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Özet

Bu tezde, Schelling modellerini analiz ediyoruz ve bu modeller için eklentiler öner-

iyoruz. Schelling modellerinde, Bernoulli dağılımı kullanılarak kare örgüye iki ajan

tipi (X ve Y) yerleştirilir. Her ajanın tanımlanmış bir mahallesi vardır ve eğer bir

ajanın mahallesinde aynı tip komşularının oranı, ajanın eşiğinden daha küçük ise,

o ajan mutsuzdur. Mutsuz ajanlar tiplerini değiştirir ve her ajan mutlu olduğunda,

model bir dengeye ulaşır. Ajanların minimum enerji seviyesine sahip oldukları denge

durumuna temel durum denir ve biz bu durumu konsensüs olarak adlandırıyoruz.

Kare örgülerde, topluluklar belirli koşullar için bir konsensüse (tüm ajanların ayn

tip olduu) ulaamazlar. Kare örgülerdeki bağlantıları yeniden düzenleyerek ajanların

bağlantı sayılarını değiştirmenin topluluklarn ortalama en kısa yol uzunluğunu ve

kümelenme katsayısını azaltarak bir konsensüse ulaşmasına yardımcı olabileceğini

gördük. Ayrıca, bu tezde şüpheli ajanları temsil eden yeni bir ajan tipi (XY) ve

iki farklı model (DC and PC modelleri) yaratıyoruz. DC modellerinde, ajanlar

komşularında şüphe yaratabilirler ve topluluklar her bir ajanın şüphenin yararına

sahip olduğu bir konsensüse ulaşabilirler. Öte yandan, PC modellerinde ajanlar

komşularına şüphenin yararını veremez ve sonuç olarak, şüpheli ajanlar ağdan kay-

bolur. Son olarak, bireylerin kendi çevrelerinde çeşitlilik arayışında bulundukları

yeni bir yaklaşım sunuyoruz ve labirent desenlerinin, ajanları uzak çevrelerinde

çeşitlilik arayışına girdiğinde ortaya çıktıını gösteriyoruz.
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Abstract

In this thesis, we analyze Schelling models and propose extensions for these models.

In Schelling models, two agent types (X and Y) are placed to a regular square

lattice using Bernoulli distribution. Agents have their defined neighborhoods and if

the percentage of the same type neighbors of an agent is smaller than its threshold,

the agent is unhappy. Unhappy agents change their types and when every agent in

the network is happy, the model reaches an equilibrium. Equilibrium state where

agents have the minimum energy level is called ground state and we name ground

state, consensus. In the square lattice, communities cannot reach a consensus (where

all agents are the same type) for specific conditions. We found that changing node

degrees by rewiring the links in the square lattice can help communities to reach

a consensus by decreasing average shortest path length and clustering coefficient

Moreover, we introduce a new agent type (XY) which represents doubtful agents

and two different models (DC and PC models). In DC models, agents can give the

benefit of doubt to their neighbors and communities can reach a consensus where

every agent has the benefit of the doubt. On the other hand in PC models, agents

cannot give the benefit of the doubt and consequently, doubtful agents disappear

from the network. Lastly, we present a new approach to diversity seeking behavior

where individuals seek diversity in their vicinities. We show that maze patterns

emerge when agents seek diversity in their distant vicinities.
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Chapter 1

Introduction

People have different genders, nationalities, religions, social and political views. As

Easley and Kleinberg [8] stated, individuals tend to be friends with people who

have similar characteristics with themselves and this behavior is called homophily.

These differences and homophily led to separation between people through the whole

history. Homophily principle forces people to link with the people from same race,

ethnicity, etc. and this cause people with the same attributes to cluster. Also,

Kossinets and Watts [16] claim that similar pairs more likely to form links with each

other.

Nobel Prize Winner Thomas Schelling’s works are one of the first studies in the

literature to analyze homophily behavior and segregation on the modern cities [22]

[23]. Schelling analyzed the racial segregation in Chicago and stated how individual

incentives affect global outcomes [24]. He claimed that even though the individuals

do not attempt to live segregated with people from different races, to satisfy the

desire’s of everyone, society eventually became segregated. Schelling models can be

used to understand not only the racial segregation but any distinctions which are

twofold, exhaustive and recognizable [23].

Schelling presented two different models. The first one is an agent based spatial

model which comprises a basis for this thesis. The second model is a non-spatial

“Bounded Neighborhood model” where all agents belong to the same neighborhood.

Bounded Neighborhood model is not covered in this thesis. In Schelling’s spatial

models there are two agent types (denoted by X and Y) randomly placed to a net-

work. Every agent has its defined neighborhood and utility function which defines

whether the agent is happy or unhappy. Unhappy agents move to empty nodes on

the network in each time step, and simulation ends when all agents satisfy their util-

ity functions. In 2001, Young [32] introduced “Kawasaki dynamics” into Schelling

models. In Young’s model, there are no empty nodes in the network and two un-
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happy agents from different types change their places in order to satisfy their utility

functions. Another approach that Young contributed to the literature is the noise.

Noise means that agents can act against their benefits with a small probability.

These models with a noise are called non-zero temperature models. In this thesis,

zero temperature models without a noise are analyzed. Afterwards, Barmpalias put

forward “Glauber dynamics” in which agents do not change their places pairwise in-

stead of this unhappy agents change their types [3][4]. Glauber dynamics employed

in the Schelling models suggest that unhappy agents move out of the boundaries of

the network and agent who can be happy in that defined neighborhood (which is an

opposite type agent) moved to the place of the unhappy agent.

Schelling models are discrete time agent based models, where agents act according

to the rules in their defined neighborhood at each time step (denoted as iterations).

Schelling models are also one of the most famous models of self-organizing beha-

vior. Across the science, there are models similar to the Schelling models. These

models are Ising models [27], Cellular Automata [31], Hopfield networks [14], Spin

Glass models [1] and cascading phenomena models [15]. In the Ising models where

phase transitions are analyzed, two agent types are randomly distributed to a lattice

denoted by “up-spins” and “down-spins” move according to their utility functions.

Stauffer and Solomon elaborately analyzed the similarities between Schelling mod-

els and Ising models [28]. Ising Models will be mentioned in the following chapters.

Another model which will be mentioned in the following chapters is the Cellular

Automata. Hegselmann [12] mentioned the resemblances of the Cellular Automata

and Schelling’s model.

Even though it has been almost 50 years since Schelling first proposed his models,

mathematical proofs and underlying factors in the segregation are still not entirely

analyzed and understood. First analytical explanations made by Young [32] who

used stochastic processes to analyze Schelling models in 1 dimension (ring lattice).

Afterwards, Zhang developed Young’s work to 2-dimensional networks (square lat-

tice) by using the stochastic evolutionary game theory techniques and analyzed the

long-term dynamics of the models [33]. Zhang continued his analytical works and

showed that segregation emerges even in integrationist societies [34]. Furthermore,

in 2011 he published another paper in which the tipping points of Schelling’s model

are analyzed [35]. However, all these analytical studies are applied to the non-zero

temperature (perturbed) models. First proofs of zero temperature (unperturbed)

Schelling’s Model are introduced by Brandt, Immorlica, Kamath and Kleinberg [6] in

2012. Then Barmpalias, Elwes and Lewis-Pye extended this proofs on 1-dimensional

Schelling’s model [4] [3], and presented the first rigorous analysis of 2-dimensional
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models [3].

1.1 Our Contribution

Our first and most important contribution to the literature is analyzing Schelling

models with Glauber dynamics in different network topologies. Fagiolo, Valente

and Vriend [9] studied Schelling’s spatial model for different network structures. We

extend their research by removing empty nodes from the network and employing

Glauber dynamics. Also, underlying mechanisms of segregation in the small world

and random networks are explained. These analyses are conducted for both Ising

models and Schelling models for different unhappy agent type changing dynamics.

In addition to these, sociological meaning of ground state [27] (in the thesis denoted

as consensus state) used in the physics model is analyzed, and we provide an under-

standing on how societies reach a consensus equilibrium state. Moreover, we based

our models on mutable characteristics, and we were able to study the diffusion of

social norms in the societies. Our second contribution to the literature is introdu-

cing the individuals who give their neighbors the benefit of doubt. These individuals

analyzed using two different models which we propose, Doubtful Community models

(DC models) and Persistent Community models (PC models). These two models

are investigated under different network topologies. Lastly, we contribute to the

literature by showing that maze patterns emerge when individuals seek diversity in

their vicinity.
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Chapter 2

Model

2.1 Model Properties

In the models analyzed in this chapter n x n square lattice is employed, where n

denotes the length of an edge of a square. Since square lattice is the most suitable

network type to represent spatial (physical) settlements of neighborhoods and cities,

they are commonly used in the literature starting from Schelling’s model [22] until

recent studies. Also, in the physics models mentioned in the previous chapter, square

lattice represents the 2D surface. For the square lattices employed in this thesis n

is chosen large enough to ensure that neighborhoods are small enough to not affect

the whole network, and small enough to decrease computational complexity.

Square lattices consist of n x n nodes and they are completely ordered. This means

that all the nodes in the square lattice have the same degree k. Node degree shows

how many edges that node has. In order to have completely ordered square lattice,

periodic boundary conditions are used in the models. Periodic boundary conditions

provide a connection between the nodes located at the edges of the square lattice.

For instance, periodic boundary conditions provide connection between the nodes in

the right edge and the nodes in the left edge of the square lattice. Demonstration of

the periodic boundary conditions can be seen in the Appendix A. These conditions

ensure that the nodes in the boundaries of the network have the same degree with

the other nodes.

Node degrees (number of neighbors) determined by Moore neighborhood. In the

literature especially in the Ising models, Von Neumann neighborhood is frequently

used. The difference between these two neighborhood definitions can be seen in

Appendix B. Moore neighborhood simply creates w x w square, where w is the

neighborhood range and denotes the neighborhood of the node in the center of this

square. Equation 2.1 shows how the number of neighbors is calculated based on
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Moore Neighborhood. Therefore when w is equal to 1, the square that defines the

neighborhood consists of 9 nodes. and if the node in the center, which neighborhood

definition is based on, is subtracted each node has 8 neighbors. Consequently, when

w is 2 agents have 24 neighbors and so on.

k = (2w + 1)2 − 1 (2.1)

For each node in the network either X or Y are assigned using Bernoulli distribution

with parameter 0.5. X and Y represent two different stands on an issue. For instance,

X denotes people who recycle while Y denotes people who do not recycle. In the

thesis X’s and Y’s are assigned to nodes called agents. For a single replication of the

model, initial percentages of X’s and Y’s are not necessarily equal but their excepted

value for multiple replications is 50%. Because there are no differences between the

agent types.

After creating the network and assigning the initial agent distribution, the algorithm

starts. The algorithm has two steps. In the first step, the algorithm checks all agents

randomly whether they are happy or unhappy. Then unhappy agents are placed to

a list. In the second step, unhappy agents are randomly chosen one by one from

the list, and if the chosen agent is still unhappy it switches its type. For instance, if

the chosen agent is X and it is still unhappy, the agent changes its type to Y. One

iteration of the algorithm contains these two steps. The algorithm stops when there

are no unhappy agents to place to the list in the first step. This state of a network

is called equilibrium state. The question “why algorithm does not stop in the first

iteration, if all the unhappy agents in the network change their type?” may arise.

It is because while an agent changes its type and becomes happy, this change can

make other agents unhappy.

Definition of happiness is as follows; an agent is happy if the percentage of same type

agents in its neighborhood is equal or greater than its threshold (t), and an agent is

unhappy if the percentage of same type agents in its neighborhood is smaller than

its threshold. For an agent X, same type agents are the X agents and for an agent

Y, same type agents are the Y agents. Schelling models with different thresholds

are elaborately analyzed in the literature [20]. In this thesis, thresholds are 0.5.

This means that an agent is unhappy if the number of same type agents is smaller

than the number of different type agents in its neighborhood. In case of equality in

the numbers of different agent types in the neighborhood, agents use themselves as

tie-breakers and they become happy. For instance, if an X agent has 4 X and 4 Y

neighbors then the X agent is happy. However, in the literature there are models
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using different rule in case of equality. For example in the Ising models [27], agents

stay as same type with a 0.5 probability and change their types with a 0.5 probability

when there is equality in the numbers of different agent types.

In this thesis, Glauber dynamics are adopted. As mentioned above, in the Glauber

dynamics unhappy agents are considered as moved out of the network boundaries

(community) and an agent who can be happy in the neighborhood moved to that

node [3]. Even though the algorithmic approach used is the same as the literature,

here different social approach used. In this thesis, unhappy agents do not considered

as moved out of the network instead they considered as change their types. Since

the models in this thesis based on mutable characteristics, unlike Schelling’s model

which is based on unmutable characteristics such as race, it is assumed that unhappy

agents change their views on an issue and become different type agents.

The question “why the models in this thesis are based on mutable characteristics”

needs further explanation. In this thesis, how social norms evolve and how com-

munities reach a consensus are analyzed. Therefore, models are based on mutable

characteristics which help to understand how individuals change their opinions and

reach a consensus. Consensus term presented in this thesis is the sociological equi-

valent of the ground state term used in the physic models. Ground state is analyzed

in the Ising models and it represents the minimum energy level in which all spins

are in the same direction (up or down) and totally homogenous. Consensus repres-

ents the network where all agents belong to the same agent type, and consequently

community in which all people have the same view on a certain issue. View of the

majority of the community on a certain issue is the social norm. Therefore to reach

a consensus, social norm must be adopted by every member of the community not

only by the members of some local neighborhoods. Since the thresholds in this

thesis are 0.5, if an agent is unhappy than the other agent type is in the majority

in the neighborhood and their views represents the social norm of the neighborhood

[19]. Suppose an unhappy Y agent and Y denotes people who do not recycle. X

agents who are in the majority in the neighborhood represent people who do recycle,

and consequently social norm in this community is recycling. This norm put a so-

cial pressure on the unhappy Y agent, and to avoid social rejection and to become

member of a community the Y agent change its type [5] [7].

Another point that needs further explanation in the algorithm is how agents in the

unhappy list change their types. Here, agents in the unhappy list change their types

one-by-one (asynchronously). The reason for asynchronous change is in the society

if the previous changes made a person happy, there is no need for that person to

change its type. In the literature, there is also synchronous change which means
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all agents in the unhappy list change their types at the same time. Differences

between asynchronous and synchronous change and how these differences may lead

to distinct consequences can be understood from three network examples presented

in the below figures. In the examples network structures and initial conditions

are the same. Each agent has three neighbors. Periodic boundary (dotted lines)

conditions are employed and each node denoted with a number above them. The

array shows the agents in the unhappy list. Figure 2.1 shows synchronous change

dynamics. In the initial network (top left) agents 2, 3, 6 and 7 are unhappy. They

all change their types at the same time and in the resulting network unhappy agents

are the same as the initial network (top right). Same agents change their types one

more time and network reaches initial placement (bottom). This process repeats

itself and model never reaches the equilibrium state where all agents satisfy their

utility functions.

Figure 2.1: Network consists of 8 nodes and each node has 3 neighbors. Periodic
boundary conditions and synchronous change are employed. Figure on the top left
is the inital network, figure on the top right is the network after the first iteration
and the bottom figure is the network after the second iteration. Array shows the
unhappy list.

Figure 2.2 shows the asynchronous change dynamics. Since the initial network (top

right) is same as the above example initial unhappy list is also same. From unhappy

list agent 2 is randomly chosen to change its type. After agent 2 changes its type

there are 3 agents left in the unhappy list and agent 6 is randomly chosen (top

left). Agents left in the unhappy list (3, 7) become happy due to previous changes

(middle left). In this network second iteration started and another unhappy list is

created (middle right). Agent 4 is randomly chosen from the unhappy list changes

its type (bottom right). Afterwards, agent 8 changes its type and model reaches the

equilibrium state (bottom left). From the examples presented in Figure 2.1 and 2.2,

it is clear that synchronous and asynchronous change can lead to different outcomes

even with the same initial conditions.
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Figure 2.2: Network consists of 8 nodes and each node has 3 neighbors. Periodic
boundary conditions and asynchronous change are employed. Figure on the top left
is the inital network and figure on the top right is the network after agent 2 changes
its type. Figure on the bottom right is the equilibrium network. Array shows the
unhappy list.

Moreover, the order of agents chosen from the unhappy list can also lead networks to

different outcomes. In Figure 2.3 first agent chosen from the list is same as Figure

2.2, but suppose the second agent chosen from the list is 7 instead of 6. In this

example model reaches consensus in the equilibrium. This shows that even in the

synchronous change, different outcomes can be reached because of random choosing

mechanism.

Figure 2.3: Network consists of 8 nodes and each node has 3 neighbors. Periodic
boundary conditions and asynchronous change are employed. Figure on the top
left is the inital network and figure on the top right is the network after agent 2
changes its type. Figure on the bottom is the equilibrium network. Array shows the
unhappy list.
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2.2 Analysis of Schelling Models on Square Lat-

tices

In order to interpret the results from the equilibrium state, it is crucial to un-

derstand initial networks. Initially, agents are distributed over the network with

Bernoulli distribution with parameter 0.5. Hence in each node probability of having

X or Y agents are equal. Figure 2.4 shows the initial distribution of same type

neighbors. As it can be seen from the figure number of same type neighbors follows

a normal distribution. Same type neighbors are X agents in the neighborhood for an

agent X, and Y agents in the neighborhood for an agent Y. Percentages of initially

clustered neighbors, where the vast majority of agents are the same type, are less

than one percent (where x axis is 0,1,7 and 8). Although the percentage of initially

clustered neighborhoods are low, they are still extremely important. To understand

the importance of initial clusters suppose a network which is divided into two parts

with a straight line. One part consists of only X agents and the other part consists

of only Y agents. In this initial network all agents satisfy their utility functions,

therefore the initial network is the equilibrium state. Even though the borders are

not straight lines and there are some agents on the borders who are unhappy, the

only change will occur at the borders and the clustered structure will be preserved.

This shows that in the square lattice initial clusters are preserved over the time.

Initial neighborhoods mostly consist of both agent types. 28% of all neighborhoods

in the network have equality in the number of different agent types. These results

confirm that initially, model has an integrated network.
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Figure 2.4: Same type neighbor distribution of agents in the initial network. Same
type neighbors are X agents in the neighbors for an agent X and Y agents in the
neighbors for an agent Y. Network is 120x120 square lattice. Periodic boundary
conditions and Moore neighborhood are employed. w=1. Distributions obtained
from 500 runs.

Same type neighbor percentages can also be calculated using an analytical approach

and this confirms the accuracy of our models. Since the probability of assigning X

and Y agents to each node is 0.5, the only distinction between having a different

number of same type neighbors is in how many ways that number of same type

neighbors can be placed to the neighborhood. For instance, a neighborhood which

has 1 X agent and 7 Y agents can be placed in 8 different ways while a neighborhood

which has zero X agents and 8 Y agents can only be placed in 1 way. Hence to

calculate the probability of having s same type neighbors, dividing how many ways

s neighbors can be located in the neighborhood with in total how many different

ways neighborhood can be located is enough. X and Y agents can be placed to a

neighborhood consists of 8 neighbors in 28 different ways. Suppose s is 1, and 1

same type neighbor can be placed in 8 different ways, dividing this two numbers

will give 0,03 which gives the probability of having 1 same type neighbor. If these

probabilities are multiplied with 100, the initial percentage of same type neighbors

can be calculated. Using these formulation initial unhappy agent, who have less

than 4 same type neighbors, the percentage is 36.
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Figure 2.5: Initial (left) and equilibrium (right) networks for 120x120 square lattice
with periodic boundary conditions and Moore Neighborhood. Red colors are X
agents and green colors are Y agents. w=1.

After analyzing and understanding initial network distributions, the equilibrium

state can be focused on. In the equilibrium state, X’s and Y’s expected to be

segregated from the previous studies [22]. But what does it mean to be segregated?

As it can be seen from Figure 2.5 and above paragraphs in the initial networks

X’s and Y’s are not clustered also, green and red colors are randomly distributed

over the network. On the other hand in Figure 2.5 it is clear that X’s and Y’s are

clustered. This clustered structure of different agent types what is called segregation.

Previously, segregation analyzed using different indexes. For instance Mixity, which

is the ratio of heterogenous links (the link between an X agent and a Y agent)

to total links, is employed by Banos [17], and Pancs and Vriend [21]. Freeman’s

Segregation Index (FSI) [10], number of separatists [23], Neighborhood Distribution

Function (NDF) [11] and Conditional Neighborhood Distribution Function (CNDF)

[20] are also used as measures of segregation.

Here rather than these indexes mentioned above, distribution of the neighbors is

focused on explaining segregation. While the initial same type neighbors (Figure

2.1) follows a normal distribution since there are also unhappy agents who have more

other type neighbors than same type neighbors, in the equilibrium state a different

distribution occurs. In the equilibrium same type neighbor distribution which can

be seen from Figure 2.6, distribution is skewed to the right since each agent has

at least 4 same type neighbors as themselves. This shows the segregation clearly

because more than 50% of agents only have neighbors in their type. These agents

are the ones in the middle of clusters, and the remaining agents are the ones in the

boundaries of clusters.
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Figure 2.6: Same type neighbor distribution of agents in the equilibrium network.
Same type neighbors are X agents in the neighbors for an agent X and Y agents in
the neighbors for an agent Y. Network is 120x120 square lattice. Periodic boundary
conditions and Moore neighborhood are employed. w=1. Distributions obtained
from 500 runs.

Furthermore, in order to explain segregation better distribution of neighbors of an

agent’s neighbors is analyzed. Neighbors of an agent’s neighbors are the agents

whose shortest path lengths are 2 from the agent. Figure 2.8 shows the distribution

of neighbors of an agent’s neighbors both for initial and equilibrium networks. It can

be seen that these distributions follow a similar pattern with the same type neighbor

distribution: Initially normally distributed and in the equilibrium network skewed

to the right with a huge increase in the neighborhoods consist of only same type

agents. These distributions are crucial to understanding the segregation. Because

neighbors of an agent’s neighbors do not affect the agents’ utility functions but

segregation still can be seen in their distribution. This shows that people need to

cluster to satisfy everyone’s utilities in the network.
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Figure 2.7: 5x5 part of a network. Moore neighborhood is employed. Green colors
represent Y agents and red colors represent X agents.

The smallest possible cluster can be observed in the equilibrium state is demon-

strated in Figure 2.7. In this cluster, agents have at least 4 same type neighbors

and at least 5 same type agents in the neighbors of their neighbors. Since it is the

smallest possible cluster, this example explains the findings in Figure 2.8.

Figure 2.8: Initial (left) and Equilibrium (right) network distributions of neighbors
of an agent’s neighbors. 120x120 square lattice with periodic boundary conditions
and Moore neighborhood is employed. w=1. Distributions obtained from 500 runs.

What if neighbors of an agent’s neighbors are included into the agent’s neigborhood?

This means increasing w to 2, and therefore degree of each node is increased to the

24. Figure 2.9 shows the initial and equilibrium networks when w is equal to 2.

Initial network follows the same pattern with w=1 since changing w does not affect

initial conditions. Although in the equilibrium network, it can be seen that clusters

are enlarged. The reason for that is when w is 2, agents are concerned with a larger

region to satisfy their utility functions, and consequently clusters become larger.
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Figure 2.9: Initial (left) and Equilibrium (right) networks for 120x120 square lattice
with periodic boundary conditions and Moore Neighborhood. Red colors are X
agents and green colors are Y agents. w=2.

It is observed that an increase in the w, enlarges the clusters. These results are

consistent with the previous studies that showed as the radius increases segregation

increases [18]. What if neighborhood range is increased even more? Suppose a

network consists of only one neighborhood and the number of X and Y agents is

equal to e. In this network, all the agents are neighbors with every other agent in

the network. Initially, every agent is unhappy because the number of different type

agents will be one more in the neighbors. Since agents do not consider themselves

in the neighborhood, unless there is a tie, number of same type agents will be

e-1 and number of other type agents will be e in the neighborhood. Unhappy

list consists of all agents in the network. The first agent randomly chosen from

the list will change its type and afterwards, that agent type will always be in the

minority. Consequently, type of the first agent randomly chosen from unhappy list

will disappear, and network reaches the consensus where all the agents are the same

type.
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Chapter 3

How Do Random Links Help a

Community to Reach a

Consensus?

As mentioned at the end of the last chapter, if w is increased enough, one agent type

can take the dominance of the whole network and other agent type disappears from

the network. These model runs where only one agent type lefts in the equilibrium

network called ground state in the physics literature [27] [13] and consensus in

this thesis and also in social physics [26]. To remind one more time, ground state

represents the minimum energy level in which all spins are in the same direction

(up or down) and totally homogenous. Consensus represents the network where all

agents are the same type meaning all people in the community have the same views

about an issue. Since all agents are the same type, every agent in the network is

happy and consequently when consensus arise model reaches equilibrium.

What are the other factors can lead community to a consensus? First of all the most

intuitive answer will be the initial conditions. If the initial percentage of one agent

type is increased large enough, that agent type can take the dominance of the whole

network. For instance, if one agent type is initially distributed as the majority in

every neighborhood in the network, then other agent type will disappear from the

network. Secondly, in the literature how changes in the thresholds (utility functions

of agents) can lead a community to a consensus is analyzed [2]. Another way to

reach a consensus is changing the node degrees by rewiring edges in square lattice

randomly as discussed in this chapter.
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Figure 3.1: Figure on the left displays regular square lattice (p = 0) with periodic
boundary conditions and Moore neighborhood (w=1) where the degrees of all nodes
are equal. Dotted lines represent periodic boundaries. Figure on the right shows
the small-world network where some links (blue) from square lattice are broken and
rewired to nodes that are randomly chosen. Number of links is preserved. Clustering
coefficient is still high as regular square lattice but the average shortest path length
is decreased. Figure on the bottom displays random network (p = 1) where all edges
are rewired.

In order to change node degrees, Watts-Strogatz randomization process [30] is fol-

lowed by only one difference. Watts and Strogatz proposed randomization process

for the ring lattices while in this thesis process adopted to square lattices. Illus-

tration of randomization process can be seen from Figure 3.1. The randomization

process follows: For each node in the square lattice, edges that node has chosen

one-by-one. For each edge, a random number is generated and if this number is

smaller than rewiring probability (p), the edge is broken from the agent’s neighbor

and wired to another node which is not in the agent’s neighborhood. Generated

random number must be bigger than or equal to zero and smaller than one. There-

fore when rewiring probability is zero no edge will be rewired and when rewiring

probability is one all edges will be rewired. For rewiring probability values between

0 and 1, each edge has p probability to rewire.

16



Square lattices (p = 1) display high clustering coefficients (c) and high average

shortest path lengths (l). Clustering coefficient is the ratio of how many links exist

between agent’s neighbors and how many possible links can be established between

agent’s neighbors. In regular square lattice when w is one each agent has 8 neighbors,

and these 8 neighbors have 12 links between them. 8 nodes can be linked in total

28 ways, therefore clustering coefficient of the regular square lattice, when w is 1, is

0.428. The average shortest path length of regular square lattices employed in this

thesis, when w is, is 40.

If rewiring probability is equal to one, then all edges will be rewired and network will

be a random network. In random networks, there are no local clusters like regular

lattices which leads to smaller clustering coefficient. Clustering coefficient of random

networks is approximately equal to k/N [30] (N denotes number of nodes) which is

0.0005 in this thesis since k is 8 and N is 14400. Simulation results confirm these

conditions. Average shortest path lengths are significantly small in random networks

compared to regular lattices since each edge is randomly assigned and these random

edges create shortcuts between different parts of the network. The average shortest

path length of a random network is approximately equal to ln(n)/ln(k) [30] which

is 4.6 for the models employed in this thesis. Both the clustering coefficient and the

average shortest path length values obtained from simulations are consistent with

the theoretical values, and this shows the accuracy of the randomization process

employed in this thesis.

Networks where clustering coefficient is as high as square lattice and average shortest

path length is as small as random networks, are called small-world networks [30]. As

it can be seen from Figure 3.2 these conditions correspond rewiring probability values

around 0.01. These networks have highly clustered local knits because random links

are not so many to disorder initial network structure of square lattice. On the other

hand, these networks have small average shortest path lengths because random link

number is enough to bound different parts of the network and create shortcuts.
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Figure 3.2: Clustering coefficient and average shortest path length values for different
rewiring probabilities. Initial network is 120x120 regular square lattice with periodic
boundary conditions and Moore Neighborhood, w=1.

Figure 3.2 shows how clustering coefficients and average shortest path lengths nor-

malized with their values for square lattice, change with rewiring probability. Aver-

age shortest path length decreases even with a few number of random links, while

clustering coefficient decreases significantly when 10% of the edges are rewired.

Table 3.1: Initial unhappy agent percentages for different rewiring probabilities

Rewiring Probability Mean Std Miniimum Maximum
0.0 36.2 0.4 35.2 37.2
0.0001 36.3 0.4 35.3 37.0
0.001 36.5 0.4 35.4 37.6
0.01 38.1 0.4 37.2 39.2
0.1 42.8 0.6 41.5 44.1
0.3 43.0 0.5 41.8 44.5
0.5 42.9 0.5 41.4 44.2
0.7 42.9 0.5 41.4 44.3
1.0 43.0 0.6 41.4 44.9

Initial unhappy agent percentages increase as the rewiring probability increases as

can be seen in Table 3.1. Change in the node degrees increases the probability of

being unhappy initially.
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After explaining the randomization process and how random links affect clustering

coefficient and average shortest path length, the question ”why changing node de-

grees can lead community to consensus” can be answered clearly. As mentioned in

Chapter 2, initially there are neighborhoods where X’s and Y’s are in the majority.

In the first iterations, these initial X and Y clusters are shaped and become larger.

After initial clusters are formed they remain until the equilibrium. Later iterations

cause changes only in the boundaries of initially formatted different color clusters,

as a consequence consensus can not be observed. Changing node degrees with ran-

dom links can prevent initial clusters to preserve themselves until equilibrium state,

therefore helps communities to reach a consensus. Because random links decrease

average shortest path lengths and this leads to each node in the network to become

connected in few steps. Furthermore, random links decrease clustering coefficient

which helps initial clusters to affect from other agents in the networks.

Figure 3.3: Percentage of communities that reach a consensus for synchronous and
asycnhronous change. Initial network is 120x120 regular square lattice with periodic
boundary conditions and Moore neighborhood. w=1. All networks are connected.

Figure 3.3 shows the percentage of communities that reach a consensus for different

dynamics. Here two different dynamics are analyzed. The only difference between

the two dynamics is how agents in the unhappy list change their types.

For the asynchronous change, consensus can be observed starting from rewiring prob-

ability 0.3. This leads to the conclusion of only small average shortest path length is

not enough to observe consensus. If only small average shortest path length would
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be enough, consensus should have been observed for rewiring probability 0.1 where

the average shortest path length is nearly same as random networks. The difference

that reaches communities to a consensus for rewiring probability 0.3, instead of 0.1

is clustering coefficient. For rewiring probability 0.1 clustering coefficient is still

very close to a square lattice. On the contrary, for rewiring probability 0.3, cluster-

ing coefficient is nearly half of the square lattice. Having these in mind to observe

consensus by randomization, average shortest path length must be small in order

to agents to reach every other node in the network easily, and clustering coefficient

must be small to break highly clustered local knits.

Theoretically, Ising models with asynchronous change reach ground state with 0.66

probability and reach stripe state with 0.33 probability [27] in regular square lattices.

The only difference between Ising models and the presented model, how agents

behave when there is an equality in the numbers of different type agents in their

neighbors. How can this difference lead communities to reach a consensus with

0.66 probability? It is because, as mentioned communities cannot reach a consensus

because of initial clusters that remain until the equilibrium. In thesis dynamics,

initial cluster formation is easier than Ising models since even with the equality in

the number of different type neighbors, agents can satisfy their utility functions.

Furthermore, deciding to change the agent type with a probability when there is

equality in the numbers of different type agents in the neighborhood can also be

seen as another way of randomization.

When synchronous change is employed, consensus is more frequently observed than

asynchronous change. The reason for this is that in asynchronous change, clusters

can emerge more easily than synchronous change. Even though there are random

links, clusters can emerge among the same type agents due to the order of random

agent choosing from the unhappy list as explained in previous chapter. However,

in synchronous change as average shortest path length and clustering coefficient

become smaller, the probability of having different type clusters decreases faster.
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Figure 3.4: Percentage of communities that reach a consensus for w=1 and w=2.
Initial network is 120x120 square lattice with periodic boundary conditions and
asynchronous change.

Lastly, the effect of randomization on the networks with different initial node degrees

is analyzed. For networks with higher initial node degrees (w=2) percentage of

communities that reach a consensus is higher. Another difference between w = 1

and w = 2 is that when w = 2 communities can reach a consensus with smaller

rewiring probabilities. This is because in models with higher node degrees, there

are more random links for the same rewiring probability. Therefore, average shortest

path length and clustering coefficient decrease faster for w = 2 than w = 1 as can

be seen in Appendix D.
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Chapter 4

The Effect of Individuals Who

Give Their Neighbors the Benefit

of the Doubt

The models previously mentioned in this thesis and in the literature consist of two

agent types: X and Y. In the social sciences literature, two agent types represent

two different sides of unmutable characteristics. For instance, in Schelling models,

X and Y represent two different races in Chicago in order to understand racial

segregation. Also, in the physics literature X and Y represent up and down spins.

However, the models proposed in this thesis based on mutable characteristics. These

mutable characteristics can be opinions, attitudes or beliefs about any social and

political issue. These characteristics are strongly related to an individual’s personal

background, political ideology and religious beliefs, moreover they are developed over

a long time [19]. Therefore, changing these characteristics and adapting different

ones are compelling. Suppose an example in which issue is recycling and X represents

people who recycle while Y represents people who do not recycle. Recycling behavior

changes with personality and attitudes of environmental concerns [25]. It is not

realistic to expect to one to change its environmental concerns and personality in a

short time period and take the opposite stand. Therefore, a new agent type proposed

in order to model, changes in characteristics more realistic.

A new agent type proposed is called XY. XY represents the people who have doubts

about their opinions. While X and Y represent two opposite stands on an issue,

XY represents the moderate stand. In recycling example, XY’s are the people,

regardless of whether they are recycling or not, who question their stands. In the

models presented in this chapter, unhappy X and Y agents turn to XY instead of

turning to each other. Unhappy agents are under the social pressure because the

majority of the people in their neighborhood have different views from them. Since
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opposite stand on an issue is a social norm in that neighborhood, this social pressure

forces agents to change their views [19]. Instead of turning to totally opposite side,

at first agents turn to moderate stand where they can have the benefit of doubt and

question their opinions and if they are still unhappy than they take the opposite

stand.

The models presented in this chapter are same as the previous models until agents

in the first unhappy list change their types. The first unhappy list consists of only

X’s and Y’s. These unhappy X and Y agents turn to XY asynchronously. Since the

initial percentage of unhappy agents for square lattices and for different rewiring

probabilities are known (Table 3.1) and XY’s initially created from the first unhappy

list, these initial unhappy agent percentages are also upper bounds for initial XY

percentage.

After XY’s are introduced to the network, X agents are unhappy if the majority of

their neighborhood is Y or XY. If the number of Y’s and XY’s are equal to each other

and greater than the number of X’s, X agents are also unhappy. Unhappy X agents

turn to XY, regardless of their neighborhood structure. Y agents display a similar

behavior as X agents. They are unhappy if the majority of their neighborhood is

X or XY. In addition to that, they are unhappy if the number of X’s and XY’s are

equal to each other and greater than the number of Y’s. Similar to X agents, Y

agents turn to XY if they are unhappy. X’s and Y’s turn to XY when XY’s are in the

majority because people who have doubt put a social pressure on others and make

them question their opinions. Therefore this model is called Doubtful Community

model (DC model) because doubtful agents can give their neighbors, who have a

stand on an issue, the benefit of doubt.

XY agents are unhappy if the majority of their neighbors are X or Y. They turn

to X if X’s are the majority, and turn to Y if Y’s are the majority. XY agents are

happy when the number of X’s and Y’s are equal to each other and greater than the

number of XY’s in the neighborhood.
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Figure 4.1: Equilibrium networks for DC model on 120x120 square lattice with
periodic boundary conditions and Moore neighborhood. Figure on the left shows
w=1 and figure on the right shows w=2. Red colors are X agents, green colors are
Y agents and blue colors are XY agents.

Figure 4.1 shows the equilibrium networks for DC model. When w is 1 in the

equilibrium state, the network is not dominated by XY’s even though all unhappy

X and Y agents turn to XY. Since the expected X and Y percentages are always equal

and 23% of all agents are XY (Table 4.1), X and Y percentages in the equilibrium

network are 38.5%. XY is always in the minority in the equilibrium network, even

though initially they can be in the majority. To explain this, consider an unhappy

X or Y agent in the initial network. Since this agent is unhappy, other agent type

(X or Y) must be the majority in this agent’s neighborhood, and this agent must

change its type to XY. Even though this agent change its type to XY, unless other

changes in the network did not cause a critical change in the neighborhood, still X’s

or Y’s are the majority in the neighborhood. As it can be seen from Figure 4.2,

initially the huge part of the XY’s are minority in their neighborhood. Therefore

XY agent will be unhappy in the next iteration and change its type to the agent type

in majority. This is the main reason that prevents XY’s to dominate the network.

As the neighborhood size increases, clusters become larger as explained in Chapter

2 and DC model follows the same behavior.
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Figure 4.2: Same type neighbor distribution of XY agents in the initial network.
Same type neighbors are XY agents in the neighbors for an agent XY. Network is
120x120 square lattice. Periodic boundary conditions and Moore neighborhood are
employed. w=1. Distributions obtained from 500 runs.

What if doubtful agents cannot give the benefit of doubt to their neighbors, and

people persist on their stands? In this case, X and Y agents do not become unhappy

if XY’s are the majority in their neighborhood. X’s and Y’s do not feel social pressure

as in DC model, therefore persist on their views and do not have the benefit of doubt.

This version of XY models called Persistent Community model (PC model). The

only difference between PC model and DC model is, how X and Y agents act when

doubtful agents (XY) are in the majority in their neighborhood. Figure 4.3 shows

the equilibrium networks for PC model for w = 1 and w = 2. In PC model, XY

percentage in the equilibrium state is less than 1% and distinctly less than DC model.

Because in the PC model even XY’s are in the majority of the neighborhoods of

X’s and Y’s, X’s and Y’s do not turn to XY. This prevents XY’s to become clusters

and eventually doubtful XY agents leave their doubts. Remaining XY agents in the

equilibrium networks are the ones placed on the boundaries between X’s and Y’s

where they have equal number of X and Y as neighbors.
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Figure 4.3: PC model on 120x120 square lattice with periodic boundary conditions
and Moore neighborhood. Figure on the left shows w=1 and figure on the right
shows w=2. Red colors are X agents, green colors are Y agents and blue colors are
XY agents.

In PC model if w is increased to 2, X and Y clusters become larger while XY’s nearly

disapper from the network. It is because when w is 1 there are already few XY’s

remaining in the network, and this XY’s mostly are the ones who have equality in

the number of X’s and Y’s in their neighborhood. When w increases the probability

of having equal number of X’s and Y’s decreases and this leads XY percentage to

become less.

In regular lattice, both DC and PC models cannot reach a consensus. What if

random links are introduced to these two models? Do doubtful agents increase the

probability of reaching a consensus? Can a community where everyone is doubtful

be observed? To answer these questions, the same randomization process in Chapter

3 employed for these two models. Since the same randomization process is employed,

network structures, average shortest path lengths and clustering coefficients are the

same as the models in Chapter 3.

Figure 4.4 shows the percentage of communities that reach a consensus. In both

models, consensus can be observed starting from rewiring probability 0.3 when w

is 1, and from rewiring probability 0.1 when w is 2 as the models in Chapter 3.

This leads to the conclusion that reaching a consensus is not related to the number

of agent type, instead it is related to the network structure. When w is 1 in both

models, the percentage of communities that reach a consensus differs from zero

starting from rewiring probability 0.3, yet there are huge differences between these

two models.
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Figure 4.4: Percentage of communities that reach a consensus for DC and PC models
and for different neighborhood ranges. Initial network is 120x120 regular square
lattice with periodic boundary conditions. All networks are connected.

The most crucial difference between DC and PC models is, in consensus state,

all agents are XY in DC model, while in PC model all agents are either X or Y.

As the rewiring probability increases, the initial unhappy percentage also increases

(Table 3.1) therefore initial XY percentage increases. This increase makes XY agents

majority in each run starting from rewiring probability 0.3 as it can be seen from

Table 4.1. In addition to these, the effect of being the majority in the initial network

increases with the rewiring probability. In square lattice, even though one agent type

is in the majority, other agent type can cluster in some parts of the network since

the clustering coefficient is high. However, random links decrease the clustering

coefficient and prevent these small clusters to emerge. Therefore, agents in the

minority cannot cluster and disappear from the network. Consequently, in DC

model consensus can be reached when every agent in the community is doubtful.

Even though in PC model, XY’s are also in the majority initially, since X and Y

agents do not turn to XY when XY’s are the majority, consensus with doubtful

agents cannot be reached in this model.

Both models reach a consensus with a higher probability when w is increased to

2. DC model always reaches a consensus when the rewiring probability is equal or

greater than 0.1 and PC model when the rewiring probability is equal or greater

than 0.3. These patterns are consistent with the models analyzed in Chapter 3.
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Equilibrium state XY percentages can help to understand DC and PC models with

random links. For DC model (Table 4.1) XY percentages in the equilibrium state

significantly increase from 0.01 to 0.1 and from 0.1 to 0.3. However, for rewiring

probability 0.1 the maximum observed XY percentage is 49, while for rewiring prob-

ability 0.3 is 100 which shows the communities that reach a consensus. Standart

deviations are higher for rewiring probabilities that consensus can be reached. Be-

cause reaching a consensus is highly related to how random links are placed.

Table 4.1: Equilibrium state XY percentages in DC model for different rewiring
probabilities

Rewiring Probability Mean Std Minimum Maximum
0.0 23.0 1.82 19.1 27.3
0.0001 23.0 1.70 19.4 28.9
0.001 23.4 1.8 19.5 28.7
0.01 25.3 2.2 19.7 31.3
0.1 37.4 4.0 27.8 49.0
0.3 86.3 25.1 35.0 100.0
0.5 90.1 20.8 35.2 100.0
0.7 90.9 19.0 35.6 100.0
1.0 89.5 22.8 34.6 100.0

In PC model average percentage of XY in the equilibrium state is always less than

1. For rewiring probability values equal to or greater than 0.3, consensus can be

observed and in consensus, there are no doubtful agents in the community. Standart

deviation increases with rewiring probability because as mentioned above random

links can lead to distinct consequences.

Table 4.2: Equilibrium state XY percentages in PC model for different rewiring
probabilities

Rewiring Probability Mean Std Minimum Maximum
0.0 0.56 0.09 0.29 0.86
0.0001 0.55 0.09 0.35 0.79
0.001 0.56 0.65 0.41 0.74
0.01 0.50 0.07 0.35 0.64
0.1 0.39 0.06 0.25 0.53
0.3 0.50 0.27 0.00 0.87
0.5 0.56 0.36 0.00 1.04
0.7 0.51 0.39 0.00 1.09
1.0 0.48 0.37 0.00 0.97

XY agents are individuals who become doubtful about their opinions because of

social norms in their neighborhood. They may want to remain their doubtfulness for
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longer time periods in order to see how social norms in their neighborhood will shape

over time. To model this behavior, networks in each iteration denoted as Nt, where t

is the number of iteration. For instance, the initial random network consists of only

X’s and Y’s denoted as N0 and the network where XY’s are first created denoted

as N1. In the previous models, XY agents change their type if they are unhappy

regardless of which agent type they were in the previous iterations. Here, XY agents

do not change their type if they were X or Y in Nt-p and p represents the persistence

step which shows for how many iterations XY’s preserve their doubtfulness.

Figure 4.5: DC models with persistence step. Network is 120x120 square lattice with
periodic boundary conditions and Moore neighborhood. w=1. Figure on the left
shows the equilibrium network for persistence step 1, and figure on the right shows
the equilibrium network when persistence step is equal to the number of iterations
until equilibrium.

Figure 4.5 shows the equilibrium network for DC models with persistence step.

Figure on the left is the equilibrium network when persistence step is 1 and figure on

the right is the equilibrium network when XY agents remain their doubtfulness until

the equilibrium. X and Y percentages decrease when persistence step is increased

to 1 from 0, as it can be seen from the figure. The main reason for this, as it

mentioned above color clusters predominantly formed in the first iterations. Since

in N0 all the agents are X and Y, in the first iteration XY’s do not change their

types and they gain an advantage to form clusters. When XY’s remain doubtful

until the equilibrium, there are few X and Y clusters left. These clusters form at

the initial network and they remain until the equilibrium.

Communities can not reach a consensus in square lattice even if XY agents remain

their doubtfulness until the equilibrium and do not change their types. Doubtful

agents remain their doubtfulness but they can not give the benefit of doubt to the

neighborhoods where X or Y agents are in the majority initially.
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Chapter 5

Individuals That Seek Diversity in

Their Vicinity and Emergence of

Maze Patterns

In the previous chapters, agents’ desire to have similar people in their vicinities are

analyzed. Although in real life people may have different preferences about who

they want to live within their vicinities and how important this desire can vary. For

instance, people may desire similar people in their immediate vicinities but diversity

in their distant vicinities. Furthermore, having similar people in immediate vicinities

can be more important than having diversity in distant vicinities.

In order to model these preferences, neighbors are divided into categories. When w

is equal to 1, the 8 neighbors that agents have denoted as the first degree neighbors.

The additional 16 neighbors that agents have when w is increased to 2, denoted

as the second degree neighbors. Generally, using this logic neighbors divided to

categories as i’th degree neighbors where i is the value of w. In this thesis, only first

and second degree neighbors are included in the models. First degree neighbors are

considered as the immediate vicinity of a person and second degree neighbors are

considered as the distant vicinity of a person.

Instead of looking neighbors as a whole dividing them into categories give a more

realistic perspective about agents’ preferences. First degree neighbors can be thought

of as a family and close friends, while second degree neighbors can be thought of

as people encountered in daily life such as co-workers. Therefore, the importance of

different degree neighbors can differ.

Importance of different degree neighbors given by the value of α and preference of

same type or different type agents in the different degrees given by the sign of α.
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Value of α shows the relative importance of different degrees according to the first

degree neighbors. When | α | is smaller than 1, the first degree neighbors are more

important than the second degree neighbors. Equation 5.1 shows the condition for

an agent to be happy where si denotes the same type agents in i’th degree neighbors.

s1 − 4 + α(s2 − 8) ≥ 0 (5.1)

When individuals in a community do not seek diversity and give the same importance

to their first and second degree neighbors (α = 1), models become exactly same as

the models analyzed in Chapter 3 for w = 2. In this case, Equation 5.1 becomes

s1 + s2 ≥ 12, which shows the total of same type first degree and second degree

agents must be equal to or greater than half of the total neighbors. Inequalities for

different α values can be seen from Figure 5.1. For the positive values of α if an

agent’s same type first degree and second degree neighbors are on the dotted line or

above the dotted line agents are happy, otherwise they are unhappy. On the other

hand, for the negative values of α if an agent’s same type first degree and second

degree neighbors are on the dotted line or below the dotted line agents are happy,

otherwise they are unhappy. Agents are happy regardless of α value if they have 4

same type first degree neighbors and 8 same type second degree neighbors.

Figure 5.1: Inequalities show the numbers of same type first degree and second
degree neighbors agents need to satisfy their utility functions for different α values.

It is useful to analyze these preferences in two parts: α is greater than zero and α is

smaller than zero. When α is greater than zero, agents prefer the same type agents
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as themselves in their immediate and distant vicinities. As mentioned above α = 1

means agents have no preference over the same type agents in their vicinities. For

α values between 0 and 1, agents give more importance to having the same type

agents in their immediate vicinities than their distant vicinities. On the other hand

for α values greater than 1, having same type agents in distant vicinities is more

important than having the same type agents in immediate vicinities. Figure 5.2

shows the equilibrium networks for the positive values of α.

Figure 5.2: Equilibirum networks for the positive values of α. Networks are 120x120
square lattices with periodic boundary conditions and Moore neighborhood. Figure
on the top left is for α = 0.125, figure on the top right is for α = 0.5, figure on the
bottom left is for α = 1 and figure on the bottom right is for α = 2.

In order to satisfy each agent’s utility function for w = 1, agent’s second degree

neighbors become segregated as mentioned in Chapter 2. Consequently, there are

no substantial differences between the positive values of α.

In the case where α is smaller than zero, agents seek diversity in their second degree

neighbors. Diversity seeking behavior of individuals excessively examined in the

literature [20] [11]. In the literature diversity seeking behavior analyzed mostly by

employing an upper bound. Agent thresholds (lower bound) are minimum same

type neighbor percentage needed to satisfy agent’s utility function and the upper

bound is maximum same type neighbor percentage needed to satisfy agent’s utility
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function. For instance, if lower bound is 0.5 (as in this thesis) when w = 1 agents

must have at least 4 same type neighbors and if upper bound is 0.95 agents must

have at most 7 same type neighbors in order to satisfy their utility functions.

Figure 5.3: Equilibirum networks for the negative values of α. Networks are 120x120
square lattices with periodic boundary conditions and Moore neighborhood. Figure
on the top left is for α = −0.125, figure on the top right is for α = −0.5, figure on
the bottom left is for α = −1 and figure on the bottom right is for α = −2.

Here, a different approach to diversity seeking behavior is proposed. Agents seek

diversity but specifically in their second degree neighbors. This behavior can be

explained by various reasons. For instance, an agent wants to be comfortable in

its immediate vicinity but at the same time agent can desire to be informed from

different type agents or to have these contacts in its distant vicinity for the social

advantages [29].

Equilibrium networks change to a great extent when agents seek diversity in their

second degree neighbors. Maze-like patterns emerge when α is −0.5 and become

apparent when α is −1. When α is -1, agents prefer similar people in their immediate

vicinities and diversity in their second degree neighbors. Even though agents have

8 same type neighbors in their immediate vicinities, to satisfy their utility functions

agents need different type agents in their distant vicinities. Therefore, similar agents

cluster, however, these clusters are small enough for every agent in the cluster to

have different agent types in their second degree neighbors. Inevitably maze patterns
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emerge.
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Chapter 6

Conclusion and Future Work

We started our studies by analyzing the Schelling models with Glauber dynamics

on the regular square lattice. We obtained consistent results with the literature.

Schelling models (when threshold is 0.5) on 120x120 square lattice with Glauber

dynamics ,periodic boundary conditions and Moore neighborhood (w = 1) where

agents initially distributed using Bernoulli distribution with parameter 0.5 cannot

reach a consensus (ground state). Knowing this, we investigated if random links can

help communities to reach a consensus.

Changing node degrees by random links can help communities to reach a consensus.

The main reason for this is, randomness decreases clustering coefficients and average

shortest path lengths. In the regular square lattice, agents initially cluster with the

same type agents on different parts of the network and these highly clustered knits

remain until the equilibrium. As average shortest path length decreases, different

parts of the network are become connected to each other and as clustering coefficient

decreases, these highly clustered knits break. Therefore, communities can reach a

consensus.

In addition to the models above, we introduced a new agent type called XY which

represents doubtful agents who have the benefit of doubt. Two different models

are created according to what X and Y agents do when doubtful agents are in the

majority in their neighborhoods. First model is DC model where XY agents can

give the benefit of doubt to X and Y agents if they are the majority. DC model

can reach a consensus, where every agent in the network is doubtful, with random

links. Second model is PC model where XY agents cannot give the benefit of doubt

to X and Y agents. In PC model X and Y agents persist on their views and reject

to become doubtful. These communities can also reach a consensus however, no

doubtful agents remain in the equilibrium.

35



Afterwards, we asked the question “what happens if doubtful agents remain doubt-

ful for longer time periods?”. We showed that even if the doubtful agents remain

doubtful until the equilibrium, communities cannot reach a consensus without hav-

ing random links. These findings are consistent with our explanations on how do

random links help communities to reach a consensus. Because even though one agent

type never changes in the square lattice initially there are highly knitted clusters

consist of one agent type which remain until the equilibrium.

Lastly, we introduced a new diversity seeking approach where agents seek diversity

in their distant vicinities. We found that maze patterns emerge if agents give equal

or more importance to having diversity in their vicinities than having similar people

in their immediate vicinities.

In this thesis, our models have one dimensional issue space. Schelling focuses only

to the race in his models, and we focus on social norms and issues such as recycling.

For future studies, the dimension of issue space can be increased. For instance,

focusing on race, demographic and socioeconomic attributes at the same time is a

more realistic approach. Sturgis [29] shows that different age groups who belong

to the same ethnicity may have different preferences about who they want to live

with. Therefore, increasing the dimension of issue space can help to understand

segregation in real life better.

Instead of increasing the dimension of issue space, more agent types can be intro-

duced to the models. DC and PC models are the examples of models with more

agent types. Suppose a line segment between −1 and 1 which represent one dimen-

sional issue space. Since X and Y represent opposite stands on an issue, in this line

−1 denotes X agents, 1 denotes Y agents and 0 denotes XY agents. Introducing

agents who place themselves between these points to the models would be the more

realistic approach.

Furthermore, random links can be added to the models in which individuals that

seek diversity in their distant vicinities for further studies.
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Appendix A

Periodic Boundary Conditions

Figure A.1: Representation of periodic boundary conditions on a 5x5 square lattice.
Green nodes are the neighbors of the red node.
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Appendix B

Von Neumann and Moore

Neighborhoods

Figure B.1: Differences between these two neighborhoods are demonstrated in 3x3
part of a square lattice. Green nodes are the neighbors of the red nodes. Fig-
ure on the left demonstrates Von Neumann Neighborhood and figure on the right
demonstrates Moore Neighborhood.
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Appendix C

Initial and Equilibrium Network

Examples

Figure C.1: First example of initial and equilibrium networks. Network is 120x120
square lattice with periodic boundary conditions and Moore neighborhood. w=1.
Figure on the left is the initial network and figure on the right is the equilibrium
network.

Figure C.2: Second example of initial and equilibrium networks. Network is 120x120
square lattice with periodic boundary conditions and Moore neighborhood. w=1.
Figure on the left is the initial network and figure on the right is the equilibrium
network.
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Figure C.3: Third example of initial and equilibrium networks. Network is 120x120
square lattice with periodic boundary conditions and Moore neighborhood. w=1.
Figure on the left is the initial network and figure on the right is the equilibrium
network.
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Appendix D

Clustering Coefficients and

Rewiring Probabilities for

Different Rewiring Probabilities

Figure D.1: Figure on the left shows clustering coefficient values and figure on the
right shows average shortest path length for different rewiring probabilities. Initial
network is 120x120 square lattice with periodic boundary conditions and Moore
neighborhood.
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Appendix E

Degree Distributions for Different

Rewiring Probabilities

Figure E.1: Degree distributions for different rewiring probabilities. Initial network
is 120x120 square lattice with periodic boundary conditions and Moore neighbor-
hood. w=1.
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