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Abstract. The two component model of neutron star dynamics describing the behaviour of
the observed crust coupled to the superfluid interior has so far been applied to radio pulsars
for which the external torques are constant on dynamical timescales. We recently solved this
problem under arbitrary time dependent external torques. Our solutions pertain to internal
torques that are linear in the rotation rates, as well as to the extremely non-linear internal
torques of the vortex creep model. Two-component models with linear or nonlinear internal
torques can now be applied to magnetars and to neutron stars in binary systems, with strong
variability and timing noise. Time dependent external torques can be obtained from the observed
spin-down (or spin-up) time series, Q(t).

1. The two component model with constant external torques
The two component model for neutron star dynamics was proposed immediately after the
observation of the first pulsar glitches [1]. This model and its extension to nonlinear vortex
creep coupling between the crust and the superfluid [2] have been applied with remarkable
success to the postglitch relaxation data from radio pulsars, for which the external torques are
constant on dynamical timescales. This talk presents, in summary, our recent solution of the
two component models for linear and nonlinear coupling for the general case of arbitrary time
dependent external torques [3]. These general solutions are applicable to the timing behaviour
of neutron stars in X-ray binaries and magnetars, as well as timing noise from radio pulsars.
Postglitch exponential relaxation on timescales of days to weeks supported the theoretical
expectations of superfluidity in the neutron star interior. As exponential relaxation is produced
in linear systems, the original two component model of Baym et al [1] posits a linear coupling
between the crust and the superfluid interior. The equations of the linear two component model
are
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I. and I denote the moments of inertia and €. and g are the rotation rates of the crust and
the superfluid, respectively. The rotational velocity lag between the two components is denoted
by w = Qg — Q. The internal torque that the superfluid exerts on the crust is

Nins = — I, (3)
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while Neyt denotes the external torque on the neutron star. The crust (normal matter)
rotation rate €. obeys the Navier Stokes Equation, but is already in rigid body rotation on
superfluid timescales. The superfluid rotation rate {25 does not obey the Navier Stokes Equation.
Physically, the superfluid spins down by a flow of quantized vortices away from the rotation axis.
Under many kinds of physical interactions between the vortices and normal matter, the vortex
current, and the superfluid rate are linear in the angular velocity lag w.

Under a constant external torque Ngyt, the system has a steady state,

W = 0,
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The steady state value wso of the lag is determined by

Woo Next
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The linear response to any glitch induced offset dw(0) from steady state is exponential relaxation

e T, (6)

Several components i of the exponential relaxation are indeed observed following pulsar glitches.
An analysis of a postglitch relaxation yields Ig;/I ~ 1073 — 1072 for each component of
the exponential relaxation. This points at the crust superfluid. With the effective masses
(entrainment) [4] taken into account, I5;/I < 1071, pointing to the crust + outer core [5]. The
core superfluid is already coupled tightly to the crust; the core is effectively a part of the crust,
dynamically, on glitch and postglitch relaxation timescales [6]. An analysis in terms of the
two component model is enough: Since Is;/I < 1, the different superfluid components i with
moments of inertia I; can be handled with the crust in separate two component models and
then the response of the crust to each can be superposed.

2. Vortex creep and the nonlinear two component model
A superfluid component with vortex pinning can spin down by the thermally activated flow
(creep) of vortices against pinning potentials. The vortex creep model gives the spindown rate

N 49500 Ep . Wy
Qg =—  eXDp <—M> sinh (;) = —f(w), (7)
where LT
w = prcr, (8)

to replace (2). Here, Ej, is the pinning energy and T is the temperature. The distance r of
the vortex lines from the rotation axis is approximately equal to the neutron star radius R in
the crust superfluid where creep takes place against the pinning sites in the crust lattice. The
microscopic vortex velocity vg around pinning centres is ~ 107 ¢cm/s [7]. The two component
model is now nonlinear in the lag w.

The values of the parameters, in particular of E,/kT, can be such that (7) requires
sinh (w/w@) > 1, so that sinh (w/w) ~ (1/2) exp (w/w). Equations (1) and (7) then yield

+ T 9 exp(w/w), (9)
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where

KT Rue E,
= — — . 10
= Ey 40w P <kT> (10)

For nonlinear coupling, the steady state value of the lag, we, is given by (4) and (7).
The solution for the crust spindown rate under a constant external torque Neyt = 12 18

. I . I . I\t
Qc(t) = I—QOO — I—QOO [1 + [exp <7If01> — 1} exp <_7-t1[>} ) (11)

with a nonlinear creep relaxation time
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Nonlinear creep regions are responsible for glitches through vortex unpinning avalanches leading
to a decrease 6€s(r) in those superfluid regions through which the unpinned vortices move
rapidly during the glitch. Angular momentum conservation leads to 6Qs = (I./I5)AQ. > AQ.,
and dw =2 §{)s. Because of the very sensitive dependence of the creep rate on dw this glitch
induced offset from the steady state lag ws, will stop creep altogether in the superfluid regions
effected. As the same external torque is now acting on less moment of inertia, the observed
spindown rate of the crust will suffer a glitch associated jump

AQ. I
S 14
o L (14)

Creep restarts after a waiting time tg 2 §€/|Q|oo. This “Fermi function” response was predicted
as a standard signature of the vortex creep response to a glitch involving vortex unpinning (see
figure 4 in [2]) and later observed in the Vela pulsar [8]. The common, almost ubiquitous form of
nonlinear response is the constant second derivative €1 interglitch timing behaviour observed in
the Vela and other pulsars [9,10]. This is the response to a uniform density of vortices unpinned
at the glitch leading to a range of waiting times throughout the superfluid regions. Such power
law behaviour is characteristic of nonlinear dynamics.

Two component models with linear or nonlinear internal torques have so far been applied to
post-glitch or inter-glitch timing behaviour of radio pulsars [9,11-14], where the external torque,
with a secular (characteristic) timescale 7. = Q¢/2[€2| ~ 103 — 106 yr is constant for timescales
of observed postglitch relaxation.

While constant secular external torques are characteristic for radio pulsars, neutron stars in
X-ray binaries, magnetars and transients exhibit strong variations in the observed spin-down or
spin-up rates. This indicates variable external torques, including strong torque noise.

3. Linear two-component model with a time dependent external torque
The two component model postglitch response with a linear internal torque and a time varying
external torque is described by

% Next(t)‘ (15)
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The relaxation time 7 is determined by the physics of the internal torque. The solution is

t
w(t) :eﬂﬂmm—;/a%mﬂw@$
cJO
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4. Vortex Creep Model with a Time Dependent External Torque
For vortex creep under a time dependent external torque (1) and (7) lead to

Iw ew/w Next(t) ‘

o= — — 1
YT 2L I, (17)
In terms of y = exp(—w/w), equation (17) becomes
d Next (T I
Y _ New(t) = 0. (18)

dt I.w y= 21.1

This has an integration factor exp (—%) where

= /t Nexs (t)) dt’. (19)
0

The solution for the angular velocity lag w exhibits an exponential dependence on the postglitch
lag w(0) and on X (¢), the cumulative angular momentum transfer by the external torque:

O R Vi, <X(t)>

I.w

+ exp (i(;)) /0 t 21{,71 exp <—)§C(;)> dt’. (20)

From equations (1), (17), and (20) the response of nonlinear creep to a glitch in the presence of
a time dependent external torque is obtained,

=

Oct) = Nexl)

22 [exp (Xf(t);w(o)> + exp <)I(E;)) /Ot ﬂfm exp <—)§C(;))dt’] R . (21)

The nonlinear creep timescale and the waiting time are now time dependent, involving the
running time average (Next(t)) = X(t)/t of the external torque:

&

+
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5. Applications '
Equations (16) and (21) show that the observed €(f) gives Next(t)/I. to lowest order in
I;/I. < 0.1. The residuals after a first fit to the 2.(¢) time series will be I5/I. times a certain
convolution of the external torque with the internal torque, as defined in (16) or (21), allowing
for a consistency check of the model.

Let us consider three kinds of time dependent external torques; (i) an exponentially decaying
external torque, (ii) power law time dependence and (iii) timing noise.

(i) Taking an exponentially decaying torque with time scale 74 added to the preglitch external

torque Ny, we have '
Next(t) = No + 6Ne /7 = [Q + 6Ne /™, (24)

For linear internal torques, (16) gives

c ITqg—71
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For vortex creep, the solution is obtained by substituting in (21) the integrated angular
momentum transfer

X (t) = Not + 6N14[1 — e t/™]. (26)

(ii) For a power law torque with the index « added to the preglitch torque we have

SNte : SNte
Newi(t) = Ng+ —— 0 — 1O+ 10 27
o(t) = No (t + to)® (t + to)® (27)

Then (16) gives
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for linear internal torques.
The integrated angular momentum transfer X (¢) is

SNty [ tot }

X(t) = Not
®) 0—f_oz—l

defining the response with nonlinear internal torques through Equation (21).
(iii) Take white torque noise:
Next = Y oub(t — 1), (30)
i

where o4 are amplitudes of torque variations. For linear coupling equations (16) and (30) lead
to the power spectrum

Pf) = \/127 [2(a2> N <1+€52/7rfo)2> <<a>liw> B <CIV;>>

+ (1 52/;]0 > <2<IO;> +2(w?) — W)} (31)
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where (a) is the mean external torque variation amplitude and (w) denotes the mean value of
the angular velocity lag. This result was obtained earlier for the linear two component model
[15-17]. To lowest order we find the model power spectrum, a constant P(f) for white noise.
To order Is/I we find the power spectrum of the integrated process, which is flat at low f and
a random walk spectrum, P(f) o< f~2, at high frequencies f > 7-!. The first fit will give
the strength of the noise process, the term proportional to (@?). The residuals to order I/
will constrain (a)(w) and (w?). The term proportional to (I5/I)? can be neglected to a good
approximation. Noise processes other than white noise can be handled similarly for the linear
two component model, by inserting the noise model in (16) and calculating the power spectrum.
For the nonlinear two component model, equation (21) does not lead to explicit expressions for
any time dependent external torque, but a well defined algorithm can be constructed to obtain
the power spectrum, as for the times series in cases (i) and (ii).
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