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ABSTRACT

An FPGA Based Approach

for Černý Conjecture Falsification

ÇAĞLA KOCA

M.Sc. Thesis, July 2018

Supervisor: Prof. Erkay Savaş

Co-supervisor: Assoc. Prof. Hüsnü Yenigün

Keywords: FPGA, Synchronizing sequences, Černý conjecture

A synchronizing sequence for an automaton is a special input sequence that sends all

states of the automaton to the same state. J. Černý conjectured that the length of the short-

est synchronizing sequence of an automaton with n states cannot be greater than (n−1)2,

which is known today as the Černý conjecture. This half-a-century old conjecture is still

open and it is considered to be the most long-standing open problem in the combinatorial

theory of finite state automata. One research line that has been pursued in the literature

is to check if the conjecture holds for a fixed number of states n, by considering all au-

tomata with n states and checking if any of these automata falsifies the conjecture. This is

a computationally intensive task, even for automata up to a dozen of states and only two

input symbols. To accelerate the search parallel computation approaches using multicore

CPUs have been tried before. In this thesis, we study the use of FPGAs to accelerate the

search for an automaton falsifying the Černý conjecture. We present a design to calculate
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the minimum length synchronizing sequence of a finite state automaton. The proposed

design is implemented with the parallel computing capability of hardware designs while

optimizing the time performance.
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ÖZET

Černý Sanıtı Yanlışlaması

için APKD Tabanlı Yaklaşım

Çağla Koca

Master Tezi, Temmuz 2018

Danışman: Prof. Dr. Erkay Savaş

Eş-danışman: Doç. Dr. Hüsnü Yenigün

Anahtar Sözcükler: APKD, Sıfırlama dizileri, Černý sanıtı

Bir sıfırlama dizisi, verilen bir özdevinimin tüm durumlarını aynı duruma getirmeye

yarayan bir girdi dizisidir. J. Černý, n durumlu bir özdevinim için en kısa sıfırlama dizisi

boyunun (n − 1)2’den daha uzun olamayacağı varsayımında bulunmuştur. Bu varsayım

günümüzde Černý sanıtı olarak adlandırılmaktadır. Bu yarım asırlık eski varsayım hala

açıktır ve sonlu durum özdevinim kombinatoryal teorisinde en uzun süre çözülemeyen

problem olarak kabul edilmektedir. Literatürde yürütülen çalışmalardan bir tanesi, n du-

rum sayısına sahip tüm özdevinimleri ele alarak ve bu özdevinimlerin hepsinde sanıtın

doğru olup olmadığı kontrol ederek, belli bir n durum sayısına sahip özdevimler için

Černý sanıtının doğruluğunu kontrol etmektir. Bu, sadece 2 girdili ve durum sayısı 12

veya daha az olan tüm özdevinimler için bile hesaplama açısından yoğun bir işlemdir.

Arama işlemlerini hızlandırmak için, çok çekirdekli CPU’lar kullanan paralel hesaplama

yöntemleri daha önce denenmiştir. Bu tezde, Černý sanıtını yanlışlayan bir özdevinim
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arayışını hızlandırmak için Alanda Programlanabilir Kapı Dizileri (APKD) kullanımı

üzerine çalışılmaktadır. Sonlu bir durum özdevinimin en kısa sıfırlama dizisi boyunu

hesaplayan bir tasarım sunulmaktadır. Önerilen tasarım, donanım tasarımlarının paralel

hesaplama imkanlarıyla zaman performansını optimize ederek uygulanmaktadır.
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Chapter 1

Introduction

The continual demand to improve performance and efficiency of software and digital

hardware designs leads to a corresponding increase in system complexity. The improve-

ments in complex software and hardware designs need testing and verification steps which

are highly costly in terms of time and money. Therefore, the development of new meth-

ods and techniques for testing the functional requirements of such systems is important to

optimize cost and productivity of the design process.

Once the functional requirements of the developing system are formally defined, it is

possible to adapt efficient approaches to test these features quickly. Due to the discrete and

sequential behavior of digital systems, formal descriptions of the functional requirements

of these systems can be made using state based specification methods and finite state

machines (FSM).

When a functional design structure is modeled by finite state machines, it is possible

to produce high-quality test sequences for verification by analyzing the FSM [11, 16, 22].

These high-quality test sequences are generated by using a combination of some special

structures, such as a distinguishing sequence, a locating sequence, and a synchronizing

sequence [24]. The transitions in an FSM are labeled with an input and an output symbol.

The output symbols make no difference in the context of synchronizing sequences exam-

ined in this thesis, therefore an FSM is considered as an automaton where the transitions

are only labeled with an input symbol.
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A synchronizing sequence (or a reset word) is a special input sequence that resets

an automaton to a single state. In other words, an automaton reaches a specific state

by applying a synchronizing sequence (SS) regardless of the its initial state. Any state

of automaton which is applied a SS results in the same single state. In practice, SS is

used to reset any system whose behavior can be modeled as a finite automaton. The

applications in the field of electronic circuitry and software testing take advantages from

the synchronizing sequences greatly. Apart from these applications, it is also reported in

the literature that SS is used for the alignment problem in production engineering [14, 28]

and for the resetting of the calculation units in the bio-computing area [4].

The number of inputs that formed SS is preferred to be as short as possible in order

to keep resetting time and implementation cost minimized. However for a given FSM,

computing the shortest reset word is known to be NP-hard problem in general [15]. That

is why, heuristic methods are proposed to compute shortest SS in the literature. On the

other hand, all these methods have the complexity of Ω(n2) where n is the number of

states in automaton. Although it is a low degree polynomial, this complexity becomes

problematic in terms of practical applications with large scale automata.

Another concern of synchronizing sequences is about the upper bound on the length

of shortest reset words. Černý [9] claims that the length of the shortest reset word of

an automaton with n states cannot be greater than (n − 1)2. This is called the Černý

Conjecture. After half a century, hundreds of papers, and two conferences dedicated

to the investigation of the conjecture, no one was able to prove or disprove this claim.

There are studies that validate the conjecture by theoretically proving it for some specific

automaton classes, but it is not verified in general. The approach in these experimental

studies is to check all the automata with a certain state and number of inputs one by one

whether the conjecture is valid for all these automata.

Main concern is improving the performances of short SS generation methods in the

literature and developing new heuristic methods for this purpose. However, high per-

formance calculations are required for both of these main topics. Improvements on the

heuristic algorithms lead to increase in complexity. Modern parallel computing methods
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are used on both Graphic Processor Units (GPU) and Field Programmable Gate Array

(FPGA) technologies to process the complex structures.

At the beginning of the thesis, it was known that Černý conjecture was true for all

the automata with an alphabet size of 2 and a number of states of 11 or less. It is shown

experimentally that Černý conjecture holds for all automata up to 12 states and with 2 in-

puts using CPUs [19]. As discussed, performance limitations occur due to cost, size and

complexity of calculations that are used to check the correctness of Černý conjecture for

12 state automata. Thus, parallel computing techniques are planned to be used in order to

speed up the checking process. Considering the high system performance, parallel pro-

cessing capacity and their easy integration capabilities, FPGAs are optimal solutions for

this purpose. Accordingly, the purpose of this thesis is to develop a high-performance an-

alyzing system for computations using FPGA technologies in order to investigate whether

Černý conjecture holds for all automata up to 12 states and with 2 inputs. A shortest syn-

chronizing sequence searching design for Černý conjecture verification is implemented

with the parallel computing capability of hardware designs while optimizing the time

performance. The proposed design considers breadth first search (BFS) algorithm for

automaton pairs to be examined in order to find lengths of synchronizing sequences.

1.1 Literature Survey

Synchronizing sequences are used in many practical applications. For instance, the

alignment problem encountered in assembly lines can be solved using synchronizing se-

quences. In an assembly line, robots pick objects from a point and carry it to another

point where it is processed. Robots can pick up objects with a certain angle and orienta-

tion. However, the objects are dropped in a random fashion and the initial orientations are

not known. The object is needed to change its current orientation to a particular orienta-

tion in order to be processed by robots. This problem can be modeled with an automaton

where each possible orientation of the object is represented by a state. Also, orienting

operations are considered as input alphabet. A sequence of orienting operations brings

3



these objects to certain orientation regardless of the initial orientation. A synchronizing

sequence is used to ensure that the object arrives at a single certain orientation when it

passes over all obstacles no matter which orientation it started at [14, 28]. A general liter-

ature review of synchronizing sequences and other application areas of them are presented

by Volkov [44].

Main questions arose from the study of automata synchronization are synchronizabil-

ity of a given automaton and the length of the shortest synchronizing sequence. The

problem of checking the synchronizability of partial finite automata or non-deterministic

automata requires algorithms with exponential complexity [27, 34]. Meanwhile, it is pos-

sible to check the existence of a synchronizing sequence of a deterministic and fully-

specified automata with n-state and p-input symbol in O(pn2) complexity [15]. The

length of a synchronizing sequence is desired to be kept minimum in practical use. Since

each input in the sequence has a cost, keeping the sequence short makes it cheap and

efficient in applications such as assembly lines or generating test sequences based on

synchronizing sequences. However, it is proved that this problem is NP-hard [15].

It is also an interesting research aspect to find upper bounds for synchronizing se-

quences. Černý [9] states that every synchronizing automaton with n states has a syn-

chronizing sequence of length at most (n − 1)2. There are many attempts to prove so

called Černý conjecture, but verification or falsification cannot be provided so far. The

surveys concerning Černý conjecture still continue to appear in the literature [3, 5, 6, 10,

21, 23, 29, 30, 33, 37]. The conjecture is verified only for some special cases of automata

such as non-strongly connected automata [45], acyclic automata [40], etc.

Falsifying examples are examined in some studies for automata with certain number

of states and certain number of input symbols [1, 21, 39, 40]. There are total npn automata

with n state and p input symbol. Each one of them is checked for the length of shortest

synchronizing sequence. The point that needs to be considered here is the computational

complexity of the numbers of the automata to be studied. Only non-isomorphic automata

need to be considered to reduce that number because the validity of Černý conjecture

is identical for two isomorphic automata. Therefore, all the approaches proposed in the
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literature attempt to reduce the number of automata to be analyzed using this observation.

There are studies in the literature to calculate the number of non-isomorphic directed

graphs [17, 26, 32] . Since automata are essentially directed graphs, all the results derived

from directed graphs are also valid for automata. Moreover, Kisiliewicz and Szykula

[20, 21] analyzed all automata with 4 inputs up to 7 states; with 3 inputs up to 8 states;

with 2 inputs up to 11 states. Despite all the reduction in the number, there are still

79,246,008,127,339 automata with 11 states and 2 inputs. It took about 4 CPU years to

process (25 days on 64 cores) [21]. The conjecture is verified for these specific automaton

classes. In other words, an automaton falsifying the conjecture is not encountered after

all these studies.

Within the context of this thesis, the validation of the conjecture is examined for 12-

state and 2-input automata. Since there are 1224 automata, generation of isomorphic au-

tomata are tried to be avoided as in the previous works in the literature.

In this thesis, all binary automata (i.e., with two input symbols) are generated by

superimposing two unary automata (i.e., with one input symbol). From a given unary

(a-only) automaton A and a given unary (b-only) automaton B, it is possible to create n!

automata, where n is the number of states. Following that, permutations of a given unary

automaton B are used to generate n! binary automata with a given unary automaton A.

Permutations are used to solve problems in several practical areas. Tompkins examined

the use of permutations in [38]. Generally, two elements of an existing permutation are

exchanged in order to generate a new permutation. A permutation enumeration algorithm

was formulated by S. M. Johnson [18] and H. F. Trotter [41] independently. They show

that it is possible to generate all n! permutations of n elements with (n!−1) exchanges of

adjacent elements. Furthermore, it can be seen that permutation networks of n elements

can be constructed from permutation networks of (n− 1) elements. Comprehensive per-

mutation generation methods are presented in [36]. One of them proposed by Johnson

[18] is to exchange two elements that are adjacent to each other. Another algorithm that

optimized Johnson’s method generates permutations in minimal change order [42]. In

this thesis, for permutation generation we employed the algorithm based on Johnson’s
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method [18].

A synchronizing sequence of minimal length for binary automata is found by using

breadth first search (BFS) on the set of all input sequences. BFS algorithm is the most

widely used traversal graph algorithm. The graph starts at the whole state set of the given

automaton and it is formed applying input symbols until a singleton is reached. The

shortest synchronizing sequence corresponds to shortest paths from the whole state set to

a singleton. Since larger graph problems need more computational and memory require-

ments, FPGA-based high performance solutions are becoming popular to accelerate such

graph algorithms. There are several existing works that propose architectures to imple-

ment BFS on FPGA [12, 25, 43]. Early works that propose architectures for graphs on the

clusters of FPGAs [2, 13] have limited performance gains for bigger graphs. They used

low-latency on-chip memory resources. Optimizations on architectures are implemented

in later works [8, 35, 46]. Some studies proposed using off-chip dynamic random-access

memory for efficient traversal of large-scale graphs [7, 46]. Betkaui’s work [7] imple-

ments an efficient reconfigurable computing solution by taking advantage of both FPGA

and the parallel memory subsystem. We examine automata with 12 states and 2 input

symbols and there can be 212 = 4096 nodes at most in the graph. Since our graphs are

relatively small, we use only memory resources on the FPGA for implementing BFS to

find shortest synchronizing sequences of automata.

1.2 Organization

The rest of this thesis is organized as follows. Chapter 2 gives background information

and notation necessary for understanding the basis of the work. Chapter 3 presents the

overall architecture in detail. The proposed architecture was implemented on a Xilinx

Virtex-7 FPGA device for evaluation. Details of implementation verification tests and

experimental results are provided in Chapter 4. Certain design choices are compared with

respect to their timing performances. Utilizations of the FPGA resources are also given

in this chapter. Chapter 5 concludes the thesis with the summary of work.
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Chapter 2

Background and Notation

2.1 Finite State Machines

An automaton is defined by a tripleA = (Q,Σ, δ) where,Q is a finite set of states, Σ is

a finite set of input alphabet, and δ is a transition function defining the action of the letters

in Σ onQ. Automata can be classified into two types, deterministic and non-deterministic

automaton. The transition function is defined δ : Q×Σ→ Q for deterministic automaton

whereas δ : Q × Σ → 2Q for non-deterministic automaton. Moreover, automata can be

divided into two types, fully-specified and partially-specified. A is called a fully specified

automaton if δ is a total function that is defined at every state q ∈ Q and every input x ∈ Σ.

Otherwise,A is called a partially specified automaton when δ is a partial function that may

not defined at some state q ∈ Q and input x ∈ Σ. In this thesis, only deterministic and

fully-specified automata are studied. Throughout this thesis, the term automaton refers to

deterministic and fully-specified automaton accordingly.

Graphical representation of an automaton would be as follows: a circle represents

a state of the automaton and the transition function is represented by directed and la-

beled edges between states. Figure 2.1 shows an example of an automaton with 4 states

(q1, q2, q3, and q4) and 2 input symbols (a and b).

The number of states (|Q|) is denoted by n and the number of inputs (|Σ|) is denoted

by p for the rest of the thesis. At any given time, an automaton A = (Q,Σ, δ) is at one

7



Figure 2.1: A deterministic and fully-specified automaton with n=4 states

of its states q ∈ Q. If an input x ∈ Σ is applied when A is at state q, it changes its state

to δ(q, x). Each element in Σ∗ is an input sequence and the symbol ε is used to denote

an empty input sequence. It is possible to extend the definitions of transition functions of

automata on a state set and an input sequence as follows:

∀q ∈ Q : δ(q, ε) = q

∀q ∈ Q, x ∈ Σ, σ ∈ Σ∗ : δ(q, xσ) = δ(δ(q, x), σ)

∀Q′ ⊆ Q, σ ∈ Σ∗ : δ(Q′, σ) = {δ(q, σ) | q ∈ Q′}

Q〈k〉 describes all subsets of state set Q with a cardinality between 1 and k, where

1 ≤ k ≤ n. It is formally defined as:

Q〈k〉 = {Q′ ⊆ Q | 1 ≤ |Q′| ≤ k}

For a given automaton A = (Q,Σ, δ) and an integer k, where 1 ≤ k ≤ n, the

automaton A〈k〉 = (Q〈k〉,Σ, δ〈k〉) is defined as follows:

∀Q′ ⊆ Q〈k〉, x ∈ Σ, δ〈k〉(Q′, x) = δ(Q′, x)

If there exists an input sequence σ ∈ Σ∗ that leaves the automaton A = (Q,Σ, δ)

8



in one particular state such that, |δ(Q, σ)| = 1, then A is called synchronizing. Any

such input sequence σ is called a synchronizing sequence (or a reset word) for A. It is

known that all automata are not synchronizing. There can be more than one synchronizing

sequence for a synchronizing automaton.

Synchronizability of an automaton can be checked with an algorithm of O(pn2) com-

plexity [15]. However, determining the minimum length of a synchronizing sequence for

a given synchronizing automaton is an NP-hard problem [15]. It is possible to find the

shortest synchronizing sequence by using algorithms with exponential complexity. Simi-

larly, the power automaton A〈n〉 = (Q〈n〉,Σ, δ〈n〉) can be used and the breadth first search

is performed to find the shortest path to any singleton state. Q ∈ Q〈n〉 is taken as a starting

point which is the largest state set of automatonA〈n〉 for this search. Since there are 2n−1

states in A〈n〉, this algorithm requires exponential time.

When Černý claims that upper bound for the shortest synchronizing sequence is (n− 1)2

for an n state automaton, he also introduces an automaton class with two input symbols

that achieves this bound. Such automata are called Černý automata and are defined as

follows:

∀q ∈ {1, 2, ..., n− 1} : δ(q, a) = q

δ(0, a) = 1

∀q ∈ {0, 1, 2, ..., n− 1} : δ(q, b) = (q + 1) mod n

Figure 2.2 shows an example of a Černý automaton with n = 4 states. The length

of shortest synchronizing sequence for this automaton is (n− 1)2. It can be found that

ab3ab3a is the shortest synchronizing sequence for this automaton and it is the upper

bound, (n− 1)2, in Černý conjecture.

2.2 FPGA

Field Programmable Gate Array (FPGA) is set of logic blocks which are programmable

with reconfigurable interconnects and input/output pads. The logic blocks can perform
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Figure 2.2: Černý automaton with n=4 states

simple to complex computational works to satisfy different system requirements.

The smallest configurable unit is called Configurable Logic Block (CLB) in Xilinx

FPGAs. In a family Xilinx FPGAs, a CLB consists of two instances of a smaller logic

unit called slice. Each FPGA slice contains four Look Up Tables (LUTs) and eight flip-

flops (FF). The other configurable resources are DSP Slices, block RAMs (BRAM), I/O

blocks and so on.

The FPGA component used in this thesis is a VC709 evaluation board, which pro-

vides a hardware environment for developing and evaluating designs targeting the Virtex-

7 XC7VX690T-2FFG1761C FPGA. The Virtex-7 FPGA VC709 provides 40 Gb/s con-

nectivity platform for high-bandwidth and high-performance applications. Figure 2.3 pro-

vides an overview of the board components [49]. A general summary of the features of

FPGA VC709 is given in Table 2.1 [49]. Additionally, logic cells are the logical equiva-

lent of a four-input LUT and a FF. The ratio between the number of logic cells and 6-input

LUTs is 1.6:1. The details for each feature are described in VC709 Evaluation Board for

the Virtex-7 FPGA User Guide [48].

The bitstream is a configuration file, which is used to program the logic blocks in an

FPGA device. The JTAG connectivity on the VC709 board allows a host computer to

download bitstreams to the FPGA using the Xilinx development tools. The proposed ar-

chitecture is programmed into the FPGA by way of JTAG. JTAG configuration is provided
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Figure 2.3: Xilinx Virtex-7 FPGA VC709 Board Features

Table 2.1: General feature summary
The number of logic cells 693120
The number of DSP Slices 3600
Memory (Kb) 52920
GTH 13.1Gb/s Transceivers 80
I/O Pins 1000

solely through a Digilent onboard USB-to-JTAG configuration logic module where a host

computer accesses the VC709 board JTAG chain through a type-A (host side) to micro-B

(VC709 board side) USB cable [48]. Moreover, the VC709 board contains a Silicon Labs

CP2103GM USB-to-UART bridge device which allows a connection to a host computer

with a USB port [48]. It allows communication between the host computer and the board.

The data is sent over a serial line at a specific frequency known as the baud rate. Baud

rate is a measure of the speed of data transfer, expressed in bits per second (bps). Both

devices must operate at the same baud rate.

The block RAM (BRAM) in Xilinx 7 series FPGAs stores up to 36 Kbits of data

and can be configured as either two independent 18 Kb RAMs, or one 36 Kb RAM.

The write and read operations are synchronous; the two ports are symmetrical and totally

independent, sharing only the stored data. The memory content can be initialized or

11



cleared by the configuration bitstream [47]. Each block RAM contains optional address

sequencing and control circuitry to be configured as first-in/first-out (FIFO) memory with

common or independent read and write clocks. It can be designed as an 18 Kb or 36

Kb FIFO [47]. The hardware design for this FPGA is expressed in RTL using Verilog

hardware description language (HDL) and it is implemented with a tool suite provided by

Xilinx named Vivado version 2016.4.
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Chapter 3

FPGA Implementation

3.1 Introduction

In this chapter, we explain our design structure in detail. The architectural overview

of the developed hardware design is depicted in Figure 3.1. The design is implemented

on a Xilinx VC709 development board containing a Virtex-7. Verification of the Černý

conjecture for 12-state automata is examined using the proposed implementation. The

top-level interface handles a unary automaton A and a unary automaton B received from

the USB-to-UART bridge. A binary automaton is created by using A and each state name

permutation of B in the proposed implementation. The BFS algorithm is applied to each

generated binary automata to find the shortest synchronizing sequences. The algorithm

starts at a node labeled as “all states”, into which all states are encoded. The idea is to

apply an input to every state simultaneously in the beginning. The process is repeated for

the node that contains the resulting states. If and when the BFS reaches to a node labeled

by a single state for a binary automaton (i.e., the same state is encoded), the current depth

of the BFS tree is controlled. If the depth is greater than (n − 1)2, this means that the

conjecture is falsified. Otherwise, it is verified for the current automaton pair. Another

possibility is that no node labeled by a single state is encountered during the search. In

this case, it is understood that the binary automaton is not synchronizable, and it cannot

falsify the Černý conjecture. Also, it is possible to finish the BFS search early by using
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some filters. After finishing the BFS search of a binary automaton generated by using

A and a permutation of B, the next permutation for B is considered and the analysis is

repeated for the new permutation of B with same A. Each of these processes will be

discussed in the following section.

Figure 3.1: Block Diagram of Overall Structure

3.2 Proposed Structure

The proposed hardware design is expressed in RTL using Verilog HDL and was com-

piled using Vivado 2016.4. The design was implemented on a Xilinx VC709 development

board containing a Virtex-7 FPGA device. The clock frequency is fixed at 100 MHz. This

section will describe the entire FPGA design in a top-down approach. The overview of

the design structure is presented as a block diagram in Figure 3.2.

The top-level module, namely uart top, is the part of the design that controls UART

communication with the host computer and all other functional modules in the FPGA de-

vice. UART (Universal Asynchronous Receiver and Transmitter) provides bi-directional

asynchronous communication using the computer’s serial ports. It provides communica-

tion by converting incoming serial data into parallel data or transmitting parallel data into

serial data. Data are sent and received at baud rate of 921,600.

The module uart top receives input data via the serial input line Usb uart rx,

which are combined into bytes within the module RX serial in Figure 3.2. Then the

input bytes are transferred to module manageMod and the computation for the conjecture
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Figure 3.2: Block Diagram of Submodules inside uart top

15



testing starts. Thereafter, uart top waits for the modules to finish computation and

outputs the resulting data.

The automata A and B are analyzed for finding shortest synchronizing sequences in

the submodules. The analysis results are transferred to the top module with the utiliza-

tion of two signals: searchdone and finalstatus. They simply indicate that i)

if the search of all automaton pairs is finished or not and ii) if the Černý conjecture is

verified or not. Precisely speaking, the signal, searchdone, stays low as the analysis

continues. It is asserted high when the analysis of all the automata finishes. The signal,

finalstatus indicates whether the conjecture is falsified. If it stays low (it is reset

initially), there is no such pair that disproves the conjecture. If it is high, the conjecture is

falsified. In the latter case, the result is saved and reported if it ever happens.

Additionally, the duration of analysis is measured and communicated to the top mod-

ule using timecounter. The timing value is then sent to the host computer using the

module TX serial that converts it to serial data for transmission.

The module manageMod consists of two submodules: i) getMacUart and ii) eight

instances of topmodule (although the number of instances is programmable). The mod-

ule getMacUart contains two FIFO (first-in first-out) buffers, one for each of automata

A and B. As the host computer usually sends more than one pair of automata, the FIFO

buffers are used to store them before processing. The module topmodule is where the

actual conjecture testing is performed. It implements two main functionalities: i) it first

generates the permutations of B to combine two unary automata A and B into a binary

automaton as described previously; and ii) every binary automaton obtained this way is

tested with input sequences using breadth first search algorithm as explained in detail in

the subsequent sections.

The FIFO buffers have an input signal pop, which is asserted to transfer an automa-

ton to topmodule. As it is connected to both buffers, the pair A and B is transferred

synchronously.

Each of the topmodule modules is designed to test one unary automata pair (A, B)

concurrently. Furthermore, each topmodule generates the permutations of B to form
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binary automata and can test 60 binary automata concurrently (again the number of binary

automata is programmable in our design).

The computation usually takes different number of clock cycles in different instances

of topmodule. An instance of topmodule will pop the next pair of A and B from

FIFO buffers when it is done with the current pair. The instances of topmodule are

numbered from 1 to 8 to prevent two instances from accessing the buffers at the same

time when they finish in the same clock cycle. The module with smaller number will have

priority of accessing the FIFO buffers.

When the FIFO in the getMacUart module is empty, that is, when there is no new

A and B automata pair to test, the ongoing computations in submodules are allowed to

complete. The searchdone signal is asserted high when all eight modules are done.

A module can generate two outcomes: i) the conjecture is falsified (logical-1) and ii)

the conjecture is verified for the currently tested automata (logical-0). The outcome is

OR-ed to the signal finalstatus, which is initially set to logical-0. Consequently,

finalstatus will be asserted when the conjecture is falsified. When that happens, the

computations come to a stop. As long as there is no instance that falsifies the conjecture,

finalstatus will remain low.

Furthermore, a counter variable, timecounter is used to measure the execution

time of the conjecture testing for all the (A, B) pairs sent from the host computer to the

FPGA. timecounter is started when the first pair of unary automata is popped from

the FIFOs, and then stopped when searchdone becomes high. At the end, this value is

output to the top module from manageMod.

The data coming from UART are transformed into bytes in RX serial module.

These bytes then are combined to obtain unary automata A and B to be stored in two

separate 36 Kb FIFO buffers in getMacUart module, respectively. The state diagram

for the process is illustrated in Figure 3.3.

The state machine in Figure 3.3 is initially in idle state and remains so when there

is no data in RX serial; i.e., valid signal is 0. When there is a byte in RX serial,

valid signal is asserted and the state machine will go to initial state. When in
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Figure 3.3: State Machine for Transferring Two Unary Automata A and B from
RX serial to FIFOs in getMacUart

initial state, switch variable is checked. Depending the value of switch the state

machine can take one of the two paths. If it is asserted high, sendA state is reached; this

indicates that this is automaton A and A FIFO is selected. Otherwise, the state machine

goes to sendB state and B FIFO is selected.

The incoming data are combined into A (B) automaton in sendA (sendB) state.

When all necessary bytes are received to define an automaton, length variable is as-

serted high and the state machine goes to pushfifoA (pushfifoB) state. Thereafter,
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the automaton is pushed into the corresponding FIFO. The state machine transitions back

to idle state in the following clock cycle and waits for valid signal. When one loop

in the state machine is completed (from idle state back to itself), the variable switch

is complemented.

Unary automaton pairs A and B are read from the FIFOs using the signal pop and

transferred to topmodule modules. Moreover, the variable empty is used to indicate

whether the FIFOs are full or empty. When empty is high, it means that there is no more

automata to be read.

Each instances of topmodule has three inputs: i) machineA for automaton A, ii)

machineB for automaton B, and iii) restart signal. It has two outputs: i) finish

to indicate that the computation is finished for the current unary automata pair and ii)

laststatus, which is set to 1 to indicate whether a counterexample that falsifies the

conjecture is found. A more detailed overview of the architecture of topmodule is

presented in Figure 3.4.

Mainly, the process inside topmodule consists of the following steps. Firstly, n-bit

permutations of the unary automaton B are computed and with each permutation a new

binary automaton is created. The permuted automata B are written into a 36 Kb FIFO

(permFIFO in Figure 3.4). Then, the permuted automata B in permFIFO along with A

are sent to the modules incSearch for conjecture testing operation.

Each binary automaton (generated by combining A and a different permutation of

B) is tested in a unit named incSearch. There are 60 instances of incSearch in

each topmodule, and therefore 60 binary automata can be tested at the same time. The

instances of the execution module incSearch are numbered from 1 to 60 as can be seen

in Figure 3.5.

Finally, perm FIFO becomes empty, all ongoing testing operations are allowed to

finish. When all operations are finished, the variable finish is asserted. Thus, it is

understood that the analysis of one unary automata pair is completed. When a new unary

automata pair is sent to an instance of topmodule, the restart signal is set to high

resetting the buffers in the instance. Thereupon, the same operations for the previous pair
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Figure 3.4: Block Diagram of Submodules inside topmodule

20



Figure 3.5: General Block Diagram of Module Instantiation

are repeated for the new pair.

The permutation ofB is done in two modules: i) permutation and ii) permuter.

The states of a unary automaton B can be indexed using the set of integers {n − 1, n −

2, . . . , 0}, where n is the number of states. Therefore, the permutation can be defined as

a different ordering of this set. The permutation module generates a permutation and

this permutation is applied to B in the module permuter.

The permutation operation starts with a specified initial permutation set and produces

other orderings of states by changing the positions of elements in the initial set. The

sequence for an n-state initial permutation set is in the form of {n− 1, n− 2, ..., 0}. This

form also indicates the position of the corresponding bit in the initial set. There are n!
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permutations for n states.

For example, the set with two states has two permutations. The first one is initial set

〈1, 0〉. The second one can be achieved by exchanging the positions of the two elements,

namely, 〈0, 1〉. Similarly, the set with three states has six permutations. All permutations

can be obtained by exchanging 0th and 1st elements in odd numbered iterations and ex-

changing 0th and 2nd elements in even numbered iterations. For example, assuming the

initial permutation is 〈2, 1, 0〉, in the first iteration we obtain the permutation 〈2, 0, 1〉. In

the second iteration we obtain 〈1, 0, 2〉.

The set with 4 states has 24 permutations. When the permutations are examined,

the first 6 permutations can be obtained exactly as in the three state permutation case by

applying the same rule on the states in positions 2, 1, and 0. In every sixth iteration, we

exchange the elements in positions 0 and 3. We perform the same operation on elements

in positions 1 and 2.

The set with 5 states has 120 permutations. The permutations for five state sets can be

obtained using the method used for 4-state case. The method for 4-state case is applied

to all states except for the one in the position 4. In every 24th iteration, the elements in

the positions 0 and 4 are exchanged and the elements in the positions 1 and 3 are also ex-

changed. In general, the permutations for n states can be obtained using the permutations

for n− 1 states.

In conclusion, the process starts from the initial set and keeps producing permutations

until the initial set is reached again. The set with 12 states has 479,001,600 permutations.

Our design produces one permutation per clock period. As previously explained, after a

new ordering is obtained in permutation module, the actual permutation is applied by

permuter module. The permutations are stored in permFIFO. Then they are popped

by incSearch modules to be tested in cerny pu module. When the test is done for

the current pair of automata, the result is output and the analysis is started with a new pair

of automata.

Essentially, given automata pairs are tested for shortest synchronizing sequences in

module cerny pu using a breadth first search (BFS) algorithm. In the first iteration, both
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A and B automata are applied all possible states and two new set of states are obtained.

Each set of states is called a state node or shortly node. The initial node contains all the

states. After an automaton is applied to a node, a new node is obtained, in which the

same state may appear more than once. This implies that an input symbol takes more than

one states into the same state. When a node that contains only one state, referred as a

singleton node, is obtained, a synchronizing sequence is found and its length is checked.

Alternatively, the process can also terminate when no new node of states is found.

The BFS algorithm starts with the initial node and obtains new nodes by applying

both automata in the pair to the initial node. As we repeat the process for the new nodes

we obtain a graph. We also check if a node previously occurred. If so, we do not proceed

with this node. As long as a new node is obtained, the process continues and we traverse

the graph.

FIFO (see FIFO singleclk in Figure 3.4) and block RAM (BRAM) memory (see

RAM dual in Figure 3.4) structures are used to provide the graph traversal. The module

FIFO singleclk is used to save all generated nodes of states. A node is encoded using

an n-bit node index, each of which corresponds to one state. A bit in the node is set to

1, if the corresponding state appears in the node. The nodes are mapped into RAM dual

locations using the node index. Consequently, if a node is obtained during the BFS algo-

rithm, the corresponding location in RAM dual is set to 1. This way, we can check if a

node is generated previously and guarantee that the states in the FIFO singleclk are

unique.

FIFO singleclk is initially pushed the value of all 1s (i.e., all 1s of n-bit), im-

plying all states occur in the initial node. Also, the corresponding location for this initial

node in RAM dual is set to 1, which means the node is visited. After this point, the

operations are done in a repeated fashion. A state node is read from FIFO singleclk

and sent to nextStateCalc module where it goes to new nodes of states by applying

a and b inputs. The address of new state set is checked in RAM dual. If the value is low,

this means it is not seen before. Thus, it is written to FIFO singleclk and the address

in RAM dual is asserted high to indicate it is seen before. If the value is high, no actions
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are done for this previously visited address. The calculations are continued with new state

sets that are popped from FIFO singleclk.

The main termination condition for the test is to check that a node goes to a single-

ton, i.e. a node which contains a single 1. When a singleton is reached, the search is

completed. At this point, the length of the input sequence that brings the initial state

to a singleton is taken into consideration. If the length of the input sequence is more

than (n − 1)2, the conjecture is falsified and it sets status signal (see Figure 3.4) to 1.

Otherwise, the conjecture is verified and status remains 0.

Another termination condition is when FIFO singleclk is not pushed a new node

as all the obtained nodes have been previously reached. If this happens, independent of

whether a singleton is reached, the operation is terminated. Then, it is assumed that a

synchronizing sequence is not found for this automaton. In this case, conjecture is not

falsified and therefore the status signal remains zero.

The nextStateCalc module in Figure 3.4 implements the state transitions when

a length one input a or b is applied to a given node. With the select input, A or B

automaton is applied to the node and a new state node is reached. If select is 1, then

automaton A is selected. If it is 0, automaton B is selected. Automaton A defines the

states that are reached by applying the input a to all possible states. Similarly, automaton

B describes the states that are reached by b input. The newly generated node of states is

returned in the variable outState.

The state machine illustrated in Figure 3.6 explains the operations in the module

cerny pu. With the reset input, the state machine by default goes to the idle

state. In this state, it waits for the startsearch signal to be asserted. Once the

startsearch is 1 the state machine transitions to the initial state. In the initial

state, the initial node (all 1s indicating all state’s existence) is created and sent to the

FIFO singleclk module. Thereafter, the state machine goes to the read state in

which the nodes are popped from FIFO singleclk. The read state returns idle if

one of the termination conditions is satisfied; otherwise, the state machine transitions to

the writeA state.
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Figure 3.6: State Diagram of State Machine in cerny pu
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In the writeA state, the input a is applied to the current node and a new node of

states is obtained. Also in this state, we check if the node is already in RAM dual. If

it does not, the signal exist signal is set to 0, the state machine goes to the write

state, in which the newly generated node is pushed to FIFO singleclk. Moreover,

the corresponding address RAM dual is asserted to indicate that this node is reached. In

the write state, if a signal called waitForB is 1, the state machine goes to writeB

state. Otherwise, it returns to the read state. If exist signal in writeA state is high,

state machine transitions writeB state. This state is the same as writeA state but with

input b. Instead this time if the exist signal is high, it returns to read state. Similar

operations are performed when the state machine is in the writeB state.

A block RAM of 18 Kb is created to implement the RAM dual module. The RAM

used is simple dual-port mode. In this mode, independent read and write operations can

be performed at the same time. In other words, reading a port and writing another port

can be done simultaneously. These ports are symmetrical and independent of one another

and share only the stored data.

To update or read a BRAM, the write or read addresses are provided, and the two

signals read and write are asserted. When these signals are set to 1, the operations are

started. Otherwise, these signals are 0 and this means that there is no reading activity or

change in BRAM. After reading or writing operations are completed, read or write

return to 0.

Addresses in the RAM dual module represent nodes of states. When the value in an

address is checked, it reveals whether this address (i.e. the corresponding set of states)

has been visited before or not. Initially, the contents of all addresses have zero value. If

the value becomes 1, it means that this address, in other words, this node has appeared

before. In this case, no further action is taken for this node and a new node of state is

generated.

FIFO memories of 18 Kb and 36 Kb are configured to implement the FIFO singleclk

and permFIFO modules, respectively. Recall that permFIFO module keeps automata

pairs obtained via permutation while the FIFO singleclk keeps track of nodes of
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states as they are generated using an automata pair. As the name indicates a write oper-

ation pushes a new data item to the end of the buffer whereas a read operation pops the

item from the head of the buffer. Two signals are used to activate these operations: push

and pop. Both of these signals are initially assigned to 0. A push command is issued

by setting push to 1 and a new data is pushed to the memory. A node of states given as

input is written to the tail of the FIFO. pop is set to 1 to enable pop operation and the

oldest value in the buffer is removed. When these values are 0, write and read operations

are disabled.

As stated previously, the FIFO singleclk content is set to 0 initially. When con-

jecture testing for an automata pair is started some addresses are set to 1. When the testing

is finished and another one is started, the values in the RAM block does not return to the

initial values immediately in one clock cycle. In other words, it is not possible to reset

the values in all addresses within the same clock cycle. For this reason, it is necessary to

reset the addresses one by one.

Thus, one extra FIFO and one extra RAM block are used to mitigate the overhead

caused by this operation. The RAM blocks are named as Ram1 and Ram2. searchFifo

and deleteFifo are the names of two FIFOs. When a search for synchronizing se-

quence of the first automata pair is ongoing, addresses are checked in Ram1, and new oc-

currences of nodes are transferred to both searchFifo and deleteFifo. Nodes are

popped from searchFifo to test the automata pair. When this search ends, searchFifo

is reset but deleteFifo does not change.

Addresses are now checked in Ram2 for second automata pair, and new nodes are

similarly transferred to both searchFifo and deleteFifo. Values are popped from

searchFifo for new state calculations while values popped from deleteFifo are

used to determine addresses of Ram1 to be reset. This way, resetting of Ram1 is over-

lapped with the testing of another automata pair being in progress and no cycle is wasted

for resetting a BRAM. Use of Ram1 and Ram2 are alternated for different iterations using

a control signal selectRam.

In addition, deleteFifo is not flushed after each search and the new data inputs are
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written in every search. In such a case, a larger FIFO is needed in order to store all data.

Therefore, one 36 Kb memory and one 18 Kb memory are used together for the FIFO to

hold the deleted addresses.
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Chapter 4

Experiments

This chapter presents some implementation details and experimental results to test

and validate the proposed architecture. Section 4.1 provides verification methods used to

test the correctness of the design. The required resources to implement the design and the

experimental results are presented in Section 4.2. In particular, certain design choices are

compared against each other and the results are shown. To evaluate the performance of

the proposed architecture, experimental results were obtained on a Xilinx VC709 develop-

ment board containing a Virtex-7 FPGA device, using Xilinx Vivado 2016.4. Moreover,

we used a Linux-based PC in addition to Virtex-7 board. We used Verilog HDL for all

hardware designs and C/Python language for software components on the host computer.

4.1 Verification

The correctness of the proposed implementation is the major focal point to avoid mis-

calculations of synchronizing sequences and to avoid misleading verification of the Černý

conjecture. The design is tested in simulation environment and hardware software co-

verification environment to ensure the validity of the design. Certain modifications and

corrections are applied with respect to the results of these tests. The functionality of the

design is verified by the behavioral simulation and board implementation.

Xilinx Vivado simulator is used to test the steps during the implementation of the
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design. A test bench is written to verify the design in simulation. Using the hardware

simulator, the output waveforms are observed and the signals are also checked in detail.

The traces of state transitions are monitored by examining the content of the registers. The

simulator also helps in the development process and facilitates the evaluation of internal

methods in modules.

Since the proposed design consists of several parallel submodules, it is not very effi-

cient to run and check simulation with all parallel submodules. By keeping the general

architecture the same, fewer number of parallel modules (e.g., topmodule) are used for

testing. In the simulator, the design is tested by one automaton pair at a time. When the

termination condition is achieved, a new automaton pair is tested. State transitions with

respect to automaton pairs, popping a new automaton pair, FIFO memory usage, block

RAM memory usage, finite state machine transitions are all checked in the simulation

environment. The FPGA implementation is verified with simulations.

Other verification tests are applied to determine whether the design produces the ex-

pected outputs. Proposed techniques for the conjecture testing are also implemented in

Python code for verification purposes. The expected results of both Verilog and Python

codes are compared. The accuracy of the implementation results in hardware is tested em-

ploying a host PC computer and serial communication with UART. C code is developed

at the host side to receive or sent data from the serial port. The hardware implementation

of UART protocol is based on Verilog HDL language.

The computation starts when the input data is read from the UART by the FPGA.

Firstly, the state transition outputs of the automaton pairs are sent to the host computer

via UART. The results are saved and compared with the state transition outputs of the

automata pairs obtained by the Python code. Another test is also applied for checking

reset word lengths which are found by the BFS algorithm. When an automaton pair is

analyzed, the paths that reach a synchronizing sequence are saved and transmitted with

corresponding permutation of the automaton B. The results are compared with the soft-

ware results from the Python code. If there are inconsistencies between the results for

both verification tests, the architecture is investigated and the necessary updates are per-
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formed. The simulation helps to keep track of the processing steps. When the results

of the FPGA implementation match with the results of the Python implementation, the

design is considered to be verified.

Recall that for synchronizable automata if the length of the shortest reset word is larger

than Černý upper bound, the conjecture is falsified. Therefore it is important to perform

the upper bound check accurately; i.e., to validate that our design would catch it when

a counter example that falsifies the conjecture is found. In order to make sure of that,

the upper bound is artificially set to a relatively small value with respect to the average

length of reset words from the previous analysis. The falsification signal is expected to

activate for automata with reset words longer than this specified bound. With artificially

low bounds, the test is started and the falsification signal is observed. The signal becomes

active indicating that Černý bound is exceeded as expected. In summary, the simulations

and experiments on the hardware implementation show that the implementation works

correctly.

4.2 Timing Results

The non-isomorphic unary automata are created outside the hardware implementation

(i.e., via a software implementation). The proposed hardware architecture gets two unary

automata,A andB as inputs and combines them into a binary automaton. One of the given

automaton pair, automaton B is permuted and each permuted B automaton is combined

with the given A automaton. In this manner, n! binary automata are generated from a

given automaton pair with n states. All automata are checked for reset words and the

analysis time is recorded. UART communication protocol allows to send and receive data

between the host PC and the FPGA device.

When the number of states is 9, the number of automaton pairs to be examined is

243,243. Firstly, each generated automata are checked for synchronizing words in the

CPU of the host PC. The automaton pairs are ordered depending on the execution times

from the longest to the shortest. Then the automata pairs are sent to FPGA in this order
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Table 4.1: Timing for n= 9
number of

topmodule
module

number of
incSearch

module
Time (seconds)

10 40 269
11 40 248
10 45 241
12 35 259

and the elapsed time for the conjecture testing is taken in the FPGA implementation. The

automaton pairs are grouped into 1020. A total of 239 automaton groups are formed.

Groups are sent to FPGA via UART one by one.

The first 1020 automata pairs with the longest execution times are transmitted, and

another 1020 pairs are transmitted when the computation for the first group is completed.

The transmission continues until all groups are sent in this order. The execution time is

measured in FPGA and sent via UART when all groups of automata are completed.

Several module configurations are tested on the FPGA for 9-state automata by chang-

ing the number of topmodule and incSearch units in Figure 3.5. Different config-

urations are tried to maximize the utilization of FPGA resources. Initially, we used 10

topmodule and 40 incSearch units. We observed for this configuration that the time

spent on hardware implementation is more than the time spent in the software implemen-

tation in the CPU of the host computer (i.e., 269 s on FPGA vs. 247 s in PC using a single

CPU core). When the execution times are inspected in more detail, the FPGA implemen-

tation is faster for the automata with high execution times, while it is slower for automata

that can be tested in shorter times.

Then we tried different configurations and the execution times are enumerated for

each configuration in Table 4.1. The fastest configuration is obtained when we use 10

topmodule and 45 incSearch units, that slightly outperforms the PC implementa-

tion. The execution times for the automata pair groups of 1020, which are ordered from

the slowest to the fastest are illustrated in Figure 4.1.

The resource utilization of the implementation is shown in Table 4.2. In addition,
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Figure 4.1: Comparison of FPGA and Processor Timings for All n = 9 State Automata

Table 4.2: Utilization for n=9
Resource Utilization Available Utilization%
LUT 188230 433200 42.20
FF 76355 866400 8.81
BRAM 1362 1470 92.65
IO 8 850 0.94
BUFG 3 32 9.38
MMCM 1 20 5.00

utilization design information is given in Table 4.3 and Table 4.4.

Checking for synchronizing sequences for 12 state automata is done in the CPU of the

host PC firstly. The automaton pairs are sorted with respect to the execution times from the

longest to the shortest. Then the first 25, 50 and 100 automaton pairs taking maximum

times are examined respectively in FPGA to find the length of minimal synchronizing

sequences. The execution time for the conjecture testing is measured for the FPGA im-

plementation. In order to find the shortest possible execution time, various configurations

are tried by aiming maximum resource utilization. The performance comparison of the

configurations is given in Table 4.5. Shortest timing is achieved with 8 topmodule and
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Table 4.3: Slice Logic for n= 9
Site Type Used Available Util %

Slice LUTs 182830 433200 42.20
LUT as Logic 182830 433200 42.20
LUT as Memory 0 174200 0

Slice Registers 76355 866400 8.81
Register as Flip Flop 76355 866400 8.81
Register as Latch 0 866400 0

F7 Muxes 1390 216600 0.64
F8 Muxes 0 108300 0

Table 4.4: Memory for n=9
Site Type Used Available Util %

Block RAM Tile 1362 1470 92.65
RAMB36/FIFO 462 1470 31.43
RAMB18 1800 2940 61.22

60 incSearch units.

The resource utilization of the implementation is shown in Table 4.6. In addition,

utilization design information is given in Table 4.7 and Table 4.8.

The performances of both the hardware and software approaches are compared in this

experimental sets. The results are shown in Table 4.9.

The time spent on hardware implementation is about half of the time spent in the

software implementation in the CPU of the host computer for the 100 automaton pairs.

Table 4.5: Timing for n=12
Time (seconds)

number of
topmodule

module

number of
incSearch

module
25 pairs 50 pairs 100 pairs

8 60 3931 5796 10213
9 50 3652 6280 10397

10 40 4489 6855 12781
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Table 4.6: Utilization for n=12
Resource Utilization Available Utilization%
LUT 270868 433200 62.53
FF 91130 866400 10.52
BRAM 1450 1470 98.64
IO 8 850 0.94
BUFG 3 32 9.38
MMCM 1 20 5.00

Table 4.7: Slice logic for n=12
Site Type Used Available Util %
Slice LUTs 270868 433200 62.53

LUT as Logic 270868 433200 62.53
LUT as Memory 0 174200 0

Slice Registers 91130 866400 10.52
Register as Flip Flop 91130 866400 10.52
Register as Latch 0 866400 0

F7 Muxes 2528 216600 1.17
F8 Muxes 0 108300 0

Table 4.8: Memory for n=12
Site Type Used Available Util %

Block RAM Tile 1450 1470 98.64
RAMB36/FIFO 490 1470 33.33
RAMB18 1920 2940 65.31

Table 4.9: Timing Comparison
Automaton
pair number FPGA Processor

25 3931 s 4100 s
50 5796 s 8259 s

100 10213 s 21140 s
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4.2.1 Applied Filters

Several filters are used on the processor to improve the performance. Such filters are

not completely suitable for implementation on the proposed FPGA architecture. Some of

them are applied to FPGA analysis to get better results in terms of performance. They are

useful in filtering permutations.

Filter 1

It is known that if there exists a counterexample for the Černý conjecture, then there

exists a counterexample where the automaton is strongly connected. Therefore, the search

for a counterexample for the Černý conjecture can be restricted to strongly connected

automata. For this reason, if an automatonA is not strongly connected, there is no need to

consider A for the falsification of the Černý conjecture. In Filter 1, we use the following

easy-to-check sufficient condition for a binary automaton A = (Q, {a, b}, δ) to be not

strongly connected: if δ(Q, a)∪ δ(Q, b) 6= Q then A is not strongly connected. Note that,

if there exists a state q /∈ δ(Q, a)∪δ(Q, b), then q has no incoming transition. In this case,

the automaton A is not strongly connected.

Filter 2

For an automaton A = (Q,Σ, δ), if A is synchronizing then for any two states qi, qj ∈

Q there exists an input sequence σ ∈ Σ∗ with length at most n(n−1)
2

such that δ({qi, qj}, σ)

is a singleton. Therefore, if there exists an input sequence σ′ such that δ(Q, σ′) = {qi, qj}

where the length of σ′ is at most (n − 1)2 − n(n−1)
2

, then there exists a synchronizing

sequence with length at most (n − 1)2 (simply consider using σ′σ as the synchronizing

sequence).

Based on this observation, during the search for the shortest synchronizing sequence

using BFS, if a state set with cardinality 2 is reached at depth (n − 1)2 − n(n−1)
2

or less,

then the search can be terminated. For example for n=12, if a state set with cardinality 2

is reached at level 55 or less during the BFS, the search is terminated.
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Filter 2′

A more eager filter similar to Filter 2 has also been tried. Although n(n−1)
2

is the

general upper bound for merging two states in a synchronizing automaton, it might be

possible get a better upper bound k < n(n−1)
2

for an automaton A = (Q,Σ, δ). Recall

that in our work, a binary automaton A = (Q, {a, b}, δ) is constructed by considering two

unary automaton Aa = (Q, {a}, δa) and Ab = (Q, {b}, δb), where the names of the states

of Ab are permuted.

By analyzing the transitions of Aa only, one can get an upper bound k (which might

still be smaller than the general upper bound value n(n−1)
2

such that for any two states

qi, qj ∈ Q there exists an input sequence σ ∈ Σ∗ with length at most k such that

δ({qi, qj}, σ) is a singleton for any two states for any synchronizable binary automaton

A = (Q, {a, b}, δ) that would be obtained by using Aa = (Q, {a}, δa) together with any

other unary automaton Ab = (Q, {b}, δb).

To assess if such a reduced upper bound would accelerate our search for a counterex-

ample, we have tried the upper bound of k=60 (instead of the general bound 55) for n=12.

In other words, during the search for the shortest synchronizing sequence using BFS, if

a state set with cardinality 2 is reached at depth 60 or less, then the search is terminated

when automata with n=12 states are considered.

Filter 3

For a synchronizing automaton A = (Q,Σ, δ) with n states, if there exists an input

sequence σ ∈ Σ∗ with length at most k such that (|δ(Q, σ)|) = m, Pin [31] proved that

there exists an input sequence σ′ ∈ Σ∗ with length at most 2k + n − m + 1 such that

(|δ(Q, σ′)|) ≤ m − 1. Also recall that for a synchronizing automaton, for any two states

qi, qj ∈ Q there always exists an input sequence σ′ ∈ Σ∗ with length at most n(n−1)
2

such

that δ({qi, qj}, σ′) is a singleton. Combining these two results, if |δ(Q, σ)| = 3 , for an

input sequence of σ length at most b(n2 − 5n + 6)/4c, then there exists a synchronizing

sequence of length at most (n − 1)2. Therefore during the BFS search for n=12, if state

set is reduced to 3 or less states at level 22 or earlier, the search can be terminated.
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Table 4.10: Filter Timing Comparison
Filters Time (seconds)

Filter 1 9714
Filter 2 7335
Filter 2´ 6832
Filter 3 4029
Filter 1 & 2 6650
Filter 1 & 2´ 6557
Filter 1 & 3 3373
Filter 1 & 2 & 3 3839
Filter 1 & 2´ & 3 3813

Previously explained filters are added to the design respectively. The combinations

of filters are also applied. The measured time performances for examining 100 pairs

of automaton are stated in Table 4.10. We get the fastest timing performance when we

applied Filter 1 and Filter 3 combination. The time spent on hardware implementation is

about six times faster than the time spent in the software implementation in the CPU of

the host computer (i.e., 3373 s on FPGA vs. 21140 s in PC using a single CPU core).
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Chapter 5

Conclusion

The study presented in this thesis gives the details of the design and the implementa-

tion of a parallel computation methods for generating shortest synchronizing sequences

of binary automata using FPGA. The proposed design is developed to improve the per-

formance of experimental methods for 12-state binary automata. BFS algorithm is con-

sidered to find the length of synchronizing sequences.

The proposed implementation handles a pair of unary automaton A and unary au-

tomaton B. It creates binary automata by using A and each state name permutation of

B. Each generated binary automaton is examined with BFS algorithm to find the length

of a shortest synchronizing sequence. When a singleton is reached during the search, the

depth of the graph is controlled. If the depth is greater than (n − 1)2, it means that the

Černý conjecture is falsified. Otherwise, it is verified for the current automaton pair. An-

other possibility is that no single-state cluster is encountered during the search. In this

case, it is understood that the automaton pair is not a synchronizable, and it cannot falsify

the Černý conjecture. Also it is possible to terminate search with using the filters. After

finishing one search, the next permutation for B is considered and the analysis is repeated

for the new permutation of B with same A.

We proposed a hardware based solution in this thesis, which mostly utilizes memory

blocks on FPGA to solve the shortest synchronizing sequence problem. FPGA provides

high productivity for parallel processing. Experimental results obtained using a Xilinx
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Virtex-7 FPGA shows that the proposed solution achieves a performance 6 times higher

than the existing one core processor performance. When we analyzed the performance

results with respect to existing processor results, we observed that short time-consuming

automata in software, take a long time in hardware. Since several filtering methods are ap-

plied to automaton pairs that eliminate some cases without checking them, total execution

time is accelerated in CPU. However, these methods are not applicable for FPGA imple-

mentation and all cases need to be considered. Instead, some suitable filters (see Chapter

4.2.1 Applied Filters) that can finish the search early are applied to proposed design. Also,

we have seen that these methods on processor are not successful on long time consuming

automata. Furthermore, as our previous analysis shows that our implementation tends to

have better performance with long time consuming automata.

Finally, our approach achieves 6 times better throughput than the existing one core

software architectures. We expect to have much more performance gain if using hardware

software mixed architectures. Long time consuming automata can be checked in FPGA

part, whereas short time consuming automata can be checked in CPU part. One approach

to the continuation of the project’s work within this research area can be to address the 2-

input and 13-state automata. However, observations we have made from our experiments

and theoretical calculations show that an increase in the number of cases means dramatic

increase in the total analysis time. For this reason, a new study that will target 2-input

and 13-state automata systems also needs to use some theoretical methods for eliminat-

ing more automaton cases. In addition, hardware and software mixed architectures can

achieve drastically better performance for this case as well.
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