
SABANCI UNIVERSITY

A Simulation Analysis of

Different Allocation and Pricing

Policies for Cloud Computing

Service Providers

by

Seyed Mohamad Reza Afghah

Supervisor:

Tonguç Ünlüyurt

in the

Faculty of Engineeirng and Natural Sciences

Industrial Engineering

August 2017

http://www.sabanciuniv.edu/en
mohamadreza@sabanciuniv.edu
tonguc@sabanciuniv.edu
http://fens.sabanciuniv.edu/
http://ie.sabanciuniv.edu/)

Declaration of Authorship

I, Seyed Mohamad Reza Afghah, declare that this thesis titled, ‘A Simulation

Analysis of Different Allocation and Pricing Policies for Cloud Computing Service

Providers’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research

degree at this University.

� Where any part of this thesis has previously been submitted for a degree or

any other qualification at this University or any other institution, this has

been clearly stated.

� Where I have consulted the published work of others, this is always clearly

attributed.

� Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed

myself.

Signed:

Date:

i

Seyed Mohamad Reza Afghah

01/08/2017

c©Seyed Mohamad Reza Afghah 2017

All Rights Reserved

SABANCI UNIVERSITY

Abstract
Faculty of Engineeirng and Natural Sciences

Industrial Engineering

Master of Science

by Seyed Mohamad Reza Afghah

Keywords: Revenue Management; Cloud Computing; Data Centers; Simulation;

Pricing Policy

The cloud computing is regarded as a paradigm shift in nowadays IT world.

As services of cloud computing behave like perishable products, revenue manage-

ment techniques can be applied to increase cloud service provider’s total revenue.

In this thesis, we develop various methods for pricing and capacity allocation.

We consider three types of instances; subscription, on-demand and spot instances.

We introduce three allocation and pricing policies and propose 8 models based

on their combinations. First, we establish a queuing mechanism for on-demand

instances which are rejected initially by the cloud with a price incentive. Second,

we consider an auction based model for spot instances and introduce two types

of threshold policies where it is constant or dependent on the remaining capacity.

Finally, the criterion for spot instances selection is based on expected revenue or

bid of that customer. We simulate these models on several datasets and evaluate

the models with different capacities. The results we obtain indicate the sensitivity

of revenue based on the policies we propose over the studied datasets.

http://www.sabanciuniv.edu/en
http://fens.sabanciuniv.edu/
http://ie.sabanciuniv.edu/)
mohamadreza@sabanciuniv.edu

SABANCI ÜNIVERSITESİ

Başlık

Bulut bilişim servis sağlayıcıları için farklı kapasite ataması ve fiyatlandırma

politikalarının benzetim yoluyla karşılaştırması

Özet

Endüstri Mühendisliği

Anahtar Kelimeler: Gelir yönetimi; bulut bilişim; veri merkezleri; benzetim;

fiyatlandırma politikaları

Bulut bilişim, günümüzde bilişim dünyasında paradigma kayması olarak görülüyor.

Bulut bilgi işlem hizmetleri kapasite kullanılmadığı zaman bozulabilir ürünlerde

olduğu gibi gelir kaybına sebep olurlar. Bu açıdan bakıldığında bulut hizmet

sağlayıcısının toplam gelirini artırmak için gelir yönetimi teknikleri uygulanabilir.

Bu tezde, fiyatlama ve kapasite tahsisi için çeşitli yöntemler geliştiriyoruz. Üç

farklı tip durumu ele almaktayız; Abonelik, talep üzerine ve spot olarak gelen

durumlar. Üç farklı tahsis ve fiyatlandırma politikası öneriyor ve bunların farklı

kombinasyonlarına dayanarak 8 model öneriyoruz. Öncelikle, isteğe bağlı örnekler

için başlangıçta fiyat teşviki içeren bulut tarafından reddedilen bir kuyruklama

mekanizması oluşturduk. İkinci olarak, spot örnekler için açık arttırmaya dayalı

bir model önerdik ve sabit ya da kalan kapasiteye bağlı iki tür eşik politikası

sunduk. Son olarak, spot örneklerin seçimi için kriter olarak, o müşterinin beklenen

gelirine veya teklifine dayandığı iki durumu ele aldık. Bu modelleri çeşitli veri

setleri üzerinde benzetim yolu ile toplam gelire göre karşılaştırdık. Elde ettiğimiz

sonuçlar, incelenen veri kümeleri üzerinde öne sürdüğümüz politikalara dayalı gelir

hassasiyetini göstermektedir.

Acknowledgements

Firrst my gratitude goes to my thesis advisor Prof. Dr. Tonguç Ünlüyurt

of the Faculty of Engineering at Sabanci Univeristy. The door to Prof. Ünlüyurt

office was always open whenever I ran into a trouble spot or had a question about

my research or writing. He consistently allowed this paper to be my own work,

but steered me in the right the direction whenever he deemed I needed it.

I would also like to acknowledge Prof. Dr. Özgür Özlük of the Industrial

Engineering Department at MEF Univeristy as the second reader of this thesis,

and I would like to send my gratitude to him for his valuable comments and

suggestions for this thesis.

Finally, I must express my profound thanks to my parents and to my brother

and sisters for supporting me and their continuous encouragement throughout my

years of study. This accomplishment would not have been possible without them.

Author

Seyed Mohamad Reza Afghah

vi

Contents

Declaration of Authorship i

Abstract v

Acknowledgements vii

List of Figures x

List of Tables xi

Abbreviations xii

1 Introduction 1

1.1 Data Center . 2

1.2 Data Center Services . 2

1.2.1 Different Layers of Data Centers 3

1.2.1.1 SaaS . 4

1.2.1.2 PaaS . 4

1.2.1.3 IaaS . 5

1.2.2 Pricing Plans of IaaS . 6

1.2.2.1 Subscription . 7

1.2.2.2 On-demand . 7

1.2.2.3 Spot Instances . 8

1.3 Problem Description . 8

2 Literature Review 13

3 Simulation Model 19

3.1 System Model . 19

3.1.1 Cloud Pricing Plans . 19

3.1.1.1 On-Demand Instances 20

3.1.1.2 Reserved Instances 20

vii

Contents viii

3.1.1.3 Spot Instances . 20

3.2 Proposed Model . 21

3.2.1 General Assumptions . 23

3.2.2 Model Description . 25

3.2.2.1 Model 1.0 . 25

3.2.2.2 Model 2.0 . 28

3.2.2.3 Model 2.1 . 31

3.2.2.4 Model 3.0 and 3.1 34

3.2.2.5 Model 4.0, 4.1, 4.2, and 4.3 36

4 Datasets and Results 38

4.1 Corresponding Computational Environment 38

4.2 Datasets . 39

4.2.1 Dataset 1 . 39

4.2.2 Dataset 2 . 40

4.2.3 Dataset 3 . 41

4.3 Results . 41

4.3.1 Revenue in Dataset 1 . 41

4.3.1.1 Capacity 1500 . 41

4.3.1.2 Capacity 2500 . 44

4.3.1.3 Capacity 1000 . 46

4.3.2 Revenue in Dataset 2 . 49

4.3.2.1 Capacity 1500 . 49

4.3.2.2 Capacity 1000 . 52

4.3.3 Revenue in Dataset 3 . 55

4.3.3.1 Capacity 1500 . 55

4.3.3.2 Capacity 1000 . 58

5 Conclusion and Future Work 62

A Parameters and Variables 64

B Python Code of Model 3.1 67

Bibliography 75

List of Figures

1.1 Cloud Layers[1] . 3

4.1 Total Revenue for Capacity 1500 and Dataset 1 42

4.2 Revenue Comparison of Models Capacity 1500, Dataset 1 43

4.3 Total Revenue for Capacity 2500 and Dataset 1 45

4.4 Revenues Comparison of Models Capacity 2500, Dataset 1 46

4.5 Total Revenue for Capacity 1000 and Dataset 1 47

4.6 Revenues Comparison of Models Capacity 1000, Dataset 1 48

4.7 Total Revenue for Capacity 1500 and Dataset 2 50

4.8 Revenues Comparison of Models Capacity 1500, Dataset 2 51

4.9 Total Revenue for Capacity 1000 and Dataset 2 53

4.10 Revenues Comparison of Models Capacity 1000, Dataset 2 54

4.11 Total Revenue for Capacity 1500 and Dataset 3 56

4.12 Revenues Comparison of Models Capacity 1500, Dataset 3 57

4.13 Total Revenue for Capacity 1000 and Dataset 3 58

4.14 Revenues Comparison of Models Capacity 1000, Dataset 3 60

ix

List of Tables

1.1 The attributes of M4 models offered by Amazon 10

1.2 m4.large Pricing Plans . 11

3.1 Factors of each model version . 37

4.1 Parameters of Demand Generation (Dataset 1) 40

4.2 Parameters of Demand Generation (Dataset 2) 40

4.3 Parameters of Demand Generation (Dataset 3) 41

4.4 Maximum Revenues for Capacity 1500 - Dataset 1 43

4.5 Optimal Model’s Revenue vs. Other Models Capacity 1500, Dataset 1 44

4.6 Maximum Revenues for Capacity 2500 - Dataset 1 45

4.7 Maximum Revenues for Capacity 1000 - Dataset 1 48

4.8 Optimal Model’s Revenue vs. Other Models Capacity 1000, Dataset 1 49

4.9 Maximum Revenues for Capacity 1500 - Dataset 2 50

4.10 Optimal Model’s Revenue vs. Other Models Capacity 1500, Dataset 2 52

4.11 Maximum Revenues for Capacity 1000 - Dataset 2 53

4.12 Optimal Model’s Revenue vs. Other Models Capacity 1000, Dataset 2 55

4.13 Maximum Revenues for Capacity 1500 - Dataset 3 57

4.14 Optimal Model’s Revenue vs. Other Models Capacity 1500, Dataset 3 58

4.15 Maximum Revenues for Capacity 1000 - Dataset 3 59

4.16 Optimal Model’s Revenue vs. Other Models Capacity 1000, Dataset 3 60

x

Abbreviations

CSP Cloud Service Provider

SLA Service Level Agreement

QoS Quality of Service

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

API Application Programming Interface

VM Virtual Machine

SipaaS Spot instance pricing as a Service

xi

Chapter 1

Introduction

Cloud computing, often referred to as simply “the cloud,” is the delivery

of computing resources (such as CPU, memory, applications, and . . .) from data

centers to users over the Internet on a pay-for-use basis. Cloud computing provides

a platform, where resources such as CPU, software, memory, and information is

provided as a service to end-users. The cloud delivers a broad practical, flexible,

and cost-effective system for businesses that rely IT needs [2]. This has resulted in

a rapid growth for the business of cloud computing, that led to many interesting

research questions that can be tackled by operations research techniques. The

cloud services are offered by different large scale data centers at a proportionately

low cost in the ever changing IT world. In this work, we have scrutinized some

features of cloud providers in order to increase their revenue.

”Cloud computing has drawn many researchers’ attention to its applications

in the IT world as a paradigm shift.” Many research have been conducted in the

particular case of revenue improvement by different tools, such as McGill & Van

Ryzin, and Xu et al. [3, 4]. To better understand the dynamics of cloud servers,

we will provide a description of the data centers and different services which they

offer. In the following we will provide the background information required for

understanding this study.

1

Chapter 1 Introduction 2

1.1 Data Center

It is the core of a company and the place where the critical processes of

the business are run and its information is stored. The technical definition of

a data center is a “facility composed of networked computers and storage that

businesses or other organizations use to organize, process, store and disseminate

large amounts of data” [5]. Large-scale computer systems have been established in

the IT world for a while now, and the term data center is widely known to people

around the world. In the 1940s, computers were so large that individual rooms

had to be specially set aside to house them. Even the steady miniaturization of the

computer did not initially change this arrangement because the functional scope

increased to such an extent that the systems still required the same amount of

space [6]. Even nowadays, with individual PCs being much more powerful than

any data processor from those days, every large-scale operation has compound

IT infrastructures with a substantial amount of equipment, and they are still

contained in well-established chambers. Depending on their size, these are referred

to as “server rooms” or “data centers”. A server room is referred to a room where it

is used to store servers, while a data center is where a whole building is associated

with servers.

Data centers are regularly administered by large companies (e.g. Amazon,

Google, and . . .) or government agencies. However, they are also progressively

used to provide and adapt to a fast-growing cloud service environment for private

and business applications. This shows the extensive use and necessity for data

centers in every aspect of the IT world.

1.2 Data Center Services

The term service provider introduces an establishment which maintains a

large scale data center and provides multiple categories of services. There are

Chapter 1 Introduction 3

three main services offered by these companies: SaaS1, PaaS2, and IaaS3; where

each of them are indicating different layers of a data center’s service. Figure 1.1,

illustrates the different layers of data centers. In general, the cloud computing is

an extensive concept, and it covers just about every possible class of online service.

Nevertheless, when businesses refer to cloud procurement, there are usually three

models of cloud services under consideration, Software as a Service, Platform as a

Service, and Infrastructure as a Service. Each has its own intricacies and hybrid

cloud models, in the following we’re going to develop an understanding of the

high-level differences between SaaS, PaaS, and IaaS.

Figure 1.1: Cloud Layers[1]

1.2.1 Different Layers of Data Centers

In order to get a better comprehension over the three categories of data center

services, an inclusive description of them is provided in the following with examples

[7]:

1Software as a Service
2Platform as a Service
3Infrastructure as a Service

Chapter 1 Introduction 4

1.2.1.1 SaaS

In some ways, SaaS is extremely similar to a lightweight computer built with

the purpose of remote controlling the servers. In this case, the clients are nor-

mally web browsers and provide access point to software running on servers. SaaS

is the most familiar configuration of cloud services for customers. SaaS transfers

the function of software administration and its installation to third-party services.

Among the most well-known SaaS utilization for commerce are customer relation-

ship management applications. Examples for the application this type of service

are comprehensive such as Salesforce, productivity softwares like Google Apps,

and storage solutions like Dropbox.

Use of SaaS applications tends to minimize the cost of software right of own-

ership by eliminating the requirement for technical staff to administer installation,

management, and upgrade of software, as well as reducing the cost for licensing.

SaaS applications are usually provided on a subscription plan which will be dis-

cussed later on in this chapter.

1.2.1.2 PaaS

PaaS operates at a lower tier of the data center than SaaS, typically offer-

ing software developers a platform, where they can be develop and deploy their

softwares. PaaS providers remove most of the complexities of handling the servers

and provide clients with an environment in which the operating system and server

software are taken care of. In addition, they handle the low level server hardware

and network infrastructure, leaving the customers to focus on alteration of busi-

ness plan due to scalability, and the application expansion of their own product

or service.

As it is the case with majority of cloud services, PaaS is built based on vir-

tualization technology. Businesses can order and posses resources as they require

them, scaling as demand expands, rather than spending on unessential and redun-

dant resources.

Chapter 1 Introduction 5

Heroku, Red Hat’s OpenShift, and Google App Engine are examples of PaaS

providers.

1.2.1.3 IaaS

Moving down the lower levels of cloud computing structure, we arrive at the

root building blocks for cloud services. IaaS provides exceptionally automated

and scalable hardware resources, accompanied by cloud storage, processor perfor-

mance, and network capability. These prospects can be self-provisioned, adjusted,

and the service is available on-demand.

IaaS providers deliver cloud servers and their associated resources by an API4

or dashboard. IaaS providers grant their clients direct access to their servers and

storage, the same as they would have access with traditional servers. Nonetheless,

the clients have access to a higher level of scalability. IaaS offers the opportunity

of outsourcing and building a “virtual machine” in the cloud to its clients, while

granting access to many of the same technologies and resource capabilities of a

traditional data centers, disregarding the cost of capacity planning or the physical

management and maintenance.

IaaS is the most adaptable form of cloud computing which permits automated

deployment of servers, processing performance, memory storage, and networking.

The clients of IaaS have a complete jurisdiction over their infrastructure rather

than customers of PaaS or SaaS services. Development and deployment of PaaS,

SaaS, and web-scale applications are the basic employment of IaaS services.

There are many small-scale service provider providing Infrastructure as a

Service such as Navisite, exoscale, and Softlayer. However, the three main service

providers in this area are Azure, Amazon EC2, and Google Cloud Platform.

4Application programming interface

Chapter 1 Introduction 6

1.2.2 Pricing Plans of IaaS

The focus of this study is on the IaaS that is offered by Amazon. Amazon

Elastic Compute Cloud (Amazon EC2) is a web service that provides secure, resiz-

able compute capacity in the cloud, that is why we chose this service provider to

examine. Amazon has three dominant pricing plans for its IaaS. To distinguish the

differences in these pricing models before we define each of these plans, we require

to understand the concept of SLA5. SLA is a contract between a service provider

and its internal or external customers that documents what services the provider

will furnish and defines the performance standards the provider is obligated to

meet.

SLAs establish customer expectations with regard to the service provider’s

performance and quality in a number of ways. Some metrics offered by Amazon

that SLAs may specify include:

• Availability/uptime - the proportion of time which services will be available.

• Particular performance benchmarks, where true render execution will be

compared for every interval.

• Application response time.

• Notification of network changes in advance that might affect user’s perfor-

mance.

• Help desk response time for a variety of problem classes.

• Usage statistics’ delivery.

An SLA specifies availability, performance, memory storage and other pa-

rameters for distinct classes of service infrastructure. Now by taking SLA into

consideration we can distinguish the pricing plans more easily [8].

5Service Level Agreement

Chapter 1 Introduction 7

1.2.2.1 Subscription

A subscription-based pricing model, also referred to as reserved, is a billing pay-

ment plan that allows the user or business organization to purchase (in other words

subscribe to) a retailer’s cloud services for a designated amount of time for a set

price. Subscriptions for a service are usually established on a monthly or annual

basis.

This pricing plan for cloud computing is being utilized on a large scale. In a

subscription-based scheme, cloud customers typically pay an upfront fee, prior to

receiving the requested cloud service. Prices in this plan are often in accordance

to the duration of subscription, the longer its term the less its price per time unit

will become.

For example, in amazon web services there is an upfront fee required which

reserves an instance that you leased and based on its SLA whenever you require

the service you reserved the cloud provider is obligated to deliver the requested

service to you. It is worth mentioning that aside from the upfront fee, you will

be charged with only the billing periods where you have utilized your reserved

instance.

1.2.2.2 On-demand

On-demand service procurement, is the standard form of pricing models where the

end-user will purchase the instance over a random amount of time for a specific

service which they requested. On-demand as defined by the National Institute

of Standards and Technology, is the process through which “a consumer (or any

user for our purposes here) can unilaterally provision computing capabilities, such

as server time and network storage, as needed automatically without requiring

human interaction with each service provider”.

Chapter 1 Introduction 8

It is due consideration that regarding on-demand SLA the service provider is

compelled to allocate the requested capacity to you, during the time you paid the

service fee for.

1.2.2.3 Spot Instances

Spot instances enable you to bid on unused capacity, which can lower your

costs significantly. The hourly price for a spot instance is set by the service

provider, and fluctuates depending on the supply of and demand for spot in-

stances. Your spot instance runs whenever your bid exceeds the current market

price.

Spot instances are a cost-effective choice if you can be flexible about when

your applications run and if the applications can be interrupted. For example, Spot

instances are well-suited for data analysis, batch jobs, background processing, and

optional tasks. This is due to their SLA, which indicates that the service provider

can kick them out of the system whenever they lack capacity or when their bids

fall under the market price.

The key differences between spot and on-demand pricing plans are that spot

instances might be dropped out of the system, the term price for spot instances

varies based on its demand. In addition, the service provider can terminate an

individual spot instance as the hourly price for, or availability of, spot instances

changes. One strategy is to launch a core group of On-Demand instances to

maintain a minimum level of guaranteed compute resources for your applications,

and supplement them with spot instances when the opportunity arises.

1.3 Problem Description

As we discussed before, the application of cloud computing is on the rise

nowadays. Thus, we need to consider different aspects of these systems in order to

improve them. Many researches have been conducted on every feature of a cloud

Chapter 1 Introduction 9

system, in two approaches; one, considering the service providers perspective,

the other takes the end-users satisfaction in to account. Nonetheless, a great

proportion of these studies has been done on the revenue of the cloud provider and

the pricing of the services. We can see some of the works that has been done on this

subject in a survey that Al-Roomi et al. has presented in 2013 [9]. They consider

many factors in cloud pricing and service offering. One of the crucial factors

that they discuss is called QoS6, which specifies the technological equipments and

services that the provider is offering - the more advanced technology used in a cloud

the higher the prices will be. The other factor which has drawn many researchers’

attention is the scheduling and allocation of its resources [10, 11]. Nonetheless,

few analysis has been done over while excelling revenue by resource allocation.

To this accord, the goal of this study is to investigate how revenue will alter

by changing the resource allocation. Furthermore, we will examine the effect of

several pricing policies in total revenue of a service provider. In the following we

will provide a comprehensive and detailed description of the problem, including

the assumptions of the problem.

First of all, we consider the Amazon EC27 as our base service provider and we

will build the model and the assumptions around it. Amazon EC2 offers several

families of IaaSs which they are called differently according to their purposes. For

example, they offer a service called M4 which provides a balance of compute,

memory, and network resources, and it is suitable for many applications. The

features of this model are given below:

• 2.3 GHz Intel Xeon R© E5-2686 v4 (Broadwell) processors or 2.4 GHz Intel

Xeon R© E5-2676 v3 (Haswell) processors

• EBS-optimized by default at no additional cost

• Support for Enhanced Networking

• Balance of compute, memory, and network resources

6Quality of Service
7Amazon Elastic Compute Cloud

Chapter 1 Introduction 10

Moreover, we can see the attributes of different instances offered by this family in

the following table:

Table 1.1: The attributes of M4 models offered by Amazon

Model vCPU
Mem
(GiB)

SSD Storage
(GB)

Dedicated EBS
Bandwidth (Mbps)

m4.large 2 8 EBS-only 450
m4.xlarge 4 16 EBS-only 750
m4.2xlarge 8 32 EBS-only 1,000
m4.4xlarge 16 64 EBS-only 2,000
m4.10xlarge 40 128 EBS-only 4,000
m4.16xlarge 64 256 EBS-only 10,000

We will assume in our analysis that the provider is offering only one service

for simplification purposes. We have chosen m4.large as the base service in this

study.

Subsequently, after the customer’s decision on which service he or she will

go for, again the user has three options for pricing plans. Choosing each pricing

scheme both relies on the customer’s preference and the QoS that he/she requires.

Reserved instances are chosen when the user wants to be certain about the avail-

ability of the service they need in time. Thus, they will subscribe the service for a

certain period of time (we suppose that the subscription’s term is fixed and equals

30 days). Obviously this is the most expensive option. If the customer prefers a

more cost-efficient service, while their applications are not required on a specific

time-line; however, they cannot afford any interruptions, on-demand instances be-

come a more suitable option for the customer. Nevertheless, when the need of

the users for cloud services does not have many restrictions, they can use spot in-

stances which is the most cost friendly service. Spot instances are most appealing

to customers such as developers, that have batch jobs to run on the cloud. Table

1.2, indicates the prices of m4.large offered by Amazon.

The crucial factor is that the cloud provider has a limited capacity and it

needs to optimally allocate each of its resources to increase the revenue. Note

that we suppose the capacity of the system is an integer and indicates the number

of m4.large instances which can be allocated to the system. Moreover, the three

Chapter 1 Introduction 11

Table 1.2: m4.large Pricing Plans

Pricing Plan
Upfront Fee
(for 30-day subscription)

Daily Rate

Reserved $45.1 $1.86
On-demand $0 $3.24
Spot $0 $0.3144

pricing plans have their own unique demands at each time. In order to make

verifiable comparison and analysis, we introduce two definitions on the subject of

time-line. First, the term time interval is defined as one day. Second, we set a

time horizon as 360 days (in another words, 360 time intervals).

According to the assumptions mentioned in the previous paragraph, we can

continue with the problem description. We have referred to resource allocation as

one the issues that concerns a service provider. Aside from that, a more complex

matter is how to invest the resources to each instance type. This means that

besides the fact how many of the instances should be accepted to the system,

what is the best policy for accepting each user. This becomes a crucial factor

when the service provider is deciding on which instance type is best to be accepted.

Furthermore, the policy and the price of spot market is a crucial concern which

requires a diligent investigation.

In this study we have utilized simulation techniques to compare and find the

best service allocation and pricing plan under several circumstances. Initially, we

verify the proposition of Toosi et al. in their 2015 paper, indicating the proportion

of reserved instances accepted by the service provider will influence the revenue

produced for the cloud in the long run. In addition, the contribution of this

thesis is that first we remove some of the simplifications assumed in Toosi’s work

and introduce a more realistic revenue procurement. Moreover, we investigate

the impact of several pricing policies for on-demand and spot instances on the

total revenue. We have incorporated the concept of threshold for spot instances

and analyzed it in an auction based mechanism. For on-demand customers we

introduced a queue where in case of capacity shortage will be activated and when

Chapter 1 Introduction 12

empty capacity becomes available they can enter the system with a discounted

price.

The following chapter is dedicated to discussing the previous work that has

been done on the subject of data center’s revenue improvement and cloud com-

puting on broader sense. In chapter 3, we will present the models, and pricing

policies that have been analyzed throughout this thesis. Chapter 4, presents the

computational environment, the datasets used for simulation, and illustrates the

results and the findings of the models and pricing policies used in this study. Fi-

nally, the last chapter includes the discussion on the conclusion and future work

which can be conducted on this subject.

Chapter 2

Literature Review

Revenue management is defined as the application of disciplined analytics

that predict consumer behavior at a micro-market level and enhance product avail-

ability and price to optimize revenue in a system with fixed capacity of perishable

resources by market demand management and scheduling. During the last few

decades, this subject has witnessed a significant growth both in a scientific and

practical sense, especially in the airline and hotel industries [3]. The vital factors

that are considered in a revenue management analysis are the demand, selling

price, inventory allocation, and market segmentation [3].

The concept of market segmentation was presented to the scientific world in

1956 by WR Smith, as the process of dividing a market of potential customers

into groups, or segments, based on different characteristics. The segments created

are composed of consumers who will respond similarly to marketing strategies and

who share traits such as similar interests, needs, or locations [12]. As the literature

on the subject of revenue management is extensive, we focus on its relevant appli-

cations to cloud computing. Note that the concept of market segmentation should

be well considered in each model that is proposed for a cloud revenue model [13].

Recently, cloud revenue management has attracted many researchers’ atten-

tion. Both optimal pricing and scheduling of the data centers in order to maximize

the revenue have been a trending subject in recent literature. In 2014, Heiling et

13

Chapter 2 Literature Review 14

al. examined the literature to specify the recent work on different aspects of cloud

computing in terms of decision analysis [14]. One major factor for decision makers

is a pricing scheme for various services of cloud providers. They specify an impor-

tant characteristic of cloud computing as on-demand access and call it accessibility.

This of a high importance, has five major considerations:

• A benefit of cloud computing is automated updates from the provider (in

other words Version Control) that get pushed down to the customer’s sys-

tems. While these often bring improvements and security in terms of data

loss, they can also disrupt accessibility and can cause difficulties to push the

data back to cloud. A rudimentary example for this feature is the businesses

based on Dropbox where your files are both on the company’s computer and

the cloud’s servers.

• Because cloud applications have to be accessed through a connection users

often have to go through a browser, which adds another layer to the “ac-

cessibility value chain”, the bandwidth of the user’s connection becomes a

crucial factor.

• Having an integrated platform is beneficial for an organization, but can cause

problems for people who lacks in computer skills, where they have to become

experts in that platform and the associated accessibility options.

• Thin clients — in which the device is merely used to display information and

receive inputs, while the actual computing takes place on cloud servers —

are an essential part of many cloud systems. However, this option can cause

the client problems, since it may reduce the accessibility of the cloud.

• Visualizations are a useful tool to display large data sets in a more user

friendly fashion for the user. There are tools and methods for getting around

this but those are not always available in a cloud setup.

Moreover, Heilig mentions pricing as a significant characteristic in cloud (on-

demand delivery of cloud services requires a flexible pricing scheme). In addition to

Chapter 2 Literature Review 15

revenue maximization, the model is required to be assessed comparing its SLAs,

it can be done also with standardization and Virtualization1 [15]. It is worth

mentioning that in these two studies they have not considered market segmentation

and only set up their models on on-demand services. In the following we investigate

the most recent literature that have approached the pricing and scheduling of

Cloud providers in a dynamic manner.

There has been a vast literature in cloud computing regarding the pricing of

cloud services. In 2016, Do et al. devised a model for price competition among

a heterogeneous cloud market incorporating the multi-tiered interaction between

the users and the cloud service providers. They claim that their model examines

the interplay of overcrowding, pricing and performance. Do et al. maintain that

the queuing model that they have used in their paper (M/M/∞ queue) has been

adopted in several other papers on data centers. In detail their model extracts the

equilibrium prices of the non-cooperative static game and successively the dynamic

of the cloud users in the selection game [16].

Sharma et al. assess the fair prices regarding both cloud providers and cus-

tomers, and came up with a pricing architecture which is derived based on financial

options theory. The prices are adjusted using financial value-at-risk (VaR) analy-

sis; they used a genetic algorithm to calculate the value-at-risk and incorporated

it in their pricing scheme [17].

In 2010, Shang et al. saw the rising of cloud computing services, and came up

with auction based pricing policy. They address the flexibility of this market well;

however, since the market’s size was small at the time they sufficed to a static

model. They used a double auction Bayesian game based algorithm to obtain the

optimal pricing policy. One major restriction in their model is that they consider

the price of the providers and the users are uniformly distributed [18].

The transition from static pricing schemes to dynamic pricing schemes in

cloud computing services was observed by Li in 2013. These pricing techniques are

based on the available resources and the market. They evaluate the performance

1Virtualization lets you run multiple operating systems and applications on a single server

Chapter 2 Literature Review 16

of several allocation algorithms for virtual machines (they call the instances that

the service provider offer as virtual machines2) considering that the providers has

adopted a dynamic mechanism for pricing policy [19].

The main effort on dynamic pricing of cloud services has been on spot in-

stances, e.g. Amazon EC2 services which the prices are dynamically changed. Xu

and Li published a paper on dynamic pricing schemes for spot instances. They

used dynamic programming techniques to maximize the revenue of the service

provider. Their model eliminates the nature of auction in spot instances mar-

ket, which subsequently will remove the possibility of removing the user from the

system[4]. Toosi et al. published a paper in 2015, implementing the Ex-CORE

auction algorithm and allocating the virtual machines for a spot instance provider

as an online software called SipaaS3. The proposed framework is tested upon Open-

Stack dashboard, and evaluated [20].

In 2015, Alzhouri et al. presented a dynamic programming algorithm to

estimate the pricing of IaaS of a cloud provider. They define their model as

Markov decision process under uncertainty on a finite time horizon. In order

to overcome complexity of the problem they discretized the time horizon. They

applied their formulation on the spot instances market to maximize the profit.

However, regarding the uncertainty of the arrival and departure of the demands

lead to a complex formulation which cannot be calculated in real time [21].

Similarly, Jin et al. introduce two major issues in current cloud computing

pricing scheme (i.e., pay-as-you-go for spot instances) in IaaS platform and try to

ameliorate these issues by their proposed model; (i) the profit of cloud provider

and the user usually are in contradiction with each other; (ii) another issue is the

VM’s4 maintenance overhead cost such as start up cost are neglected. This model

determines a price that is both satisfactory to both the CSP and the customer

[22]. Nevertheless, they do not consider all three cloud services5 in the revenue

maximization models.

2VM
3Spot instance pricing as a Service
4Virtual Machine
5Reservation, on-demand, and spot instances

Chapter 2 Literature Review 17

In addition to dynamic pricing and revenue maximization, there are some

papers and studies that consider resource allocation and scheduling. Lin et al.

present a dynamic auction mechanism targets the allocation problem of spot in-

stances and their bids. The optimal method to accept the bids which will result

in the highest revenue possible [23]. They defined a threshold in a system with n

customers and a cloud service provider, and each user makes a bid. The CSP6 will

accept the these bids based on the capacity available and those that are accepted

will be allocated a VM. The threshold will be a value higher less than the mini-

mum value of bids that has been accepted, and higher than the maximum value

of the bids that has been rejected.d

In addition, the deficiency of incorporating the cloud capacity scheduling for

revenue optimization purposes is a none refutable fact in most literature. In this

regard, Toosi et al. address the capacity allocation of a data center’s resources

on a finite horizon, where they offer three plans of on-demand, reservation (i.e.,

subscription) and spot market. They try to maximize the revenue by solving an

optimization problem, in which they employ stochastic dynamic programming,

in order to optimize the capacity allocation of each pricing plans. Also, they

used heuristic algorithms to optimize computational complexity. The model was

adapted from a large-scale real-life problem of Google; on the other hand, they

use heuristics to allow online decision making take place in real time [24]. How-

ever, Their model lacks authenticity due to its oversimplification estimating the

reservation utilization and the pricing fluctuation of spot instances.

We have based our simulation analysis on the model that is proposed by Toosi

et al. in 2015, and changed their assumptions to more realistic ones. furthermore,

we have employed the models and assumptions used in other works to enhance our

simulation analysis. In this manner we need to scrutinize the model used by Toosi

et al. for a better understanding of the following chapters. They consider the IaaS

of Amazon EC2 and they use a heuristic algorithm to find the optimal allocation

over the three pricing plans (subscription, on-demand, and spot instances). They

study the system over a finite horizon, and divide it to several equally distributed

6Cloud Service Provider

Chapter 2 Literature Review 18

time intervals. Next, they assume that the demands of each instance is known prior

to their analysis. And move on to, defining a decision variable on what proportion

of the reserved instances they accept to the system. Their algorithm will receive

reserved instances as they are the most guaranteed form of revenue [24]. In the next

iteration they will accept as many on-demand instances as possible, this due to the

fact that on-demand instances produces almost the same as reserved consumers.

This assumption is easily authenticated by calculating the their revenue over 30

days. We use the prices offered by Amazon EC2 in table 1.2. The revenue of a

reserved instance in this case will be $100.9 and it will be $97.2 for on-demand

instances; however, this value for a spot customer is $9.432. They assume that

the spot users will only receive their service for one time interval which is an

over simplification in their study. Furthermore, they assume that the rejected

customers are lost forever.

Based on the previous studies that have been mention in this chapter, we have

proposed a simulation analysis of the cloud service provider’s revenue. This study

will analyze different policies that a CSP can take, in terms of the its revenue. In

the following chapter we will present our simulation model and its assumptions.

Chapter 3

Simulation Model

This chapter includes the assumptions and the logic that our model is based

on. Then, we discuss the complete models, and the results and findings of the

simulation model in the next chapter.

3.1 System Model

In this section, we discuss the different types of the services that are offered

by a typical cloud service provider such as Amazon EC2 Web Services. We assume

that the service provider has only one type of instance (m4.large of Amazon EC2).

The prices used in this model are derived from table 1.2.

3.1.1 Cloud Pricing Plans

The model at hand considers three pricing plans which their description is

provided in the following:

19

Chapter 3 Simulation Model 20

3.1.1.1 On-Demand Instances

These are also referred to as pay-as-you-go plan are vastly used by cellphone

operators. With on-demand instances, you pay for computing capacity by the

day with no long-term commitments or upfront payments. You can increase or

decrease your computing capacity depending on the demands of your application

and only pay the specified daily rate for the instances you use. The user is charged

at a fixed rate (p = $3.24) per billing cycle. The rate of on-demand instances is

stable and does not change for most IaaS providers [24].

3.1.1.2 Reserved Instances

This plan requires an upfront fee (ϕ = $45.1), and will guarantee a space on

the server for a specific duration which is stated in the reservation contract. The

time span of these plans are typically one month (we assume them to be 30 days).

The plan is said to be live when the user is utilizing its capacity. In that case, the

provider charges the user a discounted daily fee compared with the daily fee of

the pay-as-you-go plan. The amount of user’s usage of its capacity is accumulated

and used to calculate the bill. The discount factor is manifested as α = 0.574 (the

value of α is the ratio of reserved daily rate over on-demand daily rate) and the

daily usage is shown by t, thus the bill of a reservation plan user will be ϕ+α p t.

3.1.1.3 Spot Instances

In this plan, the customers will bid on instances in an auction based market. If

their bid was higher than the threshold of the IaaS provider, then they are granted

the access to the instance. However, this plan has the lowest QoS1. This means

that, in case of capacity shortage or overload in the system, they can be dumped

out of the system. Nonetheless, this plan has attracted many customers due to

the fact that the user can save up to 90% in comparison to on-demand instances

[25]. Spot instance’s price is regulated by a discounted rate ps = $0.3144, and the

1Quality of Service

Chapter 3 Simulation Model 21

price at each billing cycle is quantified by their bids. Using these pricing plans

and their we can continue to the base model that we used in the simulation.

3.2 Proposed Model

The model that we have conceived simulates the cloud system and examines

the dynamics of the system and the revenue of the provider for different policies.

Such a simulation will allow us to evaluate each pricing policy and the relationship

of price with available capacity. For the sake of clarity, we suppose that the IaaS

provider only offers one package (m4.large instance (Linux, US east), offered by

Amazon Web Services).

Initially, we presume that the planning horizon is finite and decomposed into

τ identically sized time intervals that are equal to the billing cycles of the cloud

provider (one day). Time at the beginning of the horizon is set as 0 (t = 0) and the

demand at each time interval for the three different pricing plans are; do0 . . . d
o
τ−1

for on-demand instances, dr0 . . . d
r
τ−1 for reserved instances, and ds0 . . . d

s
τ−1 for spot

instances. We assume that the demands of each period arrive at the beginning of

that time interval. Due to lack of access to demand data, we had to generate the

demand for the three services; reserved instances, on-demand instances, and spot

instances.

We generated the demands according to a logical pattern, the demand will

decrease on weekends and New Year’s holidays. We also consider the case where

the arrival rates are without fluctuation. The distribution to which the demands

are produced with Poisson distribution, this distribution is widely used for arrival

rate customers [26]. In the first case, the parameters used to produce the demands

are divided in 3 categories. The first category is indicating the demand at a regular

rate; this includes the all the periods except at weekends at New Year’s holidays

(µsr, µ
s
o, and µss). The second category demonstrates the time when demand is

at its lowest rate, this happens on the weekends (µwr , µwo , and µws). The last

category is showing the demand on holidays when there is a decline in the rate of

Chapter 3 Simulation Model 22

arriving customers (µhr , µ
h
o , and µhs). The other case is when the demands are at

a constant arrival rate (µr, µo, and µs). Note that the customers will all arrive at

the beginning of the time interval into the system.

The goal of the cloud service provider is to optimally allocate its capacity to

ensure the highest possible revenue. In this section, we present the mathemati-

cal formulation that supports our simulation model. We assume the capacity of

the system to be C which means the servers in the system can contain up to C

instances.

The cloud service provider decides on what percentage of the reserved in-

stances it accepts at each time period (ρ). The reservation plan is the most stable

line of income for the cloud provider, also the most profitable per each customer.

We assume that any accepted reserved instance will be stay in the system for 30

days. So in order to figure out how much capacity we have for the other instances,

we need to know how many reserved instances we accept in the last 30 days. An

accepted reserved instance will not always actively use the capacity it reserved

and for each time period it will utilize the computing resources with a probability

of normal distribution with parameters µ & σ. Normal distribution is chosen for

its bell-shaped symmetric characteristic. We generate the utilization alongside

the demands before running the simulation, in order to compare different policies

objectively.

The capacity remaining once the reserve instances are accepted, can be used

for on-demand and spot instances. The life time of an on-demand instance is

assumed to have a geometric distribution with the average of 11 days. Since

they are more profitable compared to spot instances, depending on the remaining

capacity and arriving demand of on-demand instances, we accept as many on-

demand instances as possible. Whereas reserved instances may some times not

fully utilize the allocated capacity, on-demand instances will fully employ the

computer resource they have requested.

Finally, based on the remaining capacity and demand of spot instances, we

accept as many spot instances as possible to maximize capacity utilization. Spot

Chapter 3 Simulation Model 23

instances due to its SLA can be kicked out of the system at each time when there

is an overload in the system, thus they can utilize the capacity that is reserved

while there is no active instance. The spot instances’ life time are estimated with

a geometric distribution. The average time that spot users stay in the system

is 5.5 days. We designed the system in a manner that in case of an overload

at an interval it will exterminate spot instances equal to the number of overload

instances.

Our goal is to find the best ρ under different policies and circumstances. We

define rt as the number of demands that are accepted to the system at time t. The

simulation model will run for different proportions of accepted reserved instances

to see which policy is the most profitable with regards to the cloud provider.

The lifespan of the reserved instances is less than the time horizon of the

system. We suppose that the time horizon of the system equals 360 days, and

the lifespan of reserved instances is 30 days (ν). Due to the this argument, the

system is required to update itself after the life time of these instance finishes.

Note that the upfront fee of reserved instances in the last month should not be

fully accounted for in the revenue calculations of the year. To resolve this issue we

multiplied the upfront fee with a linearly decreasing coefficient in the last month

(ψ) that will only consider the share of the upfront fee in regards to the hours left

into the time horizon.

3.2.1 General Assumptions

According to the theoretical model explain prior we can present the general

assumptions used in this study in the list below:

• We run each scenario on three different capacities; first, the case where we

have capacity shortage (1500). Second, we simulated on capacity higher than

the average resources that customers occupy (2500). Finally, we evaluate

the revenues on excessive scarcity of resources (1000). The average capacity

Chapter 3 Simulation Model 24

is calculated by the summation of three arguments; (i) multiplication of

reserved average demand by 30 day of subscription period and the mean

utilization overtime, (ii) average demand of on-demand instances per period

times their mean service duration, (iii) the product of average spot demand

and their service duration.

maximum average capacity = mu (30µr) + 11µo + 5.5µs

• We assume that the rejected customers or the ones that leave the system

will not reenter the cloud. This assumption is changed in some of the cases

studied, which is explained later.

• The decision variable of the model is the percentage of accepted reserved

instances at each interval. We try different values of ρ and pick the best rho

for each policy, demand data and capacity combination (ρ = 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0)

• At time 0, we have lr0 = 0, lo0 = 0 and ls0 = 0. And, the demand starts

arriving at the first period.

• We assume that each on-demand instance will stay in the system according

to a geometric distribution with parameter 0.09 which means on the average

they will leave after µω = 11 periods.

• Moreover, the lifespan of spot instances is generated by geometric distribu-

tion with average of 5.5 days (µε).

• As the subscription of reserved instances is for 30 days, we define a discount

factor ψt for the last 29 days. Thus, we incorporate only the proportion of

the upfront fee which is in our time horizon.

• Note that the instances arrive at the beginning of each time period and

they will either get accepted or rejected by the system. Those customers

that were disapproved will disappear from the system and will find another

service provider.

Chapter 3 Simulation Model 25

• Reserved instances may utilize their secured capacity. Otherwise, this ca-

pacity can be allocated to spot instances (Due to their SLA) when there

is a shortage. It is worth mentioning, we cannot allocate any on-demand

instances to this proportion of the system, since according to SLA of on-

demand instances they cannot be removed from the system. Elimination of

the customers allocated to the unused part of the capacity is the result of

the increase in utilization of reserved instances or accepting new instances

to the system in an upcoming period.

3.2.2 Model Description

Moving on to the main models we used for the simulation analysis, we have

devised 8 models to test their revenue over the time horizon of 360 days. These

algorithms are based on the method used by Toosi et al. in 2015. We start by

Toosi’s model and move on to more detailed and realistic model that we proposed

in this thesis.

3.2.2.1 Model 1.0

This is the exact model that Toosi et al. proposed in their 2015 paper. We set

this model as a base structure for our proposed models. Assuming the demands

of each instance for all time intervals, and the utilization of reserved instances for

each time interval is known prior to the execution the model, we continue to the

first iteration. Note that we will calculate revenue for all values of ρ which are

stated in general assumptions.

First step of the model is to find the number of reserved instances that can be

received to the system. The number of reserved instances accepted to the cloud

at time t2 is assigned to the variable rt, and we show the number of reserved

instances that are currently in the system by lrt). Similarly, The number of on-

demand instances in the clouds from previous time intervals is manifested by lot .

2’t’ subscript indicates the time interval

Chapter 3 Simulation Model 26

So, the value of the rt can be computed by equation 3.1. This formulation is

indicating that the cloud can only accept the minimum of ρ percentage of the new

customers or in case of capacity shortage it will receive a number equal to its left

capacity.

rt =min(C − lrt−1 − lot−1, ρ d
r
t), ∀t ∈ (1, τ) (3.1)

It is worth mentioning that the value of the term on left side of this equation

never gets negative values, since it did not accept more than its capacity in the

prior period. lrt requires to be updated after each iteration according to:

lrt = lrt−1 + rt, ∀t ∈ (1, ν) (3.2a)

lrt = lrt−1 + rt − rt−ν , ∀t ∈ (ν, τ) (3.2b)

This is based on the fact that the instances will leave the system after they finish

their 30 day (ν specifies a 30 days or in other words 30 intervals) subscription. In

the next iteration we will compute the value of ot which indicates the number of

on-demand instances that the model will introduce to the system.

ot =min(C − rt − lrt−1 − lot−1, d
o
t), ∀t ∈ (1, τ) (3.3)

On-demand instances have a limited duration individually (ωj) with a geomet-

ric distribution. For each on-demand instance j, we define a variable ej = tj +ωj,

where tj is the period in which the instance is accepted to the system and ej is the

last period before it leaves the system. The model requires to update the num-

ber of live on-demand instances after each one is terminated. The number of the

terminated instances at time t are subtracted from the number of live on-demand

instances, i.e. lot = lot−1 + ot − κt, where κt is the number of on-demand instances

that leave the system at time t and is calculated as
∑

j χj(t) with χj(t) = 1 if

Chapter 3 Simulation Model 27

t = ej, 0 otherwise.

χj(t) =

1 if t = ej

0 otherwise

(3.4a)

κt =
∑
j

χj(t) ∀t ∈ (1, τ) (3.4b)

lot = lot−1 + ot − κt ∀t ∈ (1, τ) (3.4c)

Following the iterations, st will be specified which is the number of accepted

spot instances. It is done by the same logic as for reserved and on-demand cus-

tomers. Moreover, the decision of accepting spot instances rely on the utilization

of reserved users, which those are employing their capacity are called live reserved

instances. The utilization of these customers are designated beforehand while gen-

erating the demands, for the sake of comparison of each model. The utilization

at each time interval is assigned to the variable ut The utilization at each time

interval is generated by a normal distribution with parameters µu and σu, and only

those that will stay in the interval of [0, 1] will be accepted by the model. The

parameters of this normal random generator are chosen in fashion, so the values

generated do not exceed the limit stated previously.

Toosi has proposed that the spot instances will be live in the system for only

one period, thus there will be no lst [24]. lst indicates the number of spot instances

at time t that are live in the system, which has a role in the upcoming models.

st =min(C − ut(rt + lrt−1)− lot−1, d
s
t), ∀t ∈ (1, τ) (3.5)

At this point, the model computes the total revenue of the system at each

time interval over the horizon (360 days) for a specific ρ. Equation 3.6a calculates

the revenue generated at each iteration. However, this is the income for the billing

hours throughout the 360 days, except for the last 30 days (30 days is shown by ν

in the formulation) where we use the ψ coefficient to adjust the revenue in the 30

days (see equation 3.6b). This is regarding to the fact that we intend to calculate

Chapter 3 Simulation Model 28

the revenue over the time horizon and only the proportion of upfront fee should

be considered in the revenue which resides in the time horizon.

ζt = ϕrt + αput(rt + lrt) + p(ot + lot) + ps st, ∀t ∈ (1, τ − ν)

(3.6a)

ζt = ψ(t)ϕrt + αput(rt + lrt−1) + p(ot + lot−1) + ps st, ∀t ∈ (τ − ν + 1, τ)

(3.6b)

One of the simplifications in Toosi’s model is that they assume the price of

spot instances is a constant. ps is the price of spot instances. However, the price

of this service is different for each user and equals their bid, which we will explain

in details in the following models. By having the value of revenue for each time

period we can find the revenue of the system on the complete time horizon.

Z =
τ∑
t=1

ζt, ∀t ∈ (1, τ) (3.7)

Algorithm 1 illustrates the pseudo-code of this model. Moreover, in appendix

A we have assembled a list of all the variables and parameters used throughout this

study with their descriptions, which includes the parameters used in the pseudo-

codes.

3.2.2.2 Model 2.0

This model is based on the one realistic assumption which is the only fac-

tor that differs from the previous version. In this model we assume that spot

instances can stay in the system for several periods and these instances are chosen

in an auction based mechanism by the cloud service provider. In other words, the

spot instances are chosen based on the bids that they make on this service. In

order for spot customers to make their bids, the cloud provider should provide

them with a threshold which is the derived from historical data. We assume that

at every iteration the service provider will announce the threshold for the last

Chapter 3 Simulation Model 29

Algorithm 1 Model 1.0

1: procedure Revenue Calculation Based on ρ and Capacity:
2: Inputs← ~dr, ~do, ~ds, and ~u
3: Prices← p, α, and ps
4: Initial Parameters← lr0 = 0, lo0 = 0
5: loop over the horizon:
6: computing the decision variables:
7: rt = min(C − lrt−1 − lot−1, ρ d

r
t)

8: ot = min(C − rt − lrt−1 − lot−1, d
o
t)

9: st = min(C − ut(rt + lrt−1)− lot−1, d
s
t)

10: computing the revenue of at each time interval:
11: if t ≤ (τ − ν) then
12: ζt = ϕrt + αput(rt + lrt−1) + p(ot + lot−1) + ps st
13: else
14: ψ(t) = 1

τ
(t− (τ − ν))

15: ζt = ψ(t)ϕrt + αput(rt + lrt−1) + p(ot + lot−1) + ps st

16: update the number of live instances in the system:
17: if t ≤ (τ − ν) then
18: lrt = lrt−1 + rt)
19: else
20: lrt = lrt−1 + rt − rt−ν
21: ωj = random.geometric(parameter = 1

11
)

22: ej = tj + ωj

23: χj(t) =
{

1 if t = ej0 otherwise

24: κt =
∑

j χj(t)
25: lot = lot−1 + ot − κt
26: compute the total revenue:
27: Z =

∑τ
t=1 ζt

period. The value of the threshold stated by the cloud is a constant in this model.

For computational purposes, we have chosen the value provided by Amazon Web

Services in table 1.2. The threshold is represented by the variable ∆, and the

customers make their bids based on this parameter. ∆ illustrates the value of

threshold at the previous period supposedly; however, it is a constant value in this

case. Moving on to the life span of these individuals, it is generated by a geometric

distribution with parameter 1 over the average life span of a single spot instance.

This is the base difference between model versions 1.0 and 2.0.

The procedure of this model is relevantly similar to the previous version.

However, as the spot instances can stay in the cloud for their requested period we

Chapter 3 Simulation Model 30

will add a parameter lst . This parameter indicates the number spot customers that

are live in the system. Initially, the model will designate the decision variables rt

and øt the same as model 1.0 by equations 3.1 and 3.3. The simulation algorithm

does not consider the number of spot instances in the system, since they can be

dropped out of the cloud due to their SLA. Moving forward, the algorithm will

generate a bid for all the demands of spot instances at time t (t ∈ (1, τ)). The

generation of each bid is done by Gamma distribution. We have used Gamma

distribution due to its property of being a non-negative random generator [27].

This distribution has been used for the generation of bids by a random variable

in literature, such as the study by Selçuk & Özlük in 2012 [28]. The average

and standard deviation of these bids are µπ and σπ. Note that the customer bids

on the average higher than the threshold (∆). Thus, in terms of mathematical

formulation it can be represented as µπ = ∆ + ε. The vector ~πt all the bids of the

customer at time t, and it is derived as the following:

πit = random.gamma(µπ, σπ), ∀i ∈ (1, dst) (3.8a)

~πt = {πit| ∀i ∈ (1, dst)} (3.8b)

As each customer has a unique bid, the simulation model will treat them as indi-

viduals. For every element in ~πt we generate a service duration based on geometric

distribution with the average of 5.5 days. The service duration and spot bids are

stored in a two dimensional vector:

Πt = {(πit, ηi)| ∀i ∈ (1, dst)} (3.9)

Then, the algorithm will check the empty capacity left in the cloud regardless

the live spot instances in the system, for potential users. The service provider do

not consider the live spot instances, since when there is a capacity shortage based

on spot service’s SLA, it can drop out the current customers with bids less than

Chapter 3 Simulation Model 31

that of the new customers.

$t =min(C − ut(rt + lrt−1)− lot−1, d
s
t), ∀t ∈ (1, τ) (3.10)

The elements of Πt are stored in a pool (ϑt), which is empty at the beginning of the

horizon. Next, the cloud will choose the $t highest bids of the pool ($t indicates

a number). First, we sort the elements in ϑt based on the bids in a decreasing

manner, and keep the number of elements equal to $t and eliminate the rest of

them. The size of this two dimensional vector indicates the value of lst .

The rest of this model is mainly the same with the previous model, except

for updating the spot instances when they leave the system and calculation the

revenue for each interval. At the end of each iteration, the model will update the

remaining service time for each spot user:

ϑt(m, 2) = ϑt(m, 2)− 1, ∀t ∈ (1, τ) (3.11)

If the remaining service duration becomes 0 then it will be eliminated from the

cloud. As for the revenue of spot instances, it can be computed by summation

over the bids in ϑt. So, the formulation of revenue of spot instances will become:

ζst =
∑
m

ϑt(m, 1), ∀t ∈ (1, τ) (3.12)

By having ζst the total revenue at each period is computed and stored in ζt (the

revenues of reserved and on-demand instances are calculated similarly to the previ-

ous model). Finally, the total revenue is derived by equation 3.7 as in the previous

model.

3.2.2.3 Model 2.1

This model is devised for the circumstances where there is capacity shortage

in general. Also, the demands fluctuate over time, resulting in empty capacity at

Chapter 3 Simulation Model 32

Algorithm 2 Model 2.0

1: procedure Revenue Calculation Based on ρ and Capacity:
2: Inputs← ~dr, ~do, ~ds, and ~u
3: Prices and threshold← p, αp, and ∆
4: Initial Parameters← lr0 = 0, lo0 = 0, and ϑ0 = ∅
5: loop over the horizon:
6: computing the decision variables for reserved and on-demand instances:
7: rt = min(C − lrt−1 − lot−1, ρ d

r
t)

8: ot = min(C − rt − lrt−1 − lot−1, d
o
t)

9: computing the bids vector and their service time:
10: µπ = ∆ + ε
11: ~πt = {πit = random.gamma(µπ, σπ)| ∀i ∈ (1, dst)}
12: Πt = ∅
13: for i in Dimension(πt) do
14: Πt = Πt + (πt(i), random.geometric(

1
5.5

))

15: ϑt = ϑt + Πt

16: sort ϑt descending based on bids
17: $t = min(C − ut(rt + lrt−1)− lot−1, d

s
t)

18: choose the first $t elements in ϑt, delete the rest
19: computing the revenue of at each time interval:
20: if t ≤ (τ − ν) then
21: ζt = ϕrt + αput(rt + lrt−1) + p(ot + lot−1) +

∑
m ϑt(m, 1)

22: else
23: ψ(t) = 1

τ
(t− (τ − ν))

24: ζt = ψ(t)ϕrt + αput(rt + lrt−1) + p(ot + lot−1) +
∑

m ϑt(m, 1)

25: update the number of live instances in the system:
26: if t ≤ (τ − ν) then
27: lrt = lrt−1 + rt)
28: else
29: lrt = lrt−1 + rt − rt−ν
30: ωj = random.geometric(parameter = 1

11
)

31: ej = tj + ωj

32: χj(t) =

{
1 if t = ej

0 otherwise

33: κt =
∑

j χj(t)
34: lot = lot−1 + ot − κt
35: for i in dimension(ϑt) do
36: ϑt(i, 2) = ϑt(i, 2)− 1
37: if ϑt(i, 2) = 0 then
38: eliminate ϑt(i)

39: compute the total revenue:
40: Z =

∑τ
t=1 ζt

Chapter 3 Simulation Model 33

some intervals. The cloud service provider offers an opportunity for rejected on-

demand instances to stay in a queue for a duration. If there will be empty capacity

in the following periods, the customer which has waited in the queue will receive

the same service with a discount factor (β = 0.8) for the price of on-demand. The

rest of this model is precisely the same as model 2.0.

We introduce a new vector ~Qt, where t indicates the time interval of the

simulation model. This vector has 14 elements, as we assumed that every on-

demand customer which will enter the queue will wait for 14 periods and if it is

not serviced by then it will leave the system. The on-demand customers arrive

to the cloud at the beginning of the period for each time interval. If there is

not enough capacity for all of them in the cloud, each rejected customer might

stay in the queue with a uniform chance between [0.3, 0.7]. The number of these

customers will be added to the ~Qt, e.g. {4, 6, 3, 8, . . . , 7} where 4 indicates the

number of customers that have waited for 1 period. And, 7 customers have waited

for 14 periods in the queue, if these are not serviced at this period they will leave

the system. As these user will receive a discount factor for the price of on-demand

instances they are represented by another class of variables. qt designates the

number of on-demand instances accepted at the cloud from the queue, and lqt is

the number of on-demand instances that are live and were initially in the queue.

We assume that the service provider will receive the customers that have waited

the longest in the system. The calculation of qt is as follows:

qt =min(C − rt − lrt−1 − lot−1 − l
q
t−1,

∑
j

Qt), ∀t ∈ (1, τ) (3.13)

After this finding the value of qt, the vector ~Qt needs to be updated and the

customers in the queue which were served by the cloud will be subtracted from

it. The service duration of these instances will follow the same procedure as for

Chapter 3 Simulation Model 34

regular on-demand instances, thus lqt is updated by:

χj(t) =

1 if t = ej

0 otherwise

(3.14a)

κt =
∑
j

χj(t) ∀t ∈ (1, τ) (3.14b)

lqt = lqt−1 + qt − κt ∀t ∈ (1, τ) (3.14c)

By having these variables introduced to our system, equations 3.1, 3.3, and 3.10

will be updated respectively to equations 3.15, 3.16, and 3.17:

rt =min(C − lrt−1 − lot−1 − l
q
t−1, ρ d

r
t), ∀t ∈ (1, τ) (3.15)

ot =min(C − rt − lrt−1 − lot−1 − l
q
t−1, d

o
t), ∀t ∈ (1, τ) (3.16)

$t =min(C − ut(rt + lrt−1)− lot−1 − l
q
t−1, d

s
t), ∀t ∈ (1, τ) (3.17)

This model will also affect the formulation for revenue calculation at each period,

since there is a new source of income.

ζt = ϕrt + αput(rt + lrt−1) + p(ot + lot−1)

βp(qt + lqt−1) +
∑
m

ϑt(m, 1), ∀t ∈ (1, τ − ν)
(3.18a)

ζt = ψ(t)ϕrt + αput(rt + lrt−1) + p(ot + lot−1)

βp(qt + lqt−1) +
∑
m

ϑt(m, 1), ∀t ∈ (τ − ν + 1, τ)
(3.18b)

To observe the complete procedure of this model, we have written a detailed

pseudo-code of it, which is provided in the following page.

3.2.2.4 Model 3.0 and 3.1

Model 3.0 and 3.1 are the exact replicas of model 2.0 and 2.1 respectively, with

a slight difference in the concept of threshold. The threshold that was announced

to the customers in the previous models were a constant. However, in reality

Chapter 3 Simulation Model 35

Algorithm 3 Model 2.1

1: procedure Revenue Calculation Based on ρ and Capacity:
2: Inputs← ~dr, ~do, ~ds, and ~u
3: Prices and threshold← p, αp, and ∆
4: Initial Parameters← lr0 = 0, lo0 = 0, ϑ0 = ∅, and Qt = ~0
5: loop over the horizon:
6: computing the decision variables for reserved and on-demand instances:
7: rt = min(C − lrt−1 − lot−1 − l

q
t−1, ρ d

r
t)

8: ot = min(C − rt − lrt−1 − lot−1 − l
q
t−1, d

o
t)

9: if ot < dot then
10: Qt(1) = (dot − ot) ∗ random.uniform(0.3, 0.7)

11: if C − rt − lrt−1 − lot−1 > 0 &
∑

j Qt 6= 0 then
12: qt = min(C − rt − lrt−1 − lot−1 − l

q
t−1,

∑
j Qt)

13: computing the bids vector and their service time:
14: µπ = ∆ + ε
15: ~πt = {πit = random.gamma(µπ, σπ)| ∀i ∈ (1, dst)}
16: Πt = ∅
17: for i in Dimension(πt) do
18: Πt = Πt + (πt(i), random.geometric(

1
5.5

))

19: ϑt = ϑt + Πt

20: sort ϑt descending based on bids
21: $t = min(C − ut(rt + lrt−1)− lot−1 − l

q
t−1, d

s
t)

22: choose the first $t elements in ϑt, delete the rest
23: computing the revenue of at each time interval:
24: if t ≤ (τ − ν) then
25: ζt = ϕrt + αput(rt + lrt−1) + p(ot + lot−1) + βp(qt + lqt−1) +

∑
m ϑt(m, 1))

26: else
27: ψ(t) = 1

τ
(t− (τ − ν))

28: ζt = ψ(t)ϕrt+αput(rt+ l
r
t−1)+p(ot+ l

o
t−1)+βp(qt+ l

q
t−1)+

∑
m ϑt(m, 1))

29: update the number of live instances in the system:
30: if t ≤ (τ − ν) then
31: lrt = lrt−1 + rt)
32: else
33: lrt = lrt−1 + rt − rt−ν
34: ωj = random.geometric(parameter = 1

11
)

35: ej = tj + ωj

36: χj(t) =

{
1 if t = ej

0 otherwise

37: κt =
∑

j χj(t)
38: lot = lot−1 + ot − κt
39: calculate lqt by the same procedure in lines 35-38
40: for i in dimension(ϑt) do
41: ϑt(i, 2) = ϑt(i, 2)− 1
42: if ϑt(i, 2) = 0 then
43: eliminate ϑt(i)

44: compute the total revenue:
45: Z =

∑τ
t=1 ζt

Chapter 3 Simulation Model 36

this does not hold true. The service providers display the historical threshold,

this makes sense when there is a capacity shortage. In this case, the bids that

are accepted to the cloud with a higher probability are the ones with an average

greater than the threshold. This will result in a increase in the value of threshold

when there is a overload in the cloud. Nevertheless, when there is empty capacity

for several intervals, this value will decrease.

We can derive the following logic for the value of threshold (∆), based on

the paper presented by Lin et al. in 2010 [23]. They proposed that the threshold

should be a value less than the least bid accepted to the system in terms of

value, and higher than the greatest bid which was rejected by the system. In this

manner, by simplification we will choose the bid with the least value as threshold

(∆). As threshold is changeable at each iteration it is represented by ∆t in these

two models. Initially, the value of threshold (∆0) is set to ∆ (the value used in

the previous models). Intuitively, we have set a lower bound and upper bound

for threshold. If it becomes less than a specific value the CSP will start losing

revenue. On the other hand, if it reaches a value higher than an upper bound it

will lose its appeal for the customers.

The algorithm for model 3.0 is the same as model 2.0 except for line 10, where

µπ is calculated. In this case ∆ is replaced by ∆t. ∆t will equal the last bid in

vector ϑt, where it shows the bid with the least value. Then the value of µπ will

equal ∆t + ε. As for model 3.1, it requires the same alteration from model 2.1,

and the calculation of µpi happens in line 14 of algorithm 3.

3.2.2.5 Model 4.0, 4.1, 4.2, and 4.3

The spot instances are selected in an auction based mechanism, the criteria

for their selection is the bids. However, in these models we introduce a new criteria

for choosing the customers. We argue that instead of selecting spot instances based

on their bids, we should calculate their expected revenues and choose based on this

criteria. The models 4.0, 4.1, 4.2, and 4.3 are copies of models 2.0, 2.1, 3.0, and 3.1

respectively, while incorporating this criteria. The logic behind this proposition

Chapter 3 Simulation Model 37

is when we have two choices, one a bid of $0.6 and service duration of 1 day,

and the other with $0.5 bid and 2 days of duration the second one becomes more

appealing. By this criteria we will select the second one with a revenue of $1,

while in previous models we would have selected the first one which has a revenue

of $0.6.

The difference between these new models is that the vector ϑt will have an-

other dimension indicating the expected revenue. In previous cases ϑt had two

dimensions, the first one contains the bid of a customer, and the second indicating

the service duration of that customer. However, with models 4.(ẋ) the new dimen-

sion is the multiplication of the first two which will provide the expected revenue.

Furthermore, the criteria for choosing the top $t customers out of the ϑt set will

change from bids to expected revenue. The rest of their algorithms are parallel to

previous versions. Table 3.1, illustrates all the models and their differences.

Table 3.1: Factors of each model version

Model Version 1.0 2.0 2.1 3.0 3.1 4.0 4.1 4.2 4.3

Without Queue x x x x
With Queue x x x x
Constant Threshold x x x x
Adaptable Threshold x x x x
Based on Bids x x x x
Based on Expected Revenue x x x x

In the following chapter, we will provide several datasets and implement these

algorithms on them. Furthermore, we will evaluate each model under different

circumstances, and discuss the results and findings.

Chapter 4

Datasets and Results

In this chapter we will introduce the corresponding computational environ-

ment for the simulations, and then move on to discussing the datasets used for this

study and their features. Moreover, we will present the results of each simulation

runs and analyze the total revenue produced by each model for every dataset.

Finally, we argue about the findings and interpret the results.

4.1 Corresponding Computational Environment

The simulation models were executed on a host computer with a Debian-

based Linux operating platform (Linux 16.04 LTS). The configuration of the host

is listed below:

• System Name DESKTOP-VUNIM81

• System Manufacturer LENOVO

• System Type x64-based PC

• Processors Dual-Core Intel(R) Core(TM) i5-5200U Processor

• Processor’s Cache 3 MB

38

Chapter 4 Datasets and Results 39

• Physical Memory 3.74 GB

• Virtual Memory 7.70 GB

The models presented in the previous chapter were coded in python programming

language and we used python 3.5 as its interpreter. As an example the code of

model 3.1 is provided in Appendix B. The codes used for this simulation analysis

are accessible to public1. In the following we will introduce the datasets used in

this study, and discuss their features.

4.2 Datasets

As revenue management is a competitive subject amongst CSPs they do not

disclose their demands to public. In this regard, we were not able to receive the

demands of service providers. To overcome this, we have provided several datasets

where each considers a specific case for the demand. Demands are generated

using a Poisson random generator. As for the prices we use the rates provided

by Amazon for calculating the revenue (see table 1.2). We ran the simulations

on two different capacities 1500, and 2500 to investigate the effect of capacity

on determination of optimal pricing policy. The datasets used in this study are

presented in the following:

4.2.1 Dataset 1

A CSP will provide three types of instances - reserved, on-demand, and spot -

where their demands has an average for each period. In our models we assume that

the service provider knows the utilization of reserved instances for each period prior

to simulation for a fair comparison. Dataset 1 represents a case where reserved

instances occupy most of the cloud’s capacity on average regardless of ρ. We

hypothesize that each demand average will fluctuate overtime based on the time

1https://bitbucket.org/cloudrevenuemanagement/python-codes/overview

https://bitbucket.org/cloudrevenuemanagement/python-codes/overview

Chapter 4 Datasets and Results 40

of the customers arrival on the horizon. Note that the demands will arrive at

the beginning of each period. The arrival rates are divided into three categories.

Regular, which indicates the highest rate at normal days. Holidays, specifying a

reduced rate for the arrivals in contrast to standard time, this is true for New

Year’s holidays (14 days) and weekends, when the arrival rates will reduce to the

lowest rate. For the sake of comparison, we generate the utilization of reserved

instances initially based on normal distribution (note we will accept only those

numbers generated in range [0, 1]). The averages for each services are provided in

the following:

Table 4.1: Parameters of Demand Generation (Dataset 1)

Demand Type Regular New Year’s Holiday Weekends

µr 50 15 10
µo 60 20 12
µs 300 200 150
µu 0.50 0.45 0.40
σu 0.15 0.15 0.15

4.2.2 Dataset 2

This dataset is similar to the case of dataset 1 without considering the fluc-

tuation of demand over time. In other words, the customers arrivals are based

on a constant rate. We evaluate the effect of demands when their averages are

constant over the horizon rather than interchangeable. Thus, their parameters of

this dataset will be:

Table 4.2: Parameters of Demand Generation (Dataset 2)

Demand Type Regular New Year’s Holiday Weekends

µr 50 — —
µo 60 — —
µs 300 — —
µu 0.50 — —
σu 0.15 — —

Chapter 4 Datasets and Results 41

4.2.3 Dataset 3

This dataset considers the case where arrival rates are interchangeable and

will fluctuate over the horizon. They will be at their highest peak in regular days

and in holidays the rate will decrease. Moreover, In weekends they will reach

their lowest level. This is the case where most of the cloud’s capacity is filled by

on-demand instances rather than reserved.

Table 4.3: Parameters of Demand Generation (Dataset 3)

Demand Type Regular New Year’s Holiday Weekends

µr 20 12 8
µo 150 40 25
µs 300 200 150
µu 0.50 0.45 0.40
σu 0.15 0.15 0.15

In the next section we will provide the results of the simulation runs for each

data set in discuss them.

4.3 Results

The output of the simulation algorithms are presented in this section, we

categorized them by two layers; (i) dataset, and (ii) capacity, to discuss the optimal

ρ out of 10 options (0.1, 0.2, 0.3, . . . , 1.0). Then, we will evaluate the revenue of

each pricing policy. We have simulated each scenario based on their parameters 5

times, and computed the 95% confidence intervals for the revenue accordingly.

4.3.1 Revenue in Dataset 1

4.3.1.1 Capacity 1500

At first, we have the graph of average revenue of each pricing model for

different values of ρ (figure 4.1). We see that all the graphs are increasing at a

Chapter 4 Datasets and Results 42

(a) Model 1.0 (b) Model 2.0 (c) Model 2.1

(d) Model 3.0 (e) Model 3.1 (f) Model 4.0

(g) Model 4.1 (h) Model 4.2 (i) Model 4.3

Figure 4.1: Total Revenue for Capacity 1500 and Dataset 1

rather constant positive rate initially; however, in the final points this rate declines

and even becomes negative in a few cases. The reason for this behavior of revenue

based on ρ is that at small values of ρ the capacity is not fully occupied. So, by

increasing the value of ρ, the revenue will increase. Nevertheless, at values higher

than 0.8 the cloud cannot receive more instances due to its capacity. In some

cases, as in figure 4.1 (d) there is a maximum point and then the revenue will

decrease. This is due to the fact that other alternatives produce higher revenues.

Figure 4.1 (d) and (h) suggest the importance of finding the optimal value for ρ.

By having the maximum revenues for each pricing model (which are repre-

sented in table 4.4). To accurately compare the revenues of different model we

have calculated the 95% confidence interval of their revenues and found their lower

and upper bounds.

Chapter 4 Datasets and Results 43

Table 4.4: Maximum Revenues for Capacity 1500 - Dataset 1

Model Version Capacity ρ Lower Bound Average Upper Bound

Model 1.0 1500 1.0 1,147,024 1,150,201 1,153,379
Model 2.0 1500 1.0 1,196,921 1,199,473 1,202,024
Model 2.1 1500 1.0 1,290,628 1,294,301 1,297,975
Model 3.0 1500 0.8 1,176,421 1,188,373 1,200,325
Model 3.1 1500 1.0 1,274,902 1,285,681 1,296,460
Model 4.0 1500 1.0 1,195,868 1,198,696 1,201,524
Model 4.1 1500 1.0 1,289,480 1,292,677 1,295,874
Model 4.2 1500 0.8 1,230,364 1,242,586 1,254,807
Model 4.3 1500 1.0 1,336,606 1,342,973 1,349,339

Figure 4.2: Revenue Comparison of Models
Capacity 1500, Dataset 1

We used graphic tools to compare the pricing policies (figure 4.2). We have

ordered the models in based on their average revenues. The left cap of each interval

indicates the lower bound, whereas its right cap is the upper bound, and (∗) sign

in the middle indicates average value of each revenue over the 5 runs. Figure 4.2

shows that model 4.3 produces the highest revenue, and models 3.0, 4.0, and 2.0

have the least revenues (since their confidence intervals overlap with each other

Chapter 4 Datasets and Results 44

we cannot differentiate between them). We see that model 4.3 has a 13% increase

in revenue compared to model 3.0, which suggests the significance of selecting a

policy for the service provider. Model 4.3 employs the queuing mechanism for

on-demand instances and model 4.2 is without it, where the difference in their

revenue is 8.1%. Moreover, we can see that by exploiting the adaptable threshold

(model 4.3 vs 4.1) the revenue is increased by 3.9% (the average threshold for

model 4.3 is $0.555). It is logical in this case (capacity 1500), for there is capacity

shortage and the threshold increases. Model 3.1 is similar to 4.3 with a slight

difference, where in selection of spot instances the one with highest bid is selected

rather than highest expected revenue. The difference in their revenues is 4.5%.

We have summarized these differences in the table below.

Table 4.5: Optimal Model’s Revenue vs. Other Models
Capacity 1500, Dataset 1

Optimal Model (3.1) vs. Difference in Revenue (%)

4.3 13.1
4.2 8.1
4.1 3.9
3.1 4.5

4.3.1.2 Capacity 2500

In this case, we investigate the dataset 1 where we have sufficient capacity

and there will not be inadequacy in the cloud’s facilities. Figure 4.3, illustrates the

effect of ρ on revenue for each pricing policy. The rate of increase in revenue for

each model is constant in this case. This trend is the result of capacity sufficiency,

the more instances the CSP receives the higher its revenue will be. In other words,

when the capacity is not a constraint for the system, optimal value for ρ will be

equal to 1. Thus, the maximum revenue of each pricing policy for this capacity

will be as displayed in table 4.6.

The corresponding graph to this table is figure 4.4. As expected, the queuing

policy and selection of bids based on the two criteria presented in the models,

are irrelevant in this case. Since, the capacity is sufficient none of the on-demand

Chapter 4 Datasets and Results 45

(a) Model 1.0 (b) Model 2.0 (c) Model 2.1

(d) Model 3.0 (e) Model 3.1 (f) Model 4.0

(g) Model 4.1 (h) Model 4.2 (i) Model 4.3

Figure 4.3: Total Revenue for Capacity 2500 and Dataset 1

Table 4.6: Maximum Revenues for Capacity 2500 - Dataset 1

Model Version Capacity ρ Lower Bound Average Upper Bound

Model 1.0 2500 1.0 1,367,333 1,374,543 1,381,753
Model 2.0 2500 1.0 1,482,449 1,492,614 1,502,780
Model 2.1 2500 1.0 1,482,434 1,491,188 1,499,941
Model 3.0 2500 1.0 1,391,342 1,399,911 1,408,481
Model 3.1 2500 1.0 1,388,418 1,398,522 1,408,626
Model 4.0 2500 1.0 1,491,606 1,500,075 1,508,545
Model 4.1 2500 1.0 1,494,551 1,503,314 1,512,076
Model 4.2 2500 1.0 1,396,665 1,405,819 1,414,972
Model 4.3 2500 1.0 1,399,605 1,407,120 1,414,635

instances will be rejected by the cloud, and there will be no queue for on-demand

customers. In addition, all of the spot instances will be received to the cloud, so the

concern of selecting one of the two policies for bid selection becomes redundant.

However, the criterion which causes the difference in figure 4.4 is the threshold

Chapter 4 Datasets and Results 46

Figure 4.4: Revenues Comparison of Models
Capacity 2500, Dataset 1

announcement to the customers. In the models with high revenue (e.g. 2.0) a

constant threshold is published to the users of spot instances, while in the other

models (e.g. 3.0) the threshold announced to the public is based on the previous

period bids accepted to the system. Since all of the bids are received to the cloud

in this case, the threshold’s value declines over time (the average threshold in

this case is $0.101). The difference between the revenue of model 2.0 versus 3.0

is 6.6%, so we can conclude that the CSP should choose a policy with constant

threshold. Note that this conclusion holds for all datasets with abundant capacity

(e.g. datasets 2 and 3 with capacity 2500).

4.3.1.3 Capacity 1000

This case examines the factors affecting revenue where capacity is excessively

low. The simulation runs under this situation manifest that the capacity becomes

saturated with lower values of ρ (figure 4.5). However, the revenue patterns in this

Chapter 4 Datasets and Results 47

(a) Model 1.0 (b) Model 2.0 (c) Model 2.1

(d) Model 3.0 (e) Model 3.1 (f) Model 4.0

(g) Model 4.1 (h) Model 4.2 (i) Model 4.3

Figure 4.5: Total Revenue for Capacity 1000 and Dataset 1

case can be categorized into two classes. Class 1, happens in models such as 2.1

where maximum revenue is achieved when around 50% of the reserved customers

are accepted into the system. The cause of this phenomenon is that in these

cases the revenue generated by accepting more of reserved users is less than the

loss in revenue of rejecting on-demand instances. On the other hand, class two

demonstrate that revenue will increase on an extreme rate for values of ρ less

than 0.4, while for values greater than that this rate will decline drastically. This

indicates that the after a certain ρ there is a trade off between revenue gain of

reserved instances and revenue loss on-demand customers. Table 4.7, manifests

the optimal revenues for each model.

In order to clarify the differences of revenue in each model we have provided

a graph of their average revenue and confidence intervals (figure 4.6). We see that

the pattern of income generated by different models in this section is quite similar

Chapter 4 Datasets and Results 48

Table 4.7: Maximum Revenues for Capacity 1000 - Dataset 1

Model Version Capacity ρ Lower Bound Average Upper Bound

Model 1.0 1000 0.5 813,097 815,481 817,864
Model 2.0 1000 1.0 833,787 836,137 838,487
Model 2.1 1000 0.5 902,299 906,902 911,505
Model 3.0 1000 1.0 894,535 896,562 898,588
Model 3.1 1000 1.0 889,887 891,965 894,042
Model 4.0 1000 1.0 831,420 833,502 835,585
Model 4.1 1000 0.5 898,55 902,884 907,215
Model 4.2 1000 1.0 883,670 892,937 902,204
Model 4.3 1000 0.5 947,286 951,276 955,266

to the case where capacity is 1500. Model 4.3 generates the highest revenue by a

measurable excess.

Figure 4.6: Revenues Comparison of Models
Capacity 1000, Dataset 1

As a means to demonstrate the sensitivity of model selection by the CSP, we

have provided the list of revenue growth by choosing this model compared to other

policies (table 4.8). By incorporating any of the policies suggested in this study

Chapter 4 Datasets and Results 49

Table 4.8: Optimal Model’s Revenue vs. Other Models
Capacity 1000, Dataset 1

Optimal Model (4.3) vs. Difference in Revenue (%)

4.2 6.5
4.1 5.4
3.1 6.7
2.0 13.8

the CSP will acquire a revenue growth of around 6%, which means all of them

have the same level of importance for the cloud. Moreover if the service provider

chooses the primitive model 2.0 will generate 13.8% less revenue compared to the

optimal model.

4.3.2 Revenue in Dataset 2

In this dataset we intend to investigate the effect of arrival rates in dataset

1 to be constant on the total revenue. As mentioned before the results of this

demand pattern for capacity 2500 are similar to that of dataset 1, so we only

examine the capacities 1500 and 1000 in for this dataset.

4.3.2.1 Capacity 1500

Initially, we inspect every model’s revenue according to the change in ρ. Fig-

ure 4.7 illustrates the revenue for each pricing plan based on the proportion of

reserved instances accepted to the system. This dataset represents a cloud where

the average demand for on-demand instances is less than that of reserved instances.

We see in each figure that the revenue will increase by accepting a larger portion

of reserved customers at first. However, it will arrive at a peak where the revenue

is maximum and decline afterwards. This phenomenon is the result of two facts;

first, at optimal ρ the cloud becomes full and prior to that we have empty capacity.

Two, the revenue of on-demand instances is higher than that of reserved instances

in general.

Chapter 4 Datasets and Results 50

(a) Model 1.0 (b) Model 2.0 (c) Model 2.1

(d) Model 3.0 (e) Model 3.1 (f) Model 4.0

(g) Model 4.1 (h) Model 4.2 (i) Model 4.3

Figure 4.7: Total Revenue for Capacity 1500 and Dataset 2

Mainly, a ρ equal to 0.6 yields the highest revenue in this dataset. we have

provided the list maximum revenues in table 4.9 for all pricing models. However,

Table 4.9: Maximum Revenues for Capacity 1500 - Dataset 2

Model Version Capacity ρ Lower Bound Average Upper Bound

Model 1.0 1500 1.0 1,239,096 1,243,509 1,247,922
Model 2.0 1500 1.0 1,269,961 1,273,489 1,277,018
Model 2.1 1500 1.0 1,274,823 1,278,556 1,282,289
Model 3.0 1500 0.8 1,333,438 1,336,433 1,339,427
Model 3.1 1500 1.0 1,337,661 1,341,913 1,346,165
Model 4.0 1500 1.0 1,265,580 1,269,006 1,272,431
Model 4.1 1500 1.0 1,270,940 1,275,070 1,279,200
Model 4.2 1500 0.8 1,322,593 1,329,253 1,335,913
Model 4.3 1500 1.0 1,330,331 1,333,916 1,337,502

we use the graph in figure 4.8 to facilitate the comparison between pricing scheme.

In this case, we observe that the queuing policy does not affect the total revenue

Chapter 4 Datasets and Results 51

Figure 4.8: Revenues Comparison of Models
Capacity 1500, Dataset 2

significantly, i.e. the confidence interval of the models with and without this policy

intersect. For example, the confidence interval for model 3.1 which represents the

queuing model and 3.0 where there is no queue intersect with each other. So, we

cannot state that model 3.1 yields a higher revenue. The logic of queuing model is

when the system has capacity shortage in general; while, there are periods where

the cloud will have vacant capacity to due a decline demand (e.g. dataset 1).

Nevertheless, this is not the case for this dataset, which will cause queuing policy

to become ineffectual.

Moreover, as the cloud is mostly overloaded in the horizon, there are little

number of spot instances accepted to the system. In this regard, the difference in

bid selection policies becomes insignificant. This conclusion is validated by figure

4.6, for example we cannot state any difference in the revenue of model 4.2 and

3.0. However, the adaptable threshold will produce higher revenues. For instance,

model 3.1 yields 5% more revenue rather than model 2.1 on average. In this case

Chapter 4 Datasets and Results 52

the service provider should choose a policy with conformable threshold to ensure a

higher revenue. Table 4.10 demonstrates the difference in revenue based on model.

Table 4.10: Optimal Model’s Revenue vs. Other Models
Capacity 1500, Dataset 2

Optimal Model (3.1) vs. Difference in Revenue (%)

3.0 NaN
4.3 NaN
2.1 5

4.3.2.2 Capacity 1000

This case examines the factors affecting revenue where capacity is excessively

low. The simulation runs under this situation manifest a new pattern for ρ selection

in order to achieve higher revenues (figure 4.9). By changing ρ two patterns are

derived for revenue. First, the income starts at its lowest worth for smallest value

of ρ and by increasing it to 0.2 the CSP will receive the highest revenue possible.

Increasing ρ to a greater extend will reduce the income (e.g. model 4.1). Thus,

the value 0.2 provides the marginal revenue, this is due to the income of each

demand type. In other words, the revenue yielded by accepting more reserved

customer is less than the revenue loss of rejected on-demand users. The second

case is observed in models such as 4.2 where revenue will reach its higher value

after accepting 20% of reserved instances and stay on the relatively same value by

accepting more reserved instances. The former case happens in models when there

is no adaptable threshold, while the latter is caused by the adaptable threshold

policy. We can deduce that the revenue obtained for spot instances by these

models compensate for the revenue loss of on-demand users. The optimal values

for ρ and its revenue for each model are manifested in table 4.11.

The statistics of revenue for different models indicate that queuing policy

(which is applied to models such as 4.3) has the least effect in this case. The cause

of this phenomenon is that queue cannot form, since rate of demand is constant

and capacity does not become available at any period. In other words, queuing

Chapter 4 Datasets and Results 53

(a) Model 1.0 (b) Model 2.0 (c) Model 2.1

(d) Model 3.0 (e) Model 3.1 (f) Model 4.0

(g) Model 4.1 (h) Model 4.2 (i) Model 4.3

Figure 4.9: Total Revenue for Capacity 1000 and Dataset 2

policy is irrelevant under these circumstances as the confidence interval of revenue

for models with this policy versus those without it overlap. Moreover, the most

critical policy for revenue growth in this case is adaptable threshold (e.g. model

3.0 and 4.2). These finding are observed in figure 4.10 as well. Nevertheless,

Table 4.11: Maximum Revenues for Capacity 1000 - Dataset 2

Model Version Capacity ρ Lower Bound Average Upper Bound

Model 1.0 1000 0.3 871,843 873,633 875,423
Model 2.0 1000 0.2 878,864 880,488 882,111
Model 2.1 1000 0.2 888,741 892,396 896,051
Model 3.0 1000 1.0 921,808 924,051 926,294
Model 3.1 1000 1.0 921,490 923,873 926,255
Model 4.0 1000 0.3 875,697 877,393 879,089
Model 4.1 1000 0.3 878,438 879,681 880,924
Model 4.2 1000 0.8 910,421 914,870 919,320
Model 4.3 1000 0.7 910,550 914,544 918,537

Chapter 4 Datasets and Results 54

the phenomenon that models using expected revenue for spot selection generate

less income than models which choose instances based on highest bid is the most

intriguing finding of this case. Although the difference in revenue of these models

are small-scale, the cause of it requires to be detected. This difference in revenue

Figure 4.10: Revenues Comparison of Models
Capacity 1000, Dataset 2

is 1% for model 3.0 versus 4.2. For cases where the cloud is faced with capacity

shortage, the probability of kicking a spot instance out of the system increases.

This causes instances with higher bids more appealing to the service provider, as

they will most likely be dropped out of the system before their service duration is

complete.

The difference in revenues of distinct models are relatively minor, due to the

lack of flexibility when capacity is extremely low. These differences are manifested

by percentages in table 4.12. In general, adaptable threshold will result in the

highest revenue growth when rate of demand is constant and there is capacity

Chapter 4 Datasets and Results 55

Table 4.12: Optimal Model’s Revenue vs. Other Models
Capacity 1000, Dataset 2

Optimal Model (3.0) vs. Difference in Revenue (%)

3.1 NaN
4.2 1
2.0 4.9

shortage. This can be concluded by observing the findings of both cases with

capacity 1500 and 1000 in this dataset.

4.3.3 Revenue in Dataset 3

This dataset represents a case where demand will fluctuate over time on

average, and the number of on-demand instances is higher than reserved ones. As

for the previous case we only discuss the results for capacity 1500 and 1000 where

there is a shortage of resources. Because, the policies’ behavior is the same when

capacity of the cloud is abundant for the customers.

4.3.3.1 Capacity 1500

Figure 4.11 demonstrates the effect of ρ on revenue of the cloud. Obviously,

for small values of ρ if the service provider accepts more proportion of reserved

instances, revenue of the cloud will increase. In other words, for small values of ρ

the cloud’s capacity is not fully occupied, so by accepting more reserved instances

the revenue will increase. However, for all models except model 3.0 and 4.2 the

revenue will be at its highest when ρ is around to 0.7. This indicates that these

values of ρ are the trade-off points where other sources of income become more

profitable compared to accepting more reserved instances. This analysis does not

hold true for models 3.0 and 4.2 which are very similar in term of their policies.

The difference between these two model is that the former accept spot customers

based on bids, while the latter’s criterion for this selection is expected revenue.

Chapter 4 Datasets and Results 56

(a) Model 1.0 (b) Model 2.0 (c) Model 2.1

(d) Model 3.0 (e) Model 3.1 (f) Model 4.0

(g) Model 4.1 (h) Model 4.2 (i) Model 4.3

Figure 4.11: Total Revenue for Capacity 1500 and Dataset 3

In these cases, the cloud will receive more revenue by accepting as much reserved

customers as it can.

The cause of this type behavior is that in pricing policies where there is a

revenue for queue and threshold is constant the income of other resources (e.g.

on-demand revenue) compared to reserved instances become more critical. On

the other hand, for cases where threshold is adaptable and there is no income for

rejected on-demand instances, accepting more reserved customers will yield higher

values of revenue. The summary of best values for ρ and their revenue is provided

in table 4.13.

For simplicity, we use figure 4.12 to compare the pricing models. The confi-

dence interval of policies with highest bid selection versus best expected revenue

option (e.g. 3.1 vs. 4.3) for spot customers intersect in this dataset, while this

Chapter 4 Datasets and Results 57

Table 4.13: Maximum Revenues for Capacity 1500 - Dataset 3

Model Version Capacity ρ Lower Bound Average Upper Bound

Model 1.0 1500 0.5 1,271,512 1,273,703 1,275,895
Model 2.0 1500 1.0 1,286,187 1,287,567 1,288,946
Model 2.1 1500 1.0 1,418,422 1,424,921 1,431,419
Model 3.0 1500 0.8 1,330,120 1,331,662 1,333,204
Model 3.1 1500 1.0 1,458,789 1,460,916 1,463,043
Model 4.0 1500 1.0 1,282,894 1,284,935 1,286,975
Model 4.1 1500 1.0 1,419,465 1,423,791 1,428,117
Model 4.2 1500 0.8 1,321,663 1,323,081 1,324,499
Model 4.3 1500 1.0 1,452,603 1,455,661 1,458,720

was not the case in data 1. This difference in behavior is because in dataset 1 we

had more reserved customers rather than this case, and the difference in income

of these two policies become negligible in this dataset. nonetheless, models with

adaptable threshold and queuing policy yield more income rather than the other

models. Table 4.10 illustrates these differences in revenue in terms of percentage

for model 3.1 on average.

Figure 4.12: Revenues Comparison of Models
Capacity 1500, Dataset 3

Chapter 4 Datasets and Results 58

By way of conclusion, the service provider should choose a policy with queue

and adaptable threshold. In addition, queuing scheme is more critical for revenue

growth rather than adaptable threshold policy in this case.

Table 4.14: Optimal Model’s Revenue vs. Other Models
Capacity 1500, Dataset 3

Optimal Model (3.1) vs. Difference in Revenue (%)

4.3 NaN
3.0 9.7
2.1 2.5

4.3.3.2 Capacity 1000

(a) Model 1.0 (b) Model 2.0 (c) Model 2.1

(d) Model 3.0 (e) Model 3.1 (f) Model 4.0

(g) Model 4.1 (h) Model 4.2 (i) Model 4.3

Figure 4.13: Total Revenue for Capacity 1000 and Dataset 3

In this case the findings of revenue based on ρ are dissimilar from other

cases. The income in all models except model 3.0 and 4.2 has a negative correlation

Chapter 4 Datasets and Results 59

with proportion of reserved customers accepted to the system. This decreasing

pattern happens due to capacity shortage, resulting in saturation of the cloud

with only 10% of the reserved customers. As demand for on-demand instances

is high in this case and its revenue is higher than reserved ones, the income will

decline by accepting more users for reservation plan. However, model 3.0 and 4.2

indicate a positive correlation between the value of ρ and revenue. The cause of

this increase is because the gain from spot instances using adaptable threshold

policy is more than revenue loss of on-demand users. Although this increasing

pattern happens for these two model, the revenue-ρ graph has a decreasing curve

for other models employing adaptable threshold (e.g. model 3.1). The reason for

their negative correlation is that revenue of on-demand customers from the queue

prevail the income generated from spot users.

The optimal revenue and its confidence interval for all models are gathered

in table 4.15 with their ρ values. In addition, they are illustrated by the follow-

ing chart (figure 4.14). It corroborates the findings from the previous paragraph

Table 4.15: Maximum Revenues for Capacity 1000 - Dataset 3

Model Version Capacity ρ Lower Bound Average Upper Bound

Model 1.0 1000 0.1 886,387 887,527 888,667
Model 2.0 1000 0.1 888,954 889,883 890,812
Model 2.1 1000 0.1 1,001,237 1,002,587 1,003,936
Model 3.0 1000 1.0 914,909 916,060 917,211
Model 3.1 1000 0.1 1,002,322 1,005,574 1,008,826
Model 4.0 1000 0.1 887,485 888,664 889,844
Model 4.1 1000 0.1 999,663 1,001,963 1,004,263
Model 4.2 1000 1.0 912,768 914,675 916,583
Model 4.3 1000 0.1 1,002,741 1,005,640 1,008,539

regarding the effect of queuing and adaptable policy. We see that models with

constant threshold and no queue have the least revenue. Moreover, incorporating

adaptable threshold will result in a growth for income, though it is minute (model

3.0 generates 2.9% more revenue than 2.0). However, by employing the queuing

policy revenue will increase more drastically. The cause of this extreme growth

is that demand for on-demand services is very high compared to the capacity,

and revenue generated by this service is higher than the other services. Thus, by

Chapter 4 Datasets and Results 60

utilizing the queuing policy revenue of the cloud will increase significantly. For

example, income of model 4.3 is 10% higher than revenue of model 4.2.

Figure 4.14: Revenues Comparison of Models
Capacity 1000, Dataset 3

Table 4.16 demonstrates the difference amongst models, in order to clarify

the significance of employing different policies. In conclusion, as a CSP the most

crucial policy is queuing scheme, where demand for on-demand instances is high

and there is extreme capacity shortage.

Table 4.16: Optimal Model’s Revenue vs. Other Models
Capacity 1000, Dataset 3

Optimal Model (4.3) vs. Difference in Revenue (%)

3.1 NaN
2.1 NaN
4.1 NaN
4.2 10
4.0 13.2

Chapter 4 Datasets and Results 61

In the following chapter we will provide a summary for this study, discuss

the conclusion of our findings and provide a groundwork for future studies in this

field.

Chapter 5

Conclusion and Future Work

Large-scale data centers and the cloud computing services they provide are

rapidly becoming more widespread in the IT world. Service providers such as

Amazon EC2 and Google Cloud Platform as the largest data centers are receiving

many users from around world. Due to the nature and scale of revenue in these

service providers, utilizing revenue management techniques on these clouds has

drawn many researchers’ attention to itself. A data center provides three main

type of services - SaaS, PaaS, and IaaS - where the focus of this study was on

IaaS’s revenue. Customers of IaaS can choose three pricing plans based the quality

of service that they require. These plans are subscription, on-demand, and spot

instances. Recent literature have mainly focused on optimizing and pricing of spot

instances’ revenue, and do not consider other plans in their calculations. However,

Toosi et al. proposed a model in 2015 which considers all the pricing plans of

the cloud in their analysis, and find the best assignment of resources to demand

accordingly. Despite their state of the art research, their model lacked realistic

assumptions and pricing options for on-demand and spot instances.

In this thesis, we have provided a simulation analysis, over a finite time

horizon, evaluating three assignment policies and their combinations. We investi-

gated the effects of (i) constant threshold versus adaptable to market and capacity

threshold, (ii) introducing a queue for rejected on-demand instances (with the in-

centive of lower instance price), and (iii) two criterion for spot selection (based on

62

Chapter 5 Conclusion and Future Work 63

bid versus expected revenue). We implemented each combination of these policies

in Python, and analyzed their outcome. However, to due lack of information about

demand, we have generated three sets of data to test our models. The results of

this implementation suggest the importance of policy selection in a system with

low capacity. In other words, the revenue of a cloud service provider is sensitive to

policy selection when there is capacity shortage. Mainly for cases with deficiency

of resources and fluctuation of demand over time, revenue is higher in value when

we incorporate the three policies suggested by this study. On the other hand, when

the demand average is constant only adaptable threshold will increase the revenue.

However, when capacity is sufficient for demand these policies does not affect the

revenue except adaptable threshold will cause income of the clout to decline, thus,

choosing a constant threshold is more beneficial to the service provider.

There are several lines of research arising from this study which are required

to be followed. First, incorporating the costs relating to data center and resource

allocation can effect the decision of cloud provider gravely. Second, another line

of research can be considering the demand to be unknown at the beginning of

the time horizon and solving the problem by optimization. Finally, combining a

dynamic pricing algorithm for instances offered by the service provider to regulate

the demand.

Appendix A

Parameters and Variables

In this appendix we will provide all the parameters and variables which are

used with throughout this thesis with their description.

ρ The proportion of reserved demands considered for acceptance

C Capacity of the cloud

τ The number of time intervals on the horizon

ν A 30 day time interval

t Time interval

~dr Vector of demand for reserved instances over τ

µr Average of on reserved customers at each interval

~u Utilization over the τ

µu Average of utilization for reserved instances at each interval

σu Standard deviation of utilization for reserved instances at each interval

~do Vector of demand for on-demand instances over τ

µo Average of on on-demand customers at each interval

64

Appendix A Parameters and Variables 65

~ds Vector of demand for spot instances over τ

µs Average of on spot customers at each interval

p Price of on-demand instances

ϕ Upfront fee for reserved instances

α Discount factor for reserved instances daily usage fee

β Discount factor for on-demand users from the queue

ps Price of spot instances in model 1.0

∆ Constant threshold of spot instances

∆t Threshold at each interval

rt Number of reserved users accepted to the cloud at time t

lrt Number of reserved users in the cloud at time t

ot Number of on-demand users accepted to the cloud at time t

lot Number of on-demand users in the cloud at time t

qt Number of on-demand users accepted to the cloud from queue at time t

lqt Number of on-demand users in the cloud from queue at time t

~Qt Set of on-demand users in the queue

st Number of spot users accepted to the cloud at time t

lst Number of spot users in the cloud at time t

~πt Set of all bids at time t

µπ Average value of the bids

σπ Standard deviation of the bids

Πt Set of spot bids with their service duration

Appendix A Parameters and Variables 66

ϑt Set of live spot bids, their service duration, and expected revenue

ωj Service duration of jth on-demand user

χj Leaving time of jth on-demand user

κt Number of on-demand users leaving at time t

ζt Revenue of the cloud for period t

Z Total revenue of the cloud

Appendix B

Python Code of Model 3.1

As model 3.1 has the most elaborate algorithm we have provided the python code

of this model for clarification purposes.

import numpy as np

import math

import csv

from operator import itemgetter

def revenue cal(

trial, intervals , month hour , capacity , rho, price,

phi, alpha, on demand life ave , spot life ave

):

”””

defining the parameters :

”””

reservation discount factor

def psi t(x): return (intervals − x) / month hour

67

Appendix B Python Code of Model 3.1 68

”””

generating the demands

”””

reading the demand matrix

filename = "data" + str(trial)

reader = csv.reader(open(’%s.csv’ % filename, "rt"),

delimiter=",")

temp = list(reader)

data = np.array(temp).astype("float")

storing demands of on−demand

demand r = (np.array(data)[:, 0]).astype("int")

storing demands of on−demand

demand o = (np.array(data)[:, 1]).astype("int")

storing demands of on−demand

demand s = (np.array(data)[:, 2]).astype("int")

storing the uti l izat ion at each period

utilization = np.array(data)[:, 3]

”””

Building the simulation and calculating

the revenue at each time window

”””

dec r = np.zeros(shape=intervals , dtype=int)

dec o = np.zeros(shape=intervals , dtype=int)

dec s = np.zeros(shape=intervals , dtype=int)

s r = np.zeros(shape=intervals , dtype=int)

s rl = np.zeros(shape=intervals , dtype=int)

Appendix B Python Code of Model 3.1 69

s o = np.zeros(shape=intervals , dtype=int)

s s = np.zeros(shape=intervals , dtype=int)

s c = np.zeros(shape=intervals , dtype=int)

rev r = np.zeros(shape=intervals)

rev o = np.zeros(shape=intervals)

rev s = np.zeros(shape=intervals)

rev t = np.zeros(shape=intervals)

threshold s = np.zeros(shape=intervals)

l rt = 0

l ot = 0

l qt = 0

h j = np.zeros(shape=intervals)

g j = np.zeros(shape=intervals)

live spot = []

threshold = 0.3144

spot pool = []

queueing system parameters :

q number = np.zeros(shape=14, dtype=int)

for i in range(intervals):

”””

finding the decisions

”””

l st = np.size(live spot , 0)

r t = min(capacity − (l rt + l ot + l qt),

math.floor(demand r[i] ∗ rho))

o t = int(min(capacity − (

r t + l rt + l ot + l qt), demand o[i]))

q potential = demand o[i] − o t

Appendix B Python Code of Model 3.1 70

we check the queue to see . . .

#i f we can add more on demand

q t = 0

empty cap = (capacity − (r t + l rt + o t +

l ot + l qt))

if empty cap > 0 and sum(q number) > 0:

flag = True

indice = 13

while flag and indice > −1:

if (q number[indice] − empty cap) > 0:

q t += empty cap

q number[indice] −= empty cap

flag = False

else:

q t += q number[indice]

empty cap −= q number[indice]

q number[indice] = 0

indice −= 1

q t = int(q t)

updating the number of instances in the queue

for b in range(13):

index = b + 1

q number[−index] = q number[−(index+1)]

q number[0] = int(q potential∗np.random.uniform(low=0.3,

high=0.8))

Appendix B Python Code of Model 3.1 71

calculating the number of spot instances . . .

that wi l l pass the threshold :

the array of the bids of spot instances and . . .

updating the array of l ive spot instances

mu, sigma = threshold + 0.024, 0.03

shape, scale = (mu/sigma)∗∗2, (sigma∗∗2/mu)

spot price = np.random.gamma(shape=shape,

scale=scale, size=demand s[i])

substituting those prices less than 0.1 with 0.1

spot price[spot price < 0.1] = 0.1

for u in range(demand s[i]):

the lifetime of spot are half the on−demand

temp2 = np.random.geometric(p=spot life ave)

spot pool.append([spot price[u], temp2,

spot price[u]∗temp2])

sorting the spot pool decreasingly (based on the bid)

spot pool = sorted(spot pool , key=itemgetter(0),

reverse=True)

if (capacity − ((math.floor((r t + l rt)

∗ utilization[i])) + o t + l ot + q t

+ l qt + l st)) > 0:

s t = int(min(capacity − (math.floor((r t + l rt)

∗ utilization[i]) + o t + l ot + q t

+ l qt + l st), demand s[i]))

else:

s t = 0

Appendix B Python Code of Model 3.1 72

f i l l the available spot instances into the system

spot number = int(capacity − ((math.floor((r t + l rt)

∗ utilization[i])) + o t + l ot + q t + l qt))

if spot number < np.size(spot pool , axis=0):

live spot = spot pool[:spot number]

else:

live spot = spot pool

number of l ive spot instances in the system

l st = np.size(live spot , 0)

dec r[i] = r t

dec o[i] = o t + q t

dec s[i] = s t

”””

calculating the revenue at each time window

”””

if i < (intervals − month hour):

rev r[i] = r t ∗ phi + alpha ∗ price

∗ math.floor((r t + l rt)

∗ utilization[i])

else:

rev r[i] = psi t(i) ∗ r t ∗ phi + alpha

∗ price ∗ math.floor((r t + l rt)

∗ utilization[i])

rev o[i] = (price ∗ (o t + l ot)) + (0.8 ∗ price

∗ (q t + l qt))

rev s[i] = np.sum(live spot , axis=0)[0]

rev t[i] = (rev r[i] + rev o[i] + rev s[i])

Appendix B Python Code of Model 3.1 73

updating l r t , l o t and l s t

l rt = l rt + r t

the l i f e time of on−demand instances

for w in range(o t):

temp1 = np.random.geometric(p=on demand life ave)

if (i + temp1 + 2) < intervals:

h j[i + temp1] += 1

the l i f e time of on−demand instances from the queue

for w in range(q t):

temp2 = np.random.geometric(p=on demand life ave)

if (i + temp2 + 2) < intervals:

g j[i + temp2] += 1

updating l ive on−demand instances

l ot += o t

l qt += q t

updating l ive spot instances regarding

the leaving time

for q in range(np.size(live spot , 0)):

live spot[q][1] −= 1

live spot[q][2] = live spot[q][0]

∗ live spot[q][1]

live spot = [z for z in live spot if z[1] > 0]

spot pool now only contains l ive spot instances

spot pool = live spot

Appendix B Python Code of Model 3.1 74

the capacity l e f t in the system is

left capacity = capacity − (math.floor(l rt ∗

utilization[i])

+ l ot + l qt + l st)

state of the system

s r[i] = l rt

s rl[i] = math.floor(l rt ∗ utilization[i])

s o[i] = l ot + l qt

s s[i] = l st

s c[i] = left capacity

threshold of spot instances

threshold = live spot[−1][0]

if threshold > 0.8:

threshold = 0.8

threshold s[i] = threshold

updating the l ive reserved , on−demands:

l ot = l ot − h j[i]

l qt = l qt − g j[i]

if i >= month hour:

l rt = l rt − dec r[i − month hour]

return demand r , demand o , demand s , dec r , dec o ,

dec s , s r , s rl , s o , s s , s c , rev r , rev o ,

rev s , rev t , threshold s

Bibliography

[1] Thoughts on cloud, June 2017. URL https://www.ibm.com/blogs/

cloud-computing/.

[2] Guofu Feng, Saurabh Garg, Rajkumar Buyya, and Wenzhong Li. Revenue

maximization using adaptive resource provisioning in cloud computing envi-

ronments. In Proceedings of the 2012 ACM/IEEE 13th International Confer-

ence on Grid Computing, pages 192–200. IEEE Computer Society, 2012.

[3] Jeffrey I McGill and Garrett J Van Ryzin. Revenue management: Research

overview and prospects. Transportation science, 33(2):233–256, 1999.

[4] Hong Xu and Baochun Li. Dynamic cloud pricing for revenue maximization.

IEEE Transactions on Cloud Computing, 1(2):158–171, 2013.

[5] What is data center? - definition from whatis.com. URL http://

searchdatacenter.techtarget.com/definition/data-center.

[6] 1940s — timeline of computer history. URL http://www.computerhistory.

org/timeline/1941/.

[7] Eamonn Colman. Comparison of saas, paas, and iaas. URL https://www.

computenext.com/blog/when-to-use-saas-paas-and-iaas/.

[8] Amazon web services, inc. URL https://aws.amazon.com/documentation/.

[9] May Al-Roomi, Shaikha Al-Ebrahim, Sabika Buqrais, and Imtiaz Ahmad.

Cloud computing pricing models: a survey. International Journal of Grid

and Distributed Computing, 6(5):93–106, 2013.

75

https://www.ibm.com/blogs/cloud-computing/
https://www.ibm.com/blogs/cloud-computing/
http://searchdatacenter.techtarget.com/definition/data-center
http://searchdatacenter.techtarget.com/definition/data-center
http://www.computerhistory.org/timeline/1941/
http://www.computerhistory.org/timeline/1941/
https://www.computenext.com/blog/when-to-use-saas-paas-and-iaas/
https://www.computenext.com/blog/when-to-use-saas-paas-and-iaas/
https://aws.amazon.com/documentation/

BIBLIOGRAPHY 76

[10] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung

Chung, and Yun Li. Cloud computing resource scheduling and a survey of its

evolutionary approaches. ACM Computing Surveys (CSUR), 47(4):63, 2015.

[11] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose,

and Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of

cloud computing environments and evaluation of resource provisioning algo-

rithms. Software: Practice and experience, 41(1):23–50, 2011.

[12] Wendell R Smith. Product differentiation and market segmentation as alter-

native marketing strategies. Journal of marketing, 21(1):3–8, 1956.

[13] Wei Wang, Baochun Li, and Ben Liang. Towards optimal capacity segmenta-

tion with hybrid cloud pricing. In Distributed Computing Systems (ICDCS),

2012 IEEE 32nd International Conference on, pages 425–434. IEEE, 2012.

[14] Leonard Heilig and Stefan Voß. Decision analytics for cloud computing: a

classification and literature review. Tutorials in Operations Research–Bridging

Data and Decisions, pages 1–26, 2014.

[15] May Al-Roomi, Shaikha Al-Ebrahim, Sabika Buqrais, and Imtiaz Ahmad.

Cloud computing pricing models: a survey. International Journal of Grid &

Distributed Computing, 6(5):93–106, 2013.

[16] Cuong T Do, Nguyen H Tran, Eui-Nam Huh, Choong Seon Hong, Dusit

Niyato, and Zhu Han. Dynamics of service selection and provider pricing

game in heterogeneous cloud market. Journal of Network and Computer

Applications, 69:152–165, 2016.

[17] Bhanu Sharma, Ruppa K Thulasiram, Parimala Thulasiraman, and Rajku-

mar Buyya. Clabacus: a risk-adjusted cloud resources pricing model using

financial option theory. IEEE Transactions on Cloud Computing, 3(3):332–

344, 2015.

[18] Shifeng Shang, Jinlei Jiang, Yongwei Wu, Zhenchun Huang, Guangwen Yang,

and Weimin Zheng. Dabgpm: A double auction bayesian game-based pricing

BIBLIOGRAPHY 77

model in cloud market. In IFIP International Conference on Network and

Parallel Computing, pages 155–164. Springer, 2010.

[19] Wubin Li, Petter Svärd, Johan Tordsson, and Erik Elmroth. Cost-optimal

cloud service placement under dynamic pricing schemes. In Proceedings of the

2013 IEEE/ACM 6th International Conference on Utility and Cloud Comput-

ing, pages 187–194. IEEE Computer Society, 2013.

[20] Adel Nadjaran Toosi, Farzad Khodadadi, and Rajkumar Buyya. Sipaas: Spot

instance pricing as a service framework and its implementation in openstack.

Concurrency and Computation: Practice and Experience, 2015.

[21] Fadi Alzhouri and Anjali Agarwal. Dynamic pricing scheme: Towards cloud

revenue maximization. In 2015 IEEE 7th International Conference on Cloud

Computing Technology and Science (CloudCom), pages 168–173. IEEE, 2015.

[22] Hai Jin, Xinhou Wang, Song Wu, Sheng Di, and Xuanhua Shi. Towards

optimized fine-grained pricing of iaas cloud platform. IEEE Transactions on

cloud Computing, 3(4):436–448, 2015.

[23] Wei-Yu Lin, Guan-Yu Lin, and Hung-Yu Wei. Dynamic auction mechanism

for cloud resource allocation. In Cluster, Cloud and Grid Computing (CC-

Grid), 2010 10th IEEE/ACM International Conference on, pages 591–592.

IEEE, 2010.

[24] Adel Nadjaran Toosi, Kurt Vanmechelen, Kotagiri Ramamohanarao, and Ra-

jkumar Buyya. Revenue maximization with optimal capacity control in infras-

tructure as a service cloud markets. IEEE Transactions on Cloud Computing,

3(3):261–274, 2015.

[25] Pricing, Amazon Web Services, Inc. https://aws.amazon.com/ec2/

pricing/. Accessed: 2017.

[26] Hai Xie, Sami Tabbane, and David J Goodman. Dynamic location area

management and performance analysis. In Vehicular Technology Conference,

1993., 43rd IEEE, pages 536–539. IEEE, 1993.

https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/

BIBLIOGRAPHY 78

[27] Henk C Tijms. A first course in stochastic models. John Wiley and sons,

2003.

[28] Baris Selçuk and Özgür Özlük. Optimal keyword bidding in search-based

advertising with target exposure levels. European Journal of Operational

Research, 226(1):163–172, 2013.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Data Center
	1.2 Data Center Services
	1.2.1 Different Layers of Data Centers
	1.2.1.1 SaaS
	1.2.1.2 PaaS
	1.2.1.3 IaaS

	1.2.2 Pricing Plans of IaaS
	1.2.2.1 Subscription
	1.2.2.2 On-demand
	1.2.2.3 Spot Instances

	1.3 Problem Description

	2 Literature Review
	3 Simulation Model
	3.1 System Model
	3.1.1 Cloud Pricing Plans
	3.1.1.1 On-Demand Instances
	3.1.1.2 Reserved Instances
	3.1.1.3 Spot Instances

	3.2 Proposed Model
	3.2.1 General Assumptions
	3.2.2 Model Description
	3.2.2.1 Model 1.0
	3.2.2.2 Model 2.0
	3.2.2.3 Model 2.1
	3.2.2.4 Model 3.0 and 3.1
	3.2.2.5 Model 4.0, 4.1, 4.2, and 4.3

	4 Datasets and Results
	4.1 Corresponding Computational Environment
	4.2 Datasets
	4.2.1 Dataset 1
	4.2.2 Dataset 2
	4.2.3 Dataset 3

	4.3 Results
	4.3.1 Revenue in Dataset 1
	4.3.1.1 Capacity 1500
	4.3.1.2 Capacity 2500
	4.3.1.3 Capacity 1000

	4.3.2 Revenue in Dataset 2
	4.3.2.1 Capacity 1500
	4.3.2.2 Capacity 1000

	4.3.3 Revenue in Dataset 3
	4.3.3.1 Capacity 1500
	4.3.3.2 Capacity 1000

	5 Conclusion and Future Work
	A Parameters and Variables
	B Python Code of Model 3.1
	Bibliography

