
On the Use of Ordered Biometric Features
for Secure Key Agreement

Dilara Akdoğan∗, Duygu Karaoğlan Altop∗ and Albert Levi∗
∗Sabancı University, Istanbul, TURKEY
{dakdogan, duyguk, levi}@sabanciuniv.edu

Abstract—In this work, we propose a novel secure key agree-
ment protocol, Secure Key Agreement using Pure Ordered
Biometrics (SKA-POB), in which the cryptographic keys are
generated using an ordered set of biometrics, without any
other helper data. The proposed approach is realized using iris
biometrics. Our protocol makes use of hash functions, and we
propose a window-based comparison strategy and a window reset
method. This way, performance is maximized without sacrificing
security. SKA-POB protocol works in round manner, allowing to
successfully terminate with key establishment as early as possible
so that the complexity is reduced for both client and server sides.
Additionally, we employ multi-criteria analyses for our proposed
SKA-POB protocol and we provide verification results in terms of
performance analysis together with randomness, distinctiveness
and attack complexity through security analysis. Results show
that highly random and secure keys can be generated with almost
no error and with very low complexity.

I. INTRODUCTION

Biometrics and cryptography are combined such that a cryp-
tographic key is strictly bound to the users’ biometric traits,
hence the users’ identities. In the literature, there are many
examples in which the biometrics are used for cryptographic
key generations, which are analysed by [1], [2] and [3] in-
depth. One of the important approaches on using biometric
data in cryptographic protocols is to generate the cryptographic
key directly from it. Biometric data can be categorized in two
categories as ordered and unordered. Unordered data, such
as fingerprints, can be combined in any order when used as
cryptographic keys, while ordered data, such as iris, must be
used in a specific order. This feature plays an important role
in the design of the key agreement protocol to be developed
in order to maintain both authentication performance and key
quality [4]. In this work, we propose a secure key agreement
protocol, named SKA-POB (Secure Key Agreement using
Pure Ordered Biometrics), in which the client and the server
agree on a symmetric cryptographic key generated directly
from the captured ordered biometrics. No ancillary secret
information other than the biometric data is used in the
protocol during the key generation process. The protocol itself
is based on one of our previous works [5], which is a secure
key agreement protocol that uses biometrics with unordered
set of features. However, due to the nature of ordered set of

This work was supported in part by the Scientific and Technological
Research Council of Turkey (TÜBİTAK) under grant 114E557.

Dilara Akdoğan was supported by TÜBİTAK BİDEB 2228-A.
Duygu Karaoğlan Altop was supported by TÜBİTAK BİDEB 2211-C and

Turkcell Academy Technology Leaders Graduate Scholarship Program.

biometrics, in SKA-POB, we employed some extra features for
both performance and security improvement. We introduced
window-based comparison and window reset methodologies
in order to improve the performance of the protocol without
reducing its security and key quality. Besides, chaff blocks are
introduced to increase the resistance against brute force, replay
and impersonation attacks. These chaff blocks are generated
such that they are indistinguishable from the original iris
blocks. Our protocol works in rounds and in each round, a
similarity score is calculated using the number of blocks found
in common, according to which the user is either accepted
or rejected. In this way, we allow SKA-POB to successfully
terminate as early as possible.

Iris biometrics are used in applications requiring high secu-
rity, with high distinctiveness, high permanence, high valida-
tion and low error rates, despite some difficulties in use [2].
As a proof of concept, we instantiate SKA-POB using iris,
which is an ordered biometric. Our performance evaluation
results show that Incorrect Key Generation Rate (IKGR) is 0%.
Besides, we show that our protocol can withstand a high attack
complexity (2148) even with a cleverly constructed brute force
attack. On the other hand, randomness of the generated keys is
measured using entropy and the keys are found to be random
at high ratios. Additionally, distinctiveness of the generated
keys is evaluated by the proposed key-block difference index
metric. In this respect, it is shown that on the average 74.61%
of the keys are generated by using different blocks. Given the
complexity results, our protocol is computationally viable with
today’s technology.

The rest of this paper is organized as follows. In Section II,
we introduce our proposed secure key agreement protocol
(SKA-POB). Section III evaluates the performance of our
proposed protocol and discusses its security analyses. Finally,
in Section IV, we conclude the paper.

II. SECURE KEY AGREEMENT USING PURE ORDERED
BIOMETRICS (SKA-POB)

In this section, we describe our proposed SKA-POB pro-
tocol. SKA-POB uses iris biometrics and generates secure
cryptographic keys directly from the iriscodes. Our key agree-
ment protocol is divided into two phases: (i) enrollment, and
(ii) verification. In the below subsections, each of these phases
are explained in detail.

A. Enrollment Phase

At the enrollment stage, the user provides three different
iris scans of the same eye. Then, from these iris scans,
corresponding iriscodes are extracted. Each iris-code is 9600
bits long. Using these three iriscodes, most reliable bit values
are selected. If a particular bit on a specific position has the
same value in two out of three iriscodes, this value is taken as
a reliable value. By picking the reliable values in each position
of three iriscodes, the final 9600 bit iriscode is obtained. An
iriscode is processed as blocks in our algorithm. Thus, each
iriscode is divided into equal size blocks during enrollment.
After some experiments, we decided to divide each iriscode
into 25 blocks, so that each block is 384 bits long. These
blocks are stored in the server.

B. Verification Phase

In the verification stage, three different iris scans of the
same eye are provided by the user. Iriscodes are extracted
and most reliable bits are selected, as in the enrollment stage,
which yields a 9600 bit iriscode divided into 25 blocks. For
hiding the genuine blocks, fake blocks are generated randomly
at the user side. In order to distribute fake blocks uniformly, a
fake block generation constant, X , is defined. Before and after
each genuine block, a uniformly distributed random number is
generated in the interval [0 .. X], say x. After that, x different
random blocks are put in that place. As a result, uniformly
distributed, approximately |Gu| × X

2 fake blocks are inserted
among the genuine blocks. These points, together with the user
id, are sent to the server.

As shown in Figure 1, firstly genuine and fake blocks’ list
is transmitted to the server. The server, then, compares each
received block with the users’ stored blocks. Comparison is
done using a window-based strategy. The server knows that
there is at least zero and at most X fake blocks between each
genuine blocks. It means that the first genuine block can be one
of the first (X + 1) elements. Besides, second genuine block
can be among the 2nd and (2X+2)th elements. In short, each
element can be in a specific window. The server compares the
user’s genuine block with each block in the window. If the
percentage of difference between compared blocks is below
the predefined acceptance threshold, the block is considered as
genuine. In addition, if a genuine block is found in a position,
the next block should be in subsequent positions, since the
iriscode is ordered.

Apart from the window-based strategy, we also describe a
window reset strategy. The server can make sure that a block
is definitely genuine, if the similarity score is high enough. For
this reason, we define a reset threshold, Treset. If the difference
between two compared blocks is below Treset, it is considered
as a genuine block definitely, and the window is reset. In other
words, window is reinitialized. Assume that we are searching
for the ith genuine block. If we do not reset the window, ith

block can be one of the blocks in the interval [i .. i×(X+1)].
If we definitely find the ith block in the kth index of the list
sent by the user, we reset the window. If we reset the window
on the rth genuine block, we find the genuine block on the kth

index, and we are searching for the ith genuine block, then
new window would be [k+ (i− r) .. k+ (i− r)× (X + 1)].
For instance, if the first block is definitely on the 5th index
(r : 1, i : 2, k : 5), the second block can be between 6th and
(X + 6)th indexes. In other words, we do not need to search
for the second element until the (2X + 2)th element.

After finding the genuine blocks, a similarity score is
calculated [6]. If the similarity score is above the predefined
acceptance threshold, Tsim, the protocol continues with the
key generation phase. Otherwise, the user is rejected and
the protocol ends. In the key generation phase, the server
concatenates all common found blocks sent by the user and
hashes the final concatenation. The hash result is the key, Ksu,
to be used in the communication. The server calculates an
HMAC value on a predefined message using Ksu as the key.
After that, the server sends the HMAC value and the number
of common blocks used in the key generation, |G′

s|, to the
user.

At the user side, every possible candidate key is generated
using |G′

s| many genuine blocks. If the HMAC value is
verified for a candidate key, user stops and sends a positive
acknowledgment. If the HMAC value cannot be verified using
any of these keys, user sends a RETRY message.

If the server receives a RETRY message, a new similarity
score is calculated with one less of the common block number,
|G′

s| − 1. If this score is above the acceptance threshold, Tsim,
the server generates every possible key using |G′

s|−1 common
blocks. An HMAC value is generated using each key, and all
HMAC values are transmitted to the user. The user follows the
same steps using the same number of genuine blocks as the
server. If the user can verify any one of the HMAC values, the
user sends a positive acknowledgment and the index, i, of the
verified HMAC value. However, if none of the HMAC values
can be verified, user again sends a RETRY message. In this
case, the server applies the same process with |G′

s|−2 number
of genuine blocks. The protocol continues with the same steps
in a round manner, until the calculated similarity score is less
than the acceptance threshold, or any HMAC value is verified
by the user. If any HMAC value is verified, it means that the
server and the user agree on a symmetric cryptographic key. In
contrast, if the protocol stops without generating a symmetric
key, it can start from scratch upon request with new client side
biometrics.

III. PERFORMANCE EVALUATION OF SKA-POB
PROTOCOL

Our proposed SKA-POB protocol was evaluated with
70 subjects from public CASIA-IrisV4 Interval Database [7].
In this database, there are 10 different scans of each iris.
Each iris scan is segmented, normalized, unwrapped and then
their corresponding iriscodes are extracted using open source
MATLAB algorithm of [8]. Every final iriscode is 9600 bits
long. After the iriscode extraction, each subject’s iriscodes are
aligned to the first sample using the circular shift method.
In the circular shift method, one of the iriscodes is shifted
circularly, until the minimum difference is obtained between

USER SERVER

Qu = (gu ∪ c)

∀gu ∈ Gu , ∀c ∈ C

FOREACH G
′

u ⊂ Gu : |G
′

u| = |G
′

s|

Kus = H1(
|G′s|f

k=1

g
′

u,k) ∀g
′

u ∈ G
′

u

IF HMACKsu(msg) == HMACKus(msg)→ ACCEPT and BREAK
IF NOT ACCEPTED → RETRY

FOREACH G
′′

u,1 ⊂ G
′

u : |G
′′

u,1| = |G
′

s| − 1

Kus = H1(
|G′s|−1f

k=1

g
′′

u,k) ∀g
′′

u ∈ G
′′

u,1

IF HMACKi
su
(msg) == HMACKus(msg)→ ACCEPT and BREAK

IF NOT ACCEPTED → RETRY

FOREACH G
′′

u,j ⊂ G
′

u : |G
′′

u,j| = |G
′

s| − j

Kus = H1(
|G′s|−jf

k=1

g
′′

u,k) ∀g
′′

u ∈ G
′′

u,j

IF HMACKi
su
(msg) == HMACKus(msg)→ ACCEPT and BREAK

IF NOT ACCEPTED → RETRY

G
′

s = Qu ∩Gs

S = (|G′

s| × 2)/(nu + ns)

IF S < Tsim → REJECT

ELSE → Ksu = H1(
|G′s|f

k=1

g
′

s,k) ∀g
′

s ∈ G
′

s

S = ((|G′

s| − 1)× 2)/(nu + ns)

IF S < Tsim → REJECT
ELSE → FOREACH G

′′

s,1 ⊂ G
′

s : |G
′′

s,1| = |G
′

s|− 1

K i
su = H1(

|G′s|−1f

k=1

g
′′

s,k) ∀g
′′

s ∈ G
′′

s,1

S = ((|G′

s| − j)× 2)/(nu + ns)

IF S < Tsim → REJECT
ELSE →FOREACH G

′′

s,j ⊂ G
′

s : |G
′′

s,j| = |G
′

s| − j

K i
su = H1(

|G′s|−jf

k=1

g
′′

s,k) ∀g
′′

s ∈ G
′′

s,j

qqq

userID ||Qu

REJECT

|G′

s| ||HMACKsu(msg)

ACCEPT

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

HMACKi
su
(msg)

REJECT

ACCEPT || i

RETRY

Fig. 1. Our proposed SKA-POB protocol

two iriscodes. First 3 irises are used at the server side, while
generating the users’ templates. The remaining 7 irises are
used for testing. Since it is assumed that the users give 3 iris
scans for each test, the remaining 7 iris scans are applied as
combinations of 3. So, each user is tested

(
7
3

)
= 35 times. Not

only genuine tests, but also impostor tests are performed. In an
impostor test, each user’s template is tested against all other
users’ templates. The hash function used in the protocol is
SHA-256 [9]; hence all of the generated keys are 256 bits long.
While the fake blocks are generated, the fake point generation
constant, X , is taken as 100.

In following subsections, we discuss the correct and incor-
rect key generation rates of the system and we provide the
security analyses of the protocol, as well as representing the
randomness and the distinctiveness analyses of the generated
keys. Finally, we analyse the complexity of the system.

A. Correct/Incorrect Key Generation Rates

In both genuine and impostor tests, always a similarity score
is calculated (Section II-B). For each subject, the average
similarity score is calculated, and they are applied as accep-
tance threshold values of the system one by one. Acceptance
threshold plays the key role while determining the Correct
Key Generation Rate (CKGR) and Incorrect Key Generation
Rate (IKGR) values, which are the percentage of the genuine
subjects who successfully agree on a correct symmetric key
with the server and the percentage of the impostor subjects
who erroneously agree on a correct symmetric key with the
server as if they are genuine users, respectively. Figure 2 shows
the IKGR and the CKGR percentages with respect to the
different acceptance threshold values. IKGR is 0% and CKGR
is 100%, when the acceptance threshold is 17. The obtained
IKGR and CKGR values are strongly sufficient for a secure
bio-cryptographic authentication system.

Fig. 2. IKGR and CKGR values - when average scores are picked as threshold

B. Security Analyses

The attacker’s aim is either to impersonate a genuine user
or to learn the key between the server and any victim user
for eavesdropping purposes. We do not assume a secure
channel. Thus, the attacker can obtain all protocol messages
including the genuine and fake blocks’ list sent by the user
and exchanged HMACs. Consequently, the attacker learns
the number of blocks used for the key agreement. However,
our protocol computationally resists well-known attacks as
discussed below.

1) Brute-Force Attack: In a basic brute-force attack, the
attacker may try to guess the agreed key. However, this type
of attack is computationally infeasible, since the key is 256
bits long. For this reason, we describe a more intelligent brute-
force attack by making use of the protocol messages. On the
server side, the matching is done in a window-based strategy.
The attacker can make use of this idea, as well. In order to find
genuine blocks, the attacker should select the windows first. It
means that the attacker should select nkey

com different windows,
because the attacker needs the genuine blocks which are used
in the key generation. In an ideal case, there are X+1 values
in each window, where X is fake point generation constant.
This yields the attack complexity of attc = (X+1)n

key
com .

In order to calculate the overall attack complexity of the
system, the combination given above is calculated after each
key agreement. Then, we take the average of the complexity
results. The analysis shows that the average attack complexity
of the system is 2148 bits. As discussed in [10], even with cus-
tom hardware implementation, the computation of one block
of HMAC-SHA256 takes approximately 0.8977 microsec-
onds. Thus, the above mentioned complexity corresponds to
1.016×1031 years of attack. As a result, we can conclude that
our protocol efficiently resists intelligent brute-force attacks.

2) Replay Attack: On the other hand, in a replay attack, the
attacker replays the previously exchanged messages between
the victim user and the server, in order to impersonate the

genuine user and get the agreed key. However, the attacker
needs to know the genuine blocks to effectively calculate
the generated key; otherwise, (s)he must try all blocks in
each window, as explained above. As a result, the complexity
of a replay attack would be the same as that of the brute-
force attack. Additionally, the attacker might use his/her own
iris scans instead of replaying the victim user’s inputs. Our
protocol shows resistance against this type of impersonation
attacks with 0% IKGR.

3) Randomness: A good quality cryptographic key should
be random and distinctive. The randomness of a key is
measured using the Shannon’s entropy [11]. In our tests,
there are 70 subjects, and 35 keys are generated per subject,
so 2450 keys are generated in total. These keys are results
of a hash function, and it is known that the hash results
have high randomness. Therefore, instead of measuring the
randomness of the keys, we analysed the randomness of the
concatenations of the blocks accepted as genuine, i.e. used in
key generation. The entropy values of these concatenations are
given in Figure 3. The more this value approaches to 1, the
more random the key is. In our case, approximately 90% of
the concatenations have randomness that are greater than 0.99,
and also all of the concatenations have randomness that are
greater than 0.95. Hence, the randomness of the concatenations
is sufficient for being an input to a secure key generation.

Fig. 3. Randomness results

4) Distinctiveness: In order to measure the distinctiveness,
we calculate the percentage of Hamming Distance values
between all iriscodes. The optimum value for this percentage
is 50% since both full distinctiveness and full indistinctive-
ness give the same amount of information to the attacker.
Percentage of average Hamming Distance value between all
users’ iriscodes is calculated as 49.37%, which is quite close
to the optimal value of 50%. However, due to the fact that
not all blocks are used in the key generation process, we
need to define another metric for measuring the distinctiveness
of the keys, which is called key-block distinctiveness index.
General idea here is that each block used in agreed keys is

compared with all the blocks of all other users’ iriscodes. In
each comparison, the number of different bits in correspondent
positions are calculated and normalized to 100. In regard to
distinctiveness, x bit difference has the same effect as 384−x
bit difference. Therefore, we need to consider the worst-case
scenario, while calculating the distinctiveness. Each calculated
value which is greater than 384/2 is subtracted from 384 and
normalized. After the normalization, the minimum value is
selected for each block, because the minimum difference is
identical to the minimum distinctiveness which is the worst-
case scenario. For each key blocks, the average of minimum
key-block distinctiveness indices is calculated for each user.
The average key-block distinctiveness index value of the
system is found as 74.61%. As a result, we conclude that after
each protocol run of each user, a different key is generated.

5) Discussions on Correlation Attack: In our SKA-POB
protocol, the user sends genuine and fake iris blocks to the
server, as described in Section II-B. This situation can cause
information leakage after repeated usage of the system. In
order to avoid any kind of correlations among genuine blocks
in different runs of the protocol, fake blocks also need to
be selected and distributed according to a carefully designed
strategy. For this reason, the percentage of the difference
between the fake blocks in different protocol runs should
be limited. In other words, the allowed maximum difference
must be the same for both genuine blocks and fake blocks,
which is indeed the acceptance threshold. In that way, it would
not be possible to distinguish genuine blocks even after the
repeated usage of the system, because fake blocks will also
be correlated with each other. In other words, the attacker
can find a correlated block for each and every genuine and
fake blocks in different protocol runs. As a result, the genuine
blocks would be the same as the fake blocks from an attacker’s
point of view. Such an intelligent design for the protocol is
left as a future work.

C. Complexity Analyses

Computational complexity analysis is realized by adding
up the key generation attempts of both parties. The server
generates only one key at the beginning of the protocol and
in upcoming rounds, computations are made by selecting
one less block out of ncom, the complexity of which is
calculated as

(
ncom

ncom−1

)
. Iterations stop when the correct key

is generated, which contains nkey
com blocks. Hence, the average

server complexity is average of the sum of all key generation
attempts against all subjects. Results show that average server
complexity is 20 = 1 hash and HMAC calculation, maximum
server complexity is 216 hash and HMAC calculations. Further,
the user complexity is formalized in the following way. Since
the server sends the number of common found blocks, ncom,
the user starts key generation attempts with all possible subsets
of the genuine blocks whose size is ncom, complexity of
which is calculated as

(
nu

ncom

)
. If the key agreement cannot be

established, the user tries subsets of one less block at each
round, until the key is generated or the user is rejected. Thus,
the average user complexity is the average of the sum of all key

generation attempts from all subsets until the protocol stops.
Analysis shows that average user complexity is 212 hash and
HMAC calculations, maximum user complexity is 224 hash
and HMAC calculations. These values are quite sufficient for
a real time application with small response time.

The communication complexity is measured by the number
of bits exchanged between the server and the user. Total
communication cost of the first message sent by the server
is 1320×384+32 = 61.88 KB, where the user ID is a 32 bit
integer, each block is 384 bits long, the fake point generation
constant is 100, and the average number of elements in Qu is
1320. The second message of the protocol is either a negative
acknowledgment or the number of common found blocks and
an HMAC value, sent by the server, and its maximum cost
is 32 + 256 = 288 bits = 36 bytes: an acknowledgment is
just 1 bit, the number of blocks used in key generation is a
32 bit integer, and HMAC value is 256 bit. User’s answer to
this message is either ACCEPT or RETRY, either one of them
is only 1 bit. After that, if the protocol continues with a new
round, the server sends either a negative acknowledgment or
a new list of HMAC values, where the number of elements
is

(
ncom

ncom−1

)
. The average number of common found blocks by

the server is 19; hence, the average communication cost of
this message is 256 ×

(
19
18

)
= 4864 bits = 608 bytes. In the

average case, the protocol stops after this round. So the cost of
this message is the maximum cost of the messages sent by the
server. If the user still cannot verify any of the HMAC values,
(s)he sends another RETRY message. Otherwise, the user sends
a positive acknowledgment with the index of the HMAC value
that is verified, which is a 32 bit integer. Thus, the maximum
communication cost of this message is 1 + 32 = 33 bits.
Therefore, the total size of the messages transmitted by the
server and the user are approximately 644 bytes and 62 KB,
respectively. All of the communication costs given above are
quite reasonable for today’s Internet speeds.

D. Comparison with the Baseline Protocol

As it is mentioned before, our SKA-POB protocol is built
upon one of our previous works, SKA-PB [5], which uses
unordered biometrics in a secure key agreement protocol.
SKA-POB is indeed an adaptation of SKA-PB for ordered
biometrics. In this subsection, we compare our results from
both of these works and show that adaptation is performed
successfully.

Our SKA-PB protocol was evaluated with 30 subjects from
Verifinger Sample Database for fingerprints [13]. In SKA-
PB [5], it is stated that the IKGR and CKGR values are 0.57%
and 99.43%, respectively. In our new SKA-POB protocol,
these values are 0% and 100%, respectively. These results
prove that our protocol can be successfully adapted to different
biometrics with different structures.

Besides, the resistance of the SKA-PB protocol against an
intelligent brute-force attack is stated to be 294 bits [5], which
is 2148 bits in our new SKA-POB protocol. With the same
assumption made in Section III-B, in order to break the system,
in SKA-PB, it costs 5.6×1014 years of attack, while in SKA-

POB, it costs 1.016×1031 years of attack. As a result, we can
conclude that our protocol efficiently resist intelligent brute-
force attacks even with different biometrics.

Additionally, it is stated in SKA-PB [5] that 92.3% of the
fingerprint minutiae concatenations have randomness values
greater than 0.98. Similarly, in our new SKA-POB protocol,
approximately 90% of the concatenations have randomness
values greater than 0.99. On the other hand, the average Ham-
ming Distance values among different users’ keys is stated
to lie in the interval of 120-135 bits, which corresponds to
approximately 48.8% [5]. The respective Hamming Distance
value for our new SKA-POB protocol is 49.37%. As a result,
we can say that the randomness and distinctiveness results
are sufficient for cryptographic key generation in both of the
proposed protocols.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a bio-cryptographic key gen-
eration solution using iriscodes. The key is generated from
iriscodes directly; it is generated neither randomly, nor any
random helper data is used. In our protocol, we divide the
iriscodes into blocks and mask them using both one-way hash
functions and considerable amount of fake blocks. Fake blocks
are distributed uniformly random.

We defined a window-based strategy for comparing the
blocks on the server side, by means of which the server does
not need to compare all the blocks in the list. Additionally, we
define a window-reset threshold, Treset. If the distinctiveness of
two blocks is less than Treset, we reinitialize the window and
decrease the number of blocks in a window, which decreases
the rest of the required number of comparisons.

We analysed the security performance of our protocol, qual-
ity of the generated keys and complexities required by the pro-
tocol using a public database [7]. The verification performance
of our protocol is calculated as 0% IKGR and 100% CKGR at
the same time, which is a perfect case for a biometric system.
We showed that our protocol is resistant against intelligent
brute-force, replay and impersonation attacks. Considering the
quality of the generated keys, we measured randomness of
the block concatenations used in the key generation and their
distinctiveness. Analyses showed that randomness values are
high enough to be used in secure key generation process
and each generated key is 74.61% different than all other
keys. Besides, in terms of the computational complexity, the
server and the user side operations took approximately 1 and
212 hash and HMAC calculations, respectively. Further, we
also analysed and showed that the communication complexity
of our protocol is suitable for implementing the protocol with
today’s technology. In today’s digital world, security risks
are critical as never before. In this context, this protocol
works flexibly, does not require huge computational power,
and solves the key management problem in order to provide
authentication, confidentiality and non-repudiation; so, it can
be used effectively to overcome security issues in today’s
world [12].

As a future work, we plan to enhance our protocol to
resist against correlation attacks and to reduce the information
leakage after repeated usage.

REFERENCES

[1] D. Karaoğlan and A. Levi, “A survey on the development of security
mechanisms for body area networks,” The Computer Journal, vol. 57,
no. 1, pp. 1484–1512, 2014.

[2] U. Uludag, S. Pankanti, S. Prabhakar and A. K. Jain, “Biometric
cryptosystems: issues and challenges,” Proceedings of the IEEE, vol. 92,
no. 6, pp. 948–960, 2004.

[3] C. Rathgeb and A. Uhl, “A survey on biometric cryptosystems and
cancelable biometrics,” EURASIP Journal on Information Security,
vol. 2011, no. 1, pp. 1–25, 2011.

[4] A. Cavoukian and A. Stoianov, “Biometric encryption,” Encyclopedia
of Cryptography and Security, pp. 90–98, 2011.

[5] D. Akdo ‘gan, D. K. Altop, and A. Levi, “Secure key agreement using
pure biometrics,” 2015 IEEE Conference on Communications and Net-
work Security (CNS), 2015, pp. 191–199.

[6] A. M. Bazen and S. H. Gerez, “Fingerprint matching by thin-plate spline
modelling of elastic deformations,” Pattern Recognition, vol. 36, no. 8,
pp. 1859–1867, 2003.

[7] “CASIA Iris Image Database Version 4.0 biometrics ideal test,”
biometrics.idealtest.org/dbDetailForUser.do?id=4, accessed:2017-11-19.

[8] L. Masek and P. Kovesi, “Matlab source code for a biometric identifi-
cation system based on iris patterns,” The School of Computer Science
and Software Engineering, The University of Western Australia, 2003.

[9] National Institute of Standards and Technology, FIPS PUB 180-2:
Secure Hash Standard. pub-NIST, 2002.

[10] M. Juliato and C. Gebotys, “FPGA implementation of an HMAC
processor based on the SHA-2 family of hash functions,” University
of Waterloo, Tech. Rep, 2011.

[11] C. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 4, pp. 623–656, 1948.

[12] S. Sicari, A. Rizzardi, L. A. Grieco and A. Coen-Porisini, “Security,
privacy and trust in Internet of Things: the road ahead,” Computer
Networks, vol. 76, pp. 146–164, 2015.

[13] Neurotechnology Verifinger Sample DB,
http://www.neurotechnology.com/download.html, 2015 , Accessed:
2015-02-28

