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Abstract 

Selenium-containing proteins are essential in mammalian systems and have critical 

biochemical functions. Reduction in oxidative stress, inhibition of uncontrolled cell 

proliferation and preventing different type of cancers are among the significant functions 

of selenium (Se) in mammalian systems. Due to the fact that animals cannot synthesize 

their own seleno-proteins, adequate amount of Se must be taken by daily diets. 

Consuming Se-rich foods is, thus, a crucial issue for human nutrition and health. Among 

the foods consumed commonly, wheat represents one of the most important staple foods 

contributing to the daily Se intake of human-beings. Enrichment of wheat with Se is, 

therefore, an important research area and public health issue. In literature, there is, 

however, limited information about the antioxidative effects of wheat enriched with Se by 

applying Se-fertilizers. 

This study basically analyzed antioxidant capacity of Se-enriched wheat seeds by using 

various colorimetric assays and human cell culture methods. The seeds used in this work 

were obtained from a TUBITAK-supported Se-fertilizer project conducted in different 

locations in Central Anatolia. The Se concentration of seed samples used showed a a wide 

range between 28 ppb and 7168 ppb. In order to test the antioxidant capacity of seeds 

differing in Se concentrations, hot water, cellulose and methanol/ acetone/ water extracts 

of seeds were used. The assays applied for measurement of antioxidant capacity 
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of seeds were i) MTT assay by using mammalian cell culture experiments, ii) DPPH 

(1,1- Diphenyl-2-picrylhydrazyl) radical scavenging test, and iii) ABTS (2,2-Azinobis 

(3- ethylbenzothiazoline-6-sulfonic acid) radical-scavenging assay. In all these 3 assays 

applied, there was no consistent effect of the seed extracts with wide range of Se 

concentrations on the cell viability measured by the MTT assay or in terms of DPPH 

radical-scavenging or ABTS scavenging capacity. Expected high antioxidant capacity of 

seed extracts by increasing Se concentrations was not found under given conditions. The 

reasons for the ineffectiveness of Se-enriched seeds in improving antioxidant capacity 

might be related to i) the methods applied and/or ii) to the level of the expected increase 

in antioxidant capacity by Se. Possibly, the level of the expected increase in antioxidant 

capacity by Se is too low when compared to the inherent antioxidant capacity of seeds, 

and this difference could not be detected by the methods applied. In future antioxidant 

tests, attention should be paid to the isolated Se-proteins from seeds differing in Se 

concentrations. 



Selenyum Bakımından Zenginleştirilmiş Buğday Tohumlarının Antiokisidant 

Kapasitesinin Belirlenmesi 

Özet 

Önemli biyokimyasal işlevlere sahip olan selenyum (Se) proteinleri, memeli sistemler için 

mutlak gereklidir. Oksidatif stresin azaltılması, kontrolsüz hızlı hücre çoğalmasının 

engellenmesi ve değişik kanser türlerinin gelişiminin onüne geçilmesi Se’un memeli 

sistemlerdeki en önemli işlevlerinden birkaç tanesidir. Hayvansal organizmalar kendi Se 

proteinlerini sentezleyemedikleri için mutlaka dışardan gıdalar yoluyla yeterli Se 

almalıdırlar. Bundan dolayıdır ki, Se’ca zengin gıdaların tüketimi insan beslenmesi ve 

sağlığı için büyük önem arzetmektedir. Genellikle tüketilen gıdalar içinde buğday, 

insanların günlük Se alımına katkıda bulunan en önemli gıdalardan biridir. Bu nedenledir 

ki, buğdayın Se bakımından zenginleştirilmesi önemli bir araştırma alanı ve halk sağlığı 

konusudur. Ancak, literatürde gübreleme yoluyla Se bakımından zenginleştirilmiş 

buğdayın antioxidant kapasitesi hakkinda çok sınırlı bilgi bulunmaktadir 

Bu çalışmada değişik kolorimetrik yöntemler ve insan hücre kültür testleri kullanılarak Se 

bakımından zenginleştirilmiş tohumların antioxidant kapasitesi ölçülmüştür. Burada 

kullanılan buğday tohumları Orta Anadolu’da degişik bölgelerde yürütülen TÜBİTAK- 

destekli bir Se-gübreleme projesinden sağlanmıştır. Testlerde kullanılan tohumların Se 

konsantrasyonları 28 ppb’ile 7168 ppb arasında geniş bir varyasyon göstermektedir. 

Selenyum bakımından farklı olan tohumların antioxidant kapasitelerini ölçmek için, 

tohumların sıcak su, selüloz ve de metanol/ aseton/ su ekstraktları kullanılmıştır. 

Tohumların antioxidant kapasitenin ölçümünde i) memeli hücre kültürlerinde MTT hücre 

canlılık testi, ii) DPPH (l,l-Diphenyl-2-picrylhydrazyl) radikali ve iii) ABTS (2,2- 

Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radikali detoksifikasyonu testleri 

kullanılmıştır. Analizlerde kullanılan bu 3 yöntemde de, Se konsantrasyonları farklı 

tohum ekstraktları, ne hücre canlılık testlerinde ne de DPPH radikali veya ABTS 

radikalininin yok edilişine dayanan testlerde tutarlı bir antioxidant kapasitesi 

gösterebilmiştir. Bu tez çalışmasının koşullarında, Se zenginleştirilmesiyle buğdayın 

antioksidant kapasitesinde beklenen artış bulunamamıştır. Selenyumca zenginleştirilmiş 
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tohumların antioksidant kapasitelerinin artışındaki yetersizlik, i) testlerde kullanılan 

yöntemlerle veya ii) Se’lu tohumların antioksidant kapasitesinde umulan artışın 

düzeyiyle ilişkili olabilir. Olasılıkla, Se zenginleştirilmesiyle tohumların antioksidant 

kapasitesinde umulan artışın düzeyi, teste tabii tutulan tohumların doğal antioksidant 

kapasitesine göre, mevcut yöntemlerle farklılığı ölçemeyecek kadar, çok düşüktür. 

Gelecekteki antioksidant testlerinde, Se konsantrasyonları farklı tohumlardan izole edilen 

selenyum-proteinleriyle çalışılmasına önem verilmelidir. 

vi 



 



ACKNOWLEDGEMENTS 

I am grateful to my supervisor Ismail Cakmak, whose advise, support, patience, 

encouragement, ideas and enthusiasm no doubt influence me to orient my interest 

towards plant sciences. 

I would like to express my appreciation to Hikmet Budak for being always there to listen 

and help me. 

I would like to give my special thanks to the members of my thesis committee: Hikmet 

Budak, Levent Ozturk, Zehra Sayers, and Ahu Altinkut Uncuoglu for spending their time 

for me and giving valuable advises to me. 

I am deeply thankful to Ozge Ozdemir and Ozgur Gokmen for creating an enjoyable 

laboratory environment. I would also give my special thanks to Ilcim Ozlu, Derin 

Demiroglu, Yekta Yamaner and Sumeyye Yar for their valuable friendships. 

Yekta, Funda, Ethem, and Didem Oztolan, you are always with me. I always feel your 

love and support wherever I am. 

And Emre, my all, since I met you I became the happiest person in the world. Thank you 

for being always with me. 



TABLE OF CONTENTS 

ACKNOWLEDGEMENTS.............................................................................................. viii 

1 Introduction .................................................................................................................... 1 

2 Overview ........................................................................................................................ 5 

2.1 Historical background of Se and its chemistry ..................................................... 5 

2.2 Se as a nutritive agent ........................................................................................... 6 

2.3 The availability of Se in soil and its transportation to biological systems ........... 9 

2.4 The metabolic activities of Se in both plants and animals ................................... 10 

2.5 The health impacts of Se ...................................................................................... 13 

3 Materials and Methods ................................................................................................. 16 

3.1 Materials ............................................................................................................... 16 

3.2 Methods ................................................................................................................ 17 

3.2.1 Measurement of Antioxidant Capacity of Seeds .......................................... 17 

3.2.2 Preparation of Seed Extracts ........................................................................ 19 

3.2.3 Preparation of H2O2 solutionfor MTT Assay .............................................. 20 

3.2.4 Application of Antioxidant Tests ................................................................. 20 

3.2.4.1 MTT Cell Viability Tests...................................................................... 20 

3.2.4.2 Scavenging capacity of seed extracts for DPPH free radicals .............. 21 

3.2.4.3 Detoxification capacity of seed extracts for ABTS cationic free 

radicals ................................................................................................................. 22 

4 Results .......................................................................................................................... 24 

4.1 Effect of wheat seed extracts differing in Se concentrations on viability of HeLa 

cells ................................................................................................................................ 24 

4.1.1 Optimization tests on seed extracts andH202 concentrations ...................... 24 

4.1.2 Effect of wheat seed extracts having different Se concentrations on HeLa 

cell viability .............................................................................................................. 26 

4.2 Scavenging DPPH free radical ............................................................................. 28 

4.2.1 ..............................................................................................................  DPPH radical 

scavenging activity of ascorbic acid ......................................................................... 28 

4.2.2 ..............................................................................................................  DPPH radical 

scavenging activity of wheat extracts ....................................................................... 29 

4.3 ABTS free radical scavenging activity of Se-enriched wheat .............................. 31 

4.3.1 ABTS scavenging capacity of the cellulose extracts .................................... 31 

4.3.2 ABTS scavenging capacity of methanol / acetone / water extracts .............. 32 

4.3.3 Antioxidant capacity of embryo, bran and endosperm parts of seeds .......... 33 

5 Discussion .................................................................................................................... 36 ix 



 



TABLE OF ABREVIATIONS 

Se: Selenium 

MTT: 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium 

bromid DPPH: a,adiphenil-P-picrylhydrazyl 

ABTS: 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid 

GPX: Glutathione peroxidase 

Na2Se03: Sodium selenate 

SePP: Selenoprotein P 

kDa: kiloDalton 

DMEM: Dulbecco’s Modified Eagle Media 

H2O2: Hydrogen peroxide 

dPBS: Dulbecco’s Phosphate Buffered Saline 

SFM: Serum Free Media 

EDTA: Ethylenediaminetetraacetic acid 

nm: nanometer 

DMSO: Dimethyl Sulfoxide 

Abs: Absorbance 

ppb: parts per billion 

TEAC: Trolox equivalent antioxidant capacity pg: Microgram mg: 

Milligram 

HPLC: High performance liquid chromatography ICP-MS: 

Inductively coupled plasma mass spectrometry 

xi 



LIST OF FIGURES 

Figure 1: Selenium metabolism in animals and Se-metabolites (Finley, 2005) ............... 7 

Figure 2: Metabolic pathways of Se in plants (Whanger, 2004) ...................................... 12 

Figure 3: Selenium metabolism in animal cells (Schomburg et al., 2004) ...................... 13 

Figure 4: Effect of increasing amount of wheat extracts (mg (seed) / ml (water)) on HeLa 

cell viability. Control indicates the samples without treatment with wheat extracts. 

In this test wheat seeds were used which contained 894 ppb Se. All results were 

expressed as relative to the control values (100 %) .................................................. 25 

Figure 5: Effect of increasing concentration of H2O2 on HeLa cell viability. Control 

shows the treatments without H2O2 addition. All results were expressed as relative 

to 

the control value (100 %) .......................................................................................... 25 

Figure 6: Effect of wheat seed extracts differing in Se concentration on HeLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which 

were derived from wheat seeds containing 58, 564 and 1521 ppb Se and grown in 

Izmir. HeLa cells were exposed to H202 after the incubation with wheat seeds. All 

results were expressed as relative to the control value (100 %) and shows the means 

of 3 replications ........................................................................................................ 26 

Figure 7: Effect of wheat seed extracts differing in Se concentration on HeLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which 

were derived from wheat seeds containing 294, 1520 and 3182 ppb Se and grown in 

Samsun. HeLa cells were exposed to H2O2 after the incubation with wheat seeds. 

All results were expressed as relative to the control value (100 %) and shows the 

means 

of 3 replications ........................................................................................................ 27 

Figure 8: Effect of wheat seed extracts differing in Se concentration on HeLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which 

were derived from wheat seeds containing 123, 2249 and 5870 ppb Se and grown in 

Eskisehir. HeLa cells were exposed to H2O2 after the incubation with wheat seeds. 

All results were expressed as relative to the control value (100 %) and shows the 

means of 3 replications ............................................................................................. 27 

Xll 



Figure 9: Effect of wheat seed extracts differing in Se concentration on HeLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which 

were derived from wheat seeds containing 36, 390 and 894 ppb Se and grown in 

Konya. HeLa cells were exposed to H2O2 after the incubation with wheat seeds. All 

results were expressed as relative to the control value (100 %) and shows the means 

of 3 replications ......................................................................................................... 28 

Figure 10: Effect of different fractions of wheat seeds on antioxidant capacity measured 

by detoxification of ABTS free radical. The fractions were obtained from wheat 

seeds differing in Se concentration (e.g. 28, 1902, and 5127 ppb) and grown in 

Ankara location ......................................................................................................... 34 

Figure 11: Effect of different fractions of wheat seeds on antioxidant capacity measured 

by detoxification of ABTS free radical. The fractions were obtained from wheat 

seeds differing in Se concentration (e.g. 254, 1510, and 2275 ppb) and grown in 

Samsun location ......................................................................................................... 34 

Figure 12: Effect of different fractions of wheat seeds on antioxidant capacity measured 

by detoxification of ABTS free radical. The fractions were obtained from wheat 

seeds differing in Se concentration (e.g. 104, 1594, 2770, and 7168 ppb) and grown 

in Eskisehir location .................................................................................................. 35 



LIST OF TABLES 

Table 1: Se contents of mostly consumed food classes regarding some countries (Combs 

Jr, 2001)..................................................................................................................... 8 

Table 2: Wheat cultivars differing in locations ................................................................ 16 

Table 3: Grain Se concentrations of wheat samples collected from the field trials 

conducted in Eskisehir, Samsun, Izmir, Diyarbakir, Konya and Ankara

 ................................................................................................................................... 1

7 

Table 4: DPPH radical scavenging activity (%) as affected by ascorbic acid concentration 

and incubation time. In this test, 0.4, 1.2, 1.6 and 2 pg (ascorbic acid) / ml (DPPH 

solution) ascorbic acid solutions were used. The results were reported 

based on every 20 minutes measurements ................................................................ 29 

Table 5: Effect of wheat seed extracts on DPPH radical scavening activity at different 

incubation time. In this test hot water wheat extracts were used. Wheat seeds used 

were grown in Samsun and Diyarbakir locations, and had 294 ppb (Se-I), 1520 ppb 

(Se-II), and 3182 ppb (Se-III) Se for the Samsun location and 47 ppb (Se-IV), 837 

ppb (Se-V). 2464 ppb (Se-VI) for the Diyarbakir location ....................................... 30 

Table 6: Trolox equivalent antioxidant capacity (TEAC) of wheat seeds which were 

extracted in cellulose and contained different Se concentrations ............................. 32 

Table 7: Trolox equivalent antioxidant capacity (TEAC) of wheat seeds extracted with 

methanol, acetone and water, and differing in Se concentrations

 ................................................................................................................................... 3

3 



1 INTRODUCTION 

Since the time when Se was discovered as a vitamin E-replacing agent it is 

considered as an essential element in human health. Due to its widely known 

anticarcinogen, anti-viral, and anti-oxidative effects, Se became a popular element and 

has attracted many researches to conduct research on its health benefits. Existence of 

Se deficiency in daily food consumption causes to many severe diseases including 

Keshan disease, which was first discovered by Keshan Disease Research Group in 

1979. The disease occurs mainly in children and women in the age of childbearing and 

causes impairments in cardiac function, cardiac enlargement and arrhythmia The 

disease is associated with vitamin E deficiency and also Coxsackie B virus (Levander 

& Beck, 1999, Lyons et al., 2003). 

As indicated above, its anti-carcinogenesis, antioxidative and antiinflammatory 

effects have made Se an attractive key element for many experiments, which mainly 

investigated inhibition of tumor generation and growth, and reduction of oxidative 

stress. In many epidemiological and animal studies, cancer incidences could be 

alleviated by Se intake. For instance, consumption of Se-rich diets is effective in 

inhibition of tumorigenesis and Se supplementations in form of selenite exhibit cancer 

reduction (Medina et al., 2001; Jiang et al., 2002). Besides anticarcinogenesis effects, 

antioxidant activity of Se is one of the well-documented effects in cells. In both plants 

and animals, this element behaves like a reducing agent of oxidative stress. 

Selenomethionine in plants and selenocysteine in animals are known as essential 

amino acids of seleno-proteins (Sandalova et al., 2001; Zhou et al., 2009). Glutathione 

peroxidase represents an important Se-containing enzyme, and has been extensively 

studied in literature (Michiels et al., 1994; Sies et al., 1997; Imai and Nakagawa, 

2002). Its major function is to detoxify hydrogen peroxide (H202) and thus to prevent 

H202-involved lipid peroxidation and DNA damage, and consequently cardiovascular 

disease and cancer (Redman et al, 1998; Ratnasinghe et al., 2000; Seo et al., 2002; 

Blankenberg et al., 2003). According to a study conducted 



by Zhang et al. (2002), anti-inflammatory effects of Se contribute to inhibition of 

tumor necrosis factor-a-induced expression of adhesion molecules, which promote 

inflammation. 

Based on well-documented importance of Se-rich diets in health, currently, 

humans pay increasing attention to foods containing high concentrations of Se Main 

sources for daily Se intake include cereals, meat and fish (Combs Jr, 2001). 

According to Lyons et al. (2003) bread is the second important Se source for the 

human beings in USA. Dairy products and eggs seem to be not a good source for Se 

intake. Also, vegetables and fruits are low in Se. Combs (2001) claims that 50% of Se 

intake is supplied with five foods which are beef, white bread, pork, chicken and 

eggs. It is widely believed that wheat has high potential to cover daily Se intake of 

human populations. For example, Se rich countries like US, Canada and Australia 

export wheat high in Se to Europe and other countries, where Se level is low in soils 

and foods. Several reports are available showing that wheat grown in many European 

countries (especially in UK) contains 10- to 50-fold lower Se in grain than the wheat 

grown in North America (Adams et al., 2002). Therefore, many European countries 

discuss and implement Se fertilization approaches in order to improve grain Se 

concentrations (Adams et al., 2002; Broadley et al., 2006) 

Improving food crops with high Se concentration is a high priority research 

topic and is of great importance for human nutrition. There are various strategies to 

improve Se intake of human beings such as food fortification, livestock 

supplementation, use of Se-enriched fertilizers and finally plant breeding (Oldfield, 

1997; Chen et al., 2002; Welch and Graham, 2002; Yalcintas and Saldamli, 2005). 

Daily needed Se amount is around 40 pg / day for an adult so that commonly 

consumed foods should provide this amount of Se to prevent development of Se- 

dependent diseases in body (Combs Jr, 2001). Currently, in many countries 

enrichment of foods with Se is being widely applied from beverages to cereals. High- 

Se Brussels sprouts, broccoli, Brassica, garlic, onion, celery, mint, chamomile, tea, 

vinegar, beer, yeast, mushrooms and mussels are results of such type of Se 

enrichment studies. Besides fortification of foods with Se plant scientists also focus 

on plant breeding strategy in order to develop new plant genotypes with high Se 

concentration in their edible parts (Lyons et al., 2005). Another approach being used 
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today is the application of genetic engineering approach to modify food crops to 

accumulate high amounts of Se (Berken et al., 2002). 

Improving soil fertility is another way to achieve Se enriched food crops 

as well. Most countries around the world have soils low in Se, and therefore Se- 

containing fertilizers should be used to increase Se uptake capacity by crops to 

contribute human Se intake. The well-known Se-fertilization initiative was taken by 

Finland nearly 25 years ago. Finnish Ministry of Agriculture and Forestry decided to 

add selenium into the commonly-applied fertilizers since the level of Se in cereal- 

based foods was too low. In the past 20 years, Se concentrations of food crops 

increased sufficiently (up to 10-fold) after enrichment of fertilizers with Se and 

application of Se-enriched fertilizers nationwide (Ekholm et al., 2005). Broadley et 

al. (2006) reported that when crops accumulate Se from fertilized soil, Se 

concentration in plasma and blood shows an according increase. 

During Se-enrichment programs by using fertilizer strategy in Finnish soils, 

animal feeds, basic foodstuffs and human blood and plasma were periodically 

analyzed to monitor the changes in Se concentrations. There were desirable increases 

in Se concentrations of the analyzed samples during enrichment program (Aspila, 

2005; Broadley et al., 2006). Such increases in Se concentration were also found in 

muscle and liver of pigs and cattle following feeding trials in which Se-enriched 

foods was used (Venalainen, 1997). 

Another Se application method is the application of Se-containing fertilizers to 

foliar. Due to leaching and transformation of Se to poorly available inorganic forms, 

plants cannot absorb adequate amount of Se by their roots when Se was applied into 

soils. Therefore, foliar application of Se fertilizers seems to be an effective way in 

improving food crops with Se (Marschner, 1995; Gissel-Nielsen, 1998; Fageria et al., 

2009). Fageria et al. (2009) described the mechanisms of microelement absorbtion 

through leaves. Unlike root surface, leaves are covered with cuticular membrane, 

which permeates both organic and inorganic ions and also undissociated molecules 

(Fang et al., 2008; Fageria et al., 2009). Even though it is said to be permeable, the ion 

uptake by plants depends on charge, ion radius and absorbability to cell walls (Fageria 

et al., 2009). Because of very high increases in grain Se after foliar 
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application of Se-fertilizers (Curtin et ai, 2006), it can be suggested that Se 

absorption through leaf cells and its translocation into seeds is sufficiently high in 

contrast to many other micronutrients such as iron, manganese and zinc (Marschner, 

1995). 

This MSc study focuses on the analysis of the total antioxidant capacity of Se- 

enriched wheat that has been fertilized with foliar applications at different rates in 

Central Anatolia. The tests used for analysis of the antioxidant capacity include both 

MTT assay in mammalian cell culture (Fotakis and Timbrell, 2006) and free radical 

scavenging capacity of seeds by using the DPPH and ABTS assays (Mensor et al., 

2001; Ozgen et ai, 2006). To our knowledge, there is only one study dealing with the 

role of foliarly applied Se on the antioxidant capacity of cereal seeds such as rice (Xu 

and Hu, 2004). In the study conducted by Xu and Hu (2004), it has been shown that 

enrichment of seeds with Se was effective in improving antioxidant capacity of the 

ethanolic extracts of rice seeds. In the current study, attention will be given to wheat 

seeds differing in Se concentrations. 
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2 OVERVIEW 

2.1 Historical background of Se and its chemistry 

A Swedish chemist Jons Jacob Berzelius was the first person who discovered 

Se element in 1817 (Tinggi, 2003). Then, Se has been classified as a metalloid that 

has a position between sulphur and tellurium in Group VIA, and also between arsenic 

and bromine in Period 4 of the periodic table. In addition, scientists also discovered 

that Se chemically resembles sulphur (S) in terms of atomic sizes, bond energies, 

ionization potentials and electron affinities (Tinggi, 2003). On the other hand, there 

are also differences between Se and S; for example, while Se exists as reduced 

quadrivalent form, S exists as oxidized quadrivalent form. Moreover, their acidic 

strengths are also different from each other; selenium hydride is known to be a strong 

acid, whereas sulphur hydride is close to neutral. 

In the late 1950s, Se was recognized as an essential trace element that could 

replace vitamin E (Combs Jr, 2001). The principle effect of Se, in the case of 

replacement of vitamin E, was to prevent liver necrosis in the rat when there was a 

vitamin E deficiency. Schwarz and Foltz (1957) found that a dietary agent Factor 3 

could prevent not only liver but also heart, kidney and muscle necrosis. When they 

tried to characterize this agent, they realized that Se was an essential part of Factor 3. 

Starting from this point onwards, they worked on in vivo experiments, and finally 

concluded that feeding rat with inorganic or organic selenium was compensating 

vitamin E deficiency. 

Subsequently, in the early 1970s, Se was found to be the essential element of 

an antioxidative enzyme called as glutathione peroxidase (Rotruck et al, 1973). Later 

on, several other Se-containing enzymes have been identified such as at least five 

GPX isoforms, three iodothyronine 5’-deiodinases, three thioredoxin reductases and 

selenophosphate synthetase (Allan et al., 1999). Selenium also incorporates into 

amino acid selenocysteine (SeCys) with the modification of tRNA-bound serinyl 

residues at the loci where UGA codons encode. Moreover, these codons contain 



SeCys-insertion sequences in their 3'-untranslated region. Translation of these codons 

contributes to the production of selenoproteins (Combs Jr, 2001). 

2.2 Se as a nutritive agent 

Selenium intake by humans is mainly provided by the daily diet. For each sex, 

age, region and country, a recommended dietary allowance for Se is available. 

Pedrero and Madrid (2009) reported that the recommended dietary allowance (RDA) 

for Se was estimated between 50 and 200 pg per day for adults in USA. Later, they 

defined that RDA should be around 55 and 77 pg of Se per day for women and men 

respectively. Currently, a RDA of 55 pg Se per day is widely accepted level for both 

sexes (Rayman, 2000). 

The beneficial effects of Se on human depend on its concentration. The 

concentrations that exceed 1000 ppb may cause cellular toxicity; on the other hand 

the concentrations that remain below 100 ppb might be the deficient for cellular 

systems (Pedrero & Madrid, 2009). The range of Se exists in commonly-eaten foods 

vary substantially such as in fish 0.1-0.60 mg/kg, in cereals 0.05-0.6 mg/kg, in red 

meats 0.05-0.3 mg/kg and in fruit and vegetables 0.002-0.08 mg/kg (Combs Jr, 

2001). The important point is that the foods high in Se contribute to synthesize Se-

containing proteins such as selenomethionine. Although some food systems do not 

provide enough Se to synthesize selenocysteine and selenomethionine containing 

enzymes, both supplements and natural providers of Se are needed to compensate 

required amount of Se for human beings. 

Natural providers of Se, such as broccoli (Finley, 1998), radish, garlic 

(Carvalho et al., 2003; Pedrero & Madrid, 2009) and ramps (Whanger et al., 2000) 

contribute to production of Se-containing amino acids as selenomethionine. The 

intake of selenomethionine from plant-based foods is then followed by conversion to 

seleno-proteins. Selenium- deficient animals generally take these kinds of providers 

for biosynthesis of selenocysteine in transulfuration pathway as shown in Figure 1. 

Selenium-containing amino acid is, then, converted to seleno-proteins like 

glutathione 
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peroxidase. Selenium exists also in high amounts in livestock (like in fish) in the form 

of selenocysteins. 
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Figure 1: Selenium metabolism in animals and Se-metabolites (Finley, 2005) 

Most of food systems cannot synthesize enough seleno-cysteine enzymes due to 

low Se accumulation. This may induce Se deficiency-dependent health problems 

including chronic diseases of heart and lungs, and also cancer. To avoid the severe 

health impacts of Se deficiency, Se enhancement of food systems is an important 

strategy. Since animals cannot accumulate Se, they should take this mineral from 

animal feeds. These feeds are supplied with Na2SeC>3 and this application is 

commercially spread around the world, especially in North America and Europe within 

the last 25 years (Combs Jr, 2001). Therefore, enrichment of Se in animals leads to 

conditionally increase in Se intake from animal-based foods (Combs Jr & Combs, 

1986b). 

In addition to Se enrichment of animal feeds, several food crops that are widely 

consumed by humans should be also enriched with Se, especially in the non- 

seleniferous areas. As indicated above, Finnish soils are very low in Se concentrations 

and nationwide use of Se fertilizers in this country resulted in significant increases in 
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Se content of most foods, and thus dietary Se intake of humans. Reports show that 

dietary Se intake was increased by four-fold, and Se concentrations of plasma were 

doubled in Finland after application of Se-containing NPK fertilizers (Combs Jr, 

2001). 

Table 1: Se contents of mostly consumed food classes regarding some countries 

(Combs Jr, 2001) 

Fnland China, by So-area 

Food Class USA't England** Germany* Pro-1984*§ Post-1984§ New Zealand* Lev/' | Moderate* Highl Venezuela* 
Cereai products 0-06-0-66 002-0-53 0-03-038 0X5-0-12 0-01-0-27 0004-009 0-005-002 0017-0-11 1 06-6 9 0-123-0-51 
Vegetables 0-001-0-14 0 01-0-09 0-04-0-10 0-X1-0-02 0-01-0-02 0X1-0 02 0-X2-002 0002-0-09 0-34-4S7 0-G02-2-98 
Fruits 0 005-0 06 0X5-0-01 0-002-0 04 0X2-0-03 - 0X1 -0X4 0-X1-0 003 0X5-004 - 0-005-0-06 
Red meats 0-08-0-50 0-C5-0-H 0-13-0-28 0-05-0-10 0-27-0-91 0-01-0 04 0-01-0-03 0-05-0-25 - 0-17-0-83 
Poultry 0-01-0-26 0 C5-0-15 0-05-0-15 0-05-0-10 - 0 05-0-10 0 02-006 005-0-10 - 0-10-0-70 
Fish 0-15-1 48 0-10-0-61 0-24-0 53 0-18-0-98 - 0-03-0 31 0-03-0-20 0-10-0-60 - 032-0-93 
Milk products 001-0-26 0 01-0-08 0-01-0-10 0-01-0-09 0-01-0-25 0-003-0 025 0-X2-0 01 0-01-0 03 - 0 11-0-43 
Eggs 0-06-0-20 005-0-2 0-05-0-20 0 C5-0-20 0-02-0-15 0-24-0 98 002-006 005-0-15 - 0-50-1-5 

In Table 1, the mostly consumed food classes are shown for different countries 

having distinct types of soil. In Finland after 1984, when the Se-fertilization programs 

started, the ranges of the Se contents in foods significantly increased. Before 1984, Se 

concentration of cereal grains was 0.01 mg/kg or less, and after starting the Se- 

enrichment program of fertilizers, it increased to about 0.25 mg/kg. Consequently, 

daily Se intake in Finnish population greatly enhanced. For instance, daily Se intake 

between 1986 and 1989 increased from 20-30 pg to 80-90 pg (Lyons, 2005; Ekholm et 

ah, 2005). As soon as these Se- supplemented products have been served to the 

Finnish people, the rates of cardiovascular diseases and incidence of certain cancers 

have decreased among the Finnish people. 

Increasing number of reports available showing that wheat is an important 

source of Se for human beings. For instance, in a study conducted in Russia it was 

found that Se level in serum of blood donors correlated very closely with Se level in 

wheat flour used in bread making (Golubkina & Alfthan, 1999). In USA, bread 

represents the second important source of Se, and in Australia bread consumption 

meets the 1/3 of the daily Se intake of children (Lyons et al., 2003). These results 

indicate that consumption of wheat-derived products, such as bread and pasta, 

contributes greatly to Se intake by humans. 



In a global view, the Se contents of wheat changes in accordance with the 

geography and soil conditions. Selenium values in soils range from 0.001 mg/kg in 

southwest Western Australia to 30 mg/kg in highly selemferous areas of South Dakota 

(Lyons et al., 2003). Soils that contain high Se concentration are found in Canada and 

USA, and they contain around 0.2-0.6 mg Se /kg. On the other hand, in New Zealand 

and Eastern Europe these ranges fall down to 0.028 mg/kg as reported by Mihailovic 

et al. (1996). Due to the such huge variability in Se concentration of soils the Se 

content of wheat also shows a high variation and ranges (e.g., between 0.02 to 0.6 

mg/kg. 

To overcome the low Se levels in wheat, Se-containing fertilizers are applied 

either to soils or onto foliar (shoot). The field trials in New Zealand showed that both 

soil and foliar applications of Se fertilizers were highly effective in increasing grain Se 

concentration in wheat (e.g., from 30 ppb upto 500 ppb) (Curtin et al., 2006). The 

effect of the Se fertilization depends on the Se form applied, soil characteristic, 

method of basal application and time of foliar application. It has been estimated that 

selenate form of Se is much more effective than selenite form in increasing Se 

concentration of plants (Ylaranta, 1983a,b). For wheat grown on the clay soils, foliar 

selenate fertilization leads to higher accumulation of Se than the soil Se fertilization. 

For example, 10 g/ha of foliar selenate fertilization rose the Se content of wheat from 

16 ppb up to 168 ppb on the clay soil; while it just rose to 77 ppb when 9 g/ha of basal 

selenate fertilization was applied into soil (Ylaranta, 1984). Currently, selenate 

fertilization of the plants, either by foliar applications or soil applications, becomes a 

widely applied fertilization approach in many countries. 

2.3 The availability of Se in soil and its transportation to biological 

systems 

Selenium is unevenly distributed in various regions, since its availability in 

soil depends largely on the weathering of Se-containing rocks. Consequently, in some 

places Se exists at low levels, in other places it exists in very high concentrations. The 

seleniferous areas with high Se concentrations are widespread in the Great Plains of 

the USA and Canada; Enshi County, Hubei Province, China; and some parts of 
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Ireland, Columbia and Venezuela (Combs Jr, 2001). In contrast, the non-seleniferous 

areas extend from Northern and Eastern Europe, such as Denmark, Finland and 

Siberia, to some parts of Australia, including a belt from northeast to south-central 

China and also Zaire in Africa (Diplock, 1993; Combs Jr, 2001; Lyons et al., 2003). 

The highest Se is naturally found in Niobara and Pierre shales of the USA as 90 

mg/kg, on the other hand, non-seleniferous areas possess less than 2 mg/kg of Se level 

due to low Se granites and metamorphic sandstones (Combs Jr, 2001). 

The cycle of Se in plants and microorganisms starts with the absorption of the 

Se from soils and its transport into their tissues and then continues with the 

conversion into either functional proteins or volatile metabolites, which are then lost 

in the atmosphere. These volatile metabolites later return to soils but little parts of Se 

enter into the biological cycle (Terry and Zayed, 1994). The chemical availability and 

root uptake of Se is affected mainly by soil pH and moisture. The effect of pH in soils 

determines the conversion of inorganic Se to selenate or selenite. In the alkaline 

conditions, the inorganic Se is converted into selenate (Se+6) and then it is hardly 

fixed in the soil. Acidic soil conditions favor the selenite form (Se+4), which tends to 

adsorb to clays and then is strongly fixed by iron hydroxides (Gissel-Nielsen, 1998). 

Therefore, both in high and low pH, the bioavailability of Se remains 10 times at 

lower levels since the fixation by iron hydroxides causes to insoluble selenium 

complexes (Cary & Allaway, 1969). 

2.4 The metabolic activities of Se in both plants and animals 

Involvement of Se in metabolic activities in plant and animal cells has 

attracted many scientists to discover functional seleno-compounds. Whanger (1989) 

summarized several seleno-compounds, which have been discovered as important 

seleno-compounds in biological systems. These include selenate, selenite, 

selenocystine, selenomethionine, selenohomocysteine, Se-methylselenocysteine, 

glutamyl-selenocystathionine, selenomethionine selenoxide, s?-glutamyl-Se- 

methylselenocysteine, selenocysteineselenic acid, Se-proponylselenocysteine 

selenoxide, Se-methylselenomethionine, selenocystathionine, dimethyl diselenide, 
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selenosinignn, selenopeptide and seleno-wax. These compounds are believed to have 

some protective functions in anti-carcinogen metabolisms of animals and plants. 

As illustrated in Figure 2, wheat and broccoli accumulate Se in the form of 

selenomethionine and Se-methyl-selenocysteine, respectively. According to Whanger 

(2002) most of the Se accumulator plants, like broccoli and Astragalus species, contain 

Se in the form of Se-methylselenocysteine. Apart from involvement in functional sites 

of proteins, some accumulator plants synthesize non-protein amino acids, like Se-

methylselenocysteine, selenocystathionine, Se-methylselenomethionine, N?-glutamyl-

Se-methylselenocysteine, s^-glutamyl-selenocystathionine, 

selenopeptides, and selenohomocysteine (Whanger, 2002). Selenate is, first, reduced to 

selenide by reduced glutathione protein; then, it is converted to hydrogen selenide. 

Later O- acetyl serine reacts with selenide and produces selenocysteine, which is the 

precursor for the biosynthesis of selenomethionine and other essential proteins (Figure 

2). 
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Figure 2: Metabolic pathways of Se in plants (Whanger, 2004). 

In animal tissues, Se is present in the form of selenocysteine. After its 

absorption, animal cells spontaneously transform Se into selenocysteine. In plant 

tissues, selenomethionine can directly enter the protein metabolism, however, in animal 

tissues, selenocysteine cannot immediately incorporate into the protein metabolism; it 

should be first converted into hydrogen selenide (Figure 1). Therafter, the seleno-

proteins are produced. Animals can also take up Se in inorganic form, such as selenite 

and selenate. These inorganic Se forms directly enter the selenocysteine derived 

enzyme metabolism (Arthur, 2003). 

Figure 3 illustrates Se metabolism in an animal cell. In the first step, Se is 

liberated in the cell after dietary intakes. Subsequently, it is involved in tRNA. In the 

second step, as marked in the figure, posttranscriptional processes takes place and two 

different tRNA[Ser]Sec isoforms are generated. Additional factors are displayed in step 4; 

the role of these factors is to assemble to specific selenosomes. Their functionality is 

important for the translation of selenoproteins. In the fifth step, as a result of 

deciphering multiple UGA codons on mRNA, selenoprotein P (SePP) is synthesized. 
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After the synthesis in step 6, SePP is released into the extracellular space and stays in 

plasma or reenters into the cell to retrieve Se. 

 

Figure 3: Selenium metabolism in animal cells (Schomburg et al., 2004).
 ,'
J: 

As a result of these steps, Se enters human metabolism to synthesize

 ■

') 

compounds, which are required for inhibition of cancer development and oxidative | 
.t 

stress conditions. 

2.5 The health impacts of Se 

With the discovery of Se by Schwarz and Foltz (1957) as a substitutive agent 

against liver degeneration, it has been recognized as an essential element for human 

cells. Mainly, Se acts against cancer and oxidative stresses (Ip & Lisk, 1994; Finley, 

2005). Since the inorganic forms of Se, selenate and selenite, can easily get into the 

metabolism, when they are ingested, and then they form hydrogen selenide. This 

compound is subsequently incorporated into selenoproteins that are the main Se- 

compounds contributing to health. Some seleno-proteins that have been found to be 

important in human health are glutathione peroxidases, sperm mitochondrial capsule 
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seleno-protein, iodothyronine deiodinases, thioredoxin reductases, selenophosphate 

synthetase, selenoproteins P, selenoproteins W, prostate epithelial selenoproteins (15 

kDa), DNA-bound spermatid selenoproteins (34 kDa), 18 kDa selenoproteins 

(Rayman, 2000). 

Glutathione peroxidase is a Se-dependent protein and has many isoforms like 

GPxl, GPx2, GPx3, and GPx4, which are known as antioxidant enzymes. Basically, 

they remove hydrogen peroxide and lipid and phospholipid hydroperoxides (Foyer et 

al, 1994). Therefore, these enzymes sustain membrane integrity, modulate eicosanoid 

synthesis, regulate inflammation and alleviate cell damage resulting from oxidative 

stress to lipids, lipoproteins and DNA. Sperm mitochondrial capsule seleno-protein 

protects the developing sperm cells against oxidative damage. The third enzyme, 

iodothyronine deiodinases, produces and regulates the level of active thyroid hormone 

T3 from thyroxine T4. Thioredoxin reductases are the enzymes that reduce 

nucleotides in DNA synthesis, regenerate antioxidant systems and regulate 

intracellular redox mechanism that is critical for cell viability. Selenophostate 

synthetase is needed for synthesizing selenophostate, and also known as the precursor 

of selenocysteine that is an essential amino acid finding in seleno-proteins of animals. 

Seleno-protein P protects endothelial cells against the damage of peroxynitrite. 

Another protein, called Seleno-protein W is required for muscle function. Prostate 

epithelial seleno-protein that is found in epithelial cells of ventral prostate is also in 

involved in a redox mechanism, which reduces cancer development. DNA-bound 

spermatid seleno-protein (34 kDa) acts like glutathione peroxidase. The last protein, 

18 kDa seleno-protein, has a role to preserve Se for providing during the Se deficiency 

(Rayman, 2000). 

The seleno-proteins mentioned provide various protective effects against cell 

damage and health defects. For example, in a study conducted by Redman et al. 

(1998), use of 40-50 pM of selenomethionine had the protective effects in breast 

carcinoma cell lines, melanoma and prostate cancer cells. In another animal study, 

addition of Se into animal cells was highly protective against prostate cancer (Waters 

et al., 2003). Moreover, selenomethionine activates the silenced p53 through a redox 

mechanism (Seo et al. 2002). Therefore, selenomethionine can activate p53 protein in 

tumor cells, and thus, it can hinder tumor growth and so p53 can later repair DNA 
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damage. These studies support the idea that Se acts as an anti-carcinogen compound 

in animal cells (Rayman, 2005). 

Besides its anti-carcinogenic effect, seleno-proteins improve also the immune 

system of cells under infection. Hurwitz et al. (2007) conducted an experiment, which 

investigated the effect of Se supplementation on the HIV-1 viral load. This study 

reported that the HIV related burden was alleviated by adding Se. 

The Se acts also protective agent against oxidative stress and is considered as 

a successful antioxidant. Steinbrenner et al. (2006) showed the antioxidative role of 

Se on cell viability of human astrocytes. In this study, when the selenoproteins were 

downregulated, the oxidative stress was induced and therefore human astrocytes could 

not survive. The Se supplementation can also prevent the superoxide-induced damage 

under UV irradiation (Jilani et al, 2007). 

In contrast to the cancer preventive and antioxidant effects of Se, there 

are some studies reporting its poor antioxidant and chemo-preventive effects (Dunstan 

et al, 2007; Lippman et al, 2009; Gaziano et al, 2009). 

In plant tissues, high Se was also found to be beneficial against stress 

situations (Foyer et al., 1994; Hartikainen et al., 2000). Xu and Hu (2004) showed 

that enrichment of rice seeds with Se through applying Se to foliar exhibited high 

antioxidant capacity. To our knowledge, there are no further studies that investigated 

role of Se-enriched wheat seeds by Se fertilization on the antioxidant capacity of 

seeds.. 

In this thesis, three colorimetric assays were employed to collect information 

about the role of Se-enriched wheat seeds on the antioxidant capacity of seeds. The 

methods used were MTT cell viability assay (Roche Applied Science, 2005) and the 

DPPH radical and ABTS cationic radical scavenging assays which were used widely 

in literature (Sanchez-Moreno et al., 1999; Antolovich et al, 2002; Serpen et al, 2007; 

Xu and Hu, 2004; Liyana-Pathirana and Shahidi, 2006). 
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3 MATERIALS AND METHODS 

3.1 Materials 

The wheat (Triticum aestivum) seeds differing in Se concentrations were the 

material of this MSc Thesis. The seed samples were received from a TUBITAK 

project (Nr: 105 O 637) conducted in joint research collaboration between Sabanci 

University and the Research Institutions of the Ministry of Agriculture and Rural 

Affairs. The field trials of this TUBITAK project were conducted in Central Anatolia 

(Ankara, Konya and Eskisehir), Southeastern Anatolia (Diyarbakir), Aegean (Izmir), 

and Black-Sea (Samsun) regions (Table 2). Wheat has been treated differently by soil 

and foliar applications of Se fertilizers under field conditions to obtain seeds differing 

in Se concentrations. In this thesis, the seed samples presented in Table 3 were used in 

order to measure antioxidant capacity of the seeds. 

Table 2: Wheat cultivars differing in locations 

Names of wheat cultivars 

Ankara 

Eski$ebir Bezostaja 

Konya Karahan99 

Diyarbakir San?anak98 

Izmir G6nen98 

Samsun Tahirova2000 



Table 3: Grain Se concentrations of wheat samples collected from the field trials 

conducted in Eskisehir, Samsun, Izmir, Diyarbakir, Konya and Ankara 

  
Selenium concentrations of seeds uq/kq 

  

 

Eskisehir Samsun Izmir Diyarbakir Konya Ankara 
 

51 254 
48 

   

 104 294     

Se-I 
108 301 

61 

47 36 
28 

 124 353     

  

1124 

    

Se-II - 1523 956 2566 390 1902 
  1884     

 

1594 

     

Se-III 1911 1510 249 837 - - 
 2249      

 

2770 

     

Se-IV 
3934 

  1616   

 

5871 2275 1621 
   

Se-V 6580 3103 1955 2464 894 5127 
 7168 3310     

*Se-I: Control 

Se-II: Foliar fertilization two times applied (1st node detectable; boots just swollen) 

Se-III: Foliar fertilization two times applied (early milk; early dough) 

Se-IV: Foliar fertilization two times applied (boots just swollen; early milk) 

Se-V: Foliar fertilization four times applied (1st node detectable; boots just swollen; 

early milk; early dough) 

3.2 Methods 

3.2.1 Measurement of Antioxidant Capacity of Seeds 

Three assays were considered to measure the effect of Se-enriched seeds on 

the antioxidant capacity of seeds. The methods used were MTT [3-(4,5- 

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] cell viability assay (Tim 
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Mosmann, 1983; Roche Applied Science, 2005) and the detoxification capacity of seeds 

for the DPPH radical (Sanchez-Moreno et al., 1999; Malencic et al, 2000; Xu and Hu, 

2004) and the ABTS cationic radical (Serpen et al., 2007). These methods are described 

in detail below. 

MTT (3-[4,5-dimethyIthiazol-2-yI]-2,5-diphenyl tetrazolium bromid) assay is 

based on the conversion of yellow tetrazolium salt into purple formazan crystals. The 

amount of the conversion is based on the number of viable cells. At the end, ELISA 

Microplate Reader measures the ratio of viability using a wavelength between 550- 600 

nm. 

Determination of radical scavenging capacity of seed extracts was other 

approach used in this thesis to collect information about the antioxidant capacity of 

seeds. As indicated above, measurement of the DPPH (a,adiphenil-P-picrylhydrazyl) free 

radical scavenging capacity was one of the approaches used here to measure antioxidant 

capacity of seeds. The method was applied according to Sanchez-Moreno et al. (1999) 

that is based on scavenging of the DPPH free radical from a medium after addition of the 

seed extracts. The results were visualized with the help of color change and were 

measured at 490 nm via ELISA Microplate Reader. 

The detoxification capacity of seed extracts for ABTS (2,2’-azinobis(3- 

ethylbenzothiazoline-6-sulfonic acid) cationic radical is based on the decolorization of 

the ABTS-' radical by the addition of the seed extracts. This assay represents a Trolox 

equivalent antioxidant capacity assay (TEAC) (Huang et al., 2005). The TEAC method 

used in the present study was applied as described by Serpen et al. (2007). Two different 

media were used for extraction procedures; i) methanol/acetone/water ii) cellulose. In 

order to involve both polar and apolar compounds of seed in the extract, three kinds of 

solvent having different polarities were used: methanol, acetone and water. On the other 

hand, cellulose and seed mixture provided the antioxidative capacity measurement of 

both soluble and insoluble parts of seeds. Besides the antioxidant measurements in whole 

seeds, also antioxidant assays were conducted in different seed section such as embryo, 

endosperm and bran. These seeds fractions may be different in antioxidant activity. There 

are some reports showing differential 
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antioxidant activity of the mentioned seed fractions (Adorn et ai. 2005; Liyana- 

Pathirana CM and Shahidi, 2007). 

3.2.2 Preparation of Seed Extracts 

Depending on the methods used, hot water, cellulose and methanol, acetone 

and water extracts have been used in the assays described. Hot water extracts were 

used in MTT cell viability and DPPH assays; whereas cellulose and methanol, 

acetone and water extracts were applied in the ABTS assays. For the MTT cell 

viability assays hot water extracts have been used as following. First, in order to 

optimize the level of Se containing extracts, a hot water extraction was prepared as 

stock solution. In this test wheat seeds were used which contained 894 ppb Se. 

Ground seed samples of about 500 mg were suspended in 10 ml water; so, the final 

concentration of stock solution became 50 mg (wheat) / ml (water). After shaking 

about 1 hour, the extract was incubated at 60°C for 1 hour. Thereafter, in the case of 

precipitating cell debris, the extract was centrifuged at 4600 rpm for 30 minutes. 

Finally, the seed extract was filtered with a sterile filter having pores 0.22 pm. The 

filtered extract was mixed with the complete DMEM solution containing 10% FBS in 

a ratio of 1 (extract) / 8 (DMEM). By using this stock solution, six different hot water 

extractions were prepared: 30, 20, 10, 5, 2 and 1 mg (wheat) / ml (water). As a result 

of optimization procedures, the optimum Se-enriched seed concentration was found as 

20 mg (wheat)/ml (medium) that was used in the seed extractions described below. 

For DPPH assays, nearly 1 g ground seed samples were used by mixing in 10 ml 

water (see below). 

Cellulose extraction methods that were applied in ABTS assays have been 

described as following. Cellulose and seed solution was prepared in a ratio of 1 

(wheat) / 3 (cellulose) and this mixture was used in the ABTS assays as described 

below. The second extraction procedure for ABTS assays was methanol/ acetone/ 

water extraction in a ratio of 7 (methanol) / 7 (acetone) / 6 (water). 100 mg ground 

seed sample was mixed with 1 ml of methanol/ acetone/ water solution. The mixture 

was centrifuged at 10000 rpm for 5 minutes; then, the supernatant was transferred into 
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a new falcon tube. The remaining part was resuspended into the methanol acetone/ 

water solution and centrifuged again. This procedure was repeated three times. Then 

the collected supernatants were used in the ABTS assays as mentioned below. 

3.2.3 Preparation of H2O2 solution for MTT Assay 

In MTT cell viability assays, cells have been treated with H2O2 to generate an 

oxidative stress in medium as following: First, a stock solution of H202 has been 

prepared containing 200 mM H202. Then, six different H202 concentrations were 

prepared from this solution by mixing with complete DMEM at following rates: 0.5, 

1, 1.3, 1.5, 1.7, and 2 pi (H202) /ml (DMEM). As a result of optimization tests, 1 mM 

H202 was used in the cell viability assays as described below. 

3.2.4 Application of Antioxidant Tests 

3.2.4.1 MTT Cell Viability Tests 

MTT assay was applied in order to determine the ratio of viable HeLa cells. 

HeLa cells were grown to confluency in complete DMEM containing 10% (v/v) FBS, 

2 mM glutamine, 100 U of penicillin/ml, 100 pg/ml of streptomycin, in 5% 

atmosphere at 37°C in a mammalian incubator. On the day of the experiment, HeLa 

cells were rinsed with 5 ml of Dulbecco’s Phosphate Buffered Saline (dPBS)and 

dislodged from their substratum by addition of 5 ml of Tripsin-EDTA followed by a 5 

minute incubation at 37°C in mammalian cell culture incubator . Thereafter, 5 ml of 

serum free medium (SFM) was was added onto the cells. This mixture was then 

transferred into a falcon tube for centrifuging at 300rg for 5 minutes. Supernatant 

occurring at the end of centrifuging has been discarded due to the existence of SFM 

and Tripsin-EDTA. In the following step, cell counting was conducted by using 

Hemocytometer. The number of cells in each well should be 10000 per 100 pi 

complete DMEM solution. Thereafter, HeLa cells were seeded in 96-well plates and 

incubated in 5% atmosphere at 37°C for 16 hours/ 
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After an overnight incubation, HeLa cells were ready for treatment with the 

seed extracts. First of all, cell monolayer was washed once with SFM and then 

incubated with SFM (100 |ulAvell) for 4 hours for synchronization. Later SFM was 

removed from the cells and cells were treated for 2 hours with prepared seed extracts 

dissolved in SFM at different concentrations. Following the seed extract pretreatment, 

1 mM H2O2 solution was added to HeLa cells for 24 hours in order to determine the 

antioxidant effect of the seed extracts. 

In order to measure the cell viability pf HeLa cells 10 pi MTT labeling 

solution was added into each 96-well plate. Then the plates were incubated for 4 

hours. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is a 

tetrazole, which can be reduced to formazan by electron transport chain in living cell. 

Therefore, only living cells could reduce the MTT reagent to formazan and produce 

purple colour, which can then be measured with spectrophotometer. At the end of 

incubation, 100 pi of solubilization solution was added. Later on 96-well plates were 

kept in the same incubator for overnight. After checking with inverted microscopy 

whether formazan crystals were dissolved or not, the ratio of the viable cells to the 

control cells was measured by ELISA Microplate Reader at 570 nm. 

3.2.4.2 Scavenging capacity of seed extracts for DPPH free radicals 

First, 0.018 gram DPPH radical was dissolved in 60 ml of DMSO (Dimethyl 

Sulfoxide), and then the solution was kept under dark conditions at room temperature. 

Before analyzing the antioxidant capacity of seed extracts, ascorbic acid was 

used as a control scavenger to compare the antioxidative capacity of both ascorbic 

acid and seed extracts. In the tests with ascorbic acid, 0.4 mg ascorbic acid was added 

into 10 ml water. After shaking, increasing amounts of ascorbic acid solution (1, 3, 4, 

5 pi from 0.4 mg ascorbic acid/10 ml) were added 95 pi of DPPH solution containing 

0.3 mg (DPPH) /ml (DMSO). As soon as the solution was inserted in 96-well plates, 

ELISA Microplate Reader measured the results at 490 nm. This measurement was 

repeated every 20 minutes. 
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In the case of the seed extracts, first 1 g ground seed sample was stirred in 10 

ml water for extraction. After centrifuging, 5 pi supernatant was mixed with 95 pi 

DPPH solution. Then, the measurements were made by using the ELISA Microplate 

Reader at 490 nm. 

The results were reported based on the calculation of decreasing amount of 

DPPH radical by 50% of the initial concentration: 

% scavenging = {(Abscontroi - Abssampie) / Abscontroi}x 100, 

where Abscontroi = absorbance of DPPH radical + DMSO; Abssampie = 

absorbance of DPPH radical + wheat extracts or ascorbic acid (Antolovich et al., 

2002; Huang et al., 2005). 

3.2.4.3 Detoxification capacity of seed extracts for ABTS cationic free 

radicals 

In addition to the DPPH assay, ABTS assay was also used for measurement of 

the antioxidative capacity of seeds (Serpen et al., 2007). For the preparation of ABTS 

free radical solution, 6.615 mg of potassium peroxidisulfate was dissolved in 10 ml 

water, and then 38.41 mg ABTS radical was mixed with potassium peroxidisulfate 

solution. As soon as ABTS was added, the color of the solution turned into dark blue 

because of the generation of ABTS*" radical. After stirring, the ABTS solution 

prepared was kept under dark conditions for 16 hours at room temperature. At each 

assay, always a fresh ABTS solution was prepared. 

The results of the ABTS assay have been reported as a Trolox equivalent 

according to Serpen et al. (2007). About ten different Trolox solutions were prepared 

for the standard solution tests (e.g., 5, 10, 20, 40, 60, 80, 100, 125, 150, and 175 

ppm). A 100 pi sample from each solution was added into 6 ml of ABTS and these 

solutions were shaked for 30 seconds under dark conditions. As a result, greenish 

blue color of the free radical ABTS turned into light green with the increasing 

concentration of Trolox, and the color developed was measured by using a UV-

visible spectrophotometer at 734 nm. 
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To apply the ABTS assay on seed samples, first, methanol, acetone and water 

mixture was prepared at the ratio of 7:7:6 (methanol/acetone/water) to use for 

extraction of seed samples. Then, 100 mg ground seed sample was mixed with 1 ml 

of methanol/acetone/water solution. After the extraction procedure as described 

above, 

100 pi the collected supernatants were added in 6 ml ABTS solution and shaken. The 

color developed was measured at 734 nm. Alternatively, another seed extraction 

method was applied by using a cellulose extraction method (see 3.2.2). The ground 

seed samples were mixed with cellulose in a ratio of 1 (ground seed sample) / 3 

(cellulose). Thereafter, 10 mg the solution was added into 6 ml ABTS solution. The 

mixtures were shaken for 30 minutes under dark conditions and centrifuged at 12500 

G for 2 minutes in order to precipitate the residuals. Finally, the color developed was 

measured via spectrophotometer at 734 nm. 

e| 
■:ti 
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4 RESULTS 

4.1 Effect of wheat seed extracts differing in Se concentrations on 

viability of HeLa cells 

4.1.1 Optimization tests on seed extracts and H202 concentrations 

Prior to determining the effect of Se-enriched wheat extracts, optimization 

tests have been conducted on seed extracts and H2O2 concentration for using in the 

MTT assay. As a result of the optimization of seed extracts on HeLa cells, it was 

found that the optimum level of wheat extracts that should be used in MTT assays was 

20 mg (seed) / ml (water) (Figure 4). 

In the optimization tests with H2O2 on HeLa cells, 1 mM H202 was found to 

be the most suitable concentration for using in MTT assays that reduced cell viability 

nealy by 50 to 60 % (Figure 5). 
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Optimization of wheat extract concentration 
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Figure 4: Effect of increasing amount of wheat extracts (mg (seed) / ml (water)) on 

HeLa cell viability. Control indicates the samples without treatment with wheat 

extracts. In this test wheat seeds were used which contained 894 ppb Se. All results 

were expressed as relative to the control values (100 %). 

Optimization of 11202 concentration 

 

Control 0,5m\l ImM l,3mM l,5mM l,7mM 2mM 

11202 concentration mM 

Figure 5: Effect of increasing concentration of H2O2 on HeLa cell viability. Control 

shows the treatments without H2O2 addition. All results were expressed as relative to 

the control value (100 %). 
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4.1.2 Effect of wheat seed extracts having different Se concentrations on HeLa cell 

viability 

Seed samples from Izmir, (Figure 6), Samsun (Figure 7), Eskisehir (Figure 8) 

and Konya (Figure 9) were used in MTT assays. As can be seen in the mentioned 

Figures, seeds used were substantially different in Se concentrations (nearly 100-fold 

ranging between 58 ppb to 5870 ppb). Despite such great variation in seed Se 

concentrations there was no positive and consistent effect of the seed samples with 

various Se concentrations on cell viability (Figures 6-9). At very high concentrations of 

seed Se, there was a clear tendency for reduction in cell viability. 

izmir 

140 

 

control 58 564 

Sc concentration in wheat ppb 

 

1521 

Figure 6: Effect of wheat seed extracts differing in Se concentration on FleLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which were 

derived from wheat seeds containing 58, 564 and 1521 ppb Se and grown in Izmir. 

HeLa cells were exposed to H202 after the incubation with wheat seeds. All results 

were expressed as relative to the control value (100 %) and shows the means of 3 

replications. 
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Figure 7: Effect of wheat seed extracts differing in Se concentration on HeLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which were 

derived from wheat seeds containing 294, 1520 and 3182 ppb Se and grown in 

Samsun. HeLa cells were exposed to H2O2 after the incubation with wheat seeds. All 

results were expressed as relative to the control value (100 %) and shows the means of 

3 replications. 
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Figure 8: Effect of wheat seed extracts differing in Se concentration on HeLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which were 

derived from wheat seeds containing 123, 2249 and 5870 ppb Se and grown in 

Eskisehir. HeLa cells were exposed to H2O2 after the incubation with wheat seeds. All 

results were expressed as relative to the control value (100 %) and shows the means of 

3 replications. 



Konva 

 

Figure 9: Effect of wheat seed extracts differing in Se concentration on HeLa cell 

viability. In the tests 20 mg (seed) /ml (medium) wheat extracts were used which were 

derived from wheat seeds containing 36, 390 and 894 ppb Se and grown in Konya. 

HeLa cells were exposed to H2O2 after the incubation with wheat seeds. All results 

were expressed as relative to the control value (100 %) and shows the means of 3 

replications. 

4,2 Scavenging DPPH free radical 

4.2.1 DPPH radical scavenging activity of ascorbic acid 

DPPH radical scavenging activity was firstly tested with increasing 

concentrations of ascorbic acid in order to justify the method. The results are 

summarized in Table 4. The results obtained showed that the antioxidant activity of 0.4 

pg ascorbic acid / ml (ascorbic acid / DPPH solution) did not reduce DPPH free radical 

by more than 50%. In contrast, starting from 1.2 pg/ml ascorbic acid concentration, the 

ascorbic acid was found to detoxify DPPH free radical by more than 50 % (Table 4). 

By further increases in ascorbic acid concentration DPPH radical detoxification was 

further enhanced which justifies use of DPPH assay in the antioxidant tests. 
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Table 4: DPPH radical scavenging activity (%) as affected by ascorbic acid 

concentration and incubation time. In this test, 0.4, 1.2, 1.6 and 2 pg (ascorbic 

acid) / ml (DPPH solution) ascorbic acid solutions were used. The results were 

reported based on every 20 minutes measurements. 

Scavenging activity of Ascorbic Acid 

Concentration (jig/ml) 0.4 1.2 1.6 2 

Time (minutes) 

    

0 32 63 81 89 

20 37 79 86 86 

40 38 82 86 86 

4.2.2 DPPH radical scavenging activity of wheat extracts 

As shown in Table 5, increases in Se concentrations of wheat seeds both from 

Samsun and from Diyarbakir did not DPPH radical scavenging. There was no any effect 

or even tendency on DPPH radical detoxification capacity of seeds despite large 

differences in seed Se concentration. Only in the case of the seeds from Samsun, there 

were some increases in radical scavenging activity over incubation time; but these 

changes were independent on seed Se (Table 5). 
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Table 5: Effect of wheat seed extracts on DPPH radical scavening activity at 

different incubation time. In this test hot water wheat extracts were used. Wheat 

seeds used were grown in Samsun and Diyarbakir locations, and had 294 ppb 

(Se-I), 1520 ppb (Se-II), and 3182 ppb (Se-III) Se for the Samsun location and 47 

ppb (Se-IV), 837 ppb (Se-V). 2464 ppb (Se-VI) for the Diyarbakir location. 

DPPH scavenging activity of wheat seeds* 

incubation 
time 

minutes 

 

Samsun 

 

Se-I Se-II Se-III 

30 1 ± 0.02 2 ± 0.01 7 ± 0.05 

90 7 ± 0.01 9 ± 0.01 14 ± 0.01 

120 8 ± 0.01 9 ± 0.01 15 ± 0.01 
  

Diyarbakir 

 

 

Se-IV Se-V Se-VI 

30 25 ± 0.02 28 ± 0.02 23 ± 0.02 

90 32 ± 0.02 32 ± 0.02 29 db 0.03 

120 22 ± 0.02 23 ± 0.02 19 ± 0.03 

*Se-I: Control 

Se-II: Foliar Se fertilization two times applied (1st node detectable; boots just swollen) 

Se-III: Foliar Se fertilization four times applied (1st node detectable; boots just 

swollen; early milk; early dough) 

Se-IV: Control 

Se-V: Foliar Se fertilization two times applied (early milk; early dough) 

Se-VI: Foliar Se fertilization four times applied (1st node detectable; boots just 

swollen; early milk; early dough) 
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4.3 ABTS free radical scavenging activity of Se-enriched wheat 

4.3.1 ABTS scavenging capacity of the cellulose extracts 

As summarized in Table 6, the increases in Se concentration of seeds from 

different locations in Turkey did not result in an increase in the antioxidant capacity. 

The only difference found was related to locations. The seeds from Esktyehir and 

Samsun locations tended to exhibit the highest and the lowest antioxidant activity 

irrespective seed Se concentrations. 
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Table 6: Trolox equivalent antioxidant capacity (TEAC) of wheat seeds which 

were extracted in cellulose and contained different Se concentrations. 

Location Se concentration in 

wheat ppb 
TEAC % corresponded 

Trolox mg 
 

254 12.1 ± 1.19 4 
Samsun 1510 12.5 ±0.68 5 

 2275 14.4x0.10 5 

 

28 17.4 ±0.88 6 

Ankara 1902 17.2 ±0.67 6 
 5127 17.7 x 1.14 

6 

 

51 25.6 ±2.06 13 
 

108 28.3 ± 1.84 14 
 

1594 27.3 ±3.28 13 
 

1911 26.8 x 1.83 13 
Eskisehir 

 2770 23.3 ± 1.91 12 
 3934 25.8 ±3.08 13 
 6580 25.5 ±2.76 13 
 

7168 14.7 ± 1.60 8 

 

48 20.2 ± 1.72 8 
 

61 23.6x0.36 10 
Izmir 

 
1621 19.5 ± 1.75 8 

 1955 21.9 ±0.21 9 

 

47 23 ± 1.26 10 

Diyarbakir 837 20.8 ± 1.08 9 
 2464 18.8 ±0.83 8 

4.3.2 ABTS scavenging capacity of methanol / acetone / water extracts 

Extracting seeds in methanol-acetone-water solution also did not result 

differential antioxidant capacity in seeds with wide range of Se concentrations in the 

ABTS assay (Table 7). Compared to the cellulose extracts mentioned above (Table 6), 
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this methanol, acetone and water extraction procedure did not yield higher amounts of 

antioxidants. 

Table 7: Trolox equivalent antioxidant capacity (TEAC) of wheat seeds 

extracted with methanol, acetone and water, and differing in Se concentrations. 

Location 
Se concentration in 

wheat ppb 
TEAC % 

corresponded Trolox 

mg 
 

254 3.8 x 0.66 1 

Samsun 1510 4 x 0.67 1 
 

2275 3.9 ± 0.02 1 

 

28 4.9 x 0.86 2 

Ankara 1902 4.5 x 0.05 2 
 

5127 5.1 x 0.86 2 

4.3.3 Antioxidant capacity of embryo, bran and endosperm parts of seeds 

All antioxidant tests described above were conducted on whole seed samples. 

Since seed parts such as endosperm and bran could be different in concentration of 

bioactive compounds such as antioxidants (Moore et ah, 2006; Hung and Morita, 2008) 

we wanted to analyze antioxidant activity of endosperm, embryo and bran fractions of 

seeds. Seeds with different Se concentrations from Ankara, Samsun and Eskisehir were 

selected to separate their endosperm, embryo and bran fractions for analyses of total 

antioxidant activity by using the ABTS assay. Like with whole seeds, also different 

fractions of seeds with wide range in Se concentrations did not affect the antioxidant 

activity (Figures 10, 11 and 12). In the case of Samsun (Figure 11) and Eskisehir 

(Figure 12) locations, the bran fractions of seeds showed higher antioxidant activity 

than the embryo and endosperm. 
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Ankara 

 

Figure 10: Effect of different fractions of wheat seeds on antioxidant capacity 

measured by detoxification of ABTS free radical. The fractions were obtained from 

wheat seeds differing in Se concentration (e.g. 28, 1902, and 5127 ppb) and grown in 

Ankara location. 

Samsun 

. 1  
M embryo ■ 

bran 

endosperm 

Se concentration in wheat ppb 

Figure 11: Effect of different fractions of wheat seeds on antioxidant capacity 

measured by detoxification of ABTS free radical. The fractions were obtained from 

wheat seeds differing in Se concentration (e.g. 254, 1510, and 2275 ppb) and grown in 

Samsun location. 
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Eski§ehir 

 

104 

 

1594 2770 7168 

Se concentration in wheat ppb 

B embryo B 

bran 

endosperm 

Figure 12: Effect of different fractions of wheat seeds on antioxidant capacity 

measured by detoxification of ABTS free radical. The fractions were obtained from 

wheat seeds differing in Se concentration (e.g. 104, 1594, 2770, and 7168 ppb) and 

grown in Eskisehir location. 
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5 DISCUSSION 

In this Thesis, as experimental materials, seed samples were used which were 

widely different in Se concentrations showing a variation with approximately 250 fold 

(Table 3). Therefore, the seed samples of the present study were very useful for 

studying the antioxidant activities of the varied Se concentrations in seeds. Three 

assays were used for determination of the antioxidant activity of the seed samples 

which were extracted by using different extracting solutions. The assays applied on the 

seeds include i) MTT assay conducted in mammalian cell cultures, ii) DPPH (1,1- 

Diphenyl-2-picrylhydrazyl) radical scavenging test, and iii) ABTS (2,2-Azinobis (3- 

ethylbenzothiazoline-6-sulfonic acid) radical-scavenging assay. 

Among these tests, MTT assay has been extensively used assay in mammalian 

cell cultures to characterize antioxidative effectiveness of various biological 

compounds (Tim Mosmann, 1983; Roche Applied Science, 2005; Fotakis and 

Timbrell, 2006). As shown in Figures 6, 7, 8 and 9, increases in seed Se concentrations 

remained ineffective on antioxidant activity of seeds measured by the MTT assay. 

Even, at higher concentrations of Se in seeds (especially above 1500 ppb) there was an 

inhibitory effect of Se on cell viability. In Izmir, Samsun and Eskisehir locations, seeds 

containing higher than 1000 ppb Se had inhibitory effects on cell viability. It is well-

documented that at higher concentrations Se might be toxic to cellular systems. The 

critical concentrations of Se for deficiency and toxicity are very narrow (Combs and 

Combs, 1986b, Combs, 2001; Pedrero and Madrid, 2009). According to Marschner 

(1995) the concentrations of Se between 1000-5000 ppb in dry matter are the 

maximum tolerable level in the diet of animals. Fan et al. (1990) reported that 4000 

ppb Se has a detrimental effect on growing animals. Therefore, a special attention 

should be paid to higher concentrations of Se in foods. According to Pedrero and 

Madrid (2009), Se concentrations exceeding 1000 ppb might be toxic in biological 

systems. Based on the results it can be suggested that seed Se concentrations should not 

exceed 1000 ppb in Se fertilization trials. In various reports it has been reported that the 

most suitable Se concentrations in cereal grains for a 
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better human nutation should be between 100 to 1000 ppb (Lyons et al.. 2003 and 

2005; Broadley et al., 2006). 

Similar results obtained with the MTT assay were also found with the DPPH 

radical (Sanchez-Moreno et al., 1999; Malencic et al., 2000; Xu and Hu, 2004) and the 

ABTS cationic radical (Serpen et ah, 2007) scavenging assays. These assays were 

successfully used assays in literature to measure antioxidative capacity of cereal grains 

(Zielinski and Kozlowska, 2000; Serpen et al., 2007; Serpen et al., 2008; Xu and Hu, 

2004; Perez-Jimenez and Saura-Calixto, 2005; Liyana-Pathirana and Shahidi, 2006). 

Seeds with large variation in Se concentrations from Samsun and Diyarbakir (Table 6) 

did not behave differently in their total antioxidant activity based on the DPPH radical 

scavenging activity. Also in the case of the ABTS assay (Tables 6 and 7) seeds 

differing in Se concentrations were similar in their antioxidant activity. Having low or 

high Se concentrations below 1000 ppb did not result in different antioxidative 

potential. These results with DPPH and ABTS radical scavenging assays were in 

agreement with the results obtained with the MTT assay (Figures 6, 7, 8 and 9), 

indicating that Se has no any antioxidative effect in wheat seeds under given 

conditions. 

In literature there are number of reports indicating high antioxidative role of Se 

or Se-compounds in cellular systems (Combs Jr, 2001; Pedrero and Madrid, 2009 and 

the references given in the Introduction section). By contrast, the results presented in 

this thesis did not provide any indication for an antioxidant role of Se in wheat seeds. 

One of the reasons for the ineffectiveness of Se on antioxidant capacity of the wheat 

extracts might be related to the extraction method applied on wheat seeds. The 

extraction method used for DPPH radical scavenging was the same applied by Xu and 

Hu (2004) who showed higher antioxidant activity in rice seeds with elevated Se 

concentrations. Use of different seed materials (e.g., rice vs wheat) might be one reason 

for such differential results between 2 studies. 

Possibly, wheat seeds do not release adequate amount of Se-compounds with 

high antioxidative activity during the extraction process so that seeds remained 

ineffective on antioxidant potential of seeds. Adorn and Lui (2002) reported that nearly 

90 % of the antioxidants in wheat seeds are bound. In the case of com, rice and 
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oat, the proportion of the bound antioxidants were 87 %, 71% and 58 %, respectively. 

However, in the present study, 3 various extraction methods used to test antioxidant 

potential of seeds: i) hot water, ii) cellulose and iii) methanol, acetone and water. These 

solutions are often used for extracting antioxidants from different biological samples 

(Naczk and Shahidi, 2006; Serrano et al., 2007; Yu, 2008; Hassas-Roudsari et al., 

2009). Even with these different extraction methods, seeds with varied Se 

concentrations were same in their antioxidant potential. 

Other alternative for the explanation of the ineffectiveness of Se on antioxidant 

potential of seeds could be related to the inherent antioxidant activity of wheat seeds. 

Possibly, wheat seeds contain very high inherent antioxidant capacity due to high levels 

of phytoactive compounds such as flavonoids, phenolics, lutein, tocopherols etc (Yu, 

2008). So, it is supposed that the level of the expected increase in antioxidant capacity 

through the enrichment of seeds with Se is too low compared to the inherent antioxidant 

capacity of wheat seeds used in the trials so that the resulted increase in the antioxidant 

capacity of seeds after Se enrichment could not be detected under given conditions. Xu 

and Hu (2004) showed higher antioxidant activity after enrichment of seeds with Se. It 

would be interesting to test antioxidant capacity of rice and wheat seeds to determine 

whether wheat has more antioxidative capacity than the rice seeds. According to the 

results of Adorn and Lui (2002), wheat seeds contain 2-fold more antioxidant activity 

than the rice seeds 

It might be also possible that enrichment of seeds with Se has, indeed, no 

influence on the antioxidant capacity of seeds. There are some published data in 

literature showing that Se compounds have no antioxidant role in mammalian cells. 

Dunstan et al. (2007) reported that in 54 adults having allergic diseases, Se 

supplementation increased greatly Se concentration of the individuals but Se did not 

result in any influence on the immune system of the affected people. In another study 

conducted by Lippman et al. (2009), it was determined whether selenium could prevent 

prostate cancer, and the results showed that Se had no effect on development of prostate 

cancer. There are also further studies showing the ineffectiveness of Se for the 

prevention against carcinoma and cardiovascular diseases (Clark et al., 1996; Duffield-

Lillico et al., 2002; Hercberg et al., 2004; Stranges et al., 2006). 
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6 CONCLUSION 

The results presented in this study clearly indicate that seeds differing greatly 

in Se concentrations behaved similarly in their total antioxidant activity. In contrast to 

our expectations, Se did not affect antioxidant activity of seeds in positive direction in 

different antioxidant assays and extraction mediums tested. The reason for the 

ineffectiveness of Se on antioxidant potential of seeds could not be understood, 

although some papers are available supporting the results of this study, as discussed 

above. In order to achieve a reliable conclusion about the antioxidative role of Se in 

wheat seeds further tests are needed such as tests by using isolated Se-compounds 

(selenoproteins). Measurement of Se-proteins in Se-enriched seeds (with ICP-MS: 

Inductively Coupled Plasma - Mass Spectrometer) is also important. It would be also 

important to measure soluble and bound antioxidants in wheat seeds differing in Se 

concentrations. Having information about the proportion of Se-compounds within the 

bound antioxidants could be helpful in explanation of the results presented in this 

thesis. 
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APPENDIX 

Chemicals 

All chemicals and standart solutions were supplied by 

Merck (Germany), 

SIGMA (USA), 

Fluka (Switzerland) 

Equipment 

Centrifuge: Kendro Lab. Prod., Heraeus Multifuge 3 S-R, GERMANY 

Distilled water: 

Millipore, Elix-S, FRANCE Millipore, MilliQ, Academic, 

FRANCE 

Spectrophotometer: ELISA Microplate Reader 680 BIORAD Varian Cary 300 

UV-Visible Spectrophotometer 

Microliter Pipette: 

Gilson, Pipetman, FRANCE Eppendorf, GERMANY 


