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ABSTRACT: Most of the microscopy-based, quantitative assays rely on fluorescent dyes. In this study, we investigated the
impact of fluorescent dyes on the dielectrophoretic response of the mammalian cells. The dielectrophoretic measurements were
performed to quantify whether the fluorescent dyes alter the dielectrophoretic properties of the cells at single-cell resolution.
Our results present that when 10 Vpp electric field is applied, the fluorescent-labeled cells experienced the crossover frequency at
8−10 kHz, whereas the label-free cells exhibited at 16−18 kHz.

1. INTRODUCTION

In the late 19th century, the discovery of organic fluorescent
compounds provided an avenue for capturing the dynamic
processes of living organisms. Various fluorescent dyes have
been developed. They have become essential tools for powerful
techniques ranging from live-cell fluorescence imaging to flow
cytometry, with various applications including the detection of
substances, the tracking of single molecules, and the visual-
ization of post-translational modifications.1−7 Although label-
free assays that exclude phenotypic and genetic modifications
might be more suitable for many life sciences and medical
applications, fluorescent dyes remain one of the most valuable
tools for current state-of-the-art assays and technologies.
Various fluorescent dyes have been developed with improved
sensitivity, selectivity, specificity, detection speed, repeatability,
photostability, brightness, and biocompatibility.1,2,8,9 Modern
biotechnological tools in conjunction with these better-quality
fluorescent dyes will play a significant role in understanding
cellular and subcellular dynamics in the near future as well.
This study presents the dielectrophoretic behavior of pre-

and postlabeled single cells when stained with commercially
available fluorescent dyes. Dielectrophoresis (DEP) is one of
the label-free characterization methods that directly and
quantitatively determine whether or not fluorescent dyes
alter the intrinsic properties of the cells. Herbert Pohl

introduced the DEP phenomenon in the 1950s as the motion
of an electrically polarizable particle in a nonuniform electric
field.10,11 The dielectrophoretic force depends on the
permittivity of the suspending medium of the cells (εm), the
radius of the cell (r), the real part of the Clausius−Mossotti
factor ( f CM), and the applied electric field (E), as represented
in eq 1.

F f E2 ReDEP m CM rms
2πε= [ ]∇ (1)

The Clausius−Mossotti factor is defined as in eq 2, where εc*
is the complex permittivity of the cell, and εm* is the complex
permittivity of the medium.
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The complex permittivity (ε*) depends on permittivity (ε),
conductivity (σ) of the cell/medium, and frequency ( f) of the
electric field (E), as expressed in eq 3, where j shows the
imaginary number 1− .
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When Re[f CM] > 0, the strong electric field regions attract
the cells, and they are influenced by “positive DEP (pDEP)”;
when the cells are repelled from the high field strength, they
are designated “negative DEP (nDEP)”. Both the pDEP and
nDEP behavior of the cells rely on their polarizability
difference with respect to their surrounding medium. When
the polarizability difference between the cells and their
surrounding medium is almost negligible, the DEP forces
become very weak, to almost zero. This specific frequency is
known as “crossover frequency”, which determines the
dielectrophoretic characteristics of the cells.12−15

Since the 1950s, many new DEP tools and methods with
improved sensitivity, throughput, and practical usage have
been developed.16−20 Here, we used the three-dimensional
(3D) carbon-electrode DEP, which was introduced by Dr.
Martinez-Duarte and his colleagues. It has been previously
used in a variety of cell separation applications including
bacteria, yeast, and mammalian cells.13−15,21

In this study, we investigated the dielectrophoretic effect of
two different commercially available membrane-permeant
reactive tracer dyes (The CellTracker Green CMFDA (5-
chloromethyl fluorescein diacetate) and CellTracker Red
CMTPX (Fisher Scientific) on U937, the (pro-) monocytic,
human myeloid leukemia cell line (ATCC CRL 1593.2). As
these two dyes are well-suited and widely studied not only for
being easy to use but also adequate for monitoring the
behavior of cells, cell location or movement, and long-term cell
tracking thanks to retaining in the living cells through several
generations. Besides, multiplexing green and red fluorescent
dyes allows the observation of cell−cell communication and
protein expressions without cross-contamination. Although
these dyes were studied for their cytotoxicity, stability, and
other chemical properties, according to our knowledge,
investigation on the dielectrophoretic properties of these
commercially available fluorescent cell tracker dyes have not
been performed yet.22,23

2. RESULTS AND DISCUSSION

U937 cells were cultured in an RPMI (Rosewell Park
Memorial Institute, Sigma-Aldrich) medium supplemented
with 10% fetal bovine serum (Sigma-Aldrich) and 1% Pen/
Strep (penicillin−streptomycin, Sigma-Aldrich) in 75 cm2

flasks (Corning T-75 flasks) in an incubator (NUVE
EC160), in which 37 °C, 5% CO2, and humidity were
maintained. The CellTracker Green CMFDA and CellTracker
Red CMTPX dyes were used to prepare a 1 μM staining
solution in fresh RPMI medium. Complementing the
fluorescent dyes into the medium did not change the
conductivity of the medium. The number of U937 monocyte
cells was adjusted to 1 × 105 cells/mL using a hemocytometer
(Marienfeld). Next, the cells were cultured in the staining
solution in the incubator for 30 min. Then, the stained cells
were harvested at 3000 rpm (Hettich EBA 20 centrifuge) for 5
min to remove any residual dye in the culture media.
Afterward, the cells were resuspended in a low-conductive
DEP buffer twice. The DEP buffer was prepared using 8.6%
sucrose (BioFroxx), 0.3% glucose (Sigma-Aldrich), and 0.1%
bovine serum albumin (PAN Biotech) in deionized (DI)
water. The conductivity of the DEP buffer was measured as 20

μS/cm using a conductivity meter (Corning, 311 conductiv-
ity).
The dielectrophoretic setup consists of a function generator,

an upright, optical microscope integrated with a camera, a
computer, a syringe pump, and the 3D carbon-DEP device.
There are two 20−200 μL pipette tips at the inlet and outlet of
the electrode-array microchannel to create reservoirs. The
Tygon tubing connects the syringe and the microchannel in
the system.
The dielectrophoretic characterization of label-free and

stained U937 monocyte cells was performed using the
experimental setup illustrated in Figure 1. First, the 3D

carbon-DEP chip was sterilized by flowing 70% ethanol and
then DI water prior to the experiments. Next, the bubbles
inside the microchannel were removed and the chip was filled
with the low-conductive DEP buffer. The cells were prepared
as explained above and introduced into the chip with a 10 μL/
min flow rate using the syringe pump (New Era Pump
Systems, Inc., NE-1000). When the cells reached the region of
the carbon electrodes, the flow was stopped. The cells were
settled when a signal with 10 Vpp at frequencies between 1 kHz
and 20 MHz was applied from the function generator
(INSTEKGFG-8216A). After the DEP exposure, the cells
were collected from the device into a collection tube for further
inspection. A Nikon Eclipse, an upright optical microscope
with 10× objective, was used to capture videos with 1 frame/s
frame rate during the experiments (Figure 2).
The obtained videos were analyzed as demonstrated in

Figure 3 and detailed in the previous studies of Dr. Martinez-
Duarte and co-workers.24−26 The location of the cells at each
frame was rated as strong nDEP (−3), nDEP (−2), weak
nDEP (−1), crossover (0), weak pDEP (1), pDEP (2), or

Figure 1. Illustration of the experimental setup.

Figure 2. Image of the label-free U937 cells in the 3D carbon
electrode array. Green arrows show the cells, black circles are the
carbon electrodes, and black lines are the connection wires of the
electrodes.
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strong pDEP (3) according to their positions with respect to
the carbon electrodes.
Figures 4 and 5 show the obtained dielectrophoretic

behavior of the label-free U937 monocytes. The monocytes

were stained with CellTracker Red and CellTracker Green
dyes. To delineate whether the applied fluorescent dyes affect
the DEP characteristics of the cells, dielectrophoretic forces
were applied between 1 kHz and 20 MHz at 10 Vpp in the 3D
carbon-DEP chip. As there was no drag force because of the
fluid flow in the system, the translational movement of the cells
was due to the exhibited DEP forces (eq 1). Next, the location
of the cells was correlated with their DEP responses. The
position of each cell was traced in each frame using the
obtained movies (Supporting Movie). ImageJ was used to
analyze the captured images. The mean value of the positions
of the cells with standard deviations at each frequency was
calculated using the Prism software (GraphPad).

3. CONCLUSIONS
Fluorescent dyes have been widely used as tremendous tools
for cell labeling in a wide variety of applications of life sciences
and medicine, such as monitoring chemotaxis and invasion,
tracking cell movement and migration, and quantifying
proliferation. They are easy to use and compatible with several
assays. Their fluorescent signal is retained in living cells
through several generations. For these dyes, most of the
conventional characterization assays and methods quantify
their sensitivity, selectivity, brightness, photostability, specific-

ity, toxicity, and photochemical properties. As most of the
fluorescent dyes are capable of penetrating through the cell
membrane, passing into the cytoplasm, and being impermeant,
we investigated whether the fluorescent dyes change the
permittivity and conductivity of the cells that may influence the
dielectric properties of the cells. To the best of our knowledge,
this is the first study that investigates the dielectrophoretic
properties of commercially available fluorescent cell tracker
dyes. As shown in Figures 4 and 5, there is a slight shift in the
crossover frequencies of the cells when they are labeled with
membrane-permeant reactive tracers. This minor variation
might be negligible for many applications; nevertheless, it
might be significant for the dielectrophoretic separation of cells
that exhibit very close dielectrophoretic responses at single-cell
resolution.
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Figure 3. Schematic diagram for the image analysis on the 3D carbon-
electrode microchip that represents the DEP regions, according to the
captured image in Figure 2.

Figure 4. DEP response of monocytes stained with CellTracker Red
(white circles), CellTracker Green (black circles), and DEP response
of unlabeled monocytes (star). A total of 50 cells were tracked from 1
to 30 kHz at 10 Vpp.

Figure 5. DEP responses of monocytes at single-cell resolution. (a)
Unlabeled monocytes, (b) monocytes stained with CellTracker Red,
(c) monocytes stained with CellTracker Green. Fifty cells were
tracked for each frequency from 1 to 30 kHz at 10 Vpp. The red lines
show the mean and standard deviation for the cells at each frequency.
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