

FPGA IMPLEMENTATIONS OF MOTION ESTIMATION ALGORITHMS USING

VIVADO HIGH-LEVEL SYNTHESIS

by

Firas Abdul Ghani

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Sciences

Sabancı University

August 2017

© Firas Abdul Ghani 2017

All Rights Reserved

To my Mother and Father

I

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere thanks to my advisor Dr. İlker

Hamzaoğlu for his endless support during my MS study. I respect very much his

suggestions and comments that improved my design skills more and more. His

motivation, and immense knowledge enabled me to finish my thesis with very good

results.

In addition, I would like to really thank Ercan Kalalı for his endless support and

advices during my MS study. I also want to thank the other members of System-on-

Chip Design and Testing Lab, Ahmet Can Mert, and Hasan Azgın for their support

during my MS study.

I also want to thank my family and my wife who encouraged me a lot during my

thesis.

Finally, I would like to acknowledge Sabancı University and Scientific and

Technological Research Council of Turkey (TUBITAK) for supporting me with

scholarships throughout my studies. This thesis was supported by TUBITAK under the

contract 115E290.

II

FPGA IMPLEMENTATIONS OF MOTION ESTIMATION

ALGORITHMS USING VIVADO HIGH LEVEL SYNTHESIS

Firas Abdul Ghani
Electronics, MS Thesis, 2017

Thesis Supervisor: Assoc. Prof. İlker HAMZAOĞLU

Keywords: HEVC, Fractional Interpolation, Motion Estimation, High-Level Synthesis

1 ABSTRACT

Joint collaborative team on video coding (JCT-VC) recently developed a new

international video compression standard called High Efficiency Video Coding

(HEVC). HEVC has 50% better compression efficiency than previous H.264 video

compression standard. HEVC achieves this video compression efficiency by

significantly increasing the computational complexity. Motion estimation is the most

computationally complex part of video encoders. Integer motion estimation and

fractional motion estimation account for 70% of the computational complexity of an

HEVC video encoder. High-level synthesis (HLS) tools are started to be successfully

used for FPGA implementations of digital signal processing algorithms. They

significantly decrease design and verification time. Therefore, in this thesis, we

proposed the first FPGA implementation of HEVC full search motion estimation using

Vivado HLS. Then, we proposed the first FPGA implementations of two fast search

(diamond search and TZ search) algorithms using Vivado HLS. Finally, we proposed

the first FPGA implementations of HEVC fractional interpolation and motion

estimation using Vivado HLS. We used several HLS optimization directives to increase

performance and decrease area of these FPGA implementations.

III

HAREKET TAHMİNİ ALGORİTMALARININ VIVADO YÜKSEK

SEVİYE SENTEZLEME İLE FPGA GERÇEKLEMELERİ

Firas Abdul Ghani
Elektronik Müh., Yüksek Lisans Tezi, 2017

Tez Danışmanı: Doç. Dr. İlker HAMZAOĞLU

Anahtar Kelimeler: HEVC, Kesirli Aradeğerleme, Hareket Tahmini, Yüksek Seviye

Sentezleme

2 ÖZET

Joint Collaborative Team on Video Coding (JCT-VC) yüksek verimli video

kodlama (HEVC) isminde yeni bir video sıkıştırma standardı geliştirdi. HEVC

günümüzde kullanılan H.264 standardına göre 50% daha iyi performans sağlıyor.

HEVC bu video sıkıştırma verimini hesaplama karmaşıklığını önemli ölçüde artırarak

başarıyor. Hareket tahmini video kodlayıcıların hesaplama karmaşıklığı en fazla olan

parçasıdır. Tam sayı hareket tahmini ve kesirli hareket tahmini, HEVC video

kodlayıcının hesaplama karmaşıklığının %70’ni oluşturmaktadır. Yüksek seviye

sentezleme araçları sayısal işaret işleme algoritmalarının FPGA gerçeklemelerinde

başarılı bir şekilde kullanılmaya başladı. Tasarım ve doğrulama zamanını önemli ölçüde

azalttılar. Bu nedenle, bu tezde, Vivado HLS kullanarak HEVC tam arama tam sayı

hareket tahmininin ilk FPGA gerçeklemesini önerdik. Ardından, Vivado HLS

kullanarak, iki hızlı arama algoritmasının (elmas arama ve TZ arama) ilk FPGA

gerçeklemelerini önerdik. Son olarak, Vivado HLS kullanarak, HEVC kesirli

aradeğerleme ve hareket tahmininin ilk FPGA gerçeklemelerini önerdik. Performansı

artırmak ve FPGA gerçeklemelerinin donanım alanını azaltmak için birkaç HLS

eniyileme direktifini kullandık.

IV

3 TABLE OF CONTENTS

ACKNOWLEDGEMENT ... I

1 ABSTRACT ... II

2 ÖZET .. III

3 TABLE OF CONTENTS ... IV

LIST OF FIGURES .. VI

LIST OF TABLES ... VII

LIST OF ABBREVIATIONS ... VIII

1 CHAPTER I INTRODUCTION ... 1

1.1 HEVC Video Compression Standard .. 1

1.2 High-Level Synthesis .. 3

1.3 Thesis Contributions ... 5

1.4 Thesis Organization .. 6

2 CHAPTER II FPGA IMPLEMENTATIONS OF INTEGER MOTION

ESTIMATION ALGORITHMS USING VIVADO HIGH-LEVEL SYNTHESIS 7

2.1 FPGA Implementation of HEVC Full Search Motion Estimation Algorithm Using

Vivado High-Level Synthesis ... 8

2.2 FPGA Implementation of Diamond Search Algorithm Using Vivado High-Level

Synthesis ... 11

2.1.1 Full Search Motion Estimation Algorithm.. 8

2.1.2 FPGA implementation .. 9

V

2.3 FPGA Implementation of TZ Search Algorithm Using Vivado High-Level

Synthesis ... 14

3 CHAPTER III FPGA IMPLEMENTATION OF FRACTIONAL MOTION

ESTIMATION USING VIVADO HIGH-LEVEL SYNTHESIS 18

3.1 FPGA Implementations of HEVC Fractional Interpolation Using Vivado High-

Level Synthesis ... 18

3.2 FPGA Implementations of HEVC Fractional Motion Estimation Using High-

Level Synthesis ... 26

4 CHAPTER IV CONCLUSIONS AND FUTURE WORK .. 32

5 BIBLIOGRAPHY ... 33

2.2.1 Diamond Search Algorithm .. 12

2.2.2 FPGA Implementation .. 12

2.3.1 TZ Search Algorithm .. 14

2.3.2 FPGA implementation .. 15

3.1.1 HEVC Fractional Interpolation Algorithm ... 19

3.1.2 FPGA Implementations .. 20

3.2.1 HEVC Fractional Motion Estimation Algorithm .. 26

3.2.2 FPGA Implementations .. 27

VI

LIST OF FIGURES

Figure 1.1 HEVC Encoder Block Diagram .. 2

Figure 1.2 HEVC Decoder Block Diagram ... 2

Figure 1.3 Xilinx Vivado HLS design flow ... 4

Figure 2.1 Integer Motion Estimation .. 8

Figure 2.2 HEVC Full Search Motion Estimation HLS Implementation 10

Figure 2.3 Diamond Search Algorithm .. 12

Figure 2.4 Diamond Search HLS Implementation ... 13

Figure 2.5 TZS Diamond Search Pattern ... 15

Figure 2.6 TZS Raster Search with Length 3 ... 15

Figure 2.7 TZ Search HLS Implementation ... 16

Figure 3.1 Integer, Half and Quarter Pixels ... 20

Figure 3.2 HEVC Fractional Interpolation HLS Implementation .. 21

Figure 3.3 Type A and Type B FIR Filters .. 24

Figure 3.4 Sub-pixel Search Locations .. 26

Figure 3.5 HEVC fractional motion estimation HLS implementation 28

VII

LIST OF TABLES

Table 1.1 Xilinx Vivado HLS Optimizations ... 4

Table 2.1 Full Search Motion Estimation HLS implementation Results 10

Table 2.2 HEVC Full Search Motion Estimation HLS Implementation Results 11

Table 2.3 HEVC Full Search Motion Estimation With Variable Search Range 11

Table 2.4 Diamond Search HLS Implementation Results ... 14

Table 3.1 HLS Implementation without Manual Loop Unrolling with Multipliers Results .. 23

Table 3.2 HLS Implementation with Multipliers Results .. 23

Table 3.3 HLS Implementation with Adders and Shifters Results .. 23

Table 3.4 HLS Implementation with MCM Results .. 24

Table 3.5 HEVC Fractional Interpolation Hardware Comparison ... 25

Table 3.6 HEVC Fractional Motion Estimation HLS Implementation Results 30

Table 3.7 Allocation Analysis for MM HLS Implementations .. 30

Table 3.8 HEVC Fractional Motion Estimation Hardware Comparison 31

VIII

LIST OF ABBREVIATIONS

BRAM Block RAM

CABAC Context Adaptive Binary Arithmetic Coding

DCT Discrete Cosine Transform

DST Discrete Sine Transform

DVI Digital Visual Interface

FPGA Field Programmable Gate Array

HD High Definition

HEVC High Efficiency Video Coding

HM HEVC Test Model

PSNR Peak Signal to Noise Ratio

PU Prediction Unit

SAO Sample Adaptive Offset

TU Transform Unit

UART Universal Asynchronous Receiver/Transmitter

HLS High Level Synthesis

SAD Sum Of Absolute Differrence

TZA TZ Search Algorithm

1

1 CHAPTER I

INTRODUCTION

1.1 HEVC Video Compression Standard

Since better coding effiency is required for high resolution videos, Joint

Collaborative Team on Video Coding (JCT-VC) recently developed a new video

compression standard called High Efficiency Video Coding (HEVC) [1, 2, 3]. HEVC

provides 50% better coding efficiency than previous H.264 video compression standard.

HEVC also provides 23% bit rate reduction for the intra prediction only case [4]. The

video compression efficiency achieved in HEVC standard is not a result of any single

feature but rather a combination of a number of encoding tools such as intra prediction,

motion estimation, deblocking filter and entropy coder. Motion estimation is the most

computationally complex part of video encoders. Integer motion estimation and

fractional motion estimation account for 70% of the computational complexity of an

HEVC video encoder.

The top-level block diagram of an HEVC encoder and decoder are shown in

Figure 1.1 and Figure 1.2, respectively. An HEVC encoder has a forward path and a

reconstruction path. The forward path is used to encode a video frame by using intra

and inter predictions and to create the bit stream after the transform and quantization

process. Reconstruction path in the encoder ensures that both encoder and decoder use

identical reference frames for intra and inter prediction because a decoder never gets

original images.

2

Figure 1.1 HEVC Encoder Block Diagram

Figure 1.2 HEVC Decoder Block Diagram

In the forward path, frame is divided into coding units (CU) that can be an 8x8,

16x16, 32x32 or 64x64 pixel block. Each CU is encoded in intra or inter mode

depending on the mode decision. Intra and inter prediction processes use prediction unit

(PU) partitioning inside the CUs. Prediction unit (PU) sizes can be from 4x4 up to

64x64. Mode decision determines whether a PU will be coded intra or inter mode based

on video quality and bit-rate. After mode decision determines the prediction mode,

predicted block is subtracted from original block, and residual data is generated. Then,

residual data transformed by discrete cosine transform (DCT) and quantized. Transform

unit (TU) sizes can be from 4x4 up to 32x32. Finally, entropy coder generates the

encoded bitstream.

3

Reconstruction path begins with inverse quantization and inverse transform

operations. The quantized transform coefficients are inverse quantized and inverse

transformed to generate the reconstructed residual data. Since quantization is a lossy

process, inverse quantized and inverse transformed coefficients are not identical to the

original residual data. The reconstructed residual data are added to the predicted pixels

in order to create the reconstructed frame. DBF is, then, applied to reduce the effects of

blocking artifacts in the reconstructed frame.

1.2 High-Level Synthesis

Recently, high-level synthesis (HLS) tools started to generate production quality

register transfer level (RTL) implementations from high-level specifications. HLS tools

improve productivity of hardware designers by reducing both design and verification

time.

In this thesis, Xilinx Vivado HLS tool is used. It is one of the successful

commercial HLS tools. It takes C, C++ or SystemC codes as input, and generates

Verilog or VHDL codes. Design flow used in this thesis for the FPGA implementations

of motion estimation algorithms using Xilinx Vivado HLS is shown in Figure 1.3. First,

software models of HEVC video compression algorithms are developed using HEVC

reference software video encoder (HM) 15.0 [5]. After the software models are verified

with HEVC test sequences, C codes for HLS are developed. Then, the C codes are

synthesized to Verilog RTL using Xilinx Vivado HLS tool. Several optimizations

offered by Xilinx Vivado HLS tool are also used to increase performance and decrease

area of the proposed FPGA implementations. The Verilog RTL codes are synthesized

and mapped to a Xilinx Virtex 6 FPGA using Xilinx ISE 14.7. Finally, the FPGA

implementations are verified with post place and route simulations.

Xilinx Vivado HLS tool provides C specification testbench to verify the code.

This C testbench is used by the tool to verify that the functionality of the synthesized

RTL is same as the functionality of the original C code. After verifying the functionality

with C testbench, Vivado HLS tool generates hardware (Verilog or VHDL) testbench to

verify the hardware. Then, HLS tool compares the output of C testbench and hardware

testbench. If they are same, it indicates that the hardware is verified.

4

Figure 1.3 Xilinx Vivado HLS design flow

Table 1.1 Xilinx Vivado HLS Optimizations

Optimizations (Pragmas)

Loop

Optimizations

Loop Pipelining

Loop Unrolling

Loop Merge

Memory Control

Array Map

Array Partition

Resource

Resources
Allocation

Resource

Xilinx Vivado HLS tool performs scheduling of operations, allocation of

registers, and binding of operations to functional units. Xilinx Vivado HLS tool

provides many optimizations (pragmas) for scheduling, allocation and binding. It also

provides bit-accurate or cycle-accurate implementations. It allows adding specific RAM

blocks, FIFOs, ROMs or specific DSP blocks. In addition it generates I/O interfaces to

connect hardware modules with memories or other peripherals. Xilinx Vivado HLS tool

offers these optimizations to increase performance and decrease area of HLS

implementations. These optimizations can be grouped as shown in Table 1.1.

5

Loop Unrolling (LU) directive is used to increase performance using more

resources. It creates multiple copies of loop body, and compute them in parallel. In this

way, it decreases the loop iterations and increases the performance. However, loop

unrolling may cause memory access problems in HLS designs.

Allocation (ALC) directive is used to specify the maximum number of resources

that can be used in hardware. It forces the HLS tool to perform resource sharing. It

therefore decreases the hardware area. Allocation can be used for addition, subtraction,

multiplication, division, shift and comparison operations.

Pipeline (PIPE) directive performs pipelining to increase the performance. Xilinx

Vivado HLS tool performs pipelining automatically. However, number of pipeline

stages can also be defined for further performance increase.

Resource (RES) directive is used to specify which resource will be used to

implement a variable such as an array, arithmetic operation or function argument. DSP

elements, specific RAM blocks, FIFOs or ROMs can be used with resource directive.

Array map (AMAP) directive is used to map multiple small arrays into a single

large array. The large array can be targeted to a single large memory (RAM or FIFO)

resource. It is also used to control how (horizontal or vertical) data is stored in BRAMs.

Array partition (APAR) directive partitions the large arrays into multiple smaller

arrays or individual registers for parallel data accesses.

Xilinx Vivado HLS tool also provides a specific library for designing bit-accurate

(BIT) models in C codes.

A few HLS implementations for HEVC video compression standard are proposed

in the literature [6]-[8]. A few HLS implementations for H.264 video compression

standard are proposed in the literature [9]-[12]. There are a few HLS implementations

based on MPEG reconfigurable video coding [13]-[14]. There are several HLS

implementations for image and video processing algorithms such as sorting in the

median filter [15]-[18].

1.3 Thesis Contributions

In this thesis, we proposed the first FPGA implementation of HEVC full search

motion algorithm using HLS in the literature. The C codes given as input to Xilinx

Vivado HLS tool are developed based on the HEVC reference software video encoder

(HM) version 15 [5]. We used several optimizations offered by Vivado HLS to achieve

real-time performance. The proposed FPGA implementation of HEVC full search

6

motion estimation algorithm using HLS can process 30 full HD video frames per

second for all PU sizes and for fixed search range (64x64). It can process 29 full HD

frames per second for variable search ranges.

Fast search motion estimation algorithms are used to reduce computational

complexity of motion estimation. Diamond Search (DS) and TZ Search (TZS) are very

successful fast search motion estimation algorithms. Therefore, in this thesis, first

FPGA implementations of DS and TZS algorithms using HLS in the literature are

proposed. The proposed DS and TZS motion estimation FPGA implementations can

process 127 full HD (1920x1080) and 46 full HD video frames per second, respectively.

We also proposed the first FPGA implementation of HEVC fractional

interpolation and motion estimation using HLS in the literature. We used several

optimizations offered by Vivado HLS to achieve real-time performance. The proposed

HEVC fractional interpolation and HEVC fractional motion estimation FPGA

implementations can process 45 quad full HD (3840x2160) and 46 full HD video

frames per second, respectively.

1.4 Thesis Organization

The rest of the thesis is organized as follows.

Chapter II first explains FPGA implementations of HEVC full search motion

estimation algorithm using Vivado HLS and presents the experimental results. It, then,

explains FPGA implementations of two fast search (Diamon Search and TZ Search)

motion estimation algorithms using Vivado HLS and presents the experimental results.

Chapter III explains FPGA implementations of HEVC fractional interpolation and

fractional motion estimation algorithms using Vivado HLS and presents the

experimental results.

Chapter IV presents conclusions and future work.

7

2 CHAPTER II

FPGA IMPLEMENTATIONS OF INTEGER MOTION

ESTIMATION ALGORITHMS USING VIVADO HIGH-LEVEL

SYNTHESIS

Motion estimation (ME) is used to remove temporal redundancy between current

frame and reference frame that has been encoded previously. As shown in Figure 2.1,

integer motion estimation (IME) divides the current frame into blocks and finds the

motion vector (MV) for each block by determining the reference block in the reference

frame that gives the smallest sum of absolute difference (SAD) for this block. Then, it

calculates the difference between the current block and the best matching reference

block, and encodes this residual and the motion vector.

HEVC standard divides the current frame into blocks called Prediction Units

(PUs) for IME. In HEVC standard, 24 different PU sizes are defined. These PU sizes

range from 4x8 or 8x4 to 64x64. This allows HEVC standard to do better compression

than previous video compression standards.

8

Figure 2.1 Integer Motion Estimation

2.1 FPGA Implementation of HEVC Full Search Motion Estimation Algorithm

Using Vivado High-Level Synthesis

2.1.1 Full Search Motion Estimation Algorithm

Full Search (FS) algorithm exhaustively searches all search locations in the

defined search window in the reference frame. Therefore, it finds the best MV in the

search window. However, it is the most computationally complex motion estimation

algorithm.

FS algorithm calculates the SAD value for each search location as shown in

Equation 2.1.

 𝑆𝐴𝐷 = ∑ ∑ |𝑅𝑖𝑗 − 𝐶𝑖𝑗| 𝑛
𝑗=0

𝑚
𝑖=0 (2.1)

R is a pixel in the reference frame. C is a pixel in the current frame. It determines

the search location with the minimum SAD value and the MV corresponding to this

search location.

9

2.1.2 FPGA implementation

We, first, designed a full search IME hardware for fixed current block size (8x8)

and fixed search range (16x16). In this hardware, 8 parallel absolute difference

hardware calculate absolute differences for one column of 8x8 PU. After 8 iterations,

SAD value is calculated by adding absolute difference values. 16x16 array stores all

SAD values for comparison. Then, comparison unit compares SAD values, and

determines the minimum SAD value and the corresponding motion vector.

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS

implementation are verified with post place and route simulations. The implementation

results are shown in Table 2.1.

PIPE, LU, APAR and RES directives are used to increase the performance.

Number of frames per second processed by this FPGA implementation is calculated as

shown in Equation (2.2).

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑀𝐻𝑧)∗1000000

(
𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒

𝑆𝑒𝑎𝑟𝑐ℎ 𝑅𝑎𝑛𝑔𝑒 𝑆𝑖𝑧𝑒
)∗𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒𝑠

 (2.2)

Then, a full search IME hardware implementing the FS IME algorithm in HEVC

reference software video encoder (HM) version 15 [5] is designed. It supports all 24 PU

sizes defined in HEVC standard. It implements 64x64 fixed search range. The proposed

hardware is shown in Fig. 2.2.

In HEVC, 593 SADs and 593 MVs should be calculated for all PU sizes.

Numbers of SADs and MVs that should be calculated for each PU size are as follows:

4x8 (128 SADs and 128 MVs) , 8x4 (128 SADs and 128 MVs) , 8x8 (64 SADs and 64

MVs) , 4x16 (64 SADs and 64 MVs) , 8x16 (32 SADs and 32 MVs) , 12x16 (20 SADs

and 20 MVs) , 16x4 (64 SADs and 64 MVs) , 16x12 (20 SADs and 20 MVs) , 16x16

(16 SADs and 16 MVs), 8x32 (16 SADs and 16 MVs) , 16x32 (8 SADs and 8 MVs) ,

24x32 (4 SADs and 4 MVs) , 32x8 (16 SADs and 16 MVs) , 32x16 (8 SADs and 8

MVs) , 32x24 (4 SADs and 4 MVs) , 32x32 (4 SADs and 4 MVs) , 16x64 (4 SADs and

4 MVs), 32x64 (2 SADs and 2 MVs) , 48x64 (1 SAD and 1 MV) , 64x16 (4 SADs and

4 MVs) , 64x32 (2 SADs and 2 MVs) , 64x48 (1 SAD and 1 MV) and 64x64 (1 SAD

and 1 MV).

10

Table 2.1 Full Search Motion Estimation HLS implementation Results

For 8x8 PU Size

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)

Clock Cycles

(8x8 PU)
Fps

NOOPT 290 644 490 2 0 267 20301

0.912

2560*144

0

APAR_RES(BRAM)_PIPE_LU 2132 6247 2346 49 0 200 256
54

2560*144

0

Figure 2.2 HEVC Full Search Motion Estimation HLS Implementation

First, reference and current pixels are stored into integer pixels buffer. 128x128

reference pixels are stored in order to be able to search all search locations in the 64x64

search range. Then, SAD values for 4x4 PUs in the 64x64 CU are calculated. Since

there are 16x16 4x4 PUs in the 64x64 CU, a 16x16 array is used to store SAD values of

4x4 PUs. Then, SAD values for the other PU sizes are calculated by adding the SAD

values of 4x4 PUs. After that, comparison unit compares the SAD values, determines

the 593 minimum SAD values for all PU sizes and their corresponding MVs, and stores

them into two different arrays.

APAR is used for the 16x16 array storing SADs for 4x4 PUs. In this way, latency

of calculating SAD values of larger PUs is reduced by accessing the SAD values of 4x4

PUs in parallel. Loop unrolling (LU) is used to perform absolute difference calculations

11

in parallel. PIPE is used to increase the performance. Bit-accurate model is used in

order to decrease adder bit-width.

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS

implementation are verified with post place and route simulations. The implementation

results are shown in Table 2.2.

Finally, this HLS implementation is parametrized to support 4 different (8x8,

16x16, 32x32 and 64x64) search ranges by only changing the boundaries of nested

loops calculating SAD values according to the selected search range.

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS

implementation are verified with post place and route simulations. The implementation

results are shown in Table 2.3.

Table 2.2 HEVC Full Search Motion Estimation HLS Implementation Results

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)

Clock

Cycles

(64x64 PU)

Fps

NOOPT 6858 17632 18397 6 0 125 1056768
0.23

1920x1080

APAR_RES(BRAM)_PIPE_

LU_ BIT
29875 88286 76271 138 0 86 5705

30

1920x1080

Table 2.3 HEVC Full Search Motion Estimation With Variable Search Range

HLS Implementation Results

Search

Range
Optimizations Slice LUT DFF BRAM DSP48 Freq.

Clock

Cycles
Fps

8x8
APAR_RES(BRAM)_

PIPE_LU_ BIT

34302 87259 76345 138 0 83

441 372 FHD

16x16
APAR_RES(BRAM)_
PIPE_LU_ BIT

809 202 FHD

32x32
APAR_RES(BRAM)_
PIPE_LU_ BIT

1929 85 FHD

64x64
APAR_RES(BRAM)_

PIPE_LU_ BIT
5705 29 FHD

2.2 FPGA Implementation of Diamond Search Algorithm Using Vivado High-

Level Synthesis

Fast search motion estimation algorithms are used to reduce computational

complexity of FS algorithm at the expense of slight PSNR loss and bitrate increase.

12

2.2.1 Diamond Search Algorithm

Diamond search (DS) motion estimation algorithm follows a diamond search

pattern. DS algorithm has two steps; large diamond search (LDS) and small diamond

search (SDS). LDS calculates SAD values for 9 search locations that form a large

diamond shape as shown in Figure 2.3 (a), and determines the search location with

minimum SAD. If the search location with minimum SAD is at the center of the

diamond shape, SDS is performed. Otherwise, LDS is performed around the search

location with minimum SAD as shown in Figure 2.3 (c). SDS calculates SAD values for

4 search locations that form a small diamond shape as shown in Figure 2.3 (b), and

determines the search location with minimum SAD and the corresponding motion

vector.

(a) (b) (c)

Figure 2.3 Diamond Search Algorithm

2.2.2 FPGA Implementation

The proposed DS HLS implementation for fixed current block size (64x64) and

fixed search range size (64x64) is shown in Figure 2.4. First, pixels in the current block

in the current frame and necessary pixels in the reference frame are stored into integer

pixels buffers. In order to decrease memory area, only 68x68 reference pixels are

stored. After the first LDS, if another LDS is performed, only new reference pixels are

read and stored into integer pixels buffer. Other reference pixels are shifted.

13

Figure 2.4 Diamond Search HLS Implementation

LDS may never find a search location with minimum SAD that is at the center of

the diamond shape. Therefore, a maximum number of LDS allowed should be defined.

In the proposed HLS implementation, this maximum number is defined as a parameter

which can be between 1 and 10.

In the proposed HLS implementation, 9 SAD values that should be calculated for

LDS are calculated in parallel. 64 parallel absolute difference hardware are used for

calculating each SAD value. Then, comparison unit determines the search location with

minimum SAD.

If the search location with minimum SAD is at the center of the diamond shape,

SDS is performed. Otherwise, LDS is performed around the search location with

minimum SAD. However, if the maximum number of LDSs allowed are performed,

SDS is performed instead of LDS. If another LDS is performed, only new reference

pixels are read and stored into integer pixels buffer. Other reference pixels are shifted.

We used loop unrolling for shifting.

In the proposed HLS implementation, 4 SAD values that should be calculated for

SDS are calculated in parallel. Then, comparison unit determines the search location

with minimum SAD. Finally, the minimum SAD values found in LDS and SDS are

14

compared, and the minimum SAD value and the corresponding MV for DS are

determined.

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS

implementation are verified with post place and route simulations. The implementation

results are shown in Table 2.4.

APAR, RES, PIPE, LU optimization directives are used in order to increase the

performance and decrease the hardware area. Bit-accurate model is also used to

decrease hardware area. Number of clock cycles changes with number of steps. These

results show that the proposed DS HLS implementation can process 127 full HD frames

per second.

Table 2.4 Diamond Search HLS Implementation Results

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)

Clock Cycles

(64x64 PU)

1 Step 10 Steps

Fps

NOOPT 10132 28322 16535 4 0 108 4754 46352
5

1920x1080

APAR_RES(BRAM)_

PIPE_LU_ BIT
12573 37457 20859 67 0 139 334 2152

127

1920x1080

2.3 FPGA Implementation of TZ Search Algorithm Using Vivado High-Level

Synthesis

2.3.1 TZ Search Algorithm

TZ search (TZS) is another fast search motion estimation algorithm. It finds better

MVs than DS. But, it has higher computational complexity than DS. TZS uses two

different search patterns; diamond search pattern and raster search pattern as shown in

Figure 2.5 and Figure 2.6, respectively. Raster search is similar to full search, but it

searches less number of search locations. It is used as a refinement after the diamond

search pattern.

Diamond search pattern starts searching at the (0,0) search location, and it

proceeds according to the steps shown in Figure 2.5. It calculates the SAD values and

determines the minimum SAD in each step. It has two termination conditions. The first

one is reaching the search window boundaries. The second one is not finding minimum

SAD in three consecutive steps. For example, if the SAD value of (0,0) search location

15

is smaller than all SAD values calculated in steps 1, 2, and 4, then it is terminated, and

the SAD value of (0,0) search location is determined as the minimum SAD.

Figure 2.5 TZS Diamond Search Pattern

Figure 2.6 TZS Raster Search with Length 3

2.3.2 FPGA implementation

The proposed TZS HLS implementation for fixed current block size (64x64) and

fixed search range size (64x64) is shown in Figure 2.7. First, 64x64 current pixels and

128x128 reference pixels are stored into integer pixels buffers. Then, diamond search

pattern is performed. Since the search range size is 64x64, maximum number of steps

for the diamond search pattern is 6. In each step, SAD values for the search locations

are calculated and the search location with minimum SAD is determined.

16

Figure 2.7 TZ Search HLS Implementation

As shown in Figure 2.5, number of search locations for all the steps after step 1 is

8. In order not to repeat the same operations for SAD calculations in steps 2, 3, 4, 5, and

6, control variables are added to HLS code to update memory addresses after each step.

After each step, control unit checks the termination conditions of diamond search

pattern. If a termination condition occurs, diamond search pattern is terminated. In that

case, if starting condition of raster search pattern occurs, raster search pattern is

performed.

As shown in Figure 2.6, raster search pattern is similar to full search. However, it

skips some search locations based on raster search length. It searches only the search

locations shown as black in the figure. SAD values of these search locations are

calculated and the search location with minimum SAD is determined.

Finally, comparison unit compares the minimum SAD found in diamond search

pattern and the minimum SAD found in raster search pattern, and determines the

minimum SAD and the corresponding MV.

Verilog RTL codes generated by Xilinx Vivado HLS tool for this HLS

implementation are verified with post place and route simulations. The implementation

results are shown in Table 2.5.

17

APAR, RES, PIPE, LU optimization directives are used in order to increase the

performance and decrease the hardware area. Bit-accurate model is also used to

decrease hardware area. These results show that the proposed TZS HLS implementation

can process 46 full HD frames per second.

Table 2.5 TZ Search HLS Implementation Results

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)

Clock Cycles

(64x64 PU)
Fps

NOOPT 9744 25723 15821 10 0 128 66321
4

1920x1080

APAR_RES(BRAM)_

PIPE_LU_ BIT
39406 114412 15943 128 0 92 3980

46

1920x1080

18

3 CHAPTER III

FPGA IMPLEMENTATION OF FRACTIONAL MOTION

ESTIMATION USING VIVADO HIGH-LEVEL SYNTHESIS

In order to increase the performance of integer pixel motion estimation, fractional

motion estimation (FME), which provides half and quarter pixel accurate motion vector

(MV) refinement, is performed. First, fractional interpolation is performed to generate

fractional pixels. Then, fractional motion estimation is performed using fractional

pixels.

Fractional (half-pixel and quarter-pixel) interpolation is one of the most

computationally intensive parts of HEVC video encoder and decoder. On average, one

fourth of the HEVC encoder complexity and 50% of the HEVC decoder complexity are

caused by fractional interpolation [19]. FME is heavily used in an HEVC encoder. It

accounts for up to 49% of total encoding time of HEVC video encoder [20].

HEVC uses FME same as H.264. However, HEVC FME has higher

computational complexity than H.264 FME. HEVC standard uses three different 8-tap

FIR filters for fractional interpolation and up to 64×64 prediction unit (PU) sizes [21].

3.1 FPGA Implementations of HEVC Fractional Interpolation Using Vivado

High-Level Synthesis

Since HEVC fractional interpolation algorithm uses FIR filters, it is suitable for

HLS implementation. Therefore, in this thesis, the first FPGA implementation of HEVC

fractional interpolation algorithm using Xilinx Vivado HLS tool in the literature is

19

proposed. The proposed HEVC fractional interpolation hardware is implemented on

Xilinx FPGAs using Xilinx Vivado HLS tool. The C codes given as input to Xilinx

Vivado HLS tool are developed based on the HEVC fractional interpolation software

implementation in the HEVC reference software video encoder (HM) version 15 [5].

Three HEVC fractional interpolation HLS implementations are done. In the first

one (MM), in the C codes, multiplications with constants are implemented using

multiplication operations. In the second one (MAS), multiplications with constants are

implemented using addition and shift operations. In the last one (MMCM), addition and

shift operations are implemented using Hcub multiplierless constant multiplication

algorithm [22].

Some of the optimization options of Xilinx Vivado HLS tool are used in order to

increase performances of the FPGA implementations such as pipelining, allocation,

resource optimizations, array mapping and array partitioning. Verilog RTL codes

generated by Xilinx Vivado HLS tool for the three HEVC fractional interpolation HLS

implementations are verified to work in a Xilinx Virtex 6 FPGA.

Using HLS tool significantly reduced the FPGA development time. The

implementation results show that the proposed HEVC fractional interpolation FPGA

implementation, in the worst case, can process 45 quad full HD (3840x2160) video

frames per second with acceptable hardware area.

The HEVC fractional interpolation HLS implementation proposed in this thesis is

the first HLS implementation for HEVC fractional interpolation algorithm in the

literature. In Section 3.1.2, it is compared with the handwritten HEVC fractional

interpolation hardware implementations proposed in the literature [23]-[27].

3.1.1 HEVC Fractional Interpolation Algorithm

In HEVC standard, 3 different 8-tap FIR filters are used for both half-pixel and

quarter-pixel interpolations. These 3 FIR filters type A, type B and type C are shown in

(3.1), (3.2), and (3.3), respectively. The shift1 value is determined based on bit depth of

the pixel.

20

Figure 3.1 Integer, Half and Quarter Pixels

 𝑎0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 10 ∗ 𝐴−1,0 + 58 ∗ 𝐴0,0 + 17 ∗ 𝐴1,,0 − 5 ∗ 𝐴2,0 + 𝐴3,0) ≫

𝑠ℎ𝑖𝑓𝑡1

(

(3.1)

𝑏0,0 = (−𝐴−3,0 + 4 ∗ 𝐴−2,0 − 11 ∗ 𝐴−1,0 + 40 ∗ 𝐴0,0 + 40 ∗ 𝐴1,,0 − 11 ∗ 𝐴2,0 + 4 ∗ 𝐴3,0 − 𝐴4,0)

≫ 𝑠ℎ𝑖𝑓𝑡1

(

(3.2)

𝑐0,0 = (−𝐴−2,0 − 5 ∗ 𝐴−1,0 + 17 ∗ 𝐴0,0 + 58 ∗ 𝐴1,0 − 10 ∗ 𝐴2,,0 + 4 ∗ 𝐴3,0 − 𝐴4,0) ≫ 𝑠ℎ𝑖𝑓𝑡1
(

(3.3)

Integer pixels (Ax,y), half pixels (ax,y, bx,y, cx,y, dx,y, hx,y, nx,y) and quarter pixels

(ex,y, fx,y, gx,y, ix,y, jx,y, kx,y, px,y, qx,y, rx,y) in a PU are shown in Figure 3.1. The half pixels

a, b, c are interpolated from nearest integer pixels in horizontal direction using type A,

type B and type C filters, respectively. The half-pixels d, h, n are interpolated from

nearest integer pixels in vertical direction using type A, type B and type C filters,

respectively. The quarter pixels e, f, g are interpolated from the nearest a, b, c half

pixels respectively in vertical direction using type A filter. The quarter pixels i, j, k are

interpolated similarly using type B filter. The quarter pixels p, q, r are interpolated

similarly using type C filter.

HEVC fractional interpolation algorithm used in HEVC encoder calculates all

the fractional pixels necessary for the fractional motion estimation.

3.1.2 FPGA Implementations

The proposed HLS implementation of HEVC fractional interpolation is shown in

Figure 3.2. The proposed HLS implementation is synthesized to Verilog RTL using

21

Xilinx Vivado HLS tool. The C codes given as input to Xilinx Vivado HLS tool are

developed based on the HEVC fractional interpolation software implementation in the

HEVC reference software video encoder (HM) version 15 [5].

In the proposed HLS implementation, half pixels and quarter pixels for an 8x8 PU

are calculated using 15x15 integer pixels. Half pixels and quarter pixels for larger PU

sizes can be calculated by calculating the half pixels and quarter pixels for each 8x8 part

of a PU separately. In the C codes, 15 integer pixels are taken as input in each clock

cycle. 8 a, 8 b and 8 c half-pixels are interpolated in parallel in each clock cycle. 15x8 a,

15x8 b, and 15x8 c half pixels are interpolated in 15 clock cycles, and they are stored

into registers for quarter pixel interpolation. In the same 15 clock cycles, 15x8 integer

pixels are also stored into registers for interpolating d, h, n half pixels. Then, 8x8 d, 8x8

h, 8x8 n half pixels are interpolated using 15x8 integer pixels. Finally, all quarter pixels

(e, f, g, i, j, k, p, q, r) are interpolated using 15x8 a, 15x8 b, and 15x8 c half pixels.

Three HEVC fractional interpolation HLS implementations are done. In the first

one (MM), in the C codes, multiplications with constants are implemented using

multiplication operations. In the second one (MAS), multiplications with constants are

implemented using addition and shift operations. In the last one (MMCM), addition and

shift operations are implemented using Hcub multiplierless constant multiplication

algorithm [22].

Figure 3.2 HEVC Fractional Interpolation HLS Implementation

22

Verilog RTL codes generated by Xilinx Vivado HLS tool for these three HLS

implementations are verified with RTL simulations. RTL simulation results matched the

results of HEVC fractional interpolation software implementation in the HEVC

reference software video encoder (HM) version 15 [5]. The Verilog RTL codes are

synthesized and mapped to a Xilinx XC6VLX550T FF1760 FPGA with speed grade 2

using Xilinx ISE 14.7. The FPGA implementations are verified with post place and

route simulations.

We used several optimizations offered by Xilinx Vivado HLS tool to increase the

performance and decrease the area of the proposed HLS implementations [28]. We tried

to use loop unrolling directive. However, loop unrolling directive did not work correctly

for the proposed HLS implementations. In [29], it is mentioned that loop unrolling may

cause memory access problems in HLS designs, and current generation of HLS tools

may ignore these problems. As shown in Table 3.1, the performance of the HLS

implementation, which implements multiplications with constants using multiplication

operations, without loop unrolling is very low. Therefore, we performed manual loop

unrolling in the proposed HLS implementations to increase their performances.

In the proposed HLS implementations, ALC is used for subtraction, addition,

multiplication, and shifting operations. PIPE directive is used in the proposed HLS

implementations. In the proposed HLS implementations, RES directive is used to store

input integer pixels into BRAMS. In the proposed HLS implementations, AMAP

directive is used to control how data is stored in BRAMS so that the number of BRAMS

used in the hardware is reduced as much as possible. In the proposed HLS

implementations, APAR directive is used to partition the arrays that store a, b, and c

half pixels to increase quarter pixel interpolation performance. In the proposed HLS

implementations, bit accurate (BIT) model is used to decrease adder bit widths and

therefore hardware area.

The FPGA implementation results for the first HLS implementation (MM) are

given in Table 3.2. In this HLS implementation, in the C codes, multiplications with

constants are implemented using multiplication operations. These multiplication

operations are mapped to DSP48 blocks in RTL synthesis. This decreased the number

of LUTs and DFFs used in the hardware. Allocation (ALC), pipeline (PIPE), resource

(RES) and array map (AMAP) directives are used in this HLS implementation. In the

table, M shows the number of multipliers used in the ALC directive.

23

The FPGA implementation results for the second HLS implementation (MAS) are

given in Table 3.3. In this HLS implementation, multiplications with constants are

implemented using addition and shift operations. This HLS implementation does not

use any DSP48 blocks, but it uses more LUTs and DFFs than MM. It also has higher

performance than MM. Pipeline (PIPE), resource (RES) and array map (AMAP)

directives are used in this HLS implementation.

Table 3.1 HLS Implementation without Manual Loop Unrolling with Multipliers

Results

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)
Clock Cycles

(8x8 PU)
Fps

NOOPT 885 2565 1411 1 15 250 1921
1

3840x2160

Table 3.2 HLS Implementation with Multipliers Results

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)
Clock Cycles

(8x8 PU)
Fps

NOOPT 4623 14110 7526 0 113 200 156
10

3840x2160

ALC(M128) 4769 14133 6226 0 135 168 148
9

3840x2160

PIPE 4938 14086 8736 0 113 201 56
28

3840x2160

RES(BRAM) 4723 13883 7395 4 113 201 156
10

3840x2160

ALC(M128)_RES(BRAM)_PIPE 5197 14366 8000 4 147 167 56
23

3840x2160

ALC(M128)_AMAP(4)_

RES(BRAM)_PIPE
4299 12401 7964 2 147 167 56

23

3840x2160

ALC(M20)_AMAP(4)_

RES(BRAM)_PIPE
4299 13100 8037 2 59 168 56

23

3840x2160

Table 3.3 HLS Implementation with Adders and Shifters Results

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)

Clock Cycles

(8x8 PU)
Fps

NOOPT 4809 15629 9095 0 0 202 133
12

3840x2160

AMAP(4)_RES(BRAM)_PIPE 4891 15716 9436 2 0 200 55
28

3840x2160

The FPGA implementation results for the last HLS implementation (MMCM)

are given in Table 3.4. In this HLS implementation, addition and shift operations are

implemented using Hcub multiplierless constant multiplication algorithm [22]. The

type A and type B FIR filter equations for 8 a half pixels and 8 b half pixels are shown

in Figure 3.3. As shown in Figure 3.3, common sub-expressions are calculated in

24

different equations and same integer pixel is multiplied with different constant

coefficients in different equations. Therefore, in this HLS implementation, common

sub-expressions in different FIR filter equations are calculated once, and the result is

used in all the equations. This HLS implementation also uses Hcub MCM algorithm in

order to reduce number and size of the adders, and to minimize the adder tree depth

[22]. Hcub algorithm tries to minimize number of adders, their bit size and adder tree

depth in a multiplier block, which multiplies a single input with multiple constants. This

HLS implementation has the best performance with acceptable hardware area.

Allocation (ALC), pipeline (PIPE), array partition (APAR) directives and bit-accurate

(BIT) model are used in this HLS implementation. In the table, A and S show the

number of adders and subtractors used in the ALC directive, respectively.

Table 3.4 HLS Implementation with MCM Results

Optimizations Slice LUT DFF BRAM DSP48
Freq.

(MHz)
Clock Cycles

(8x8 PU)
Fps

NOOPT 4850 15632 6673 2 0 201 195
8

3840x2160

ALC(A500_S500)_

APAR_PIPE
5288 14619 10118 0 0 168 29

45

3840x2160

ALC(A500_S500)_
APAR_PIPE_BIT

4426 14225 9984 0 0 168 29
45

3840x2160

b-3,0 = -A-6 + 4×A-5 – 11×A-4 + 40×A-3 + 40×A-2 – 11×A-1 + 4×A0 - A1
b-2,0 = -A-5 + 4×A-4 – 11×A-3 + 40×A-2 + 40×A-1 – 11×A0 + 4×A1 – A2
b-1,0 = -A-4 + 4×A-3 – 11×A-2 + 40×A-1 + 40×A0 – 11×A1 + 4×A2 – A3
b0,0 = -A-3 + 4×A-2 – 11×A-1 + 40×A0 + 40×A1 – 11×A2 + 4×A3 – A4
b1,0 = -A-2 + 4×A-1 – 11×A0 + 40×A1 + 40×A2 – 11×A3 + 4×A4 – A5
b2,0 = -A-1 + 4×A0 – 11×A1 + 40×A2 + 40×A3 – 11×A4 + 4×A5 – A6
b3,0 = -A0 + 4×A1 – 11×A2 + 40×A3 + 40×A4 – 11×A5 + 4×A6 – A7
b4,0 = -A1 + 4×A2 – 11×A3 + 40×A4 + 40×A5 – 11×A6 + 4×A7 – A8

a-3,0 = -A-6 + 4×A-5 – 10×A-4 + 58×A-3 + 17×A-2 – 5×A-1 + A0
a-2,0 = -A-5 + 4×A-4 – 10×A-3 + 58×A-2 + 17×A-1 – 5×A0 + A1
a-1,0 = -A-4 + 4×A-3 – 10×A-2 + 58×A-1 + 17×A0 – 5×A1 + A2
a0,0 = -A-3 + 4×A-2 – 10×A-1 + 58×A0 + 17×A1 – 5×A2 + A3
a1,0 = -A-2 + 4×A-1 – 10×A0 + 58×A1 + 17×A2 – 5×A3 + A4
a2,0 = -A-1 + 4×A0 – 10×A1 + 58×A2 + 17×A3 – 5×A4 + A5
a3,0 = -A0 + 4×A1 – 10×A2 + 58×A3 + 17×A4 – 5×A5 + A6
a4,0 = -A1 + 4×A2 – 10×A3 + 58×A4 + 17×A5 – 5×A6 + A7

A – C Type Filters B Type Filters

Figure 3.3 Type A and Type B FIR Filters

The best HEVC fractional interpolation HLS implementation proposed in this

thesis (MMCM with ALC(A500_S500)_APAR_PIPE_BIT) is compared with the

handwritten HEVC fractional interpolation hardware implementations proposed in the

literature [23]-[27]. The comparison results are shown in Table 3.5.

The proposed MMCM HLS implementation is similar to the handwritten HEVC

fractional interpolation hardware implementation proposed in [23]. In [23], common

25

sub-expressions in different FIR filter equations are calculated once, and the result is

used in all the equations. Also, addition and shift operations are implemented using

Hcub multiplierless constant multiplication (MCM) algorithm.

In [23], the handwritten Verilog RTL codes are synthesized and mapped to a

Xilinx XC6VLX130T FF1156 FPGA with speed grade 3. In this thesis, the handwritten

Verilog RTL codes proposed in [23] are synthesized and mapped to a Xilinx

XC6VLX550T FF1760 FPGA with speed grade 2 for fair comparison with the proposed

MMCM HLS implementation. The proposed MMCM HLS implementation has higher

performance than the handwritten HEVC fractional interpolation hardware

implementation proposed in [23] at the expense of larger area.

Table 3.5 HEVC Fractional Interpolation Hardware Comparison

[23] [24] [25] [26] [27]

Proposed

(MMCM)

Technology
Xilinx

Virtex 6
90 nm 90 nm 150 nm 90 nm 130 nm

Xilinx

Virtex 6

Gate/Slice

Count
1597 28.5 K 32.5 K 30.2 K 224 K 126.8 K 4426

Max Speed

(MHz)
200 200 171 312 333 208 168

Frames per

Second

30

3840x2160

30

3840x2160

60

3840x2160

30

3840x2160

30

1920x1080

86

3840x2160

45

3840x2160

Design ME + MC ME + MC Only MC ME + MC ME + MC ME + MC ME + MC

Since the handwritten HEVC fractional interpolation hardware implementation

proposed in [24] is designed only for motion compensation (MC), it has higher

performance and lower area than the proposed MMCM HLS implementation.

The handwritten HEVC fractional interpolation hardware implementation

proposed in [25] has lower performance and therefore lower area than the proposed

MMCM HLS implementation. In addition, it requires higher clock frequency to achieve

real time performance. The handwritten HEVC fractional interpolation hardware

implementation proposed in [18] has both lower performance and larger area than the

proposed MMCM HLS implementation. The handwritten HEVC fractional

interpolation hardware implementation proposed in [27] has higher performance than

the proposed MMCM HLS implementation at the expense of larger area.

26

3.2 FPGA Implementations of HEVC Fractional Motion Estimation Using High-

Level Synthesis

3.2.1 HEVC Fractional Motion Estimation Algorithm

After integer pixel motion estimation is performed for a PU, FME is performed

for the same PU to obtain fractional-pixel accurate motion vector (MV). In HEVC

reference software video encoder (HM) [5], FME is performed in two stages. As shown

in Figure 3.4, 8 sub-pixel search locations around the best integer pixel search location

are searched in the first stage. 8 sub-pixel search locations around the best sub-pixel

search location of the first stage are searched in the second stage.

HEVC FME first interpolates the necessary sub-pixels for sub-pixel search

locations using three different 8-tap FIR filters. In Figure 3.4, half-pixels a, b, c and d,

h, n are interpolated using the nearest integer pixels in horizontal and vertical directions,

respectively. Quarter-pixels e, i, p and f, j, q and g, k, r are interpolated using the nearest

a, b and c half-pixels, respectively. HEVC FME then calculates the SAD values, as

shown in (3.4) for each sub-pixel search location, and determines the best sub-pixel

search location with the minimum SAD value.

𝑆𝐴𝐷 = ∑ ∑|𝑅𝑖𝑗 − 𝐶𝑖𝑗| (3.4)

𝑛

𝑗=0

𝑚

𝑖=0

𝑚 = 0 𝑡𝑜 (𝑃𝑈𝑤𝑖𝑑𝑡ℎ − 1), 𝑛 = 0 𝑡𝑜 (𝑃𝑈ℎ𝑒𝑖𝑔ℎ𝑡 − 1)

Figure 3.4 Sub-pixel Search Locations

27

HEVC performs fractional motion estimation for 24 different PU sizes (4x8, 8x4,

8x8, 4x16, 16x4, 8x16, 16x8, 12x16, 16x12, 16x16, 8x32, 32x8, 16x32, 32x16, 24x32,

32x24, 32x32, 16x64, 64x16, 32x64, 64x32, 48x64, 64x48 and 64x64). There are 593

different PUs for these 24 different PU sizes, and 593 different SAD values should be

calculated for them.

3.2.2 FPGA Implementations

The proposed HEVC fractional motion estimation HLS implementation for 8x8

PU size is shown in Figure 3.5. Three HEVC fractional motion estimation HLS

implementations are done. In the first one (MM), in the C codes, multiplications with

constants are implemented using multiplication operations. In the second one (MAS),

multiplications with constants are implemented using addition and shift operations. In

the last one (MMCM), addition and shift operations are implemented using Hcub

multiplierless constant multiplication algorithm [22].

Fractional interpolation is implemented as described in Section 3.1. However, in

the proposed FME HLS implementation, 16 integer pixels are taken as input instead of

15 integer pixels for all the necessary SAD calculations. There are 3 9x8 memories for

d, h and n half pixels, 3 16x9 memories for a, b, and c half pixels, and 9 9x9 memories

for quarter pixels.

In the first stage, 8 fractional pixel search locations around the best integer pixel

search location are searched. 8 parallel SAD calculation hardware are used to calculate

SAD values of these 8 search locations in parallel. Appropriate current, half and quarter

pixels are read from current, half and quarter pixel memories, respectively, for the SAD

calculations. 8 parallel absolute difference (AD) hardware calculate AD values of an

8x8 PU in 8 clock cycles. Then, SAD value of this 8x8 PU is calculated using these

ADs. After the SAD values are calculated, comparison hardware determines the search

location with minimum SAD value.

In the second stage, 8 fractional pixel search locations around the best fractional

pixel search location of the first stage are searched. The same hardware used in the first

stage is used for SAD calculation. After the SAD values are calculated, comparison

hardware determines the search location with minimum SAD value.

Finally, the minimum SAD value found in the FME is compared with the SAD

value of the best integer pixel search location, and the search location with minimum

SAD value is determined.

28

Figure 3.5 HEVC fractional motion estimation HLS implementation

The proposed MM and MAS FME HLS implementations for 8x8 PU size are

extended to support almost all (22 out of 24) PU sizes (8x8, 16x8, 8x16, 16x16, 32x8,

8x32, 32x16, 16x32, 32x24, 24x32, 32x32, 16x64, 64x16, 64x32, 32x64, 64x48, and

64x64). For PU sizes larger than 8x8, PUs can be divided into 8x8 pixel blocks.

Therefore, the proposed FME HLS implementation for 8x8 PU size is parameterized to

support larger PU sizes. All loops are parameterized to satisfy the number of iterations

necessary for specific PU size. Because of the asymmetric PU sizes, all loops are

designed as nested loops. Also, memory sizes are arranged to support different PU

sizes.

ALC directive is used for subtraction, addition, multiplication, and shifting

operations to decrease hardware area. Pipeline (PIPE) directive is used between

functions, for loop iterations, and computations. PIPE decreases latency and increases

frequency of proposed FME HLS implementations. Resource (RES) directive is only

used for memories. Some arrays are forced to map to BRAM instead of registers using

29

RES directive to decrease hardware area. AMAP directive is used to store half pixels in

the memory efficiently. APAR directive is used to use registers instead of BRAMs. This

increases hardware area. Since APAR provides parallel data accesses, it increases the

performance. In addition, bit accurate model is used to decrease adder bit widths and

therefore hardware area.

FPGA implementation results for the HLS implementations of HEVC fractional

motion estimation algorithm are shown in Table 3.6. As shown in Table 3.6, the

proposed FME HLS implementation results are divided into two groups; (i) for only

8x8 PUs, and (ii) for all PU sizes. There are three different FME HLS implementations

(MM, MAS and MMCM) for only 8x8 PUs. Allocation (ALC), pipeline (PIPE),

resource (RES) and array partition (APAR) directives are used in these HLS

implementations. There are two different FME HLS implementations (MM, MAS) for

all PU sizes. The best results for these HLS implementations are shown in Table 3.6.

As shown in Table 3.6, allocation and pipeline directives directly affect the

performance of the proposed HLS implementations. Allocation limits number of

resources used. Therefore, ALC directive decreases the number of DSP48 units for

multiplication operations, and LUTs for the addition/subtraction operations. Pipeline

directive decreases the number of clock cycles and increases the performance of the

proposed HLS implementations.

The effect of the allocation directive for MM HLS implementation is analyzed in

Table 3.7. Number of DSP48 blocks, clock cycles and frequency are observed by

changing the number of available multipliers. Increasing the number of multipliers after

a threshold value do not affect the results because of the data dependencies. Decreasing

the number of multipliers increases the complexity of control because of the complex

resource sharing mechanism. This reduces the frequency.

30

Table 3.6 HEVC Fractional Motion Estimation HLS Implementation Results
P

U

D
e
si

g
n

Optimizations Slice LUT DFF BRAM DSP48 Freq.
Clock

Cycles
Fps

8
x
8

M
M

NOOPT 8743 24722 10309 9 202 72 1304
1.7

FHD

ALC(M500) 10088 29707 21741 9 38 125 1501
2.6

FHD

ALC(M500)_APAR_

PIPE_RES(BRAM)_BIT
12767 36761 26875 44 146 125 201

19.2

FHD

M
A

S

NOOPT 11800 33805 24458 9 0 143 1501
2.9
FHD

ALC(A20_S20)_PIPE 11077 32424 27486 10 0 143 1219
3.6
FHD

ALC(A20_S20)_APAR

_PIPE_BIT
17155 52449 42093 41 0 125 241

16

FHD

M
M

C
M

NOOPT 10226 29196 22889 6 0 167 713
7.2

FHD

PIPE 9735 28458 21922 6 0 143 453
9.7

FHD

ALC(A100_S100)_

APAR_PIPE_BIT
16366 52521 41535 0 0 167 140

36.8

FHD

A
ll

 S
iz

e
s

M
M

 ALC(M20)_APAR_

PIPE_RES(BRAM)_BIT
13027 41397 21864 69 57 111 9024

24.3

FHD

M
A

S

ALC(A20_S20)_APAR
_PIPE_BIT

13632 41085 22545 69 10 143 9051
31.2
FHD

Table 3.7 Allocation Analysis for MM HLS Implementations

 M1 M10 M50 M100 M200 M500

Fract.

Interp.

DSP48 32 58 104 135 135 ---

C. Cyc. 1133 196 156 148 148 ---

Freq. 165 167 170 170 170 ---

FME

(8x8)

DSP48 0 2 38 38 38 38

C. Cyc. 1901 1501 1501 1501 1501 1501

Freq. 125 130 130 129 129 125

The proposed HEVC FME HLS implementation is compared with the

handwritten HEVC FME hardware implementations in the literature [30] - [33]. As

shown in Table 3.8, [30] has smaller area and higher performance than the proposed

hardware. However, it interpolates SADs instead of pixels. Therefore, it decreases

PSNR and increases bit rate. In [31], FME hardware searches all possible 48 sub-pixel

search locations. However, it only supports square shaped PU sizes. In [32], FME

31

hardware supports all PU sizes but 8x4, 4x8 and 8x8. It uses bilinear filter for quarter-

pixel interpolation. Also, it searches 12 sub-pixel search locations. In [33], FME

hardware supports all PU sizes but it uses a scalable search pattern.

Table 3.8 HEVC Fractional Motion Estimation Hardware Comparison

 Tech.
Gate/Slice

Count

Freq.

(MHz)
PU Sizes Fps

[30]
Xilinx

Virtex 6
1814 142 All

19

QFHD

[31] 65 nm 249.1 K 396
Square

Shaped

6

QFHD

[32] 65 nm 1183 K 188

All but

8x8,

8x4, 4x8

15

QFHD

[33]
Xilinx

Virtex 6
130 K 200 All

32

QFHD

Prop.
Xilinx

Virtex 6
13632 143

All but

4x8, 8x4

8

QFHD

32

4 CHAPTER IV

CONCLUSIONS AND FUTURE WORK

In this thesis, we proposed the first FPGA implementation of HEVC full search

motion estimation using Vivado HLS. Then, we proposed the first FPGA

implementations of two fast search (diamond search and TZ search) algorithms using

Vivado HLS. Finally, we proposed the first FPGA implementations of HEVC fractional

interpolation and motion estimation using Vivado HLS. All FPGA implementations are

verified to work correctly at real-time using post place and route simulations.

As future work, FPGA implementations of fast search motion estimation

algorithms can be extended for variable block sizes and variable search ranges. FPGA

implementations of other fast search algorithms such as hexagon search can be done

using Vivado HLS.

33

5 BIBLIOGRAPHY

[1] B. Bross, W.J. Han, J.R. Ohm, G.J. Sullivan, Y.K. Wang, and T. Wiegand, “High

Efficiency Video Coding (HEVC) Text Specification Draft 10”, JCTVC-L1003,

Feb. 2013.

[2] G.J.Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, “ Overview of the High Efficiency

Video Coding (HEVC) Standard, ” IEEE Trans. on Circuits and Systems for Video

Technology, vol.22, no.12, pp.1649-1668, Dec. 2012.

[3] F. Bossen, B. Bross, K. Suhring and D. Flynn, “HEVC Complexity and

Implementation Analysis”, IEEE Trans. on Circuits and Systems for Video

Technology, vol.22, no.12, pp.1685-1696, Dec. 2012.

[4] J. Vanne, M. Viitanen, T.D. Hämäläinen and A. Hallapuro, “Comparative Rate-

Distortion-Complexity Analysis of HEVC and AVC Video Codecs”, IEEE Trans.

on Circuits and Systems for Video Technology, vol.22, no.12, pp.1885-1898, Dec.

2012.

[5] K. McCann, B. Bross, W.J. Han, I.K. Kim, K. Sugimoto, G. J. Sullivan, “High

Efficiency Video Coding (HEVC) Test Model (HM) 15 Encoder Description”,

JCTVC-Q1002, June 2014.

[6] E. Kalali, I. Hamzaoglu, “FPGA Implementations of HEVC Inverse DCT Using

High-Level Synthesis,” Conf. on Design and Architectures for Signal and Image

Processing (DASIP), pp. 1-6, Sept. 2015.

34

[7] P. Sjovall, J. Virtanen, J. Vanne, T. D. Hamalainen, “High-Level Synthesis Design

Flow for HEVC Intra Encoder on Soc-FPGA,” Euromicro Conf. on Digital System

Design (DSD), pp. 49-56, Aug. 2015.

[8] M. Abid, K. Jerbi, M. Raulet, O. Deforges, M. Abid, “System Level Synthesis of

Dataflow Programs: HEVC Decoder Case Study,” Electronic System Level

Synthesis Conference, pp. 1-6, May 2013.

[9] T. Damak, I.Werda, N. Masmoudi, S. Bilavarn, “Fast prototyping H.264

deblocking filter using ESL tools,” 8th International Multi-Conf. on System, Signals

and Devices, pp. 1-4, March 2011.

[10] S. Kim, H. Kim, T. Chung, J-G. Kim, “Design of H.264 video encoder with C to

RTL design tool,” Int. SoC Design Conference, pp. 171-174, Nov. 2012.

[11] K. Fleming, C-C. Lin, N. D. Arvind, G. Raghavan, J. Hicks, “H.264 decoder: A

case study in multiple design points,” ACM/IEEE Int. Conf. on Formal Methods and

Models for Co-Design, pp. 165-174, June 2008.

[12] P. P. Carballo, O Espino, R. Neris, P. H. Fernandez, T. M. Szydzik, A. Nunez,

“Scalable video coding deblocking filter FPGA and ASIC implementation using

high-level synthesis methodology,” Euromicro Conf. on Digital System Design

(DSD), pp. 415-422, Sept. 2013.

[13] S. S. Bhattacharyya, J. Eker, J. W. Janneck, C. Lucarz, M. Mattavelli, M.

Raulet, “Overview of the MPEG reconfigurable video,” Springer Journal of Signal

Processing Systems, vol. 63, no. 2, pp. 251-263, May 2011.

[14] J. F. Nezan, N. Siret, M. Wipliez, F. Palumbo, L. Raffo, “Multi-purpose

systems: A novel dataflow-based generation and mapping strategy,” IEEE Int.

Symposium on Circuits and Systems (ISCAS), pp. 3073-3076, May 2012.

[15] H. Ye, L. Lacassagne, D. Etiemble, L. Cabaret, J. Falcou, A. Romero, O.

Florent, “Impact of high level transforms on high level synthesis for motion

detection algorithm,” Conf. on Design and Architectures for Signal and Image

Processing (DASIP), pp. 1-8, Oct. 2012.

[16] G. Schewior, C. Zahl, H. Blume, S. Wonneberger, J. Effertz, “HLS-based

FPGA implementation of a predictive block-based motion estimation algorithm - A

field report,” Conf. on Design and Architectures for Signal and Image Processing

(DASIP), pp. 1-8, Oct. 2014.

35

[17] O. A. Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach, J. Navaridas,

W. Song, J. Mawer, A. Cristal, M. Lujan, “An empirical evaluation of high-level

synthesis languages and tools for database acceleration,” Int. Conf. on Field

Programmable Logic and Applications (FPL), Sept. 2014.

[18] M. Schmid, N. Apelt, F. Hanning, J. Teich, “An image processing library for C-

based high-level synthesis,” Int. Conf. on Field Programmable Logic and

Applications (FPL), Sept. 2014.

[19] J. Vanne, M. Viitanen, T.D. Hämäläinen, A. Hallapuro, “Comparative rate-

distortion-complexity analysis of HEVC and AVC video codecs”, IEEE Trans. on

Circuits and Systems for Video Technology, vol. 22, no. 12, pp.1885-1898, Dec.

2012.

[20] J. Vanne, M. Viitanen, T.D. Hämäläinen, A. Hallapuro, “Comparative Rate-

Distortion-Complexity Analysis of HEVC and AVC Video Codecs”, IEEE Trans.

on Circuits and Systems for Video Technology, vol. 22, no. 12, pp.1885-1898, Dec.

2012.

[21] E. Kalali, Y. Adibelli, I. Hamzaoglu, “A Reconfigurable HEVC Sub-Pixel

Interpolation Hardware”, IEEE Int. Conference on Consumer Electronics - Berlin,

Sept. 2013.

[22] Y. Voronenko, M. Püschel, "Multiplierless Constant Multiple Multiplication",

ACM Trans. on Algorithms, vol. 3, no. 2, May 2007.

[23] E. Kalali, I. Hamzaoglu, “A low energy HEVC sub-pixel interpolation

hardware,” IEEE Int. Conference on Image Processing (ICIP), pp. 1218-1222, Oct.

2014.

[24] Z. Guo, D. Zhou, S. Goto, “An Optimized MC Interpolation Architecture for

HEVC”, IEEE Int. Conf. on Acoustics, Speech and Signal Processing, March 2012.

[25] C. M. Diniz, M. Shafique, S. Bampi, J. Henkel, “High-Throughput Interpolation

Hardware Architecture with Coarse-Grained Reconfigurable Datapaths for HEVC”,

IEEE Int. Conference on Image Processing, Sept. 2013.

[26] G. Pastuszak, M. Trochimiuk, “Architecture Design and Efficiency Evaluation

for the High-Throughput Interpolation in the HEVC Encoder”, 16th Euromicro

Conference on Digital System Design, Sept. 2013.

36

[27] D. Kang, Y. Kang, Y. Hong, “VLSI Implementation of Fractional Motion

Estimation Interpolation for High Efficiency Video Coding”, Electronic Letters, vol.

51, no. 5, pp. 1163-1165, July 2015.

[28] UG902, “Vivado Design Suite User Guide: High-Level Synthesis,” May 2014.

[29] P. Coussy, A. Morawiec, “High-Level Synthesis from Algorithm to Digital

Circuit”, Springer, 2008.

[30] A. C. Mert, E. Kalali, I. Hamzaoglu, “Low Complexity HEVC Sub-Pixel

Motion Estimation Technique and Its Hardware Implementation”, IEEE Conf. on

Consumer Electronics – Berlin (ICCE-Berlin), Sept. 2016.

[31] V. Afonso, H. Maich, L. Audibert, B. Zatt, M. Porto, L. Agostini, “Memory-

Aware and High-Throughput Hardware Design for the HEVC Fractional Motion

Estimation”, Symposium on Integrated Circuits and System Design, 2013.

[32] G. He, D. Zhou, Y. Li, Z. Chen, T. Zhang, S. Goto, “High-Throughput Power-

Efficient VLSI Architecture of Fractional Motion Estimation for Ultra-HD HEVC

Video Encoding”, IEEE Trans. VLSI Systems, vol.23, no.12, pp.3138-3142, March

2015.

[33] D. Ding, X. Ye, S. Wang, “1/2 and 1/4 Pixel Paralleled FME with A Scalable

Search Pattern for HEVC Ultra-HD Encoding”, IEEE Int. Conf. on Communication

Technology, pp.278-281, Oct. 2015.

