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Abstract 

Boron nitride nanotubes (BNNTs) are structural analogues of carbon nanotubes (CNTs). The 

interest in them and their nanocomposites have been growing due to their unique 

properties.  Chemical vapor deposition (CVD) is a relatively cheap and lab scale technique 

employed in inorganic material synthesis.   This thesis work aims to achieve two fundamental 

goals in two separate chapters.  

In the first chapter, the process parameters determining the quality and amount of BNNT synthesis 

by CVD are evaluated in a response surface methodology framework. A three-level full factorial 

design where process factors such as reaction temperature, heating rate and reactive gas flow are 

considered in three levels forming a design space with 27 experiment points.  Through a systematic 

experimentation scheme, three responses determined by sophisticated RAMAN and SEM analysis 

(namely BNNT diameter, BNNT aspect ratio and wafer coverage) are then fitted into polynomial 

based surrogate models.  Performed ANOVA analyzes suggest that surrogate models are mostly 

able to predict the change in response with respect to changing process factors. Optimized process 

conditions aiming to achieve high aspect ratio and high substrate coverage are then presented.  

Second part of the thesis focuses on a composite application example of in-house synthesized 

BNNTs.  BNNTs manufactured at the optimized process conditions are introduced to epoxy resin 

with altering amounts. Specific attention is given to their effect on the curing kinetics of a 

thermoset system. BNNTs may give alternate fast curing recipes. Through dynamic and isothermal 
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DSC scans of BNNT/epoxy resin, the curing behavior is firstly studied in detail. Then governing 

curing mechanism and the effects of BNNT addition is explored by the fitting of appropriate 

kinetic models onto experimental data.   
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Bor Nitrür Nanotüplerin (BNNT) Üretim Süreçlerinin Optimizasyonu ve Epoksi Reçine 

Kürlenmesine Etkileri 

 Yelda Yorulmaz 

Malzeme Bilimi ve Mühendisliği 

Yüksek Lisans Tezi, 2018 

Tez Danışmanı: Prof.Dr. Melih Papila 

Anahtar Kelimeler: bor nitrür nanotüpler, optimizasyon, kür kinetiği, epoksi reçine, hızlı 

kürlenme 

Özet 

Bor nitrür nanotüpler (BNNT), karbon nanotüplerin (KNT) yapısal analoglarıdır. BNNT’lerin 

sahip oldukları yapısal ve fiziksel özelliklere bağlı olarak kendilerine ve oluşturdukları 

nanokompozitlere gösterilen ilgi artmıştır. Kimyasal buhar biriktirme (KBB) yönteminin, küçük 

ölçekli inorganik malzeme sentezlerinde kullanılan, nispeten daha uygun bütçeye sahip bir yöntem 

olduğu bilinmektedir. Bu tez çalışması, iki ayrı bölümde iki temel amacı gerçekleştirmeyi 

amaçlamaktadır. 

Tezin birinci bölümünde, KBB ile BNNT sentezinin kalitesini ve miktarını belirleyen süreç 

parametreleri tepki yüzey analizi çerçevesinde değerlendirilmiştir. Reaksiyon sıcaklığı, ısıtma hızı 

ve reaktif gaz akış hızının gibi süreç parametrelerinin BNNT’lerin çap, boy/en oranı ve levha 

kaplanma oranlarına etkileri 27 farklı noktaya sahip deney uzayında 3 seviyeli tam faktöriyel 

deneysel tasarım yöntemi kullanılarak incelenmiştir. Sistematik deneylerin sonucunda BNNT 

çapı, boy/en oranı ve levha kaplanma oranlarındaki değişimler RAMAN ve SEM analizleri ile 

gözlenmiş ve çok terimli (polinom) vekil modeller geliştirilmiştir. ANOVA analizleri sonucunda, 

vekil modellerin süreç parametrelerine bağlı olarak sonuçlardaki değişimi tahmin edebildiğini 

gözlenmiştir. Yüksek boy/en oranına ve levha kaplanma oranına sahip BNNT üretimini hedefleyen 

koşullar çalışma sonunda sunulmuştur.  
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Tezin ikinci bölümünde, sentezlenen BNNT’leri içeren kompozit uygulamaları incelenmiştir. 

Birinci bölümde optimize edilen koşullarda sentezlenen BNNT’ler epoksi reçinelere farklı 

miktarlarda eklenmiş ve termoset sistemin kür kinetiğine olan etkileri incelenmiştir. BNNT 

eklenmesinin hızlı kürlenmeye sebep olabileceği düşünülmüştür. Dinamik ve izotermal DSC 

ölçümleri yapılarak BNNT/epoksi reçine sistemlerin kür davranışları incelenmiştir. Ardından 

deney sonuçları kullanılarak BNNT’lerin kür mekanizmasına etkileri, kür reaksiyonuna uygun 

kinetik model ve modele ait katsayılar bulunmuştur.  
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1 Chapter 1 

1.1 General Introduction 

Boron nitride nanotubes (BNNTs) are structural analogues of carbon nanotubes (CNTs) in which 

alternating B and N atoms replace C atoms with almost no interatomic space change [1, 2]. BNNTs 

are theoretically predicted and synthesized in 1995 [3]. Similar to CNTs, BNNTs exhibit superior 

structural and mechanical properties [4, 5]. In addition, they have higher chemical stability than 

CNTs [6]. One important difference between these nanotubes is related to their electronic structure. 

BNNTs are good insulators with a wide band gap (~5.5eV) which is independent from chirality, 

diameter and number of walls whereas CNTs are conductive materials with a narrow band gap [1, 

7, 8].  Due to their similar, unique and superb properties compared to CNTs, BNNTs become a 

good alternative and the interest in them have been grown recently [1, 4, 9, 10].  

Different methods for synthesizing BNNTs have been studied in the literature such as arc 

discharge[3], laser ablation [11], chemical vapor deposition (CVD) [6, 12, 13], substitution 

reaction of CNTs [14] or ball milling [15] …etc. Previous studies show that CVD technique is a 

good candidate for achieving high yield with high quality in relatively lower temperatures and 

lower costs among the other techniques [4, 9].  

Several parameters may affect the yield and properties of BNNTs produced by CVD, such as 

precursor content, reaction temperature, reactive gas flow rate, heating rate and reaction time [2, 

5, 16, 17]. There are previous studies focused on the effects of these parameters on the 

morphologies of BNNTs [2, 5, 17]. General approach in these studies was changing only one 

parameter while keeping other parameters constant to understand the effects of the parameter and 

the procedure was repeated for each parameter consecutively. But this method, which is called as 

one factor at a time, has some disadvantages. For instance, it neglects the interactions between 

parameters which may result in inaccurate optimal conditions. Additionally, it requires high 

number of experiments which increases the time spent and cost [18, 19]. These drawbacks can be 

eliminated by using another technique called response surface methodology (RSM) which 

examines the effects of all parameters simultaneously and is a useful method to study interactions 

of two or more parameters[18].  
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Optimization of process conditions by using RSM is a well applied method especially in CNT 

production. Liu et al.[20] employed the RSM methodology to study the effects of reaction 

temperature, reaction time and reaction gas on synthesis of CNTs. Porro et al. [21] worked on the 

effects of  temperature, carrier gas flow rate, metal catalyst concentration and tilt angle of substrate 

on the diameter of CNTs. Similarly, Kuo et al.[22] examined the diameter of CNTs as functions 

of reaction temperature, methane flow rate and chamber pressure by using experimental strategies. 

Kukovecz et al. [23] studied the effects of reaction temperature, time, preheating time, catalyst 

mass and flow rate on synthesis conditions of CNTs.  See et al.[24] investigated the influence of 

temperature, deposition time, feedstock concentration and fluidization ratio on CNT formation. 

Although design of experiment is widely used for CNT production optimization, it is not 

commonly used in BNNT synthesis even though both have very similar synthesis procedures.  

Thermoset polymers are widely used as matrix part of the composite materials [25, 26].Their main 

difference from thermoplastic polymers is that they experience chemical reactions through their 

usage while thermoplastics only experience physical changes such as melting [27].Although there 

are many types of thermoset polymers, epoxy resins have attracted the attention among the other 

thermoset polymers due to their superior properties such as high modulus, low shrinkage in cure, 

good adhesion, good chemical and corrosion resistance. Also, the properties of the uncured epoxy 

resin such as viscosity makes it easy to process and shape. Moreover, their low cost and light 

weight make them promising materials [26-29]. Due to such interesting properties of epoxy resins, 

they have a wide range of application areas including high performance composites, electronics, 

aeronautics …etc. [26, 30-32].   

It is known that the curing reaction of epoxy resin is an important factor for the properties of the 

final product. Linear epoxy monomers are linking to each other to form a three-dimensional 

crosslinked network during the curing process in which viscosity of the thermosets increases and 

cause a decrease in mobility of polymer chains. At the end of the process, they become rigid 

materials [27, 33]. Another effecting factor on the properties of the final product is the addition of 

filler materials. This approach enables to tune the final properties of polymer nanocomposites such 

as enhanced mechanical and  physical properties Usually, many thermosets are used in reinforced 

or filled form to tune their physical properties or to reduce their costs [27, 34].  
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Since the discovery of nanotube structures in 1991 [35], the interest in nanotube/polymer 

nanocomposites has increased and created a new class of reinforced materials [31].  More 

specifically, the studies about improving the various properties of epoxy resins by adding 

nanotubes have been widely performed [31, 33, 36, 37]. Most of the initial studies were performed 

by using carbon nanotubes (CNTs) due to their impressive properties such as high aspect ratio, 

good thermal and electrical conductivity and superior mechanical properties [32, 36, 38]. Another 

promising alternative to prepare such nanotube/epoxy resin nanocomposites is boron nitride 

nanotubes (BNNTs). Addition to superior physical and structural properties of BNNTs, alternating 

B and N atoms in the structure with different affinities result in polarization of B-N bond which 

may offer an advantage for better compatibility. In other words, BNNTs are expected have superior 

binding interfaces due to their polarized structures compared to CNTs [39]. 

As mentioned before, nanofillers are widely used reinforcement agents for polymer composites. 

Idea of mechanically strong, thermally enhanced, electrically insulator, transparent or whitish and 

lightweight composites makes BNNTs good candidates as nanofillers. Although there are few 

studies for the different thermal and mechanical properties of BNNT/epoxy nanocomposites [40, 

41], there is not a well-established study related to the effects of BNNTs on the curing mechanisms 

of epoxy resins which is very crucial for composite processing. But on the other hand, there are 

well established studies for the curing mechanisms of different types of CNT/epoxy resin 

nanocomposites. Zhou et al.[33] suggested that addition of multi walled CNTs to epoxy imidazole 

system created an acceleration effect on the overall curing. Puglia et al.[36] demonstrated that 

single wall CNTs incorporated into diglycidyl ether of bisphenol A-based (DGEBA) epoxy resin 

acted as a strong catalyst for curing system.  Xie at al. [32] studied the effects of addition of multi 

wall CNTs into tetraglycidyl-4,4’-diaminodiphenylmethane /4,4-diaminodiphenylsulfone 

(TGDDM/DDS) system which showed that CNTs had an acceleration effect on the cure reaction.   

Therefore, the main focus of this study is to optimize the synthesis conditions of boron nitride 

nanotubes (BNNTs) and investigate the effects of BNNTs synthesized under these optimum 

conditions on cure mechanism of widely used epoxy resin systems.  

  



4 

 

2 Chapter 2: Optimization of Synthesis Conditions of Boron Nitride Nanotubes (BNNTs) 

by Chemical Vapor Deposition (CVD) 

2.1  Introduction 

Boron nitride nanotubes (BNNTs) are structural analogues of carbon nanotubes (CNTs) in which 

alternating B and N atoms replace C atoms with almost no interatomic space change [1, 2]. BNNTs 

are theoretically predicted and synthesized in 1995 [3]. Similar to CNTs, BNNTs exhibit superior 

structural and mechanical properties [4, 5]. In addition, they have higher chemical stability than 

CNTs [6]. One important difference between these nanotubes is related to their electronic structure. 

BNNTs are good insulators with a wide band gap (~5.5 eV) which is independent from chirality, 

diameter and number of walls whereas CNTs are conductive materials with a narrow band gap [1, 

7, 8].  Due to their similar, unique and superb properties compared to CNTs, BNNTs become a 

good alternative and the interest in them have been grown recently [1, 4, 9, 10].  

Different methods for synthesizing BNNTs have been studied in the literature such as arc 

discharge[3], laser ablation [11], chemical vapor deposition (CVD) [6, 12, 13], substitution 

reaction of CNTs [14] or ball milling [15] …etc. Previous studies show that CVD technique is a 

good candidate for achieving high yield with high quality in relatively lower temperatures and 

lower costs among the other techniques [4, 9].  

Several parameters may affect the yield and properties of BNNTs produced by CVD, such as 

precursor content, reaction temperature, reactive gas flow rate, heating rate and reaction time [2, 

5, 16, 17]. There are previous studies focused on the effects of these parameters on the 

morphologies of BNNTs [2, 5, 17]. General approach in these studies was changing only one 

parameter while keeping other parameters constant to understand the effects of the parameter and 

the procedure was repeated for each parameter consecutively. But this method, which is called as 

one factor at a time, has some disadvantages. For instance, it neglects the interactions between 

parameters which may result in inaccurate optimal conditions. Additionally, it requires high 

number of experiments which increases the time spent and cost [18, 19]. These drawbacks can be 

eliminated by using another technique called response surface methodology (RSM) which 

examines the effects of all parameters simultaneously and is a useful method to study interactions 

of two or more parameters[18].  
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Optimization of process conditions by using RSM is a well applied method especially in CNT 

production. Liu et al.[20] employed the RSM methodology to study the effects of reaction 

temperature, reaction time and reaction gas on synthesis of CNTs. Porro et al. [21] worked on the 

effects of  temperature, carrier gas flow rate, metal catalyst concentration and tilt angle of substrate 

on the diameter of CNTs. Similarly, Kuo et al.[22] examined the diameter of CNTs as functions 

of reaction temperature, methane flow rate and chamber pressure by using experimental strategies. 

Kukovecz et al. [23] studied the effects of reaction temperature, time, preheating time, catalyst 

mass and flow rate on synthesis conditions of CNTs.  See et al.[24] investigated the influence of 

temperature, deposition time, feedstock concentration and fluidization ratio on CNT formation. 

Although design of experiment is widely used for CNT production optimization, it is not 

commonly used in BNNT synthesis even though both have very similar synthesis procedures.  

Therefore, the main focus of this chapter is to apply RSM method to optimize synthesis conditions 

of BNNTs by CVD. For this purpose, reaction temperature, reactive gas flow rate and heating rate 

were chosen as process parameters and diameter, aspect ratio and wafer coverage of the nanotubes 

as the responses of interest.  Empirical models were developed to correlate parameters to 

responses.  

2.2 Approach 

2.2.1.1 Definition of Experiment/Run 

In this study, every different set of synthesis conditions of BNNTs refers to an experiment/run. 

The conditions were defined as functions of reaction temperature, heating rate and reactive gas 

flow rate.  

2.2.1.2 Response Surface Methodology (RSM) 

Response surface methodology is a collection of statistical techniques to represent the 

experimental data as a mathematical approximation model. The model or response surface 

approximation can help to  predict the output(s) of interest at the conditions for which the 

experimental data is not available [18].One of the advantages of RSM is that it can reveal the 

interactions between parameter effects which is crucial while seeking an optimum solution. Also, 



6 

 

it typically requires lower number of experiments compared to one factor at a time method [18, 

20] when global optimal setting is aimed.    

Three parameters were chosen for this study: reaction temperature (X1), heating rate (X2) and 

reactive gas flow rate (X3) each with three different levels to consider in the experimental design 

[19]. The number of required experiments, N, for a full factorial design of three levels is calculated 

as N=3k where k is the number of factors [18]. Therefore, N=33=27 experiments (see Figure 1) 

were performed during this study to understand effects of chosen parameters on the diameter (Y1), 

aspect ratio (defined as thickness/diameter) (Y2) and wafer coverage ratio (Y3) of the nanotubes.  

The coding of the factors is typically implemented for systematic optimization studies which is a 

conversion of real values into dimensionless coordinates [19]. The related conversion can be 

performed by following the Equation 1 where Xi represents the coded variable whereas vi is the 

value of the parameter within the range of max and min 𝑣𝑖. Thus, the levels of each factor were 

coded as ‘-1, 0, +1’ corresponding to the lowest, middle and the highest values of each parameter, 

respectively (Table 1).  

 
𝑋𝑖 =

𝑣𝑖 − [(𝑚𝑎𝑥𝑣𝑖 + 𝑚𝑖𝑛𝑣𝑖) 2⁄ ]

[(𝑚𝑎𝑥𝑣𝑖 − 𝑚𝑖𝑛𝑣𝑖) 2⁄ ]
 (1) 

 

 

 

Figure 1:33 factorial experimental design 
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Table 1:Experimental Ranges and Coded Variables for BNNT Synthesis 

Parameters\ 

Coded Variables 

-1 

 (The Lowest) 

0  

(Middle) 

1 

 (The Highest) 

X1: Reaction Temperature (˚C) 1000 1100 1200 

X2: Heating Rate (˚C/min) 5 10 15 

X3: NH3 flow rate (ml/min) 100 150 200 

 

Seeking empirical models to understand the relation between parameters and system responses in 

optimization studies [18], quadratic polynomial equations for each response were developed in 

this study as given below (Eq 2),   

 Ŷ = b1 + b2x1 + b3x2+b4x3+ b5x1x2+b6x1x3+b7x2x3+b8x1
2+b9x2

2+b10x3
2 (2) 

 

where Ŷ and bi represent predicted response and coefficients, respectively.  

Addition to individual response analyzes, optimization study incorporating multi responses was 

conducted. When there are more than one response of interest, a favorable degree of compliance 

with each response/target is sought simultaneously for overall performance [18]. In other words, a 

compromised solution must be found [42]. For this purpose, aspect ratio and wafer coverage were 

chosen as multiple responses, considering diameter was included in the aspect ratio.  

DESIGN EXPERT software was used for regression analyzes to fit the predicted equations and 

for statistical analyzes.  

2.3 Experimental Procedure and Characterization 

2.3.1.1 Synthesis of Boron Nitride Nanotubes (BNNTs) by Chemical Vapor Deposition  

Boron nitride nanotubes (BNNTs) were synthesized by following the chemical vapor deposition 

(CVD) method. Two quartz tubes were placed inside each other with the diameters of 60 mm and 

20 mm in a horizontal furnace. The inner tube was chosen as a closed end type to trap vapor for 

further growth and it was placed in opposite direction of the reactive gas flow (Figure 2). Precursor 

material was prepared by mechanical grinding of amorphous B, MgO and Fe2O3 powders in 
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specific molar ratios. Si wafer coated with Al2O3 which works as a buffer layer and MgO which 

works as the catalyst by thermal evaporation. The precursor material was put inside an alumina 

crucible and the top of the crucible was covered by the Si wafer. Then, the crucible was placed 

inside the inner tube and the tube was placed inside furnace (Figure 3). Then, the air inside the 

tube was evacuated by vacuum pump. After the evacuation, furnace was heated with the chosen 

heating rate to the required reaction temperature under the chosen NH3 flow rate. [16, 17] 

 

Figure 2: Schematic of Vapor Trapped Chemical Vapor Deposition (CVD) [16] 

 

Figure 3:Furnace system used for the synthesis of BNNTs 

Vapor–liquid–solid (VLS) mechanism suggests that the partially melted catalysts creates a vapor 

pressure. When the pressure reaches the critical point, vapor condenses on the top of the substrate. 
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The as-formed BN particles diffuse into the condensed catalyst particles. Then, they start to 

agglomerate and form one dimensional nanotube structures when they supersaturate [2, 43].   

2𝑀𝑔𝑂(𝑠) + 2𝐵(𝑠) → 𝐵2𝑂2(𝑔) + 2𝑀𝑔(𝑔) 

2𝐹𝑒𝑂(𝑠) + 2𝐵(𝑠) → 𝐵2𝑂2(𝑔) + 2𝐹𝑒 (𝑠) 

𝐵2𝑂2(𝑔) + 2𝑁𝐻3(𝑔) → 2𝐵𝑁(𝑛𝑎𝑛𝑜𝑡𝑢𝑏𝑒) + 2𝐻2𝑂(𝑔) + 𝐻2(𝑔) 

 

Figure 4:Illustration of V-L-S mechanism 

 

Figure 5:Image of grown BNNTs on top of Si wafer 

2.3.1.2 Si Wafer Coating 

The properties of substrate are directly related to the growth and the quality of BNNTs produced 

by CVD. In other words, the coating of Si wafers is essential to control the growth and the increase 

the quality of nanotubes. Literature review shows that MgO is one of the best resulting catalyst for 

the CVD growth of BNNTs[44] . Thus, Si wafers were decided to be coated by the catalyst MgO. 

Also, Al2O3 was chosen to be a buffer layer to work as diffusion barrier between MgO and Si to 

minimize their interactions which reduces the activity of catalyst.  All of the coating works were 

performed in the clean room by using Torr e-beam and Thermal Evaporator under the 10-6 Torr 

vacuum environment. The average thicknesses of Al2O3 layers which was coated by e-beam were 
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measured as 20-30 nm while the average thicknesses of MgO layers which was coated by thermal 

evaporation were measured as 30 nm. 

 

Figure 6:Illustration of coated Si substrate 

2.3.1.3 Growth Time of BNNTs at the Reaction Temperature 

Another factor which affects the BNNT production is growth time. The waiting time at the reaction 

temperature is a governing factor on the amount and morphology of final BNNT products. In order 

to the optimize the process, two different growth times were chosen as 30 minutes and 1 hour.  The 

SEM images showed that longer growth time results in longer but entangled nanotube structures 

(Figure 7). Thus, growth time was chosen as 30 minutes for the optimization study to ease further 

analyzes.  

 

Figure 7:SEM images of BNNTs for different growth time at the reaction temperature  

 a)1-hour b)30 minutes 

2.3.1.4 Molar Ratio of Precursor Materials 

Another factor affecting the production of BNNTs is molar ratio of the precursor material’s 

compounds. Synthesis of BNNTs by CVD method requires the formation of B2O2 as an 

intermediate phase which is a result of the interaction between B and O. Thus, in order to get better 
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control of the results, different stochiometric ratios were investigated for the preparation of 

precursor material. The candidate molar ratios of B, MgO and Fe2O3 were chosen as 4:1:1 and 

2:1:1, respectively. The experimental conditions were kept the same to examine the effects of two 

different molar ratios on the   growth of nanotubes (reaction temperature, heating rate, NH3 flow 

rate were 1100˚C, 10˚C/min and 200 ml/min, respectively). It was clear that molar ratio of 4:1:1 

gave longer and thinner nanotubes when the morphologies of produced BNNT were examined 

(Figure 8). Thus, molar ratio of 4:1:1 was chosen for further studies.  

 

Figure 8:SEM images of BNNTs with different precursor molar ratios a) 4:1:1 b) 2:1:1 

2.3.1.5 Preliminary Characterizations of Synthesized BNNTs 

2.3.1.6 UV-VIS Spectroscopy  

It is known that the BNNTs are good insulators with a wide band gap (~5.5 eV) which is 

independent from chirality, diameter and number of walls [1, 7, 8].  Thus, UV-VIS spectroscopy 

was used to calculate the band gap of the synthesized BNNTs as an easy and fast characterization 

for understanding whether the nanotubes were successfully produced. BNNTs were synthesized at 

three different reaction temperatures, 1000˚C, 1100˚C and 1200˚C, while 200 ml/min NH3 flow 

rate and 10˚C /min heating rate were kept constant. Each wafer was sonicated in the ethanol to 

separate BNNTs from the surface of wafers. Then, the solutions were placed into quartz cuvettes. 

UV-VIS measurements were performed by using Shimadzu 3150 UV-VIS Spectrophotometer 

between 200-800 nm. According to the results, band gaps for each sample were calculated 

approximately 5.8 eV which agree with the literature (Figure 9).  
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Figure 9:UV-VIS graphs of two different experimental point at 1000˚C (left) and 1200˚C (right) 

2.3.1.7 Transmission Electron Microscopy (TEM) 

Additional characterization of the produced BNNTs were performed by transmission electron 

microscopy (TEM) and electron energy loss spectroscopy (EELS). Cs-corrected JEOL ARM 200 

Cold FEG TEM was used for structural analysis. Gatan-GIF Quantum ER Spectrometer was used 

for elemental analysis. 

As a first way for the TEM sample preparation, the produced BNNTs were scratched from on top 

of the Si wafer and mechanically grinded with the ethanol medium. TEM micrographs showed 

that BNNTs stayed in agglomerated form (Figure 10) which made length measurements not 

possible. As a second way, sonication was used for collecting BNNTs on top of Si wafer. Wafer 

and ethanol were sonicated for 90 minutes. After the sonication, the transparent color of ethanol 

turned into whitish color which indicated that the BNNTs were separated from the wafer and 

dispersed in ethanol. TEM micrographs showed that this method was successful and prevented 

agglomeration (Figure 11). Thus, specimen via sonication was used for further TEM analyzes. 
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Figure 10:Micrograph of agglomerated BNNTs obtained by mechanical scratching 

 

Figure 11:Micrograph of BNNTs obtained by sonication 
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The results of High Resolution TEM (HRTEM) analysis proved that the multiwalled BNNTs were 

successfully produced (Figure 12 a). The interatomic distance (interplanar spacing) of BNNTs 

were measured 0.32 nm in accordance with the literature (Figure 12 b) [45]. Addition to 

interatomic space distance, average diameter and length values of the nanotube in Figure 11 were 

measured to have an initial information about the scale of nanotubes. 20 different measurements  

were performed by using Image J and average diameter was measured as 35.47 nm with a standard 

deviation of 11 nm whereas average length was measured as 1259.2 nm with a standard deviation 

of 36.38 nm. 

EELS analysis was performed by Scanning transmission electron microscopy (STEM) mode for 

elemental analysis and 0.25 eV dispersion value was chosen to observe both B and N K-edges.  

The observed spectrum showed the characteristic K-edge peaks of both B and N at 188 and 401 

eV, respectively (Figure 13).  

 

Figure 12: a) Wall structure of BNNTs synthesized at 1100˚C, 10˚C/min heating rate and 200 

ml/min NH3 flow rate b) Interatomic space distance 

B A 
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Figure 13:B and N K-edges of BNNTs obtained by EELS 

2.3.1.8 Scanning Electron Microscopy (SEM) 

SEM images of the produced BNNTs were taken with LEO Supra VP35 field emission scanning 

electron microscope. Images of each experiment at 50K magnification were used for diameter 

analysis. Diameter of 100 different tubes were measured for each sample by using Image J 

software. Average diameter and standard deviation of the nanotubes were calculated according to 

the measurement results. 

2.3.1.9 Raman Spectroscopy 

It is a known that the BNNTs have a characteristic Raman shift around 1365 cm-1 and Raman 

spectroscopy is a widely used analysis technique for BNNTs [5, 16, 46]. The shift is attributed to 

E2g mode of vibrations. In other words, B and N atoms move against each other within the plane 

and cause high frequency counter phase vibrations [16, 17, 46].  

The Raman scattering experiments were performed with Renishaw inVia Reflex Microscope and 

Spectrometer, equipped with 532 nm visible green laser at room temperature in ambient 

environment. The calibration of the instrument was done with a silicon wafer by obtaining pure Si 

signal at ~520 cm-1. Raman spectra of the samples were obtained between 100 cm-1 and 3000 cm-

1 with 5% of the laser beam power and an exposure time of 10 seconds at 50x magnification. 

Spectral analyses were performed with the Renishaw WiRE software. 
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Figure 14:Illustration of Raman spectroscopy measurements of BNNTs on Si wafer 

The obtained Raman spectra of the all samples showed two distinct peaks: the first one is around 

1365 cm-1 and belongs to BNNTs as shown in the literature before [5, 16, 46]. The second one is 

around 520 cm-1 and comes from the Si wafer [47]. As illustrated in Figure 14, some of the incident 

beam scatters from BNNTs while some of them passes through the BNNTs and reaches to Si wafer 

below the tubes. 

The Raman peak intensity is related to concentration of species [48], but it may also vary with the 

laser power (Figure 15). To avoid the effect of laser power, all measurements were performed at 

constant laser power of 5%. Yet, the intensity may still be affected by the instrumental conditions. 

Since the Si wafer has the same properties for each sample, taking the ratio between intensities of 

BNNT peak and Si peak allows to comment on the relative concentrations by minimizing the 

instrumental effects [47, 48]. The ratio of the intensities of the BN peak to Si peak was considered 

as a measure for wafer coverage by the BNNTs. To circumvent errors due to concentration 

differences on top of the wafer surface, measurements were performed from 20 different points 

which were chosen homogenously with the help of a MATLAB algorithm for each sample and 

then the calculations were made (Figure 16).  
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Figure 15: Raman spectra of the same sample with different laser powers 

 

 

Figure 16:20 points simulations for MATLAB a)1000-10-150 b)1000-10-200 
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The curly and entangled morphology of BNNTs made individual length measurements of 

nanotubes difficult by microscopic techniques but at the same time it caused a film formation on 

top of Si wafer. Therefore, Raman spectroscopy measurements were used to calculate BNNT film 

thickness. Although the exact length of the produced BNNTs cannot be found by this technique, 

the thickness of BNNT formation on top of the surface can be found. Determination of film 

thickness of metal oxide systems is a previously used technique in the literature [49]. The 

transmitted light coming from the two parallel surfaces (wafer surface and nanotube surface) forms 

interferences due to phase differences. The frequency of these is related to the film thickness which 

is called as Fabry-Perot resonance (Eq 3).  

 𝑑 =
𝑚

2𝑛(𝑣2 − 𝑣1)
 (3) 

 

where d is film thickness, m is number of minimums between two interferences, n is the refractive 

index of the material and 𝑣2 − 𝑣1is the difference between the wavenumber of the highest and the 

lowest interferences. The refractive index of metal oxide coating on top of the Si wafer was 

neglected since it was very thin (~30 nm). Generally, three different interferences were observed 

in Raman spectra. These inferences were fitted to calculated film thicknesses. To increase the 

reliability of the results, average value of 20 different measurements from the wafer was used. 

Figure 17 shows the example fit for the study.  
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Figure 17: Example fit for 1200-5-150  

Note that there is a correlation between the length of BNNT and the thickness, i.e. the short 

nanotubes result in thinner films whereas longer and curly nanotubes result in thicker films which 

were used for aspect ratio calculations. Thus, errors in aspect ratio was minimized. Moreover, 

coverage of nanotubes was examined as well since the actual length of nanotubes were not 

calculated. 
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2.4 Results and Discussion 

2.4.1.1 Characterization Results 

2.4.1.2 SEM Results 

The SEM images of the BNNTs produced under 200, 150 and 100 ml/min NH3 flow rate are shown 

in Figures 18,19 and 20.  The different morphologies were observed by the SEM images. Average 

diameter and standard deviation measurements were performed from 100 different tubes by using 

Image J software (Table 2). 

 

Figure 18:SEM images of BNNTs produced under 200 ml/min NH3 flow rate (Right top: 

Experimental point) 
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Figure 19: SEM images of BNNTs produced under 150 ml/min NH3 flow rate (Right top: 

Experimental point) 
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Figure 20: SEM images of BNNTs produced under 100 ml/min NH3 flow rate (Right top: 

Experimental point) 
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Table 2:Diameter Measurements of Nanotubes 

Reaction 

Temperature (˚C) 

Heating Rate 

(˚C/min) 

NH3 Flow Rate 

(ml/min) 

Diameter    

(nm) 

Standard 

Deviation 

1000 5 100 40.20 18.63 

1000 5 150 43.39 18.58 

1000 5 200 36.10 13.38 

1000 10 100 47.61 11.78 

1000 10 150 62.14 27.38 

1000 10 200 45.62 19.23 

1000 15 100 42.77 12.42 

1000 15 150 73.60 26.99 

1000 15 200 47.40 18.45 

1100 5 100 37.64 12.34 

1100 5 150 41.89 14.05 

1100 5 200 27.23 6.81 

1100 10 100 55.15 15.04 

1100 10 150 59.65 28.63 

1100 10 200 57.75 28.69 

1100 15 100 38.47 11.02 

1100 15 150 54.22 22.76 

1100 15 200 46.23 18.99 

1200 5 100 62.38 19.60 

1200 5 150 44.46 17.62 

1200 5 200 52.30 21.32 

1200 10 100 109.92 56.81 

1200 10 150 51.71 21.95 
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1200 10 200 62.38 19.60 

1200 15 100 92,33 33.52 

1200 15 150 54.35 22.78 

1200 15 200 55.15 20.83 

 

2.4.1.3 Raman Spectroscopy Results 

Raman spectroscopy results for positions and intensities of BN and Si peaks are given in Table 3. 

Calculated BNNT film thickness results are given in Table 4.  

Table 3:Peak Positions and Intensities of BN and Si  

Reaction 

Temperature 

(˚C) 

Heating 

Rate 

(˚C/min) 

NH3 Flow 

Rate 

(ml/min) 

BN Peak 

(cm-1) Intensity 

Si Wafer 

Peak 

(cm-1)  Intensity 

1000 5 100 1367 59428 523 89551 

1000 5 150 1370 20010 520 70853 

1000 5 200 1361 20668 522 109484 

1000 10 100 1363 20240 521 89061 

1000 10 150 1367 31968 520 45922 

1000 10 200 1367 11648 522 89591 

1000 15 100 1365 20211 517 92284 

1000 15 150 1361 23588 520 48337 

1000 15 200 1365 7119 519 79865 

1100 5 100 1368 42467 519 44494 

1100 5 150 1371 31974 520 45922 

1100 5 200 1360 19538 519 39061 

1100 10 100 1365 17258 519 56730 

1100 10 150 1363 31422 520 20933 
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1100 10 200 1360 26042 519 17853 

1100 15 100 1367 45129 519 69560 

1100 15 150 1367 36650 520 30910 

1100 15 200 1367 19529 520 31380 

1200 5 100 1368 59751 516 50946 

1200 5 150 1370 48844 518 33133 

1200 5 200 1366 47943 515 26131 

1200 10 100 1367 42237 515 23523 

1200 10 150 1368 40152 517 25819 

1200 10 200 1368 62566 518 36569 

1200 15 100 1366 24960 516 14542 

1200 15 150 1369 46092 518 29517 

1200 15 200 1365 34992 518 19910 

 

Table 4:BNNT Film Thickness Values 

Reaction 

Temperature 

(˚C) 

Heating Rate 

(˚C/min) 

NH3 Flow 

Rate 

(ml/min) 

Thickness 

 (µm) 

1000 5 100 2.03 

1000 5 150 1.78 

1000 5 200 1.93 

1000 10 100 1.98 

1000 10 150 1.88 

1000 10 200 1.72 

1000 15 100 1.96 

1000 15 150 1.95 

1000 15 200 1.53 
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1100 5 100 2.04 

1100 5 150 2.00 

1100 5 200 2.03 

1100 10 100 2.06 

1100 10 150 2.07 

1100 10 200 2.11 

1100 15 100 2.10 

1100 15 150 1.98 

1100 15 200 2.06 

1200 5 100 2.16 

1200 5 150 2.14 

1200 5 200 2.16 

1200 10 100 2.19 

1200 10 150 2.09 

1200 10 200 2.15 

1200 15 100 2.15 

1200 15 150 2.10 

1200 15 200 2.16 

2.4.1.4 Statistical Analyzes  

Polynomial regression models were developed using a full factorial design to analyze the effects 

of parameters (reaction temperature (X1), heating rate (X2) and reactive gas (NH3) flow rate (X3)) 

and their interactions on the diameter (Y1), aspect ratio (Y2) and wafer coverage ratio (Y3) of the 

BNNTs. The response values are obtained from the experiments and shown in Table 5. The 

average diameter of the nanotubes changed between 36 to 110 nm, aspect ratio of the tubes ranged 

from 26 to 55 and the wafer coverage metric (ratio of BN peak to Si peak) varied from 0.13 to 

1.83.  Experimental errors were calculated from all 27 experiments. 

 



27 

 

Table 5:Full Factorial Design Matrix for BNNT Production  

 Levels  

Run X1 X2 X3 

Y1: 

Diameter 

(nm) 

Y2: Aspect 

Ratio 

(µm/ µm) 

Y3: Wafer 

Coverage 

Ratio 

1 -1 -1 -1 40.20 50.48 0.66 

2 -1 -1 0 43.39 41.15 0.28 

3 -1 -1 1 36.10 53.46 0.18 

4 -1 0 -1 47.61 41.58 0.22 

5 -1 0 0 62.14 30.40 0.69 

6 -1 0 1 45.62 37.69 0.13 

7 -1 1 -1 42.77 45.81 0.21 

8 -1 1 0 73.60 26.49 0.48 

9 -1 1 1 47.40 32.27 0.08 

10 0 -1 -1 37.64 54.18 0.95 

11 0 -1 0 41.89 47.73 0.69 

12 0 -1 1 27.23 74.53 0.50 

13 0 0 -1 55.15 37.34 0.30 

14 0 0 0 59.65 34.70 1.50 

15 0 0 1 57.75 36.53 1.45 

16 0 1 -1 38.47 54.68 0.64 

17 0 1 0 54.22 36.51 1.18 

18 0 1 1 46.23 44.63 0.62 

19 1 -1 -1 62.38 34.62 1.17 

20 1 -1 0 44.46 48.12 1.47 

21 1 -1 1 52.30 41.32 1.83 

22 1 0 -1 109.92 20.01 1.79 

23 1 0 0 51.71 40.58 1.55 

24 1 0 1 62.38 34.54 1.71 

25 1 1 -1 92.33 23.28 1.71 

26 1 1 0 54.35 38.80 1.56 

27 1 1 1 55.15 39.21 1.75 
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The P-value in statistical studies indicates the probability of errors stating that there is a significant 

evidence for  obtained results explained by the model and its terms [50]. Smaller values of P-value 

mean that the relevant coefficient terms are significant, and not zero [51]. The fitting models for 

each response were developed in terms of coded parameters after excluding the insignificant terms 

(i.e. P>0.05) and are given below (Eq 4-6)  

 Y1= +54,39+8,12X1+6,61X2-5,35X3-7,78X1*X3+10,41X1
2-11,88X2

2 (4) 

   

 Y2 = +40,82-2,16X1-5,77X2+1,79X3-4,30X1*X3+8,99X1
2+8,92X2

2 (5) 

   

  Y3= +0,94203+0,644X1+0,0289X2+0,0327X3 (6) 

 

Another approach for statistical analysis is the desirability function. The desirability function (d) 

is used to obtain optimum solutions for multiple response systems. The general approach in this 

method is to find individual desirability function for each response at first and then to find 

maximum values of overall desirability function, D, by changing parameters. The values of 

desirability function vary between 0 to 1. If the desirability function value is 1, it means the 

response achieves its target and if its value is 0, it means that the response’s value is not in an 

acceptable range [18]. 

2.4.1.5 Model Evaluation 

The accuracy of models was evaluated by the coefficient of determination value, R2. Figure 21 

shows the predicted values against the experimental values of the diameter, aspect ratio and wafer 

coverage. Figures show the predicted values are not fully in agreement with experimental data. 

The R2 values for the equations 3-5 were found as 61%, 59% and 77%, respectively.  
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Figure 21:a)Predicted vs experimental diameter of BNNTs, b) Predicted vs experimental aspect 

ratio of BNNTs, c) Predicted vs experimental wafer coverage 

Addition to predicted against experimental values analysis, the evidence of need for models to 

explain the data was examined by investigating the residuals. Figure 22 shows the normal plots of 

residuals and residual against predicted plots for diameter, aspect ratio and wafer coverage. The 

normal probability plots show how the residuals follow a normal distribution which is a basic 

assumption on the randomness of the experimental errors. If there is a straight line in plots, it 

means that residuals follow a normal distribution [20].Although there were some scattering in the 

data, they generally followed a straight line. Thus, the results indicate that data had a normal 

behavior for all responses.  
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Figure 22:Normal plot of residuals and residuals versus predicted plots for a), b) Diameter, c), d) 

Aspect ratio and e), f) Wafer coverage 
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Finally, the significance of models was evaluated by analysis of variance (ANOVA). The ANOVA 

results for quadratic models of diameter and aspect ratio are listed in Tables 6 and 7, while linear 

model for wafer coverage is listed in Table 8.  The model F values for diameter and aspect ratio 

were 5.32 and 5 which indicate that both models were significant with P-values of less than 1%. 

The probability values of the models show the possibility of obtaining F values just by randomness, 

but not an underlying model. Thus, having lower values are favorable for an existing model [18]. 

The probability values of models for diameter, aspect ratio and wafer coverage were 0.0020, 

0.0028 and <0.0010, respectively.  In cases for both diameter and the aspect ratio of nanotubes, 

reaction temperature (X1), heating rate (X2), reactive gas flow rate (X3) and some of their 

interaction terms (X1*X3, X1
2, X2

2) were significant terms for models according to their P values. 

F value for wafer coverage was 25.78 which made the term significant as well. For this case, 

reaction temperature (X1), heating rate (X2) and reactive gas flow rate (X3) were only significant 

terms, whereas their interaction terms were insignificant for the model given the available data.  

Table 6:Analysis of ANOVA for Response Surface Quadratic Model for BNNT Diameter 

Source Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

F Value Prob>F  

Model 4709.89 6 784.98 5.32 0.0020 significant 

X1 1186.66 1 1186.66 8.04 0.0102  

X2 785.80 1 785.80 5.32 0.0319  

X3 515.31 1 515.31 3.49 0.0764  

X1*X3 726.03 1 726.03 4.92 0.0383  

X1
2 650.00 1 650.00 4.40 0.0488  

X2
2 846.09 1 846.09 5.73 0.0266  
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Table 7:Analysis of ANOVA for Response Surface Quadratic Model for BNNT Aspect Ratio 

Source Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

F Value Prob>F  

Model 1925.59 6 320.93 5.00 0.0028 significant 

X1 83.85 1 83.85 1.31 0.2667  

X2 599.85 1 599.85 9.34 0.0062  

X3 57.60 1 57.60 0.90 0.3549  

X1*X3 221.97 1 221.97 3.46 0.0778  

X1
2 485.10 1 485.10 7.55 0.0124  

X2
2 477.22 1 477.22 7.43 0.0130  

 

Table 8:Analysis of ANOVA for Response Surface Linear Model for Wafer Coverage 

Source Sum of 

Squares 

Degree of 

freedom 

Mean 

Square 

F Value Prob>F  

Model 7.52 3 2.51 25.90 < 0.0001 significant 

X1 7.49 1 7.49 77.36 < 0.0001  

X2 0.014 1 0.014 0.14 0.7083  

X3 0.020 1 0.020 0.21 0.6537  

2.4.1.6 Effects of Parameters on Diameter of BNNTs 

ANOVA results showed that reaction temperature and heating rate had significant effects on 

diameter of nanotubes while reactive gas flow rate was the least affecting factor. Reaction 

temperature and heating rate both affected the response individually and proportionally to square 

of the parameters while reaction temperature and reactive gas flow found interactively affecting 

the diameter of the nanotubes. Figure 23 shows the three-dimensional response surface plot which 

demonstrates the effects of reaction temperature and heating rate on the diameters of BNNTs when 

the reactive gas flow rate was fixed at +1 level. As can be seen from the Figure 23, minimum 

heating rate results in narrower diameters whereas mid-level reaction temperature gives the 

minimum diameter values.  
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Figure 23:Three-dimensional response surface plot showing the effects of reaction temperature 

and heating rate on diameter of BNNTs (Reactive gas flow rate is fixed at +1 level.) 

The desirability functions were calculated by the Design Expert Software and the possible 

solutions were found to determine the optimum reaction conditions for minimum diameter of 

nanotubes. The most desirable solution was found as reaction temperature of 1098˚C, heating rate 

of 5˚C/min and reactive flow rate of 200 ml/min with a desirability function value of 0.960.  The 

diameter predicted under these conditions was 30.55 nm which was in a good agreement in our 

experimental diameter value of 27.23 nm for reaction temperature of 1100˚C, heating rate of 

5˚C/min and reactive flow rate of 200 ml/min. Also, it was notable that most of the suggested 

solutions required minimum heating rate and maximum reactive gas flow rate.  

2.4.1.7 Effects of Parameters on Aspect Ratio of BNNTs 

ANOVA results showed that reaction temperature and heating rate had significant effects on aspect 

ratio of the nanotubes while reactive gas flow rate was the least effective similar to the case of 

diameter. Both of reaction temperature and heating rate affected the response individually and 

proportionally to the square of the parameters. Figure 24 shows the three-dimensional response 

surface plot which demonstrates the effects of reaction temperature and heating rate on the aspect 

ratio of BNNTs when the reactive gas flow rate was fixed at 0 level.  
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Figure 24:Three-dimensional response surface plot showing the effects of reaction temperature 

and heating rate on aspect ratio of BNNTs (Reactive gas flow rate is fixed at 0 level.) 

The desirability functions were calculated by the Design Expert Software and the possible 

solutions were found to determine the optimum reaction conditions for maximum aspect ratio of 

the nanotubes. The most desirable solution was found as reaction temperature of 1110˚C, heating 

rate of 5˚C/min and reactive flow rate of 200 ml/min with a desirability function value of 0.686. 

The aspect ratio predicted under these conditions was 57.427. Also, it was notable that most of the 

suggested solutions required minimum heating rate and maximum reactive gas flow rate.  

2.4.1.8 Effects of Parameters on Wafer Coverage of BNNTs 

ANOVA results showed that all reaction temperature, heating rate and reactive gas flow rate had 

significant effects on the wafer coverage. The predicted model was a first order polynomial model, 

no interaction was noted. Figure 25 shows the three-dimensional response surface plot which 

demonstrates the effects of reaction temperature and heating rate on wafer coverage of BNNTs 

when the reactive gas flow rate was fixed at 0 level. Figure 26 demonstrates how the wafer 

coverage is related to the Raman shift intensities. When the wafer is more coated, the signal coming 

from the specimen is more significant which results in higher intensity. On the other hand, signal 

coming from the wafer increases when the coating is not sufficient. 
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Figure 25:Three-dimensional response surface plot showing the effects of reaction temperature 

and heating rate on wafer coverage of BNNTs (Reactive gas flow rate is fixed at 0 level.) 

 

Figure 26: An example for relation of wafer coverage Raman shift intensities  

The desirability functions were calculated by the Design Expert Software and the possible 

solutions were found to determine the optimum reaction conditions for maximum wafer coverage 

of the nanotubes. The most desirable solution with a desirability function value of 1, was reaction 
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temperature of 1200˚C, heating rate of 15˚C/min and reactive flow rate of 200 ml/min. The wafer 

coverage predicted under these conditions was found as 1.648. Also, it was notable that most of 

the suggested solutions required maximum reaction temperature, maximum heating rate and 

maximum reactive gas flow rate.  

2.4.1.9 Optimization of Process Conditions by Multiple Response Surface Methodology 

The results of the optimization studies for three different responses were different than each other 

due to their differences in the region of interest for each factor. Thus, a multiple response surface 

optimization study was required to obtain a compromised solution. Objectives for this study were 

chosen as aspect ratio and wafer coverage since diameter results were already included in aspect 

ratio values. The desirability function was used to find optimum solution for maximum aspect ratio 

and maximum wafer coverage.  

The most desirable solution was reaction temperature of 1191˚C, heating rate of 5˚C/min and 

reactive flow rate of 200 ml/min with a desirability function value of 0.94. The aspect ratio of the 

nanotubes was predicted as 51.82 and the wafer coverage was predicted as 1.53 which were in a 

good agreement in our experimental aspect ratio and wafer coverage values of 41.32 and 1.83 for 

reaction temperature of 1200˚C, heating rate of 5˚C/min and reactive flow rate of 200 ml/min. 

Also, it was notable that most of the suggested solutions required very close values to maximum 

reaction temperature, while they require minimum heating rate and maximum reactive gas flow 

rate. 

2.5 Conclusions 

A full factorial experimental design was conducted to study the effects of reaction temperature, 

heating rate and reactive gas flow rate on diameter, aspect ratio and wafer coverage of BNNTs. 

Empirical models were developed to understand system’s behavior. Experimental values and 

predicted results from the developed models showed a reasonable agreement for each response. A 

multiple response surface optimization study was performed to determine a compromised solution 

which satisfies each response as possible.  The optimum conditions for maximum aspect ratio and 

maximum coverage was found as 1190˚C reaction temperature, 5˚C/min heating rate and 200 

ml/min reactive gas flow rate.  
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3 Chapter 3: Effects of Boron Nitride Nanotubes (BNNTs) on Epoxy Resin Curing 

3.1 Introduction 

Thermoset polymers are widely used as matrix part of the composite materials [25, 26].Their main 

difference from thermoplastic polymers is that they experience chemical reactions through their 

use while thermoplastics only experience reversible physical changes such as melting [27]. Among 

them, epoxy resins have attracted the attention the most due to their superior properties such as 

high modulus, low shrinkage in cure, good adhesion, good chemical and corrosion resistance. 

Also, the properties of the uncured epoxy resin such as viscosity makes it easy to process and 

shape. Moreover, their reasonable cost and light weight make them promising materials [26-29]. 

Due to such interesting properties of epoxy resins, they have a wide range of application areas 

including high performance composites and electronics. [26, 30-32].   

It is well known that the curing reaction of epoxy resin is an important factor for the properties of 

the final product. Linear epoxy monomers are linking to each other to form a three-dimensional 

crosslinked network during the curing process in which viscosity of the thermosets progressively 

increases causing a decrease in mobility of polymer chains until it becomes fully solidified. [27, 

33]. Another effecting factor on the properties of the final product is the addition of filler materials. 

Typically, many thermosets are used in reinforced or filled form to tune their physical properties 

and characteristics and/or to reduce their costs [27, 34].  

Since the discovery of nanotube structures in 1991 [35], the interest in nanotube/polymer 

nanocomposites has increased and created a new class of reinforced materials [31].  More 

specifically, improvements of the various properties of epoxy resins by adding nanotubes have 

been widely studied [31, 33, 36, 37]. The most of the initial studies was performed by using carbon 

nanotubes (CNTs) due to their impressive properties such as high aspect ratio, good thermal and 

electrical conductivity and superior mechanical properties [32, 36, 38]. Another promising 

alternative to prepare such nanotube/epoxy resin nanocomposites is boron nitride nanotubes 

(BNNTs). BNNTs are structural analogues of carbon nanotubes (CNTs) in which alternating B 

and N atoms replace C atoms with almost no interatomic space change [1, 2]. BNNTs were 

theoretically anticipated and first synthesized in 1995 [3]. Similar to CNTs, BNNTs exhibit 

superior thermal and mechanical properties [4, 5]. In addition, they have higher chemical stability 



38 

 

than CNTs [6]. One important difference between these nanotubes is related to their electronic 

structure. BNNTs are good insulators with a wide band gap (~5.5 eV) which is independent from 

chirality, diameter and number of walls whereas CNTs are conductive materials with a narrow 

band gap [1, 7, 8].  Addition to these, alternating B and N atoms in the structure with different 

affinities result in polarization of B-N bond which may offer an advantage for better compatibility. 

In other words, BNNTs are expected have superior binding interfaces due to their polarized 

structures [39]. 

As mentioned before, nanofillers are widely used as reinforcing and enhancing agents for polymer 

composites. Idea of mechanically strong, thermally enhanced, electrically insulator, transparent or 

whitish and lightweight composites recalls BNNTs as good nanofiller candidate. There are much 

fewer studies for the different thermal and mechanical properties of BNNT/epoxy nanocomposites 

[40, 41] compared to CNTs. Yet there is not a well-established study related to the effects of 

BNNTs on the curing mechanisms of epoxy resins which is very crucial for composite processing. 

As for guiding work, again one can find numerous studies for the curing mechanisms of different 

types of CNT/epoxy resin nanocomposites. Zhou et al.[33] suggested that addition of multi walled 

CNTs to epoxy imidazole system created an acceleration effect on the overall curing. Puglia et 

al.[36] demonstrated that single wall CNTs incorporated into diglycidyl ether of bisphenol A-based 

(DGEBA) epoxy resin acted as a strong catalyst for curing system.  Xie at al. [32] studied the 

effects of addition of multi wall CNTs into tetraglycidyl-4,4’-diaminodiphenylmethane /4,4-

diaminodiphenylsulfone (TGDDM/DDS) system which showed that CNTs had an acceleration 

effect on the cure reaction.   

It is known that, highly cohesive Van der Waals forces and hydrophobic properties of BNNTs 

make it difficult to form homogenous dispersion in aqueous medium [52]. Also, literature review 

showed that better dispersion can be achieved by surface functionalization of nanotubes which 

enhances the reactivity of nanofillers. Therefore, better interfacial bond can be formed in polymer 

matrices which may prevent agglomerations and increase their compatibility [31, 37]. Thus, there 

are few studies focusing on surface functionalization of BN based nanofillers.  For instance, Lee 

et al. [37] studied the effects of surface modifications on hexagonal boron nitride nanoflakes in 

polymer matrix by noncovalent modifications. They concluded that functionalization increased the 

surface area between nanoflakes and polymer and therefore improved the physical properties. Yan 
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et al. [52] worked on noncovalent functionalization of BNNTs to increase compatibility between 

nanotubes and epoxy resin to improve physical properties. Thus, one can suggest that surface 

functionalization should be applied on BNNTs to improve dispersion inside polymer matrix. But 

in this study unfunctionalized (as-synthesized) form of BNNTs were preferred since this work is 

considered as an initial cure mechanism study.  

The main focus of this chapter is to comprehend the effects of BNNTs on cure mechanism of 

epoxy resin systems. Therefore, different weight fractions of BNNTs were added into epoxy 

resin/hardener systems. Cure behavior of the prepared nanocomposites was observed by mainly 

dynamic and isothermal scanning measurements. 

3.2 Cure Mechanism of Epoxy Resins 

Uncured thermoset polymers usually consist of monomers and hardener molecules. Cure reaction 

or curing is an exothermic process which starts when linear monomers begin to form longer chains 

and branches. Through the cure reaction molecular mass continues to increase in an accelerated 

manner and eventually monomers form a linked network of infinite molecular mass (Figure 27). 

As the curing proceeds, an irreversible transformation occurs due to creation of new chemical 

bonds between monomers and this transformation from liquid to elastic gel state is called as gel 

point or gelation. Basically, gelation is the early stages of forming a crosslinked network and it is 

the most distinguishable property of thermoset materials. As the cure reaction continues, 

thermosets lose their ability to flow and when they exceed the gel point they are no longer further 

interfered. Nevertheless, the cure reaction remains unaffected by the gelation process. In other 

words, curing rate stays constant when the gelation occurs.  Finally, fully cured and rigid structures 

are formed when the reaction proceeds beyond gel point [27, 53] 
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Figure 27:Illustration of thermoset curing a) Monomers b) Linear growth and branching 

c)Formation of crosslinked network (gelled but incomplete) d)Fully cured thermoset [27] 

Epoxy resin is one of the widely used thermoset polymers which has at least two oxirane ring 

(C2H4O) or epoxy groups in their structures which are very reactive due to ring strain. Epoxide 

groups react with themselves and other groups to initiate curing reactions by forming crosslinked 

networks. As illustrated in Figure 28, nucleophilic attack on terminal carbon (C-O) causes bond to 

break which results in oxirane ring opening  [31, 54]. Primary amine groups in hardener react with 

epoxy and form secondary amine groups which also react with remaining epoxy resin (Figure 29). 

Simultaneously, hydroxyl groups which are generated by the reaction between secondary amine 

hydrogen and epoxy results in formation of ether links by process called as etherification (Figure 

30). In case of excess amount of epoxy ring or low activity of amine groups, etherification may 

compete with curing reaction. In order to avoid such cases cure temperature and stoichiometric 

ratio of epoxy/amine system should be chosen carefully [27, 31]. Moreover, overall cure reaction 

can be accelerated by the formation of secondary alcohols and hydroxyl groups which may serve 

as additional reactive sites.  
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Figure 28:Oxirane opening mechanism via nucleophilic addition in epoxy systems [31] 

 

Figure 29:Curing mechanism of epoxy resins with amine based hardeners [31] 



42 

 

 

Figure 30: Mechanism of etherification reaction [31] 

3.3 Cure Kinetics 

Cure kinetics study is to reveal mathematical relationship between time, temperature and 

conversion. There are various methods used for analyzing cure kinetics of systems. Kissinger and 

Ozawa-Flynn-Wall methods were chosen for this cure kinetics study. Kissinger method assumes 

that activation energy remains constant through the cure reaction which is assumed to a be a first 

order reaction.  It utilizes heating rate and peak temperature for kinetic model analysis as the 

following (Eq 7)  

 
ln (

𝛽

𝑇𝑝
2) = ln (

𝐴𝑅

𝐸𝑎
) −

𝐸𝑎

𝑅𝑇𝑝
 (7) 

 

where β is heating rate, Tp is peak temperature of exotherm reaction, A is the pre-exponential factor, 

R is the universal gas constant and Ea is the activation energy. Values of Ea and A can be found by 

plotting ln(β/Tp
2) against 1/Tp. The slope of the plotted graph gives Ea whereas the intercept gives 

A values [27, 29]. 

On the other hand, Ozawa-Flynn-Wall (OFW) method assumes that the activation energy of curing 

reaction changes as the reaction proceeds and it presumes the required amount of activation energy 

to decreases. Degree of cure (α) changes between 0 to 1 which correspond to uncured and fully 

cured systems. Similar to Kissinger method, OFW method uses heating rate and peak temperature 

of exotherm for kinetic model analysis as the following (Eq 8) 

 
log(𝛽) =

−0,457𝐸𝑎

𝑅𝑇
+ 𝐴′        𝐴′ = log (

𝐴𝐸𝑎

𝑔(𝛼)𝑅
) − 2,315 (8) 
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where β is heating rate, T is temperature, A is pre-exponential factor, g(α) is conversion dependent 

function, R is universal gas constant and Ea is activation energy. Values of Ea and A for each degree 

of cure can be found by plotting logβ against 1/T. The slope of the plotted graph gives Ea whereas 

the intercept gives A’ values [27].  

Area under the exothermic crosslinking curve gives the enthalpy value of the reaction (ΔH). As 

the reaction proceeds and system becomes partially cured, the required amount of enthalpy to 

complete cure reaction (residual enthalpy (ΔHr)) is expected to decrease. The partial cure degree 

can be calculated by the area under the exothermic curve after isothermal process [27]. The 

following equation is used for the degree of cure calculations for isothermal cure analyzes (Eq 9) 

 
𝛼 =

𝛥𝐻 − 𝛥𝐻𝑟

𝛥𝐻
 (9) 

 

where α is degree of cure for partially cured systems in isothermal temperatures, ΔH is enthalpy 

of reaction obtained from dynamic measurements and ΔHr is required amount of enthalpy to 

complete cure reaction after isothermal process [27]. 

Cure behavior of thermoset polymer systems are usually defined by the nth order or autocatalytic 

models. The nth order reaction model assumes that the rate of reaction only depends on unreacted 

reactants. This model successfully predicts the initial stages of curing, since it assumes that 

maximum reaction rate occurs at t=0. But it fails when system  reaches the maximum reaction 

rates at the intermediate degree of cures [27]. Equation 10 below describes nth order kinetic model; 

 𝑑𝛼

𝑑𝑡
= 𝑘(𝑇)𝑓(𝛼) = 𝐴𝑒𝑥𝑝 (−

𝐸𝑎

𝑅𝑇
) (1 − 𝛼)𝑛 (10) 

 

where k(T) is temperature dependent rate constant, f(α) is reaction model, A is pre-exponential 

constant, Ea is activation energy, R is universal gas constant, α is degree of cure and n is reaction 

order.  

The autocatalytic model assumes that at least one of the reaction products contributes to the overall 

reaction. This type of kinetic models usually characterized by maximum conversion degree of 20% 

to 60% at maximum rate [28]. Equation 11 describes the autocatalytic model; 
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 𝑑𝛼

𝑑𝑡
= 𝑘(𝑇)𝑓(𝛼) = 𝐴𝑒𝑥𝑝 (−

𝐸𝑎

𝑅𝑇
) (1 − 𝛼)𝑛(𝛼)𝑚 (11) 

 

where k(T) is temperature dependent rate constant, f(α) is reaction model, A is pre-exponential 

constant, Ea is activation energy, R is the universal gas constant, T is temperature, α is degree of 

cure and m and n are reaction orders. 

3.4 Experimental Procedure and Characterization 

3.4.1.1 Materials 

The liquid epoxy resin used in this study was a diglycidyl ether of bisphenol A (DGEBA) and the 

hardener was 4-4’ methylenebis (cyclohexylamine) and isophrone diamine. Both epoxyr esin and 

hardener compounds were purchased from Huntsman (RenLam LY113 (epoxy)/Ren HY 

98(hardener)). The chemical structures are presented in Figures 30 and 31.   

 

Figure 31:Chemical structure of DGEBA epoxy resin [29] 

 

Figure 32:Chemical structures of amine-based hardener 

Multiwalled boron nitride nanotubes (BNNTs) which were synthesized under obtained optimum 

synthesis conditions obtained from Chapter 2 were used for cure kinetics study. Thus, all the 
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BNNTs used for BNNT/epoxy nanocomposites were synthesized at 1200˚C with heating rate of 

5˚C/min under the 200 ml/min NH3 flow rate.  

3.4.1.2 Sample Preparation 

As a first step of sample preparation, produced BNNTs were collected from the surface of Si wafer. 

Literature review showed that there are two commonly used techniques: dissolving nanotubes in 

proper solvent and mechanical scratching. Latter one was chosen for this study since the first one 

may result in losing product. BNNTs were scratched from the surface of Si wafer by using a 

spatula. Figure 33 shows collected BNNTs in white color.  

 

Figure 33: Collected BNNTs from the top of Si wafer by mechanical scratching 

Dispersion of the collected BNNTs inside the epoxy matrix was the second step of the sample 

preparation. There are different approaches for addition of nanofillers [55, 56]. One of these 

approaches which was employed in this study is adding nanofillers to hardener first and adding 

epoxy afterwards.  Collected BNNTs were added to hardener and sonicated for 1 hour to 

homogenize length of nanotubes. After the sonication BNNT/hardener solution was subjected to 

magnetic stirring for 15 hours to achieve homogenous dispersion of nanotubes inside the matrix. 

Then, required amount of epoxy was added to BNNT rich hardener by following 100:33 epoxy to 

hardener weight ratio. Samples containing 10.5 ± 0.5  mg nanocomposites were prepared for 

dynamic and isothermal DSC measurements. Figure 34 shows the illustration of BNNT/epoxy 
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nanocomposite and DSC sample preparation process. Storage of the prepared samples is very 

crucial for two-part epoxy resin/hardener systems, especially to prevent any unwanted reactions 

prior to actual measurements. A typical achievable criterion is allowing up to 1% reaction before 

the measurements. One suggested technique for moderately reactive systems in room temperature 

is to mix solution in room temperature and freeze until the measurement [27, 32, 33]. Thus, 

prepared samples were stored at freezer until the measurements. In addition to the DSC samples, 

samples for mass analyzes and dispersion analyzes were prepared from the same batch. 

 

Figure 34:Illustration of BNNT/Epoxy resin nanocomposite preparation for DSC measurements 

Five different weight fractions of BNNT/epoxy resin nanocomposites addition to neat epoxy were 

prepared by following the procedure above which were 0.25, 0.5,0.75,1 and 2wt% BNNT/epoxy 

resin nanocomposites. 
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3.4.1.3 Characterization Methods 

3.4.1.4 Spectroscopic Characterizations 

Fourier-transform infrared spectroscopy (FTIR) were performed to analyze cure reaction of epoxy 

resin/hardener system with Thermo Scientific Nicolet iS10 FTIR Spectrometer in mid-infrared 

region (between 600 and 4000 cm-1) in Attenuated Total Reflection (ATR) mode. 

3.4.1.5 Thermogravimetric Analyzes Measurements 

Thermogravimetric analyzes of chosen samples were performed by using Shimadzu DTG-60H 

Simultaneous DTA-TG Apparatus to control mass content of prepared BNNT/epoxy 

nanocomposites. Analyzes were conducted between 30℃ to 800℃ with heating rate of 10℃/min 

under 100 ml/min nitrogen flow.   

3.4.1.6 Microscopic Characterizations 

SEM images of the BNNT/epoxy resin nanocomposites were taken with LEO Supra VP35 Field 

Emission Scanning Electron Microscope. Nikon Eclipse ME 600 Optical Microscope was used for 

distribution analysis of nanocomposites. Images were taken at 100x and 50x magnifications in 

dark field mode and cross polarizer was used. 

3.4.1.7 Differential Scanning Calorimetry Measurements 

Thermal properties of BNNT/epoxy resin nanocomposite specimens were probed by using TA 

Instruments Q2000 Differential Scanning Calorimeter (DSC). For dynamic DSC measurements, 

the temperature was ramped from 0℃ to 250℃ at five different heating rates (β), which were 2, 

5, 10, 15 and 20℃/min in the first cycle. After cooling down to 0℃, a second heating cycle was 

performed up to 250℃ with constant heating rate of 5℃/min to remove any prior thermal history. 

The first cycles of dynamic temperature scans were used to measure reaction enthalpies (ΔH) and 

reaction peak temperatures (Tp). The second cycle was used for determining Tg values. Isothermal 

DSC measurements were performed for 3 different isothermal waiting temperatures: 60℃, 85℃ 

and 115℃ which were chosen based on the onset and peak points of dynamic scan of uncured neat 

epoxy resin (0 wt% BNNT) with heating rate of 10℃/min. Samples were partially cured by waiting 

5, 15, 30, 60, 90 and 120 minutes at isothermal temperatures. After the partial curing, samples 

https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy
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were cooled down to -30℃ and heated up to 250℃ by heating rate of 10℃/min. The second cycles 

of isothermal measurements were used to determine residual enthalpy and Tg values. All of the 

DSC measurements were performed under constant environment of nitrogen with flow rate of 50 

ml/min. Analyzes of DSC measurement were performed by using TA Instruments Universal 

Analysis 2000 software. 

3.5 Results and Discussion 

3.5.1.1 Spectroscopic Analyzes 

FTIR measurements were performed to follow the cure reaction of the epoxy resin/hardener 

system. Figure 35 a shows the FTIR spectra of amine-based hardener and epoxy resin separately. 

Figure 35 b shows only epoxy resin after curing. The observed two-shoulder peak around 3300 

cm-1 in spectrum of hardener results from vibration movement of N-H bond stretching. Spectrum 

in Figure 35 b exhibits many characteristic peaks of epoxy resin: One around 1610 cm-1 

corresponds to stretching of C=C of aromatic ring, one around 2900 cm-1 may correspond to 

stretching  C-H of CH2 and CH aromatic and one around 910 cm-1 corresponds to stretching C-O 

of oxirane ring in the structure [57]. When the spectrum of fully cured epoxy resin is examined, 

the peak around 3400 cm-1 hints the -OH formation due to oxirane ring opening which indicates 

curing reaction was successful. 

 

Figure 35:FTIR spectra of a) Epoxy resin and hardener b) Fully cured epoxy resin 
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3.5.1.2 Thermogravimetric Analyzes 

It is known that BNNTs are thermally stable up to 1100˚C whereas the high performance epoxy 

resin starts to degrade approximately around 450˚C [58, 59]. Thus, ashes of epoxy resin and 

BNNTs are expected to remain after heating up to 800˚C. Consecutive measurements of neat and 

BNNT rich nanocomposites were performed for each weight ratio to get rid of the environmental 

conditions and to be able to assess the BNNT content. The mass analyzes showed reasonable 

outcomes for aimed BNNT weight fractions of 2%, 1% and 0.75% (Figure 36). But when it is 

lower than 0.75 wt%, results were inconclusive due to sensitivity of the instrument.  

 

Figure 36:Obtained TGA curves of nanocomposites for different BNNT contents 



50 

 

3.5.1.3 Microscopic Analyzes 

3.5.1.3.1 Optical Microscopy  

It is known that epoxy resin polymers have an amorphous structure due to their crosslinked 

network which prevents formation of crystalline structures. On the other hand, BNNTs are 

crystalline [27, 60]. Epoxy resin exhibits an isotropic behavior in optical microscopy. In other 

words, since the chemical bonds formed in crosslinking are same at all directions, velocity of light 

does not change through the interaction. Thus, the dispersion of crystalline BNNT inside 

amorphous epoxy resin can be observed by optical microscopy.  Figure 37 a and b show the optical 

microscopy images of 0.25 wt% BNNT and 0.75 wt% BNNT, respectively. Dark backgrounds in 

the images represent the epoxy resin while the inorganic nanotubes are observed as shiny particles.  

It was clear that BNNTs were dispersed homogenously in the epoxy matrix in 0.25 wt% 

BNNT/epoxy nanocomposite. Similarly, 0.75 wt% BNNT/epoxy nanocomposite had a good 

dispersion of nanotubes with local agglomeration regions of nanotubes.  

 

Figure 37:Optical microscopy images taken in dark field for dispersion of BNNTs inside epoxy 

resins a)0.25 wt% BNNT in 100x b)0.75 wt% BNNT in 50x 

3.5.1.3.2  Scanning Electron Microscopy (SEM) 

In addition to optical microscopy, scanning electron microscopy (SEM) was used to analyze 

dispersion of BNNTs inside epoxy matrix for 1 wt% and 2 wt% BNNT content nanocomposites. 

Mechanical test specimens after the fracture were used for this purpose. In accordance with the 

optical microscopy images which showed that 0.75% BNNT content nanocomposites had a good 
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dispersion with local agglomerations, 1 wt% had more frequent agglomeration regions of BNNTs 

(Figure 38 a b c). Also, 2 wt% BNNT content nanocomposites had almost no dispersion of 

nanotubes and they formed bulk agglomeration regions as seen in Figure 38 d. Thus, it can be 

concluded that 1 wt% BNNT content is the limit for good dispersion of nanotubes in epoxy resin 

matrix for this study.  

 

Figure 38:SEM images of specimens a-b-c) Tensile testing specimen of 1 wt% BNNT at 5K, 

20K and 500X d)3PB specimen of 2 wt% BNNT at 250X 

Agglomeration of nanotubes can stem from strongly cohesive Van der Waals forces between 

nanotubes[52]. Also, curly and entangled structures of BNNTs can contribute to cohesion and 

cause agglomerations. An improved dispersion can be achieved by surface functionalization which 

enhances the reactivity of nanofillers as seen in literature [37, 52]. Therefore, better interfacial 

bond can be formed in polymer matrices which may prevent agglomerations and increase 

compatibility of nanotubes [31, 37]. Thus, one can suggest that surface functionalization should 

be applied on BNNTs to improve dispersion inside polymer matrix.  
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3.5.1.4 Differential Scanning Calorimetry (DSC) Analyzes 

3.5.1.4.1 Dynamic DSC Analyzes 

The results of dynamic DSC measurements of different BNNT content/epoxy resin 

nanocomposites which were performed with different heating rates of 2, 5, 10, 15 and 20˚C/min 

are demonstrated in Figure 39.  

A single broad exothermic peak was observed for each measurement which typically indicates that 

the system is governed by main curing reaction, not by side reactions. Thus, overall heat generated 

during the processes can be related to the curing [61]. Peak temperatures of exotherm were shifted 

to higher temperatures as the heating rate was increased. The reason of such behavior is that when 

the heating rate is slower, system has more tendency to become like-isothermal and to undergo 

chemical reactions accordingly. Thus, they can complete the curing at lower temperatures. But 

when the heating rate is higher, systems do not have enough time for reactions which leads to 

completion of curing reactions at higher temperatures to compensate time lack [61]. The obtained 

values of exothermic peak temperatures (Tp), glass transition temperatures (Tg) and enthalpy by 

dynamic measurements are listed in Table 9. When the results are examined, exothermic peak 

temperature values slightly decreased with the increasing BNNT content up to 0.75 wt %. 

Although 1 wt % and 2 wt % BNNT content nanocomposites reached the peak temperatures higher 

than 0.75 wt %, they were also at lower temperatures compared neat epoxy. Observed decrease is 

at all attributed to the dispersion quality of BNNTs inside epoxy resin. It can be noted that, BNNT 

filled epoxy resins reached faster to exotherm peak which is an indication for fast curing systems.  

The glass transition temperature of a polymer defined as the critical temperature which melt or 

rubbery states changes into glassy state. The glass transition occurs in amorphous or amorphous 

fractions of semi crystalline polymers and Tg values depend on the mobility of polymer chains. 

The amorphous polymers are in glassy state and rigid form below their Tg values whereas they are 

in melt state above Tg values [27]. Thus, glass transition is very crucial for practical usage of 

polymers since it may also define limits for processing and usage temperatures. Results showed 

that Tg values exhibited a slight increase up to 0.75 wt % at which a sudden decrease in Tg was 

observed. Afterwards, Tg values continued to increase with increasing BNNT content.  Increase in 

Tg with the addition of nanotubes can be attributed to constrained mobility of epoxy monomers. 
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Addition to physical hindrance of nanotubes, their accelerating effects at the initial stage of curing 

results in higher crosslinking density in epoxy resin matrix which leads to increase in Tg as well 

[31, 33]. On the other hand, sudden decrease in Tg at 0.75 wt % BNNT content can be attributed 

to homogenous dispersion of BNNTs inside epoxy matrix which creates extra free volume to allow 

big segmental motion of  epoxy resin [33].  
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Figure 39: Dynamic DSC curves with different heating rates of the different BNNT content nanocomposites 
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Table 9: Tp, Tg and Enthalpy Values for Nanocomposites with Different BNNT Contents 

BNNT Content 
Heating Rate 

(˚C/min) 

Tp 

(˚C) 

Tg 

(˚C) 

0 wt%  

2 84.04 92.7 

5 98.67 98.71 

10 107.88 106.56 

15 120.44 110.07 

20 122.84 - 

0.25 wt% 

2 80.48 93.73 

5 96.10 96.71 

10 106.27 106.78 

15 116.20 111.78 

20 124.17 114.51 

0.50 wt%  

2 79.17 98.31 

5 98.03 110.74 

10 106.26 119.34 

15 116.64 119.95 

20 120.99 115.03 

0.75 wt%  

2 73.90 56.81 

5 89.31 55.51 

10 103.23 57.70 

15 113.85 96.10 

20 118.93 94.82 

1 wt%  

2 75.55 64.64 

5 97.24 96.32 

10 105.51 112.62 
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15 114.11 72.30 

20 119.33 64.71 

2 wt%  

2 78.37 104.34 

5 94.92 113.62 

10 105.75 117.4 

15 114.25 119.97 

20 122.45 122.67 

 

3.5.1.4.2 Kissinger Analyzes 

As observed by the dynamic scans, Tp shifted to the higher temperatures with increasing heating 

rates. Main assumption in Kissinger method is that maximum heating rate is achieved at peak 

temperature of exotherm [28]. Thus, peak temperatures were used to calculate Ea and A values. 

Kissinger plots were plotted to determine activation energies (Ea) and pre-exponential factors (A) 

of BNNT/epoxy resin nanocomposites with different BNNT contents as shown in Figure 40. Also, 

Table 10 lists the determined Ea and logA values. Pre-exponential factor, A represents the rate 

factor which reactions occur in cure reactions[62]. The results suggest that as the content of BNNT 

increased, A values decreased as expected since the activation energies decreased.   
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Figure 40:Example Kissinger plot to determine Ea and logA values for 0.5 wt% BNNT/epoxy 

resin nanocomposite 

Table 10: Ea and logA Values Obtained by Kissinger Analysis 

 

BNNT Content 

 

Ea 

(kJ/mol) 

logA 

(1/s) 

0 wt% 61.35 8.06 

0.25 wt% 56.86 7.46 

0.50 wt% 57.94 7.6 

0.75 wt% 51.46 6.76 

1 wt% 54.35 7.14 

2 wt% 55.71 7.32 

3.5.1.4.3 Ozawa-Flynn-Wall Analyzes  

Ozawa-Flynn-Wall (OFW) method was used to analyze variation in activation energies and pre-

exponential factor, A’ as a function of cure degree. Ea and A’ values were calculated by plotting 

logβ against 1/T values for each degree of cure as shown in Figure 41. Figure 42 shows the 

obtained Ea and A’ results for each nanocomposite. It is clear that the inclusion of BNNTs into 
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epoxy resins leads to decrease in both Ea and A’. BNNT weight fractions of 0.75 and 1 wt% 

resulted in a noticeable decrease which can be interpreted as fast curing whereas 0.25 and 0.5 wt% 

BNNTs were the least effective ones. They might not be enough to form an effective network in 

matrix due to their low quantity. Also, the decrease in activation energy of epoxy/amine systems 

was observed in literature [28, 63, 64]. It could be related to intermolecular crosslinking breaking 

which results in increasing chain mobility.  In such a case, BNNTs act as obstacles in the system 

and prevent monomers to form larger molecules which results in higher mobility. Moreover, it 

could be due to the formation of hydroxyl groups during curing reactions.  

 

Figure 41: Example fit for Ozawa-Flynn-Wall method 
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Figure 42: Activation energy and A' against degree of cure for BNNT/epoxy nanocomposites 

 

3.5.1.5 Isothermal DSC Analyzes 

In order to study isothermal curing behavior of epoxy resin system, three cure temperatures, 60˚C, 

85˚C and 115˚C were chosen based on the dynamic scan of neat epoxy resin obtained by 10˚C/min 

heating rate. Figure 43 shows the isothermal cure cycles of BNNT/epoxy nanocomposites for cure 

temperature of 60˚C and obtained Tp, Tg, ΔH, ΔHr values for different isothermal temperatures and 

times were listed in Tables 11, 12 and 13. The graphs show that enthalpy values decreased as 

expected when the time increased.  The results suggest that curing reaction required more than 120 

minutes for any BNNT/epoxy resin nanocomposites at isothermal cure temperature of 60 ˚C. On 

the other hand, cure reactions can be completed at nearly 60 minutes and 15 minutes at isothermal 

cure temperatures of 60 ˚C and 115 ˚C, respectively.  In other words, curing time can be reduced 

when the isothermal cure temperature is increased as expected. On the contrary, Tg values 

increased when the isothermal waiting time increased. This can be attributed to formation of bigger 

crosslinked molecules due to curing which have reduced mobility. 
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Figure 43:Isothermal DSC curves of the different BNNT content nanocomposites at isothermal 

cure temperature 60˚C for different waiting times 
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Table 11:Table of Tg, Tp, ΔHr, ΔH and α Values of Different BNNT Content Nanocomposites at 

Isothermal Curing Temperature of 60˚C 

Isothermal Temperature: 60 ˚C 

BNNT 

Content 

Time 

(min) 

Tg 

(˚C) 

Tp 

(˚C) 

ΔHr 

(J/g) 

ΔH 

(J/g) 
α 

0 wt%  

  

  

  

  

  

5 - 107.86 376.6 464.4 0.19 

15 -5.43 115.97 262.2 464.4 0.44 

30 17.49 125.94 158.1 464.4 0.66 

60 39.97 137.04 114.3 464.4 0.75 

90 54.22 142.36 61.67 464.4 0.87 

120 63.24 144.17 47.16 464.4 0.90 

0.25 wt% 

  

  

  

  

  

5 - 108.94 356.4 413.4 0.14 

15 -3.13 121.22 222.1 413.4 0.46 

30 16.13 123.86 151.4 413.4 0.63 

60 38.03 137.12 82.13 413.4 0.80 

90 55.53 141.77 57.61 413.4 0.86 

120 64.27 143.94 50.47 413.4 0.88 

0.50 wt% 

  

  

  

  

  

5 -24.42 110.1 335.3 410.3 0.18 

15 1.84 120.73 254.3 410.3 0.38 

30 20.34 132.72 144.6 410.3 0.65 

60 43.16 140.48 100.4 410.3 0.76 

90 56.58 145 58 410.3 0.86 

120 64.97 1448.2 61 410.3 0.85 

0.75 wt% 

  

  

5 -25.58 100.74 244.8 321.8 0.24 

15 -1.59 109.1 145.2 321.8 0.55 

30 13.99 121.17 108.3 321.8 0.66 
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60 36.52 129.59 20.9 321.8 0.94 

90 63.43 121.47 14.41 321.8 0.96 

120 66.6 136.94 11.57 321.8 0.96 

1 wt% 

  

  

  

  

  

5 - 107.94 300.1 409 0.27 

15 -5.23 119.16 228.5 409 0.44 

30 4.56 130.95 124.6 409 0.70 

60 45.38 136.3 64.4 409 0.84 

90 61.18 135.22 31.71 409 0.92 

120 68.84 141.03 33.2 409 0.92 

2 wt% 

  

  

  

  

  

5 -17.8 112.84 296.1 422.5 0.30 

15 6.57 121.03 210.7 422.5 0.50 

30 23.08 127.1 142 422.5 0.66 

60 19.8 131.7 143.5 422.5 0.66 

90 57.84 146.59 65.2 422.5 0.85 

120 64.18 145.96 34.48 422.5 0.92 

 

Table 12:Table of Tg, Tp, ΔHr, ΔH and α Values of Different BNNT Content Nanocomposites at 

Isothermal Curing Temperature of 85˚C 

Isothermal Temperature: 85˚C 

BNNT 

Content 

Time 

(min) 

Tg 

(˚C) 

Tp 

(˚C) 

ΔHr 

(J/g) 

ΔH 

(J/g) 
α 

0 wt%  

  

  

  

  

5 11.8 126.11 210.1 464.4 0.55 

15 45.5 139.42 94.64 464.4 0.80 

30 68.06 148.25 29.55 464.4 0.94 

60 85.85 149.76 12.39 464.4 0.97 

90  464.4 1.00 
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  120  464.4 1.00 

0.25 wt% 

  

  

  

  

  

5 15.81 129.81 182.2 413.4 0.56 

15 43.84 134.66 79.55 413.4 0.81 

30 65.31 146.6 35.77 413.4 0.91 

60 85.37 166.91 26.86 413.4 0.94 

90 93.26 145.95 18.42 413.4 0.96 

120  413.4 1.00 

0.50 wt% 

  

  

  

  

  

5 13.81 131.77 204.3 410.3 0.50 

15 44.37 142.47 85.11 410.3 0.79 

30 66.13 150.97 44.78 410.3 0.89 

60 83.28 156.03 9.071 410.3 0.98 

90  

 

410.3 1.00 

120 410.3 1.00 

0.75 wt% 

  

  

  

  

  

5 23.64 113.45 49.8 321.8 0.85 

15 52.3 135.54 30.42 321.8 0.91 

30 56.33 146.55 17.33 321.8 0.95 

60 84.3 135.52 1.452 321.8 1.00 

90  

 

321.8 1.00 

120 321.8 1.00 

1 wt% 

  

  

  

  

  

5 27.91 117.24 105.2 409 0.74 

15 45.94 137.21 43.89 409 0.89 

30 67.4 145.66 24 409 0.94 

60  

 

409 1.00 

90 409 1.00 

120 409 1.00 

2 wt% 5 17.19 127.35 144.8 422.5 0.66 
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15 45.38 142.54 66.37 422.5 0.84 

30 67.89 125.19 41.28 422.5 0.90 

60 88.9 154.96 18.94 422.5 0.96 

90  

 

422.5 1.00 

120 422.5 1.00 

 

Table 13:Table of Tg, Tp, ΔHr, ΔH and α Values of Different BNNT Content Nanocomposites at 

Isothermal Curing Temperature of 115˚C 

Isothermal Temperature: 115˚C 

BNNT 

Content 

Time 

(min) 

Tg 

(˚C) 

Tp 

(˚C) 

ΔHr 

(J/g) 

ΔH 

(J/g) 
α 

0 wt% 

 

 

 

 

 

5 63.07 146.67 49.24 464.4 0.89 

15 88.41 161.88 10.12 464.4 0.98 

30  464.4 1.00 

60 103.44 - 0 464.4 1.00 

90  

 

464.4 1.00 

120 464.4 1.00 

0.25 wt% 

 

 

 

 

 

5 60.98 147.62 46.51 413.4 0.89 

15 88.68 162.35 8.615 413.4 0.98 

30 97.81 181.02 2.035 413.4 1.00 

60 
 

 

413.4 1.00 

90 413.4 1.00 

120 413.4 1.00 

0.50 wt% 

 

 

5 63.23 148.69 50.19 410.3 0.88 

15 88.08 157.33 7.443 410.3 0.98 

30 97.94 196.62 1.091 410.3 1.00 
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60 103.25 - 0 410.3 1.00 

90 113.35 - 0 410.3 1.00 

120 116.14 - 0 410.3 1.00 

0.75 wt% 

 

 

 

 

 

5 65.72 122.56 3.364 321.8 0.99 

15 78.18 153.44 0.86 321.8 1.00 

30 

 

 

321.8 1.00 

60 321.8 1.00 

90 321.8 1.00 

120 321.8 1.00 

1 wt% 

 

 

 

 

 

5 64.41 142.15 20.32 409 0.95 

15 82.6 151.3 3.759 409 0.99 

30 97.44 - 0 409 1.00 

60 
 

 

409 1.00 

90 409 1.00 

120 409 1.00 

2 wt% 

 

 

 

 

 

5 61.54 148.6 45.11 422.5 0.89 

15 88.83 156.63 11.78 422.5 0.97 

30 103.34 196.77 0.7474 422.5 1.00 

60 109.57 - 0 422.5 1.00 

90  

 

422.5 1.00 

120 422.5 1.00 

 

Figure 44 shows how the degree of cure values change with the addition of BNNTs for different 

isothermal temperatures and times. The results suggest that the addition of nanotubes accelerates 

the initial stage of curing. Degree of cure increased rapidly during the initial stages, then increased 

slowly and finally reached a plateau as expected.  The fastest curing reactions occurred at 0.75 

wt% BNNT content and was followed by the 1 wt% BNNT content for all isothermal temperatures. 
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It can be attributed to both amount and dispersion of nanotubes. It was observed that the 0.75 wt% 

BNNT content had a good dispersion with local agglomerations while 1 wt% BNNT content had 

homogenous agglomerations (see Figures 37 and 38). Also, 2 wt% BNNT content accelerated the 

initial stage of curing, but it was lower than 0.75 wt% and 1 wt% BNNT contents which can be 

attributed to the agglomerations of nanotubes. When nanotubes form agglomerations, their surface 

area decrease, and they cannot interact with the polymer as they interact with each other. Also, 

they can cause a physical hindrance to the mobility of epoxy monomers. On the other hand, even 

though, the dispersions of lower BNNT contents were homogenous, they only had slight effects 

on the curing reactions and were not very effective on curing mechanism. The amount of nanotubes 

for 0.25 wt% and 0.5 wt% BNNT content may not be enough to form an effective network inside 

the matrix.  
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Figure 44:Degree of cure against time for isothermal cure temperatures a)60˚C b)85˚C and 

c)115˚C 

3.5.1.6 Kinetic Model Fitting 

Degree of cure against temperature plots are important indicators for kinetic models. As seen in 

Figure 45, the trend in conversion against temperature were sigmoidal for each system, 

independent from the BNNT content. The sigmoidal shape in plots indicates that the cure reaction 

in BNNT/epoxy resin system was governed by autocatalytic reaction mechanism. The sigmoidal 

curves shifted to higher temperatures with increasing heating rates. It was attributed to increasing 
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amount of time due to slower heating rates which systems can react in lower temperatures and 

therefore complete cure reactions in lower temperatures (see Chapter 3.5.4.1).  

It was observed that the addition of BNNTs into epoxy resin did not change the sigmoidal behavior 

as seen in Figure 45. Thus, it can be said that the BNNTs do not change the autocatalytic cure 

mechanism of epoxy resin. Moreover, degree of cure against temperature for a constant heating 

rate of 2˚C/min was plotted in Figure 46 for further examination of the effects of BNNTs. It was 

observed that the addition of BNNTs accelerated the initial stage of curing process. They acted as 

catalysts to initiate curing at lower temperatures. 0.75 wt% BNNT content nanocomposite 

achieved higher degrees of curing at lower temperatures and was followed by the 1 wt% which is 

another indication for the importance of dispersion. Optical microscopy image of 0.75 wt% BNNT 

content shows good dispersion while 1 wt% also exhibited agglomerated but homogeneous 

dispersions inside epoxy resin matrix. On the other hand, results for 0.25, 0.5 and 2 wt% BNNT 

contents were close and not very effective compared to 0 wt%. This behavior can be explained by 

two main reasons: Firstly, quantity of nanotubes was not sufficient to affect the overall system for 

the first two cases. Secondly, big agglomerations in the latter case hindered the possible effects. 

Thus, it can be concluded that well dispersed BNNTs accelerate the cure reaction of epoxy resins 

especially at the initial stage and lower the required cure temperature. Consequently, they decrease 

the time required for the complete curing. 
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Figure 45: Degree of cure against temperature plots for different BNNT content nanocomposites 
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Figure 46:Degree of cure against temperature plot of different BNNT content nanocomposites 

(Heating rate:2˚C/min) 

Autocatalytic kinetic model assumes that the degree of cure at the peak temperature supposed to 

be constant independent from the heating rate [25]. Table 14 shows the degree of cure values for 

peak temperatures for different BNNT content nanocomposites.  

Table 14: Degree of Cure Values at Peak Temperature of Exotherm 

0 wt% 

BNNT 
Tp (˚C) α 

0.25 wt% 

BNNT 
Tp (˚C) α 

0.50 wt% 

BNNT 
Tp (˚C) α 

2˚C/min 84.04 0.45 2˚C/min 80.48 0.46 2˚C/min 79.17 0.42 

5˚C/min 98.67 0.44 5˚C/min 96.10 0.54 5˚C/min 98.03 0.42 

10˚C/min 107.88 0.45 10˚C/min 106.27 0.51 10˚C/min 106.26 0.43 

15˚C/min 120.44 0.49 15˚C/min 116.20 f0.50 15˚C/min 116.64 0.43 

20˚C/min 122.84 0.47 20˚C/min 124.17 0.63 20˚C/min 120.99 0.45 

0.75 wt% 

BNNT 
Tp (˚C) α 

1 wt% 

BNNT 
Tp (˚C) α 

2 wt% 

BNNT 
Tp (˚C) α 

2˚C/min 73.90 0.56 2˚C/min 75.55 0.52 2˚C/min 78.37 0.42 

5˚C/min 89.31 0.57 5˚C/min 97.24 0.49 5˚C/min 94.92 0.45 

10˚C/min 103.12 0.60 10˚C/min 105.51 0.45 10˚C/min 105.75 0.46 

15˚C/min 113.85 0.52 15˚C/min 114.11 0.52 15˚C/min 114.25 0.45 

20˚C/min 118.93 0.51 20˚C/min 119.33 0.53 20˚C/min 122.45 0.44 
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Dynamic DSC measurements were used to determine the governing model for the cure reaction of 

epoxy resin system. After the model was determined as an autocatalytic reaction model, isothermal 

DSC measurements were used to find reaction orders, m and n. Table 15 lists the reaction orders 

m, n and R2 values which were determined by applying linear regression method (Isothermal 

temperature 115˚C was not included since it only had two data points) and comparison plots of 

experimental data against model fitted data was shown in Figure 47. 

Table 15: Values of Reaction Orders, m, n and R2 

Isothermal 

Temperature 

60˚C 

m n R2 

Isothermal 

Temperature 

85˚C 

m n R2 

0 wt% BNNT 1.95 4.67 0.97 0 wt %BNNT 5.54 3.02 0.98 

0.25 wt% BNNT 2.30 6.58 0.98 0.25 wt% BNNT 5.76 3.07 0.99 

0.50 wt% BNNT 2.62 6.32 0.86 0.50 wt% BNNT 5.04 3.18 0.99 

0.75 wt% BNNT 3.93 7.02 0.97 0.75 wt% BNNT 15.06 2.66 0.98 

1 wt% BNNT 3.96 6.29 0,82 1 wt% BNNT 9.71 2.64 0.99 

2 wt% BNNT 3.54 6.07 0.95 2 wt% BNNT 7.16 3.00 0.98 
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Figure 47: Plots of experimental dα/dt against fitted models 
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3.6 Conclusions 

The effects of BNNT addition into epoxy resin system was investigated in this chapter. The cure 

behaviors of different BNNT content/epoxy resins were characterized by using dynamic and 

isothermal DSC measurements. The dynamic DSC measurements showed that peak temperature 

of exothermic cure reaction shifted to lower temperatures with the addition of BNNTs which 

indicates that BNNTs had an accelerating effect at the initial stage of curing.  Activation energy 

values obtained by Kissinger and Ozawa-Flynn-Wall methods showed a reasonable agreement 

except for 0.25 wt% BNNT content. Isothermal cure analysis of the systems indicated that higher 

isothermal cure temperatures decreased the time to complete cure reactions. Moreover, addition of 

BNNTs decreased the time required to complete curing with respect to neat epoxy. Addition to 

these, accelerating effects of BNNTs were observed in isothermal measurements as well. Degree 

of cure increased rapidly during the initial stage of curing and completed in lower temperatures 

compared to neat epoxy. The fastest curing reactions occurred at 0.75 wt% BNNT content and 

were followed by the 1wt% BNNT content for all isothermal temperatures which can be attributed 

to amount and the dispersion of nanotubes. It can be concluded that BNNT/epoxy resin systems 

possess a fast curing feature.   

Also, kinetic model fitting was performed, and kinetic parameters were calculated by linear 

regression as a part of the cure study. The results indicated that the governing curing mechanism 

was autocatalytic model and addition of BNNTs into epoxy resin did not change curing mechanism 

of the system. 

Moreover, possible cure recipes for BNNT/epoxy resin nanocomposites were derived based on the 

observed isothermal cure behaviors as listed in Table 18.  
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Table 16:Curing Recipes for BNNT/Epoxy Nanocomposites 

Curing 

Recipe 

BNNT 

Content 

(%) 

Dynamic 

Heating 

Rate 

(℃/min) 

Isothermal 

Temperature 

(℃) 

Isothermal 

Waiting 

Time 

(min) 

Achieved 

Degree 

of Cure 

(α) 

Estimated 

Time 

Required 

for Full 

Cure (t) 

(min) 

R1 0 10 60 120 0,89 t>120 

 0.25 10 60 120 0,88 t>120 

 0.50 10 60 120 0,85 t>120 

 0.75 10 60 120 0,96 t>120 

 1 10 60 120 0,92 t>120 

 2 10 60 120 0,92 t>120 

R2 0 10 85 60 0,97 90>t>60 

 0.25 10 85 90 0,96 120>t>90 

 0.50 10 85 60 0,98 90>t>60 

 0.75 10 85 60 ~1 t~60 

 1 10 85 30 0,94 60>t>30 

 2 10 85 60 0,95 90>t>60 

R3 0 10 115 15 0,98 30>t>15 

 0.25 10 115 30 ~1 30>t>15 

 0.50 10 115 15 0,98 30>t>15 

 0.75 10 115 15 ~1 15>t>5 

 1 10 115 15 0,99 30>t>15 

 2 10 115 15 0,97 30>t>15 
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4 Chapter 4  

4.1 General Conclusions  

The thesis presented here was organized as two parts: In the first part of to study, a full factorial 

experimental design was conducted to analyze the effects of reaction temperature, heating rate and 

reactive gas flow rate on diameter, aspect ratio and wafer coverage of BNNTs. Empirical models 

were developed to understand system’s behavior. Experimental values and predicted results from 

the developed models showed a reasonable agreement for each response. A multiple response 

surface optimization study was performed to determine a compromised solution which satisfies 

each response as possible.  The optimum conditions for maximum aspect ratio and maximum 

coverage was found as 1190˚C reaction temperature, 5˚C/min heating rate and 200 ml/min reactive 

gas flow rate.  

In the second part of the study, effects of BNNT addition into epoxy resin system on curing was 

investigated. The cure behavior at different BNNT loading was characterized by using dynamic 

and isothermal DSC measurements. The dynamic DSC measurements showed that peak 

temperature of exothermic cure reaction shifted to lower temperatures with the addition of BNNTs 

which indicates that BNNTs have an accelerating effect at the initial stage of curing.  Activation 

energy values obtained by Kissinger and Ozawa-Flynn-Wall methods showed a reasonable 

agreement except for 0.25 wt % BNNT content. Isothermal cure analysis of the systems confirmed 

that higher isothermal cure temperatures decreased the time to complete cure reactions. Moreover, 

addition of BNNTs decreased time required for complete curing with respect to neat epoxy. 

Accelerating effects of BNNTs were observed in isothermal measurements as well and degree of 

cure increased rapidly during the initial stage of curing and completed in lower temperatures 

compared to 0 wt% BNNT content. The fastest curing reactions occurred at 0.75 wt% BNNT 

content and were followed by the 1 wt% BNNT content for all isothermal temperatures which can 

be attributed to the balance of amount and the dispersion of the nanotubes. Thus, it can be 

concluded that BNNT/epoxy resin systems possess a fast curing feature.  Moreover, possible cure 

recipes for BNNT/epoxy resin nanocomposites were derived based on the observed isothermal 

cure behaviors. 



76 

 

Moreover, kinetic model fitting was performed, and associated parameters were calculated by 

linear regression as a part of the cure study. The results indicate that the governing curing 

mechanism was correlated by autocatalytic model and addition of BNNTs into epoxy resin did not 

change curing mechanism of the system. 
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