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ABSTRACT

AN ANN BASED COMBINED CLASSIFIER APPROACH FOR FACIAL

EMOTION RECOGNITION

EKIN YAGIS

Mechatronics Engineering M.Sc. Thesis, August 2018

Thesis Supervisor: Prof. Dr. Mustafa Ünel

Keywords: Emotion Recognition, Facial Expression Analysis, Facial Action

Coding System, Classification, Artificial Neural Networks (ANN), Logarithmic

Opinion Pool (LOP)

Facial expressions are the simplest reflections of human emotions, which are at the

same time an integral part of any communication. Over the last decade, facial

emotion recognition has attracted a great deal of research interest due to its various

applications in the fields such as human computer interaction, robotics and data

analytics.

In this thesis, we present a facial emotion recognition approach that is based on

facial expressions to classify seven emotional states: neutral, joy, sadness, surprise,

anger, fear and disgust. To perform classification, two different facial features called

Action Units (AUs) and Feature Point Positions (FPPs) are extracted from image

sequences. A depth camera is used to capture image sequences collected from 13

volunteers to classify seven emotional states. Having extracted two sets of features,

separate artificial neural network classifiers are trained. Logarithmic Opinion Pool

(LOP) is then employed to combine the decision probabilities coming from each

classifier. Experimental results are quite promising and establish a basis for future

work on the topic.



ÖZET

YAPAY SİNİR AĞLARI TEMELLİ BİRLEŞİK SINIFLANDIRICILAR İLE YÜZ

İFADELERİNDEN DUYGU TANIMA

EKİN YAĞIŞ

Mekatronik Mühendisliği Yüksek Lisans Tezi, Ağustos 2018

Tez Danışmanı: Prof. Dr. Mustafa Ünel

Anahtar Kelimeler: Duygu Tanıma, Yüz İfade Analizi, Yüz Hareketleri

Kodlama Sistemi, Sınıflandırma, Yapay Sinir Ağları, Logaritmik Düşünce Havuzu

Yüz ifadeleri herhangi bir tür iletişimin temeli olmakla beraber insan duygularının en

basit yansımasıdır. İnsan-makine etkileşiminden, robotiğe ve veri analitiğine kadar

pek çok uygulama alanı olması nedeniyle duygu durumu sınıflandırılması son on

yılda çokça araştırılmıştır.

Bu tez çalışmasında yüz ifadesi temelli yedi basit duygu durumunun (ifadesizlik,

neşe, mutsuzluk, sürpriz, kızgınlık, korku ve iğrenme) sınıflandırılması için yeni bir

yaklaşım geliştirilmiştir. Bu amaçla her bir ifade için alınan seri görüntülerden

‘hareket birimleri’ ve ‘nokta pozisyonları’ denilen iki farklı öznitelik çıkartılmıştır.

Onüç farkı gönüllüden elde edilen yüz ifadelerinin kayıt edilmesinde bir derinlik

kamerası kullanılmıştır. Özniteliklerin çıkartılmasının ardından duygu durumlarının

sınıflandırılması için iki ayrı yapay sinir ağı eğitilmiştir. Sonrasında logaritmik

düşünce havuzu adı verilen bir olasılıksal modelleme ile her bir sınıflandırıcıdan gelen

karar olasılıkları birleştirilmiştir. Sınıflandırma sonuçları umut verici olup gelecekte

bu konuda yapılacak çalışmalar için bir baz oluşturmaktadır.
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Chapter 1

Introduction

The human face is a complex structure that allows diverse and subtle facial expres-

sions. During conversations, the first thing that brings to the others’ attention is

our faces [21]. Together with gestures, speech and physiological parameters, facial

expressions may reveal a lot of information about people’s feelings. Therefore, facial

expressions are essential part of human communication.

In 1968, Mehrabian concluded in his research that 55% of message conveying infor-

mation about feelings and attitudes is transmitted through facial expressions [21].

Reading emotion cues from facial expressions is one of the cognitive functions that

our brain performs quite accurately and efficiently. However, reading emotional re-

actions in humans is not a trivial task for machines. There are many challenges that

may come from the high variability of data. Still, it is vital for machines to get these

human-oriented skills by capturing and understanding expressions of emotion such

as joy, anxiety, and sorrow if they are to be an indispensable part of human life.

Thus, designing an automated facial emotion recognition (FER) system is pivotal to

the development of more effective human-computer interaction systems in artificial

intelligence (AI).
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Over the last decades, research on facial emotion has been gaining a lot of attention

with applications not only in the psychology and computer sciences, but also in

market research. It can be foreseen that emotionally aware AI systems will gain a

competitive advantage over AI with only computational capabilities, especially when

it comes to customer experience.

For instance, in the automotive industry, it is expected that driverless cars will be

the future and make roads safer in time. To integrate these autonomous systems

into our lives and increase the passenger’s comfort, his/her emotional state can be

inferred using facial emotion recognition. In case of anger, a virtual assistant may

motivate the passenger to take a deep breath, play the driver’s preferred playlist or

suggest a stop along the way. Moreover, the vehicle can change its environmental

conditions such as lighting and heating considering passenger’s mode and drowsiness.

On the other hand, facial emotion recognition can also be used to capture struggling

students in online tutoring sessions. The system can be trained to recognize whether

students are engaged in content or not using their facial expressions, so that the

topics in which the students are having trouble can be differentiated. To enrich the

online learning experience, we can take the advantages of this kind of systems.

For marketers, being able to understand how a customer feels is essential. Instead

of gathering feedback from questionnaires and surveys, marketers will soon be able

to use the advantage of facial emotion recognition technology. FER provides an

opportunity for companies to gain a greater insight about customers and their in-

terests/needs causing an extreme personalization on advertising. Estimating the

internal state of shoppers can help to make better business decisions by improving

product and service offerings [22].
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1.1 Contributions of the Thesis

Emotion recognition problems in AI generally have two components: sensing and

adapting. This thesis aims to design an emotion recognition system which focuses on

sensing part using a depth camera. We propose a novel method for facial expression-

based emotion recognition using action units (AUs) and 3D feature point positions

(FPPs). Kinect v2 is used to capture image sequences collected from 13 volunteers

to classify seven emotional states. For each frame, 1347 3D facial points and 17 ac-

tion units are acquired using Face Tracking SDK [23]. Key facial points are selected

to reduce the computational cost. Finally, two different neural network classifier

classifiers are trained where the inputs of the classifiers are AUs and FPPs respec-

tively. Outputs of individual classifiers are then combined by a decision level fusion

algorithm in a probabilistic manner using Logarithmic Opinion Pool (LOP).

The contributions of this thesis are as follows:

• A database of facial images for emotion recognition purposes is created. To

the best of our knowledge, there is little previous research on Kinect-based

emotion recognition using both action units and feature point positions as

features. Hence, there is no public database for evaluating the performance of

such emotion recognition systems. We will make this database available for

other researchers to use in their work.

• Two different features, namely Action Units (AUs) and Feature Point Posi-

tions (FPPs) are extracted from these images and separate Neural Network

classifiers are trained.

• Decision level fusion is performed on the outputs of the neural network classi-

fiers using Logarithmic Opinion Pool (LOP) [24–26].
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• The proposed algorithm is tested in several scenarios including subject de-

pendent and independent situations. Experimental results are quantified by

constructing confusion matrices.

1.2 Outline of the Thesis

Chapter 2 presents the literature survey and theoretical background of facial ex-

pressions and emotions. An overview of facial expression measurement and recogni-

tion systems used in literature are also provided. Chapter 3 is on dataset generation

and sensors. Detailed explaination of dataset generation procedure as well as the

Kinect sensor are introduced. Chapter 4 details feature extraction processes and

dimensionality reduction algorithms. Furthermore, it describes our proposed clas-

sification method. Experimental results are presented in Chapter 5. Finally, the

thesis is concluded in Chapter 6 and possible future directions are indicated.

1.3 Publications

• E. Yagis, M.Unel, “Facial Expression Based Emotion Recognition Using Neu-

ral Networks”, International Conference on Image Analysis and Recognition

(ICIAR), Povoa de Varzim, Portugal, June 27-29, 2018, Lecture Notes in Com-

puter Science, Vol. 10882, July 2018.

• E.Yagis, M.Unel, “Kinect Based Facial Emotion Recognition Using Fusion of

Facial Point Positions and Action Units”, Journal Paper(under preparation)
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Chapter 2

Literature Survey and Background

2.1 Facial Expression and Emotions

Investigating human emotions is not a novelty if viewed from the perspective of

human history. The first studies conducted on emotions can be traced back to the

17th century. It was revolutionary when Descartes first insisted that there must be

a relationship between mental processes and body responses. This was controversial

in a sense that during that time no device was available to measure such connection.

One of the most influential works in the area is Charles Darwin’s “The Expression

of Emotions in Man and Animals” book [27]. In that book, Darwin claims that

facial expressions of emotions have a certain level of universality and evolutionary

meaning for survival. Being inspired by this work, Paul Ekman, Wallace Friesen and

Carroll Izard, pioneers in this field, conducted several cross-cultural studies known

today as “universality studies”, on non-verbal expression of emotions.

In 1972 Ekman [28] and Friesen [29] conducted an experiment on facial expression

behavior on the faces of Japanese and American students. The subjects were exposed

to stressful films. Throughout the films, variances of their facial expression were

5



measured and noted. After these experiments, Ekman and Friensen found that

both American and Japanese students showed the same expression when watching

emotion-eliciting movies. The subjects were in the condition where they thought

they were alone and unobserved. Moreover, they observed an isolated tribe in New

Guinea as well as civilized people and came to the conclusion that six categories

of emotions, namely happiness, sadness, anger, disgust, fear and surprise can be

considered as universal [30, 31].

2.2 Facial Expression Measurement

2.2.1 Physiology of Facial Expressions

The human face contains 20 flat skeletal muscles which are controlled by a cranial

nerve. They are located under the skin, mainly near mouth nose and eyes. Facial

muscles are unique and different compared to the other groups of muscles in the

body. Unlike the other skeletal muscles, they do not move joints and bones but the

skin causing facial surface deformations which can be thought as expression.

2.2.2 Facial Action Coding System (FACS)

In the 70s, connections between one’s facial muscle movements and his/her psycho-

logical state were seriously questioned. There was a need for the development of a

coding schema for measuring and classifying facial emotions. At that time, several

systems had been developed to solve that problem. Among all the efforts, the Facial

Action Coding System (FACS) developed by Ekman and Friesen [30, 31] and the

Maximally Discriminative Facial Movement Coding System (MAX) developed by

Izard in 1979 [32] were the most prominent schemas. After the development of these

6



Figure 2.1: Muscles of facial expressions [1])

systems, the research on facial expression and emotion anaysis has attracted a lot

of research attention and gained pace.

So far, several methods have been proposed for recognizing and classifying facial

emotions. Most of these research works are based on the Facial Action Coding

System (FACS) developed by Ekman et al. [30]. The reason behind why FACS

was more popular is that rather than focusing on the meaning of emotions it was a

comprehensive system based on the anatomical structure of the face. FACS has an

enumeration regarding all the muscles in the face responsible for movement whereas

MAX is limited to several number of muscle movements which are only related to

emotions. Moreoever, FACS scores head and eye movements as well as the muscles.

In 1978, Ekman et al. found out that each emotion results in specific muscle move-

ment [30]. For instance anger affects whole body by activating the chain of reactions

in our brain. It increases the heart rate, blood pressure as well as body temperature.

The physiological response causes a variety of features which can be observed in face

7



such as wrinkles on the forehead and lifted eyebrows. On the other hand, happiness

reveals itself as a smile on the face which is caused by raised cheeks and pulled lip

corners. The specific facial features related with each emotion are the following:

1. Joy - Eyes open, cheek raised, lip corners raised, possibly visible teeth, wrinkles

outside the eye corners.

2. Sadness - Inner part of eyebrows pulled down, eyes open, lip corners depressed.

3. Surprise - Eyes wide open, jaw dropped, and mouth wide open.

4. Anger - Eyebrows lowered, eyes slightly open, lip corners slightly depressed,

tensed jaw.

5. Fear - Eyebrows lowered, mouth open, lips tight and eyes slightly open.

6. Disgust - Eyebrows lowered, eyes almost shut, upper lip lifted, tensed jaw, nose

wrinkled.

They developed a method called Facial Action Coding System (FACS) to charac-

terize the physical expression of emotions. FACS is a system which is solely based

on anatomical structure of the human face. It characterizes facial activity using the

action of a muscle or a group of muscles known as Action Units (AU). For instance,

Orbicularis oculi and pars orbitalis muscles are active in the movement of cheeks.

FACS consists of 44 AUs of which 12 are for upper face, 18 are for lower face plus

another 14 for head or eye movements.

FACS has also a scoring system which is based on the intensity of each facial action,

on an A to E scale. An intensity score “A” means that the coder is able to detect

slight movement whereas “E” represent the highest movement of specific action unit.

Training human experts to manually score the action units is costly and time con-

suming. There are numerous studies on automatic recognition of action units for

facial expression analysis. The recent advances in machine learning and image pro-

cessing open up the possibility of extracting action units from facial images. To this

end accurate extraction of facial features is a crucial step.
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In 1999, Chowdhury et al. [33] tried to identify several basic facial action such as

blinking, movements of mouth and eyes using Hidden Markov Models and multidi-

mensional receptive field histograms. However, this model was not able to differenti-

ate relatively complex movement like eyebrow movements. Ohya et al.[34] created a

system to recognize head movements. The system could identify major head move-

ments such as shaking and nodding; however, rest of the action units related to facial

action was missing. In 2000, Lien et al. [35] detected various action units using dense

flow and feature point tracking. In 2001, Tian et al. [12] used multistate templates

to detect features like mouth, cheeks, eyebrows, eyes etc. Neural network classifier

was then utilized to recognize the facial action units. They achieved to identify six-

teen facial actions. In the same year, Cowie et al. [36] introduced a semi-automatic

system for identification of action units using Facial Animation Parameter Units. In

2006, Bartlett et al. [2] published a work entitled “Automatic Recognition of Facial

Actions in Spontaneous Expressions”. In this work, they first detected frontal faces

in the video stream and coded each frame with respect to 20 Action units. The

approach utilizes support vector machines (SVMs) and AdaBoost and the output of

the classifier is the frame by frame action unit intensity.

Figure 2.2: Overview of fully automated facial action coding system designed
by Bartlett et al. [2])

In the same year, Michel Valstar and Maja Pantic [37] published another work on

automatic facial action unit detection and temporal analysis. They first used a

facial point localization method which employs GentleBoost templates built from

9



Gabor wavelet features. After exploiting a particle filtering scheme, SVM classifier

was trained on a subset of most informative spatio-temporal features selected by

AdaBoost to recognize action units and their temporal segments. They succesfully

achieved to classify 15 action units with a mean agreement rate of 90.2% with human

FACS coders.

Another influential work in the area is an animation model built from the FACS, for

coding human faces called CANDIDE-3. The CANDIDE model was first developed

by Mikael Rydfalk at Linköping University in 1987 [3]. It is a parameterised face

mask which is controlled by mapping global and local Action Units (AUs) to the

alteration of the vertices of the mask. The global action units are the ones that

account for the rotations around x, y and z axes whereas the local ones regulate the

mimics of the face in order for different expressions to be obtained. The CANDIDE-

3 models a human face as a polygon object by using 113 vertices and 168 surfaces.

The face mask model can be seen in Figure 2.3 below. The Kinect Face Tracking

SDK is also based on the CANDIDE- 3 model. The system is described in detail in

Section 3: Dataset Generation and Sensors.

Figure 2.3: CANDIDE-3 face model [3]

Using the earlier version of Kinect sensor only 6 action units could be detected,

whereas 17 action units (AUs) can be tracked with the new Kinect v2 and the
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high definition face tracking API. Out of 17 AUs that are tracked, 13 AUs, their

descriptions and the names of the specific facial muscles are visualized in Figure 2.4.

Figure 2.4: Several action units together with their description and interpreta-
tion (face images are taken from CK+ dataset [4])

14 out of 17 AUs are expressed as a numeric weight varying between 0 and 1 whereas

the remaining 3, Jaw Open, Right Eyebrow Lowerer, and Left Eyebrow Lowerer, vary

between -1 and +1. For example, if the value of AU 13 is -1 that means left brow

is raised fully in most of the cases to express agreement, surprise or fear whereas

+1 means that it is lowered to the limit of the eyes showing anger or frustration.

Figure 2.5 shows the change of action units for seven emotional states (neutral, joy,

surprise, anger, sadness, fear and disgust) of one participant.
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Figure 2.5: Labeled facial expressions with corresponding action units

2.3 Facial Emotion Recognition Systems

The conventional facial emotion detection system consists of several steps which are

shown in Figure 2.6 below. Given input images, first step is to detect face and

facial landmarks such as eyes, mouth and nose. Then, a key feature extraction step

is employed. Lastly, classification based on several spatial and temporal features is

performed using various machine learning algorithms such as support vector machine

(SVM), AdaBoost and random forest or neural networks.

2.3.1 Characteristics of an Ideal System

As effortless as it sounds for humans to detect and recognize facial emotions, having

systems which can understand emotions are not that easy. Researchers have tried
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Figure 2.6: Block diagram for conventional FER approaches [5] (face images are
taken from CK+ dataset [4])

to solve the way our visual system works in order to come up with a list of some

attributes of an ideal automatic FER system. In the book published in 2005, entitled

Handbook of Facial Recognition, Tian et al.[38] provided the following properties:

• working in real life scenarios, with any type of images

• being able to recognize both mimicked emotions and genuine human emotions

• being independent of person, gender and age

• being invariable to changes in lighting conditions

• being able to detect and track facial features

2.3.2 Facial Emotion Recognition Approaches

So far, facial emotion recognition systems can be classified as image-based, video-

based, and 3D surface-based methods [39]. In image-based approaches, features are

usually extracted from the global face region [40] or different face regions containing

different types of information [41, 42]. For instance, Happy et al. [40] extracted

a local binary pattern (LBP) histogram of different block sizes from a global face

region as the feature vectors and classified several facial expressions. However, since
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different face regions have different levels of importance for emotion recognition, the

recognition accuracy tends to be unstable because local variations of the facial parts

are not reflected to the feature vector. Ghimire et al.[43] utilized region-specific

appearance features by dividing the face region into domain-specific local regions

which results in an improvement in the recognition accuracy.

Apart from 2D image-based emotion recognitions, 3D and 4D (dynamic 3D) record-

ings are increasingly used in FER research. 3D facial expression recognition gen-

erally consists of feature extraction and classification. One thing to note is that

3D approaches can also be divided into two categories based on the nature of the

data: dynamic and static. In static systems, feature extraction is performed from

statistical models such as deformable model, active shape model and distance-based

features whereas in dynamic systems 3D motion-based features are extracted from

image sequences [5].

Over the past decades, some researchers have used Kinect sensor to recognize emo-

tions. Kinect is a high speed optical sensor with the abilities of both traditional

RGB cameras and 3D scanning equipment. It is affordable for many applications,

fast in scanning, and compact in size. Mostly, it can be said that Kinect based facial

emotion recognition systems use both RGB and depth data for extracting different

feature points. In 2013 Seddik et al. [44] recognized facial expressions and mapped

them to a 3D face virtual model using Kinects depth and RGB data. Breidt et al.

[45] released a specialized 3D morphable model for facial expression analysis and

synthesis using noisy RGB-D data from Kinect. Their results showed the potential

of using Kinect sensor in facial expression analysis. In 2015, Mao et al. [46] proposed

a real-time EFRE method, in which both 2D and 3D features extracted with Kinect

are used as features. The emotion classification has been done using support vector

machine (SVM) classifiers and the recognition results of 30 consecutive frames are

fused by the fusion algorithm based on improved emotional profiles (IEPs). Youssef

et al.[47] created a home-made dataset containing 3D data for 14 different persons
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performing the 6 basic facial expressions. To classify emotions, SVM and k-NN

classifiers are utilized. They have achieved 38.8% (SVM) and 34.0% (k-NN) classifi-

cation accuracy for individuals who did not participate in training of the classifiers

and observed 78.6% (SVM) and 81.8% (k-NN) accuracy levels for the cases where

they have tested their approach with volunteers who did participate in training.

Zhang et al. [48] trained decision tree classifiers and used 3D facial points recorded

by Kinect as inputs. The best accuracy reached was 80% for three emotions in only

female data with decision tree classification. Recently, in 2017, Tarnowski et al [49]

constructed the dataset with six men performing 7 emotional states, hence a total of

256 facial expressions. Then, they performed facial emotion classification by using

6 action units tracked by Kinect v1 sensor as inputs to an artificial neural network.

Deep-learning based approaches are also gaining much popularity due to their com-

putational advantages such as enabling end-to-end learning, without a hand-crafted

feature extraction process. From scene understanding to facial expression recogni-

tion, CNN has achieved state-of-the-art results. An example of a CNN based FER

system is illustrated in Figure 2.7 below.

Figure 2.7: Block diagram for a CNN based FER approach (face images are
taken from CK+ dataset [4])

The requirement of large data for training is generally one of the barriers to use deep

learning methods. As there are many parameters in the model to learn, to avoid the

overfitting, the amount of data also has to be very large.
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Even though considerable success has been achieved with both deep learning based

and conventional methods, there are still a great number of issues remained which

deserve further investigation. Some of these problems are listed below:

• A wide range of datasets and superior computing/processing power are de-

manded.

• A great number of manually collected and labeled datasets are required.

• Large memory is needed.

• Both training and testing processes are time consuming.

• Expertise is required to select appropriate parameters including learning rate,

kernel sizes filters, number of neurons and number of layers.

• Even though CNNs work well for various applications, there are several crit-

icism toward CNNs regarding the lack of theory as it needs to rely on trials-

and-errors.
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Chapter 3

Depth Sensor and Dataset

Generation

In this chapter the sensor utilized in the experimental part of the thesis and the

dataset generation will be detailed.

3.1 Depth Sensor

Depth sensors have gained popularity with the rise in their application fields. AR/VR,

gesture and face recognition, mapping, navigation and automation are only some of

the application areas in robotics, security, automotive, aviation, entertainment in-

dustries.

3D depth sensing techniques have evolved dramatically in the last two decades.

There are diverse range of 3D shape acquisition methods. Depth information to the

machine can be derived from mainly contact, in which machine and object are phys-

ically in contact, and non-contact methods. In various industries including health-

care, aviation, mining etc., non-contact methods have long been used to acquire
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depth information. To name a few, tomography and sonar machines are the most

popular among others. Tomography machine is based on transmissive techniques

and uses ionizing radiation to gather the data, whereas sonar relies on reflection of

sound waves.

Figure 3.1: Classification of 3D data acquisition techniques [6]

Optical shape acquisition/ depth sensing methods are fairly new compared to other

techniques. In depth sensors, stereo, a well-known passive method, structured light

and time of flight (ToF), as active methods, are the most widely used principles. As

an example, Kinect v1 is based on structured light principle and Kinect v2, which

was used in our experiments, is based on time of flight principle.

3.1.1 Stereo

Stereo method is based on observing an object from two different points of view.

The distance in pixels between two corresponding points in a pair of stereo images

is called disparity. Using disparity maps, depth information can be computed with
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Figure 3.2: Classification of optical 3D data acquisition methods [7]

a method called triangulation. Below is the demonstration of geometry of stereo

method:

Figure 3.3: Stereo vision model [8]

Stereo is one of the oldest techniques. Stereo cameras have been around for more

than 100 years. It gained popularity in the last 2 decades with the rise of 3D movie

market.
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3.1.2 Structured Light

In structured light, an active stereo method, a light pattern is projected on to

the object by a projector. The pre-determined pattern is distorted by the object.

Another camera in a certain distance from the projector, is used to observe the

deformations in the pattern in order to acquire and calculate the depth data. In

simpler terms, the pattern projection on close objects are deformed more, on far

objects the distortion is less intense.

Figure 3.4: Structured light approach [9]

Given the intrinsic parameters of the camera, such as the focal length f and the

baseline b between the camera and the projector, the depth information of a 2D

point (x, y) can be calculated as d = bf
m(x,y)

using the disparity value m(x, y). The

unit of the disparity m(x, y) is usually given as pixel, thus, a unit changing operation

for the focal length also takes place to convert it into pixel units, i.e. f = fmetric
x

spx
,

where spx denotes the pixel size.
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Kinect v1 which was launched in 2010 by Microsoft, works based on the structured

light principle.

Figure 3.5: Construction of structured-light Kinect [10]

The Kinect v1 is made of a color RGB camera, a monochrome NIR camera, and

an NIR projector with a laser diode at 850nm wavelength. Based on the dispar-

ity between the initial image and the image recorded by IR camera, Kinect uses

triangulation method to calculate the distance of the objects. There are variety

of light patterns of projections. Striped pattern is the simplest and common case,

whereas Kinect v1 makes use of a structured dot pattern in infa-red. Structured

light approach is also utilized by Apple in its iPhone X model (see Figure 3.6).

Figure 3.6: The components of Apple’s TrueDepth camera [11]
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3.1.3 Time of Flight

The time of flight (ToF) technology is based on measuring the time difference be-

tween emitted light and its return to the sensor after reflection from the object.

The time of flight technology is the basis of several range sensing devices and ToF

cameras, to name the most popular, Kinect v2. As in many ToF cameras, Kinect

v2 also uses Continuous Wave (CW) Intensity Modulation approach. The method

is based on continuously projecting intensity modulated periodic light on to the ob-

ject. The distance between camera and the object causes a delay φ[s] in the signal

which deviates the phase in the periodic light (see Figure 3.7). The deviation of

time is observed for every pixel. Given that, speed of light c, the object distance for

each pixel can be calculated by the formula d = cφ
fm4π

where fm is called modulation

frequency.

Figure 3.7: The time of flight (ToF) phase-measurement principle [9]
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3.1.4 Comparison of three techniques

Each technique presented and described above, has various advantages and setbacks.

For instance, accuracy of the structured light method is higher than the time of

flight, whereas real-time capability and XY resolution is much higher in time-of-

flight techniques. Since the sunlight clears out the infra-red light, structured light has

very low performance in outdoors. Based on different needs in various applications,

a suitable method can be chosen. Below is a brief comparison of different techniques.

Table 3.1: The performance comparison of three 3D measuring techniques

3D Measuring Technique Stereo Structured Light Time of Flight

XY Resolution Scene Dependent Medium High

Accuracy Low High Medium

Software Complexity High Medium Low

Real-time Capability Low Medium High

Material Costs Low High Medium

Low-light Performance Weak Good Good

Outdoor Performance Good Weak Medium

In the experiments, Kinect v2, launched by Microsoft in 2014, has been used. In

line with our aims, Kinect v2 outweighed other 3D depth sensor cameras in our

pre-analysis. The sensor and its components can be seen in Figure 3.8 and Figure

3.9 respectively.

Figure 3.8: Kinect v2 sensor
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Figure 3.9: Sensor components of Kinect v2

Technical features of Kinect v2 sensor is listed below.

Table 3.2: Technical features of Kinect v2 sensor

Infrared (IR) Camera Resolution 512 X 424 pixels

RGB Camera Resolution 1920 x 1080 pixels

Field of View 70 x 60 degrees

Frame Rate 30 frames per second from 0.5 to 4.5 m

Operative Measuring Range between 1.4 mm (@ 0.5 m range)

Object Pixel Size (GSD) and 12 mm (@ 4.5 m range)

3.2 Action Units from Kinect v1 and Kinect v2

High XY resolution enables an efficient use of high definition face tracking API.

In comparison with Kinect v1, Kinect v2 sensor can detect 17 action units (AUs)

whereas Kinect v1 can detect only 6. Increase in the number of detected action units,
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boosts the accuracy of the emotion recognition. The diffence in terms of extracted

action units is illustrated in the Figure 3.10 below.

Figure 3.10: Visualization of action units (AUs) extracted from Kinect v1 and
v2, respectively. Color-coded labels of AUs indicate the position of that specific

muscle. The arrow signs are used to illustrate the muscle movement

As it can be seen from the figure 3.10 above, 11 extra action units are mostly situated

in the mouth area and therefore they are better at representing emotions that involve

movement of muscles around lower face. When it comes to the classification of

complex emotions such as disgust and anger, the new set of features plays a crucial

role.

3.3 Dataset Generation

The dataset we use in our experiments contains 910 images of both male and female

facial expressions. Thirteen volunteers (eight males and five females) who are all

graduate students were asked to pose several different facial expressions. In order

to obtain more realistic and natural emotional responses instead of just mimick-

ing, an emotion priming experiment was performed by showing volunteers different

emotional videos. Each subject was seated at a distance of two meters away from
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the Kinect sensor and the videos were played with a computer. While they were

watching these videos, Kinect v2 was used to record the facial data of subjects.

Figure 3.11: Sample facial expression images taken from the dataset

The experiments were conducted in a laboratory at Sabanci University. Each partic-

ipant took 10 second breaks between emotional states and performed each emotion

for a minute. For each emotion, 10 peak frames have been chosen per participant.

As a result, 70 frames (10 peak frames × 7 emotions) were collected for each sub-

ject. Overall dataset consisted of 910 images (70 frames × 13 participants) facial

expressions. Sample images from our dataset are shown in Figure 3.12 below.

Figure 3.12: Sample facial expression images taken from the dataset
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Chapter 4

Feature Extraction and

Classification

4.1 Feature Extraction

The feature extraction process is the stage in which the pixel representation of the

image is converted into a higher-level representation of shape, motion, color, texture

and spatial configuration. The dimensionality of the input space for classification

generally decreases after feature extraction.

In facial emotion recognition systems, once the face is detected, the next step is

feature extraction where the most appropriate representation of the face for facial

emotion recognition is achieved.

The common facial features extraction methods for emotion recognition can be di-

vided into 2 groups: geometric based and appearance based methods (see Figure

4.1).
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Figure 4.1: Facial expressions analysis [12]

4.1.1 Geometric Based Methods

The geometric facial features represent the information regarding the shape and

locations of key facial parts such as mouth, eyes, brows and nose. Localization and

tracking a dense set of feature points are key steps in the geometric based methods.

Active Appearance Models (AAM) and its variations are one of the most famous

and used geometric feature extraction methods [62]. Still, to utilize the geometric

feature-based methods, it is needed to achieve accurate and reliable facial feature

detection and tracking, which is difficult to achieve in many occasions [63].

4.1.2 Appearance Based Methods

Methods based on appearance features (appearance characteristics) focuses on struc-

ture of distinct parts of the face such as muscle shifts due to different emotions in-

cluding crinkles, contractions, furrows and lumps. A facial expression causes shifts

in the position of associated muscle groups which induce wrinkles, distention and

so on, resulting with the change in the appearance of local area of the face. Several

prominent appearance features used for image classification are Gabor Descriptor
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[64] and Local Binary Patterns (LBP) (see Figure 4.2) [65] and Histograms of Ori-

ented Gradient (HOG) Descriptors (see Figure 4.3) [66].

Figure 4.2: Local Binary Patterns (LBP) feature extraction process [13]

Figure 4.3: Histogram Oriented Gradient feature extraction stages[14]

In the approach proposed in this thesis, both geometric and appearance-based fea-

tures are utilized to develop a system which is more robust to variations in head

orientation and light conditions.

Our homemade dataset contains 910 images (70 frames × 13 participants) of facial

expressions. Each image is represented with two different feature vectors. In the first
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representation, seventeen action units (AUs) are extracted with the high definition

face tracking API developed by Microsoft. The action unit features coming from

each frame can be written in the vector form:

a = (AU0, AU1, AU2...AU16) (4.1)

Thus, each image is represented by a vector of 17 elements. In the second represen-

tation, key facial point positions are used as features. Spatial coordinates of these

key feature points are written in vector form. Coordinate system attached to the

Kinect device is shown in Figure 4.4. The units of measurements are meter and

degree for translation and rotation respectively.

Figure 4.4: Kinect coordinate system

For each frame, 1347 3D facial points are acquired using Face Tracking SDK. How-

ever, as it can be seen from Figure 4.5, that not all of these points are strongly

related to facial expressions.

In order not to increase the complexity of the training, a dimensionality reduction

phase is employed. From these 1347 points, 36 3D points located on eyebrows, chin,
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mouth, eyes, and some other key positions were selected manually. These 36 key

points are also defined with descriptive names on Microsoft website.

For each point, there is 3D information (X, Y, Z). Therefore, the feature point

positions (FPP) of each frame can be written in the form of a 108-element vector:

b = (X0, Y0, Z0, X1, Y1, Z1, X35, Y35, Z35) (4.2)

where (Xi, Yi, Zi), (i = 0, 1, ..., 35) are the 3D position coordinates of each 3D key

facial point. These 36 key 3D facial points positions are shown in Figure 4.5 whereas

descriptions of them are given in Table 4.1.

Figure 4.5: Facial feature points: (a) The initial 1347 feature points extracted
using Kinect face tracking SDK; and (b) the 36 feature points selected as key

facial expression features and their enumeration

Face Tracking SDK captures 3D facial points per frame. The sampling frequency of

Kinect is 30Hz, thus in one minute 1800 frames can be obtained from one emotion

per person.
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Table 4.1: List of 3D points and their descriptions

Point no. Point Description

1 Left eye
2 Inner corner of the left eye
3 Outer corner of the left eye
4 Middle of the top of the left eye
5 Middle of the bottom of the left eye
6 Inner corner of the right eye
7 Outer corner of the right eye
8 Middle of the top of the right eye
9 Middle of the bottom of the right eye
10 Inner left eyebrow
11 Outer left eyebrow
12 Center of the left eyebrow
13 Inner right eyebrow
14 Outer left eyebrow
15 Center of the left eyebrow
16 Left corner of the mouth
17 Right corner of the mouth
18 Middle of the top of the upper lip
19 Middle of the bottom of the lower lip
20 Middle of the top of the lower lip
21 Middle of the bottom of the upper lip
22 Tip of the nose
23 Bottom of the nose
24 Bottom left of the nose
25 Bottom right of the nose
26 Top of the nose
27 Top left of the nose
28 Top right of the nose
29 Center of the forehead
30 Center of the left cheek
31 Center of the right cheek
32 Left cheek bone
33 Right cheek bone
34 Center of the chin
35 Left end of the lower jaw
36 Right end of the lower jaw
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4.2 Classification

4.2.1 Artificial Neural Network (ANN)

The human brain is a complex structure which consists of around 100 billion neurons

and 1,000 trillion synaptic interconnections. The neurons are responsible for trans-

mitting and processing the information coming from our senses. These electrically

excitable cells have three main parts: dendrites, axons, and cell body (soma).

The axon is the long and thin output structure of the neuron. It transfers informa-

tion to other neuron whereas the dendrites receive the impulse from the synaptic

terminals. The general structure of a neuron can be seen in Figure 4.6.

Figure 4.6: Basic neuron parts: dendrites, the cell body, the axon and finally
the synapse [15])

An artificial neural network is a computational model inspired by interconnected

model of human visual system. It is made of various processing units called artificial

neurons.

In the computational model, the signals coming from the synaptic terminals (e.g.

x1,x2,..,xn) communicate multiplicatively (e.g. w0x0) with the dendrites of the other
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neuron according to the synaptic strength at that synapse. That synaptic strenght

is expressed as weights in the artifical model (e.g. w1j,w2j,...,wnj).

In the cell body, all the signals coming through the dendrites are summed up. If the

final sum is greater than a certain treshold, then the message can be transmitted

along the axon to the other synaptic terminal. This structure is modelled with an

activation function f as illustrated in Figure 4.7.

Figure 4.7: Simple neural network model [16])

As the activation function is decisive in learning non-linear properties present in the

data, the choice of the activation function is pivotal. The choice of the activation

function is problem dependent; and there is still a common conception regarding

what activation functions work well for prevalent problems. The most common

activation functions that can be seen in ANNs are illustrated in Figure 4.8.

4.2.1.1 Network Training

Network training is basically the problem of determining the parameters or so called

weights to model the target function. At first, weights are randomly assigned in

the model. Based on the initial values of the weights, outputs are calculated. This

process is called as forward pass. Then, the error function is computed based on
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Figure 4.8: Common activation functions artificial neural networks

the difference between actual target function and this estimated one. Two common

error measures are shown below. Sum-of-squared error function has the form

E(w) =
N∑
n=1

En(w) =
1

2

N∑
n=1

C∑
k=1

(yk(xn, w)− tnk)2 (4.3)

where N is the number of samples in the dataset and C is the number of classes.

The cross-entropy error function is defined as

E(w) =
N∑
n=1

En(w) = −
N∑
n=1

C∑
k=1

tnklog(yk(xn, w)) (4.4)

where tnk denotes the kth entry of the nth target value.
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Learning the weights to describe the model requires updating the weights accord-

ingly. Weight update is determined by a parameter optimization algorithm whose

aim is to minimize the error function. The error is minimized by differentiating the

performance function with respect to the weights. In this process the use of partial

derivative is required since each weight is updated individually. Moreover, another

scalar parameter called ‘learning rate’ is added to control the step size for weight

changes. The weight updates are calculated as follows:

∆~w = r ∗ (
∂E

∂w0

,
∂E

∂w1

, ...,
∂E

∂wq
) (4.5)

Then, the next step is to update weights according to the selected optimization

method. Once the weights are updated, another forward pass takes place. The

learning stops when either a pre-defined number of iterations is reached or minimum

error rate is achieved.

Some of the optimization techniques that have been used so far are Gradient De-

scent, Gradient Descent with Momentum, Scaled Conjugate Gradient and BFGS

Quasi-Newton. These are the algorithms that are commonly used in neural network

training.

Gradient Descent Backpropagation algorithm adjusts the weights in the negative

of the gradient (see Figure 4.9), the direction in which the performance function is

decreasing most rapidly and calculates the error gradient.

w ← w − η∂E
∂w

(4.6)

Gradient Descent with Momentum assists the acceleration of gradients vectors by

ignoring the little features in the surface. With the help of momentum, a network

can slide through a shallow local minimum [67].
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Figure 4.9: Illustration of gradient descent algorithm [17]

The conjugate gradient based methods illustrate linear convergence on various prob-

lems. Compared to other second order algorithms, it is faster with its step size scaling

mechanism. The search paths of the steepest descent and the conjugate gradient

methods are illustrated in Figure 4.10.

Figure 4.10: Search paths of the steepest descent and the conjugate gradient
methods on a 2D plane [18]

Another second order algorithm which is commonly used in network training is

BFGS quasi-Newton. It is an approximation of Newton’s method with class of hill-

climbing techniques in search of function’s stationary point. It has long been known

that this technique works well even for shallow networks.
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The Levenberg-Marquardt algorithm works specifically on sum of squared error type

of loss functions. Instead of computing the exact Hessian matrix, it calculates the

gradient vector and the Jacobian matrix. Due to its dependence on the Jacobian

calculation, it fails to work well on big data sets and networks since big Jacobian

matrix requires a lot of memory.

Performance comparison between algorithms to train neural networks can be seen

below.

Figure 4.11: Comparison of some optimization algorithms in terms of speed and
memory [19]

4.2.2 Using ANN to classify emotions

Having extracted two sets of features from each frame, separate neural network

classifiers are trained using scaled conjugate gradient backpropagation [68–70]. First

classifier has one hidden layer with 10 neurons. In that hidden layer sigmoid action

function have been used. Input layer consisted of seventeen action units (AUs)

whereas the output was one of the seven emotional states: neutral, joy, surprise,

anger, sadness, fear or disgust. The structure of the first neural network can be seen

in Figure 4.13.
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Figure 4.12: Schematic representation of the methodology

Figure 4.13: Architecture of the first neural network classifier

It should be noted that in the output layer of the classifier, a softmax function

is utilized which generates class decision probabilities according to the following

formula:
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σ(Xi) =
eXi∑C
j=1 e

Xj

(4.7)

where Xi is the input to the softmax function and C is the number of classes.

The second neural network classifier was also trained with scaled conjugate gradient

backpropagation. Number of neurons in the hidden layer were increased to 50. The

input of the second classifier was 108-element vector consisting of facial feature point

positions (FPP) and the output was again one of the seven emotions. To avoid

overfitting problem, the overall data was randomly divided into three: training,

validation and testing. 70% of data (636 samples) was used for training whereas

testing and validation parts were 15% percent each (137 samples). Validation set was

used to measure network generalization, and to stop training when generalization

stops improving. The structure of the second neural network can be seen in Figure

4.14. .

Figure 4.14: Architecture of the second neural network classifier
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4.3 Ensemble Methods

Recently, ensemble classifiers have gained a lot of research interest as they often

induce more accurate and reliable estimates compared to a single model. Variety

of papers published by the AI community illustrate that the generalization error is

reduced when multiple classifiers are combined [71] [72] [73] [74]. The main reason

behind why ensemble methods are very effective is mostly because of a phenomenon

called inductive bias [75] [76]. Ensemble methods can reduce the variance error

without causing bias error to increase [77] [78]. On several occasions, it is observed

that emsembles can reduce bias-error as well [79].

The way of combining individual classifiers can be divided into two categories: simple

multiple classifier combinations and meta-combiners. The simple combining meth-

ods perform well in the cases where each classifier is reponsible on the same task and

has similar success. However, it should be noted that if classifiers are performing

unevenly, or the outliers are extreme, then such simple combiners are not suitable.

On the other hand, even though, the meta-combiners are theoretically more pow-

erful, they are also vulnerable to overfitting and suffering from long training time.

Uniform Voting, Distribution Summation, Bayesian Combination, DempsterShafer,

Naive Bayes, Entropy Weighting, Density-based Weighting, DEA Weighting Method

and Logarithmic Opinion Pool are the examples of Simple Combining Methods [80].

4.3.1 Using Logarithmic Opinion Pool (LOP)

In the implementation, a softmax activation function [24] has been used at the output

layer. The main advantage of using softmax is that it returns the probabilities of

each class and the sum of all the probabilities will be equal to one. The output of

the network (4.8) is in the form of a C × 1 vector. Each entry of the output vector

shows the conditional probability of the label being assigned to the input sample y.
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O = [pi(1|y) pi(2|y)...pi(C|y)]T (4.8)

where C represents the total number of classes, and i ∈ {1, 2} represents each

classifier.

An ensemble method called Logarithmic Opinion Pool (LOP) [24, 25] is used to

combine the decision probabilities coming from each classifier and estimate the final

global membership function (4.9)

p(c|y) =
1

ZLOP (y)

∏
i

pi(c|y)wi (4.9)

where
∑

iwi = 1. Since a uniform distribution is assumed while employing the

fusion algorithm, w1 = w2 = 1/2. Z(y) is a normalization constant which is defined

as

ZLOP (y) =
∑
c

∏
i

pi(c|y)wi (4.10)

The LOP method treats the outputs of the ensemble members as independent prob-

abilities.The final label of the sample is decided according to (4.11).

Label = argmax
c=1..C

p(c|y) (4.11)
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Chapter 5

Experimental Results

The proposed approach was first tested for subject dependent case in which all the

data were randomly divided into training, testing and the validation parts. Training

part consisted of 70% of overall data (636 samples) whereas testing and validation

parts were 15% percent each (137 samples). Validation set is used for tuning the

parameters of the network and minimizing the overfitting by stopping the training

when the error on the validation set rises. On the other hand, test set is used for

performance evaluation. The results of 5 different training examples are depicted in

figures under subject dependent case section.

The performance of the network is further tested using volunteers who were not

part of the training data. To measure generalization capabilities of the network, the

proposed approach is evaluated through 13 - fold cross validation. The network was

trained with samples collected from 12 volunteers and tested with the left out 13th

volunteer who was not part of the training data. This procedure is repeated for each

subject in turn.

Moreover, in order to analyze the effect of gender in proposed classification approach,

an additional test was performed. We divided our dataset into half and used the
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samples collected from men as training data. We then tested the network with

remaining samples coming from our three female volunteers.

5.1 Subject Dependent Case

In subject dependent case, proposed approach is tested for the same volunteers

took part in our data generation process. Both networks were trained 50 times

using scaled conjugate gradient backpropagation. The average score is calculated by

repeating the second experiment 50 times as that network gives the best accuracy

without overfitting the data. The average test accuracy of each classifier as well as

the fusion accuracy are illustrated in the Table 5.1 below.

Table 5.1: Classification performances

Classifier Features Test Accuracy (%)

NN#1 Action Units(AUs) 92.6

NN#2 3D Feature Points (FPPs) 94.7

Fusion AU+FPP 97.2

5.1.1 Training Example - 1

• Input of the classifier 1 is a 17x910 matrix, representing 910 samples of 17

elements (action units). It has one hidden layer with 10 neurons and is trained

with scaled conjugate gradient backpropagation.

• Input of the classifier 2 is a 108x910 matrix, representing 910 samples of 108

elements (key facial point positions - 36 3D point). It has one hidden layer with

50 neurons and is trained with scaled conjugate gradient backpropagation.
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Quantitive results of this example are shown below in Figures 5.1 and 5.2 in the

form of a confusion matrix. In the confusion matrix, column index represents

the ground truth label whereas the row index represents the predicted label.

The numerical values illustrate the number of samples. For instance, in the

confusion matrix of the first classifier (see Figure 5.1), row 2 and column 6 has

value 1. That means, out of 14 samples labeled as ‘fear’, the network predicted

one sample as ‘joy’ whereas its actual label was ‘fear’.

Figure 5.1: Test confusion matrix for the first classifier

Figure 5.2: Test confusion matrix for the second classifier

The confusion matrix shows how many predictions was done right within one class

and how many of them was done wrong. The diagonal contains the the number of
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correct classifications whereas the off diagonal includes misclassified samples. Calcu-

lation of confusion matrices are important to decide the easiest and the most difficult

emotions in term of classification. For the first training example, sadness and fear

are most likely to be misclassified.

5.1.2 Training Example - 2

• Classifier 1 has one hidden layer with 20 neurons and is trained with scaled

conjugate gradient backpropagation.

• Classifier 2 has one hidden layer with 100 neurons and is trained with scaled

conjugate gradient backpropagation.

Figure 5.3: Test confusion matrix for the first classifier
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Figure 5.4: Test confusion matrix for the second classifier

5.1.3 Training Example - 3

• Classifier 1 has one hidden layer with 20 neurons and is trained with scaled

conjugate gradient backpropagation.

• Classifier 2 has two hidden layers with 50 neurons each and is trained with

scaled conjugate gradient backpropagation.

Figure 5.5: Test confusion matrix for the first classifier

Confusion matrix form helps us decide on the emotions with the lowest classifica-

tion accuracy. According to three subject dependent examples, sadness, fear and
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Figure 5.6: Test confusion matrix for the second classifier

disgust are more likely to be misclassified compared to samples labeled as neural,

joy, surprise and anger.

5.2 Subject Independent Case

To better evaluate the generalization capabilities of the proposed approach, 13 - fold

cross validation is applied through training the network with samples collected from

12 volunteers and testing it with the left out 13th volunteer who was not part of the

training data. This procedure is repeated for each subject in turn.

5.2.1 Training Example - 1

• Classifier 1 has one hidden layer with 10 neurons and is trained using conjugate

gradient.

• Classifier 2 has one hidden layers with 50 neurons and is trained with scaled

conjugate gradient backpropagation.
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• The first and the second classifiers’ average performances were 63.5% and 53%

respectively. When a decision level fusion was applied on both classifiers, the

accuracy has increased to 67.5%. The testing results per subject are illustrated

in Figure 5.7 below. Acc1 indicates the accuracy of the first classifier whose

input is a 17x910 matrix, representing 910 samples of 17 elements (action units)

whereas Acc2 represents the second classifier using facial points as features.

Figure 5.7: Accuracy plots for individual classifiers (Acc1 and Acc2) and the
combined classifier (Acc3)
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Table 5.2: Performances of two classifiers and the combined classifier

Acc 1(%) Acc 2 (%) Acc 3 (%)

1 55 53 77

2 52 41 50

3 66 53 68

4 67 37 67

5 68 56 70

6 65 70 69

7 60 44 56

8 59 32 52

9 71 72 81

10 66 61 79

11 72 66 72

12 65 59 78

13 60 48 59

Average 63.5 53.2 67.5

Standart deviations for two classifiers and the combined classifier are 5.9, 12.5 and

10.3, respectively.

5.2.2 Training Example - 2

• Classifier 1 has one hidden layer with 20 neurons and is trained using conjugate

gradient.

• Classifier 2 has one hidden layers with 100 neurons and is trained with scaled

conjugate gradient backpropagation.
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• The first and the second classifiers’ average performances were 66.6% and 53%

respectively for classifying images. When a decision level fusion was applied on

both classifiers, the accuracy has increased to 69.8%. The testing results per

subject are illustrated in Figure 5.8 below. Acc1 symbolizes the accuracy of

the first classifier whose input is a 17x910 matrix, representing 910 samples of

17 elements (action units) whereas Acc2 represents the second classifier using

facial points as features.

Figure 5.8: Accuracy plots for individual classifiers (Acc1 and Acc2) and the
combined classifier (Acc3)
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Table 5.3: Performances of two classifiers and the combined classifier

Acc 1(%) Acc 2 (%) Acc 3 (%)

1 61 57 77

2 59 43 58

3 62 57 68

4 70 51 67

5 72 55 70

6 74 77 80

7 67 42 62

8 55 39 52

9 73 73 81

10 68 66 79

11 70 59 72

12 66 61 78

13 69 44 64

Average 66.6 55.6 69.8

Standart deviations for two classifiers and the combined classifier are 5.7, 11.8 and

8.7, respectively.

5.3 Gender-Based Testing

It has been long known that several factors including pose and lighting conditions,

gender, age, and facial hair dramatically affect the quality and accuracy of emo-

tion recognition systems. To analyze the effect of gender in proposed classification

method, an additional test is applied. First, the samples collected from men were
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used as training data. Then, network was tested with remaining samples coming

from 5 female subjects. For this gender-based test, number of samples and test

accuracy is shown in Table 5.4 below.

Table 5.4: Classification accuracy of gender-based test

Training Data Test Data Accuracy (%)

Data Male Dataset Female Dataset
58

Number of Samples 560 350

Distinct characteristics of female and male face anatomy led to substantial differences

between the training and the test data, resulting in a major decrease in the accuracy.
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Chapter 6

Conclusion and Future Work

In this thesis, we have presented a facial emotion recognition approach based on

the idea of ensemble methods to classify seven different emotional states. Action

units and key point feature positions, together with a probabilistic fusion algorithm,

enable us to recognize seven basic emotions via facial expressions. We first started

by creating our own homemade dataset which consists of 910 samples captured from

13 people. Then, each sample is labeled as neutral, joy, sadness, anger, surprise, fear

or disgust. Having extracted two kinds of facial features, action units and feature

point positions, separate neural network classifiers are trained with scaled conjugate

gradient backpropagation algorithm. To improve the performance of our system

decision level fusion is performed. Logarithmic Opinion Pool (LOP) is used as the

fusion algorithm. For subject dependent case, the average accuracies using AUs and

FPPs were 92.6% and 94.7%, respectively. When fusion algorithm is employed the

accuracy has increased to 97.2. It should be noted that even though the accuracy

of using FPPs as input is higher than that of using AUs, AUs are only 17- element

features, while FPPs are 108-element features.

To further evaluate the performance of the network, the homemade dataset is divided

into 13 equal pieces where each 70 samples represents the facial data coming from one
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subject. Afterward, 13-fold cross validation is performed by training on 12 subjects

and testing on the left out 1 subject. This experiment is repeated for each subject

in turn. To decide the best network model with less number of parameters and

high accuracy along with the shorter execution time, three different experiments are

performed. Again, highest accuracy without overfitting is achieved with example-2

where the first and the second networks had one hidden layer with 20 neurons and

100 neurons respectively. While average performances of the first and the second NN

classifiers were 66% and 55%, when a decision level fusion was applied the accuracy

has increased to 69.8%. However, it should be noted that the fusion algorithm only

works well in the cases where the results from both classifiers are close to each other.

When one of the classifiers had much less accuracy compared to the other one as

occurred in test subjects 2,7 and 8, fusion can give lower classification accuracy.

There might be some limitations derived from the dataset used. It has been known

that beside distinctive characteristics of human expressions, lighting of the environ-

ment, head orientation of subject and distances from the sensor are highly crucial

for Kinect sensor to capture feature points properly. Although, we tried to con-

trol head orientation of the volunteers and their distance from the sensor, we did

not consider the external disturbances acting on the sensor, such as humidity and

temperature. On the other hand, there can be a high intra-subject correlation of

FPP feature when the significant decrease on classification accuracy (from subject

dependent case to independent case) is considered.

As a future work, we will study CNN based facial emotion recognition to overcome

the bottlenecks of hand-crafted features and the limitations of Face Tracking SDK.

We will also build a larger facial expression database which contains people with

different ages and ethnicity.
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