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Introduction to the exposome and pollinator decline

Researchers face an enormous challenge when it comes to understanding how genetic risk, chemical and pathogenic

exposure, nutrition, epigenetic modifications, and, especially in humans, psychological and social well-being interact to

influence health and disease. Over the past two decades, the scientific community has developed bioanalytical and

bioinformatics techniques to address complex biological questions using ’omics approaches. Most of this work has

focused on genomics (the expression of an individual’s genetic code). More recently, exposomics methodologies have

been developed to characterize the environment’s contribution to health risks.

Just as genomics seeks to describe the expression of DNA, the exposome seeks to characterize the effect of

environmental exposures over the course of an organism’s lifetime. Environmental exposures are organized into the

external environment (air pollution, pesticide exposure, xenobiotics, etc.) and the internal chemical environment

(metabolism, activity of the microbiome, oxidative stress, etc.) of the organism.1,2 Rather than viewing pre- and post-

disease biological mechanisms as independent and inelastic, the exposome considers how the organism’s internal

chemical environment responds to external exposures.

Exposomic characterization relies on a combination of targeted and discovery-based approaches to develop chemical

profiles and associate exposure events with biological response pathways using a combination of ’omics tools—such as

metabolomic workflows that use mass spectrometry—and bioinformatics software. This application note details data-

collection and analysis methods used to characterize the exposome of the western honey bee (Apis mellifera) in an

effort to understand the phenomenon of pollinator decline.
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Since colony collapse disorder was reported in 2006,3 environmental factors involved in pollinator decline have been

explored extensively using both experimental and correlational approaches. Xenobiotics (chemical exposures foreign to

the biological system) have been scrutinized, as have the fungal gut parasite Nosema apis and its close relative Nosema

cerane. Recent studies suggest that susceptibility to the microsporidian gut pathogen Nosema ceranae is significantly

increased when bees are also exposed to fungicides.3

These well-designed experiments exploring one or two environmental impacts on disease have certainly lent themselves

to a deeper understanding of the environmental causes of pollinator decline. However, little is understood about the

mechanisms behind such results, and even less is understood about how these observations change outside the

controlled laboratory setting. Using gas chromatography/quadrupole time-of-flight mass spectrometry (GC/QTOF) for

discovery-based exposome profiling, and semiquantitative PCR targeted disease screening, the paradigm described

here sheds light on potentially unexplored mechanisms of infection, biochemical feedback, and increased susceptibility

to disease.

The disease and exposome workflow

When applying the exposome paradigm, researchers collect as much chemical information in a biological system as

possible in a case (positive disease)/control (negative disease) type of investigation. As a proof-ofconcept, this study

examined the exposomes of honey bee samples from 30 unique hives in seven geographic locations and performed and

integrated these data with hives determined to be infected with N. ceranae compared to uninfected hives.

Semiquantitative polymerase chain reaction (sqPCR) screening for the common gut fungal pathogen Nosema ceranae

and apis was used to assess the disease state of the hives. A total of 6 mL of RNase-free water was added to 30 bees

collected from each hive. The bees were homogenized with a sterile mortar and pestle. DNA was extracted from a 150-

µL aliquot using a phenol:chloroform:isoamyl alcohol (25:24:1 v/v) mixture. PCR was performed according to an

adaptation of standard screening methods4 targeting N. apis and N. ceranae in duplex PCR reactions that included a

reference gene to permit semiquantitation of 3% electrophoresis gels. Hive samples were run in triplicate and the ratios

of each Nosema species to reference gene were averaged. Hive infection was considered as a categorical variable:

infected (N. ceranae ratio >0, n = 18) or uninfected (N. ceranae ratio = 0, n = 12). No N. apis was detected. If desired,

the semiquantitative ratios can be examined as a measure of parasite load (a continuous variable).

Samples from each hive were also collected for GC/QTOF analysis. Each sample was extracted using previously

published methods.5 Briefly, the extraction includes: pulverizing 3 g of bees in 27 mL of water:acetonitrile:acetic acid

(44%:55%:1%). The samples were extracted via QuEChERS extraction (Agilent Technologies, Santa Clara, CA) with the

addition 6 g of magnesium sulfate and 1.5 g sodium acetate. The extraction tubes were sealed, shaken, and centrifuged

at 3000 rpm for 5 min. Two milliliters of the supernatant was applied to a conditioned solid-phase extraction (SPE)

cartridge (Agilent Technologies). Analytes were eluted from the SPE cartridge with acetone/toluene (7:3 v/v).

An Agilent 7890B/7200B GC/QTOF system was used to collect exposome profiles of each sample. Briefly, the method

parameters were: a 0.2-µL pulsed splitless injection was made into a 250 °C isothermal split/splitless inlet. The GC was

configured with a 40 m × 0.25 mm × 0.25 µm DB5-MS DuraGuard column (J&W 122-5532G) operated at 1.2 mL/min

helium in constant flow mode. The oven program was 80 °C (1 min) and then 10 °C/min to 310 °C (6 min). Transfer line

temperature was 300 °C. The mass spectrometer was operated in electron ionization, high-resolution TOF mode. The

source and quadrupole (RF only) temperatures were 275 °C and 150 °C, respectively. High-resolution, accurate mass

(HRAM) spectral data were collected at 5 Hz over a mass range of 50 Da to 800 Da. Automated intrasequence mass

calibration was performed immediately prior to each sample injection. The 30 samples were run in duplicate, and the

average of the two runs was used for data analysis.

Raw data acquired on the GC/QTOF system were analyzed using the Agilent MassHunter suite of software for chemical

feature extraction; chemical identification via screening against known commercial spectral libraries; and covariate,

https://www.labcompare.com/Mass-Spectrometry/130-Quadrupole-Time-of-Flight-Mass-Spectrometer-QTOF-MS/?search=GC%2fQTOF
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statistical analysis. Statistical associations were made between chemical profiles of N. ceranae infected and uninfected

samples using Agilent MassProfiler Professional (MPP) bioinformatics software. Chemical features associated with

infection were determined through ANOVA statistical testing. Using Agilent Pathway Architect tools in the MPP

environment, statistically significant chemicals and metabolites were screened against known Apis mellifera biological

pathways downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Figure 1).

Figure 1 – Overview of exposome workflow in a stepwise fashion. From top to bottom: Honey bee foragers

were sampled from 30 hives for two separate data collection techniques: targeted sqPCR and discovery-

based GC/TOF. Overlaid chromatographs from 30 hives as exposome output from the GC/TOF and a

representative Nosema gel electrophoresis from sqPCR are shown. Exposome data were annotated using the

MassHunter suite, and the two datasets were combined for statistical analysis in MPP. An unsupervised

hierarchical cluster of 10 exposome profiles from 10 different hives are one representation of how the datasets

can be integrated. Infected and uninfected hives were compared to assess the difference in the xenobiotic

exposure events through a chi-squared test, and one example is shown where the relative metabolite

abundance of succinate was mapped onto highly conserved metabolic pathways using the KEGG database.

Insights generated by the workflow

More than 2350 chemical features were identified in the MS data, and the spectral library searches successfully

annotated 73% of these compounds (≥60% match factor score). When the exposome profiles are grouped based on

unsupervised hierarchical clustering, exposome profiles associated with disease load are observed. These observations

support the authors’ hypothesis that chemicals and metabolites unique to the presence of a Nosema infection can be

identified and possibly serve as chemical biomarkers for the presence of this disease (Figure 2).
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Figure 2 – Unsupervised hierarchical clustering heat map of exposome profiles from bee hives. More similar

exposome profile signatures are grouped next to one another; less similar ones can be found further away

from one another on the tree. Red indicates a relatively higher chemical abundance, while blue and gray

indicate a relatively lower abundance. Yellow indicates a neutral change from the overall average abundance

found across all 30 hives. Each row represents one chemical entity, with rows at the top having an overall

higher level of perturbation across the exposomes; chemical entity names to the right of the heat map are not

shown for clarity. This heat map was developed by MPP. Nosema infection ratios were then overlaid on the

heat map to examine biomarker signature profile differences between infected and uninfected hives. Infected

and uninfected hives have more similar exposome signatures and are therefore grouped together. Overall,

there is more perturbation of the exposome in infected bee hives.

Twenty xenobiotics were identified in the bee samples, and it was determined that the total number of xenobiotics

exposure events were significantly higher in N. ceranae infected bee hives (χ2 = 7.619, df = 1, n = 30, p<0.006). These

data provide insights into possible associations between Nosema infection and xenobiotic exposures, and are consistent

with a model where even a minor disruption in key metabolic pathways from any sublethal exposure(s) may increase

susceptibility to disease. Moreover, many of the identified pathways found in the KEGG analysis differed from previous

pathways identified by transcriptomic and proteomic studies,6,7 suggesting that exposomics has the potential to

complement the findings of other ’omics studies.

The advantages of using this workflow and integrating the two datasets are fourfold: 1) unknown chemical entities can

be accounted for with the discovery-based exposome analysis, 2) novel stressors and new interactions among

previously identified stressors can be measured and quantified, 3) new chemical biomarkers of disease can be identified

to create a chemical signature profile that can increase accuracy of predicting bee health decline, and 4) KEGG

pathways analyses can lead to a better mechanistic understanding of how multiple stressors interact. These new

insights may explain how synergistic declines in bee health occur.
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