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Abstract 

A one-pot microwave-assisted synthesis method was developed to produce scalable 

carbon nanofiber (CNF) supported platinum nanoparticle catalysts through an in-situ 

polymer-based technique. CNF-supported Pt samples were synthesized through 

electrospinning of poly(acrylonitrile-co-N-vinylpyrrolidone) (P(AN-co-nVP)) 

copolymer containing PtCl2 salt and consequent microwave reduction within hydrazine 

hydrate solution and carbonization. The aim of this study was to achieve a precise control 

on the size and distribution of the Pt nanoparticles by benefiting from a copolymer 

random templating and rapid microwave reduction. Prior to the application of microwave 

reduction on nanofibers, the pure effect of various carbonization temperatures (from 

600 ̊C up to 1000 ̊C) on growth of Pt particles was studied. The carbonization at 800 ̊C 

was observed to represent a homogenous particle size distribution and the highest 

electroactive surface area (ECSA). Two types of samples were synthesized using 

microwave-assisted reduction – CNT-free and CNT-containing. The microwave 

irradiation for various time intervals (15s – 120s) was applied on both the CNT-free and 

the CNT-containing electrospun nanofibers with PtCl2. By selectively changing the 

process conditions, the minimum average size of 1.751 nm in diameter was obtained in 

the case of CNT-free samples while 0.862 nm nanoparticles with a narrow size 

distribution was achieved for the CNT-containing samples for the first time. The mean 

Pt particle size was increased as a function of microwave irradiation time. The ECSA 

values obtained for CNT-free samples demonstrated a maximum activity for sample 

treated for 30 s, despite the smaller Pt particle size in the 15 s-treated sample. This 

behavior was attributed to the lower amount of accessible Pt particles on the fiber surface. 

In the case of CNT-containing samples the best catalytic activity (82.55 m2g-1) was 

observed for 15s microwave reduction, which was hypothesized to be as a result of the 

significantly higher number of Pt cluster nucleated near the surface of the CNFs, a higher 

surface area due to the presence of CNTs and a higher electrical conductivity. 

Keywords: Copolymer, electrospinning, platinum catalyst, carbon nanofiber, carbon 

nanotube, PEM fuel cell 
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Özet 

Bu çalışmada, polimer-kökenli karbon nanofiber (CNF)/platin (Pt) nanoparçacık 

katalizör malzemelerin büyük ölçekli üretimini sağlayabilecek mikrodalga-esaslı bir 

yöntem geliştirilmiştir. CNF-destekli Pt katalizör örnekler, poli(akrilonitril-co-N-

vinilpirrolidon) (P(AN-co-nVP)) ve PtCl2 tuzunun birlikte elektrodokunması ve elde 

edilen nanofiber matlarının hidrazin çözeltisi içinde mikrodalga yardımıyla indirgeme ve 

sonradaki karbonizasyon işlemleriyle sentezlenmiştir. Bu çalışmanın amacı, kopolimerin 

Pt+ dağılımını sağlayacak yapısından ve mikrodalga yardımıyla ani indirgeme işleminde 

faydalanarak, Pt nanoparçacık boyut ve dağılımlarını kontrol edebilmektir. Mikrodalga 

ile indirgeme işleminden önce, karbonizasyon sıcaklığının (600 – 1000 ̊C) Pt 

parçacılarının büyümesi üzerine etkileri incelenmiştir. Bu çalışma sonucu, 800 ̊C’deki 

karbonizasyon işlemi ile homojen parçacık dağılımı elde edilebildiği ve bu örneklerin, 

diğer sıcaklıklarda üretilen örneklerle karşılaştırıldığında, en yüksek elektroaktif yüzey 

alanına (ECSA) sahip örnekler olduğu gözlemlenmiştir. Mikrodalga yardımıyla iki tür 

örnek sentezlenmiştir: CNT-içermeyen ve CNT-içeren. Farklı sürelerde mikrodalga 

ışıması, her iki tür elektrodokunmuş nanofiber/PtCl2 örneklerine uygulanarak 

nanoparçacık indirgemesi gerçekleştirilmiştir. Farklı süreç değişkenlerinin 

optimizasyonu sonucunda, CNT-içermeyen örnekler üzerinde ortalama çapı 1.751 nm 

olan, CNT-içeren örnekler üzerinde ise ortalama çapı 0.862 nm olan nanoparçacıklar 

başarıyla sentezlenmiştir. Ortalama Pt parçacık boyutunun uygulanan mikrodalga süresi 

ile arttığı gözlemlenmiştir. 15 s mikrodalga ışımasına maruz bırakılan örneklerde Pt 

parçacık boyutu daha küçük olmasına rağmen, 30 s işlem gören örnekler daha yüksek 

elektroaktif yüzey alanına sahiptir. Bu durum 15 s işlem gören örneklerde fiber 

yüzeyinde erişilebilir Pt parçacığının daha az olması ile açıklanabilir. CNT-içeren 

örneklerde ise en yüksek katalitik aktivite (82.55 m2/g) 15 s işlem görmüş örneklerde 

gözlemlenmiştir. Bu sonucun, CNT’nin de yardımıyla yüzeyde daha fazla Pt 

nanoparçacığının yer almasından ve elektriksel iletkenliğin daha yüksek olmasından 

kaynaklandığı düşünülmektedir. 

 

Anahtar kelimeler: kopolimer, elektrodokuma, platin katalizör, karbon nanofiber, 

karbon nanotüp, PEM yakıt hücresi  
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Introduction 

Platinum (Pt) with an exclusive catalytic activity for oxidation and reduction reactions 

has been intensively investigated in various applications including fuel cells [1]–[3]. 

Since the specific surface area of Pt has a key role in its performance, several studies 

have been conducted to decrease the size of Pt particles [4]. Nevertheless, obtaining a 

proper control on the catalyst particle size and distribution has always been one of the 

major issues for scientific community [5]. Most of the conventional methods for 

production of carbon-supported Pt materials, such as wet impregnation and chemical 

reduction techniques, do not usually offer a precise control on the size and dispersion of 

the particles as well as a strong bonding between particles and carbon support [4]. To 

address these drawbacks, several alternative methods such as sonochemical [6], [7] and 

microemulsion [8] techniques, which are capable of producing more uniform catalyst 

particles, have been developed. Although these techniques decrease the probability of 

agglomeration of produced particles, the need for achieving a reasonably isolated Pt 

clusters with a strong attachment to the carbon support remains unsatisfied. Free 

nanoparticles are always prone to reaggregate and lose their desired performances. Thus, 

an effective production method is required to both synthesize finer Pt nanoparticles and 

establish a strong interaction between the nanoparticles and the carbon support. It is 

found that, the most practical way is to employ polymer-based fabrication of catalytic 

nanocomposites to control the particle size [9]–[11]. So far, various types of polymers 

have been utilized to develop specific regular structures of polymer-metal particle 

nanocomposites [12], [13]. The polymeric framework either sterically stabilizes the 

metallic catalyst particles or electrostatically binds to the metal ions by forming ligands 

[11], [14]. Among several types of stabilizing polymers, polyethylene oxide (PEO) [9], 

[10] and polyvinyl pyrrolidone (PVP) [11]–[13], [15]–[17] have been the most frequently 

utilized ones. It is reported that PVP and metal cations form complexes through donation 

of lone pair electrons from carbonyl oxygen and nitrogen to metal cations [11]. 

Generally, the process of stabilizing metallic particles is reported to be carried out 

through two main procedures, entitled as “ex-situ” and “in-situ” [18]–[21]. In the case of 

the ex-situ method, synthesized metallic nanoparticles are dispersed within a polymeric 

solution right after production [22], [23]. The particles with a thin overlaying polymeric 

layer are then precipitated in a non-solvent. This method is more widely employed in 
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various applications, compared to its in-situ counterpart. Almost any type of metallic 

nanoparticles can be protected using various kinds of polymers since there is no need for 

chemical coordination and compatibility between particle precursor and the polymer 

[22], [23]. Although fine and uniformly distributed catalyst nanoparticles are produced 

through ex-situ process, the particles are prone to aggregate upon several uses or heat 

treatments [24], [25]. To avoid this problem, the in-situ method could be employed to 

achieve more control on the size and distribution of the nanoparticles [26]–[28]. In this 

approach, the nanoparticle synthesis and stabilization with a polymeric material are 

conduced simultaneously. Metal precursors create a chemical coordination with a 

functional polymer; therefore, they can uniformly distribute throughout the polymer and 

remain inside this polymer matrix (no precipitations). Upon application of a reduction 

procedure, the metallic clusters are locally produced while they are trapped within a 

polymeric skeleton. Therefore, their shape, size and distribution are significantly 

dependent on the composition and architecture of the carrying polymer. 

Copolymerization enables distribution of a specific polar monomer throughout another 

supporting polymeric matrix. In this case, the polar monomers can locally coordinate 

with the metal precursors and evenly distribute them within the supporting polymeric 

matrix. This phenomenon is known as “micellization”, which gives rise to a precise and 

effective isolation and dispersion of the catalysts [29]. During subsequent reduction, a 

noble metal supported polymeric structure could be achieved, with a narrow particle size 

distribution. By adjusting the input molar ratio of the monomers, the final architecture of 

the copolymer could be tuned (block, random and etc.) [30]. Therefore, the catalyst 

particles produced via in-situ method using an appropriate copolymer helps to make the 

particles considerably stable against aggregation. Consequently, the size and distribution 

of the particles could be accurately controlled in the atomic level by tuning of the 

structure of hosting copolymer. For fuel cell applications, it is necessary to have catalyst 

particles supported by a high surface area carbon material, such as carbon nanofibers 

(CNF) and carbon nanotubes (CNT). Therefore, polyacrylonitrile (PAN) was chosen in 

this study due to its high carbon yield and well electrospinnability and the 

vinylpyrrolidone (VP) units were randomly incorporated into this polymer to coordinate 

with metal precursors and disperse them throughout the AN matrix [31], [32]. The VP as 

a “bifunctional” monomer can coordinate with both organic and inorganic substances. 
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The vinyl ends can polymerize with AN units and on the other hand, O and N, existing 

in its 5-membered lactam end, electrostatically interact the metal cations [33].  

Electrospinning is a versatile technique that can meet the primary needs of in-situ 

synthesis method in terms of producing applicable nanofiber. Electrospinning develops 

continuous long polymeric fibers through an electrically charged jet of polymer solution. 

As a result, a porous film, consisted of an interwoven web of continuous nanofibers, is 

achieved [34]. Since electrospinning is a quite fast and simple process to produce 

nanostructures, production of electrode materials with lower Pt loading for fuel cells can 

be achieved economically in industrial scale [35], [36]. It is stated that substituting 

conventional carbon particles with one-dimensional carbon nanomaterials (CNTs or 

CNFs) leads to a long-haul electron transfer in the electrodes; therefore, the catalyst 

utilization increases [37]. So far, numerous investigations have been devoted to the 

decoration of noble catalyst particles over CNTs or other carbonaceous materials; 

however, there are a limited number of documents allocated to the decoration of CNFs 

[38]. Amongst those few studies, there are only a few reports on the use of in-situ method 

[39]–[42]. In most of the in-situ based studies, scientists have only used a single polymer 

(PAN) structure rather than a copolymer to stabilize the catalyst particles. However, an 

even particle size distribution was not achieved using the PAN homopolymer [43], [44]. 

This signifies the significant role of the polar units within the copolymers for localizing 

the catalyst atoms. In a study by Demir et al. [5], using the in-situ technique, the PdCl2 

was distributed within the electrospun poly(acrylonitrile-co-acrylic acid) copolymer and 

reduced by hydrazine hydrate solution. It was found that, the size of Pt nanoparticles 

could be tuned using different amounts of acrylic acid functional groups and PdCl2 in the 

primary solution. In another work, the effect of the molecular architecture of the 

copolymer on the size and distribution of the Au particles was investigated [45]. It was 

observed that, using diblock template of a poly(styrene-b-2-vinylpyridine) copolymer, 

an ordered array of Au nanoparticles of 6 nm in diameter and 30 nm apart from each 

other, could be achieved. Distribution of Pd nanoparticles throughout poly(styrene-co-

acrylonitrile) copolymer was also studied and Pd nanoparticles in the particle range of 

30-40nm were achieved [27]. Nevertheless, despite achieving a good control on 

distribution of the nanoparticles, the average particle size that could be obtained is not 

less than 3nm in all the reported studies. An efficient reducing protocol must be 
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developed to reduce the localized precursors in a shorter time not letting them to grow 

further. Therefore, the microwave-assisted techniques, which have always provided a 

rapid synthesis method in various areas, were utilized in this study.  

 

1.1. Preventing nanoparticle agglomeration via polymer-assisted 

stabilization 

Achieving a good control on the size and distribution of the synthesized nanoparticles, is 

one the most challenging topics due to their relatively high surface energy. In spite of 

various efforts to discover an effective method to take control over the size of synthesized 

nanoparticles, there is still a rising demand to develop precisely controllable techniques. 

One of the most effective strategies for overcoming sintering problem of the 

nanoparticles is the well-known polymer-assisted stabilization of the particles [44]. 

Applying a shell of polymer over the nanoparticles gives rise to the significantly 

decreased aggregation of nanoparticles, since a polymeric layer can satisfy the high 

surface energy of the particles. By simply tuning the molecular architecture of the 

polymers, especially through copolymerization or adjusting their molecular weight, it 

would be possible to control the size of the nanoparticles within the polymeric shell. 

Generally, there are two main strategies to control the size distribution of the 

nanoparticles by means of polymers. Firstly, the nanoparticles could be synthesized and 

then become dispersed within a polymeric solution and finally precipitating in a non-

solvent solution (ex-situ method). Since, almost all types of nanoparticles could be 

stabilized by means of various polymers, the ex-situ technique is known as of the most 

continent method. For example, the Au covered with a polymer monolayer was reported. 

Spherical Au nanoparticles stabilized by grafted poly(N-isopropylacrylamide) (PNIPA) 

were synthesized via a controlled radical polymerization technique. The NIPA was 

started its polymerization from the surface of Au nanoparticles. The average diameter of 

the obtained Au nano-cores was about 3.2 nm [46]. 

In the second approach, the metal nanoparticle precursor can create a complex with the 

hosting polymer (copolymer) and subsequently be reduced by a desiring technique, while 

it is already entrapped within a polymeric matrix. This method that combines the 

nanoparticle synthesis and the nanoparticle coating into a single process is called “in-
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situ” method. The in-situ methods have been getting a significant attention compared to 

the ex-situ technique, due to a better capability of controlling the size and distribution of 

the nanoparticles. In fact, the polymeric matrix acts both as a template for nanoparticle 

synthesis and stabilization. Once a copolymer is employed, the polar units in the 

copolymer establish a electrostatic binding with the surface of nanoparticle precursor and 

manage the desired distribution of the particles and on the other hand, the nonpolar 

polymeric units offer stabilization via steric bulk of their framework [9], [10] [11], [15]–

[17]. For instance, polyvinylpyrrolidone (PVP) is one of the most well-known polymer 

that is frequently used to prevent particle aggregation, due to its ability to bind with 

metallic ions [13]. It was observed that the Pt nanoparticles produced with the aid of PVP 

have been considerably smaller than that of particles synthesized without PVP. 

Furthermore, it is reported that the catalysts particles produced this way demonstrate 

greater active surface area.  

In the in-situ method, copolymers are utilized to control the arrangement of metallic 

catalysts on nanometer scale [47]. The specific architecture of copolymers can help the 

formation of an ordered arrangement for the nanoparticles as well as stabilization [48]. 

For instance, block copolymers, that are consisted of distinct blocks that bind to the 

nanoparticle surface or nanoparticle precursors and the other blocks that just manage the 

solubility and steric stabilization, have been recently reported [49]. This type of precise 

control over the growth of nanoparticles is called “nanoreactor” approach in which the 

polar block (unit) can localize the precursors to phase-segregated nanoscale regions (Fig. 

1). In fact, the morphology and size of the provided nanoparticles could be adjusted 

through tuning of the size and shape of the “nanoreactors” via regulation of the 

composition and size of the utilized polymers [50].  
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Fig.1. Schematic image of a block copolymer, which is used to stabilize the nanoparticles 

[47].  

 

 

Monodisperse CdS nanoparticles with a controlled sizes were stabilized using a double-

hydrophilic block copolymer of poly(ethylene glycol) and poly(ethylene imine). It was 

observed that the CdS nanoparticles were spread out as distinct units and represented a 

high oxidation resistance due to the protecting polymer layer. The size of the particles 

was observed to be adjustable from 2 nm to 4 nm based on polymer concentration and 

solvent type [51].  

Based on the application, the polymer-stabilized nanoparticles can be produced in a bulk 

film or fiber format. To produce polymer/metal composite fibers in a nano or micro scale, 

the electrospinning method could be employed. In this regard, Yang [52] et al. produced 

a PAN nanofiber containing Ag nanoparticles by electrospinning of Ag precursor 

containing PAN solution. It was reported that, just by changing the molar ratio of the 

AgNO3/PAN, the size of the Ag nanoparticles could be tuned in the range of 3.5nm-10 

nm [31]. The average diameter of the polyimide fibers including silver trifluoroacetate 

was also reported to be reduced regarding the metal concentration. Also, the number of 

Ag nanoparticles was increased by increasing the amount of Ag precursor [32]. During 

another investigation, the PVP was utilized to stabilize Ag nanoparticles through two 

different ways. Firstly, the Ag containing PVP polymer solution was directly electrospun. 

The DMF was used both as a solvent of PVP and a reducing agent for Ag+ ions. In the 

second route, first the PVP-coated Ag nanoparticles were synthesized and then dispersed 

in poly(vinyl alcohol) (PVA) solution and finally electrospun (5 wt.% of the PVP 
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containing Ag nanoparticles). The electron microscopy images of the PVP nanofibers 

presented in Fig. 2. The Ag nanoparticles were all spherical and in the range of 3.4 nm.  

 

 

Fig.2. (a) SEM and (b) TEM images of the PVP nanofibers obtained from 47 wt.% PVP- 

0.5 wt.% AgNO3 [53]. 

 

Fig. 3 also shows the electron microscopy images of the PVP nanofibers containing 

extremely higher amount of Ag precursor (15 wt.% of AgNO3). It is observed that the 

average size of the nanofibers has reduced compared to the 0.5 wt.% Ag containing 

nanofibers, which was attributed to the increased charge density over the fibers during 

electrospinning [53]. The average Ag particle size was calculated to be 4.6 nm in these 

fibers, which suggested the ability of the PVP polymer to efficiently stabilize the Ag 

nanoparticles.  
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Fig.3. (a) SEM and (b) TEM images of the PVP nanofibers obtained from 47 wt.% PVP- 

15 wt.% AgNO3 [53]. 

 

The PVA nanofibers including PVP-coated Ag nanoparticles could be observed in Fig. 

4.  In these fibers, the wt.% ratio of PVA/PVP-coated Ag is 95/5 and therefore, the overall 

amount of Ag is equivalent to 0.5 wt.%. It was observed that the Ag nanoparticles were 

uniformly scattered throughout the PVA nanofibers possessing a diameter of around 6 

nm, slightly larger than that of the 47 wt.% PVP- 15 wt.% AgNO3 nanofibers. This 

phenomenon advocates the fact that the Ag nanoparticles were well-stabilized by PVP 

during electrospinning process. Furthermore, the final PVA nanofibers retain good 

mechanical properties. 

 

Fig.4. TEM images of the PVA nanofibers containing 5 wt.% of PVP-coated Ag 

nanoparticles with equavalent 0.5 wt.% of Ag within the nanofibers [53]. 
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A single-step approach was devised to prepare Au nanoparticles (10 nm) out of 

HAuCl4.xH2O through air-saturated aqueous solutions containing poly(ethylene oxide)-

poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer [54]. 

Overall molecular weight and relative block length of the block copolymer mainly 

controlled the formation of Au nanoparticles. Fig. 5 demonstrates the TEM image and 

the Au nanoparticle size distribution histogram. It is observed that the rounded Au 

nanoparticles in the sizes less than 8.3 nm were achieved.   

 

 

 

Fig.5. TEM image and size distributions histogram of Au-(PEO-PPO-PEO), (scale bar= 

100nm) [54]. 

 

Monodispersed Au nanoparticles (15-30nm) were produced using 

poly(mercaptomethylstyrene-co-N-vinyl-2-pyrrolidone) (MMS-NVP) [55]. Production 

of Au nanoparticles was also compared with samples prepared using PVP and PAN 

polymers (Fig. 6).  
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Fig.6. TEM images and size distributions of Au nanoparticles prepared through KBH4 

reduction in the presence of: a) PVP, b) PAN, and c) MMS-NVP. (Polymer/Au = 20:1 

mol/mol, KBH4/Au = 10:1 mol/mol, DMF/water = 9:1 v/v) [55]. 

 

The Au precursor was HAuCl4. It was found that finer Au nanoparticles could be 

obtained by accelerating the reduction rate of [AuCl4]+ ions by a polymer, such as PVP, 

to absorb these ions. Additionally, the Au nanoparticles with the size of around 20 nm 

were synthesized using KBH4 reducing agent. 

 

In addition to Au nanoparticles, due to the high importance of Pd and Pt nanoparticles in 

various applications such as fuel cells, these particles also were produced through 

stabilization by appropriate polymers or copolymers. For instance, poly(styrene-co-

acrylonitrile) copolymer was employed to produce electrospun fibers containing Pd 

nanoparticles [27]. It was observed that the nanofibers with a diameter of 200 nm and the 

Pd nanoparticles of 30-40 nm were achieved. In a similar study, carbon nanofibers 

containing Pd nanoparticles were produced through electrospinning of polymeric 

solution/PdCl2 and the following thermal treatment in argon [110]. During an air-

stabilization step at 300 ˚C, the Pd cations entrapped inside the electrospun PAN 

nanofibers were transformed to PdO nanoparticles smaller 10 nm. In another work, the 

production of Pd containing PAN nanofibers was also reported. The heat-treated PAN 

nanofibers at 500˚C demonstrated a mean particle size of 40 nm [103]. In a study by 

Zhang et al. [111] Pd–Co containing PAN-based nanofibers were synthesized through 
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reduction by sodium borohydride and thermal treatments. It was observed that, by 

thermal treatment at higher temperatures, the final particle sizes were increased. The 8.9 

nm nanoparticles in size, synthesized at 300˚C, agglomerated to 13.8 nm at 700˚C. 

Through another analogous study, carbon nanofibers supporting Pd nanoparticles by 

means of carbonization of electrospun PAN nanofibers embedding Pd(Ac)2 precursor 

was synthesized [56]. Heat treatments demonstrated the reduction of Pd (carbothermal 

reduction) and aggregation into tiny particles within the nanofibers. The average size of 

nanoparticles was around 5nm. By heat treatment at 600˚C, the size of Pd nanoparticles 

was increased to 15 nm. Through treatment at the 800˚C, the Pd particle sizes were 30 

nm and aggregated over the fiber surfaces. Upon heating till 1100˚C, particles continued 

sintering on the fiber surfaces up to 50-350 nm. 

 

To study the stabilizing effect of copolymers on nanoparticles, the Pd nanoparticles were 

synthesized via electrospinning of a copolymer of AN and acrylic acid (AA) containing 

PdCl2 and subsequently reduced in hydrazine [5]. It was observed that, two or four 

crystallites were adhered together and formed agglomerate. The spherical Pd 

nanoparticles were distributed homogeneously on the electrospun nanofibers. It was 

reported that the Pd particle size is mostly depended on the amount of AA functional 

groups within the copolymer and also amount of PdCl2. Larger Pd nanoparticles were 

produced by increasing the number of AA units and also PdCl2 concentration in the 

copolymer. Fig. 7 shows the electron micrographs of fiber mats with Pd nanoparticles in 

bright contrast. Four samples were electrospun from solutions of equal polymer 

concentration including two different constituents. Solutions A, B, and D contain the 

same copolymer (5.4% AA), but PdCl2 concentrations were different. Solutions B and C 

have equal amounts of PdCl2; but they include polymers with different AA contents. It 

appears that Pd particle size depends on the amount of comonomer AA and PdCl2 

concentration in the initial solution. 
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Fig.7. SEM images of the PAN-AA-Pt nanofibers: (a) sample A, (b) sample B, (c) sample 

C, and (d) sample D [5]. 

 

1.2.  Electrospinning of polymeric solutions   

Electrospinning as a versatile method to produce highly scalable nanoscale fibers has 

recently received a significant attention [34]. Taylor [57] as one of the pioneers in this 

field investigated the morphology of the polymer drip coming out of the needle tip. He 

found that it has a conical morphology and a jet could be instigated from its vertex. 

Therefore, since then, the cone drop at the tip of electrospinning needle was called as 

“Taylor Cone”. For spinning a material, it needs to be a “viscoelastic” material, so that 

become pulled into a long single strand. The basic aspects of an electrospinning system 

are demonstrated in fig. 8. Normally, in any typical electrospinning set-up there is one 

electrode which is attached into the polymeric solution container and the opposite 

electrode is connected to a grounded collector. Once, an extremely high voltage is 

applied, the charge repulsion at the surface of the liquid jet leads to a pressure against the 

surface tension of the fluid itself. By overcoming the created tension to the natural surface 
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tension of the fluid, its tip deforms to a Taylor cone. As, the intensity of the field on the 

Taylor tip exceeds a critical value, a jet of fluid will erupt, right at the apex of the Taylor 

cone and proceed to the gathering plate. The solvent evaporation during electrospinning 

of fibers leads to the formation of non-woven fiber mat. 

 

 

Fig.8. Schematic illustration of electrospinning system [60]. 

Properties of the polymeric solution play a substantial role in determining of the final 

fiber morphology. The surface tension of the fluid affects the probability of bead 

formation during electrospinning. The viscosity of the solution and its electric properties 

will also influence the elongation of the jet, directly dictating the diameter of the 

electrospun nanofibers. In fact, when the viscosity is low, the polymer chain 

entanglement is lower and the polymer jet breaks down into small droplets and causes 

beads formation. As the viscosity of the fluid increases, a gradual alternation in the form 

of the beads from round to spindle-like and then formation of a smooth fiber could be 

achieved [58]. It was reported that, the viscosity of the fluid has an important effect on 

the fiber diameter size and there is a power law relationship between solution 

concentration and its size [59].  

Voltage provides the required energy to overcome to the surface tension of the fluid and 

draw it towards the collector in the electrospinning system may be compared to the 

impact that gravity has on a waterfall. The higher the implemented voltage, the greater 

the columbic repulsive force could be present in the polymer jet resulting in extra 
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stretching and enhance fiber formation [61]. It was observed that, there is an inverse 

relation between implemented voltage and fiber diameter [62]. The gap between the 

needle tip and the collector affects the fiber deposition time, the evaporation rate, and the 

whipping of the jet, which eventually affects the fiber properties. As the distance between 

the needle tip and fiber collector increases, the thickness of fibers decreases since the 

fibers are stretched throughout a long way. In some studies, it has been observed that, at 

extended distances, the diameter of the nanofibers usually increases because decreased 

electrostatic field strength results in reduced stretching in the electrospinning jet [63], 

[64]. However, as the distance increases too much, there is a possibility that the fibers 

cannot even reach the collector.  

As another important controlling parameter, the flow rate of the polymeric fluid can 

affect jet velocity, material transfer rate and characteristics of resulting fibers. It was 

reported that, fiber diameter and the pore diameter increases with an increase in the 

polymer flow rate [65].  

 

1.3. Proton exchange membrane fuel cell 

Generally, the existing fuel cells could be categorized into five groups, called as solid 

oxide, phosphoric acid, alkaline, molten carbonate and proton exchange membrane fuel 

cell (PEMFC). Normally, most types of fuel cells convert H2 and O2 into electrical 

energy. Like other devices, various types of fuel cells have their specific pros and cons. 

It is possible to claim that, the PEMFCs are the known as the simplest type of the fuel 

cells, in terms of implementation. Therefore, the ease of usage of PEMFCs and also its 

availability in the market have attracted the most attention from the research and 

development community. As one the outstanding characteristics of fuel cells, one can 

refer to their high energy-conversion efficiency (up to 60%) [66].  

The fundamental features of a typical PEMFCs is illustrated in Fig. 9. Normally, a 

PEMFC has two catalyst layers in its anode and cathod electrodes which has a seperating 

proton exchange membrane in between. The proton exchange membrane is actually a 

polymeric material which can only transfer the protons and is insulating for the electrons. 

The electrode which takes the hydrogen fuel in is called the anode and the electrode 

connected to the oxygen gas is named as cathode. The main products of the fuel cell 

http://www.sciencedirect.com/science/article/pii/S0042207X06001473#fig1
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reaction are electrical current and water, which should be gathered through two 

complicated backplates, which can also help to dissipate heat in the high-power cells. To 

obtain a high performance from the fuel cell, the backplates must be in a good contact 

with the catalyst layer. To meet this necessity, a carbon paper is placed between the 

catalyst layer and the backplate. This paper provides both electron conducting and 

gas/water transfer duties.  

Generally, the PEMFC electrodes are based on carbon particles (e.g., Vulcan XC-72 

carbon black), which are decorated with Pt particles. An excessive catalyst loading in 

these electrodes is generally required due to the fact that, all the loaded catalyst particles 

are not accessible. The cost of precious metallic catalysts has been a serious barrier 

against commercialization of PEMFCs [35], [67]. To address this issue, recently a 

significant number of investigations has been devoted to devising PEMFCs functioning 

with less than 0.05 mg.cm-2 catalyst loading, which still is not realized [68].  

 

Fig.9. Schematic illustration of PEMFC components [66]. 
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Numerous studies have revealed that, replacing the carbon particles with either one-

dimensional (CNTs or CNFs) or two-dimensional (graphene) carbon structures, is likely 

to offer a powerful long-range electron delivery in electrodes and deduced catalyst 

loading [69]. Some research studies have reported deposition of noble metallic particles 

over CNTs for PEMFC applications [38].  

 

However, just a limited number of studies are carried out on the application of CNFs in 

fuel cell electrodes. Because of the fascinating structural, thermal, electrical, mechanical 

properties and also ease of scalable production, CNFs could be potential future materials 

to be used in PEMFCs [70]. Stacked-cup carbon nanofiber (SC-CNF) supported Pt 

nanoparticles were produced by a modified ethylene glycol method, with a loading range 

of 5 to 30 wt.% (Fig.10) [71].  

 

It was observed that, the average size of Pt nanoparticles increases as a function of Pt 

precursor amount and a minimum of 5 nm was obtained. A special self-developed 

filtration process was used for producing the Pt/SC-CNFs MEAs. It was found that the 

Pt/SC-CNFs MEAs with an optimized 50 wt.% Nafion content demonstrated a higher 

performance compared to the carbon black-based MEAs with an optimized 30 wt.% 

Nafion content. This performance was associated to the high aspect ratio of SC-CNFs, 

which can conveniently create continuous conducting networks within the Nafion matrix, 

compared to the carbon black particles. For the SC-CNFs/Pt nanofibers containing 

5 wt.%, 10 wt.% and 20 wt.%, 2 nm-3 nm Pt particles were observed being evenly 

distributed over the SC-CNFs as shown in TEM images in Fig. 10. The Pt concentration 

was also observed to increase by increasing the Pt loading in the samples.  
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Fig.10. TEM images of the SC-CNFs/Pt containing: (a) 5 wt.%, (b) 10 wt.%, (c) 20 wt.% 

and (d) 30 wt.% of Pt [71]. 

 

The cross sectional SEM images from the SC-CNF/Pt cathode electrodes containing 

various portions of Pt loadings are demonstrated in Fig. 11. Regarding the SEM images, 

it was observed that the nanofibers have been randomly oriented in the catalyst layer, 

which is in contrast to a former work on Pt/MWNT cathodes with partially oriented 

MWNTs [72]. 

 

http://www.sciencedirect.com/science/article/pii/S0008622309007520#fig7
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Fig.11. SEM micrographs of the (a) top surface of SC-CNF/Pt cathode, cross-section 

view of cathode layer with: (b) SC-CNFs/20 wt.%Pt (0.025 mg Pt/cm2), (c) SC-

CNFs/5 wt.%Pt (0.025 mg Pt/cm2) and (d) SC-CNFs/20 wt.%Pt (0.2 mg Pt/cm2) [71]. 

 

The single cell performances of the 4.4 cm2 Pt/SC-CNFs samples, with anode and 

cathode loadings of 0.2, 0.05 to 0.025 mg Pt/cm2 and 0.2 to 0.1 mg Pt/cm2, respectively, 

are demonstrated in Fig. 12. 

It was reported that, by reducing the Pt loading in the anodes from 0.2 mg/cm2 to 

0.025 mg/cm2 (maintaining the Pt loading on the cathodes identical for all samples, 

0.2 mg/cm2), the performance of the fuel cell did not change considerably at low current 

region. Nevertheless, in the high current densities there was a relatively significant 

variation of 50 mV from the anode loaded with 0.05 mg Pt/cm2 compared to the 0.2 mg 

Pt/cm2 sample. Such a declined performance in fuel cell system could be attributed to the 

tubular architecture and also being highly packed. For another set of samples, consisted 

of anodes loaded by 0.05 mg Pt/cm2 from 20 wt.% fibers a higher active region and also 

http://www.sciencedirect.com/science/article/pii/S0008622309007520#fig10
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improved mass transport due to the thinner catalyst layer, a considerable fuel cell 

performance was observed.  

 

 

 

Fig.12. PEMFC polarization curves of MEAs with different anode and cathode Pt/SC-

CNFs electrode loading and catalyst loading. Test conditions: cell: 70 °C, 100% relative 

humidity; anode/cathode: H2/O2, 200/200 mL/min, 35/35 psi [71]. 

 

Durability of the synthesized catalyst materials being used in long-term PEMFC 

applications is another considerable object that requires enough investigations. also, 

another issue that requires attention in PEMFC research [73]. Losing catalyst surface 

area because of carbon corrosion in supporting material is one of the essential 

degradation issues in PEMFCs. Pt loaded CNF and CNT (by polyol method) were used 

to prepare cathodes for the PEMFCs (Fig.13). The samples generally represented a high 

stability compared to the conventional carbon black.  



21 
 

 

Fig.13. (A) SEM images of (a) CNF and (b) CNT. (B) TEM images of the Pt decorated 

(a) CNF and (b) CNT [73]. 

 

The single cell performance of the samples represented through polarization curves are 

shown in Figs. 14. It could be observed that, the CNT and CNF based electrodes 

exhibited a 20% and 42% boost in the max power density after cycling more than 5k (in 

CV test). However, considering an identical condition, the Vulcan-based cells have 

represented 20% decrease. 

http://www.sciencedirect.com/science/article/pii/S0167273812006455#f0045


22 
 

 

Fig.14. Fuel cell performances of catalyst materials before and after CV treatments, fuel 

cell test being performed at H2 and air flow of 0.4 and 2 ml/s respectively, at 70 °C [73]. 
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Due to the urgent necessity of replacing fossil fuels in the recent years, various alternative 

energy conversion systems have been developed. As mentioned, one of the most 

promising routes to produce green electrical energy is fuel cell technology. Among 

various types of fuel cells, the PEMFCs are most feasible version to be used in the cars 

and houses. Generally, the electrode materials of these fuel cells are made of a carbon 

support which contains Pt catalyst particles. Although, the PEMFCs are extremely user-

friendly and efficient systems to produce energy, the production costs are too high so that 

it prevents the commercialization of these fuel cells. One important factor causing high 

production costs is associated with the carbon support itself and the other is related to the 

expensive catalyst materials such as Pt. In order to address these issues, in this study we 

tried to develop a simple method to produce highly scalable carbon support materials 

(carbon nanofibers) while controlling the size of Pt nanoparticles down to less than 1 

nanometer to achieve higher performance with smaller amount of the catalyst. Therefore, 

we first stabilized the Pt precursors throughout the structure of a copolymer and then 

applied a microwave-assisted reduction protocol to reduce the Pt nanoparticles as they 

are trapped within the copolymer. Although some studies related with the polymer 

assisted nanoparticle synthesis have been recently carried out, an effective reducing 

protocol has not been utilized in any of them. Therefore, the particle sizes have not been 

precisely controlled and the achieved sizes were always bigger than 3 nm. Furthermore, 

there is a lack of comprehensive study on the electrochemical, catalytic and fuel cell 

performances of the carbon nanofiber based catalyst materials. Therefore, in this study 

the effort was focused to produce a cost-effective and high-performance material for fuel 

cell applications.   
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2.1.  Materials  

Acrylonitrile (AN, MW = 53.1 g mol-1) and N-Vinylpyrrolidone (nVP, MW= 111.14 g 

mol-1, Sigma-Aldrich) were purchased from Aldrich. Azobisisobutyronitrile (AIBN, 

Sigma-Aldrich) was used as initiator after being crystallized in acetone. Anhydrous N, 

N-dimethylformamide (DMF, Sigma-Aldrich) and deionized water were used as solvent 

for polymerization and solution preparation for electrospinning. Platinum (II) chloride 

(PtCl2, MW = 265.99 g/mol, 99.9 % metal basis Alfa Aesar) was used as platinum 

precursor. Hydrazine hydrate solution (N2H4, MW = 32.05 g/mol-1, Sigma-Aldrich), 

ethylene glycol (C2H6O2, Sigma-Aldrich) and sodium borohydride (NaBH4, Sigma-

Aldrich) were utilized as reducing agents. Single walled carbon nanotubes (SWCNT, 

OCSIAL, Tuball, d = 1.6±0.4 nm, l >5 μm) were also used to reinforce the nanofibers. 

Nafion® solution (Sigma-Aldrich) was used in sample preparation for cyclic 

voltammetry tests.  

 

2.2.  Synthesis 

2.2.1.  Copolymer synthesis 

The solution copolymerization of AN with nVP monomer was conducted in the DMF: 

deionized water (DIW) (1:1) at 60 ˚C for 5h. The amount of nVP was 2.5 mol% of total 

monomers (20 g AN and 1.02 gr nVP). The radical initiator AIBN (0.0634g) was added 

to the reaction with 0.1 mol% of the total monomers. The resulting product was 

precipitated in ethanol. The precipitated copolymer (Fig. 6II) was dried in a vacuum oven 

at 60˚C until stationary weight.  

 

2.2.2. Fiber preparation 

The electrospinning solution was prepared by dissolving the 5 wt.% PtCl2 and 20 wt.% 

PtCl2 salt (with respect to the copolymer amount) in DMF along with 40 µL fuming HCl 

acid through stirring for 2h at 50 ̊ C (Fig. 15II). A clear light orange solution was obtained 

by completely dissolving the salt in DMF and 7 wt.% p(AN-co-nVP) copolymer (with 

respect to the DMF amount) was added to the resulting solution. The solution was 

continuously stirred for further 2h at 50 ˚C to obtain a virtually clear light-yellow 
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solution. The change of the color of the solution from orange to the light yellow was 

assumed to be as a result of the complete electrostatic coordination of the platinum ions 

with the vinylpyrrolidone groups of the copolymer (Fig. 15IV). With the aim of 

investigating the effect of addition of carbon nanotubes, 1 wt.% SWCNT with respect to 

the copolymer was dispersed in DMF through sonication for 10h in a 40 kHz MRC 

DC150H sonicator. In parallel, the clear solution of copolymer and PtCl2 solution was 

prepared as previously mentioned (Fig. 15V). Both CNT ink and polymer solution were 

mixed together and sonicated for extra 10 h to obtain a homogeneous suspension.  

 

The electrospinning was carried out at room temperature by applying a high voltage of 

15 kV between a stainless-steel syringe needle (0.5 mm inner diameter) and a grounded 

square collector (15 cm × 15 cm) covered with aluminum foil (Fig. 15VI) situated 15 cm 

apart from the syringe tip. The syringe was pushed by an automatic pump at a flow rate 

was 0.5 ml/h. The electrospun fiber mats were dried in a vacuum oven at 60 ˚C for 12h 

to evaporate any residual DMF.    

 

 

 

Fig.15. Schematic of CNF/Pt nanofiber synthesis.  
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Microwave assisted reduction within a 5 vol.% aqueous hydrazine solution and also 

ethylene glycol (100%) and sodium borohydride were carried out to reduce the PtCl2 to 

Pt nanoparticles. The reduction of the samples was conducted in monowave 300 

microwave reactor (Anton Paar GmbH). The microwave irradiation with a fixed power 

of 250 W along with in situ stirring (300 rpm) was exerted for 15s, 30s, 60s and 120s. 

For each microwave reduction period (15s, 30s, 60s and 120s) precise on/off intervals 

were defined for the microwave reactor so that the irradiation was stopped for 10s after 

every 5s of irradiation. The microwave-reduced samples were washed and vacuum 

filtered using DIW for several times until pH of the water was neutral. Some of the 

electrospun P(AN-co-nVP)/Pt-20 nanofibers were directly carbonized without any 

chemical reduction for comparison. PtCl2 was carbothermally reduced to form 

nanoparticles.  

The electrospun nanofiber mats were stabilized at 200˚C with a rate of 5˚C/min under air 

and carbonized at different temperature (600˚C, 700˚C, 800˚C, 900˚C and 1000˚C) with 

a heating rate of 10˚C/min under argon. The reduced samples went through the same 

heating procedure and carbonized at 800˚C, which was the optimized temperature based 

on the previous experiments. 

 

2.3.  Characterizations  

2.3.1. Polymer characterization  

Fourier Transform Infrared (FTIR) spectra were recorded with Bruker Equinox 55 FTIR 

spectrometer with Attenuated Total Reflectance (ATR) attachment. 1H Nuclear magnetic 

resonance (NMR) spectra were recorded in deuterated dimethylformamide (DMF-d6) or 

dimethyl sulfoxide (DMSO-d6) with Varian Inova 500 NMR spectrometer. Polymer 

molecular weights (MW) (Mn = 122,500 g/mol, Mw = 400,000 g/mol) were determined 

by size exclusion chromatography (SEC) using Viscotek TDAmax equipped with 

refractive index (RI), viscometer (VIS) and right-angle scattering/low angle scattering 

(RALS/LALS) detectors and three columns (Viscotek D5000, D3000 ve D1000). 
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2.3.2. Fiber characterization  

13Carbon NMR solid-state spectrum (13C-SSNMR) was recorded with Varian Inova 500 

NMR spectrometer. The graphitization degree of carbonized samples was investigated 

with Raman spectroscopy (Renishaw in Via Raman Spectrometer with visible excitation 

at 532).  

The morphology of the fiber mats and the size and distribution of the Pt nanoparticles 

over the nanofibers were studied with Gemini 35 VP Field Emission Scanning Electron 

Microscope (SEM). Average fiber diameter was measured in all the samples by 

considering the size of at least 50 representative nanofibers. Transmission Electron 

Microscopy (TEM) analyses were conducted on JEOL JEM-2000FX TEM. The mean 

diameter size of the Pt particles was determined using Image J software based on 

averaging of more than 400 size measurements.  The high resolution TEM microscopy 

(JEOL JEM-ARM200CFEG UHR TEM) was conducted to confirm the presence of 

graphitic structures in the nanofibers. The FFT patterns were also obtained using TEM 

characterizations in order to approve the crystallinity of the Pt particles. X-ray diffraction 

patterns (XRD) of the samples were studied using a Bruker AXS Advance D8 XRD 

instrument. Thermogravimetric analyses (TGA) were carried out using a Netzsch STA 

449 C Jupiter simultaneous thermal analyzer with a sensitivity of 0.1˚C. The electrical 

conductivity of the carbonized nanofibers was measured using a probe instrument. 

Surface area measurements were carried out based on N2 gas absorption at 77 K using 

the Brunauer-Emmer-Teller (BET) model.  

 

2.3.3. Electrochemical Characterization 

The catalytic performance of the nanofiber-Pt composites was investigated with the 

cyclic voltammetry (CV) measurements with Gamry Reference 3000 

Potentiostat/Galvanostat using a three-electrode cell system in which the catalyst ink was 

coated on top of a platinum (diameter of 3 mm, surface area 0.07065 cm2) electrode as 

the working electrode, Pt wire was used as counter electrode and Ag/AgCl as reference 

electrode. A catalyst ink of various types of nanofibers (4 mg/mL) in isopropyl alcohol 

(IPA) was prepared. The Nafion (20%) solution (0.5 micro liter Nafion/1mL IPA) was 

added to the materials and the slurry was sonicated for 15 min. 1 µL of the resulting 
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homogeneous ink applied onto the platinum working electrode was dried at room 

temperature for 20 min. Cyclic voltammograms were obtained with a potential scan 

range of -0.3V to 1.3 V at a scanning rate of 50 mV s-1 in 30 min under N2 gas purge. All 

the CV tests were carried out in a 0.1 M sulfuric acid solution and performing at least 20 

stabilization cycles prior to the CV tests.   

 

2.3.4. Fuel cell testing 

In order to prepare an appropriate catalyst material to be used as a catalyst layer in 

PEMFC, the synthesized CNF/Pt was manually crushed using a mortar and pestle. These 

crushed shorter fibers were aimed to be used in the cathode side of a single PEMFC set-

up. In the anode side, a standard electrode made up of commercial Vulcan (XC72) 

catalyst material was used. The as-crushed nanofibers were mixed with 30 ml mgPt-1 

Nafion ionomer solution (5wt.% Nafion in water) and 60 ml mgPt-1 isopropyl alcohol 

(IPA) and sonicated for 15 min and consequently stirred for 45 min to achieve a 

homogenized slurry. Then the slurry was carefully bladed on a gas diffusion layer (GDL) 

of the size of 4*2.5 cm2 and left to be dried in the ambient temperature. The cathodes 

were prepared for samples with and without CNT microwave treated for 15s, 30s and 

60s. The overall Pt loading was maintained identical in all of the samples equal to 0.8 

mg cm-2. For preparing the standard anodes from the commercial Vulcan dispersion was 

electrosprayed over the GDLs. To prepare the Vulcan ink, a mixture of PVDF-c-HFP, 

Nafion ionomer solution and Vulcan powder was homogenized and electrosprayed. In 

the electrospraying ink, the solid/solvent ratio was maintained 15:85 (w:w) and the 

weight ratios of Vulcan: Nafion: PVDF-c-HFP were fixed at 65:23:12. The PVDF-cHFP 

was first dissolved in DMF by stirring for 48 h and then Nafion solution and Vulcan were 

sonicated for 1 h. Subsequently, the PVDF-cHFP/DMF solution and the Nafion/Vulcan 

dispersion were mixed together by stirring for another 48 h. The ink was filled within a 

syringe and electrosprayed on carbon papers (GDL, AvCarb MGL190 with 190 µm 

thickness) at a flow rate of 0.1 mL min-1 under an applied voltage of 15 kV by a Gamma 

High Voltage Power Supply (ES30P). Eventually, the electrodes were dried for 24 h at 

room temperature.  
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The membrane electrode assemblies (MEAs) were put together through the hot pressing 

of the cathode and anode electrodes having a pre-conditioned membrane (Nafion NR211) 

in between at 120 ̊C under 533.8 kPa for 5 min. The prepared MEAs were assembled to 

a single fuel cell test set-up working at the 70 ̊C under a 100 % relative humidity. The 

oxygen and hydrogen gases were delivered into the system with the stoichiometric ratios 

of 2 and 1.5, respectively. The fuel cell test was conducted via Scribner 850E fuel cell 

test system and testing cell through precisely machined tiny serpentine channels on the 

graphite flow fields. The fuel cell tests were conducted in a Scribner testing system at 

70 ̊C with a 150 kPa back pressures. After achieving a steady state condition in the 

galvanostatic mode, the current/voltage results were recorded. 
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3. Results and discussion 
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In this study, with the aim of obtaining an optimal condition for the synthesis of the 

carbon nanofiber-supported Pt particles with a precise size control, various samples 

containing several portions of Pt were examined under numerous reducing conditions. 

Various process variables were optimized in the electrospinning technique. Different 

reducing conditions were also developed using different reducing agents under several 

immersion times or applying microwave irradiation and also carbothermal reduction. The 

necessary characterization techniques such as SEM, EDX, TEM, TGA, XRD and CV 

were employed to obtain the best performance among numerous samples. The cyclic 

voltammetry (CV) conditions were optimized and the Pt catalyst activity was observed 

and the electroactive surface area is calculated. As a result of these characterizations, it 

was observed that the samples obtained by microwave irradiation in hydrazine aqueous 

solution for several seconds contained homogeneously dispersed Pt nanoparticles of 0.8-

4 nm in diameter. In the case of carbothermal reduction as the second selected method, 

the nanoparticles in the range of 1.7-8 nm in diameter were observed, but with a wider 

size distribution. It has been observed that as the temperature of the carbonization 

increased, the nanoparticle sizes grow and were directed to the CNF surface.  

It could be claimed that, the Pt nanoclusters with a carbon nanofiber support, targeted at 

the less expensive and more efficient operation of high cost Pt catalyst for PEMFC 

electrodes have been produced in the planned frame of this project.  

 

3.1. Polymer characteristics   

The FTIR analysis was performed to characterize the formation of the P(AN-co-nVP) 

copolymer (Fig. 16a). In the FTIR spectrum of the AN, its characteristic peaks 

corresponding to the C=C (1630 cm-1) and C≡N (2228.96 cm-1) are recorded. In the case 

of the nVP monomer, the strong absorption band at 1671 cm-1 attributed to the C=O 

bond, the characteristic peak at 1628 cm−1 related to the double bond C=C stretching 

vibration, and a peak at 1424 cm−1 representing the characteristic absorption of 

methylene end were also observed. The FTIR spectrum of the P(AN-co-nVP) copolymer 

demonstrated the characteristic absorption vibrations coming from both AN and nVP. 

The carbon double-bond (C=C) was completely disappeared, indicating a complete 

copolymerization. 
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The effect of the addition of platinum salt into the copolymer was also studied using 

FTIR characteristic peak of the carbonyl (C=O) group of the P(AN-co-nVP) copolymer, 

coordinating with the platinum ions. Presence of an electrostatic interaction between 

polymer and a metal ion leads to the changes in the absorption frequency of the 

interacting groups [74]. As it is seen in the high-resolution carbonyl pick represented in 

Fig. 16b, the position of the C=O stretching was shifted from 1673 cm-1 to 1659 cm-1 

after addition of PtCl2 into the polymer. 

 

 

Fig.16. (a) FTIR spectra of AN, n-VP and P(AN-co-nVP) copolymer and (b) high 

resolution FTIR characteristic stretching of C=O in P(AN-co-nVP) and P(AN-co-nVP) 

+ PtCl2. 

 

The molecular architecture of the copolymer was studied by 1H-NMR spectroscopy (Fig. 

17a). In the 1H-NMR spectrum, the characteristic resonances located around δ = 4.3 ppm 

(D) and at δ = 3.15 ppm (B) were attributed to the methine protons within the N-

vinylpyrrolidone and acrylonitrile repeating units, respectively [75]. These unique 

characteristic peaks were used to determine the molar ratio of the copolymer building 

blocks, which is nVP/AN = 2.8%. The other characteristic chemical shifts are methylene 

protons (–CH2, A and C) of both AN and nVP groups and methylene protons (–CH2, E, 

F and G) of the pyrrolidone ring as marked on the 1H-NMR spectrum (Fig. 17a).  
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Fig.17. (a) 1H NMR spectra of P(AN-co-nVP) as-synthesized copolymer, (b-d) 

schematic image showing the random copolymer and electrostatic interaction of Pt 

cations with polar groups of nVP. 

 

The reactivity ratios are used for the estimation of the monomer distribution in the 

structure of the copolymers [76]. The reactivity ratios of AN and nVP units, calculated 
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based on the monomer feed ratios and output molar ratios of the monomers within the 

copolymer (interpreted from the 1H NMR results), are r1 = 0.41 and r2 = 2.36, 

respectively. These reactivity ratios indicated the formation of a random copolymer (Fig. 

17b).  The effective random distribution of the nVP units within the structure of the 

copolymer was expected to lead to the even distribution of the platinum ions. Through 

such an effective localization mechanism, the growth and agglomeration of nanoparticles 

during reduction and carbonization stages can be avoided [5].   

 

3.2. Electrospinning parameters   

3.2.1. Electrospinning of nanofibers without carbon nanotube 

With the aim of achieving a proper condition for the electrospinning of the nanofibers, 

different controlling parameters were manipulated and optimized according to the 

intended conditions. The concentration of the polymer solution, the metal salt/polymer 

weight ratio, the solution flow rate, the applied voltage difference, and the distance 

between the collector plate and the needle tip are some of the factors that affect the 

nanofiber morphology and nanoparticle distribution. The effect of solution flow rate was 

examined for different polymer solutions and the best electrospinnability condition was 

identified and utilized in the following experiments. The effect of applied voltage 

difference on the thickness and morphology of the fibers prepared with P(AN-co-nVP) 

copolymer and 5% PtCl2 during electrospinning were investigated. Samples were 

prepared by increasing the applied voltage from 8 kV to 20 kV and the resulting fibers 

showed small differences as examined by SEM (Fig. 18). The diameter of the nanofibers 

changed around 350-400 nm. As the different voltage values applied did not appear to 

have a significant effect on the nanofiber size and morphology, the most stable voltage 

values observed during electrospinning process (12 kV) was chosen to be used in the rest 

of the experiments. 
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Fig.18. SEM images of the electrospun nanofibers of P(AN-co-nVP)/5wt.% PtCl2 at 

different voltage applications. 

   

3.2.2. Electrospinning of nanofiber/carbon nanotube hybrid structures 

The P(AN-co-nVP)/5 wt.% PtCl2 solution with 0.75 wt.% CNT with respect to the 

amount of polymer was also studied in terms of electrospinnability by changing process 

controlling parameters, similar to the CNT-free fibers described in previous section. 

After deciding about the viscosity of the electrospinning solution, the collector distance 
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and rate of electrospinning, the effect of applied potential difference on the thickness and 

morphology of the fibers was studied.  

 

 

Fig.19. SEM images of the electrospun fibers of P(AN-co-VPYR)/CNT-0.75% / PtCl2-

5% with different voltage applications. 

 

The applied voltage varied between 8 kV to 20 kV and the samples were observed using 

SEM (Fig. 19). Small differences were detected in the samples although no significant 

difference was observed. When these nanofibers were examined by TEM, the 
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agglomerated CNTs were observed in some regions (Fig. 20). The surface roughness 

observed in the SEM images (Fig. 19) was attributed to these small CNT aggregates in 

near-surface regions to give a rough surface to the nanofibers. 

 

 

Fig.20. TEM images of P(AN-co-nVP)- 5 wt.% PtCl2- 0.75 wt.% CNT. 

 

3.3.  Development of carbon nanofiber-supported Pt through 

carbothermal reduction 

First, the electrospun nanofibers containing Pt precursor were heat treated up to 1000 ˚C 

without any chemical reduction of the salt. While polymeric nanofibers were 

carbonizing, PtCl2 were carbothermally reduced to Pt nanoparticles. Effect of 

carbonization temperature on both fiber quality and particle size and distribution was 

investigated.  

The effect of various carbonization temperatures on the structure of the nanofibers was 

investigated using 13C-SSNMR (Fig. 21a) spectroscopy. It was observed that the sp3 

hybridized carbons (26.94 ppm) of polymeric nanofibers was gradually converted to the 

sp2 hybridized carbon atoms (91-160 ppm) by increasing the carbonization temperature 

as seen in the 13C-SSNMR spectra of the nanofibers carbonized at 600˚C, 800˚C and 

1000˚C.   At 600 ˚C, two adjacent peaks associated to the sp2 hybridized carbon atoms 

of −C=C− (127 ppm) and pyrrole rings (150 ppm) produced from cyclization of cyano 

groups (−C≡N) of acrylonitrile could be observed. However, upon increasing the 
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carbonization temperature up to 1000˚C, the sp2 hybridized carbon (−C=C−) structures 

characterized by the peak at 124 ppm become dominated, showing full cyclization. 

Raman spectroscopy was also employed to qualitatively inspect the degree of 

graphitization in the carbonized samples at different temperatures (Fig. 21b). CNFs show 

two specific Raman bands, namely, G band and D band at 1580 cm-1 and 1350 cm-1 

corresponding to the graphitic structure and disordered carbons, respectively [77]. It was 

observed that the intensity ratio of D-band over the G-band (ID/IG) decreased as the 

carbonization temperature increased from 600 ˚C to 1000 ˚C, signifying the 

transformation of disordered carbon into graphitic carbon.  The ID/IG ratios for all 

carbothermal-reduced samples are provided in Table 1. It is observed that a significant 

enhancement in the extent of the graphitization takes place by increasing the 

carbonization temperature from 600 ˚C to 800 ˚C; however, the enhancement rate was 

lower at temperatures higher than 900 ˚C. 

 

 

Fig.21. (a) 13C-SSNMR spectr of electrospun fibers before and after carbonization at 600 

˚C, 800 ˚C and 1000 ˚C and (b) Raman spectra of carbonized samples at different 

temperatures.  

 

It is well-established that the electrical conductivity of the carbonaceous support of 

catalyst particles can extensively affect the catalytic performance of catalyst layer in fuel 

cell applications [3]. To study the effect of graphitization degree on the electrical 
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conductivity of nanofibers, the four-probe measurement was performed as summarized 

in Table 1. All carbon nanofibers demonstrated a relatively high conductivity comparable 

with the carbon fibers studied in similar studies [78].  

It was observed that, by increasing of the carbonization temperature, the electrical 

conductivities are also increasing, which is in parallel with the graphitization degree of 

corresponding carbon fibers. During carbonization from 600 ˚C to 1000 ˚C, the graphite 

layers within the nanofibers grow steadily and the electrical conductivity significantly 

increases from 0.024 S cm-1 to 1.39 S cm-1, respectively. This observation could be 

associated with the increased number of the graphite domains and also decreased spacing 

between the graphene layers and also increased graphitized domain in carbon fibers, 

which facilitates the resonance vibration effect of the π bond and mobility of the π 

electrons and improves conductivity [79]. 

The size and distribution of the Pt particles in the carbon nanofibers, play an important 

role in their catalytic performance. As it was mentioned in the experimental section, in 

the carbothermal treated nanofibers, the PtCl2 platinum precursor salt was thermally 

reduced during carbonization stage and no reducing agent was utilized beforehand. Since 

the Pt nanoparticles in carbothermal reduced nanofibers were not stabilized using 

reducing agent within the framework of the polymer and were simultaneously nucleated 

and grown during high-temperature carbonization procedures, relatively large Pt 

particles were expected. Nevertheless, the SEM images of the carbothermal treated 

samples (Fig.22) showed that relatively uniform distribution of fine particles was 

obtained, especially at low temperatures. This phenomenon indicated that the effective 

presence of the vinylpyrrolidone functional units in the copolymer has led to the 

confinement and immobilization of the platinum ions (Fig. 16b). Thus, the well separated 

and distributed individual Pt particles were formed in isolation with low degree of 

agglomeration. Nevertheless, upon increasing the carbonization temperature, the 

nucleated Pt clusters were potentially capable to move and coalescence in order to reduce 

their surface energy due to the increased thermodynamic propulsion enough for particle 

movements as seen in Fig. 22. On the other hand, carbonization at relatively high 

temperature is of a vital significance to enhance the graphitization and electrical 

conductivity of the carbon nanofibers. Therefore, finding a reasonable balance between 



41 
 

Pt particle size and graphitization degree in the polymer based carbon supported Pt 

materials is of crucial significance. As seen in the SEM micrographs of the various 

carbothermal reduced samples (Fig. 22), the size of the Pt particles increases and more 

particles appear on the surface of the nanofibers as the carbonization temperature 

increases. The Pt particles are not frequently observed on the surface of the fibers 

carbonized at 600 ̊C (Fig. 22b). The Pt nanoparticles are very small and relatively far 

from each other, indicating the fact that cluster agglomeration has not been dominated at 

this temperature and the inner Pt clusters has not effectively moved towards the surface 

of the fibers during carbonization. However, at higher carbonization temperatures from 

800 ̊C to 1000 ̊C (Fig. 22c- 22f), the Pt particle size and population on the surface of 

nanofibers gradually increases and reaches to the significantly large agglomerates at 

1000 ̊C. 

 

 

Fig.22. SEM images of as-electrospun (a) and carbothermally reduced nanofibers at 

different temperatures; (b) 600 ˚C, (c) 700 ˚C, (d) 800 ˚C, (e) 900 ˚C and (f) 1000 ˚C. 

TEM (g) and HR-TEM (h) images of carbonized samples at 800 ˚C; (i) FFT pattern of 

the particles in (h). 
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Unlike the samples carbonized in the range of 600 ̊C to 800 ̊C, which show very uniform 

particle size, the 900 ̊C and 1000 ̊C-carbonized samples demonstrated a bimodal particle 

size distribution. In other words, it was observed that increasing the carbonization 

temperature more than 800 ̊C resulted in agglomeration of the smaller particles and 

forming larger ones, which are energetically favorable at high temperatures. The Pt 

particle size distributions were obtained in all samples and mean particle sizes are 

collected in Table 1. Fig. 22g shows a representative TEM image of a carbothermally 

treated sample at 800˚C. 

The inset histogram in the TEM image (Fig. 22g) confirms a wide particle size 

distribution in carbothermal treated samples. The crystalline structure of the Pt particles 

was also characterized using high resolution TEM analysis. Fig. 22h exhibits a typical 

atomic resolution TEM micrograph of the well-defined crystalline Pt particles in 800 ̊C 

carbothermal treated sample. The fast Fourier transform (FFT) pattern obtained from Pt 

particles in the same sample (Fig. 22i) confirms the face center cubic (FCC) crystalline 

structure of the Pt particles. 

During the carbonization, difference between free energies of cluster surfaces stimulates 

their growth. In other word, under elevated temperatures, Pt particles tend to sinter 

through Ostwald ripening processes [80], in which the smaller particles are prone to 

dissolve and join larger particles to grow up and decrease the specific surface area. From 

the thermodynamic point of view, the driving force for sintering process is associated 

with the tendency to reduce the interfacial energy in the system, nevertheless, the 

conditions such as vacancy concentration gradient and stress gradients control the 

kinetics of sintering and growth [81]. For the sintering mechanism of Pt particles, two 

main mechanisms could be considered based on the “Pt atomic migration” and “Pt cluster 

migration” [82], [83]. A schematic image, demonstrating these two mechanisms, has 

been provided in Fig. 14. In the “Pt atomic migration” mode (Fig. 23a), the Pt atoms 

dissociate from the Pt clusters and move through the fibers via porosities or surface of 

the fibers and stop upon collision to other particles. For the reason that, larger particles 

are always stable (the Pt-Pt bonding energies are stronger than the Pt-CNF interaction), 

atomic migration usually takes place from smaller cluster towards larger particles and 

therefore leads to the diminishing of the smaller particles and further growth of larger 
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ones [84].  In the case of cluster migration (Fig. 23b), sintering is assumed to happen 

through movement of the small clusters through the fibers and specially across the 

surface and incorporating with the clusters on the way [84]. By increasing of the 

carbonization temperature, the kinetics of sintering processes accelerate and leads to the 

formation of the larger Pt particles in the nanofibers, especially over the surfaces (Fig. 

23). Based on the activation energy required to move the single atoms and the bulk of a 

cluster, it can be inferred that the “Pt atomic migration” is mostly dominated in lower 

applied temperatures and “Pt crystallite migration” at elevated temperatures. The effect 

of the carbonization temperature on the average Pt size distribution was demonstrated in 

Table 1. By increasing the temperature from 700 ˚C to 1000 ˚C, around an order of 

magnitude greater Pt particles were generated. However, formation of smaller Pt 

nanoparticles (Fig. 23) in the nanofibers carbonized at lower temperatures (600 ˚C and 

700 ˚C) denotes the fact that the applied activation energy for growth by temperature is 

not enough to induce the Pt clusters or atoms to move. This needs that, the Pt clusters 

must be effectively localized and their surface energies have been stabilized within the 

structure of the fibers. This phenomenon could be addressed through interpretation of 

13C-NMR spectrums of 600 ˚C and 1000 ˚C carbonized samples (Fig. 21a). It is stated 

that; noble metal atoms can form stable ∏-complexes with -C=C- bonds of organic 

compounds and the stability of the complexes can enhance in the case of presence of an 

electronegative component in the vicinity of the -C=C- bond (like N in the pyrrole rings).  

  

 

Fig.23. Schematic images showing the sintering mechanism of Pt in nanofibers. 
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This ∏-complex is explained to form between an occupied 4d orbital of the metal atom 

and an unoccupied molecular ∏*-orbital of -C=C- fragment [85]. It means that, although 

the Pt atoms can stablish ∏-complexes with both graphic structure and pyrrole rings, 

there is a stronger interaction with the latter. Therefore, the presence of smaller Pt 

particles in samples carbonized at lower temperatures can be justified by considering the 

effective role of the pyrrole rings in formation of favorable interactions with Pt atoms 

and insufficient driving force (temperature) to overcome it. However, by increasing 

carbonization temperature, most of the polymeric chains and pyrrole rings are reradiated 

and lead to the weakening of chemical interactions of Pt atoms and fibers. Since the 

surface energies of the Pt clusters are less stabilized, the particles compensate this issue 

by sintering together. Nevertheless, compared to the other conventional techniques [86], 

[87], the particle size control obtained by in-situ method is quite smaller.  In fact, the 

porosities throughout the fibers act as potential wells for the Pt atoms so that obstruct the 

movement of the particles [88]. At higher applied temperatures, the role of mechanical 

trapping and role of the micro-pores becomes more highlighted, due to the activation of 

metal flow throughout the fibers.  

The XRD measurement was carried out to investigate the formation of crystalline Pt 

particles in the carbothermal treated samples (Fig. 24). The relative diffraction peaks at 

40.0˚, 45.9˚, 67.5˚ and 81.7˚ corresponding to the (111), (200), (220), and (311), 

respectively, confirmed the crystalline structure of the Pt nanoparticles [36], [89]. It was 

observed in the XRD patterns that, by increasing the carbonization temperature, the Pt 

(111) peak in the samples becomes stronger, which might be associated with the larger 

Pt clusters incorporation in these materials. In the case of 600 ˚C-carbonized samples, no 

diffraction peak is observed, showing that Pt particles are too small to be detected.  

In addition, a broad peak in the XRD patterns which appears around 2θ=26.5° (Bragg 

reflection of graphitic structure in carbon (002)) signifies the formation of graphite 

structure in carbon nanofibers [90]. The intensity of this peak also increases as the 

carbonization temperature increases.  

The average stacking height of the graphite planes (Lc) can be calculated based on 

Scherrer’s formula [90] using this graphite peak in XRD spectra. It was observed that, 
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by increasing the carbonization temperature, the stacking height of the graphite planes 

within the carbon nanofibers was increased (Table 1). 

The mean spacing between the graphite layers, which is called d002, was also determined 

based on the characteristic graphite peak in the XRD patterns, showing a decrease with 

the increasing temperature [91] (Table 1). The Lc ~ 53% increases and d002 declines ~ 4% 

by increasing the carbonization temperature from 600˚C to 800ºC, denoting a high degree 

of graphitization at this temperature. The rate of graphitization was also improved by 

carbonizing at 900 ˚C and 1000 ˚C, however the values were comparable with 800ºC 

sample. 

 

 

Fig.24. XRD spectrums of carbothermal reduced samples at various temperatures. 
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Thermogravimetric analysis (TGA) was conducted in order to determine the Pt loading 

within the nanofibers after carbonization, as summarized in Table 1. The Pt amount was 

obtained to be around 20-21 wt.% in almost all the samples.  

Cyclic voltammetry (CV) was employed to explore the electrochemically active surface 

area (ECSA) of catalyst Pt on carbon nanofiber support. The ECSA values indicate the 

number of available active sites for charge transfer and also the access of a conductive 

path to transfer the electrons to and from the electrode surface in the catalyst material 

[92]. A high ECSA is favorable for fuel cell catalyst with high electrocatalytic activity 

[36]. The cyclic voltammograms demonstrating the characteristic peaks for oxidation and 

reduction of Pt are represented in Figs. 25. It is observed that the shapes of all cyclic 

voltammograms corresponding to different samples were identical and similar to the 

polycrystalline platinum behavior reported in the literature [93], [94].  

 

Fig.25. CV spectra of carbothermal reduced samples at various temperatures. 

 

A hydrogen oxidation peak could be observed at -0.2V, which is attributed to the weak 

bond of hydrogen in (111) Pt crystal direction [36]. In the CV diagrams, following the 

anodic branch, the first peak at -0.2V (SCE) corresponds to the hydrogen adsorption. By 
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increasing the applied potential, Pt oxidation occurs. The oxide formation can proceed 

through two steps, which are evolved as two distinct peaks on CV curves. The first peak 

appeared around 0.2 V SCE, corresponds to the reaction of Pt with water molecules 

which gives rise to the platinum hydroxide (PtOH) formation. The second small bump 

(about 0.8 V SCE) could be associated to the Pt oxidation through conversion of PtOH 

to PtO. After reaching the maximum voltage of 1.4 V SCE, the direction of applied 

potential was reversed. Through cathodic branch of the CV diagrams, the oxide reduction 

occurred around 0.45 V SCE. At this region, the PtO was reduced into Pt, through reverse 

recursion. The Pt reduction procedure was accomplished through water formation. At the 

end, the cathodic hydrogen desorption occurred at the same potential of hydrogen 

adsorption around -0.2 V SCE. 

Qualitatively, the voltammogram showed the catalytic activity, because the hydrogen 

adsorption-desorption peaks were clearly seen in the voltammogram at the potentials 

between -0.2 - 0.05 V (SCE). For quantitative measurements, the charge under the 

hydrogen adsorption peak is utilized to calculate the electrochemically active surface 

area [95]. The integrated area under the curves of hydrogen adsorption/desorption peaks 

after deducting the charge from the double layer area in the cyclic voltammogram depicts 

the total charge regarding to H+ adsorption/desorption (QH), and can be used to determine 

ECSA [77].  

ESCA is calculated using the following equation, where QH is average total charge 

regarding to H+ adsorption/desorption. The theoretical charge of 210µCcm-2 is calculated 

by assuming one hydrogen is adsorbed for each Pt atom [96].  

          (4) 

Using equation 4, the ECSA of all carbothermal reduced samples were calculated and 

summarized in Table 1. The highest electroactivity value of 53.06 m2 g-1 was obtained 

for the sample carbonized at 800 ˚C. The samples carbonized at temperatures lower than 

800 ˚C, represented lower catalytic activity. The samples carbonized at higher 

temperatures also demonstrated a relatively lower electrocatalytic performance 
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compared to that of 800 ˚C carbonized one. The reason for the lower activity of the low 

temperature carbothermal treated samples could be associated to the lower degree of the 

graphitization and electrical conductivity of these samples, which restricted the efficient 

catalytic behavior. Although it was observed that the graphitization has been improved 

with the high carbonization temperatures, the Pt particles have been significantly 

coarsened. It is well established that, as the Pt particle size increases, the fraction of Pt 

atoms on the particle surface decreases, which means that the number of available sites 

for surface reactions decreases and leads to the lower reaction rate and catalytic activity 

[36]. The electroactive surface area of the commercial Pt catalyst (4 nm Pt particles and 

20 wt.% Pt), as a reference material, is reported to be around 70 m2 g-1 [97], [98]. By 

comparing the ECSA values of all carbothermally reduced samples to that of commercial 

catalyst material, it was observed that, the range of the ECSA values of the carbothermal 

reduced samples are slightly lower than the commercial material with the same amount 

of Pt loading. The lower performance of the carbothermal treated samples is probably 

originated from the fact that, most of the Pt incorporated to CNFs is embedded inside the 

fibers. Although the CNFs have a porous structure, it is difficult for electrolyte solution 

(in CV test) to reach Pt particles through nano-sized pores compared to the Pt particles 

located directly on the surface of the carbon support as in the commercial materials. On 

the other hand, the mean particle size of the 800 ˚C carbonized sample, as the sample 

representing the best catalytic performance, is ~ 4.824 nm which is greater than that of 

commercial XC-72R (with 20 wt.% Pt), which is around 3.5- 4 nm [97].  

Although Pt precursor is evenly dispersed within the polymer matrix by the aid of 

pyrrolidone groups, a long-term heat treatment at high temperatures, during which the Pt 

ions simultaneously nucleate and grow, results in the formation of big Pt particles. Upon 

this carbothermal reduction, the metallic particles lose their electrostatic interaction with 

functional nVP units; so, they migrate and combine to decrease their surface area. 

Therefore, a higher rate of Pt coarsening in carbothermal treated samples accounts for 

the formation of a bimodal particles size distribution consisted of large agglomerates and 

smaller particles as it was observed in TEM image in Fig. 22g. To address this issue, the 

Pt precursors can be reduced prior to carbonization to be appropriately stabilized within 

the polymeric matrix. It was assumed that, the reduced metallic Pt particles reach to a 

reasonable cluster size upon rapid reduction; therefore, they cannot have as much 
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mobility as the Pt nuclease. In this case, it is expected that the size of the stabilized Pt 

particles cannot change noticeably during the subsequent carbonization and lead to a 

uniform Pt distribution. 

 

 Table 1. Information about carbothermal treated electrospun P(AN-co-nVP)/ Pt-20 wt.% 

samples. 

Carbonization 

Temperature 

(˚C) 

Lc 

(nm) 

d002 

(nm) 

Pt mean particle 

size-electron 

microscopy (nm) 

Pt wt.% 

-TGA  

Electroactive 

Surface Area 

(ECSA, m2/g) 

ID/IG 

600 0.58 3.4 2.8 20 31.4 3.5 

700 0.64 3.4 3.7 21 37.3 2.6 

800 0.89 3.3 4.8 20 43.1 0.4 

900  0.97 3.2 9.3 20 28.1 0.3 

1000  1.14 3.1 11.3 21 23.2 0.2 

 

 

3.4. Development of Pt containing nanofibers through chemical 

reduction  

Several samples containing different amounts of the PtCl2 were prepared under different 

reducing conditions and characterized. The samples have been categorized regarding 

their Pt contents consisted of samples with 5 and 20 wt.% Pt. Table 2 summarizes the 

various conditions utilized to treat each groups of the samples. In the following sections, 

a brief explanation will be provided on the corresponding results achieved from each 

type of the samples.  

After analyzing different conditions, the best procedure for production of the fibers was 

utilized for synthesizing CNT-containing nanofibers to improve the catalytic 

performance of the materials.  
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Table 2. A summary of the samples studied and the conditions used in this study. 

 

 

3.4.1. Nanofibers containing 5 wt.% Pt 

3.4.1.1. Effect of the reducing agent and the reduction time 

Electrospun nanofibers-PtCl2 mats were subjected to different chemical reducing 

conditions and the obtained samples were visually examined by SEM and elemental 

analysis was performed by EDX spectroscopy. The nanocomposite mats containing PtCl2 

were incubated in 5 vol.% and 10 vol.% hydrazine solutions prepared with pure water 

for different times, and the effect of concentration of reducing solution and the duration 

of the reduction was investigated. Reduction times are indicated in the headings of SEM 

and EDX images showing the result of the relevant analysis. Fig. 26 shows the SEM 

Amount of 

Pt 

 

 

Condition 

 

 

Reducing 

Agent 

Immersion 

Time in (RA) 

(h/min) 

Microwave 

reduction 

5 wt.% Pt 

 

Effect of immersion 

time and reducing agent 

 

Hydrazine  

24 0 

42 0 

116 0 

132 0 

Effect of microwave 

time and reducing agent 
Hydrazine 

0 

3 min 
0 

0 

0 

20 wt.% Pt 

Effect of microwave 

time and different 

reducing agents 

Ethylene 

glycol 

0 3 min 

0 3 min 

0 3 min 

0 3 min 

Sodium 

borohydride 

0 3 min 

0 3 min 

0 3 min 

0 3 min 

Hydrazine 

0 
3 min and 

15-30-60-120s 

0 
3 min and 

15-30-60-120s 

0 
3 min and 

15-30-60-120s 

0 
3 min and 

15-30-60-120s 
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image and EDX analysis of 5 wt.% PtCl2-containing electrospun nanofibers. X-ray 

diffraction peaks of Pt and Cl elements can be observed in the EDX spectrum. After the 

chemical reduction, the quantities of these peaks of Pt and Cl elements were compared 

and the amounts of reduction were investigated. 

 

 

Fig.26. SEM image and EDX spectrum of as-electrospun nanofibers of P(AN-co-

nVP)/5wt% PtCl2. 

 

The electrospun polymer nanofibers-PtCl2 samples were suspended in a 5% aqueous 

hydrazine solution for 1 hour and 24 h and the resulting materials were analyzed by SEM 

and EDX. In the SEM images of Fig.27, the Pt nanoparticles are not visible, but the Cl/Pt 

ratio decreases in the EDX analysis as compared to the unreduced one (Fig.26). When 

the 1 hour and 24 h reduction times were compared, the Cl/Pt ratio decreased with time. 

When the SEM images were examined, it was observed that the reducing solution caused 

some degradation on the fiber surfaces, and these degradations was found to be more 

intense in the samples waiting in solution for 24 hours. 
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Fig.27. SEM images and EDX spectra of P(AN-co-nVP)/5 wt.% PtCl2 nanofibers 

immersed in 5 vol.% hydrazine solutions for (a) 1 hour, (b) 24 hours. 

 

After the reduction with 5% hydrazine aqueous solution was observed to be incomplete, 

the concentration of the reducing agent was increased to 10 vol.% hydrazine and 

reduction was performed for 1 h, 8 h and 24 h. When the Cl / Pt ratios were compared, 

the amount of Cl decreased with increasing the reduction period. After the 24 h reduction 

reaction, the Cl presence is still observed, but the amount appears to be very small (Fig. 

28). 
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Fig.28. SEM images and EDX spectra of P(AN-co-nVP)/5 wt.% PtCl2 nanofibers 

reduced in 10% hydrazine solution, (a) 1 hour, (b) 8 hours and (c) 24 hours.  
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Some of the samples were stored in the reducing solution for up to 116 h after it was 

found that the amount of reduced Pt increased with the reduction time but the process 

was not completed even after 116 h. The small amount of Cl observed in the EDX 

spectrum (Fig. 29) showed that the reduction period of up to 5 days was not sufficient 

and other methods were investigated to reduce this Pt salt. 

 

 

Fig.29. EDX spectrum of P(AN-co-nVP)/5 wt.% PtCl2 sample reduced in 10% hydrazine 

solution, 116 hours. 

 

Fig. 30 also shows the SEM images of the carbonized samples containing 5 wt.% Pt 

which are reduced at different time periods. According to the SEM images, no clear sign 

of Pt particles is represented on the carbon fibers while deformation of some fibers was 

clearly observed.  
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Fig.30. SEM images of the carbonized samples at 800 °C containing 5 wt.% Pt reduced 

in 5 wt.% hydrazine hydrate solution for different periods of times. 

 

Fig. 31 represents the XRD patterns of the carbonized samples reduced in different times. 

There was no sign of Pt peak in the patterns even at a very long duration of time, e.g. 132 

h, immersion at room temperature. Therefore, the microwave treatment was decided to 

be carried out on samples at different times and within different reducing agents.   

 

Fig.31. XRD patterns of the carbonized samples at 800 °C containing 5 wt.% Pt reduced 

in 5 wt.% hydrazine hydrate solution for different periods of times.  
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3.4.1.2. Effect of microwave  

Given the obtained data from different immersion times, the microwave treatment of 

samples within different time periods was applied to the fibers in order to have a good 

control on the Pt particle size and distribution and also to benefit the effect high 

temperature to reduce the PtCl2 salt. Therefore, several microwave irradiation times on 

fiber samples within hydrazine reducing agent was taken into account. In the literature, 

it has been shown that similar platinum precursors such as PtCl4 and H2PtCl6 are reduced 

by microwave irradiation [99]. 

Some of the samples that were left in the 10% hydrazine solution for 46 hours were 

compared to the microwave treated sample. As can be seen in Fig. 32, all of the PtCl2 

salts were reduced to Pt in the sample subjected to microwave treatment after standing 

46 h in a hydrazine solution. The microwave irradiation was applied 6 times with a total 

of 60 seconds periods provided that it was 10 seconds - open, 40 seconds - closed in a 1 

KW domestic microwave oven.  

 

 

Fig.32. P(AN-co-nVP)/5 wt.% PtCl2 reduced in 10% hydrazine solution, EDX spectrum, 

46 hours (a) chemical reduction only, (b) chemical reduction + microwave buildup. 
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3.4.2. Samples with 20 wt.% Pt 

3.4.2.1. Effect of microwave time and reducing agent 

3.4.2.1.1. Hydrazine, Ethylene glycol and Sodium borohydride 

To study the effect of hydrazine reduction for Pt nanoparticles in the fibers containing 

higher amounts of Pt precursor, the 20 wt.% Pt containing samples were utilized. The 

XRD patterns of the 20 wt.% Pt samples were obtained before carbonization to study the 

effect of reduction process on the samples. Fig. 33 demonstrates the XRD results of 20 

wt.% Pt samples after reduction step and before carbonization of the fibers.  

 

 

Fig.33. XRD patterns of 20 wt.% Pt samples reduced in hydrazine under microwave 

during four different periods of times. 

 

Fig.34 demonstrates the XRD patterns of the 20 wt.% Pt samples reduced in hydrazine 

solution after carbonization. It is observed that, the characteristic peaks associated with 

the crystalline Pt particles are obvious in the XRD patterns.   
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Fig.34. XRD patterns of 20 wt.% Pt samples reduced in hydrazine under microwave 

during four different periods of times; (a) before and (b) after carbonization at 800 °C. 

 

 

Fig.35. The typical TEM images of the 20 wt.% Pt sample reduced under microwave in 

hydrazine for 3 min.  
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The typical TEM images of the 20 wt.% Pt sample reduced under microwave in 

hydrazine for 3 min are also represented in Fig. 35. It could be observed that the Pt 

particles with an average size of 3 nm have been evenly distributed all over the nanofibers 

and also a relatively decent size distribution is achieved. This observation designated the 

fact that, using a microwave-assisted reduction in presence of the hydrazine hydrate 

solution on 20 wt.% Pt precursor containing nanofibers successfully enabled us to take a 

good control over the size distribution of the Pt nanoparticles. 

 

Two other reducing agents, namely ethylene glycol (EG) and sodium borohydride 

(NaBH4) were also utilized with the aim of studying the effect of microwave reduction 

using other reducing agents on the quality and the size of the Pt nanoparticles produced 

in the nanofibers. Both of these reducing agents have some advantages such a good 

microwave absorbance capacity and being more environmental friendly and cost-

effective compared to the hydrazine solution. Fig.36 represents the XRD patterns of the 

20 wt.% Pt samples microwave-reduced for 3 min in EG and NaBH4 solutions, 

respectively, after carbonization at 800 °C. The characteristic Pt peaks could be observed 

using both reducing agents.  

 

 

 

Fig.36. (a) XRD patterns of 20 wt.% Pt samples reduced in ethylene glycol under 

microwave during four different periods of times after carbonization at 800 °C and (b) 

XRD patterns of 20 wt.% Pt samples reduced in sodium borohydride under microwave 

during four different periods of times after carbonization at 800 °C. 
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The typical SEM images of three 20 wt.% Pt samples reduced three different reducing 

agents under 3 min microwave irradiation are represented in Fig. 37. It is observed that 

sodium borohydride leads to the formation of big Pt particles with a large range of size 

distribution (Fig.37a) while the ethylene glycol has created damages on the surface of 

fibers and has created extremely large Pt particles (Fig.37b). On the other hand, fine Pt 

nanoparticles randomly distributed throughout the fibers were observed when hydrazine 

is used as a reducing agent (Fig.37c and Fig.37d), which enables a better control over the 

size distribution of the Pt nanoparticles.  

 

 

Fig.37. SEM images of three 20 wt.% Pt samples reduced three different reducing agents 

under 3 min microwave irradiation in hydrazine.  
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Comparing the results obtained from 5 wt.% Pt and 20 wt.% Pt containing samples, it 

was observed that using 5 wt.% Pt in carbon nanofibers cannot lead to the formation of 

an enough Pt nanoparticles throughout the fibers and specially on their surface. 

Furthermore, the amount of Pt used to synthesize most of the commercial PEMFC 

electrodes is reported to be around 20 wt.% Pt. Therefore, to include an enough amount 

of Pt in the fibers and also be comparable with the existing commercial electrodes, the 

20 wt.% Pt containing nanofibers were chosen to perform further analysis. Also, based 

on SEM analysis on different samples reduced by various agents, it was observed that 

the hydrazine hydride solution provides the most consolable Pt size tuning once the 

samples were treated with microwave. However, using ethylene glycol and sodium 

borohydride, the damaged fiber surfaces along with bigger particles were obtained. 

Therefore, the hydrazine hydride solution was preferred as the best reducing agent to 

apply to the rest of the samples.  

 

3.5. Microwave assisted reduced Pt in 20 wt.% Pt containing samples    

A rapid microwave (MW)-assisted reduction in a 5 wt.% hydrazine hydrate aqueous 

solution was employed to achieve uniformly dispersed Pt nanoparticles in the range of a 

few nanometers in diameter. Microwave benefits the specific properties of compounds 

to transform electromagnetic energy into the heat energy. This is achieved through 

dielectric losses in materials and the magnitude of energy conversion depends on the 

dielectric properties of the molecules [100]. Both units of acrylonitrile and 

vinylpyrrolidone units in the copolymer are moderately polar and therefore microwave 

absorber materials [101]. Therefore, the microwave absorption in the presence of a 

reducing agent can take part throughout the nanofibers. Due to the intensive oscillations 

and collision of polar molecules under the influence of electromagnetic microwave 

irradiation, the produced heating energy results in the significantly accelerated Pt 

nucleation [102]. Another interesting feature of microwave treatment is associated with 

its rapid volumetric performance, which heats the bulk of the material simultaneously, 

resulting in the homogeneous Pt reduction [100]. By applying microwave irradiation to 

the polymeric fibers, the Pt2+ is rapidly reduced into the Pt0 and becomes stabilized within 

the polymeric fibers. In addition to the microwave absorption of the polymeric fibers, the 
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polarization of the water molecules existing in the reducing solution also contributes to 

the overall heating up in the reducing medium.  

As mentioned in the experimental section, the SWCNTs were also added to the 

nanofibers to study their effect on the catalytic performance of the samples. Due to their 

high conductivity, the SWCNTs can increase the number of dipole moments and 

polarizability in the nanofiber composites [101]. The microwave absorption of SWCNTs 

emanates from polarization, Ohmic losses and multiple scattering due to the large 

specific surface area [103]. The high aspect ratio of the SWCNTs is also an important 

factor that improves the absorptivity of the CNT/polymer composites [103]. The 

SWCNT structure can absorb the microwave irradiation through the interaction between 

microwave and π conjugated electrons and transform it to the Joule heat and cause to the 

rapid increase of the local temperature [104]. Therefore, during reduction of CNT-

containing fibers, more thermal energy is expected to accelerate the reduction process 

and increases the number of Pt nucleation sites in the fibers. The reduction of the Pt2+ 

nanoparticles in presence of hydrazine hydrate is given in following equation [5]: 

N2H4(aq) + PtCl2(s) → N2(g) + Pt0
(s) + 4HCl      (5) 

The SEM images of the microwave treated CNT-free and CNT-containing samples after 

carbonization are demonstrated in Fig. 38. The surface morphology and appearance of 

the nanofibers with and without CNTs are similar.  Since no significant CNT extrusion 

or bumps on the surface of the CNT-containing fibers were observed, it could be 

speculated that most of the CNTs were embedded within the nanofibers.  The CNTs as 

one-dimensional nanomaterials with nanoscale width and micron-sized length are quite 

long to be simply aligned through axial direction of nanofibers. Nevertheless, the 

electrospinning method as a promising technique can address this issue [105]. Higher 

solution conductivity exerts greater electric current on the flowing jet during 

electrospinning and induces large charge accumulation, which leads to a strong 

electrostatic repulsion throughout the jet. This strong repulsive force can simply 

overcome the surface tension and let the jet to elongate further which results in the 

reduction of fiber diameter [106]. Small signs of CNT orientation within the fibers could 

be observed in the broken parts in SEM micrographs (Fig. 38g and 38h). Comparing the 

SEM micrographs of both types of the microwave-assisted reduced samples (with and 
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without CNT) showed that the size distribution of the Pt particles, specially treated at 

shorter irradiation times, have been significantly improved. This could be associated with 

the effective influence of stabilization of the metallized Pt particles through microwave 

reduction prior to the carbonization. In both types of the nanofibers, upon increasing the 

microwave irradiation time, the Pt particles have increased in size due to the time-

dependent nature of coarsening process. Furthermore, it was also observed that the size 

of the Pt particles in the CNT-containing nanofibers have been decreased compared to 

the CNT-free ones. Formation of relatively finer particles in the CNT-containing samples 

was attributed to the presence of CNTs as a good microwave absorber, which has 

accelerated the nucleation and instantaneous stabilization of the Pt particles. It seems 

that, addition of the CNTs into the nanofibers has led to the predomination of the rapid 

nucleation of new Pt clusters rather than growth. By increasing of the microwave 

treatment time, the size of Pt particles tends to increase due to the increased diffusion 

and growth opportunity at longer durations (120s). In both types of samples, a bimodal 

particle size distribution was observed, consisted of larger and fine particles. However, 

the average particle size was relatively smaller in the case of CNT-containing fibers. An 

interesting phenomenon about 120s microwave reduced CNT-containing samples was 

concentration of the Pt particles around CNTs (Fig. 38i).  

  

 

Fig.38. SEM images of microwave-assisted reduced CNT-free nanofibers in 5 % 

Hydrazine hydrate solution for(a) 15s, (b) 30s, (c) 60s, (d) 120s and CNT-containing 

samples reduced for (e) 15s, (f) 30s, (g) 60s and (i) 120s. 
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It was also observed that, upon attraction of Pt particles towards CNTs, the surrounding 

area of the CNTs becomes depleted from particles. This behavior could be associated to 

the high microwave absorptivity of the CNTs and also enough time for the Pt clusters to 

migrate and agglomerate around CNTs.             

Pt particle size distribution and orientation of the CNTs throughout the nanofibers were 

also characterized with the TEM analysis. The TEM images of microwave treated P(AN-

co-nVP)/Pt-20 wt.% nanofibers along with corresponding particle size distribution 

histograms are illustrated in Fig. 39a-c. Significantly smaller Pt particles and uniform 

particle distribution are observed, especially in 15s (Fig. 39a) and 30s (Fig. 39b) 

microwave-reduced nanofibers, compared to the carbothermally-reduced samples treated 

with the same temperature (800 C). By increasing the microwave treatment time, the 

particles tend to aggregate and form a bimodal particle size distribution (Fig. 39c). The 

minimum average particle size of about 1.75 nm is obtained in 15 s microwave irradiated 

CNT-free sample, which is calculated using image processing of TEM micrographs. The 

30s treated sample also represented a similar narrow particle size distribution as 15s 

treated sample and average particle size of around 2.85 nm.  

The CNT-containing samples exhibited an improved dispersion of Pt particles and 

smaller mean particle size compared to the corresponding CNT-free samples (Fig. 39d- 

39f). For instance, the 15s treated CNT-containing sample represented a mean particle 

size of about 0.862 nm which is equivalent to approximately 50% size declining with 

respect to its CNT-free counterpart (1.751 nm), due to the effective influence of the 

CNTs. By increasing of the microwave irradiation time, the Pt average particle size also 

increased in the CNT-containing samples (Table 2), however it has a lower coarsening 

rate. 
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Fig.39. TEM images of microwave-assisted reduced CNT-free samples for (a) 15s, (b) 

30s, (c) 60s, (d) 120s and TEM images of CNT-containing samples reduced for (d) 15s, 

(e) 30s, (f) 60s and (d) 120s. 

 

Distribution of the CNTs was also observed in a typical CNT-containing sample (30s) 

using high resolution TEM (Fig. 40a). Although both CNFs and SWCNTs are consisted 

of the same carbon material, they can be observed as aligned tubes along the CNFs in the 

HRTEM image (Fig. 40a) due to their more ordered graphitic structure compared to the 

CNFs. The FFT pattern corresponding to the CNTs represented as inset image in Fig. 

46b, approves the regularly aligned structure of the CNTs within the CNFs. The atomic 

layers of a Pt cluster are demonstrated in HRTEM image in Fig. 40c. The FFT pattern 

obtained from this particle (Fig. 40d) reveals a perfect FCC crystalline structure of the Pt 

particles.  
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Fig.40. (a) HR-TEM image showing the alignment of the SWCNTs through CNF; (b) 

FFT pattern of SWCNTs; (c) HR-TEM image of Pt atoms in the FCC structure of a single 

crystal Pt and (d) FFT pattern of FCC structure of Pt.  

 

In order to assess the crystal structure of Pt particles in all microwave treated samples, 

the XRD analysis was carried out (Fig. 41a and 41b). Four characteristic peaks at 46.6°, 

54.7°, 80.6° and 98.7° were detected, associated to the (111), (200), (220) and (311) 

reflection planes of FCC platinum, respectively. [107]. In the XRD spectra of CNT-

containing samples, represented in Fig. 41b, the XRD pattern of the pristine CNT is also 

included, in which the representative diffraction peaks at 30.0° and 50.4° could be 
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associated to the (002) and (004) planes of the hexagonal graphite structure [107]. The 

XRD results of the CNT-containing samples revealed that, they have also inherited the 

characteristic peaks of CNT. The small particle size effect is obvious about samples 

treated for lower times [108]. In other words, in the samples containing particles being 

in the range of   0.5- 2 nm, which do not have a regular bulk band structure, the binding 

energy shifts towards higher values and leads to the broadening of their Pt peaks [95]. 

However, by increasing the microwave reduction time, in both types of the samples, the 

sharper peaks were appeared. Using the XRD spectrums, the Lc and d200 were also 

calculated for the CNT-containing fibers, which were about 0.94 nm and 3.22nm, 

respectively. It revealed that, the presence of the CNTs can noticeably increase the size 

of the crystalline domains in the P(AN-co-nVP) derived nanofibers.  

It has been frequently stated in the literature that, the incorporated CNTs in the structure 

of the CNFs, can play a templating rule for the formation of graphite layers within CNFs 

and thus, contribute to a higher degree of graphitization [109]. To survey this 

phenomenon in the CNT-containing samples, the Raman analysis was conducted and the 

result was compared with a CNT-free sample (Fig. 41c). Both samples represented the 

strong Raman peaks, attributed to the G and D bands (Fig. 41c). The ratio of ID/IG in the 

CNT-containing sample was calculated as 0.36, which as compared to its CNT-free 

counterpart (carbothermally-reduced at 800 ˚C, 0.44), the graphitization has been 

improved by ~ 18 %.  

The four-probe technique was utilized to study the effect of enhanced graphitization on 

the electrical conductivity of the CNT-containing samples compared to the CNT-free 

counterparts, the electrical conductivity of the CNT-containing samples (0.95 S cm-1) 

was meaningfully improved with respect to the CNT-free fibers (0.78 S cm-1). In fact, 

the presence of a high concentration of significantly conductive CNTs and increased 

graphitization in the CNT-containing nanofibers could be referred as the main reason for 

the enhanced electrical conductivity. The enhanced graphitization in these structures is 

reported to be as a result of templating effect of the CNTs that instigate the nucleation 

and growth of graphene stacks within the nanofibers [110]. Furthermore, due to the 

alignment of the CNTs through the axis of nanofiber an additional enhancement in the 

electrical conductivity could be achieved [110].  
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Fig.41. XRD spectrums of nanofibers (a) without and (b) with CNT and (c) Raman 

spectrums comparing the graphitization in nanofibers with and without CNT carbonized 

at 800˚C. 

 

The surface area analysis using BET test was also conducted on microwave treated 

samples with and without CNT, to investigate the probable impact of the CNTs on the 

porosity of the nanofibers. The results signified a noticeable enhancement in the surface 

area of the CNT-containing nanofibers (385 m2 g-1) compared to their CNT-free 

counterparts (336 m2 g-1).  

The TGA characterization was performed on all nanofibers (with and without CNT) 

under oxygen atmosphere to determine the Pt contents and tabulated in Table 3.  

The CV analysis was carried out to calculate the electrocatalytic activities of two groups 

of samples, The CV voltammograms representing the characteristic peaks for Pt 

oxidation and reduction in CNT-free and CNT-containing samples are demonstrated in 

Fig. 42a and 42b, respectively. In all CV voltammograms, a hydrogen oxidation peak at 

around -0.2V for hydrogen adsorption and two representative peaks for oxide formation 

reaction at 0.5 V SCE and 0.8 V SCE in the anodic branch; and the oxide reduction peak 

at 0.45 V SCE and a hydrogen desorption at around -0.2 V SCE were observed through 

cathodic branch of the CV diagrams. Similar to the carbothermal reduced nanofibers, the 

appearance of the CV spectra was identical to the polycrystalline platinum [13]. 
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Fig.42. CV spectra of fibers: (a) without and (b) with CNT. 

 

The ECSA of the samples was determined by the means of equation (4), through 

integrating the area under the hydrogen adsorption peaks on CV curves (table 3). The 

ECSA values obtained for CNT-free samples showed that, the 15 s and 30 s reduced 

samples have a relatively close value, however, the 30s treated sample demonstrated a 

slightly higher catalytic activity, despite the fact that the 15s sample possesses smaller 

average particle size (1.751 nm). Such a peculiar observation might be associated with 

the lower portion of Pt cluster near the surface of the nanofibers, accessible for the 

electrolyte. Regarding the ECSA results, the electrocatalytic performance is reduced with 

an increase in the mean Pt particle size. Comparing the ECSA results obtained from the 

microwave-assisted reduced (30s irradiated) with that of the carbothermal treatment 

(800˚C), it was found that the nanofibers reduced before carbonization represented about 

an order of magnitude improved catalytic response compared to the carbothermal 

reduced samples.   

The CV voltammograms of CNT-containing samples (Fig. 42b) demonstrated a more 

rectangular shape compared to the CNT-free ones. (42a). This feature could be attributed 

to the higher double layer capacitance of CNT-containing samples, because of a higher 

porosity of CNFs and the electrochemically inert nature of the CNTs [111]. Increasing 

of the effective surface area between catalyst layer and electrolyte leads to the increased 

amount of charge carriers attracted to the interface and therefore enhanced capacity 

[112]. The hydrogen adsorption peak at -0.2 V and Pt oxide formation reaction at 0.5 V 

SCE and 0.8 V SCE in the anodic branch; and the oxide reduction peak at 0.45 V SCE 
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and a hydrogen desorption at around -0.2 V SCE were evolved in the cathodic branch of 

all CV diagrams (Fig. 42b). The calculated values of the ECSA for all samples, using 

equation (4), were listed in Table 3. All CNT-containing nanofibers demonstrate an 

improved catalytic performance compared to their CNT-free counterparts.  

 

Table 3. Information about microwave treated samples with and without CNTs. 

 

Sample 

type 

condition Pt mean particle 

size-electron 

microscopy 

(nm) 

Pt 

wt.% 

-TGA 

Electroactive 

Surface Area 

(ECSA, m2g-1) 

 

CNT-free 

Mic- treated- 15s 1.7 21 65.3 

Mic- treated- 30s 2.8 20 68.4 

Mic- treated- 60s 8.5 21 31.8 

Mic- treated- 120s 10.9 21 23.2 

 

CNT-

Containing 

Mic- treated- 15s 0.8 20 82.5 

Mic- treated- 30s 1.1 21 73.8 

Mic- treated- 60s 5.7 20 45.7 

Mic- treated- 120s 7.6 20 34.4 

 

 

Despite CNT-free samples, with a best catalytic performance achieved for 30s 

microwave irradiated sample (ECSA=68.44 m2g-1), the CNT-containing fibers 

represented the highest activity for 15s of microwave reduction (ECSA=82.55 m2g-1). 

This alteration could be ascribed to the significant number of Pt clusters over the surface 

of this sample (Fig. 39), which has been already described. Additionally, a higher surface 

area, due to the presence of CNTs in this group of samples could be considered as another 

factor contributing to a higher activity.  The higher electrical conductivity in CNT-

containing samples could also be effective in the enhancement of the electrochemical 

catalytic performance of the 15s-treated sample (and also other samples). It is observed 

that, by increasing the microwave irradiation time, especially after 60 s, the catalytic 
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activity of the nanofibers steps down.  The significance of incorporation of the CNTs 

into the carbon nanofibers, besides enhancement of the catalytic performance, is 

explained to be their effectiveness in increasing the redox cycling capability. This is 

achieved through deducing the stress applied on the fibers by electrolyte movements 

during cycling [113]. Furthermore, the reinforcing effect of CNTs allows to construct a 

more strong and durable catalyst layer for different applications like fuel cell, which will 

be reported in the future work. 

 

3.6. Fuel cell testing 

In order to prepare PEMFC electrodes, completely processed carbon nanofibers were 

manually crushed by a mortar and pestle. The as-crushed fibers are represented in the 

TEM image in Fig.43a. The morphology of the crushed nanofibers in the MEA, binded 

with the Nafion solution is also illustrated in Fig.43b. To observe the exact thickness of 

the catalyst layer over the carbon paper in the MEAs, the same amount of catalyst layer 

(which is applied over carbon paper) was coated on an aluminum foil to observe the 

cross-section of the catalyst layer (Fig.43c). According to the cross-sectional image of 

the catalyst layer, it was observed that the thickness of catalyst layer was about 30-50 

µm. It could be observed in the SEM images that there is a relatively balanced 

compactness and porosity in the catalyst layers and carbon nanofibers have been well 

distributed and created a good contact between each other.  

Fig. 44 demonstrates polarization curves of the microwave reduced samples (with and 

without CNT) after PEMFC measurement at 70˚C. The cell performances of the MEAs 

showed that, all the samples represented slightly low performance. Because, in many of 

studies or in the commercial PEMFCs, the electrodes are prepared from carbon supports 

with Pt particles decorated over the surface. However, the Pt particles in our samples are 

distributed throughout the fibers (inside and outside) and thus, there are lower accessible 

active regions. 
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Fig.43. (a) TEM image of the crushed carbon nanofibers to be used in the fuel cell 

electrodes, (b) SEM image of the surface of fuel cell cathode catalyst layer and (c) SEM 

image from the intersection of the fuel cell cathode catalyst layer.  

 

Also, it could be argued that, by some additional manipulations and optimizations the 

PEMFC performance of these samples could be improved. Comparing the CNT-

containing and CNT-free samples, it could be observed that, the overall PEMFC 

performance of the CNT-containing samples are improved with respect to their CNT-

free counterparts, both in lower and higher current density regions. This could be 

associated to higher charge conductivity and also smaller Pt nuclei over the CNT-

containing samples.  

 

 

Fig.44. Single PEMFC a) performance b) power density output curves of the microwave 

treated samples at various irradiation times.  
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The highest PEMFC performance between microwave treated samples was achieved for 

15s treated CNT-containing sample. It is observed that, the PEMFC results are in a good 

accordance with the CV catalytic performances of the samples (Table 3). Power density 

variations of the samples are also represented in Fig.44b. The maximum power density 

of 500 mWcm-2 was achieved for 15s microwave treated CNT-containing sample. It is 

clear from the power density curves that, by increasing the microwave irradiation time, 

the maximum power densities decrease.  
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4. Conclusions 

 

An in-situ microwave-assisted synthesis method was reported for scalable production of 

CNF-supported Pt particles from a polymeric source with a precise particle size control. 

The CNF-supported Pt was synthesized through electrospinning of P(AN-co-nVP) 

copolymer solution in DMF containing 20 wt.% PtCl2 as Pt source and subsequent 

microwave reduction in 5 vol.% hydrazine hydrate solution and carbonization at 800 ̊C. 

The copolymer structure was designed in way that it could template the dispersion of Pt 

precursors (chemically coordinated with polar groups of bifunctional monomers) in a 

random manner. Subsequently, a rapid microwave-assisted reduction procedure was 

implicated to locally reduce the Pt precursor, without permitting them to aggregate. The 

existence of the vinyl terminal groups polymerized with AN unit was verified from the 

FTIR and 1H-NMR results. Furthermore, the 1H-NMR results revealed a “random” 

distribution of nVP bifunctional groups within the PAN supporting polymer. The 

optimum carbonization condition for the nanofibers was achieved at 800 ̊C.  Since the Pt 

nanoparticles were entrapped within a matrix, their surface energy was satisfied and 

therefore the sintering phenomena was considerably avoided, even during subsequent 

high-temperature carbonization procedure (at 800 ̊C). It was observed that a rapid 

microwave reduction is capable of generating a significantly uniform nucleation and 

distribution of Pt nanoparticles, throughout the nanofibers with average sizes even less 

than 1 nm. The minimum average particle size was obtained after 15s irradiation, which 

is 1.751 nm for CNT-free sample and 0.862 nm for CNT-containing ones with even 

narrow size distribution. The smaller particle size achieved in the case of CNT-

containing CNFs, compared to their CNT-free counterparts, could be associated to the 

dominance of an effective Pt nucleation rather that growth, due to a higher microwave 

absorptivity in CNT-containing samples. In all samples, the mean Pt particle size was 

observed to increase as a function of microwave irradiation time. The catalytic activity 

of the samples measured by CV test demonstrated the best ECSA value for the 30s treated 

CNT-free sample despite the smaller Pt particle size in the 15s treated one. This 

observation was attributed to the lower accessibility of the Pt particles to the electrolyte 

solution. However, in the case of CNT-containing samples the highest ECSA value was 

observed for 15s microwave irradiated sample, which was assumed to be associated with 

the considerable number of Pt nucleated near the surface of this sample and also higher 
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porous nanofibers (due to the presence of CNTs) and a higher electrical conductivity. 

Moreover, the overall PEMFC performance of the CNT-containing samples is improved 

compared to their CNT-free counterparts, due to higher charge conductivity and also a 

high frequency of smaller Pt nuclei over the CNT-containing samples. The highest fuel 

cell performance and the maximum power density of 500 mWcm-2 was achieved for the 

15s microwave treated CNT-containing sample.  
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