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ABSTRACT 

Nafion
®

 is the most commonly used commercial proton-exchange membrane for polymer 

electrolyte membrane fuel cells (PEMFCs) due to its excellent thermo-mechanical 

properties. The main drawbacks of Nafion
®
 membranes are their temperature dependent 

conductivity, degradation at temperatures greater than 80 
º
C and relative humidity less than 

100% and also high cost, hence it is necessary to find the alternative membranes for 

PEMFC. Polyphosphazenes are a potential candidate owing to their ability to incorporate 

unlimited side-groups and their good thermal and chemical stability.  In this work, three 

poly (m-tolyloxy-co-4-pyridinoxy phosphazene)s with varying heteroatom containing and 

not containing aryl side chains in varying ratios were studied.  

 

Through sulfonation the sulfonic acid group which promotes proton conduction was 

incorporated. Different parameters such as effect of temperature, time and varying amounts 

of each side groups of the polymers on the sulfonation process were investigated and the 

results reported. After sulfonation membranes with thicknesses in the range of 80-120 μm 

were obtained through solution casting and later on characterized. Structural 

characterizations by use of NMR (
1
H, 

13
C and 

31
P) and FTIR were carried out before and 

after sulfonation in order to check the post process changes. FTIR revealed extra peaks at 

1300 cm
-1

 that belonged to the sulfonic acid groups. DSC and TGA were used to check the 

membranes’ thermal properties while the mechanical stabilities was investigated using the 

DMA.  

 

The resultant membranes were then evaluated for the basic PEMFC relevant properties 

such as IEC, water uptake and proton conductivity and the results compared to those of 

Nafion
®
 115. In this work, we reported IEC values of as high as 1.07 meq/g which was 

comparable to that of Nafion
®
 115 (0.91 meq/g) in the literature. Conductivity of the 

membranes varied depending on the sulfonation parameters and values obtained were 

comparable to the membranes in the literature and Nafion
®
 115 as well. 
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ÖZET 

Nafion
®
 polimer üstün ısıl ve mekanik özellikleri sebebiyle elektrolit membranlı yakıt 

pillerinde (PEMFC) yaygın kullanılan ticari bir proton değiĢim membranıdır.. Nafion
®
 

membranlarının temel problemleri ise iletkenliklerinin sıcaklığa bağlı olması, 80 
º
C’nin 

üzerinde ve 100% ün altındaki nemliliklerde bozunmaya uğramaları ve yüksek 

maliyetleridir. Bu sebeplerle PEMFC uygulamaları için alternatif membranların üretilmesi 

gerekmekdir. Polifosfazenler, sınırsız yan gruplarla bağlanabilmeleri ve ısıl ve kimyasal 

kararlılıkları sebebiyle önemli bir potansiyel oluĢturmaktadırlar. Bu çalıĢmada değiĢen 

heteroatom grubu içeren ve içermeyen olmak üzere- değiĢen aril yan zincirlerden oluĢan üç 

çeĢit poli(m-toliloksi-ko-4-pridinoksi fosfazen)ler üzerinde yoğunlaĢılmıĢtır.  

 

 

Sülfonlama tepkimesiyle, proton iletimini sağlayan  sülfonik asit grubu yapıya eklenmiĢtir. 

Sıcaklık, tepkime süresi ve polimerlerdeki değiĢen miktarlardaki yan grupların sülfonlama 

tepkimesi üzerindeki  etkileri incelenmiĢ ve sonuçlar gösterilmiĢtir. Sülfonlama  sonrasında 

çözeltiden dökme yöntemiyle 80-120 μm kalınlığında membranlar üretilmiĢ ve 

karakterizasyonları gerçekleĢtirilmiĢtir. Sülfonlama öncesi ve sonrasında, NMR (
13

C, 
31

P 

and 
1
H) ve FTIR yöntemleri kullanılarak yapısal değiĢiklikler incelenmiĢtir. FTIR 

sonuçlarına göre 1300 cm
-1

 de sülfonik asit gruplarına ait bölgeler görülmüĢtür. DSC ve 

TGA yöntemleriyle ısıl özellikleri çalıĢılırken DMA yöntemiyle de mekanik özellikleri 

incelenmiĢtir. 

Ardından, üretilen membranlar PEMFC’ye özgü temel özelikler olan; iyon değiĢim 

kapasitesi (IEC), su alımı ve proton iletkenliklerinin belirlenmesi için detaylı olarak 

karakterize edilmiĢ ve elde edilen sonuçlar, aynı koĢullarda karakterizasyonları 

gerçekleĢtirilen Nafion
®

 115 membranlarına ait sonuçlarla kıyaslanmıĢlardır. Bu çalıĢmada 

üretilen membranların IEC değerleri 1.07 meq/g gibi oldukça yüksek ve literatürdeki 

Nafion
® 

115 (0.91 meq/g) membranlara ait değerlere oldukça yakındır. Üretilen 

membranların iletkenlikleri ise sülfonlama parametrelerine bağlı olarak değiĢmekle birlikte 

Nafion
®
 115 membranlarının iletkenlikleriyle kıyaslanabilir değerler elde edilmiĢtir. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1. Background and Motivation 

Fossil fuels which, still account for about 80% [1] of today’s global primary energy supply 

is among the most debated issues because of its impact on human beings. For centuries 

since the invention of the steam engines, fossil fuels have been extensively used and its 

usage has brought with it economic growth, development of industries and better living 

standards. However, one of the biggest concerns is that there is need to find an alternative 

source of energy which will supplement the already diminishing fuel reserves, as a result of 

continued consumption by the growing world population. Furthermore, critics have also 

raised alarms due to the devastating effects fossil fuels have had on the environment 

resulting from the rapid rise in harmful emissions of greenhouse gases during their use. 

These gases released mainly from industries and transportation sector which have 

consequently caused gradual climatic changes, depletion of ozone layer, global warming 

and health problems.[2]  

The above mentioned drawbacks have motivated the search for alternative, sustainable and 

renewable sources of energy which must be technically feasible, affordable and 

environmentally acceptable.[3],[4] Examples of sustainable energy sources currently under 

investigation include solar, wind geothermal, hydrogen and so on. Hydrogen being the most 

abundant and most simple substance in the universe proves to be a potential candidate that 

can equally compete with fossil fuels [5]. In addition to this hydrogen has zero specific 

carbon emission and has the highest specific energy of all conventional fuels [6], [7] 

Hydrogen can be easily utilized in the fuel cells which normally generate energy and have 

much less environmental harm due to the fact that there is no emission of greenhouse gases 

compared to combustion engines that use fossil fuel.[8],[9] However, the technology has 

lagged behind due to factors like durability of materials for the different components, high 

manufacturing and operating costs involved, fuel storage among others reasons.[9]. Fuel 

cell components design is of importance since it increases the efficiency during 

performance. 
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In the literature there is still a missing link for membranes (a component of fuel cells) 

working at high temperature (above 80 ˚C) due to dehydration which results in lowered 

conductivity and finally reduced performances. With this in mind this study is intended at 

making a contribution to the on-going research in membranes that are reliable and durable 

for the functioning of fuel cells by proposing three novel polyphosphazene structures. 

1.2. Overview and History of Fuel Cells 

Fuel cells are electrochemical devices that convert chemical energy directly to electricity 

through redox reactions by consuming a fuel and an oxidant.[10] When compared to the 

other traditional energy like internal combustion engines it has very high efficiencies since 

the energy conversion process bypasses the intermediate paths of first converting the 

chemical energy to heat energy then to mechanical energy before finally converting the 

energy to electricity.[11] 

Research on fuel cells was started since 1839 by Sir W. Grooves when he used four cells 

each with hydrogen and oxygen as shown in Figure 1 below so as to produce electricity. He 

further demonstrated how the electricity produced could also be used to split the water 

formed to hydrogen and oxygen.[12] However it was only until 1950’s that the alkaline fuel 

cells were first used commercially by NASA’s space programs[13] to generate power for 

probes, satellites and space capsules. Since then, fuel cell use has increased and still more 

investigations are on-going in order to improve its performance and develop other 

economical materials in order to reduce its overall costs. Later on, using these basic 

principles many different and complex types of fuel cells have been manufactured to cater 

for applications which range from small to large scale. 
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Figure 1: A schematic of the first fuel cell that was built by Sir W. Grooves to produce electricity[12] 

1.3. Classification of Fuel Cells 

Although there are several types of fuel cells they basically work from the same principle 

of redox reaction arising from supplying fuels (pure hydrogen, hydrogen carbon fuels or 

chemical hydrides) on the anode side, and oxidant (oxygen or air) on the cathode side. Fuel 

cells have been classified as depending on the temperature of their operation and also 

according to the type of electrolytes used, the latter is as observed from the Table 1 below. 

They are namely: alkaline fuel cell (AFC), proton exchange membrane fuel cell (PEMFC), 

direct methanol fuel cell (DMFC), phosphoric acid fuel cell (PAFC), molten carbonate fuel 

cell (MCFC), and solid oxide fuel cell (SOFC).[14] The table also summarizes their 

applications, the basic reactions occurring at their electrodes, and more characteristics. The 

polymer exchange membrane fuel cell (PEMFC) which operates at low temperatures is the 

main focus of this thesis and its electrolyte will be discussed in more detail in later 

chapters.  
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Table 1: Features of different types of fuel cells[10]  

 

1.4. Proton Exchange Membrane Fuel Cells 

1.4.1. Overview and Main Components 

PEMFC are categorized as low-temperature fuel cell for the reason that they usually 

operate in temperature ranges between 80-120 
°
C. This temperature range is advantageous 

for many applications such as use in stationary, portable systems and transportation which 

require quick start-up temperatures especially in the latter application.[9] Other reasons 

why this system is preferred is high power densities, high efficiencies, and above all clean 

by-product which is water. Despite these advantages PEMFC still has some shortcomings 

in issues related to heat and water management which usually limit the operating power[14] 

of a practical system. In addition to this, the relatively low operation temperatures poses a 

problem of carbon attack [15] on the catalyst which directly affects the performance of fuel 

cells. 

The main components of a single cell PEMFC consists of the membrane electrode 

assembly (MEA), the catalyst layer, the backing layer /gas diffusion layer (GDL) and the 

current collectors as shown in Figure 2 below. The current collectors (bipolar plates) 

basically have two functions to provide flow for the gas though the channels engraved in it 

and also to collect current as the name suggests. The GDL is fabricated from carbon cloth 
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or carbon paper and is usually porous in the thickness range of 100-300 μm. Its main 

purpose is to facilitate the diffusion of reactant and product gases at the electrodes and also 

transport electrons to and from the catalyst layer. At the times of high humidity it controls 

the hydration of the membrane since it is coated with Teflon for wet-proof. This Teflon 

layer also facilitates the removal of product water at the cathode electrode to prevent 

flooding.[9]  

The catalyst layer located at the interface between the membrane and the GDL stimulates 

each of the half reaction at both electrodes and is also simultaneously involved in ion and 

electron conduction. The catalyst mostly in use is Platinum which is a very costly material 

therefore it is utilized in the form of particles spread out on carbon-based powder in order 

to increase the surface area available for the reactions. The main concern is to reduce the 

amount of platinum loading and also develop other platinum-based catalyst while at the 

same time achieve better fuel cell performance.[16] To improve the ionic transport to and 

from the electrolyte membrane a considerable amount of ionomer is added to the catalyst 

layer during the MEA fabrication.[17]  

 

Figure 2: Components of a PEMFC. The zoomed view is of the MEA and the backing layers[12]
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The anode and cathode provide the sites for the oxidation and reduction of the reactant 

gases respectively which later on recombine to form water. Finally, the membrane separates 

the reactants and the products from crossing over to the opposite side, facilitates the protons 

from the anode to the cathode and acts as a barrier for preventing electrons from crossing 

over. 

The performance of fuel cells is characterized by the current-voltage graph as shown below 

in Figure 3 during the operation period. The three major regions in the figure point out to 

the causes of voltage losses with the first one coming from the slow reaction kinetics at the 

cathode. The mid-region is represented by losses occurring due to internal resistance and 

also membrane and electrode resistance to flow of ions. In the last region, losses are mainly 

due to the transport limitations in the gas diffusion layer. 

 

Figure 3: Graph showing the performance of a typical PEMFC[18]
 

 

Therefore, it is of great importance that emphasis be put in the design of all the fuel cell 

components so as to ensure both the durability and also better performance for the fuel cell. 
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1.4.2. Proton Exchange Membranes 

The reliability and durability of the membrane are major concerns due to the fact that most 

of the PEMFC failures occurs as a result of its degradation.[9] Table 2 below outlines some 

of the characteristics required for PEMFC membranes however at no one time have all 

these properties been accommodated in one particular membrane [19] which necessitates a 

give and take in some of the characteristics. 

Table 2 : Characteristics of a desired membrane for PEMFC[19] 

Essential Function-related 

low permeability to fuel and 

oxidant 

high proton conductivity (~0.1 S·cm
-1

) 

good interfacial properties capability of fabrication into MEA’s 

good mechanical stability (dry and 

hydrated state) 

water management (For those using water as the 

proton conducting species) 

low electronic conductivity  

good thermal and chemical 

stability 

 

low cost  

 

Materials for membranes can be categorized into three groups: perfluorinated ionomers (or 

partially perfluorinated) and their blends, non-fluorinated hydrocarbons (including aliphatic 

or aromatic structures), and acid-base complexes [20] and example of the classified 

membranes can be seen in the Figure 4 below.  
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Figure 4: Broad classification of the types of membranes [20] 

Perfluorinated ionomers and partially perfluorinated have their structure comprising of 

hydrocarbon and fluorocarbon bonds which are known to be very stable in terms of 

chemical and thermal properties. The non-fluorinated polymers usually comprise of carbon 

backbone and have also been extensively investigated in order to bridge the gap left by the 

first category of membranes.  

For proper functioning the membranes must have specific requirements that can be 

combined so as to survive the harsh fuel cell environment. There is many on-going research 

in order to fully exploit the possibilities of coming up with the best performing membrane. 

1.4.3. Nafion
®
 Membranes 

The major breakthrough in fuel cell technology was with the discovery of the now state-of-

the-art membrane Nafion
® 

by DuPont Company in the 1970s. Nafion
® 

is a perfluorinated 

sulfonic acid membrane which has been extensively studied owing to its better specific 

conductivity and long lifetime as membranes for fuel cells.[20]
. 

Many reviews have on 

many occasions highlighted its structural and physical properties, transport properties and 

application.[21], [22]  

Its extraordinary structure combines the PTFE-like backbone, ion clusters consisting of 

sulfonic acid and a side chains that connects the two previous regions and is as shown in 

Figure 4 below. These structural properties ensure a high chemical inertness against both 

oxidative and reductive environments, durability of about 60,000 h.[23] and also high 

protonic conductivities of as high as 0.2 S/cm in well-humidified conditions[24]
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Figure 5: Chemical structure of Nafion®. [22] 

Even with these outstanding characteristics of Nafion
®
 it is hard to overlook the problem of 

degradation that these perfluorinated membranes incur which affect their long-term 

durability. There have been reported cases of membrane thinning and fluoride ion detection 

in the product water which indicate that the polymer undergoes chemical attack.[21] 

Additional worries include its high cost [51], structural instability at temperatures above 

100 ˚C [52], lower conductivity at lower relative humidity, and safety problem during 

synthesis.[25],[26] These drawbacks have prompted for a need to find alternative 

membranes that are cheaper than PFSA, Rirukawa and Sanui in their review [27] have 

supported the fact that compromises need to be made for material lifetime and mechanical 

properties as long as cost factors are commercially realistic. Many approaches have been 

dealt with and some have been discussed in the following parts of this thesis.
 

1.4.4. Nafion
®
 Modification and Alternative Membranes for PEMFC 

To establish better properties for Nafion
®

, approaches like polymeric blend membranes and 

polymer/inorganic composite membranes are being investigated.[28] Of these two methods, 

use of polymer inorganic membranes has caught the greatest interest due to the fact that 

there are many inorganic additives that can be used at higher temperatures than the pure 

Nafion
®
 itself. These inorganic particles promote higher proton conductivities, better 

mechanical support and even higher water retention abilities at high temperatures.[29] 

Nafion-based composite proton exchange membranes have been prepared using a wide 

range of fillers such as SiO2, zirconium phosphate, phosphotungestic acid[30] 

molibdophosphoric acid, organically modified silicates, silane based fillers and zeolites. 

The Table 3 below summarizes effects of the fillers on the conductivity performance of the 

modified Nafion membranes.  
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Table 3: Effects of Nafion modification on the conductivity performance[29]  

 

 

Polymer blending techniques cited in the literature include use of PBI[31], PANI[32], 

vinylidene fluoride-co-hexafluoropropylene polymer,[33] PVDF [34] and so on in order to 

improve the performances of Nafion
®
 at higher temperatures. Examples of such polymer 

blends are shown in the Figure 6 below. With blending, the overall product characteristic is 

most of the time dependent on the volume fraction of the individual components, therefore 

careful tailoring of the process should be done so as to keep the desired characteristics of 

both the components.  

 

Figure 6: Some examples of Nafion blends studied [31],[32] 
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Another approach has been use of alternative membranes such as non-fluorinated 

hydrocarbons, and acid-base complexes,[20] however most of these new membranes are 

not naturally conductive and therefore require addition of acid moieties like sulfonic acid, 

phosphoric acid, phosphonic acid, and sulfonimide units so as to convert them to proton 

exchange membranes. 

Hydrocarbons which can be either aliphatic or aromatic are another promising group since 

they can be easily available, are cheap and permits the introduction of polar sites as pendant 

groups.[35] These polar sites gives full control to the required water uptake since the type 

and amount attached can be carefully tailored. The backbones of aliphatic hydrocarbons are 

inclined to undergo attacks and to prevent this aromatic side chains are incorporated in 

order to protect the main chain. In this way stability at higher temperatures is enhanced and 

in other cases conduction of protons has been promoted when the bulky group is in the 

backbone.[23] 

Acid-base complexes on the other hand involve integration of an acid group into alkaline 

polymers in order to boost the proton conductivity. They have been seen as a possible 

alternative since they do not suffer from dehydration and therefore can maintain 

conductivity at elevated temperatures.[23] 

Inexpensive materials such as polyimides,[36] poly (ether ether ketones),[37] and 

polybenzimidazole [26] have been studied at large however none of them has emerged to 

surpass Nafion
® 

so far. Some of them usually fail due to excessive swelling, poor oxidative 

stability, moderate proton conductivity, brittleness when dry and so on. Others like 

sulfonated poly (ether ketones) and polybenzimidazole have been noted to possess an 

electro-osmotic drag that is lower than that in Nafion
® 

[25] however long-term stability still 

remains a concern for them. Other aromatic polymers like phosphazene [38] have been 

studied however there is not much reported in the literature about their application of fuel 

cells. 

Another approach to fabricate membranes has been through radiation induced grafting of 

polymers with functionalized monomers. The grafting is usually initiated by electron-beam, 

γ-ray, and ultraviolet (UV) light irradiation or by plasma and this creates active sites from 
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where the functionalized polymers can be incorporated after which sulfonation is carried 

out to introduce sulfonic acid groups. This technique has been observed to have several 

advantages one of which is the elimination of chemical initiators or catalyst use during the 

membrane fabrication and also the easy control of degree of grafting and sulfonation. [39]. 

In their review Gürsel et al. [40] have discussed the many factors that may affect this 

technique which include the choice of base polymer, nature of radiation, irradiation dose 

and dose rate and so on. Several base polymers have been extensively explored using this 

method examples of which include FEP, ETFE, PVDF, PTFE and PFA [41],[42],[43],[44], 

[45],[46],[47] and so on using simultaneous and pre-irradiation techniques. From the 

several base polymers studied it was observed in the literature that FEP-based radiation 

grafted membranes had comparable fuel cell characteristics to that of Nafion
®
 112 

membranes [48], [49]. ETFE-based membranes also demonstrated lifetimes of the order of 

1000 h before substantial degradation was noticed,[50],[51]. This radiation grafted 

technique is still being developed and so far has shown some promise from the latest 

literature reports. 
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2. POLYPHOSPHAZENE BASED MEMBRANES FOR FUEL CELL 

APPLICATIONS 

 

2.1. Overview of Polyphosphazene 

Polyphosphazene belong to inorganic polymer group and have a –P=N- polymer 

backbone which when compared to that of carbon based chains are less restricted due to 

their bonding angles. The bond angle of (PCl2N)n at phosphorus (N-P-N) is 115°, and the 

angle at nitrogen (P-N-P) is 131° as depicted in Figure 7 below [52]. Bond lengths in the 

skeleton also affect the bond torsional mobility, and the longer the bond lengths, the 

smaller will be the torsional barrier energy. The P-N in (PCl2N)n is 1.67 Å which is longer 

than that of the C-C bond length (1.54 Å) in linear alkanes. As a consequence, they have 

high segmental mobility and low glass transition temperatures [53]. They can also be 

combined with numerous side chains such as organic, organometallic, or even inorganic 

units, a property which has favored them for applications such as solid polymer electrolytes 

for batteries, membranes for gas and liquid separations, optically active polymers, and 

proton exchange membranes for fuel cells [54]. Their hydrophilic backbone has also been 

useful for applications that require water soluble properties such as for biomaterials and 

phosphazene hydrogels. In addition to these they have also been extensively used as flame 

retardants additives, performance polymers and so on.[55]  

 

Figure 7: Illustration of the bond angles (˚) and bond lengths (Å) in (PCl2N)n [52]. 

The discovery of polyphosphazene is owed to H.N.Stokes who in 1895 managed to 

synthesize hexachlorocyclotriphosphazene ([NPCl2]3) through thermal ring opening 

polymerization. However, since the product was hydrolytically unstable it could not be 
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used for any technological applications. It was not until 1960’s that Allcock and Kugel et 

al. successfully synthesized a linear, poly (dichlorophosphazene) by carefully controlling 

the time and temperature for the thermal ring opening polymerization of 

hexachlorocyclotriphosphazene.[56] Replacing the chlorine atoms (which caused the 

hydrolytic instability though its highly reactive polar phosphorus–chlorine bonds) with 

organic or organometallic nucleophiles further resulted in hydrolytically stable, soluble and 

high molecular weight polyphosphazene products as shown in Figure 8 below. 

 

 

Figure 8: Scheme showing the synthesis of various types of polyphosphazenes. [55]
 

Ever since, in order to overcome the drawbacks inherent in ring-opening polymerization 

other methods such as living polymerizations and so on had to be discovered. The table 

below shows the summary of the other methods developed and their characteristics. 
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Table 4: The summary of polyphosphazene synthesis methods and their characteristics. [57]  

Synthesis method  Reactions Characteristics* 

Thermal ring 

opening   
Allcock

1-3 N3P3Cl6 (1)250 °C
 

High MW, broad PDI 

Condensation 

polymerization 
De Jaeger

1-3
 Cl3P NP(O)Cl2 (1)  

MW=10
3
 D,  PDI 

=1.5-3.0 

Condensation 

polymerization many researchers 
PCl5 + NH4Cl (1)

 

Medium MW, very 

broad PDI 

Living anionic 

polymerization 
Matyjaszewski

1-3
 (RO)3P NSiMe3 (1)  

Medium MW, PDI= 

1.3-2.4 

Living cationic 

polymerization 
Manner, 

Allcock
1-3 

Cl3P NSiMe3 (1)

 

Controlled MW up to 

10 D, narrow PDI 

close to 1 
*MW: number average molar mass in g/mol; PDI: polydispersity index (ideal is 1); D: Dalton (unit 

for molecular weight) 

 

2.2. Polyphosphazene Based Membranes for Fuel Cells 

With the on-going search for other materials for membranes, polyphosphazene has attracted 

some attention for membranes of fuel cells. However the biggest challenge with 

polyphosphazene is that they have poor mechanical properties and also their backbone is 

quite hydrophilic due to the presence of the nitrogen atoms with their lone-pair electrons. 

As previously discussed different side chains may be integrated to change the overall 

properties the Table 5 below shows example of these side groups and their effects. 
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Table 5: Side groups of polyphosphazenes related to their properties and applications. [55] 

 

Hydrophobic side chains can therefore be added to act as a shield for the skeletal atoms 

from hydrolytic breakdown and also at the same time allow the surface structure of the 

product to be dominated by the hydrophobic characteristics. Examples of different side 

groups that have been shown in the table above to promote hydrophobic properties to 

phosphazene include fluoroalkoxy, aryloxy ororganosilicon side groups.[58] 

The mechanical properties of polyphosphazenes to be used for fuel cell applications can be 

improved with appropriate side groups that are able to hinder the backbone flexibility.[56] 

Some studies have shown that aromatics and substituted aromatic side groups can hinder 

backbone rotations and provide a polymer material with a higher Tg [55] which is a wanted 

property. An example of this behavior has been documented for polyphosphazenes that 

bear aryloxy substituents.[56],[59] These aryloxy side groups restrict the re-orientational 

freedom of the polymer backbone due to their steric bulk and rigidity; they raise the glass 

transition temperature and improve the mechanical strength of a polymer.[59] 

Throughout the literature there are very few reports of phosphazene membranes that have 

been tested in in situ fuel cell environment despite the fact that very good ex situ proton 

exchange membrane properties have been reported. A well referred to example is the 

sulfonamide polyphosphazene membrane that was fabricated and tested by Allcock and 

Lvov [60]. They reported an IEC value of 0.99 mmol/g, equilibrium water swelling of 42%, 
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and a proton conductivity of 0.058 S/cm. The in situ performance was as shown below in 

Figure 9 and although the membrane had performances comparable to that of Nafion, there 

was no long-term stability analysis reported a step very important in evaluation of 

membranes for fuel cells. 

 

Figure 9: Hydrogen fuel-cell performance curves with a sulfonimide polyphosphazene proton exchange 

membrane at (a) 22 ˚C and (b) 80 ˚C[60] 

 

2.3. Acid Functionalized Polyphosphazene Membranes 

Proton exchange membranes should have protogenic functionality that facilitates proton 

conductivity. For aryloxy polyphosphazene this is achieved by addition of functional 

groups such as phosphonic acid [61], sulfonic acid [54],[56], and sulfonamide units [60] to 

the aryloxy side groups. It has been widely observed that these named functional groups 

impart different water retention, and proton conduction to the membranes. For instance, 

Lvov et al. in their study [61] have showed that phosphonic acid had lower water uptake 

values and conductivity compared to both sulfonimide based and sulfonic acid based 

polyphosphazene despite having a higher IEC value than both. The reason could be due to 

phosphonic acid being less hydrophobic than the others resulting in less water uptake and 

conductivity values.  

Of these all, sulfonation is the most widely used and the sulfonating agents include sulfuric 

acid, oleum and chlorosulfonic acid. These agents are preferred because they usually react 

though electrophilic sulfonation which demonstrates effective sulfonation capability for 

aromatic compounds and its mechanism and its kinetics has been studied extensively.[62] 

Attempts to sulfonate aryloxy and arylamino polyphosphazene was carried out by Allcock 
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et al. [56] and they managed to obtain both water soluble and insoluble sulfonated products 

by varying the degrees of sulfonation from 5-100% by optimizing the durations and 

temperature of each process. 

 

Figure 10:Steps of the electrophilic sulfonation of aromatic polymer using SO3[63] 

In sulfonation using sulfur trioxide, the SO3 group which is present in the sulfonating 

agents reacts with the aromatic structure to produce crosslinked sulfonated products as can 

be illustrated in the Figure 10 above. However the backward reaction – desulfonation - can 

sometimes be favored in situations where there is presence of hot aqueous sulfuric acid. 

This necessitates the careful adjustments of the reaction parameters (duration, temperature, 

and so on) so as to strike a compromise between the starting material and product 

degradation. 

Sulfonation of membranes has been achieved so far though postsulfonation and also though 

direct sulfonation whereby polymerization of already sulfonated products is carried out 

[27]. The former is advantageous because it is easier to carry out however degree of 

sulfonation is difficult to control. There have also been reports of the possibility of 

desulfonation and partial degradation especially when strong agents are used [62]. In direct 

sulfonation unwanted side reactions can be easily controlled and there is better control over 

final material properties however there are issues with the starting polymer which resulted 

in polymer degradation in the reported trials.[54], [2] 
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For polyphosphazenes in the literature, both methods of sulfonation have been carried out. 

For the direct method where the acid functionality is assimilated at the polymer synthesis 

step Ganapathiappan et al. [25] though a two-step process managed to carry out sulfonation 

using disodium salts of 2-hydroxyethanesulfonic acid and 2-(2-methoxyethoxy)ethanol as 

illustrated below in Figure 11. 

 

Figure 11: Two-step direct sulfonation of polyphosphazene[64] 

 

Postsulfonation of poly[(aryloxy)phosphazenes] was first carried out by Pintauro and co-

workers and they used dichloroethane as the polymer solvent and sulfur trioxide as the 

sulfonating agent[65],[66],[67] as depicted in the Figure 12 below. In addition to SO3, other 

reagents such as sulfuric acid have also been used widely for post sulfonation processes. 

Part of this study will also investigate the use of sulfuric acid and other sulfonating agents 

for polyphosphazene membranes.  

 

Figure 12: Postsulfonation of aryloxy polyphosphazenes[65] 
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The sulfonic acid groups in the sulfonated products usually dissociate in the presence of 

water and therefore play a major role in proton conduction during the functioning of the 

fuel cell. Proton conduction has been explained in the literature by the vehicular and 

Grotthuss mechanism.[68] In the vehicular mechanism protons diffuse in the form of H3O
+ 

and H5O
+
 ions and so on present in the acidic aqueous medium. For the Grotthuss 

mechanism the protons hop from one hydrogen site to another by the breaking and 

reforming of hydrogen bonds. Kreuer has made a very good illustration as shown in Figure 

13 below so as to describe the proton mechanism. 

 

Figure 13: An illustration for proton conduction mechanism, the humans are representative for the water or 

base while the balls are protons [68] 

 

In most cases within the PEMFC these two mechanisms are in competition. For this 

particular N-heteroatom containing polymer, the nitrogen site in the heteroatom can be 

protonated by the sulfonic acid group thus enabling the hopping of the proton from one 

nitrogen site to another or from an oxygen atom of a sulfonate anion group to another by 

the Grotthuss mechanism. The two mechanisms could be playing a role simultaneously, 

however studies to find out which mechanism dominates has not been looked into at this 

level. 
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3. EXPERIMENTAL SECTION 

3.1. Materials  

The polyphosphazene polymers used were synthesized at Ahi Evran University, N-methyl-

2-pyrrolidone (NMP) (Sigma Aldrich, 99%), N-N-dimethylacetamide (DMAc) (Sigma 

Aldrich, 99%), chlorosulfonic acid (Fluka, 98%), sulfuric acid (Fluka, 98%), sodium 

hydroxide (Lab Kim, 99%), sodium chloride (Sigma Aldrich, 99.5%) and DuPont Nafion
®

 

115.  All the chemicals were used without further purification. 

3.2. Polymer Synthesis 

The poly (m-tolyloxy-co-4-pyridinoxy phosphazene) polymers have been synthesized at 

Ahi Evran University by Burak Yiğen under the supervision of Dr.Yunus KarataĢ and for 

more details please refer to the thesis or paper ―Synthesis of Poly (m-tolyloxy-co-4-

pyridinoxy phosphazene) s for Fuel Cell Applications‖ (in preparation). 

The polymer synthesis involves thee major steps which include the synthesis of the 

monomer, precursor polymer and the targeted polyphosphazene polymer. The monomer 

synthesis was carried out as shown in the Figure 14 below: 

 

 

Figure 14: Synthesis of the trichloro-(trimethylsilyl) phosphoranimine (monomer) 

 

The obtained monomer was then isolated by vacuum distillation and the purity checked by 

31
P-NMR before the next synthesis stage. Following this, the synthesis of the precursor 

polymer (polydichloro phosphazene) was performed via living cationic polymerization as 

summarized in the Figure 15 below: 
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Figure 15: Showing the synthesis of the precursor polymer PDCP 

 

Finally the PDCP was subjected to macromolecular substitution method with 4-pyridinoxy 

and 3-methyl phenoxy sodium salts to produce three polymers with varying side group 

ratios as shown in the Figure 16 below: 

 

P N

O

O x
P N

O

O

N

y

CH3

H3C

H3C

2) NaOC6H4CH3

1) NaOC5H4N

 polymers   x (%)     y (%) 
      P1           60         40
      P2           40         60 
      P3           20         80

P N

Cl

Cl n

dioxane - reflux

 

Figure 16: Macromolecular substitution of the PDCP to produce the targeted polymers (P1, P2 and P3) 
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3.3. Fabrication of Membranes 

3.3.1. Solution Casting 

The membranes were fabricated through solution casting and several solvents such as 

DMAc, THF and NMP were tried. Membrane properties like thickness and porosity were 

tailored by controlling the weight percentage of polymer put in solution and the 

temperature at which the casting process was done. After trying the different solvents the 

solvent preferred for most fabrication of membrane was DMAc and a known weight 

percentage of the polymer was dissolved in the solvent and casted in 

Polytetrafluoroethylene (PTFE) molds at 70 
°
C for 24-48 h after which they were removed 

from the mold.  

3.3.2. Sulfonation Experiments 

Post sulfonation approach was carried out for our polymers and the two sulfonating agents 

below were investigated to investigate the effect of sulfonation on the Poly (m-tolyloxy-co-

4-pyridinoxy phosphazene) based polymers. 

3.3.2.1. Chlorosulfonic Acid Sulfonation 

A known weight of the polymers was first dissolved in 50 mL of dichloromethane (DCM) 

and stirred for 24 h. at 50 ˚C to ensure all polymers is fully dissolved. Afterwards a given 

amount of chlorosulfonic acid in 10 mL of DCM was added drop-wise to the polymer 

solution in a dry nitrogen atmosphere as seen in the Figure 17 below. The inert atmosphere 

served to moderate the process which is otherwise quite exothermic due to the excessive 

reactivity of chlorosulfonic acid. 

 

Figure 17: Set up for the sulfonation process. 
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For the sulfonation process parameters optimized were the concentration of chlorosulfonic 

acid and the durations for the process. The process was optimized for the concentrations of 

0.04 mol, 0.02 mol, 0.01 mol and durations of 3 h, 1 h., 15 min. The resultant precipitate 

was stirred for 3 h in nitrogen atmosphere and followed by the addition of a NaOH solution 

to terminate the reaction. After evaporation of the solvent at 70 ˚C for 24 h, the polymer 

was then preconditioned by soaking sequentially in distilled water, 0.1 M NaOH, distilled 

water, 0.1 M HCl, and distilled water (each soaking for 48 h.). The resulting polymer 

product was then dried thoroughly and casted in DMAc to obtain the membrane. 

3.3.2.2. Sulfuric Acid Sulfonation 

3.3.2.2.1. Mild Sulfuric Acid Concentrations 

In this second method we again attempted several concentrations of sulfuric acid in order to 

check their effect on the sulfonation process. First of all, mild sulfonation using low 

concentrations of 1.0 M, 2.0 M and so on was used while also adjusting the duration for the 

process in order to study their effects. The membranes were basically soaked into the 

freshly prepared solutions for durations of 18-72 h and the outcome analyzed through 

different characterization methods. 

3.3.2.2.2. High Sulfuric Acid Concentrations 

Effect of higher concentrations of sulfuric acid on the polymers was also investigated and 

concentrated sulfuric acid (98%) was used for this part of the study. A weighted amount of 

polymer (either in its original form or as casted) was dissolved in concentrated sulfuric 

acid. The sulfuric acid acted both as a solvent in which the dissolution of the polymer 

occurred in the initial stages of the reaction and also as a sulfonating agent. A range of 

different temperatures and durations were employed and the effect of these two parameters 

on the overall process was studied. The sulfonation for the three different polymers at hand 

was optimized for different temperatures and durations as shown in the Table 6 below. 

The viscous polymer-acid solution was then cooled to room temperature by pouring onto 

ice in order to consume the heat of dilution. The solution formed a precipitate of the 

polymer and it was further isolated by centrifuging the solution. The polymers were then 

extensively washed under running water for several hours thoroughly till the pH was 
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neutral to remove the excess acid. This was followed by soaking the sulfonated polymer in 

0.1 M NaOH overnight to convert it to Na
+
 form and to decompose any sulfones resulting 

from any crosslinking reactions with the polymer. Next the sulfonated products were casted 

using DMAc and the membranes were soaked in distilled water in order to remove the 

residual solvent and then soaked in 1.0 M H2SO4 to further convert them from their salt 

form (Na
+
) to their acidic form (H

+
). The membranes were then rinsed with distilled water 

to remove any excess acid solution and dried at room temperature and stored till further 

characterization. 

Table 6: Showing the parameters used for the sulfonation process 

 

 

Temp. 

 (
°
C) 

Time at RT 

(min) 

Time at High 

Temp. (min) 

Total 

Time(min) 

A RT 30 0 30 

B 

 

45 0 45 

C 

 

60 0 60 

D 

 

90 0 90 

E 

 

120 0 120 

     F 65  15 0 15 

G 

 

30 0 30 

H 

 

45 0 45 

     J 65  30 30 60 

K 

 

60 60 120 

     L 90  60 60 120 

 

3.4. Polymer and Membrane Characterization 

3.4.1. Chemical Structure 

A Bruker Equinox 55 FTIR spectrometer equipped with an ATR system was used to 

conduct the FTIR study in order to check the molecular structure of the sulfonated and 

unsulfonated membranes. The study was done by 64 scans at a digital resolution of 4cm
-1

 

and over the range of 500-4000 cm
-1

. OPUS
TM

 software was used for the evaluation of 

resulting spectrums.  

NMR studies were carried out using the Unity Inova 500 spectrophotometer (Varian) for 
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1
H-NMR, 

13
C-NMR and 

31
P-NMR. The solvents used to dissolve the polymer samples 

were CdCl3 and DMSO-d6. The spectra were analyzed by MestReNova software. 

3.4.2. Thermal Properties 

Thermogravimetric analysis (TGA) was performed on Netzsch STA 449 C Jupiter 

simultaneous thermal analyzer where samples were heated in ceramic crucibles from room 

temperature to 700 ˚C at a rate of 10 ˚C/min under nitrogen purge. 

Differential scanning analysis (DSC) of the samples was performed using a Netzsch 

Phoenix DSC 204 differential scanning calorimeter with aluminium sample pans. In a 

nitrogen gas atmosphere the samples were subjected to a cooling stage at a rate of 10
°
C

 

/min from 25 ˚C to -100 ˚C followed by a first heating from -100 ˚C to 150 ˚C and a second 

cooling again to -100 ˚C. A second and final heating was done from -100 ˚C to 300 ˚C. In 

between the dynamic steps, isothermal steps of 5 min. were included so that the system 

attains stability after each cycle.
 

3.4.3. Mechanical Properties 

The mechanical property of the membranes was analyzed using the Netzsch DMA 242C 

dynamic mechanical analyzer. The samples were cut into 6.5 mm by 21 mm dimensions 

and the test was performed in tensile mode and the temperature profile varied from -60 ˚C 

to 100 ˚C at a 3 ˚C /min heating rate with a frequency of 1 Hz. 

3.4.4. Water Uptake and Ion Exchange Capacity (IEC) 

Before this fuel cell related properties were carried out, the reference membrane which is 

Nafion® 115 usually available in its inactivated form was first processed. The Nafion
®
 115 

was activated according to the standard procedure by boiling for 1 h in 3% solution of H2O2 

followed by 1 h in boiling 1.0 M sulfuric acid. The membranes were then rinsed in boiling 

distilled water for 1 h and this process was repeated twice in order to remove H2SO4.  

The fabricated membrane samples and the activated Nafion
®
 115 were then soaked in 

deionized water for 24 h. and then their weight was taken as W1. The samples were then 

dried at 70 ˚C for at least 8 h or until constant weight is achieved and then their weight 

recorded as W2. Water uptake was then calculated from the Equation 1 below: 
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       ……………………Equation 1 

   

IEC measurements on the other hand was carried out by soaking a known weight of 

Nafion
®
 115 and also that of the acidic form of the sulfonated membrane in 100 mL of a 

0.5 M KCl solution for 24 h and then 3-4, 20 mL aliquots were titrated with 0.05 M KOH 

using automatic titration equipment. The IEC of the sample was calculated according to the 

following Equation 2: 

100005.0 
dry

KOH

m

V
IEC  (meq/g)………………………..Equation 2 

KOHsaltdry V*05.0*1.38mm  (g) 

Where: 

0.05 (M) : concentration of KOH solution 

VKOH (mL) : volume of KOH solution consumed in titration 

mdry (g) : corrected weight of the membranes  

msalt (g) : dry weight of membranes in their salt form 

38.1(g/mol) : correction of the mass obtained by subtracting the molar mass of 

  hydrogen (1 g/mol) from the molar mass of potassium (39.1 g/mol) 

 

 

After calculation of the IEC values the degree of sulfonation was obtained from the 

Equation 3 below:  

Degree of Sulfonation (    
         

[             ]
……………………….. Equation 3 

Where: 

IEC  : Ion Exchange Capacity  

Mppzn  : Mass of the monomer-unit  

       : Mass of Sulfonic acid group 
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3.4.5. Proton Conductivity 

To check the proton conducting capability of the membranes produced, measurements were 

done from Gamry PCI4/750 Potentiostat/Galvanostat together with the BT-1005 BekkTech 

Scanning DC Software. The four-point-probe cell with two platinum foil outer current-

carrying electrodes and two platinum wire inner potential-sensing electrodes was mounted 

on a Teflon plate the schematic view of the cell is shown in Figure 18 below. The single 

cell Teflon set up can be seen in the Appendix. Membranes were soaked in water prior to 

measurement for 3 h and cut into 20 mm by 20 mm dimensions and set up in the BekkTech 

conductivity cell which was then placed in a faraday cage to shield the cell during 

measurement as shown in the Figure 17 below. The membrane thicknesses were 

determined and recorded in the software interface and the system was left to stabilize until 

consistent data started to be recorded. 

 

 

Figure 18: Setup used for conductivity measurements. The aluminium box acted as a faraday shield during the 

experiments  
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4. RESULTS AND DISCUSSION 

4.1. Fabrication of Membranes 

4.1.1. Solution Casting 

Both the sulfonated and pristine membranes were successfully prepared by solution casting 

in DMAc solvent. According to the literature polyphosphazene polymers have been casted 

by a wide range of solvents such as DMF, THF, NMP, and so on. Reports have shown that 

the type of solvent used plays a major role and generally affects the membrane properties 

like mechanical strength and proton conductivity. In a study by Kaliguine et al. [69] they 

claimed that the conductivity of sPEEK membranes decreased when DMF was used in 

comparison with other solvents. In their 
1
H-NMR analysis they reported that DMAc gave 

no evidence of hydrogen-bonded data in contrary to when DMF was used which bonds 

with –SO3H groups. Based on these findings the solution casting of all membranes in this 

study was done using DMAc. In the below Figure 19 the photos of the casted membranes 

are shown. After trying different conditions for temperature and duration for casting the 

membranes, it was observed that 70 ˚C and durations between 24- 48 h gave homogeneous 

and desired membranes.  

 

Figure 19: Solution casted membrane  

4.1.2. Sulfonation Experiments 

The sulfonation process involves the integration of the sulfonic acid groups into the aryloxy 

polyphosphazene. The sulfonic acid group integrated in the membrane is responsible for the 
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proton conduction and since the aim is to increase the conductivity of membranes it may be 

assumed that an increased amount of this group would result in maximum conductivity. 

However, this comes with a price since highly hydrophilic membranes which then become 

hydrogels [70] are formed with increasing levels of sulfonic acid groups leading to 

deterioration of the mechanical stability and other membrane properties like water uptake 

and conductivity. Therefore, a balance has to be found between the optimum amount of 

these side groups that will have both maximum conductivity and good water uptake and 

mechanical properties. 

The choice of sulfonation agent also played a very important role since these reagents like 

chlorosulfonic acid produce very highly sulfonated products yet at the same time cause 

cleavage to the polymer. With mild reagents polymer degradation was avoidable however 

the drawback was that the resulting membranes had somewhat low degrees of sulfonation 

and low proton conductivity. 

In precious works [71] there have been reports where polyphosphazenes were sulfonated by 

use of chlorosulfonic acid to produce membranes with promising fuel cell characteristics 

however, attempts to use it for the sulfonation of the poly (m-tolyloxy-co-4-pyridinoxy 

phosphazene) polymers in this work failed. The sulfonated products were robust in nature 

due to the crosslinking that resulted in the incorporation of the sulfonyl chloride group to 

the aromatic structure [72] as shown in the Figure 20 below. The products underwent 

dissolution during the preconditioning stage and therefore this method was discarded. 

 

Figure 20: The mechanism for the sulfonation using chlorosulfonic acid [72]  
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During the chlorosulfonation all the parameters shown in the Table 7 below were optimized 

but did not work and no final products were obtained.  

Table 7: Showing the conditions optimized for the process, x represents not successful. 

 0.04 mol 0.02 mol 0.01 mol 

180 min x x x 

60 min x x x 

15 min x x x 

 

This reagent was too harsh for the polymers and probably caused cleavage on the backbone 

which resulted in drastic loss of molecular weight of the polymer. The attack may also have 

occurred at the initial stages after the dissociation of chlorosulfonic acid into intermediates 

thereby forming a complex between SO3 and the backbone nitrogen atoms as illustrated in 

the Figure 21 below [73] before the sulfonation of the aromatic side groups of 

polyphosphazenes. The nitrogen atom in the pyridine side chain could also have succumbed 

to attack and by doing so contribute to the hydrolysis of the products also. This behavior is 

in agreement with some reports in the literature which have suggested that polymer 

degradation and crosslinking are the major problems associated with sulfonation using 

strong agents like chlorosulfonic acid and 100% H2SO4.[74]
 

During the sulfonation process, sulfone formation which is usually favored at low 

temperatures may have occurred and contributed to the crosslinking of the polymers. The 

tendency of its formation has been reported to increase in the order of 97.4% H2SO4 <100% 

H2SO4<<HSO3Cl [74] for the different reagents. We therefore concluded that 

chlorosulfonic acid was unsuitable for all the three polymers of this study and sulfuric acid 

was employed in the subsequent reactions. 
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Figure 21: Steps involved in the sulfonation of aryloxy phosphazenes 

 

In the second method which involved use of mild concentration of sulfuric acid the 

membranes were soaked in low concentrations of sulfuric acid as described in the previous 

chapter. The resultant membranes did not show signs of dissolution in the sulfonation 

media and after rinsing it was observed that the membranes hardened and became brittle. 

FTIR studies carried out gave very weak signals and so this method, although being milder 

than chlorosulfonic acid was discarded for fabrication of the targeted membranes for fuel 

cell studies. 

As explained in the above sections the tendency for crosslinking side reactions was 

decreased when sulfuric acid that was not 100% was used when compared to the other 

reagents. From observations during the sulfonation of PEEK, several groups did report that 

by using 95-98% sulfuric acid which contains little percent of water, the crosslinking 

presumably resulting from the sulfone groups decreased because the H2O decomposes the 

aryl pyrosulfate intermediate that is responsible for sulfone formation.[74]  

This reagent was used for all three polymers however, only one of them (P1) showed 

promising results and several parameters were optimized for it. The other two polymers (P2 

and P3) underwent hydrolysis during the pre-conditioning steps and even with slight 

modifications in the method used for sulfonation[75] there was no improvement in the 

results. By looking at Gleria’s model as shown in Figure 19 above and from the fact that 

there is an increasing amount of pyridinoxy in the polymers from P1>P2>P3 we can 

speculate that in addition to the backbone nitrogen lone pair the nitrogen at this side group 

is also attacked. Its electronegative nature attracts hydrogen from surroundings this in turn 
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resulted in increased hydrophilicity of the membranes produced which then led to their 

hydrolysis during the preconditioning stages.  

4.2. Chemical Structure 

4.2.1. FTIR Results 

The pristine polymers which contained increasing ratios of pyridinoxy side group in the 

order of P4>P1>P2>P3 were investigated for their chemical structure. Here P4 contains 

100% of the tolyloxy group with zero amount of the pyridinoxy side group. The structural 

properties of both the pristine polymers and the sulfonated membranes were investigated 

using the FTIR. The polymers had varied amounts of pyridine containing side groups and 

the difference was observable as shown in the Figure 22 below. At 3000-3200 cm
-1

 

stretching bands for C-H belonging to the benzene aromatic structure can be seen 

overlapping with those from the CH3 at around 2800-3000 cm
-1

. Aromatic C=C stretch 

were also seen at around 1600 cm
-1

 and 1500 cm
-1

. Signals associated to C=N stretching 

bonds were seen at 1420 cm
-1

 in addition to the weak band at 3300-3500 cm
-1

.  

At 3000-3200 cm
-1 

stretching bands can be seen C-H belonging to the benzene aromatic 

structure overlapping with those from the CH3 at around 2800-3000 cm
-1

. A look at Figure 

22 shows that at around 850 cm
-1

 we have the methyl group decreasing in the  

P4>P1>P2>P3 as depicted by the formulas for the polymers. Aryl-N can be assigned to the 

signal at 1200-1250 cm
-1 

which increases with the pyridinoxy group while other stretching 

of pyridine peaks are seen at 1600 cm
-1

, 1420 cm
-1

. Understanding the structure of the 

pristine polymers provided a baseline for the changes that occurred during the sulfonation 

process. 
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Figure 22 : FTIR results for the pristine polymers 

 

Sulfonated polymer membranes showed extra peaks that were associated with the 

modification that occurred during this optimization. The FTIR study for the different 

optimized parameters has been discussed below and some of the figures are as displayed in 

the Appendix 2 and 3. The effect of temperature, time and temperature application modes 

have been investigated in this study 

From the Figure 23 below new peaks at ~ 1300 cm
-1

 represented the O=S=O asymmetric 

stretching which is an indication that sulfonic group was integrated. However, since these 

sulfonation processes were carried out for longer durations and higher temperatures extra 

doublet peaks were observed at around 2350 cm
-1 

which was associated with the P-O-H 

indicating some attack to the phosphazene backbone. This behavior is most severe for the 

condition L (which is described Table 5 in experimental chapter) due to the length and 

higher temperature. A look also reveals a decrease in the peak signal at 1240 cm
-1

 which is 

attributed to C-N and is seen in the spectra for all the conditions. 
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Figure 23: The effect of step-wise sulfonation by inducing both room temp., and higher temperature 

Sulfonation at 65 ˚C for J: 30+30 min, K: 60+60 min. Sulfonation at 90 ˚C for L: 60+60 min 

 

The broad band observed at 3250-3700 cm
-1

 was attributed to O-H stretching bands due to 

the interaction of the sulfonic acid with molecular water. However, major differences in the 

relative intensities may have been due to many reasons one of which being the effect of 

humidity during the measurements and also samples from different batches of starting 

material. Another viable reason could also be due to the variations in sample thicknesses, 

low polymer concentrations and also low IR-absorption coefficients[70]  

The effect of different durations for medium temperatures 65 
°
C was investigated and again 

sulfonic acids with varying intensities were observed at 1300 cm
-1 

as seen in the Appendix. 

It seems that the intensities of these peaks are increasing, a trend which is expected because 

the polymer’s interaction with the sulfonation reagents increases and this result in more 

incorporation of the sulfonic group. [76]. However, again as much as this may be a desired 

outcome so as to increase the conductivity of the membranes the fact that there is extended 

interaction with the reagent results in P-O-H associated peaks. 
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More FTIR spectra for comparison of the different parameters such as room temperature 

sulfonation processes at different durations as seen in the figures in the Appendix; O=S=O 

groups were integrated and O-H broad bands was also visible. 

4.2.2. NMR Results 

In addition to FTIR the structural properties of the polymers was also investigated by the 

NMR. In agreement with the FTIR it was seen that sulfonic groups were incorporated into 

the structure for different sulfonation parameters. Indications of polymer degradation were 

also seen from some of the spectra from the disappearance of the aromatic groups 

completely from the 
1
H-NMR spectra. The Spectra below show the outcome of the 

processes in more detail. 

There are  two different  types of hydrogen  in the  Structure those from methyl group and 

those from benzene ring. The methyl group hydrogen  have been assigned peaks at 1.82 

ppm and those that come from the benzene ring to the 6.37-6.75 ppm broad peak. The 

splitting at this broad peak is also due to the influence of the magnetic field coming form 

the pyridine side group. The extra peak at 8 is also attributed from the hydrogen in the 

pyridine peak and as can be seen its intensity increases in the order P1>P2>P3 as the 

pyridinoxy side group increases. The Figure 24 below gives the 
1
H-NMR for the pristine 

polymers.  

 

Figure 24: the 
1
H-NMR spectra of pristine polymers 
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The 
1
H-NMR was also used in order to check the success of the sulfonation process and to 

analyze the post process structure. The spectra for the process carried out at 65 ˚C was 

investigated and shown as follows in Figure 25: 

 

Figure 25: 
1
H-NMR for membranes sulfonated at 65 ˚C. F: 15 min, G: 30 min, H: 45 min 

 

When compared to the pristine polymer it can be seen that a new peak due to the 

incorporation of SO3H occurs at 3.59 with a downfield shift as the degree of sulfonation 

decreases. Its intensity was seen to increase with the increase in sulfonation time an 

indication that the number of substitutions increase and its position was also seen to shift. 

The intensity of the protons on the benzene ring is also seen to decrease as the degree of 

sulfonation is increasing while the one associated with pyridine ring at 8 is seen to 

disappear. An explanation to the peaks that are responsible for pyridine shifting upfield 

could because of the co-ordination to nitrogen atom resulting in decrease in the electron 

density of the ring. 

Sulfonation at room temperature spectra is as shown below in Figure 26 and it can be 

observed that the chemical shift assigned to SO3H is at around 2.5 ppm.  
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Figure 26: 
1
H-NMR for membranes sulfonated at room temperature. A: 30 min, B: 45 min, D: 90 min, E: 120 

min. 

 

Steric hindrance due to the presence of the bulky methyl group on the benzene ring was 

also evident from the spectra. Again here we see the signal associated with pyridine ring at 

8 ppm to disappear.  

To check whether there was degradation in the sulfonated membranes in addition to the 
1
H-

NMR, 
31

P-NMR was also used. The latter gives much clearer understanding since only the 

phosphorous element is considered. 
31

P-NMR of membranes sulfonated using the step-wise 

method were carried out and the results are shown in the Figure 27 below: 
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Figure 27: 
31

P-NMR showing the backbone degradations for harsh sulfonation conditions. Sulfonation at 65 

˚C for J: 30+30 min, K: 60+60 min. 

 

As observed that there was some degradation of the backbone for some of the harsh 

sulfonation conditions as seen from the decrease in the intensity assigned to the tolyloxy 

side group as was predicted from the Gleria model previously discussed. New peaks could 

also be seen to form upfield to around 10 ppm and these could be associated to the P-O-H-

related products resulting from attack of the backbone by hydrolysis. The broadening of the 

initial peaks is an indication of the overall backbone degradation that is occurring in the 

membranes.     

4.3. Thermal Properties 

Heat which is usually a by-product of the fuel cell reaction may result in degradation of fuel 

cell components and this therefore necessitates that these components be able to withstand 

this heat without a decrease in their performance. Membranes are prone to thermal 

degradation due to the detachment of the sulfonic group or decomposition of its polymer 



40 

 

backbone and also due to thermo-hydrolytic chain scissions. The membrane must have very 

good thermal stability in order to maintain its performance at high temperatures. The 

conductivity and other properties like water uptake usually depend highly on the thermal 

properties of the membrane as has been shown in the literature [25], [77]. In this section the 

thermal properties were investigated for both the pristine polymer and their sulfonated 

counterparts. 

4.3.1. DSC Results 

The reported DSC data were those of the final heating since the first heating was performed 

in order to erase the thermal history of the samples which would otherwise mislead during 

the analysis stage. Analysis was done for both the pristine and sulfonated polymers. It was 

observed from the Figure 28 below that as the heteroatom containing group increased from 

P1 to P2 to P3, the glass transition of the polymers increased from -16.31 
°
C to -11.29 

°
C to 

-8.51 
°
C respectively. 
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Figure 28: Illustration of the Tg of the pristine membranes 

The effect of time and also different temperature application methods have been 

investigated in this study. As can be seen in the Figure 29 below the Tg of the polymer 

increased after the sulfonation process and the new Tg values are as summarized in the 

Table 8. The increase in the Tg values is as a result the restriction in the polymer chains of 
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the product induced by the intermolecular interactions by hydrogen bonding which hinder 

rotations of polymers. 
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Figure 29: The DSC of Sulfonated membranes where P1: pristine polymer, A: 30 min_RT, C: 60 min_RT, E: 

120 min_RT, J: 30+30 @ 65 ˚C, K: 60+60 @ 65 ˚C 

The Tg of the sulfonated polymers was seen to increase with the duration as well as the time 

for the process as depicted in the Table 8 below. For elongated durations the polymer had a 

longer interaction with the reagent resulting in more incorporation of the sulfonic acid 

group which is responsible for causing an increase in the structural rigidity of the polymer. 

This is an anticipated characteristic because it is a clear indication of the improved 

mechanical property of the membranes a desired outcome. 

Table 8: Values of the Tg values for the sulfonated polymers in comparison with the pristine polymer  

Polymer Glass Transition Temperature ( ˚C) 

P1 -16.3 

A 3.3 

C 4.6 

E 10.0 

J 11.5 

K 13.6 

 

Also as was observed with the combined effect of longer time and higher temperatures it 

was observed that the increase in Tg was enormous compared to when only one of this 
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parameter was adjusted. This effect observed at higher temperatures sulfonation is due to 

the effect of the increased reaction kinetics that temperature plays by decreasing the 

activation energy hence favoring the sulfonation process and resulting in increased Tg.  

4.3.2. TGA Results 

The Pristine polymers were seen to have very good thermal stability and experienced two-

step decomposition. The backbone was seen to start decomposing at temperatures about 

400 
°
C while a second stage was observed at around 100 

°
C and the second weight loss was 

credited to the decomposition of the pyridinoxy side group as shown in the Figure 30 

below.  
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Figure 30: Illustration of the mass loss of pristine polymers  

The exact values of the decompositions were tabulated as seen below: 

Table 9 : Mass Losses of the pristine polymers 

Polymer 1
st
 Decomposition (%) 2

nd
 Decomposition (%) Residual Mass (%) 

P1 4.58 44.34 41.77 

P2 1.14 40.84 39.93 

P3 1.88 21.35 34.12 
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The thermal stability changes occurring for sulfonated membranes was investigated and the 

following Figure 29 shows the behavior of the membranes sulfonated at 65 
°
C. With the 

integration of sulfonic acid group we expect an extra weight loss due to the its dissociation 

at temperatures starting from around 240 
°
C [78],[77]. The mass loss seems to increase as 

the sulfonation time increases from 15 min to 30 min as seen in the Figure 31 below; this is 

expected because sulfonation increases with increase in time. In this study it was difficult to 

distinguish between the mass loss associated with the evolution of water and that of the 

sulfonic acid groups possibly due to low degrees of sulfonation. The % mass losses have 

therefore been shown in the Table 9 below. It was observed that the residual masses values 

were close to those of the pristine polymer which is a good indication that sulfonation does 

not deteriorate the membrane properties.  
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Figure 31: Sulfonation at 65 ˚C for different durations P1: pristine polymer, F: 15 min, G: 30 min 

The results for room temperature sulfonation have also been shown in the Figure 30 below. 

If compared to the high temperature sulfonation we generally see a much less first stage 

mass loss which is according to our expectation. Similarly due to small mass losses the 

values have been reported in the Table 10 below. 
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Table 10: Mass loss for sulfonated membranes. 

 

Sulfonated membrane 1
st
 Mass Loss (%) 

(Sulfonic acid detachment) 

2
nd

Mass Loss (%) 

(Backbone degradation) 

Residual Mass 

(%) 

A 0.29 35.39 40.30 

B 7.80 36.35 37.77 

E 0.22 35.39 40.30 

F 4.85 31.49 44.45 

G 6.09 29.99 52.29 

 

Also in this case the residual masses were close to those of the pristine polymer which is a 

good indication that sulfonation does not deteriorate the membrane properties. The polymer 

backbone degradation temperatures did not change much from the sulfonation process as 

observed in the Figure 32 above and this is a good property because membranes need to 

have good thermal stability. We can therefore conclude that the sulfonated membranes also 

had good thermal properties as their pristine ones. 
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Figure 32: TGA analysis of membranes sulfonated at room temperature. P1: pristine polymer, A: 30 min, B: 

45 min, C: 60 min, D: 90 min, E: 120 min  

4.4. Mechanical Properties 

The DMA which uses forced vibrations to study the viscoelastic response of a sample was 

used and from the resulting graphs the storage and loss modulus (E’ and E‖) and damping 

coefficient (tan δ) of a material as a function of temperature and frequency were 
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determined. The loss modulus E‖ represents the energy dissipated as heat for a material, 

while the storage modulus E’ represents the stored energy. The ratio E‖/E’ represents the 

tan δ which is the ratio of energy lost per cycle to the maximum energy stored and therefore 

recovered per cycle. [79] 

In the Figure 33 below it was observed that the storage modulus is decreasing and the drop 

in the modulus indicates that the polymer undergoes a transition from the glassy stage to 

the rubbery stage which is normally referred to as the α-transition or simply Tg. The 

temperature of the Tg can be exacted from the first peak of the tan δ curve from the Figure 

33 below. It was observed that the membranes had decreasing E’ values as the duration of 

sulfonation increases and this is expected because the stiffness of the membranes decreases 

as process time decreases from E to B. Sulfonation process done at 65 ˚C for 15 min 

yielded very close values to the membrane prepared at 60 min at room temperature. 

From the tan δ graph two peaks were seen, and while the first one indicated the Tg of the 

membranes the other peak could have been due to phase separation which occurred by 

spinodal decomposition during the solvent evaporation at the solution casting stage. The 

effect of this is seen to increase as the sulfonation conditions become harsher and this can 

be disadvantageous because it results in un-reproducible degree of sulfonation due to 

possible phase separation of polymer chains from the reaction mixture [80] [80][80] 

Therefore a compromise has to be stricken between the parameters optimized so as to 

obtain both mechanically stable and highly performing membranes. 

The Tg values obtained from the DSC and DMA for example for membrane E (120 

min_RT) was observed to be 7.2 ˚C and 9.9 ˚C respectively. This is according to 

expectation since this transition occurs over a wide range and is usually affected by the 

method of determination. For DMA measurements many parameters such as frequency 

affect the value of Tg. 
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Figure 33: The dynamic mechanical analysis some membranes. Left graph shows the variation of storage 

modulus while the right graph shows the variation of tan δ with temperature. B: 45 min_RT, D: 90 min_RT, 

E: 120 min_RT, F: 15 min_65 ˚C.  

4.5. Water uptake and IEC 

Water content is important in a fuel cell environment as it aids the acidic groups to 

dissociate and therefore enables proton conductivity. As degree of sulfonation increases the 

hydrophilicity of the membranes is expected to increase and this may result in highly 

swollen membranes. For this reason, an optimum degree should be achieved so that the 

membranes contain just enough water uptake capacity to facilitate conductivity yet at the 

same time to maintain the mechanical stability during functioning. It is expected due to the 

nitrogen containing hetero-atomic structure that water uptake capacity will be high and for 

this reason we may expect excessive swelling of some membranes. Depending on the 

sulfonation procedures the membranes showed a wide range of water uptake values. Water 

uptake was seen to increase for both cases of temperatures, however for 65 ˚C sulfonation 

process the effect of both the temperature and time resulted in a rapid increase than that 

observed at room temperature. Figure 34 below showed that for longer times such as 45 

min and higher temperature of 65 ˚C very high water uptakes were observed resulting in 

highly swollen membranes which were not suitable for this application. Room temperature 

sulfonation conditions also showed the same trend as shown in Figure 35 below. 
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IEC is also dependent on the sulfonation conditions because it directly conveys information 

about how much of the sulfonic groups have been introduced into the structure. The IEC 

values were obtained though back titration and the values compared to Nafion® which is 

the reference sample.  
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Figure 34: The water uptake and IEC for membranes sulfonated at 65 ˚C. F: 15 min, G: 30 min, H: 45 min. 
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Figure 35: The water uptake and IEC for membranes sulfonated at room temperature. A: 30  min, B: 45  min, D: 90 min, E: 120 min. 
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According to the literature, the reported IEC value of Nafion® is 0.91 mmol/g; in our 

results as tabulated below in Table 11 we were able to obtain values close to that of the 

literature and the values obtained from the rest of the membranes were also tabulated. From 

the IEC values the degree of sulfonation which shows the number of sulfonic acid 

integrated into the membrane was calculated from the equations shown previously. It was 

observed that as the duration for the different temperature increased there was an increasing 

trend in the degree of sulfonation which is an expected result. More time means more 

interaction of sample with the reagents however after a certain threshold there was a drop in 

these values due to deteriorating of membrane property.  

Table 11: IEC and water uptake values for the membranes for membranes sulfonated at room temperature for 

different durations (A: 30 min, B: 45 min, C: 60 min, D: 90 min, E: 120 min) and at 65 ˚C (F: 15 min, G: 30 

min, H: 45 min)   

Membranes IEC (meq/g) DS (eq/kg) Water Uptake (%) 

A 0.42 0.11 10.8 

B 1.08 0.30 14.3 

C 0.13 0.03 21.9 

D 0.26 0.07 9.9 

E 0.19 0.05 28.0 

F 0.13 0.03 17.0 

G 0.52 0.14 23.1 

H 0.83 0.23 77.6 

Nafion® 115 (Exp.) 0.87 - 

 Nafion® 115 (Lit.) 0.91 - 

  

As reported in the literature polymer swelling behavior is directly related to IEC of the 

membranes [71] an increasing trend of the IEC and water uptake was observed however 

some conditions did not agree well with this expectation. A reason to this could be that 

during these measurements it is assumed that the measured portion of the sample is a 

representative of the whole sample yet it can be due to non-uniform distribution of the 

sulfonic acid groups on the membrane that caused such variations between these data. 

4.6. Proton Conductivity 

The proton conductivity is the ability of the membrane to conduct protons and is the most 

important characterization for fuel cell. The ex situ conductivity gives a rough idea of the 

performance of the membrane.  It is desirable for fuel cell membranes to have as high 
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conductivity as possible but this usually comes with the deteriorating of other membrane 

properties like water uptake and mechanical properties therefore a balance needs to be 

achieved between all these properties. The Figure 36 shows the conductivity for some of 

the fabricated membranes and was compared to the reference sample which was Nafion
®
. 
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Figure 36: The conductivity of room temperature sulfonated membranes in comparison to Nafion® 115. A: 

30 min, B: 45 min, D: 90 min, E: 120 min.  

 

The variation of conductivity with time was seen to increase however longer sulfonation 

durations resulted in a drop in the conductivity. As the duration increased the number of 

sulfonic acid group which are responsible for the proton conduction increase hence the 

upward trend. For longer durations, factors like polymer degradation and increased water 

uptake values which result in loss of mechanical stability begin to set in and despite the 

high levels of sulfonic acid sites available, conductivity deteriorates. The obtained 

conductivity values for shorter time durations were compared to those of Nafion® 115. 

There was an increase in conductivity as the duration for the process increased however for 

much longer times the conductivity suddenly dropped as can be seen in the Figure 36 

above. The reason for this could be the fact that the conductivity measurements were taken 

for long durations to attain stability from the very high fluctuations at the beginning, which 

resulted in the membranes losing their dimension stability as can be observed from Figure 
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37 below. This could be the main contributing factor the sudden drop of the conductivity in 

the figure given above as the durations for sulfonation increased.  

 

Figure 37: Resulting membrane after conductivity measurement of membranes with high water uptake. 
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5. CONCLUSION & FUTURE WORK 

The main objective of this study was to investigate the capability of the proposed novel 

polyphosphazenes to act as fuel cell membranes. The synthesized polymers were 

functionalized though sulfonation using different reagents and some were ruled out due to 

their unsuitability. Two of the polymers (P2 and P3) did not pass the sulfonation test and 

therefore the rest of the study was focused on the polymer with the lowest pyridine 

containing side group. It can be concluded from here that the increase in this pyridine 

amount in the phosphazene resulted in hydrolytically unstable membranes in these highly 

acidic conditions which underwent dissolution during the fabrication steps. P1 showed 

promising results because free standing sulfonated membranes were attained after the 

functionalization process. The sulfonated membranes were then characterized by means of 

FTIR and NMR in order to check the incorporation of the sulfonic groups. Thermal 

analysis was also carried out and they revealed that the obtained membranes did not lose 

their thermal stability after sulfonation when compared to the pristine polymers and this 

was a desired characteristic. The mechanical properties of the tested membranes showed 

that phase separation occurred which is an unwanted thing due to the deterioration it causes 

to functionality of membranes.  

The objectives and findings arrived at in this work have been summarized as below: 

o Effect of heteroatom-containing side chain – increased levels of heteroatom side 

group resulted in hydrolytically unstable membranes.  

o Effect of temperature and time durations were seen to be important since they 

directly controlled the hydrophillicity of the products formed.  

o From the NMR anf FTIR we were able to deduce that polymer degradation occured 

for longer durations and higher temperature processes 

o Effect of reagent-This was observed after trying both chlorosulfonic acid and 

sulfuric acid and the former was seento be harsh for the polymers in this study since 

it resulted in polymer degradation and chain cleavage due to unwanted side 

reactions. 

o DSC measurements showed increased Tg values, thus we can conclude that 

membranes had improved mechanical properties which is a desired  property 
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o An increasing trend was observed in the IEC, water uptake and conductivity 

measurements, an expected outcome due to the increase in the sulfonic acid group 

incorporated in the membrane. Further increase resulted in deteriorating properties 

due to membrane degradation and loss of mechanical stability.  

o Membranes fabricated in this work had comparable fuel cell characteristics to those 

of other membranes in the literature and also to Nafion® 

o As a final conclusion P1 was seen to yield promising results and sulfonation process 

carried out at low and average temperatures for short durations resulted in good 

overall results. 

 

Future Works 

After the ex situ characterizations the next step was to carry out in situ characterizations in 

order to check the performance of the membranes in an actual fuel cell environment. 

However due to starting material and hardware constraints such measurements could not be 

carried out at the Sabanci University and will be carried forward as part of the future work. 

The fuel cell equipment available as seen in the Appendix 1 as A.4 requires a membrane an 

active area of 25 cm
2
 and since less material was available there will be need to design a 

much smaller measurement set up appropriate for our type of membrane. 

The polyphosphazenes with higher heteroatom containing pyridinoxy- side chain on the 

main chain apparently didn’t work as PEMs. The heteroatom effect thus could not be 

systematically investigated due to this drawback. Therefore, a new polyphosphazene 

architecture again containing heteroatom that will resist to these aggressive sulfonation 

conditions could be designed and investigated for this purpose. 

Another preposition regarding improvement of the polymers (P1 and P2) that did not give 

good results could be crosslinking or blending so as to form composite membranes which 

could improve their processability.  
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APPENDIX 

ADDITIONAL FTIR DATA FOR SULFONATED MEMBRANES 

Figure A.1 and A.2 show the FTIR graphs for additional parameters that were tried. All 

showed the presence of sulfonic acid groups at 1300 cm
-1

 as was shown in the other 

conditions discussed previously. 
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Figure A. 1: Room temperature sulfonation for different durations A: 30 min, C: 60 min, E: 120 min. 
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Figure A. 2: Sulfonation for different durations at 65 ˚C. F: 15 min, G: 30 min, H: 45 min 
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FOUR PROBE CONDUCTIVITY MEASUREMENT COMPONENTS 

 

 Figure A. 3: The single BekkTech
®
 cell for four point probe conductivity 

 

 

Figure A. 4: The Fuel cell set up available at Sabanci University 
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