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ABSTRACT

Face attributes classification is drawing attention as a research
topic with applications in multiple domains, such as video
surveillance and social media analysis. In most attribute
classification systems in literature, independent classifiers are
trained separately for each attribute. In this work, we propose
to train attributes in groups based on their localization (head,
eyes, nose, cheek, mouth, shoulder, and general areas) in a
multi-task learning scenario to speed up the training process
and to prevent overfitting. We have evaluated the idea of us-
ing the location knowledge for a particular attribute group to
speed up the network training. Attention is drawn to the area
of interest by blurring training images outside the region of
interest, fine-tuning the system and freezing the earlier layers
before continuing training with original images. Several data
augmentation techniques are also performed to reduce over-
fitting. Our approach outperforms the state-of-the-art of the
attributes on the public LFWA dataset, with an average im-
provement of almost 0.7% points. The accuracy ranges from
78% (detecting oval face or shadow on the face) to 97.4%
(detecting blond hair) across the attributes.

Index Terms— Face Attributes, Deep Learning, Transfer
Learning, Multi-Label classification, Data Augmentation

1. INTRODUCTION

Detecting facial attributes, such as hair style, gender, and
smile, is very beneficial in large scale applications [1] like
face recognition and identification [2], face verification [3, 4],
and image understanding [5]. However, being able to auto-
matically describe face attributes from images is a challeng-
ing task, as real-life images have different illuminations, oc-
clusions, poses and background variations.

Automatic recognition of face attributes became an active
research topic, especially with the release of CELEBA and
LFWA attribute datasets with more than 200,000 images, each
with 40 attribute annotations, by Liu et al. [6].

The general pipeline of face attribute classification can be
summarized as follows: (1) Face localization; (2) Feature ex-
traction; (3) Attributes classification. Face localization is out-
side the scope of this paper, as we work on aligned images.

Feature extraction and classification have been addressed sep-
arately in the past [7, 4], while newer approaches based on
deep learning and especially Convolutional Neural Networks
(CNNs) address both problems at once.

In spite of the fact that valuable information can be ob-
tained from the correlation of attributes, most of the state-of-
the-art methods are dealing with attributes independently. In
this paper, we approached this task in a Multi-Task Learning
(MTL) scenario by grouping attributes based on their local-
ization and sharing weights of each group of attributes, also
suggested in [8, 9]. Grouping attributes not only reduced
number of needed classifiers to classify 40 different attributes,
but also sharing weights helped reducing overfitting. We also
speed up the training by indicating the area of interest for a
group of attributes (e.g. mouth region for smile and wearing
lipstick attributes, in a two-stage learning. The main contri-
butions of this paper are as follows:

i) Proposing a state-of-the-art approach for face attribute
classification, using the Multi-Task Learning framework
and various forms of data augmentation in order to re-
duce overfitting. Our results are evaluated on a well
known dataset (LFWA), obtaining an average improve-
ment of almost 0.7% points and maximum relative im-
provement of 3.77% over the state-of-the-art.

ii) Suggesting a simple method for passing prior informa-
tion about the general location of an attribute group,
to direct network’s attention in order to speed up con-
vergence. We show that the two-stage training (with
first blurred images and then original) is both faster and
slightly more accurate (Fig. 4).

2. RELATED WORKS

Until recent years, facial attributes classification has been ad-
dressed with handcrafted representations, as in [7, 4, 10].
This kind of approaches may fail with unconstrained back-
ground and different variations of face images. More re-
cently, researchers tackle this task using deep learning, which
has resulted in huge performance leaps in several domains
[11, 9, 6, 12, 13, 14, 15].

In Zhu et al. [12] and Razavian et al. [13], CNNs are
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used to extract features from landmarks to train independent
classifiers for each attribute. This approach requires an ac-
curate landmarks detection. Liu et al. [6] use two cascaded
convolutional neural networks, for face localization (LNet)
and attributes prediction (ANet), replacing the last fully con-
nected layer with a support vector machine classifier. Each
attribute classifier was trained separately. Similarly in Zhong
et al. [11], attribute prediction is accomplished by leverag-
ing different levels of CNNs. Hand and Chellapa’s work [9]
is the most similar to ours: they divide the attributes into
nine groups and train a CNN consisting of three convolutional
sub-networks and two multi-layer perceptrons. The first two
convolutional sub-networks are shared for all of the classi-
fiers (representing earlier and shared features) and the rest of
the network is independent for each group. They also com-
pare their results to the results of classifiers trained indepen-
dently for each attribute and show the advantage of grouping
attributes together.

3. METHOD

Most of the existing work on face attributes classification ig-
nores the relationship between different facial attributes, and
trains individual classifiers for each attribute separately. In
this work, we propose to train attributes in groups based on
their localization (head, eyes, nose, cheeks, mouth, shoulder,
and general areas) in a multi-task learning scenario, to speed
up the training process and to prevent overfitting. The area
of interest for a particular attribute group is indicated by blur-
ring the image outside the attribute group region, based on
the mean image of the training set. In our case, 40 different
attributes are considered and divided into 7 groups (Table 1).

3.1. Network Architecture and Training

Training a large deep learning network from scratch is time
consuming and needs tremendous amount of training data.
Therefore, our approach is based on fine-tuning a pre-trained
model, namely the VGG19 network [16] which is the winning
architecture of the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) 2014. VGG19 is trained on a dataset
with 1.2 million hand-labeled images of 1,000 different ob-
ject classes. Its architecture involves 16 convolution layers,
five pooling layers and three fully-connected layers.

As we consider the problem as a multi-task learning prob-
lem, the output layer is changed to represent the labels in each
attribute group and the loss function is replaced with a multi-
label sigmoid Loss. For a single image I with A attributes,
the cross-entropy error is denoted as shown in Equation 1:

E(I) =

A∑
a=1

−yI [a]× ŷI [a] + log(1 + exp(ŷI [a])) (1)

where yI [a] and ŷI [a] are the target and output of image I
indexed by attribute a, respectively.

Group Attributes

Head
Black Hair, Blond Hair, Brown Hair,
Gray Hair, Bald, Bangs, Straight Hair,
Wavy Hair, Receding Hairline, Hat

Eyes
Arched Eyebrows, Narrow Eyes, Bushy
Eyebrows, Bags Under Eyes, Eyeglasses

Nose Big Nose, Pointy Nose

Cheek
5 O-clock Shadow, Rosy Cheeks, Goatee,
High Cheekbones, No Beard, Sideburns

Mouth
Big Lips, Smiling, Mustache,
Wearing Lipstick, Mouth Slightly Open

Shoulder
Double Chin, Wearing Necklace,
Wearing Necktie

General
Attractive, Blurry, Chubby, Young, Male
Pale Skin, Oval Face, Heavy Makeup,
Earrings

Table 1: Grouping attributes based on their relative location.

Multi-Task learning has already shown a significant suc-
cess in different applications like face detection, facial land-
marks annotation, pose estimation, and traffic flow prediction
[17, 18, 19, 20]. MTL is mainly applied by sharing all of the
hidden layers between the given tasks but with different out-
put layer for each task. As shown in [21], sharing weights
for multiple tasks acts as a regularizer that help reducing the
risk of overfitting. Intuitively, the model is forced to learn a
general representation that captures all of the specified tasks
which less the chance of overfitting.

We used the VGGNet models provided in the CAFFE
deep learning framework [22]. Throughout this work, we set
the batch size equal to 20 with iteration size equal to 2 and
the initial learning rate as 10−3 with a total of 1K iterations
for stage 1 and 10K iterations for stage 2.

In order to speed up the training and concentrate the fea-
ture extraction process into a local region, the training process
of each group of attributes is completed in two stages: (1) di-
recting the attention of the network to the area of interest by
first training with blurred images outside the area of interest
(Sec. 3.2); and (2) and freezing early layer weights and fine-
tuning the system using the original dataset (Sec. 3.3).

3.2. Stage 1: Directing Attention

Training a huge convolutional neural network with a small
dataset, especially if ground-truth labels are noisy, requires
thousands of iterations to obtain a good representation from
the region of interest (ROI). Automatic attention mechanisms
have attracted interest in recent years, with the goal of focus-
ing on a small part of the input or attending to past input in a
recurrent network [23]. Our goal is simply to direct attention
by indicating a small amount of prior information to the net-
work, in order to speed up the convergence. We indicate the
location information of a group of attributes to the network



by blurring the images outside the ROI, so as to extract most
of the features within the desired region. The early weights
learned in this stage are then fixed in the next stage.

Fig. 1: Stage 1 for the mouth region: The region outside the
ROI is blurred, as defined by the min and max ellipses whose
center is detected on the mean training image.

Original Image 1000 iterations 3000 iterations 5000 iterations

(a) Extracted features using original training images.

Apply Attention 100 iterations 500 iterations 1000 iterations

(b) Extracted features using attention mechanism.

Fig. 2: Comparison of training the network a) directly with
original training images or (b) by directing attention with
blurred images.

Training images are pre-processed by convolution with an
elliptical 2D Gaussian kernel centered on the region of inter-
est, outside the ROI itself, as shown in Figures 1. The center
and the size around the ROI are defined based on the mean
image of the dataset. Furthermore, dataset augmentation is
also achieved by changing the strength of blur and the size of
the ellipse between pre-defined minimum and maximum, as
shown in Figure 1.

The system input is an image resized to 256 × 256 and
blurred as described above. Then, it undergoes internal data
augmentation and gets cropped to 224 × 224, according to
the input layer size of VGG19. The pre-trained VGG19 net-
work is then fine-tuned using the blurred images for 1,000
iterations.

Figure 2 shows the summation of the last convolutional
layer outputs after different number of iterations by train-
ing the network with original images directly (Figure 2a) and

training the network with pre-processed images by focusing
on the region of interest (Figure 2b). Neural activations show
that the focus of the network is tuned mostly to the region of
interest by the end of Stage 1.

In the second stage, we freeze the early layer weights from
this stage and fine-tune the rest of the network using original
images. In Section 4 we compare this approach to fine-tuning
with original or blurred images in one stage. Our results show
that the network learns much faster in our case, as well as
having a slightly higher accuracy.

3.3. Stage 2: Fine Tuning

In this stage, the VGG19 network is fine-tuned by continuing
the back-propagation starting from the trained model coming
from Stage 1, but by freezing the weights of low-level portion
of the network (10 convolutional layers) and using the orig-
inal images. The learning rate of the rest convolution layers
are reduced by factor of 10 to keep learning but sustaining
the extracted features from stage 1. Thus, the features that lie
outside of the region of interest but might be helpful in clas-
sifying the current group of attributes (e.g. eye features being
used in smile detection) can be considered.

For data augmentation, we used both internal and exter-
nal augmentation. For external augmentation, all augmented
data are generated before training where several augmenta-
tion techniques are used as shown in Section 4.2. For inter-
nal augmentation, each input image is augmented by random
cropping and random horizontal flipping, provided optionally
in the CAFFE framework [22].

4. EXPERIMENTS

4.1. Dataset

The LFW [24] dataset is used to assess our proposed method.
Originally, the dataset is constructed for face identification
and verification, while recently, it is annotated with 40 dif-
ferent binary attributes [6]. The annotated dataset (LFWA) is
publicly available where it contains 13,143 images of 5,749
different identities. The dataset has a designated training set
portion of 6,263 images, while the rest is reserved for testing.
LFWA is one of the challenging datasets with large variations
in pose, contrast, illumination and image quality.

4.2. Data Augmentation

In deep learning, data augmentation plays an important role
in avoiding overfitting, specially with smaller datasets. Re-
cently, several advanced methods for face data augmentation
have been developed. In this paper, simple but effective data
augmentation techniques are used: (1) Rotation: training im-
ages are rotated using a random rotation angle between [-5,
+5] around the origin. (2) Scaling: images are scaled up and
down with a random scale factor up to a quarter of the image



+ glasses + glasses + glasses + rotation

+ wig + hat + scale + contrast

Fig. 3: Data augmentation with accessories.

size. (3) Contrast: by converting the color space of the im-
ages from RGB to HSV and randomly multiplying the S and
V channels with a factor range between [0.5, 1.5]. In addition,
blurring with two different filter size (3x3 and 5x5) and his-
togram equalization are performed. Furthermore, some tech-
niques are applied in combination (e.g. rotation and scaling,
or rotation and blurring).

We also add another type of augmentation by superimpos-
ing accessories such as glasses, hats, and wigs, on the training
images. For this, the annotation of eyes locations are used to
properly scale and rotate the added accessory. Random sam-
ples from the embedded items and generated augmented data
are shown on Figure 3. In total, we generated 22 images per
training sample, which corresponds to expanding our training
set to 137,786 samples.

4.3. Results and Evaluation

We compare our work to the results obtained by three state-of-
the-art methods, along with the baseline of choosing the most
frequent label for each attribute. The performance compari-
son reported in Table 2 shows that our average accuracy com-
pared to the best system (MCNN-AUX [9]) is almost 0.7%
higher and outperforms it for 33 of 40 of the attributes. The
state-of-art on this dataset has shown a relative increase of
2.46 on average in more than two years. Considering the re-
sults, we see that both our approach and the MCNN-AUX
approach performs better compared to each attribute being
trained individually. Thus our results confirm that grouping
attributes in a MTL framework is useful.

As for the small but consistent improvements over the
state-of-the-art, we believe that there are two reasons: First,
we used several data augmentation techniques, whereas the
augmentation is done by only jittering the original dataset
in [9]. Second, [9] uses a small network that consists of
three convolutional stages and two hidden layers and shares
weights among different attributes. We believe that using a
larger network and sharing the weights only within a regional
group allows for a more powerful network, which is then con-
strained by way of data augmentation to reduce overfitting.

Finally, in order to see the benefits of directing the atten-
tion and the two-stage training, we trained 3 systems: Sys-
tem1) applying only the second stage, which corresponds to
training in a MTL scenario using the original images with-
out directing attention; System2) using blurring in both stages
rather than using original images in Stage 2; and System3) the
proposed method.

As can be seen in Figure 4, the error drops fastest in the
proposed scheme where the system is given a little informa-
tion about the rough feature location (proposed approach is
better than System1), but only enough to direct the atten-
tion (proposed approach is better than System2). Training
with original images eventually catches up and even surpasses
training with blurred images and also comes close to the pro-
posed method. This is in fact expected, since blurring loses
some information.

Fig. 4: Average error of mouth group for 3 systems.

5. CONCLUSION

We presented a multi-task framework for face attribute clas-
sification based on feature locality. The grouping of the at-
tributes reduces overfitting, in addition to speeding up the
learning process. We also show that by using a little amount
of domain knowledge about attributes’ locality on the face,
the network learns much faster and even slightly increases ac-
curacy. With the use of several data augmentation techniques,
the system obtains state-of-art results.
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# Attribute Baseline [6] [11] [25] Independent [9] MCNN-AUX [9] Ours
Head

1 Black Hair 87.63 90 91 83 91.84 92.63 92.79
2 Blond Hair 95.74 97 97 92 97.23 97.41 97.41
3 Brown Hair 64.56 77 76 97 80.84 80.85 81.09
4 Gray Hair 84.25 84 87 89 88.98 88.93 88.92
5 Bald 89.37 88 91 93 91.51 91.94 92.09
6 Bangs 83.59 88 91 77 90.47 90.08 91.05
7 Straight Hair 64.44 76 77 79 81.54 78.53 82.30
8 Wavy Hair 55.49 76 77 94 81.58 81.61 81.89
9 Reced. Hairline 59.84 85 86 85 86.00 86.26 86.89
10 Wear. Hat 85.52 88 90 92 89.79 90.07 91.50

Eyes
11 Arch. Eyebrows 74.88 82 83 86 81.40 81.78 84.01
12 Narrow Eyes 65.50 81 81 82 82.48 82.86 83.26
13 Bushy Eyebrows 53.70 82 83 82 84.79 84.97 85.94
14 Bags Under Eyes 58.29 83 83 92 83.24 83.48 83.01
15 Eyeglasses 81.99 95 91 86 92.15 91.30 92.54

Nose
16 Big Nose 68.59 81 83 80 84.43 84.98 84.80
17 Pointy Nose 71.10 80 83 84 84.41 84.14 84.40

Mouth
18 Big Lips 62.86 75 78 81 79.06 79.24 82.24
19 Smiling 60.50 91 90 92 92.22 91.83 92.14
20 Mustache 86.62 92 94 95 93.69 93.43 94.14
21 Wear. Lipstick 85.53 95 95 93 94.68 95.04 94.46
22 Mouth S. O. 58.70 82 81 86 82.41 83.51 85.75

Cheek
23 5 O-clock Shadow 58.64 84 77 80 77.39 77.06 78.01
24 Rosy Cheeks 79.65 78 82 86 89.46 87.92 88.90
25 Goatee 74.68 78 83 88 83.34 82.97 82.50
26 H. Cheekbones 67.74 88 88 89 88.02 88.38 88.49
27 No Beard 70.05 79 80 81 81.45 82.15 83.39
28 Sideburns 68.72 77 82 80 81.70 83.13 83.49

Shoulder
29 Double Chin 62.44 78 80 92 82.00 81.52 81.92
30 Wear. Necklace 80.49 88 90 91 89.98 89.94 90.77
31 Wear. Necktie 64.09 79 81 81 80.34 80.66 81.19

General
32 Attractive 62.87 83 79 84 80.20 80.31 80.96
33 Blurry 84.02 74 88 75 86.71 85.23 86.82
34 Chubby 63.92 73 75 78 75.85 76.86 76.93
35 Young 79.60 86 86 87 85.11 85.84 86.06
36 Male 78.77 94 94 93 93.27 94.02 94.20
37 Pale Skin 52.09 84 73 91 94.31 93.32 94.38
38 Oval Face 51.49 74 75 75 77.06 77.39 78.01
39 Heavy Makeup 89.20 95 95 95 95.63 95.85 95.47
40 Wear. Earrings 86.86 94 95 80 94.73 94.95 95.04

Average 71.85 83.85 84.78 86.15 86.28 86.31 86.98

Table 2: State-of-the-art accuracies compared with the results obtained in this work. Bold figures indicate the best results.


