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ABSTRACT
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EPPSTEIN’S SYNCHRONIZING HEURISTIC

SERTAÇ KARAHODA

Computer Science and Engineering, Master’s Thesis, 2018

Thesis Supervisor: Hüsnü Yenigün

Thesis Co–Supervisor: Kamer Kaya

Keywords: Finite state automata, Synchronizing words, Synchronizing heuristics, CPU

parallelization, GPU parallelization

Testing is the most expensive and time consuming phase in the development
of complex systems. Model–based testing is an approach that can be used to
automate the generation of high quality test suites, which is the most chal-
lenging part of testing. Formal models, such as finite state machines or au-
tomata, have been used as specifications from which the test suites can be au-
tomatically generated. The tests are applied after the system is synchronized
to a particular state, which can be accomplished by using a synchronizing
word. Computing a shortest synchronizing word is of interest for practical
purposes, e.g. for a shorter testing time. However, computing a shortest syn-
chronizing word is an NP–hard problem. Therefore, heuristics are used to
compute short synchronizing words. GREEDY is one of the fastest synchro-
nizing heuristics currently known. In this thesis, we present approaches to ac-
celerate GREEDY algorithm. Firstly, we focus on parallelization of GREEDY.
Second, we propose a lazy execution of the preprocessing phase of the al-
gorithm, by postponing the preparation of the required information until it is
to be used in the reset word generation phase. We suggest other algorithmic
enhancements as well for the implementation of the heuristics. Our exper-
imental results show that depending on the automata size, GREEDY can be
made 500⇥ faster. The suggested improvements become more effective as
the size of the automaton increases.
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ÖZET

EPPSTEIN’IN SIFIRLAMA SEZGİSELİNİN ALGORİTMİK

ENİYİLEMESİ VE PARALELLEŞTİRİLMESİ

SERTAÇ KARAHODA

Bilgisayar Bilimi ve Mühendisliği, Yüksek Lisans Tezi, 2018

Tez Danışmanı: Hüsnü Yenigün

Tez Eşdanışmanı: Kamer Kaya

Anahtar Kelimeler: Sonlu durum otomatları, Sıfırlama kelimeleri, Sıfırlama Sezgiselleri,

AİÜ paralelleştirilmesi, GİÜ paralelleştirilmesi

Karmaşık sistemlerin geliştirilmesinde, test etme en pahalı ve en çok zaman
alan evredir. Model tabanlı testler yüksek kaliteli deney kurgusunu otomatik
üretmede kullanılan yaklaşımlardan birisidir. Deney kurgusunu otomatik
üretme test etmenin en zorlu parçalarından biridir. Sonlu durum makineleri
ya da özdevinimler gibi biçimsel modeller, otomatik deney grubunu üretmek
için kullanılmaktadır. Sistem belirli bir duruma senkronize edildikten sonra
testler uygulanır ve bu belirli duruma gelebilmek için sıfırlama kelimeleri
kullanılmaktadır. Daha kısa deney süreleri için en kısa sıfırlama kelimesini
hesaplamak önemlidir, ancak en kısa sıfırlama kelimesini hesaplamak NP–
hard bir problemdir. Bu nedenle kısa sıfırlama kelimelerini hesaplamak için
sezgisel yöntemler kullanılmaktadır. GREEDY algoritması bu alanda bilinen
en hızlı sezgisel algoritmadır. Bu tezde, GREEDY algoritmasını hızlandıran
yaklaşımlar sunulmaktadır. İlk olarak GREEDY algoritmasının paralelleştir-
ilmesine odaklanılmaktadır. İkinci olarak ise tembel bir yaklaşım önererek
sıfırlama kelimesinin üretilmesi için gerekli bilgilerin hazırlanma süreci erte-
lenmektedir. Aynı zamanda, GREEDY algoritması için benzer algoritmik iy-
ileştirilmeler önerilmektedir. Deney sonuçlarımız özdevinim büyüklüğüne
bağlı olarak GREEDY algoritmasının 500 kat daha hızlı hale getirilebileceğini
göstermektedir. önerilen geliştirmeler özdevinim büyüklüğü arttıkça daha
etkili hale gelmektedir.
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CHAPTER 1

INTRODUCTION

A synchronizing word w for an automaton A is a sequence of inputs such that no matter at

which state A currently is, if w is applied, A is brought to a particular state. Such words

do not necessarily exist for every automaton. An automaton with a synchronizing word is

called synchronizing.

Synchronizing automata have practical applications in many areas. For example in

model based testing [3] and in particular, for finite state machine based testing [13], test

sequences are designed to be applied at a designated state. The implementation under test

can be brought to the desired state by using a synchronizing word. Similarly, synchro-

nizing words are used to generate test cases for synchronous circuits with no reset feature

[6]. Even when a reset feature is available, there are cases where reset operations are too

costly to be applied. In these cases, a synchronizing word can be used as a compound

reset operation [8]. Natarajan [14] puts forward another surprising application area, part

orienters, where a part moving on a conveyor belt is oriented into a particular orientation

by the obstacles placed along the conveyor belt. The part is in some unknown orientation

initially, and the obstacles should be placed in such a way that, regardless of the initial

orientation of the part, the sequence of pushes performed by the obstacles along the way

makes sure that the part is in a unique orientation at the end. Volkov [25] presents more

examples for the applications of synchronizing words together with a survey of theoretical

results related to synchronizing automata.
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As noted above, not every automaton is synchronizing. As shown by Eppstein [7],

checking if an automaton with n states and p letters is synchronizing can be performed

in time O(pn2). For a synchronizing automaton, finding a shortest synchronizing word

(which is not necessarily unique) is of interest from a practical point of view for obvious

reasons (e.g. shorter test sequences in testing applications, or fewer number of obstacles

for parts orienters, etc.).

The problem of finding the length of a shortest synchronizing word for a synchroniz-

ing automaton has been a very interesting problem from a theoretical point of view as

well. This problem is known to be NP-hard [7], and coNP-hard [16]. The methods

to find shortest synchronizing words scale up to a couple of hundreds of states in practice

at most [11]. Another interesting aspect of this problem is the following. It is conjectured

that for a synchronizing automaton with n states, the length of the shortest synchronizing

sequence is at most (n � 1)2, which is known as the Černý Conjecture in the literature

[4, 5]. Posed half a century ago, the conjecture is still open and claimed to be one of the

longest standing open problems in automata theory. Until recently, the best upper bound

known for the length of a synchronizing word is (n3 � n)/6 by Pin [17]. Currently, the

best bound is slightly better than 114
685n

3 +O(n2) as provided by Szykuła [21].

Due to the hardness results given above for finding shortest synchronizing words,

there exist heuristics in the literature, known as synchronizing heuristics, to compute short

synchronizing words. Among such heuristics are GREEDY by Eppstein [7], CYCLE by

Trahtman [22], SYNCHROP by Roman [18], SYNCHROPL by Roman [18], FASTSYN-

CHRO by Kudłacik et al. [12], and forward and backward synchronization heuristics by

Roman and Szykuła [19]. In terms of complexity, these heuristics are ordered as follows:

GREEDY/CYCLE with time complexity O(n3 + pn
2), FASTSYNCHRO with time com-

plexity O(pn4), and finally SYNCHROP/SYNCHROPL with time complexity O(n5+pn
2)

[18, 12], where n is the number of states and p is the size of the alphabet. This ordering

with respect to the worst case time complexity is the same if the actual performance of

the algorithms are considered (see for example [12, 19] for experimental comparison of

the performance of these algorithms).

2



The fastest synchronizing heuristics, GREEDY and CYCLE, are also the earliest heuris-

tics that appeared in the literature. Therefore GREEDY and CYCLE are usually considered

as a baseline to evaluate the quality and the performance of new heuristics. Newer heuris-

tics do generate shorter synchronizing words, but by performing a more complex analysis,

which implies a substantial increase on the runtime. The time performance of GREEDY

and CYCLE are unmatched to date.

All synchronizing heuristics consist of a preprocessing phase, followed by reset word

generation phase. As presented in this thesis, our initial experiments revealed that the

preprocessing phase dominates the runtime of the overall algorithm for GREEDY. We also

discovered that the preprocessing computes more information than reset word generation

phase needs. To speed up GREEDY without sacrificing the quality of the synchronizing

words generated by the heuristic, we propose two main techniques that speedup GREEDY.

First, we focused on parallelization of GREEDY. Second, we propose a lazy execution of

the preprocessing, by postponing the preparation of the required information until it is to

be used in the reset word generation phase. We suggest other algorithmic enhancements

as well for the implementation of the heuristics.

To the best of our knowledge, this is the first work towards parallelization of syn-

chronizing heuristics. Although, a parallel approach for constructing a synchronizing

sequence for partial automata1 has been proposed in [23], it is not exact (in the sense that

it may fail to find a synchronizing sequence even if at least one exists). Furthermore, it is

not a polynomial time algorithm.

The rest of the thesis is organized as follows: in Chapter 2, the notation used in the the-

sis is introduced, and synchronizing sequences are formally defined. We give the details

of Eppstein’s GREEDY construction algorithm in Chapter 3. The parallelization approach

together with the implementation details are described in Chapter 4. Chapter 5, algo-

rithmic optimizations which avoid most of the redundant computations in the original

heuristic are introduced. The results in these two chapters are published in [9] and [10],

respectively. Chapter 6 presents the experimental results and Chapter 7 concludes the

thesis.

1Please see Chapter 2 for the definition of a partial automaton.
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CHAPTER 2

PRELIMINARIES

FSMs are mathematical abstractions for real word systems. When an FSM gets an input, it

moves from one state to another with an output. Since synchronizing sequences consider

only the destination state without making any observation on the system, the output is not

in the scope of this work. Therefore, we can consider an FSM as an automaton with a

simple transition function and without an output.

When an automaton is complete and deterministic, it is defined by a triplet A =

(S,⌃, �) where S = {1, 2, . . . , n} is a finite set of n states, ⌃ is a finite alphabet consisting

of p input symbols (or simply letters), and � : S ⇥ ⌃ ! S is a total transition function.

When the transition function is a partial function, then the automaton is said to be a partial

automaton.

If the automaton A is at a state s and if an input x is applied, then A moves to the state

�(s, x). Figure 2.1 (left) shows an example automaton A with 4 states and 2 input.

Figure 2.1: A synchronizing automaton A (left), and the data structures to store and
process the transition function �

�1 in memory (right). For each symbol x 2 ⌃, we used
two arrays ptrs and ids where the former is of size n+ 1 and the latter is of size n. For
each state s 2 S, ptrs[s] and ptrs[s + 1] are the start (inclusive) and end (exclusive)
pointers to two ids entries. The array ids stores the ids of the states ��1(s, x) in between
ids[ptrs[s]] and ids[ptrs[s+ 1] - 1].
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An element of the set ⌃? is called an input sequence (or simply a word). |w| denotes

the length of w, and " expresses the empty word. The transition function � can be extended

to a set of states and to a word in the usual way. Assuming �(s, ") = s, for a word w 2 ⌃?

and a letter x 2 ⌃, �(s, xw) = �(�(s, x), w). Likewise, for a set of states S
0 ✓ S,

�(S 0
, w) = {�(s, w)|s 2 S

0}.

The inverse ��1 : S ⇥X ! 2S of the transition function � is also a well defined func-

tion; ��1(s, x) denotes the set of states with a transition to state s with input x. Formally,

�
�1(s, x) = {s0 2 S|�(s0, x) = s}. Figure 2.1 (right) shows the data structure used to

store the inverse transition function for the example automaton.

Let A = (S,⌃, �), C ✓ S and C
h2i = {{si, sj}|si, sj 2 C} be set of multisets with

cardinality two. For {si, sj} 2 C
h2i, if si = sj then it is called a singleton, otherwise

called a pair.

An automaton which is produced from the set of pairs Sh2i; Ah2i = (Sh2i
,⌃, �h2i) is

called the pair automaton. For a pair automaton, the set of inputs is the same and the

transition function of the pair automaton is �h2i({si, sj}, x) = {�(si, x), �(sj, x)}.

Figure 2.2: The pair automaton Ah2i of the automaton in Figure 2.1.

Let C ✓ S be a set of states and w 2 ⌃⇤ be an input sequence. If the cardinality of

�(C,w) is one then w is said to be a merging sequence for C. If there exists a merging

sequence for a set of states C, then C is called mergeable. If there exists a merging

sequence w for S (i.e. for all states), w is called a reset word
1 of the automaton, and

the automaton is called synchronizable or synchronizing. As shown by [7], deciding if an
1In the literature, reset word is also called as both synchronizing word and synchronizing sequence. In

this thesis, these three terms are used interchangably.
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automaton is synchronizing can be performed in time O(pn2) by checking if there exists

a merging word for {si, sj}, for all {si, sj} 2 S
h2i. Recently, Berlinkov [2] showed that

there exists an algorithm that decides on synchronizability in linear expected time in n.

Černý has conjectured that the length of the shortest synchronizing word of an au-

tomaton with n states is at most (n � 1)2 [24]. Černý has also provided the following

class of automata Ac, called Černý automata, which hits to this conjectured upper bound.

Let Ac = (S,⌃c, �c), ⌃c = {a, b}, |S| = n, and

�c(si, x) =

8
><

>:

s(i+1) mod n, x = b or si = s0

si, otherwise

An example of a Černý automaton is given in Figure 2.1.

2.1 Graphics Processing Units and CUDA

At the hardware level, a CUDA capable Graphics Processing Units (GPU) processor is a

collection of multiprocessors (SMX), each having a number of processors. Each multi-

processor has its own shared memory which is common to all its processors. It also has a

set of registers, texture memory (a read only memory for the GPU), and constant (a read

only memory for the GPU that has the lowest access latency) memory caches. In any

given cycle, each processor in the multiprocessor executes the same instruction on dif-

ferent data. Communication between multiprocessors can be achieved through the global

device memory, which is available to all the processors in all multiprocessors [15].

In the software level, the CUDA model is a collection of threads running in parallel.

The programmer decides the number of threads to be launched. A collection of threads,

called a warp, run simultaneously (on a multiprocessor). If the number of threads is more

than the warp size then these threads are time-shared internally on the multiprocessor. At

any given time, a block of threads runs on a multiprocessor. Therefore threads in a block

may be bundled into several warps. Each thread executes a piece of code called a kernel.

The kernel is the core code to be executed on a multiprocessor. During its execution, a

thread ti is given a unique ID and during execution thread ti can access data residing in the

GPU by using its ID. Since the GPU memory is available to all the threads, a thread can

access any memory location. During GPU computation the CPU can continue to operate.

6



Therefore the CUDA programming model is a hybrid computing model in which a GPU

is referred as a co-processor (device) for the CPU (host).
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CHAPTER 3

EPPSTEIN’S GREEDY ALGORITHM

The GREEDY algorithm is one of the fastest algorithms among the reset word generation

heuristics in the literature. The correctness of the algorithm is based on the following

proposition (see Theorem 1.14 in the book [3], [20]).

Proposition 3.0.1 An automaton A = (S,⌃, �) is synchronizing iff 8si, sj 2 S, there

exists a merging sequence for {si, sj}.

GREEDY uses the shortest merging sequences of pairs to find a short reset word. Like

most of the algorithms mentioned in Chapter 1, GREEDY has two phases. In the first

phase, it finds the shortest merging sequences for all pairs. If there is a pair which is not

mergeable, due to Proposition 3.0.1, the automaton is not synchronizing. Otherwise, the

algorithm continues with the second phase.

The merging sequences of pairs are stored in a function ⌧ : Sh2i ! ⌃?, which is called

the pairwise merging function (PMF) for A. If {si, sj} is mergeable, then ⌧({si, sj}) is the

merging sequence, otherwise it is undefined. Note that PMF does not have to be unique,

i.e., ⌧({si, sj}) may differ, however |⌧({si, sj})| is unique and the shortest possible. To

find all the shortest merging sequences, a breadth first search (BFS) can be initiated over

the pair automata. By using the inverse of transition function and starting from {si, si}

singletons, all mergeable pairs and their shortest merging sequences can be found. Let

p = |⌃| and n = |S|; in worst case, the algorithm traverses all edges, i.e., p letters of each

n(n� 1) pairs and n singletons should be checked. Therefore the complexity of the first

phase is O(pn2).
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Algorithm 1 keeps track of most recently computed mergeable pairs via a list, which is

called frontier set (F ). The level of a frontier set refers to the length of the corresponding

merging sequences inside. Since ⌧({si, si}) = ✏, singletons are placed in the root level,

level 0, of BFS. The remaining set (R) is the set of pairs whose merging sequences are

not computed yet. At each iteration of Algorithm 1, new frontier and remaining sets are

computed for the next level.

Algorithm 1: Computing a PMF ⌧ : Sh2i ! ⌃?

input : An automaton A = (S,⌃, �)
output: A PMF ⌧ : Sh2i ! ⌃?

1 foreach singleton {s, s} 2 S
h2i do ⌧({s, s}) = ";

2 foreach pair {si, sj} 2 S
h2i do ⌧({si, sj}) = undefined;

3 F  � {{s, s}|s 2 S}; // all singletons of S
h2i

4 R � {{si, sj}|si, sj 2 S ^ si 6= sj}; // all pairs of S
h2i

5 while R is not empty and F is not empty do
6 F,R, ⌧  � BFS_step(A,F,R, ⌧);

Proposition 3.0.2 Let {si, sj} be a pair in S
h2i

. If w 2 ⌃⇤
is a merging sequence for

�({si, sj}, x) then xw is a merging sequence for {si, sj}.

Thanks to the inverse of transition function and Proposition 3.0.2, Algorithm 2 con-

structs PMF from the most recent frontier set. At lines 3-4, the algorithm searches the

pairs which can reach the frontier set pairs by applying a single letter. When the algo-

rithm finds such a pair whose merging sequence has not been defined yet, it marks the

pair as the next frontier set’s pair for the next iteration and sets its merging sequence.

Since the algorithm computes the PMF of the remaining set by using the frontier set, it is

called frontier to remaining (F2R).

When the first phase is completed, Algorithm 3 first checks if the automaton is syn-

chronizing or not in O(n2) (lines 2-3). It then initializes the set of active states (C) as

the set of all states and the initial reset word as empty. After that, iteratively, it selects

the shortest merging sequence of all active pairs, appends it to reset word, and finally

updates the set of active states by applying the selected merging sequence. This operation

is repeated until only a single active state is left.
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Algorithm 2: BFS_step (F2R)
input : An automaton A = (S,⌃, �), the frontier F , the remaining set R, ⌧
output: The new frontier F 0, the new remaining set R0, and updated function ⌧

1 F
0  � ;;

2 foreach {si, sj} 2 F do
3 foreach x 2 ⌃ do
4 foreach {s0i, s0j} such that s

0
i 2 �

�1(si, x) and s
0
j 2 �

�1(sj, x) do
5 if ⌧({s0i, s0j}) is undefined then // {s0i, s0j} 2 R

6 ⌧({s0i, s0j}) � x⌧({si, sj});
7 F

0 = F
0 [ {{s0i, s0j}};

8 let R0 be R \ F 0;

At each iteration, the merging sequence is applied, so the cardinality of C decreases.

Therefore, at most n� 1 iterations are performed. At line 7, the algorithm finds the active

pair with the shortest merging sequence which takes O(n2) per iteration. Line 8 takes

constant time. The length of each merging sequence can be at most n2. Therefore the

time complexity of line 9 is O(n3) for a single iteration. Overall, the second phase takes

O(n4) and Algorithm 3 requires O(pn2 + n
4) time.

The upper bounds of the phases can be computed in a slightly different way. For a

synchronizing automaton, the first phase is ⌦(n2) since it finds a merging sequence for

all pairs. At best, phase two takes a merging sequence with length of one, which is also a

reset word. Then the algorithm applies the merging sequence to all states. Therefore, the

lower bound of the second phase is ⌦(n). Thus Algorithm 3 has O(pn2 + n
4) and ⌦(n2)

time complexity. Since there is a huge gap between the best and the worst case complex-

ities, we extended our observations with the empirical results. In the next subsection, the

bottleneck of the algorithm is introduced with a thorough experimental analysis.
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Algorithm 3: Eppstein’s GREEDY algorithm
input : An automaton A = (S,⌃, �)
output: A reset word � for A (or fail if A is not synchronizable)

1 compute a PMF ⌧ using Algorithm 1;
2 if there exists a pair {si, sj} such that ⌧({si, sj}) is undefined then
3 report that A is not synchronizable and exit;

4 C = S; // C will keep track of the current set of

states

5 � = "; // � is the synchronizing sequence to be

constructed

6 while |C| > 1 do // we have two or more states yet to be

merged

7 {si, sj} = Find_Min(C, ⌧);
8 � = � ⌧({si, sj});
9 C = �(C, ⌧({si, sj}));

Algorithm 4: Find_Min
input : Current set of state C and the PMF function ⌧

output: A pair of states {si, sj} with minimum |⌧({si, sj})| among all pairs in
C

h2i

1 {si, sj} = undefined;
2 foreach {sk, s`} 2 C

h2i do
3 if {si, sj} is undefined or |⌧({sk, s`})| < |⌧({si, sj})| then
4 {si, sj} = {sk, s`}

3.1 Analysis on GREEDY

As discussed in Chapter 3, the time complexity of GREEDY is O(pn2 + n
4). For most

of the cases, p is too small when compared to n. Hence, the complexity of the second

phase, O(n4), dominates the first phase in theory. To analyze the algorithm, we performed

experiments on 100 randomly generated automata for each p 2 {2, 8, 32, 128} letters and

n 2 {2000, 4000, 8000} states. To generate a random automaton, for each state s and

input x, �(s, x) is randomly assigned to a state s
0 2 S. In addition, we used Černý

automata [24] for n 2 {2000, 4000, 8000} states. All the experiments are excuted on

a single machine running on 64 bit CentOS 6.5 equipped with 64GB RAM and a dual-

socket Intel Xeon E7-4870 v2 clocked at 2.30 GHz where each socket has 15 cores (30 in

total). In Table 3.1, experiments from 1200 randomly generated automata show that the

execution time of the second phase does not dominate the overall time of the algorithm

for random automata.

11



n = 2000 n = 4000 n = 8000
p tPMF tALL

tPMF
tALL

tPMF tALL
tPMF
tALL

tPMF tALL
tPMF
tALL

2 0.172 0.185 0.929 1.184 1.240 0.954 5.899 6.325 0.933
8 0.504 0.517 0.975 2.709 2.768 0.978 14.289 14.721 0.971

32 2.113 2.126 0.994 9.925 9.986 0.994 51.783 52.233 0.991
128 9.126 9.140 0.999 40.356 40.418 0.998 193.548 193.982 0.998

Černý 0.096 4.836 0.020 1.026 42.771 0.024 5.584 797.692 0.007

Table 3.1: Sequential PMF construction time (tPMF ), and overall time (tALL) in seconds

To understand the behavior of the algorithm, we extended our experiments by analyz-

ing the structure of PMF. While computing time complexity of the algorithm, the length

of the merging sequence is at most n2. However, Table 3.2 shows that n2 is loose bound

for the length of merging sequence. For instance, when automata with 8000 states and

128 letters are considered, the lengths of merging sequences in PMF are at most 3, not

64000000. Another observation is that the second phase tends to pick shorter length of

merging sequences. For example, when we take an automaton with 8000 states and 2

letters, the longest merging sequence in PMF has the length 16.9. The second phase uses

only merging sequences with length 12.1 and less. Thus, the merging sequences of almost

30% of the nodes are unnecessarily computed (see Figure 3.1).

n=2000 n=4000 n=8000
p hPMF hmax hmean hPMF hmax hmean hPMF hmax hmean

2 14.2 10.0 1.9 15.5 11.2 1.9 16.9 12.1 1.9
8 5.0 4.0 1.3 6.0 4.2 1.3 6.0 4.6 1.3

32 3.1 2.7 1.1 4.0 2.9 1.1 4.0 3.0 1.1
128 3.0 2.0 1.0 3.0 2.0 1.0 3.0 2.1 1.0

Table 3.2: The length of the longest merging sequence in PMF(hPMF ) constructed in
the first phase for random automata; maximum (hmax), and average (hmean) lengths for
merging sequences, used in the second phase of Algorithm 3.

n hPMF hmax hmean

2000 1999000.0 1952000.0 8884.8
4000 7998000.0 7808000.0 19750.8
8000 31996000.0 31232000.0 43480.8

Table 3.3: The length of the longest merging sequence in PMF(hPMF ) constructed in the
first phase for the Černý automata; maximum (hmax), and average (hmean) lengths for
merging sequences, used in the second phase of GREEDY.
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(a) p = 2 (b) p = 8

(c) p = 32 (d) p = 128

Figure 3.1: The percentage of nodes at each level in PMF

With these experiments, we observed that the execution time of PMF construction

phase in general dominates the GREEDY algorithm except some special automata classes

such as Černý. Therefore, we focused on parallelization of PMF construction, which is

explained in Chapter 4. We also noticed that not all information from the first phase is

used in the second phase. Based on these observations, various algorithmic improvements

that make GREEDY much faster are presented in Chapter 5. But first, we will focus on its

parallelization in the next section.
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CHAPTER 4

PARALLELIZATION ON GREEDY

Our preliminary experimental results show that in general, the PMF construction phase is

the bottleneck of GREEDY. The first approach we took to reduce its cost is using parallel

algorithms.

Algorithm 1 is a BFS algorithm which starts from singletons and searches the shortest

merging sequences of all pairs. The length of the merging sequence for a pair represents

the level of the pair in BFS tree. Since the merging sequence of each singleton is ✏, the

algorithm initially sets singletons as level 0 nodes. To find the k
th level nodes, Algorithm

2 uses the k�1st level as the frontier set. The cost of processing each pair in the frontier set

depends on the cost of inverse transition function �
�1. Likewise, the cost of each iteration

depends on the number of pairs in frontier set. Therefore, the cost in each iteration vary.

4.1 Frontier to Remaining in Parallel

While finding the k
th level pairs (in the next frontier set F 0), the algorithm has to ensure

that all pairs from the (k � 1)st level are found. Likewise, for correctness, it needs to

process all kth level pairs before processing a pair from the (k+1)st level. Hence, a FIFO-

based data structure satisfies these requirements. Since the sequential implementation

picks a single pair at a time, a simple queue is more than enough to schedule processing

of pairs.

Indeed, using a queue is a flawless method to maintain the dependency between the

pairs. However, implementing a parallel version of the algorithm is not that straightfor-

ward. Each thread needs to process the pairs from the same level; otherwise, a pair from

the next frontier can be processed before another pair in the current frontier and an in-

correct PMF can be computed. The problem can be solved if the queue is implemented

in a thread-safe manner; that is concurrent insertions and deletions cannot disrupt the
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integrated FIFO strategy. However, such an implementation requires expensive synchro-

nization mechanisms such as atomic operations and locks. Since there can be millions of

enqueue and dequeue operations to be performed, the queue itself will be the bottleneck.

Fortunately, we do not have any restriction on the processing order of the pairs in the same

level and a cheaper parallelization approach exists.

Algorithm 5: BFS_step_F2R (in parallel)
input : An automaton A = (S,⌃, �), the frontier F , the remaining set R, ⌧
output: The new frontier F 0 and updated function ⌧

1 foreach thread t do F
0
t  � ; ;

2 foreach {si, sj} 2 F in parallel do
3 foreach x 2 ⌃ do
4 foreach {s0i, s0j} where s

0
i 2 �

�1(si, x) and s
0
j 2 �

�1(sj, x) do
5 if ⌧({s0i, s0j}) is undefined then // {s0i, s0j} 2 R

6 ⌧({s0i, s0j}) � x⌧({si, sj});
7 F

0
t = F

0
t [ {{s0i, s0j}};

8 F
0  � ;;

9 foreach thread t do F
0 = F

0 [ F
0
t ;

10 let R0 be R \ F 0;

The parallel implementation is presented in Algorithm 5. In this algorithm, each pair

in F is assigned to a single thread. When a thread finds a new pair whose merging

sequence is not decided yet, it pushes it to the new frontier set. Since pushing an item to

a set is not an atomic operation, we need to change the process of insertions to the next

frontier set. The easiest way is considering the process as a critical region (which can

be executed only a single thread at a time). However, as mentioned before, this is not

time efficient. Here we implemented a lock-free mechanism. Instead of global F 0, each

thread stores a local F 0. When all pairs from F are processed, a thread merges local sets

F
0 in a sequential manner. Yet, this lock-free mechanism comes with a drawback. If two

threads find the same pair at the same time, which is possible due to concurrency, both

threads push it to F
0 (lines 5-6 of Algorithm 5). Hence, the same pair can exist multiple

times in the combined frontier. One can solve this problem with a separate duplicate pair

removal process which can be a burden on the performance. For CPU parallelization, our

preliminary experiments revealed that at most one in a thousand extra pairs are inserted

to |F 0|. Since duplicate pairs do not effect the correctness of the algorithm, we decided

not to perform a costly duplicate pair elimination. Instead, the algorithm processes them
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more than once whose time cost is negligible.

Due to duplicate pairs, updating the remaining pair set R becomes a costly operation.

In the sequential implementation of Algorithm 1, we were just counting the number of

remaining pairs, i.e., |R|. However, in the parallel version, correctly counting the number

of remaining pairs while allowing duplicate pairs is not possible. A careless implementa-

tion can think that all the pairs are processed even if some are still existing. Therefore, in

parallelization of Algorithm 1, we do not maintain R. Instead, we allow the implementa-

tion perform one more iteration in which no updates are detected. Although this approach

requires an extra iteration, its cost is also negligible compared to the cost of maintaining

R.

4.2 Remaining to Frontier

Using the frontier set F to construct PMF, as in Algorithms 2 and 5, is the most natu-

ral and probably the most common BFS implementation. Another approach, which we

call remaining to frontier (R2F), is processing the remaining set R for PMF. The main

difference is that R2F uses the transition function � to iterate the edges of the pair au-

tomaton whereas F2R uses �
�1. Thanks to Proposition 3.0.2, this version, presented in

Algorithm 6, correctly searches all pairs {si, sj} 2 R and applies all possible letters

x 2 ⌃. If the algorithm finds a merging sequence �({si, sj}, x) = w (lines 4-6), then it

sets ⌧({si, sj}) = xw (lines 7-9). Otherwise, the pair is pushed to R
0 (lines 10-11). Simi-

lar to Algorithm 5, Algorithm 6 also uses local sets. Each thread t uses its local remaining

set R0
t for a lock-free parallelization. Since each thread processes different pair sets, there

is no duplicate pairs in R
0. Therefore, Algorithm 1 performs one less iteration compared

to parallel F2R implementation.
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Algorithm 6: BFS_step_R2F (in parallel)
input : An automaton A = (S,⌃, �), the frontier F , the remaining set R, ⌧
output: The new frontier F 0, the new remaining set R0, and updated function ⌧

1 foreach thread t do R
0
t  � ;;

2 foreach {si, sj} 2 R in parallel do
3 connected � false;
4 foreach x 2 ⌃ do
5 {s0i, s0j} � {�(si, x), �(sj, x)};
6 if ⌧({s0i, s0j}) is defined then // {s0i, s0j} 2 F

7 ⌧({si, sj}) � x⌧({s0i, s0j});
8 connected � true;
9 break;

10 if not connected then
11 R

0
t = R

0
t [ {{si, sj}};

12 R
0  � ;;

13 foreach thread t do R
0 = R

0 [R
0
t ;

14 let F 0 be R \R0;

4.3 Hybrid Approach

Per-iteration costs of Algorithms 5 and 6 are closely related to the frontier set F and

remaining set R cardinality, respectively. Initially, R is the set of all pairs and F is the set

of all singletons. Hence, |F | is much smaller than |R| for the first iteration. In addition,

the cardinality of R decreases by |F | at each iteration. In our preliminary experiments,

we measured |F | and |R| for each iteration of F2R and R2F, respectively, as well as the

execution time per iteration. Figure 4.1 shows the results of these experiments. The figure

verifies our predictions; the R’s cardinality is larger than F ’s cardinality for the first few

iterations. However, for the later iterations, it is exactly the opposite. Fortunately, at each

iteration of PMF construction, it is possible to predict the costs of F2R and R2F variants

which allows us to choose the variant with less cost. This is what we call the hybrid

approach.

The hybrid approach idea for traditional BFS-based graph traversal is introduced by

Beamer et al. [1]. Their algorithm checks all the edges, so determining the cost of each

iteration by the number of edges is the most precise technique as in [1]. In our work,

the BFS algorithm is applied to a pair automaton Ah2i which is created in a lazy-manner.

That is, we do not have the edges at the beginning and we do not generate them unless

we really need them. For each pair, it requires O(p) time to count the number of edges
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(b) p = 8, execution time
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Figure 4.1: The number of frontier and remaining vertices at each BFS level and the
corresponding execution times of F2R and R2F while constructing the PMF ⌧ for n =
2000 and p = 8 (top) and p = 128 (bottom).

for F2R. Accordingly, estimating the cost of F2R and R2F from the edges takes O(pn2)

which is the same time complexity of the BFS algorithm itself.

For R2F, the number of edges per vertex is fixed to the alphabet size. For F2R, the

number of edge per vertex varies. However, the average value is equal to alphabet size,

like in R2F. Therefore, assuming the number of edges per vertex approximately equals to

the alphabet size is an acceptable approximation. Thus, to simplify the cost estimation,

one can use the number of pairs instead of the number of possible transitions to predict

the cost of each variant.
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Algorithm 7: Computing a function ⌧ : Sh2i ! ⌃? (Hybrid)
input : An automaton A = (S,⌃, �)
output: A function ⌧ : Sh2i ! ⌃?

1 foreach singleton {s, s} 2 S
h2i do ⌧({s, s}) = ";

2 foreach pair {si, sj} 2 S
h2i do ⌧({si, sj}) =undefined;

3 F  � {{s, s}|s 2 S};
4 R � {{si, sj}|si, sj 2 S ^ si 6= sj};
5 while F is not empty do
6 if |F | < |R| then
7 F,R, ⌧  � BFS_step_F2R(A,F,R, ⌧);

8 else
9 F,R, ⌧  � BFS_step_R2F(A,F,R, ⌧);

4.4 Searching from the Entire Set

In both Algorithms 5 and 6, each thread uses a local set. At the end of each BFS step, the

algorithm merges the local sets to construct the global set. One drawback of this approach

is the increased memory footprint; since we cannot predict the local frontier sizes at each

step, to fully avoid locks and other synchronization constructs, for each local frontier set,

we need to allocate a space large enough to store all possible pairs. This approach is

feasible for multicore processors since we only have tens of cores.

As explained in Section 2.1, a GPU is a high-performance accelerator that can con-

currently execute thousands of threads at the same time. However, the global memory

size on a GPU is not as large as the memory we have on the host. Hence, the previous ap-

proach we took is not feasible on GPUs. Furthermore, it can be costly to merge thousands

of local frontier sets. In addition, the GPU implementation of Algorithm 5 can create

a large number of duplicate pairs, since the probability of a pair visited by more than a

single thread increases with the number of threads. Therefore, we need another approach

instead of the local set mechanism.

For GPU parallelization, the algorithm processes the entire pair set Sh2i, instead of R

or F . We call this approach S2R and S2F, respectively. At each iteration of S2R, Sh2i is

used and the algorithm checks if the current pair is in F or not. If the pair is in F , then

the algorithm continues as in F2R. S2F has the same idea of S2R. However, S2F checks

if the pair is in R or not. If it is in R it executes the same logic in R2F.
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Algorithm 8: BFS_step_S2R (in parallel)
input : An automaton A = (S,⌃, �), the frontier level f , ⌧
output: updated function ⌧

1 foreach {si, sj} 2 S
2 in parallel do

2 if |⌧({si, sj})| = f then
3 foreach x 2 ⌃ do
4 foreach {s0i, s0j} where s

0
i 2 �

�1(si, x) and s
0
j 2 �

�1(sj, x) do
5 if ⌧({s0i, s0j}) is undefined then // {s0i, s0j} 2 R

6 ⌧({s0i, s0j}) � x⌧({si, sj});

Algorithm 9: BFS_step_S2F (in parallel)
input : An automaton A = (S,⌃, �), ⌧
output: updated function ⌧

1 foreach {si, sj} 2 S
2 in parallel do

2 if ⌧({si, sj}) is undefined then
3 foreach x 2 ⌃ do
4 {s0i, s0j} � {�(si, x), �(sj, x)};
5 if ⌧({s0i, s0j}) is defined then // {s0i, s0j} 2 F

6 ⌧({si, sj}) � x⌧({s0i, s0j});
7 break;

4.5 Parallelization of the Second Phase

As Table 3.1 demonstrates, the execution time of the second phase is negligible for ran-

dom automata. However, it is not the case for slowly synchronizing automata. Our exper-

iments indicate that the execution time for the second phase dominates the overall time for

Černý automata. Hence, parallelizing the first phase is not sufficient to obtain significant

speedups. In this section, the parallelization of the second phase is introduced.

The second phase of the algorithm has two major sub-phases: 1) finding a pair hav-

ing the minimum length merging sequence (Algorithm 4) and 2) applying this merging

sequence to the current active state set. The algorithm applies these two sub-phases until

the automata is synchronized. To observe the behavior of the second phase, we extended

our preliminary experiments and measure the execution times for these sub-phases. Since

the second phase takes less than only one second for random automata, only Černý au-

tomata with n 2 {2000, 4000, 8000} states are used for this set of experiments. To reduce

the variance on the measured individual execution times, each experiment is repeated 5
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times. Table 4.1 presents the averages of these executions.

n tFIND_MIN tSECOND_PHASE
tFIND_MIN

tSECOND_PHASE

2000 4.729 4.741 0.997
4000 41.034 41.098 0.998
8000 1035.093 1035.48 1.000

Table 4.1: Comparison of the run time of Algorithm 4 (tFIND_MIN ), i.e., the first sub-
phase, and the second phase (tSECOND_PHASE).

The table shows that Algorithm 4 dominates the execution time of the second phase.

Fortunately, the sub-phase is pleasingly parallelizable. The algorithm distributes the set

C
h2i to the threads. Each thread finds a local minimum in parallel which are then sequen-

tially merged to obtain a global minimum.

Algorithm 10: Find_Min (in parallel)
input : Current set of state C and the PMF function ⌧

output: A pair of state {si, sj} with minimum |⌧({si, sj})| among all pairs in
C

h2i

1 foreach thread t do {sit , sjt} = undefined ;
2 foreach {sk, s`} 2 C

h2i in parallel do
3 if {sit , sjt} is undefined or |⌧({sk, s`})| < |⌧({sit , sjt})| then
4 {sit , sjt} = {sk, s`}

5 {si, sj} = undefined;
6 foreach thread t do
7 if {si, sj} is undefined or |⌧({sit , sjt})| < |⌧({si, sj})| then
8 {si, sj} = {sit , sjt}

4.6 Implementation Details

To store and utilize the �
�1(s, x) for all x 2 ⌃ and s 2 S, we employ the data structures

in Fig. 2.1 (right). For each symbol x 2 ⌃, we used two arrays ptrs and ids where the

former is of size n+1 and the latter is of size n. For each state s 2 S, ptrs[s] and ptrs[s+

1] are the start (inclusive) and end (exclusive) pointers to two ids entries. The array ids

stores the ids of the states ��1(s, x) in between ids[ptrs[s]] and ids[ptrs[s + 1] - 1].

This representation has a low memory footprint. Furthermore, we access the entries in

the order of their array placement in our implementation hence, it is also good for spatial

locality. We also sorted the set of current pairs by their indexes before line 2 of Algorithm

10 since it improves spatial locality further.
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Figure 4.2: Indexing and placement of the state pair arrays. A simple placement of the
pairs (on the left) uses redundant places for state pairs {si, sj}, i 6= j, e.g., {s1, s2} and
{s2, s1} in the figure. On the right, the indexing mechanism we used is shown.

The memory complexity of the algorithms investigated in this study is O(n2). For

each pair of states, we need to employ an array to store the length of the shortest merging

sequence. To do that one can allocate an array of size n
2, Fig. 4.2 (left), and given the

array index ` = (i � 1) ⇥ n + j for a state pair {si, sj} where 1  i  j  n, she can

obtain the state ids by i = d `ne and j = `� ((i�1)⇥n). This simple approach effectively

uses only the half of the array since for a state pair {si, sj}, a redundant entry for {sj, si}

is also stored. In our implementation, Fig. 4.2 (right), we do not use redundant locations.

For an index ` = i⇥(i+1)
2 + j the state ids can be obtained by i = b

p
1 + 2` � 0.5c

and j = ` � i⇥(i+1)
2 . Preliminary experiments show that this approach, which does not

suffer from the redundancy, also have a positive impact on the execution time. That

being said, all of our algorithms use it and this improvement has no effect to their relative

performance.

Due to architecture of GPU, algorithms that require less synchronization are more ef-

ficient. Since the number of threads is too high, creating frontier and remaining sets is

an inefficient operation. Therefore we implemented S2R and S2F algorithms. For the

CUDA version, each thread checks only one pair. To match pairs and threads, the above

memory indexing formula is used. Algorithm 10 uses constant number of threads. Each

thread finds its local minimum, as in S2R and S2F. When a thread is done, it uses CUDA’s

atomicMin operation to update the global minimum instead of sequential synchroniza-

tion.
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CHAPTER 5

SPEEDING UP THE FASTEST

As mentioned in Chapter 3, GREEDY has two main phases: PMF construction and reset

word generation. The observations from Section 3.1 shows that in general, i.e., if the

automata is not slowly synchronizing, the first phase dominates the execution time of the

algorithm. However, to construct the reset word, the second phase does not use all the

merging sequences obtained in the first phase. Therefore, the second phase can use a

partial PMF. This observation establishes the base of our first optimization.

In this chapter, we propose three algorithmic enhancements for GREEDY algorithm.

For the first improvement, the PMF construction is performed in a lazy manner, which

is introduced in Section 5.1. Section 5.2 explains the second optimization on searching

the merging sequences from a pair and is useful in the later stages. The last optimization,

presented in Section 5.3, is minor and uses a basic idea to compute the intersection of the

active pair set and a partial PMF.

5.1 Lazy PMF Construction

GREEDY algorithm uses PMF to pick a shortest merging sequence among the set of cur-

rent pairs (Ch2i). However, Table 3.2 shows that the algorithm does not need to construct

the whole PMF. It is redundant to compute the merging sequences whose length is longer

than hmax. As the first improvement, we generated PMF in a lazy way and combined

the two phases into a single one. Algorithm 11 searches a shortest merging sequence in

PMF which is also a shortest merging sequence of a pair in C
h2i. GREEDY uses the par-

tial PMF which initially contains only the merging sequences of the singletons. At each

iteration, a new part of PMF is computed when it is needed. The algorithm checks all

pairs in C
h2i to find a shortest merging sequence. If it does not find a merging sequence

a PMF construction phase is initiated. This lazy process continues until a pair in C
h2i is
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found. After that it applies the merging sequence to all active pairs and continues with the

next iteration. Note that the PMF construction is performed in a BFS-manner. Hence, the

length of unidentified merging sequences cannot be shorter than the identified merging

sequence in PMF.

Algorithm 11: GREEDY algorithm with lazy PMF construction
input : An automaton A = (S,⌃, �)
output: A synchronizing word � for A

1 foreach singleton {s, s} 2 S
h2i do ⌧({s, s}) = ";

2 foreach pair {si, sj} 2 S
h2i do ⌧({si, sj})undefined;

3 Q � {{s, s}|s 2 S}; // Q is a queue which will store

unprocessed pair from frontier set and found pair

from next frontier set.

4 C = S; // C will keep track of the current set of

states

5 � = "; // � is the synchronizing sequence to be

constructed

6 while |C| > 1 do
7 while 8{si, sj} 2 C

h2i : ⌧({si, sj}) is undefined do
8 {si, sj} = dequeue the next item from Q;
9 foreach x 2 ⌃ do

10 foreach {sk, s`} 2 �
�1({si, sj}, x) do

11 if ⌧({sk, s`}) is undefined then
12 ⌧({sk, s`}) = x ⌧({si, sj});
13 enqueue {sk, s`} onto Q;

14 find a pair {si, sj} 2 C
h2i with a minimum |⌧({si, sj})| among all pairs in

C
h2i;

15 � = � ⌧({si, sj});
16 C = �(C, ⌧({si, sj}));

In theory, Algorithm 11 has the same upper bound with Algorithm 3. For lines 7-

13, the time complexity depends on the number of edges which is O(pn2). The number

of iterations does not have an impact on the complexity of lines 7-13. Also there is no

lower bound for PMF construction. Picking a shortest merging sequence (lines 14-16)

is performed in the same way as in Algorithm 3. Therefore, the overall complexity is

O(n4 + pn
2) and ⌦(n). Thus the upper bound does not change but the lower bound

decreases.
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5.2 Looking Ahead from the Current Pair

As Section 5.1 describes, GREEDY does not need a full PMF to find a shortest merging

sequence at each iteration. Furthermore, Table 3.2 shows that the average length of a se-

lected merging sequence is less than two. Hence, for most of the iterations, the algorithm

picks a length-one merging sequence and it occasionally picks a merging sequence with

a longer length, like hmax. Therefore, although such longer merging sequences are rare,

Algorithm 11 still needs to construct PMF up to level hmax. In this section, a lookahead

technique is introduced to avoid constructing the deeper levels of PMF. The lookahead

approach tries to find a shortest path from C
h2i to Q via � (instead of ��1). Algorithm 12

and Figure 5.1 summarize the basic lookahead process.

Let �{si,sj} be the shortest path from C
h2i to {si, sj} found by the lookahead process.

When ⌧({si, sj}) is undefined for all {si, sj} 2 C
h2i, performing a lookahead fully and

every time will be costly. To reduce the overhead, two constraints are defined; lookahead

is allowed only when there are less than MAXSTATES (line 9) states in C and it is allowed

to traverse at most MAXPAIRS (line 16) pairs. We did not fine tune these parameters and

use MAXSTATES = log n and MAXPAIRS = n.

Although some bookkeeping can be applied, we never reuse the lookahead paths from

the previous iteration (see lines 15-16 in Algorithm 12). We forget all the lookahead

information once the process ends, because we want to continue exploring the forest level-

by-level in a BFS fashion to keep the paths being shortest during the course of the overall

heuristic. Furthermore, the current set of pairs changes in every iteration. The algorithm

checks different pairs in each iteration. Therefore, the bookkeeping mechanism may not

give a remarkable speed up. We decided not to implement the bookkeeping mechanism.
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Figure 5.1: The figure summarizes the lookahead process: The BFS forest (the top
part of the figure) is being constructed via �

�1 in a lazy way. However, P =
{{si, sj}|⌧({si, sj}) is defined} and C

h2i are disconnected. The process tries to find a
shortest path from C

h2i to the queue Q (the green colored BFS frontier). As an example,
the � path passing through the blue Q pair on the left is not the shortest one since there is
a red Q pair on the right which is reachable from the same purple lookahead pair. When
the blue node is found, the current lookahead level (consisting of the nodes in QL) shall
be completed to guarantee that the red node does (or does not) exist.
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Algorithm 12: Looking ahead from C
h2i

61..6 . . . // same as Algorithm 11

7 while |C| > 1 do
8 if 8{si, sj} 2 C

h2i : ⌧({si, sj}) is undefined then
9 if |C| <MAXSTATES then

10 let QL = C
h2i and QL2 = ; be two queues;

11 qmin = min{si,sj}2Q |⌧({si, sj})|;
12 cnt = 0;
13 {sk0 , s`0} = undefined;
14 {sk0root , s`0root} = undefined;
15 foreach {si, sj} 2 S

h2i do �({si, sj}) = undefined;
16 foreach {si, sj} 2 C

h2i do �({si, sj}) = " and
{siroot , sjroot} = {si, sj};

17 while QL is not empty do
18 {si, sj} = pop an item from QL;
19 for x 2 ⌃ do
20 {sk, s`} = {�(si, x), �(sj, x)};
21 if �({sk, s`}) is undefined then
22 push {k, `} to QL2;
23 �({sk, s`}) = x�({si, sj});
24 {skroot , s`root} = {siroot , sjroot};
25 cnt++;
26 if ⌧({sk, s`}) is defined and |⌧({sk, s`})| < |⌧({sk0 , s`0})| then
27 {sk0 , s`0} = {sk, s`}
28 if QL is empty and cnt <MAXPAIRS and {sk0 , s`0} is undefined

then
29 QL = QL2 and QL2 = ;;
30 if {sk0 , s`0} is defined then
31 use {sk0root , s`0root} as {si, sj} and �({sk0 , s`0})⌧({sk0 , s`0}) as

⌧({si, sj}) for line 32-41
32 while 8hsi, sji 2 C

h2i : ⌧({si, sj}) is undefined do
3833..38 . . . // same as lines 8-13 of Algo. 11

4139..41 . . . // same as lines 14-16 of Algo. 11
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5.3 Reverse Intersection of the Active Pairs and PMF

Algorithms 11 and 12 frequently check if ⌧({si, sj}) is undefined or not for all the pairs

in C
h2i. Our baseline implementation traverses the pairs in C

h2i one by one and checks if

they are in P = {{si, sj} | ⌧({si, sj}) is defined}. Although this is efficient when |Ch2i|

is small, |Ch2i| is not small enough at the early stages of the algorithm. Hence, we reverse

the search when |Ch2i| > |P | and traverse the pairs in P and check if they are in C
h2i.
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CHAPTER 6

EXPERIMENTAL RESULTS

All the experiments in the thesis are performed on a single machine running on 64 bit

CentOS 6.5 equipped with 64GB RAM and a dual-socket Intel Xeon E7-4870 v2 clocked

at 2.30 GHz where each socket has 15 cores (30 in total). The machine also has a NVIDIA

K40 GPU with 12GB of global memory and 15 SMs each having 192 cores. For the

multicore implementations, we used OpenMP and all the codes are compiled with gcc

4.9.2 with the -O3 optimization flag enabled and GPU parallelization is achieved with

CUDA.

In order to measure the efficiency of the proposed algorithms, we used randomly

generated automata with n 2 {2000, 4000, 8000} states and p 2 {2, 8, 32, 128} inputs.To

generate a random automaton, for each state s and input x, �(s, x) is randomly assigned

to a state s
0 2 S. For each (n, p) pair, we randomly generated 100 different automata and

executed each algorithm on these automata. The values in the figures and the tables are

the averages of these 100 executions for each configuration, i.e., algorithm, n and p.

As slowly synchronizing automata, Černý automata with n 2 {2000, 4000, 8000}

states are used for experiments. Since there is only one automaton for each n, to reduce

the variance on the measured execution times, we execute the algorithms five times for

each n value and report the averages.

6.1 Multicore Parallelization of PMF Construction

We sequentially implemented Algorithm 3, which is called sequential in this section.

For the CPU parallelization, we employed the algorithms in Sections 4.1, 4.2 and 4.3.

We used 1, 2, 4, 8 and 16 threads for the experiments. To measure the impact of the

proposed indexing formula, we implemented GPU parallelization with basic and memory

optimized indexing functions. We called these two implementations as CUDA and CUDA
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M.O. respectively.

Figure 6.1 shows the speedups of our parallel F2R implementation over the sequential

baseline (that has no parallelism). Since F2R uses the same frontier extension mechanism

with the sequential baseline, whereas R2F, S2R and S2F employ completely different

ones, here we only present the speedup values of F2R. As the figure shows, when p is

large, the parallel F2R presents good speedups, e.g., for p = 128, the average speedup is

13.4 with 16 threads. Furthermore, when compared to the single-thread F2R, the average

speedup is 14.9 with 16 threads. A performance difference between sequential baseline

and single-threaded F2R exists because of the parallelization overhead during the local

queue management. Overall, we observed 10% parallelization penalty for F2R on the

average over the sequential baseline for all (n, p) pairs.

For p values smaller than 128, i.e., 2, 8, and 32, the average speedups are 7.9, 10.4,

and 12.7, respectively, with 16 threads. The impact of the parallelization overhead is more

for such cases since the amount of the local-queue overhead is proportional to the number

of states but not to the number of edges. Consequently, when p decreases the amount

of total work decreases and hence, the impact of the overhead increases. Furthermore,

since the number of iterations for PMF construction increases with decreasing p, the local

queues are merged more for smaller p values. Therefore, one can expect more overhead,

and hence, less efficiency for smaller p values as the experiments confirm.

Table 6.1 compares the execution times of F2R, R2F, S2R, S2F and Hybrid algorithm

for n 2 2000, 4000, 8000, p 2 {2, 8, 32, 128} and {1, 2, 4, 8, 16} threads. An interesting

observation is that F2R is consistently faster than R2F for p = 2, however, it is slower

otherwise. This can be explained by the difference in the number of required iterations

to construct PMF: when p is large, the frontier expands very quickly and the PMF is

constructed in less iterations, e.g., for n = 2000, the PMF is generated in 16 iterations

for p = 2, whereas only 7 iterations are required for p = 8. Since each edge will be

processed once, the runtime of F2R always increases with p, i.e., with the number of

edges. However, since the frontier expands much faster, the total number of remaining (R-

)pairs processed by the R2F throughout the process will probably decrease. Furthermore,

since the frontier is large, while traversing the edge list of an R-pair, it is more probable to

early terminate the traversal and add the R-pair to the next frontier earlier. Surprisingly,

when p increases, these may yield a decrease in the R2F runtime (observe the change
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(a) n = 2000 (b) n = 4000

(c) n = 8000

Figure 6.1: Speedups obtained with parallel F2R over the sequential PMF construction
baseline.

from p = 2 to p = 8 in Table 6.1). However, once the performance benefits of early

termination are fully exploited, an increase on the R2F runtime with increasing p is more

probable since the overall BFS work, i.e., the total number of edges, also increases with

p (observe the change from p = 8 to p = 32 in Table 6.1).

Observing such performance differences for R2F and F2R on automata with different

characteristics, the potential benefit of a Hybrid algorithm in practice is more clear. As

Table 6.1 shows, the hybrid approach, which is just a combination of F2R and R2F, is

almost always faster than employing a pure F2R or a pure R2F BFS-level expansion. Fur-

thermore, we do not need parallelism to observe these performance benefits: the Hybrid
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n=2000 n=4000 n=8000
p 2 8 32 128 2 8 32 128 2 8 32 128

sequential 0.17 0.50 2.11 9.13 1.18 2.71 9.92 40.36 5.90 14.29 51.78 193.55

1
F2R 0.19 0.56 2.31 9.89 1.35 3.21 11.24 44.57 6.43 16.01 56.71 219.46
R2F 0.59 0.46 0.85 1.91 3.17 2.61 4.72 11.39 19.41 18.17 34.35 86.60

Hybrid 0.14 0.18 0.96 0.65 1.06 0.89 2.99 1.92 5.16 8.42 8.93 5.80

2
F2R 0.15 0.34 1.21 5.00 0.73 1.68 5.74 22.41 3.82 9.14 31.40 120.23
R2F 0.37 0.27 0.46 0.98 2.00 1.55 2.62 6.04 13.73 11.96 21.54 52.67

Hybrid 0.12 0.14 0.53 0.37 0.58 0.50 1.57 1.01 3.09 4.86 5.10 3.34

4
F2R 0.08 0.17 0.61 2.50 0.38 0.86 2.88 11.11 1.99 4.67 15.79 60.42
R2F 0.20 0.15 0.24 0.50 1.09 0.82 1.36 3.05 7.43 6.43 11.34 27.21

Hybrid 0.06 0.07 0.27 0.19 0.31 0.26 0.80 0.52 1.62 2.49 2.61 1.73

8
F2R 0.04 0.09 0.31 1.26 0.21 0.46 1.47 5.60 1.09 2.49 8.31 31.55
R2F 0.11 0.08 0.12 0.25 0.64 0.45 0.71 1.55 4.36 3.68 6.36 14.91

Hybrid 0.03 0.04 0.14 0.10 0.17 0.15 0.42 0.28 0.89 1.34 1.39 0.93

16
F2R 0.02 0.05 0.16 0.64 0.14 0.26 0.76 2.85 0.71 1.42 4.41 16.50
R2F 0.06 0.04 0.06 0.13 0.41 0.26 0.38 0.81 2.78 2.38 4.06 9.10

Hybrid 0.02 0.02 0.07 0.05 0.12 0.09 0.23 0.16 0.59 0.80 0.80 0.57

CUDA
S2R 0.02 0.02 0.05 0.17 0.07 0.09 0.20 0.77 0.31 0.39 0.92 3.36
S2F 0.03 0.04 0.11 0.46 0.14 0.19 0.61 2.54 0.65 0.91 4.04 13.29

Hybrid 0.02 0.02 0.03 0.05 0.09 0.07 0.12 0.14 0.41 0.39 0.46 0.48

CUDA M.O.
S2R 0.01 0.02 0.04 0.16 0.05 0.07 0.19 0.76 0.21 0.31 0.85 3.33
S2F 0.02 0.02 0.06 0.19 0.08 0.10 0.29 1.16 0.34 0.49 1.74 6.36

Hybrid 0.01 0.01 0.03 0.04 0.06 0.05 0.10 0.13 0.24 0.28 0.36 0.39

Table 6.1: Comparison of the parallel execution times (in seconds) of the PMF construc-
tion algorithms.

approach works better even when a single thread is used at runtime1. For example, when

n = 8000 and p = 128, the Hybrid algorithm is 38 and 15 times faster than F2R and R2F,

respectively. For the same automaton set, the average speedups due to hybridization are

29 and 16 with 16 threads.

When the Hybrid algorithm is used, the speedups on the PMF generation phase are

given in Figure 6.2. As the figure shows, thanks to parallelism and good scaling of Hy-

brid (for large p values), the speedups increase when the number of threads increases.

With the CUDA implementation, the PMF generation process becomes even much faster:

the memory optimized version obtains 25, 51, 143, and 494 speedup for 2, 8, 32, and 128

letter automata, respectively, with n = 8000 states.
1Although one can implement F2R, R2F, and Hybrid sequentially, we do not have their sequential vari-

ants. With their OpenMP-based implementations, we expect 10% parallelization overhead for both R2F
and Hybrid as in F2R since the parallelization techniques employed in the implementations are similar.
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Since we generate the PMF to find a synchronizing sequence, a more realistic evalu-

ation metric would be the performance improvement over the whole sequential reset se-

quence construction process. As Table 3.1 shows, for Eppstein’s GREEDY heuristic (also

for some other heuristics such as CYCLE [22]), the PMF generation phase dominates the

overall runtime. For this reason, we simply conducted an experiment where the Hybrid

approach is used to construct the PMF and no further parallelization is applied during the

synchronizing sequence construction phase. Table 6.2 shows the speedups for this experi-

ment for all parallel implementations of Hybrid executions. As the results show, when we

compared sequential F2R implementation and hybrid implementation with single thread,

more than 2x and more than 14x improvement is possible for p = 32 and p = 128,

respectively.

Speedup tPMF
tALL

n\p 2 8 32 128 2 8 32 128
2000 11.90 34.20 72.99 206.84 0.52 0.53 0.69 0.77
4000 20.84 54.27 97.60 315.45 0.50 0.46 0.62 0.68
8000 24.92 51.00 143.01 493.97 0.36 0.39 0.45 0.47

Table 6.2: The speedups obtained on GREEDY when the memory optimized CUDA im-
plementation of Hybrid PMF construction algorithm is used.

As noted before, F2R-based PMF construction has O(pn2) time complexity. The R2F-

based variant, on the other hand, has O(dpn2) time complexity (where d is the diameter

of the pair automaton A) since the states of A in the remaining set R will be processed

at most d times. In practice, however, R2F-based construction (and Hybrid computation

which also has O(dpn2) time complexity since it performs R2F steps) can beat F2R based

construction.

We did not perform an extensive study on larger automata since it takes too long

with the sequential baseline implementation. For example, sequential PMF generation

takes around 2 hours and 30 minutes for an automaton with 40,000 states and 128 letters,

whereas our Hybrid implementation generates a sequence in 2 minutes and 30 seconds.
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(a) p = 2

(b) p = 8

(c) p = 32

(d) p = 128

Figure 6.2: The speedups of the Hybrid PMF construction algorithms with p = 2(a), 8(b),
32(c), 128(d) and n 2 {2000, 4000, 8000}. The x-axis shows the number of threads used
for the Hybrid execution. The values are computed based on the average sequential PMF
construction time over 100 different automata for each (n, p) pair.
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6.2 Second Phase Parallelization

As mentioned in Section 4.5, the execution time of second phase is worthy to take into

account for the slowly synchronizing automata. Hence, we used Černý automata with

n 2 {2000, 4000, 8000} for completeness of the experiments. For CPU parallelization of

second phase, we implemented Algorithm 10 and tested with 1, 2, 4, 8 and 16 threads.

For GPU parallelization, we implemented the same algorithm with 256 threads per block

and 256 blocks. We also implemented the approach that sorts the set of current active

states before the process as mentioned in Section 4.6.

n 2000 4000 8000

sequential unsorted 4.729 41.034 1035.093
sorted 1.604 12.701 109.758

1 unsorted 5.098 47.021 896.384
sorted 2.553 20.274 168.116

2 unsorted 3.869 37.352 874.253
sorted 1.935 15.085 132.770

4 unsorted 2.308 22.705 522.930
sorted 1.178 8.946 75.673

8 unsorted 1.259 13.131 289.750
sorted 0.719 5.044 40.842

16 unsorted 0.694 6.674 154.796
sorted 0.723 3.350 22.403

CUDA unsorted 0.684 5.514 51.280
sorted 0.391 1.556 9.613

Table 6.3: The execution times (in seconds) of Algorithms 4 and 10.

Table 6.3 shows that sorting the set of current pairs has a remarkable impact on the

performance. Even in sequential implementation, we observed 3⇥ to 9.5⇥ speedups.

When both the implementation improvement and GPU parallelization is applied, we ob-

served between 12⇥ and 107⇥ speedups over naive and sequential implementation of the

second phase.
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6.3 Speeding up the Fastest

We call the implementation of GREEDY below as the naive baseline implementation. We

also implemented the improvements over naive baseline as suggested in Section 5.1, Sec-

tion 5.2, and Section 5.3. Below, we call these implementations as “Lazy”, “Lookahead”,

and “Smart”, respectively. Note that Lookahead is implemented on top of Lazy, and Smart

is implemented on top of Lazy and Lookahead.

Figure 6.3 presents the speedups of each improvement (i.e. Lazy, Lookahead, and

Smart) over the naive baseline for GREEDY. Lazy computation provides a stable im-

provement, which is more sensitive to alphabet size p. For a given alphabet size, we

observe a somewhat constant speed up values. However, the average speedup values in-

crease with the alphabet size. The lookahead also provides a stable improvement and it is

more effective. For small alphabet sizes, the speedup provided by the lookahead is almost

constant for different number of states. For larger alphabet sizes, on the other hand, the

speedup provided by the lookahead increases with the number of states. The effect of the

lookahead also increases with the alphabet size. The smart intersection check similarly

improves the performance, but not to the same extent as lazy and lookahead.

Overall, when all the improvements are considered together, the average speedup val-

ues shows an increasing trend as the size of the automaton increases, and as we apply more

aggressive improvements. We start with 2⇥ speedup for the automata with n = 2000 and

p = 2 when only the lazy computation is enabled, and we reach to 95⇥ (almost two or-

ders of magnitude) speedup for the automata with n = 8000 and p = 128 when all the

improvements are enabled.

To validate effectiveness of our methods, we compare the time spent for BFS forest

construction in each method. Note that, the time spent in PMF construction is proportional

to the number of edges processed. The total number of edges to be processed for an

automaton with n states and p letters is pn(n� 1)/2. Table 6.4 reports the percentage of

these edges processed by each method.

First of all, note that even Algorithm 1 does not process all edges. This is caused by

the termination condition of the while–loop at line 5. In Algorithm 1, another possible

termination is given at line 5 as a comment: “F is not empty”. When this alternative

termination condition is used, Algorithm 1 processes 100% of the edges.
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(a) p = 2 (b) p = 8

(c) p = 32 (d) p = 128

Figure 6.3: The speedup values normalized w.r.t. the naive baseline. For each additional
improvement, the cumulative speedup is given with stacked columns.

Recall that the initial motivation for this work is based on the observation that PMF

construction time being too high compared to the overall running time of GREEDY. We

aimed at reducing this high cost, by modifying GREEDY so that they can run without full

PMF construction. The figures in Table 6.4 show that we succeed. Only a very small part

of the PMF is constructed in the modified version of GREEDY Algorithm. As the size of

the automata increases, the percentage of the PMF constructed decreases.
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n p Algorithm 1 Lazy Lookahaed Smart
2000 2 99.99% 40.31% 1.71% 1.71%

8 84.83% 12.18% 0.56% 0.57%
32 37.41% 3.64% 0.25% 0.25%

128 11.19% 1.00% 0.11% 0.09%
4000 2 99.99% 36.92% 1.42% 1.52%

8 87.11% 11.72% 0.42% 0.45%
32 40.12% 2.93% 0.16% 0.17%

128 12.08% 0.94% 0.07% 0.08%
8000 2 100.00% 37.56% 1.31% 1.24%

8 89.16% 12.09% 0.38% 0.33%
32 42.78% 3.08% 0.11% 0.06%

128 13.02% 0.83% 0.06% 0.05%

Table 6.4: The percentage of processed edges
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CHAPTER 7

CONCLUSION AND FUTURE WORK

GREEDY is widely used as a performance baseline for the new heuristics in the literature.

None of the newer heuristics could actually match the time performance of GREEDY and

CYCLE so far. With the new improved approaches suggested in this thesis, GREEDY and

CYCLE have now become more competitive than they already are.

We investigated the efficient implementation and use of modern multicore CPUs and

GPUs to scale the performance of synchronizing sequence generation heuristics. We

mainly focused on the PMF generation phase (which is employed by almost all the heuris-

tics in the literature), since it is the most time consuming part of GREEDY, which is prob-

ably the same with CYCLE. Even with no parallelization, our algorithmic improvements

yield 33x speedup on GREEDY for automata with 8000 states and 128 inputs. Further-

more, around 494x speedup has been obtained with GPU parallelization for the same

automata class.

First phase of GREEDY is common for the well known synchronizing heuristics, such

as SYNCHROP, SYNCHROPL, and FASTSYNCHRO. Since they are more expensive, their

first phase does not dominate as much as it does for GREEDY and CYCLE. However,

the parallelization techniques can be applied to other heuristics. One can also parallelize

second phase of the slower heuristics to make them more competitive. Furthermore, we

proposed techniques to speedup GREEDY without additional parallelization. With these

optimizations, we obtained order(s) of magnitude faster heuristics. The techniques sug-

gested in this thesis become more effective as the size of the automata increases. Due to

the increased speeds of GREEDY, the heuristic will now scale more.
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Note that other synchronizing heuristics existing in the literature such as SYNCHROP,

SYNCHROPL, and FASTSYNCHRO cannot directly benefit from the lazy computation and

further techniques. These heuristics require shortest merging sequence information for

many pairs of states, if not for all. Due to this property, a large part of, or the entire, BFS

forest will have to be constructed. Therefore, the underlying intuition for SYNCHROP,

SYNCHROPL, and FASTSYNCHRO will need to be changed in order for them to take

advantage of the algorithmic improvements that the thesis proposed. Modifying the un-

derlying intuition for SYNCHROP, SYNCHROPL, and FASTSYNCHRO so that they can

also benefit from the techniques suggested in this thesis can be considered as a future

work.
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Matematicko-fyzikálny časopis, 14 (1964), pp. 208–216.
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Conference on Language and Automata Theory and Applications, Springer, 2008,
pp. 11–27.

42


