Ayk Telciyan

Matematik, Yüksek Lisans Tezi, 2018

Tez Danışmanı: Dr. Öğr. Üyesi Yasemin Şengül Tezel

Anahtar Kelimeler: uzamayan sicim, hiperbolik korunum yasası, gezen dalgalar,

periyodik sınır değerleri, sonuçların varlığı

Özet

Bu tezde uzamayan sicim denklemlerinin çözümlerinin varlığı analiz edilmektedir.

Daha özel olarak, iki doğrultuda sonuçlar elde edilmektedir.

Öncelikle, uygun değişken değişimleri yaparak uzamayan sicim denklemlerinden

elde edilen hiperbolik korunum yasası sistemleri için belirtik gezen dalga çözümleri

bulunmaktadır. Daha sonra, bu çözümler varolan teoremler kullanarak entropi ve şok

dalgası çözümleriyle ilişkilendirilmektedir.

Diğer yandan, problem periyodik sınır koşulları altında ele alınmakta ve dalga den-

klemleri hakkında bilinen sonuçlar kullanarak çözümlerin yerel varlığı gösterilmektedir.
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CHAPTER 1

Introduction

1.1. Governing Equations

This is a study about the existence of solutions of inextensible string equation. The

motion of the string is governed by the following di↵erential system;
8
<

:
⌘tt(t, s) = (�(t, s)⌘s(t, s))s + g, s 2 R

|⌘s| = 1.
(1.1)

We have the constraint |⌘s| = 1 coming from inextensibility of the string. In system

(1.1), ⌘ 2 R3 is the unknown position vector for the material point s at time t, g is the

gravity constant (we will ignore it when it is convenient) and � is the unknown scalar

multiplier presented in the equation as tension satisfying

�ss(t, s)� |⌘ss(t, s)|2�(t, s) + |⌘st(t, s)|2 = 0 (1.2)

(see Section 2.2 for the derivation of (1.2) from (1.1)). We are given initial positions

and velocities of the string as

⌘(0, s) = ↵(s) and ⌘t(0, s) = �(s). (1.3)

System (1.1) with (1.2) is the model of the motion done by a homogeneous, inextensible

string with unit length.

There are several types of boundary conditions:

1. Two fixed ends: This is the most primitive case of the problem, which can be

considered as the easiest case:

⌘(t, 0) = ↵(0) and ⌘(t, 1) = ↵(1) (1.4)

2. Two free ends: This case can be seen as a sub-case of periodic boundary condi-

tions. The di�culty of this case is that, since � takes the value 0 for some t, it will

be di�cult for us to modify the system and having the hyperbolic conservation

law. See Section 2.3 to understand the di�culty.

�(t, 0) = �(t, 1) = 0. (1.5)
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3. Periodic boundary conditions: This is the case that we will discuss in Chapter

4. One has to be careful about periodic boundary conditions. It is very easy to

confuse that our solutions (�, ⌘) are periodic functions, but we are not interested

periodic functions, periodic boundary conditions in 2-dimensions means a punc-

tual equality in each boundary. This case can be thought as a general case, for

instance it includes two free end case when �(t, 0) = �(t, 1) = 0:

⌘(t, s) = ⌘(t, s+ 1) and �(t, s) = �(t, s+ 1). (1.6)

4. Whip boundary conditions (one end is free and one end is fixed): This is the

most di�cult case to study because there is a certain discontinuity and we do

not have any information about derivatives of functions. Although, it is di�cult,

we see most examples of this condition in nature as bull whip, pendulum etc.:

�(t, 0) = 0 and ⌘(t, 1) = 0. (1.7)

Figure 1.1: Two di↵erent cases of whip boundary conditions from Conway [1]

In Figure (1.1), (A) can be thought as periodic whip boundary conditions if the woman

is doing the shown action repeatedly and equally and (B) is a regular action of whip

boundary conditions, we see that one end is fixed by the hand of the man and the

other one is moving.

Taking s = 0 domain [s, s + 1] becomes [0, 1]. If we need to explain this better; as

we said one must be careful with boundary conditions and specially with periodic

boundary conditions, our solutions are repeating them in each boundary, we are not

interested what is happening in (s, s+1) interval. Taking s = 0, only important values

for us become �(t, 0), �(t, 0), ⌘(t, 1) and ⌘(t, 1), since in each period they are equal,

these are enough for us to use. Our integral that will be used in analysis is actuallyR s+1

s F (t, s)ds, for the reasoning, we take s = 0 and we will use
R 1

0 F (t, s)ds. In this

thesis, we use subscript for derivatives (i.e. ux = du
dx), C is a generic positive constant,
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unless it is mentioned. The scalar product of two functions is given by �µ and |�| is
the Euclidean norm

p
��, here �, µ 2 R3.

This thesis is consist of five chapters. In the remaining part of the first chapter, we

give a long literature review about tools that we use throughout and then give some

preliminary information. In Chapter 2, we set the problem, show conservation of energy

and mention non-negativity of tension. To understand our modifications better Section

2.3 is very important where we obtain a new system from our system by change of

variables. In Chapter 3, we find explicit traveling wave solution of modified system and

we compare notions of solutions by passing to the limits in the parameters. In Chapter

4, we look for weak solutions to our equation with periodic boundary conditions, give

some bounds for strong solutions which may be useful for future research and then we

find some bounds for a modified system. Finally we show that under the condition of

positivity of tension, our equation becomes linear wave equation with time dependent

coe�cient and then we state a result of existence of solution. Lastly, in Chapter 5 we

mention our work briefly and speak o↵ possible future research.

1.2. Literature Review

The analysis of the dynamics of inextensible string with di↵erent boundary conditions

is one of the oldest applications of calculus. Due to its complexity, we still do not

have proper results about its well-posedness. The first studies go back time of Galileo,

Leibniz and Bernoulli. This problem with periodic boundary condition has never been

studied before. One of the earliest successes in the calculus of variations was the

demonstration that the inextensible string, hanging under gravity, would have the

shape of a catenary (cf. [2]).

The most recent study on this topic is done by Y. Şengül and D. Vorotnikov [3]

in 2016. They obtain a hyperbolic conservation law with discontinuous flux and the

total variation wave equation, after some transformations which are admissible for all

boundary conditions. Then, they work on a similar system which is not discontinuous.

When they pass to the limit in this new system, they had to work on Young measures.

The assumption of non-negativity of tension is crucial in [3]. After showing that defined

energy is conserved, the principal of least action is used. They prove existence of

generalized Young measure solutions. Moreover, details for the non-negativity of the

tension for strong solutions is discussed.

In [4], Johnson deals with system of pendulum with a point mass attached vertically

to the plane and he wants to find a condition to obtain a nontrivial periodic solution for

the system of pendulum. His solution represents the angle between the local tangent

vector to the string and downward vertical at a point and time. Another person who

has periodicity in his results is Veiga [5], but he is interested in time periodic solutions

to the nonlinear wave equation with ⌘(t, 0) = ⌘(t, 1) = 1 as boundary conditions. He
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wants to develop Greenberg’s results in [6]. Where, the author works with a special

form of � and shows that there are some time periodic solutions under some constraints.

Veiga assumes R as even functions of class C
1(] � b, b[) \ C

3(] � b, b[�{0}) for some

b > 0 and shows the existence of time periodic solutions, where R is used in the special

choice of �(�) = |�|m�1
�(1 + R(�)), here m > 1 but m is chosen as 3 for physical

meaning.

It is very common approach to studies of strings using chains, which is very thin

material that is inextensible but completely flexible. Preston studies in [7] the motion of

inextensible string with whip boundary conditions in the absence of gravity. He proves

local existence and uniqueness in a weighted Sobolev space defined for the energy.

In addition, he shows persistence of smooth solutions with a restriction. According

to [7], V. Yudovich was interested in this problem and obtained some unpublished

results. Preston in another article [8] studies the geometric aspects of the space of

arcs parameterized by unit speed in the L
2-metric. He proves that the space of arcs

is a submanifold of the space of all curves and the orthogonal projection exists but

is not smooth, and as a consequence he gets a Riemannian exponential map that is

continuous and even di↵erentiable but not C1.

Reeken approaches to the problem with chains in several articles [9–11]. In [9], he

explains the di�culties of string equation without giving information about solutions,

and mentions the situation for a non-positive tension and comments on possible solu-

tions of the system. In [10, 11], Reeken uses whip boundary conditions for a classical

solution, his results are for infinite string in R3 . He proves local existence and unique-

ness for initial data su�ciently close in H
26 to the vertical solution (cf. [7]). Reeken’s

results are the only existence results for the string equation.

Preston and Saxton in [12] study geodesics of the H
1 Riemannian metric on the

space of inextensible curves. This article is divided in two part; geometric analysis and

analytical analysis. They use the results in [8] to show the geodesic equation is C1 in

a Banach topology which implies that there is a smooth Riemannian exponential map.

In addition, they give global-in-time solutions for a special case. They have an extra

term in their partial di↵erential equation, �↵
2
⌘ttss, and they work in the absence of

gravity. The extra term changes the equation that tension satisfies. They give some

informations for di↵erent values of ↵.

Another popular problem is the uniformly rotating inextensible string. Dickey [13]

studies the two dimensional dynamic behavior of a geometrically exact inextensible

string. He describes a variety of exact solutions and various asymptotic theories. Also,

he mentions the similarities between the motion of the inextensible string and galactic

motion, combines some theorems from mathematics with astrophysics. Kolodner [14]

considers the rotations of a heavy string with one free endpoint. He shows that accord-

ing to the more accurate non-linear theory, a string can rotate at any velocity and there

are n distinct modes of rotation for an n dimensional system. Luning and Perry [15]
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construct two Picard-type iterative schemes and the sequences generated are proved to

converge to a positive solution of that nonlinear boundary value problem. Also, they

notice that iterative scheme can be used to solve the inverse problem of determining

the angular velocity of the rotating string.

McMillen and Goriely in [16], studied one of the most interesting phenomena of

whips. They have seen whips as unique objects due to the crack that they may pro-

duce. It is explained why this crack is a sonic bomb. Since it is an article regarding

to an observation rather than pure mathematical analysis, they have added di↵erent

parameters as the material of whip, the radius of whip etc.. In [16], we see wave type

approaches to whips, they show by asymptotic analysis that a wave traveling along

the whip increases its speed as the radius decreases. Also, there is a numerical scheme

to support their experimental and mathematical results. They use the whip boundary

conditions, and they give importance to the movement of the hand that moves the

string, we see the di↵erent cases in Figure (1.2). In this paper, the angle is a variable,

that has significant importance in equation, in Figure (1.2) (A), (B), (C) and (D) shows

us di↵erent angles for the same action, which change their numerical results, but in

view of analysis of mathematics they are similar.

Figure 1.2: Di↵erent movements of the string for same case from Conway [1]

Some examples of applications of string equations can be mentioned as follows:

Bernstein, Hall and Trent give an example of application of inextensible string equation

with whip boundary condition in [17]. They study the production process of a crack

produced by the tip of the whip which has higher speed than sound’s and produces

shock waves. Also, they discuss the speed di↵erences of free end and fixed end and

their mathematical structure. They give a mathematical solution assuming that a

discontinuity in tension propagates down the whip. They use significant help from the

photo cameras of their time, and their article contains many photos of the bull whip

movement. Hanna and Santangelo [18] consider planar dynamics under the restriction

that the spatially-dependent stress profile in the string is time independent, which

results in a conservation law form for the string equation. They find an exact solution
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whose range of validity is time-dependent, limited to a distance function depending only

on t from the free end, but combining the exact solution for the rest of the distance

gives an error. Hanna and Santangelo [19] give a model for the growing structure

including the amplification, change, and advection of slack in the presence of a steady

stress field, validate their assumptions with numerical experiments. In [20], Serre gives

a relaxed model for inextensible strings, he discusses two possible approaches to the

problem; the relax constraint and the chain as the limit of a sti↵ elastic string. He

says that both shows a concentration phenomena either tension in time or energy in

space. Further examples in physics literature can be read in [21] by Wong and Yasui,

and in [22] by McMillen, which are good surveys.

We would like to give some references from a crucial tool for us which is hyperbolic

systems of conservation law. We believe that these references would be useful for future

researchers. Constantine Dafermos has written one of the most important book [23]

about hyperbolic conservation laws. In [23], he shows di↵erent hyperbolic systems and

he gives many di↵erent approaches to possible problems. This book is also very nice

from the point of view of physicists because he explains each problem by their physical

meaning. Another nice book is by Alberto Bressan [24]. He focuses on the one-

dimensional Cauchy problem. He explains each possible way to approach to di↵erent

kind of problems and he gives examples which make everything more understandable.

Freistühler [25] gives existence, uniqueness and stability results for conservation

law system which is ut + (u�(|u|))x = 0 where t is time, x is spatial variable,

u : R2
+ := R ⇥ [0,1) ! Rn is vector-valued solution of this system. Here n � 2

which is the dimension of the system. He uses Wagner’s results in [26] to show the ex-

istence. Freistühler gives slightly more general existence result than Lui and Wang [27].

They have a similar system with �|u| = 1. They show the existence of the solution

to the system by using random of choice method. In both articles polar coordinates

are used and also relation between the system, entropy solutions and shock waves are

used.

In [28], Freistühler and Plaza study the system of equations

Ut �rxV = 0

Vt � divx�(U) = 0

with curlxU = 0 where t is non-negative, x is d-dimensional spatial variable, U is local

deformation gradient, V is local velocity and �(U) is stress. This paper considers an

ideal non-thermal elastic medium described by a stored-energy function W . The article

provides a normal modes determinant that characterizes the local-in-time linear and

nonlinear stability of such patterns. It is studied specially the case that W has two

local minimizers UA, UB which can coexist via a static planar phase boundary.

Di Perna in [29] studies the 2-dimensional system

Ut + F (U)x = 0

6



where U and F are smooth nonlinear mapping from R2 to R2. He follows the article [30]

of Lax and he gives the admissibility condition on solution. He needs to define and work

with entropy tools because he knows that weak solutions are not uniquely determined

by their initial data. In this article, he uses some results of Glimm from [31] that

Cauchy problem with arbitrary initial data have small total variation, this allows him

to use approximating methods to construct solutions. He approaches to the problem as

the limit of a sequence of piecewise constant approximating solutions. Each vector-field

of these approximations are exact weak solutions but they are approximating solution

in the sense that entropy condition is only satisfied modulo an error term.

In [32], Takaaki Nishida studies the system

vt � ux = 0

ut �
⇣
a

v

⌘

x
= 0

where a is a non-negative constant. This is the equation of gas dynamics, u is the

speed of gas and v is the specific volume. Nishida shows the global existence of the

weak solution for the Cauchy problem using modified Glimm’s di↵erence scheme [31].

According to Nishida’s theorem, the L1 norm of these weak solutions may increase un-

boundedly with time. After that Bakhavalov in [33] extends these results, he identified

a class of 2⇥ 2 systems

Ut + F (U)x = 0

with U = U(u1, u2) and F (U) = F (f1(U), f2(U)). Frid [34] knowing these results, has

studied a similiar system and he has shown the existence of a global periodic entropy

solution of his system

vt � ux = 0

ut � p(v)x = 0

where p is a smooth function and satisfying some conditions. He has shown also that

existing solution belongs to class L1 \ BVloc(R ⇥ R+). He uses Glimm’s scheme [31]

to obtain this result.

1.3. Preliminaries

1.3.1. Sobolev Spaces

In this chapter, we give some well-known definitions and theorems. This chapter is

mostly taken from [35], unless it is mentioned.
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Definition 1.3.1 Let f : U ! Rn be a continuous function. It is called locally Lips-

chitz if for each x0 2 U , there exist constants M > 0 and � > 0 such that |x� x0| < �

|f(x)� f(x0)|  M |x� x0|.

The set of Lipschitz continuous functions is denoted by Lip(U ;Rn), where U ⇢ Rn.

L
p spaces are crucial for us, here we give its definition.

Definition 1.3.2 For domain U ⇢ Rn, the function space L
p(U) is defined as

L
p(U) =

⇢
f : U ! R

��
Z

U

|f(x)|pdx < 1
�
.

Now, we give one of the most important property of Lp spaces.

Lemma 1.3.1 L
p(U) is a Banach space with this norm ||f ||pp =

R
U |f(x)|pdx.

We need the following definition to be able to define Sobolev spaces.

Definition 1.3.3 Let f, F 2 L
p(U) and ↵ be the multi-index. We say that f is the

↵
th weak derivative of F if it satisfies

Z
FD

↵
�dx = (�1)|↵|

Z
f�dx, 8� 2 C

1
0 (U)

where C1
0 (U) is the space of infinitely-di↵erentiable functions that are identically 0 out-

side a compact subset of U . In this case, we denote f by F
(↵). Here,

↵ = (↵1,↵2, ...,↵n) 2 Nn,|↵| = ⌃n
i=1↵i and D

↵ = @
↵1
x1
@
↵2
x2
...@

↵n
xn
.

Here is the definition of the Sobolev space;

Definition 1.3.4 The Sobolev space of index (k, p) is

W
k,p(U) = {f (↵) 2 L

p(U)
��|↵|  k} where f

(↵) denotes the ↵
th weak derivative of

f .

Following theorem is well-known and very useful for our analysis.

Theorem 1.3.2 The Sobolev space W
k,p(U) is a Banach space with this norm

||f ||pWk,p(U) =
X

|↵|k

||f (↵)||pLp(u).

1.3.2. Hyperbolic Conservation Laws

This section contains some definitions about hyperbolic conservation laws, which is the

most important tool for us, this chapter is taken from [24]

8



Definition 1.3.5 A conservation law in one dimension is a first-order di↵erential

equation of the form

Ut + F (U)x = 0. (1.8)

Here U is the conserved quantity while F is the flux, x is the spatial variable and t is

the time variable.

Since the solution to (1.8) is di�cult to find, we define the weak derivative as follows;

Definition 1.3.6 The weak solution U of (1.8) satisfies

Z Z
{U�t + F (U)�x}dxdt = 0. (1.9)

Here � is the test function (i.e � 2 C
1
0 (R)). The equation (1.8) is the way to represent

the n⇥ n system of conservation law of the form
8
>>>>><

>>>>>:

(U1)t + (F1(U1, U2, ..., Un))x = 0

...

(Un)t + (Fn(U1, U2, ..., Un))x = 0

(1.10)

The following definition will lead us to make modification and to study with a similar

system that has this property.

Definition 1.3.7 If A(U) = DF (U) is the n⇥n Jacobian matrix of the map F at the

point U , the system can be written in the quasilinear form

Ut + A(U)Ux = 0, (1.11)

this form is also called non-divergent form. We say that this system is strictly hyperbolic

if every matrix A(U) has n real, distinct eigenvalues, say �1(U) < �2(U) < ... < �n(U).

9



CHAPTER 2

Setting of the Problem

In this chapter, we give important tools for our problem. The calculations done in this

chapter are used on the analysis of existence of solutions.

2.1. Energy Conservation

Now, we show that energy does not change by time for strong solutions, this has led

us to use conservation laws.

Proposition 2.1.1 ( Proposition 2.5 [3]) Let (⌘, �) be a regular solution of (1.1)

with each boundary condition. Then the total energy does not change by time, further-

more it is also conserved in absence of gravity.

Proof : Firstly, let us define kinetic energy and potential energy as

K(t) =:
1

2

Z 1

0

|⌘t|2ds and P (t) =: �
Z 1

0

g⌘ds.

Using equation (1.1) and defining the total energy as E(t) = K(t) + P (t) we have

dE(t)

dt
=

d(K(t) + P (t))

dt

=

Z 1

0

⌘t⌘tt � g⌘tds =

Z 1

0

⌘t(⌘tt � g)ds =

Z 1

0

⌘t(�⌘s)sds

Now using |⌘s|2 = 1 ,which implies that ⌘s⌘st = 0, and using integration by parts on

the right-hand side, we are left with

dE(t)

dt
= �⌘s⌘t

���
s=1

s=0
�
Z 1

0

�⌘s⌘tsds = �(t, 1)⌘s(t, 1)⌘t(t, 1)� �(t, 0)⌘s(t, 0)⌘t(t, 0).

We see that these terms vanish using chosen boundary conditions, which means that

there is no change in energy by time.

Also, we can show that energy is conserved in the absence of gravity (i.e. g = 0). For

this, multiply (1.1) by ⌘t and take the integral with respect to the spatial variable to

obtain Z 1

0

⌘tt⌘tds =

Z 1

0

⌘t(⌘s�)sds

10



We see that the term on the left-hand side can be written as time derivative of a

function and we use integration by parts on right-hand side to get

d

dt

Z 1

0

|⌘t|2

2
ds = ⌘t⌘s�

���
s=1

s=0
�
Z 1

0

⌘st⌘s�ds.

The right hand side of this equality is 0; since the first term vanishes due to boundary

conditions and the second term is 0 by ⌘st⌘s = 0. So,

d

dt
E(t) =

d

dt
K(t) = 0.

This means that energy does not change by time also in the case of absence of gravity.

2

2.2. Non-negativity of Tension

We write the derivatives of the constraint |⌘s|2 = 1 as

• d|⌘s|2

ds
=

d

ds
1 ) ⌘ss⌘s = 0 (2.1)

• d
2|⌘s|2

dt2
=

d
2

dt2
1 ) ⌘st⌘st + ⌘s⌘stt = 0 (2.2)

Now, multiplying (1.1) by ⌘s and using (2.1), we get

⌘s⌘tt = �s + ⌘sg (2.3)

Di↵erentiating (2.3) with respect to the spatial variable and then combining it with

(2.2), we obtain

�ss � (⌘tt � g)⌘ss + |⌘st|2 = 0.

Using the fact that ⌘tt � g = ⌘s�s + ⌘ss�, we find the equation of tension as

�ss(t, s)� |⌘ss(t, s)|2�(t, s) + |⌘st(t, s)|2 = 0.

Now, we will give the non-negativity of �. This fact is very important for our analysis.

Proposition 2.2.2 ( Proposition 2.4 [3]) Let (⌘, �) be regular solution of (1.1) and

(1.2) . For all boundary conditions � � 0 for all t.

2.3. Obtaining a Conservation Law

In this chapter, we transform our partial di↵erential equation into a system of two

equations. Hereafter in this thesis, we take g = 0. We start by putting  := �⌘s, then

11



using non-negativity of � that we obtained in previous section, we write � = || and
⌘s =


|| . Now, our system (1.1) is in this form;

8
>><

>>:

⌘tt = s

⌘s =


|| .

We do another change of variables by putting � := ⌘t and our syste becomes the

following 8
>><

>>:

�t = s

�s =

 


||

!

t

.

(2.4)

This system (2.4) is mentioned and studied implicitly by Dafermos in [23]. We see that

in Chapter 7.1, Dafermos gives many types of hyperbolic conservation laws, and (2.4)

is similar to the Equation 7.1.14 in indicated chapter. As, we do in Chapter 3 and 4,

one must swap the spatial and the time variables to able to obtain general system of

conservation law (1.8).

We will use system (2.4), in our analysis for traveling waves and existence of weak

solutions with periodic boundary conditions. Since we want to use the theory of hy-

perbolic conservation laws, we will swap our time and spatial variable. Once we have

such a system in form of

�t + F (�)s = 0,

where � = (, �) is our solution, we will modify the system to have a hyperbolic

conservation law. Here F is a 2 ⇥ 2 matrix. Swapping s and t, and writing F in

non-divergence form (i.e. F (�)x = B(�)�x where B is 2⇥ 2 matrix), we have

�t +B(�)�s = 0

with

B =

0

@ 0 �1

p
0() 0

1

A .

Notice that it is not easy to deal with p()s =

 


||

!

s

, since its derivative may not

exist. We will do some modifications in following chapters and we will explain again

why. Moreover, we want to use hyperbolic systems, but with this di�cult derivative

we do not have a hyperbolic system. Here, eigenvalues are either 0 or undefined. To

overcome this problem of derivative, we will assume � 6= 0, but it is natural; 
|| = ⌘s

and |⌘s| = 1, these imply that  6= 0 and this implies automatically � 6= 0 by definition

of .

12



Now, we try to explain our modifications to have a hyperbolic system of conservation

law. We start by reminding the general form of hyperbolic systems (1.8)

Ut + F (U)x = 0.

Also, we know by the definition of hyperbolic system of conservation law that F (z)

has to have distinct and real eigenvalues of (1.8) to be called a hyperbolic system,

where z = (z1, z2, ..., zn). In our case, (2.4) is 2-dimensional. Also, we will use the

non-divergence form of (1.8):

Ut +B(U)Ux = 0. (2.5)

B(U)Ux and F (U)x are 2⇥ 2 matrices.

Hereafter, we exchange t and s variables in (2.4) to have a system in form (1.8) and

we obtain; 8
>><

>>:

�s � t = 0

�t �
 



||

!

s

= 0.
(2.6)

The system is called 2-dimensional p-system, here p(x) =
x

|x| . In system (2.6), the

second line is the equation of motion and the first one is the compatibility condition.

One can write

�tt � (p(�s))s = 0 in R⇥ (0,1).

Here, writing � =: �s and  = �t, we can obtain (2.6). Also, having our system (2.6)

in form of (1.8), we have

F (�) = (��,�p()),

where z = (z1, z2). In the rest of thesis, we will do di↵erent kind of modifications, to

use system (2.6) without any problem.

13



CHAPTER 3

Traveling Wave Solutions

In this chapter, we show existence of a traveling wave solution of our system. We make

also a comparison of the results of systems of hyperbolic conservation laws in [35]

about entropy solutions and shock wave solutions of [36]. One must be careful that

traveling wave solutions are particular solutions of the system. First of all, we give

some definitions.

Definition 3.0.1 ( [35]) Let u(x, t), a function of two variables, be a solution of a

partial di↵erential equation. A particular solution u of the form

u(x, t) = v(x� ct) (x 2 R, t 2 R)

is called a traveling wave solution, where c is velocity and v is the wave profile.

Now remember that our system (2.4) is

8
>><

>>:

�t � s = 0

�s �
 



||

!

t

= 0.

We will try to find traveling wave solutions of (2.4). We know that a system of n-

dimensional conservation law is written in this form for a solution U ; for the traveling

wave solutions we will have � = �(t, s). Now, we convert � into a single variable

function by transformation

�(t, s) = µ(s� ct),

here c 2 R is the velocity. For our new system (2.6), we have

�t +B(�)�s = 0,

where

B(z) =

0

@ 0 �1

�p
0(z1) 0

1

A .
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The eigenvalues of B(z) are �1 = �p
0(z1)1/2 and �2 = p

0(z1)1/2. Now, we need to check

p
0(z1) for the strict hyperbolicity condition. Having p(x) =

x

|x| , we find its derivative

as

p
0(x) =

8
><

>:

undefined if x = 0

0 otherwise.

Since we do not have two distinct and real eigenvalues, we cannot use the theory of

hyperbolic conservation law. To avoid this problem, we need to modify system (2.6).

Let � > 0 be constant, then we can have a new system by modifying the equation of

motion as 8
><

>:

�s � t = 0

�t �
⇣

p
�+||2

⌘

s
= 0.

(3.1)

Here, p(x) = xp
�+|x|2

and its derivative becomes p
0(x) = �

(�+||2)3/2 , which is always

positive (i.e. p0 > 0), which was our goal to modify. As � approaches to 0, system (3.1)

converges to (2.6). Here, since � is a very small constant, adding it will not change

anything physically.

Now, we will start to show the existence of traveling wave solution explicitly for

system (3.1). Just to avoid the confusion, since we will have � and ✏ in modified system,

instead of �, we will write ��,✏. We start by adding a viscous term to the equation of

motion to get, for ✏ > 0,

8
><

>:

@s��,✏ � @t�,✏ = 0

@t��,✏ � @s

⇣
�,✏p

�+|�,✏|2

⌘
= ✏@ss��,✏.

(3.2)

Theorem 3.0.1 For � > 0 and ✏ > 0, there exists a traveling wave solution

µ�,✏ = (⇠�,✏, ��,✏) for the system (3.2).

Proof : We start to solve explicitly the system (3.2) and we make the transformations

��,✏(t, s) = µ�,✏

⇣
s�ct
✏

⌘
, ��,✏ = ��,✏ and �,✏ = ⇠�,✏, here µ is the traveling wave profile of

�, we use (·)0 = d
da where a =

⇣
s�ct
✏

⌘
, we obtain

8
>><

>>:

�
0
�,✏ + c⇠

0
�,✏ = 0

�
00
�,✏ + c�

0
�,✏ +

 
�

(� + ⇠
2
�,✏)

3/2

!
⇠
0
�,✏ = 0.

(3.3)

Now, we try to solve (3.3) explicitly. Taking the derivative of the first equation in

(3.3), we obtain �
00
�,✏ = �c⇠

00
�,✏ and �

0
�,✏ = �c⇠

0
�,✏, then substituting into second equation
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of (3.3), we end up with

⇠
00
�,✏ �

 
�

c

⇣ 1

(� + ⇠
2
�,✏)

3/2

⌘
� c

!
⇠
0
�,✏ = 0 (3.4)

We can write that

⇠
0
�,✏ = G(⇠�,✏) where G(z) =

Z  
�

c

⇣ 1

(� + z2)3/2

⌘
� c

!
dz, for z = ⇠�,✏.

Firstly, we find G(z) as

G(z) =

Z  
�

c

⇣ 1

(� + z2)3/2

⌘
� c

!
dz

Let h(z) =
R
H(z)dz so that

H(z) =

Z
�

c

⇣ 1

(� + z2)3/2

⌘
dz (3.5)

Now, use substitution z =
p
� tan u so that u = arctan

⇣
zp
�

⌘
. Now substituting this

into (3.5), we have

Z p
� sec2 u

(� tan2
u+ �)3/2

du =

Z p
� sec2 up
�� sec3 u

du =
1

�

Z
1

secu
du =

1

�

Z
cos udu.

and finally it gives

h(u) =
1

�
sin u+ k1.

Here, k1 is constant, and without loss of generality, we take k1 = 0. Now, we need to

go back to the solution with z by using u = arctan
⇣

zp
�

⌘
and we find that

h(z) =
z

c(� + z2)1/2
.

Finally, by the definition of G(z) we find that

G(z) =
z

c(� + z2)1/2
� cz

Now, we can solve

z
0 = G(z). (3.6)

Writing (z)0 = dz
da , we see that, (3.6) is a separable di↵erential equation. We have

Z
dz⇣

z

c(� + z2)1/2
� cz

⌘ =

Z
da (3.7)

then Z
dz⇣

z

c(� + z2)1/2
� cz

⌘ = a+ k2, (3.8)

16



here k2 is a constant and again we can take it as 0. Let
R
F (z)dz = f(z) so that

F (z) =
1

z

c(� + z2)1/2
� cz

. (3.9)

Start by integrating both sides of (3.9) with respect to z, then we have

f(z) =

Z
dz

z

c(� + z2)1/2
� cz

.

Firstly, for simplicity multiply the denominator and the numerator by c. Now, we

substitute u =
p
� + z2 then du = ⇠p

�+z2
dz which can also be written as udu = zdz

and u
2 � � = (z)2. Using all we have

f(u) = c

Z
u
2

(1� c2u)(u2 � �)
du. (3.10)

To calculate (3.10), we will use the partial fractions as follows

u
2

(1� c2u)(u2 � �)
=

Au+B

u2 � �
+

C

1� c2u
, (3.11)

and we find A =
�c

2

1� �c4
, B =

�

1� �c4
and C =

1

1� �c4
. Now, we can write

Z
u
2

(1� c2u)(u2 � �)
du =

1

1� c4�

Z
�c

2 u

u2 � �
+ �

1

u2 � �
+

1

1� c2u
du.

Notice that we have to use another partial fraction method to the second term on right

hand side to able to integrate it easily and we end up with

f(u) =
c

1� �c4

h
�c

2

2
ln |u2 � �|+

p
�

2

⇣
ln
���
u�

p
�

u+
p
�

���
⌘
� 1

c2
ln |1� c

2
u|
i
. (3.12)

Substituting back u =
p
� + z2 and z into (3.12), we end up with

f(⇠�,✏) =
c

1� �c4

h
�c

2

2
ln ⇠�,✏ +

p
�

2

⇣
ln
���

q
� + ⇠

2
�,✏ �

p
�

q
� + ⇠

2
�,✏ +

p
�

���
⌘
� 1

c2
ln
���1� c

2
q

� + ⇠
2
�,✏

���
i
.

(3.13)

Finally, having (3.13), we have the solution of (3.4) as

c

1� �c4

h
�c

2

2
ln ⇠�,✏ +

p
�

2

⇣
ln
���

q
� + ⇠

2
�,✏ �

p
�

q
� + ⇠

2
�,✏ +

p
�

���
⌘
� 1

c2
ln
���1� c

2
q

� + ⇠
2
�,✏

���
i
=

s� ct

✏
.

(3.14)

Using that �0 = �c⇠
0, we may write that

�1

c

d�

da
=

d⇠

da
,
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then integrating both sides with respect to a, we have

�1

c
� = ⇠ + b

⇤
,

where b
⇤ is an integration constant. Without loss of generality, take b

⇤ = 0. Finally,

we have

c

1� �c4

"
�c

2

2
ln
���
���,✏

c

���+
p
�

2

 
ln

�����

q
� +

�2
�,✏

c2 �
p
�

q
� +

�2
�,✏

c2 +
p
�

�����

!
� 1

c2
ln
���1� c

2

s

� +
�
2
�,✏

c2

���

#
=

s� ct

✏
.

(3.15)

So, we find a traveling wave solution µ�,✏ = (⇠�,✏, ��,✏). 2

Now, since we see how µ�,✏ = (⇠�,✏, ��,✏) depends on ✏ and � explicitly, we look at

limits as ✏ ! 0 and � ! 0. Later in Sections 3.1 and 3.2, we will compare these limits

with other notions of solutions.

Now as ✏ approaches to 0, we find that the right-hand sides of (3.14) and (3.15) are

lim
✏!0

s� ct

✏
=

8
><

>:

�1, if s < ct

1, if s > ct.

(3.16)

Left-hand sides of (3.14) and (3.15) have to have the same values of (3.16). Taking

the limits for ✏ approaches to 0, we find

lim
✏!0

⇠�,✏

⇣
s� ct

✏

⌘
=

8
><

>:

0, if s < ct

0, if s > ct.

(3.17)

and

lim
✏!0

��,✏

⇣
s� ct

✏

⌘
=

8
><

>:

0, if s < ct

0, if s > ct.

(3.18)

Here, for |a| ! 1, ⇠�,✏ = 0 and ��,✏ = 0 gives us 1 and we may assume some

conditions on c to find exact sign of infinity with respect to right hand-side knowing

that � is positive, we have (3.17) and (3.18).

Now, let � approaches to 0 in (3.14), since � is not there we do not indicate it as

subscript, we find
�1

c
ln |1� c

2
⇠✏| =

s� ct

✏
,

then

⇠✏(a) =
1

c2
� 1

c2
e
�ca

. (3.19)

and using �
0
✏ = �c⇠

0
✏, we find

�✏(a) = k
⇤ +

1

c
e
�ca (3.20)

where k
⇤ is an integration constant.
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3.1. Shock Wave Solutions

In this section, we want show the existence of a shock wave solution. To show this, we

will use the theorem in [36] by Conlon.

Theorem 3.1.2 ( [36]) There is a constant ✏(m,M) > 0 depending only on m,M

such that the shock wave with Ul = 0 and |u|  ✏ satisfies the strictly entropy condition

if and only if there is a traveling wave solution of �t+B(�)�s = ✏�ss contained in an ✏

neighborhood of 0 which joins 0 to Ur. The traveling wave is unique if it exists. (Here

M is the bound for B(�)00, which is automatically bounded by convexity and m > 0

guarantees the distinct eigenvalues (i.e.|�1 � �2| > m)).

Let us give some definitions to understand the theorem better

Definition 3.1.2 ( [35]) The system (1.8) with

g =

8
><

>:

Ul, if x < 0

Ur, if x > 0
(3.21)

This is called Riemann’s problem. Ur and Ul are given vectors and called right and left

initial states.

Now, we will give some definitions related to shock waves.

Definition 3.1.3 ( [36]) A weak solution U(x, t) of (1.8) is called a shock wave if it

has the form

U =

8
><

>:

Ur, if x < ct

Ul, if x > ct.

(3.22)

In this case Ur, Ul, c are related to by the Rankie-Hugoniot equation

F (Ur)� F (Ul) = c[Ur � Ul].. (3.23)

Also, we would like to define the limits for U✏(s, t) = V

⇣
s�ct
✏

⌘
and lima!�1 = Ul and

lima!1 = Ur, where a =
⇣

s�ct
✏

⌘
. Futhermore, If U✏ is a shock wave then (Ur, Ul, c)

satisfies (3.23) and dV
da = F (V )� F (Ul)� c[V � Ul]. Here, U✏ which is the solution of

Ut + F (U)x = ✏Uxx converges to the shock wave solution of Ut + F (U)x = 0.

Now, we will find explicit solution for following system, and to avoid the confusion

we write � as �✏ 8
>><

>>:

@s�✏ � @t✏ = 0

@t�✏ � @s

 
✏

|✏|

!
= ✏@ss�✏.

(3.24)
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It is easy to notice that, in (3.24) we do not have �. System (3.24) is not a hyperbolic

system, since it does not have distinct and real eigenvalues, but we have been curious

about its solutions, also we will show that the traveling wave solutions that we have

found converges to system (3.24) as � ! 0.

Again, we choose ⇠✏ and �✏ as traveling wave profiles of ✏ and �✏ respectively, and

again �✏ = (�✏,✏), �✏(t, s) = µ✏

⇣
s�ct
✏

⌘
these two imply µ✏ = (⇠✏, �✏), we call a = s�ct

✏ .

After, we do these transformations, we obtain a system of second order di↵erential

equation, which is 8
><

>:

�
0
✏ + c⇠

0
✏ = 0

�
00
✏ + c�

0
✏ + p

0(⇠✏)⇠0✏ = 0.

Here, we ignore that for some a, we may have ⇠✏ = 0, and now we can say that

p
0(⇠✏) = 0, and the system becomes

8
><

>:

�
0
✏ + c⇠

0
✏ = 0

�
00
✏ + c�

0
✏ = 0.

(3.25)

We will find explicit solutions for our new system (3.25).

�
00
✏ + c�

0
✏ = 0

here, since we are looking for nontrivial solutions, we assume that �✏ = e
ra and we

obtain the characteristic equation r
2 + cr = 0, here roots are r1 = 0 and r2 = �c and

the solution is

�✏(a) = b1 + b2e
�ca

. (3.26)

Now, using �✏(a), we can find ⇠✏(a) from the first line of (3.25), and

⇠✏(a) = b3 �
b2

c
e
�ca

. (3.27)

Here, b1, b2 and b3 are constants. Now, we have the solutions of (3.24) and (3.3). We

know that as � approaches to 0, (3.3) must converge to (3.24). To have this, we may

choose b3 = 1
c2 ,b2 = �1

c and b1 = k
⇤ in (3.27) and we have the same solutions. So,

we see that system (3.3) has a traveling wave solution which is the result in Theorem

3.1.2

Also, we need to know what happens when ✏ approaches to 0.

lim
✏!0

�✏

⇣
s� ct

✏

⌘
=

8
><

>:

1, if s < ct

k
⇤
, if s > ct

and

lim
✏!0

⇠✏

⇣
s� ct

✏

⌘
=

8
><

>:

�1, if s < ct

1
c2 , if s > ct.

µ✏ = (⇠✏, �✏) are shock wave solutions, so we have the following theorem
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Theorem 3.1.3 There exists a shock wave solution to system (2.4).

Proof : (3.27) and (3.26) are shock wave solutions. 2

3.2. Entropy Solutions

In this section, we use the theory from [35] about entropy solutions for hyperbolic

system of conservation laws and then we will compare the previous theorem of Conlon.

Definition 3.2.4 ( [35]) Two smooth functions � : Rn ! R is called an entropy for

the system (1.8),with entropy flux  : Rn ! R,if

D�(U) ·DF (U) = D (U), U 2 R.

Definition 3.2.5 ( [35]) A weak solution U of (1.8) is called entropy admissible so-

lution if it satisfies the following inequality

�(U)t + (U)x  0 (3.28)

in the distributional sense, for every pair (�, ), where � is a convex entropy for (1.8)

and  is the corresponding entropy flux.

We have given a general definition of entropy condition. There are entropy conditions

for special cases which are derived from the general one, but first, we need other

definitions to define Liu entropy criterion.

Definition 3.2.6 ( [35]) Let Ur 2 Sk(Ul) for some k 2 {1, ...,m}, Lui’s entropy cri-

terion is as following
8
><

>:

c(z, Ul) > c(Ur, Ul) for each z lying

on the curve Sk(Ul) between Ur and Ul.

Now, we will show the existence of traveling wave solutions using entropy criteria Let

�(t, s) = µ

⇣
s�ct
✏

⌘
and substitute �

⇣
s�ct
✏

⌘
= � and 

⇣
s�ct
✏

⌘
= ⇠ , which implies that

µ(a) = (⇠, �). Substituting the traveling wave profiles into (3.2), we have

8
><

>:

�
0 + c⇠

0 = 0

�
00 + c�

0 + p
0(⇠)⇠0 = 0

(3.29)

where, ( d
da =0). Since we are looking for the solutions of the system (3.1), we need to

know what happens to these functions as ✏ goes to 0. So, we define the limits

lim
a!1

µ = µr, lim
a!�1

µ = µl, lim
a!±1

µ
0 = 0. (3.30)
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Here, subindexes l and r are used to show the waves going left and right. Now we

integrate system (3.29) from �1 to 1 using (3.30) to get;

8
><

>:

� + c⇠ = �l + c⇠l = �r + c⇠r

�
0 = c(�l � �) + (p(⇠l) + p(⇠)) = c(�r � �) + (p(⇠r) + p(⇠)).

(3.31)

Now, we solve the system (3.31) for c and we obtain

c
2 =

p(⇠r)� p(⇠l)

⇠r � ⇠l
. (3.32)

Suppose hereafter ⇠r > ⇠l, since p
0
> 0 we may take c > 0.

Evans in [35] claims that (3.29) with (3.30) has a traveling wave solution if and

only if Liu’s entropy criterion holds. Start by eliminating � in (3.31) and we have

⇠
0 =

p(⇠)� (⇠l)

c
� c(⇠ � ⇠l) or ⇠

0 = p(⇠)� (⇠l)� c
2(⇠ � ⇠l). (3.33)

Call g(⇠) =: ⇠0, we can calculate easily that g(⇠l) = 0 and g(⇠r) = 0. Thus, in order

that (3.33) has a solution with lima!1 ⇠ = ⇠r and lima!�1 ⇠ = ⇠l, we require

g(z1) > 0 for ⇠l < z1 < ⇠r. (3.34)

Briefly explaining this requirement, since p0 > 0 and ⇠l < ⇠r, there must be a point for

all z on the curve Sk(µl) between �l and �r, here Sk(µl) is the shock set. Now, we can

write for all z on the curve that

p(z1)� p(⇠l)

z1 � ⇠l
>

p(⇠r)� p(⇠l)

⇠r � ⇠l
, (3.35)

and (3.35) is exactly Liu’s entropy criterion. So, it has a traveling wave solution

solution.

Now, we give some definitions

Definition 3.2.7 ( [35]) U is called an integral solution of Ut + F (U)x = 0 provided

the equality Z 1

0

Z 1

�1

⇣
UVt + F (U)Vx

⌘
dxdt = 0

holds for all test functions V . Here U 2 L
1(Rn⇥(0,1);Rm) and V : R⇥[0,1) ! Rm

is smooth and has compact support.

Definition 3.2.8 ( [35]) U is called an entropy solution of (1.8) provided U is an

integral solution and U satisfies the (3.28) for each entropy/entropy flux pair (�, ).

Remember that, we found the explicit solution of (3.2) and we had

lim
✏!0

⇠

⇣
s� ct

✏

⌘
= 0
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and

lim
✏!0

�

⇣
s� ct

✏

⌘
= 0.

µ�,✏ was the traveling wave profile of the ��,✏, and which solves of

@t��,✏ + @sF (��,✏)� ✏@ss��,✏ = 0. (3.36)

Let us further suppose {��,✏}0<✏1 is uniformly bounded in L
1 and as ✏ approaches to

0, ��,✏ converges to ��. Before, giving the theorem, we choose our entropy/entropy flux

pairs for z = (z1, z2) as

�(z) =
z
2
2

2
+
q
z
2
1 + � and  (z) = � z1p

z1 + �
z2. (3.37)

It is easy to notice that � is convex and they satisfy (3.28) as required.

Now, we prove the main theorem of this section.

Theorem 3.2.4 ( [35]) The function �� is an entropy solution of

@t�� + @sF (��) = 0.

Proof : Let ✏ ! 0 in solution (3.2),we have the results (3.17) and (3.18). Also, in

(3.36), we let ✏ ! 0, which give us exactly the same results of solutions of (3.2).

Now, using the definition 3.2.8 and definition 3.2.5, we see that our entropy/entropy

flux pairs (3.37) satisfy the (3.28), having this fact we can say that �� is an entropy

solution of (3.36). 2

Now, we will give a remark, which is crucial for comparing entropy solution and

shock wave solution.

Remark 3.2.1 The reason for us not to be able to pass to the limit as � ! 0 in µ�,✏ is

because of the fact that dependence on � comes from the modified system of conservation

laws rather than as a variable of µ. Moreover, once we pass to the limit in ✏ in order

to satisfy necessary conditions for the existence of entropy solutions, we have to have

that µ converges to 0. Hence, we do not see any � dependence anymore. This does not

contradict with the fact that an entropy solution could still converge to a shock-wave

solution when the corresponding hyperbolic system of conservation laws is converging

to a non-hyperbolic one. However, we cannot see the relation of entropy solution and

the shock wave mentioned by Conlon when we pass to the limit in our analysis when �

converges to 0. See Figure 3.1 for the relations of solutions.
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Figure 3.1: Scheme of results and relations
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CHAPTER 4

Weak Solutions with Periodic Boundary Conditions

In this chapter, we find conditions satisfied by strong solutions, we give some bounds

for a new approximating system and finally, with the help of following proposition we

convert our string equation into linear wave equation with a time dependent coe�cient.

Proposition 4.0.1 Assume that �(t, s) is di↵erent than 0 at boundaries, then � > 0

for all t.

Proof : By Proposition 2.2.2, we know that � � 0. Given that �(t, 0) = �(t, 1) 6= 0,

using the minimum principle which tells that a function takes its minimum at the

boundaries otherwise it is a constant, we find that � > 0. 2

Remark 4.0.1 In this chapter, using Proposition 4 we exclude the two free end case

such that it is a sub-case of periodic boundary conditions.

Now, we give initial values for system (2.4) with periodic boundary conditions

(t, 0) = (t, 1),s(t, 0) = s(t, 1), �(t, 0) = �(t, 1).

We can write that our initial values become



||(0, s) = ⌘s(0, s) = ↵s(s)

and

�(0, s) = ⌘t(0, s) = �(s).

4.1. Some Equalities Satisfied by Solutions

In this section, we try to obtain bounds by multiplying (1.1) with ⌘, ⌘s, ⌘t and ⌘tt,and

we take g = 0. We use integration by parts on the spatial variables and then we use

periodic boundary conditions. In the calculations, we use |⌘s|2 = 1, ⌘s⌘ss = 0, ⌘s⌘st = 0

and ⌘s⌘stt + ⌘st⌘st = 0. These equalities are important for us, because when we use

integration by parts we often obtain similar terms.

25



• Multiplying (1.1) by ⌘ and integrating with respect to s variable from 0 to 1:

Z 1

0

⌘tt⌘ds =

Z 1

0

(�⌘s)s⌘ds

= �⌘s⌘

���
s=1

s=0
�
Z 1

0

�⌘s⌘sds

= �
Z 1

0

�ds

Now, we use the Fundamental Theorem of Calculus (FTC) on time variable and

integrate by parts

�
Z 1

0

�ds =

Z 1

0

Z t

0

⌘⌧⌧⌘d⌧ds

=

Z 1

0

⇣
⌘t⌘

���
⌧=t

⌧=0
�
Z t

0

|⌘⌧ |2d⌧
⌘
ds

=

Z 1

0

⇣
⌘t(s, t)⌘(s, t)� ↵� �

Z t

0

|⌘⌧ |2d⌧
⌘
ds.

• Multiplying (1.1) by ⌘t and integrating with respect to s variable from 0 to 1:

Z 1

0

⌘tt⌘tds =

Z 1

0

(�⌘s)s⌘tds

= �⌘s⌘t

���
s=1

s=0
�
Z 1

0

�⌘s⌘stds.

We see that the term on left hand side is the time derivative of a function, we

may write it as;
1

2

d

dt

Z 1

0

|⌘t|2 = 0.

It was shown in the previous chapter that energy does not change by time.

• Multiplying (1.1) by ⌘s and integrating with respect to s variable from 0 to 1:

Z 1

0

⌘tt⌘s =

Z 1

0

(�⌘s)s⌘sds

= �⌘s⌘s

���
s=1

s=0
�
Z 1

0

�⌘s⌘ssds

= 0
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Now, we use FTC and integration by parts with respect to time variable

0 =

Z 1

0

Z t

0

⌘⌧⌧⌘sd⌧ds

=

Z 1

0

⇣
⌘s⌘⌧

���
⌧=t

⌧=0
�
Z t

0

⌘⌧⌘s⌧d⌧

⌘
ds

=

Z 1

0

⇣
⌘s⌘⌧

���
⌧=t

⌧=0
ds�

Z 1

0

Z t

0

d

ds

⇣ |⌘⌧ |2

2

⌘
d⌧

⌘
ds

=

Z 1

0

⌘s⌘⌧

���
⌧=t

⌧=0
ds�

Z t

0

|⌘⌧ |2

2
dt

• Multiplying (1.1) by ⌘tt and integrating with respect to s variable from 0 to 1:
Z 1

0

⌘tt⌘ttds =

Z 1

0

(�⌘s)s⌘ttds

Z 1

0

|⌘tt|2ds = �⌘s⌘tt

���
s=1

s=0
�
Z 1

0

�⌘s⌘ttsds =

Z 1

0

|⌘st|2�ds

Using (1.2), we end up with
Z 1

0

|⌘tt|2ds =
Z 1

0

|⌘ss|2�2 � ��ssds.

4.2. Approximating System

In this section, we will give bounds for our approximating system, this system is similar

to the system (3.2), but we will not have �, all the modifications are done by ✏. Let ✏ 2
(0, 1] be a constant and consider auxiliary problem, remember that (t, s) = �(t, s)⌘s
and �(t, s) = ⌘t(t, s);

�s � t = 0 (4.1a)

�t �
⇣

p
✏+ ||2

⌘

s
= ✏�ss (4.1b)

(t, 0) = (t, 1) (4.1c)
⇣

p
✏+ ||2

⌘��� = ↵s (4.1d)

�(t, 0) = �(t, 1) (4.1e)

�(0, s) = � (4.1f)

�s(s, 0) = �s(s, 1) (4.1g)

Here, we added the viscous term on only to (4.1b) and the equality (4.1g) is added

for technical reasons and it vanishes as ✏ approaches to 0. Now, we need an existence

theorem for our new system (4.1).
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Theorem 4.2.2 Let ↵, � 2 C
3([0, 1];R3),↵s(0) = ↵1,↵ss(0) = ↵ss(1),�s(0) = �s(1),

then there exist a unique solution (�,).

Proof : Under periodic boundary conditions, choosing ↵(s) and �(s) smooth, we obtain

the result in the same way as in the proof of Theorem 4.2 in [3] 2

Hereafter, we assume that

|↵s(s)|  1 for 0  s  1

that

↵|s=0 = ↵|s=1

and Z 1

0

|↵|2(s)ds+
Z 1

0

1

2
|�|2ds  C (4.2)

here C is a constant.

Multiply (4.1b) by � and we have

��t = v

⇣
p

✏+ ||2
⌘
+ ✏��ss.

Now integrate from 0 to 1 with respect to the spatial variable
Z 1

0

��tds =

Z 1

0

�

⇣
p

✏+ ||2
⌘

s
ds+ ✏

Z 1

0

��ssds.

Start by integrating by parts the terms on the right-hand side
Z 1

0

��tds = �
Z 1

0

�s

⇣
p

✏+ ||2
⌘
ds� ✏

Z 1

0

�s�sds,

using (4.1a), we get
Z 1

0

��tds = �
Z 1

0

⇣
tp
✏+ ||2

⌘
ds� ✏

Z 1

0

�s�sds. (4.3)

Rewriting (4.3), we have

�✏

Z 1

0

�s�sds =

Z 1

0

��tds+

Z 1

0

⇣
tp
✏+ ||2

⌘
ds (4.4)

=
1

2

d

dt

Z 1

0

|�|2ds+ d

dt

Z 1

0

p
✏+ ||2ds (4.5)

Define a new energy as

E✏(t) =
1

2

Z 1

0

|�|2 +
Z 1

0

p
✏+ ||2ds. (4.6)

Take the time derivative of (4.6), and we have

�
E✏(t)

�
t
=

Z 1

0

��tds+

Z 1

0

⇣
tp
✏+ ||2

⌘
ds.
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Using (4.5), we can write

�
E✏(t)

�
t
= �✏

Z 1

0

�s�sds  0.

We find (4.6) for t = 0, which is initial energy, as

E✏(0) =
1

2

Z 1

0

|�|2 +
Z 1

0

p
↵2 + ✏ds,

and this is bounded due to (4.2). Therefore,

1

2

Z 1

0

|�s|2ds  C. (4.7)

Now, we define some new functions, which are going to simplify our calculations

⌘(t, s) = ↵(s) +

Z t

0

�(r, s)dr (4.8)

⇠(t, s) =

Z s

0

(t, w)p
✏+ |(t, w)|2

dw (4.9)

We start by multiplying (4.1b) by ⇠ and integrating with respect to s from 0 to 1

Z 1

0

�t⇠ds =

Z 1

0

⇣
p

✏+ ||2
⌘

s
⇠ds+ ✏�ssds,

using integration by parts and substituting (4.9) and (4.1a) we get

Z 1

0

�t⇠ds =

Z 1

0

�
⇣

p
✏+ ||2

⌘⇣
p

✏+ ||2
⌘
ds�

Z 1

0

t

⇣
p

✏+ ||2
⌘
ds

= �
Z 1

0


2

✏+ ||2ds�
Z 1

0

t

⇣
p

✏+ ||2
⌘
ds

= �(1� (arctan
1p
✏
)
p
✏)� d

dt

Z 1

0

(
p
||2 + ✏)ds.

We may bound the last equation; the first term is a scalar and the second term is

bounded by E✏(t), so we have

Z 1

0

�t⇠ds  C )
Z 1

0

�t

h Z s

0

(t, w)p
✏+ |(t, w)|2

dw

i
ds  C.

4.3. Wave Equation Approach to Inextensible String Equation

Firstly, remember the equation of tension (1.2) is given by

�ss(t, s)� |⌘ss(t, s)|2�(t, s) + |⌘st(t, s)|2 = 0,
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and the model for inextensible strings is (1.1).

We make an analysis on transformations in Section 2.3 using periodic boundary

conditions. We have shown that � > 0; if  = ⌘s� and || = �, then we have ⌘s =


|| .

We know that |⌘s|2 = 1, which comes from inextensibility of the string, so ⌘s 6= 0, using

this fact we may find its derivatives as

(⌘s)s =
d

ds

 


||

!
= 0 and (⌘s)t =

d

dt

 


||

!
= 0.

If we plug them into (1.2), we obtain

�ss = 0. (4.10)

Integrating twice (4.10), we find

� = g(t) + h(t)s, (4.11)

here g(t) and h(t) are single variable functions coming from integration. Now, we use

the periodic boundary conditions (1.6) and we find that

�(t, 0) = g(t) = g(t) + h(t) = �(t, 1) and 0 = h(t).

Hence, �(t, s) = g(t). Now, the spatial derivatives of � are 0, using this we may write

our equation as following

⌘tt = g(t)⌘ss, (4.12)

which is linear wave equation with a time dependent coe�cient.

Now, we can rewrite our system as
8
>>>>><

>>>>>:

⌘tt = g(t)⌘ss

⌘(0, s) = ↵(s) and ⌘t(0, s) = �(s)

⌘(t, 0) = ⌘(t, 1)

(4.13)

Theorem 4.3.3 Assume that g(t) 2 C
1(0,1) is non decreasing Lipschitz continu-

ous functions such that g
�1(a) = 0, limt!0 g(t) = a1 and limt!1 g(t) = a2 where

a =
a1 + a2

2
also assume that ↵, � 2 C

2([0, 1]). Then there exists a local solution

⌘ 2 ([0, 1]⇥ [0,1)) for (4.13).

Proof : See [37]. 2
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CHAPTER 5

Conclusions

In this thesis, we analyzed the existence of solutions for the inextensible string equa-

tion. which consist of a nonlinear partial di↵erential equation and a compatibility

condition ensuring the lenght of the string is fixed. Using the equation of motion and

this inextensibility condition we showed that tension satisfies an ordinary di↵erential

equation. We showed that energy does not change by time which led us to use system

of conservation laws. By some change of variables, we have transformed our partial

di↵erential equation into a 2⇥ 2 system of conservation law. We wanted to make this

system hyperbolic in order to use notion of shock wave and entropy solutions. In this

thesis, tension � is very important, since it may cause discontinuities in systems. In

order to tackle this problem, we showed non-negativity of it and in Chapter 4, assuming

only that it is di↵erent than 0 at boundaries.

In Chapter 3, we modified our system to obtain a hyperbolic system and added

a viscosity term to show the existence of explicit traveling wave solutions. Then by

passing to limits in parameters, we relate our traveling wave solution with shock wave

solutions of Conlon [36] and entropy solutions of Evans [35].

In Chapter 4, we considered an other modified system to obtain a hyperbolic con-

servation law and showed some bounds on tension and displacement. These bounds

might be careful for further research. Finally in this chapter, assuming that tension

is nonzero only at the boundary, we prove positiveness of it and use this property to

reduce our model to wave equation with time dependent coe�cient.

Further research could be conducted on the global existence of solutions with pe-

riodic boundary conditions. Also, investigating a case where two free-ends boundary

conditions are not excluded would be another interesting area of research. Looking at

the asymptotic behavior of solutions as t goes to infinity can also be considered as an

open problem associated with any type of boundary conditions.
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[3] Y. Şengül and D. Vorotnikov, “Generalized solutions for inextensible string equa-

tions,” J. Di↵erential Equations, vol. 262, pp. 3610–3641, 2017.

[4] H. Johnson, “The existence of a periodic solution of a vibrating hanging string,”

SIAM J. Appl. Math., vol. 16(5), pp. 1048–1058, 1968.

[5] B. d. V. Hugo, “On the existence of branches of time-periodic solutions to the

nonlinear vibrating string equations,” Nonlinear Di↵erential Equations and Ap-

plications - NoDEA, vol. 1, pp. 125–148, 1994.

[6] J. Greenberg, “Smooth and time-dependent solutions to the quasilinear wave equa-

tion,” Arch. Rat. Mech. Anal., vol. 60, pp. 29–50, 1975.

[7] S. Preston, “The motion of the whips and chains,” J. Di↵erential Equations,

vol. 251, pp. 504–550, 2011.

[8] S. Preston, “The geometry of whips,” Ann. Global Anal. Geom., vol. 41, pp. 281–

305, 2012.

[9] M. Reeken, “The equation of a motion of chain,” Math Z., vol. 155, pp. 219–237,

1977.

[10] M. Reeken, “Classical solutions of the chain equation 1,” Math Z., vol. 165,

pp. 143–169, 1979.

[11] M. Reeken, “Classical solutions of the chain equation 2,” Math Z., vol. 166, pp. 67–

82, 1979.

[12] S. Preston and R. Saxton, “An H
1 model for inextensible strings,” Disc. and Cont.

Dynamical Systems - Series A, vol. 33, pp. 2065–2083, 2013.

32



[13] R. Dickey, “Dynamic behavior of the inextensible string,” Quart. Appl. Math,

vol. 62(1), pp. 135–161, 2004.

[14] I. Kolodner, “Heavy rotating string- a nonlinear eigenvalue problem,” Comm. Pure

Appl. Math, vol. 8(3), pp. 395–408, 1955.

[15] C. Luning and W. Perry, “Iterative solutions of a non-linear boundary value prob-

lem for a rotating string,” Internat. J. non-linear Mech., vol. 19(1), pp. 83–92,

1984.

[16] T. McMillen and A. Goriely, “Whip waves,” Physica D-nonlinear Phenomena -

PHYSICA D, vol. 184, pp. 192–225, 10 2003.

[17] B. Bernstein, D. Hall, and H. Trent, “On the dynamics of a bull whip,” J. Acoust.

Soc. Am, vol. 30(12), pp. 1112–1115, 1958.

[18] J. A. Hanna and C. Santangelo, “At the end of a moving string,” 09 2012.

[19] J. Hanna and C. Santangelo, “Slack dynamics on an unfurling string,” Phys. Rev.

Lett, vol. 109, p. 134301, 2012.

[20] D. Serre, “Un modle relax pour les cbles inextensibles,” Modl. Math. Anal. Numr.,

vol. 25(4), pp. 465–481, 1991.

[21] C. Wong and K. Yasui, “Falling chains,” Amer. J. Phys., vol. 74(6), pp. 490–496,

2006.

[22] T. McMillen, “On the falling (or not) of the folded inextensible string.” unpub-

lished, 2005.

[23] C. Dafermos, Hyberbolic Conservation Laws in Continuum Physics, vol. 323 of A

series of Comprehensive Studies in Mathematics. Springer, 2 ed., 2000.

[24] A. Bressan, Hyperbolic Systems of Conservation Laws: The One-dimensional

Cauchy Problem. Oxford Lecture Series in Mathe, Oxford University Press, 2000.

[25] F. Freistühler, “On the cauchy problem for a class of hyperbolic systems of con-

servation laws,” J. Di↵erential Equations, vol. 112, pp. 170–178, 1994.

[26] D. Wagner, “Equivalance of the euler and lagrangian equations of gas dynamics

for weak solutions,” J. Di↵erential Equations, vol. 68, pp. 118–136, 1987.

[27] T. Lui and C. Wang, “On a nonstrictly hyperbolic system of conservation laws,”

J. Di↵erential Equations, vol. 57, pp. 1–14, 1985.

[28] F. Freistühler and R. Plaza, “Normal modes and nonlinear stability behavior of

dynamic phase boundaries,” Arch. Rational Mech. Anal., vol. 186, pp. 1–24, 2007.

33



[29] R. Diperna, “Global existence of solutions to nonlinear hyperbolic systems of

conservation laws,” J. Di↵erential Equations, vol. 20, pp. 187–212, 1976.

[30] P. Lax, “Hyperbolic systems of conservation laws 2,” Comm. Pure Appl. Math.,

vol. 10, pp. 537–566, 1957.

[31] J. Glimm, “Solutions in the large for nonlinear hyperbolic conservation laws,”

Comm. Pure Appl. Math., vol. 18, pp. 697–715, 1965.

[32] T. Nishida, “Global solutions for an initial boundary value problem of a quasilinear

hyperbolic system,” Proc. Japan Acad., vol. 44, pp. 642–646, 1968.

[33] N. Bakhvalov, “The existence in the large of a regular solution of a quasilinear

hyperbolic systems,” USSR Comp. Math. and Math.Phys., vol. 10, pp. 205–219,

1970.

[34] H. Frid, “Periodic solutions of conservation laws constructed through glimm

scheme,” Trans. Amer. Math. Soc., vol. 353, pp. 4529–4544, 2001.

[35] L. Evans, Partial Di↵erential Equations. Graduate studies in mathematics, Amer-

ican Mathematical Society, 2010.

[36] J. Conlon, “A theorem in ordinary di↵erential equations with an application to

hyperbolic conservation laws,” Advances in Mathematics, vol. 35, pp. 1–18, 1980.

[37] A. Chambolle and F. Santosa, “Control of the wave equation by time-dependent

coe�cient,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 8,

pp. 375–392, 10 2002.

34


	Abstract
	Özet
	Acknowledgments
	Introduction
	Governing Equations
	Literature Review
	Preliminaries
	Sobolev Spaces
	Hyperbolic Conservation Laws


	Setting of the Problem
	Energy Conservation
	Non-negativity of Tension
	Obtaining a Conservation Law

	Traveling Wave Solutions
	Shock Wave Solutions
	Entropy Solutions

	Weak Solutions with Periodic Boundary Conditions
	Some Equalities Satisfied by Solutions
	Approximating System
	Wave Equation Approach to Inextensible String Equation

	Conclusions
	References

