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Multiphase flow problems are one of the main categories of fluid dynamics prob-

lems with a broad range of applications in industrial practices. Thus, it is crucial

to control multiphase flow problems to maintain desirable flow regimes in those

industrial applications. The electrohydrodynamics can be used to control multi-

phase flow problems due to its simplicity, wide range of applicability and its high

precision controllability. One of possible approaches to investigate the influence of

electrohydrodynamics on multiphase flow problems is to utilize numerical meth-

ods for simulating the interaction between electric and hydrodynamic forces in

complex multiphase systems. In this thesis, the numerical investigations of elec-

trohydrodynamics effects on multiphase flow problems are carried out by devel-

oping the Smoothed Particle Hydrodynamics (SPH) method, as well as extending

a commercial Computational Fluid Dynamics (CFD) software. The simulation

of multiphase flows and electrohydrodynamics is implemented by the Continuum

Surface Force (CSF) and leaky dielectric models, respectively. The SPH method

is a Lagrangian particle-based mesh-less method which can simulate interfacial

multiphase flows with no additional computational costs. The in-house SPH code

is initially validated by comparing present numerical results with those of Laplace

equation for the implementation of surface tension, and with analytical solutions

of Taylor and Feng theories for the deformation of a stationary droplet in the pres-

ence of electric field. Moreover, the method is extensively validated for each of the

following problems with available numerical, analytical and experimental data in

literature. The first problem is the Rayleigh-Taylor Instability (RTI) that allows

performing a phenomenological study on a fundamental multiphase flow problem.

The influence of various electrohydrodynamic forces is investigated by comparing

the role of Coulomb and polarization forces. Then, the method is extended to bub-

ble rising of an oil/water system by investigating the influence of electric forces

on the deformation of a rising bubble and its rise velocity. The SPH method is

also used to simulate the electro-coalescence of binary droplets. Thus, the SPH
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method is extended for the simulation of droplet coalescence by developing a mul-

tiphase algorithm based on the lubrication theory and film drainage model. The

algorithm is used to simulate the head-on and head-off coalescence of approaching

binary droplets as well as the electro-coalescence of stationary droplets. The sec-

ond approach to the simulation of multiphase flows under the electrohydrodynamic

effects is the development of a commercial CFD software, the ANSYS-Fluent. The

software is extended by writing complex User Defined Functions (UDFs) for the

simulation of electrohydrodynamics. In addition to the initial comparison of the

numerical tool with available numerical and analytical results for the electrohy-

drodynamic deformation of a suspended droplet, the numerical tool is extensively

validated with available data in literature for various test-cases of the following

problems. The developed ANSYS-Fluent code is used to simulate the bubble rising

of an air/water system for the formation of toroidal rising bubbles by investigating

the combined effects of domain confinement and electrohydrodynamics. Finally,

the electro-jet printing which is an industrial scale problem is simulated for varia-

tions of different dimensionless parameters to provide guidelines for the design of

electro-jet printing setups.

Keywords: Numerical simulations, Computational Fluid Dynamics (CFD), The

Smoothed Particle Hydrodynamics method, Multiphase flows, The Electrohydro-

dynamics, The SPH method, The EHD, Bubble dynamics.
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Tez Danışmanı: Prof. Dr. Mehmet Yildiz

Akışkanlar dinamiğinin başlıca konularından biri olan çok fazlı akış problemleri

endüstriyel uygulamalarda geniş bir yelpazeye sahiptir. Bu nedenle, endüstriyel

uygulamalarda istenilen akış rejimini sürdürebilmek için çok fazlı akış problem-

ini kontrol etmek önem arz etmektedir. Elektrohidrodinamik, kolaylığı, çeşitli

sayıda uygulama alanı ve yüksek hassasiyette kontrol özelliği nedeniyle çok fazlı

akış problemlerini kontrol etmek için kullanılır. Elektrohidrodinamiğin çok fazlı

akış problemleri üzerindeki etkisini araştırmak için olası yaklaşımlardan biri ise,

karmaşık çok fazlı sistemlerde elektrik ve hidrodinamik kuvvetler arasındaki etk-

ileşimi simüle etmek için kullanılan sayısal yöntemlerdir. Bu tezde, çok fazlı

akış problemleri üzerindeki elektrohidrodinamik etkilerin sayısal incelemeleri,

Düzleştirilmiş Tanecik Hidrodinamiği (SPH) yönteminin geliştirilmesi ve Hesapla-

malı Akışkanlar Dinamiğinin (CFD) ticari yazılımından yararlanılarak yapılan

çalışmalardan bahsedilmektedir. çok fazlı akışların ve elektrohidrodinamik

simülasyonları sırasıyla Sürekli Yüzey Kuvveti (CSF) ve sızdıran dielektrik mod-

eller tarafından gerçekleştirilmiştir. Düzleştirilmiş Tanecik Hidrodinamiği (SPH)

yöntemi, ek hesaplama maliyeti olmaksızın arayüzler arası çok fazlı akışları simüle

edebilen Lagrangian parçacık tabanlı, ağ-içermeyen bir yöntemdir. Mevcut Düzl-

eştirilmiş Tanecik Hidrodinamiği (SPH) kodu ile yüzey geriliminin uygulanması

için mevcut sayısal sonuçlar Laplace denklemi ile karşılaştırılmış ve elektrik alan

varlığında durağan damlacık deformasyonu için Taylor ve Feng teorilerinin anal-

itik çözümleri ile birlikte doğrulanmıştır. Ek olarak, yöntem, literatürdeki mev-

cut sayısal, analitik ve deneysel verilere dayanan aşağıdaki problemlerin her biri

için geçerlidir. İlk problem, çok fazlı bir akış problemi üzerinde fenomenolo-

jik bir çalışmanın yapılmasına izin veren Rayleigh-Taylor Kararsızlığıdır (RTI).

Coulomb ve polarizasyon kuvvetlerinin rolü karşılaştırılarak çeşitli elektrohidrodi-

namik kuvvetlerin etkisi araştırılmıştır. Daha sonra, yağ/su sistemindeki kabarcık

yükselişi sırasında elektrik kuvvetlerinin yükselen bir kabarcığın deformasyon ve
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yükselme hızı üzerindeki etkisi araştırılmıştır. Düzleştirilmiş Tanecik Hidrodi-

namiği (SPH) yöntemi, ikili damlacıkların elektro-birleşmesini simüle etmek için

de kullanılır. Bu nedenle, Düzleştirilmiş Tanecik Hidrodinamiği metodu, yağlama

kuramı ve film drenaj modeline dayalı çok fazlı bir algoritma geliştirerek ikili

kaynaşmanın simülasyonu için genişletilmiştir. Algoritma, duran damlacıkların

elektro-birleşmesinin yanı sıra, yaklaşan ikili damlacığın doğrudan ve başaşağı

kaynaşmasını simüle etmek için kullanılmıştır. Elektrohidrodinamik etkiler altında

çok fazlı akış simülasyonuna ikinci yaklaşım ise, ticari bir hesaplamalı akışkanlar

dinamiği yazılımı olan ANSYS-Fluent’ in geliştirilmesidir. Yazılım, elektrohidrodi-

namik simülasyonu için karmaşık Kullanıcı Tanımlı Fonksiyonlar (UDFs) yazılarak

genişletilmiştir. Bir asılı damlacığın elektrohidrodinamik deformasyonu için sayısal

aracın mevcut sayısal ve analitik sonuçlarla karşılaştırılmasına ek olarak, sayısal

araç aşağıdaki problemlerin farklı vakaları için literatürdeki mevcut verilerle geniş

çapta doğrulanmıştır. Geliştirilmiş olan ANSYS-Fluent kodu, alan kısıtlamasının

ve elektrohidrodinamiğin birleşmiş etkilerini inceleyerek halka şeklinde yükselen

kabarcıkların oluşumu için hava/su sisteminin kabarcık yükselişini simüle etmek

için kullanılmıştır. Son olarak, endüstriyel ölçekli bir problem olan elektro-jet

baskı, farklı boyutsuz parametrelerin varyasyonları için simüle edilerek, elektro-

jet baskı sistemlerinin tasarımı için kılavuz bilgiler sağlanmıştır.

Anahtar kelimeler: Sayısal simulasyonlar, Hesaplamalı Akışkanlar Dinamiği

(CFD), Düzleştirilmiş Parçacık Hidrodinamiği yöntemi, çok Fazlı Akımlar, Elek-

trohidrodinamik, SPH Metodu, EHD, Kabarcık Dinamiği.
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Chapter 1

Introduction

1.1 Multiphase Flows

Multiphase flows can be referred to any system consisting more than one compo-

nent or phase. However, it should be declared that the components or phases are

assumed to be well mixed above the molecular level, or in other words, the length

scale in multiphase flows is presumed to be much greater than that in molecular

scale. Considering the above definition, multiphase flows are frequently observed

in numerous industrial practices and natural events; in refining processes where

the separation of phases is of interest, in internal combustion engines where fuel

is sprayed into and exhaust is drained out from the combustion chamber, in boil-

ing, in ink-jet printing and drug-delivery. In nature, examples of multiphase flows

include sedimentation of particles in fluids, blood flow, rain and snow.

According to their applications, multiphase flows can be classified based on the

physical properties of phases into liquid-liquid, gas-liquid, solid-liquid and gas-

solid categories. Multiphase flows can also be categorized based on the topology

of the interface between phases into (i) disperse flow where a finite number of

particles/drops/bubbles are distributed in a background continuous fluid, (ii) sep-

arated flow where two or more continuous phases are separated by an interface,

and (iii) mixed flow where there is no explicit interface between different phases

and phases are in a mixed system.

In order to control a multiphase flow system, numerous approaches are tested and

implemented. For example, adding surfactants to a multiphase system may change

1
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the coefficient of surface tension to maintain a desirable flow regime [1, 2]. How-

ever, adding surfactants to a multiphase flow system has several restrictions which

hinders its practice to a general extent. By adding surfactants, the coefficient of

surface tension can be increased or decrease to a certain level but it is generally

not practical to maintain a wide range of surface tension coefficient by adding

surfactants. Utilizing surfactants in multiphase flows is also restricted due to their

physical and chemical properties. They should be chemically and physically com-

patible to all fluidic phases, and in many occasions they should be non-hazardous

or non-corrosive [3]. Another important drawback of surfactants in controlling

multiphase flow systems is that they cannot usually be controlled dynamically in

real time. A multiphase flow system can be controlled by magnetic forces, as well

[4, 5]. The magnetohydrodynamics effect is also limited to certain extents. For

example, not all materials are magnetizable and the application of magnetohy-

drodynamics is restricted to certain magnetic materials. This is despite the fact

that there are attempts to enhance the magnetization effect of fluids by adding

nano-magnetic particles. The Electrohydrodynamics is a suitable alternative for

controlling a multiphase flow system. The imposition of electric potential is practi-

cal and feasible for a wide range of applications of multiphase flows. Moreover, the

multiphase system can be controlled dynamically by adjusting the applied electric

field.

1.2 Electrohydrodynamics

Electrohydrodynamic (EHD) is referred to the interactions between electrostatic

forces and other interfacial and volumetric forces in fluid dynamics. Applications

of the EHD within the framework of multiphase flow problems include charge

distribution in the formation of thunderstorms in meteorology, filtering materials

and extracting contaminants from industrial exhaust, heat transfer enhancement,

polymers and poly-electrolytes, and in electro-spinning and electro-printing.

Based on the electrical properties, fluids can be classified into three different cate-

gories, (i) the perfect conductors in which electric charges can be conducted freely

in the matter (ii) perfect dielectrics (insulator) where no electric charges can be

conducted and (iii) leaky dielectrics. The later case is normally used for those

type of fluids with finite electrical conductivity which allows the accumulation of

electrostatic charges on the interface between fluids.
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The deformation of a quiescent bubble in another fluid due to the imposition

of electric field is a benchmark test cases which has been in the canon of elec-

trohydrodynamic studies. This test case is important due to the fundamental

discussions on electrohydrodynamics, while being observed in many applications,

as well. Moreover, due to its geometrical simplicity, analytical solutions for the

deformation of the bubble can be formulated. The perfect dielectric model [6, 7]

was the first model developed to predict the behaviour of a suspended bubble

under electrohydrodynamics effects in a quiescent fluid. Within the framework of

perfect dielectric model, the electrostatic force is generated due to the difference

between the electric permittivity of fluid phases across the interface, and the in-

duced EHD force always acts perpendicular to the interface, deforming the bubble

into a prolate shape in the direction of electric field. Later, Taylor [8] proposed

the leaky dielectric model which considers a finite electrical conductivity for flu-

ids. Due to the presence of electric currents in a finite conductive medium, electric

charges accumulate on the interface, providing a tangential electric stress. This

tangential electric stress generates hydrodynamic stress on the interface, resulting

the bubble to deform both in oblate and prolate formations. The analytical results

of Taylor’s leaky dielectric model was validated by comparing with experimental

results of Vizika et al. [9] and Torza et al. [10].

Extensive numerical simulation validated the Taylor’s leaky dielectric model in

literature. Feng et al. [11] carried out a numerical study on the EHD deformation

of a bubble under the leaky dielectric assumption and proposed a new analytical

formula to predict bubble deformation in two-dimensional coordinate. The EHD

bubble deformation was simulated by Hua et al. [12] for both perfect and leaky

dielectric models in a wide range of EHD parameters such as permittivity and

conductivity ratios and the electric field strength. They showed that three pos-

sible regimes can be achieved based on the selection of electric permittivity and

conductivity ratios considering the leaky dielectric model. It is also found that for

the leaky dielectric model, the numerical results deviates from analytical solution

of Taylor in large deformations. The reason lies behind the fact that the analyt-

ical solutions are derived based on the assumption in which the bubble remains

almost spherical that is not valid for large bubble deformations. Shadloo et al. [13]

modeled the bubble deformation for the leaky dielectric model and compared the

numerical results with Taylor and Feng theories. They showed that Taylor’s the-

ory gives better results when the bubble oblates while the Feng’s theory is closer

to numerical results in large prolate deformations.
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These analytical, experimental and numerical studies on the effect of bubble de-

formation provided sufficient background to investigate the electrohydrodynamic

effects on other practices in multiphase flow problems. The breakup of Newto-

nian and non-Newtonian droplets [14–16], fluid-fluid emulsions [17, 18], stability

of liquid bridges [19, 20] and bubble rising [21, 22] are just some examples. The

electrohydrodynamics is also successfully investigated on some industrial applica-

tions such as electro-spinning [23–25] and electro-jet printing [26–28]. However,

the electrohydrodynamics is not extensively studied in the field of multiphase flows

and many questions are still remained unanswered.

1.3 Numerical Simulation of Multiphase Flows

Numerical study of physical problems is a growing approach in various disciplines

of science. In the scope of fluid dynamics, the Computational Fluid Dynamics

(CFD) is developed and extended in the past couple of decades with the advances

in computational power. The CFD has been utilized to simulate many problems

in industry and academy ranging from aerodynamic [29, 30], combustion [31, 32],

turbo-machinery [33, 34] and rheology [35, 36].

In CFD, numerical methods can be generally classified into two main indepen-

dent and complementary approaches, the Eulerian approach and the Lagrangian

approach. In the Eulerian approach, the frame of the computational domain is

fixed on a certain spacial coordinate where the flow is studied. In contrast, the

Lagrangian approach solves the constitutive equations of motion by following indi-

vidual fluid material particles. Each of these approaches have their own advantages

and disadvantages, and are suitable for certain number of applications. Based on

each of these numerical approaches, Finite Volume, Finite Element and Finite Dif-

ference methods are developed which solve governing equations of fluid dynamics

over discretized domain volumes, elements, and grids, respectively. Alternatively,

the governing equations of fluid dynamics can be solved over discrete material

points which can freely move in the computational domain. The methods based

the later approach are often referred to meshless or meshfree methods.

The Computational Fluid Dynamics is extensively implemented on multiphase

flow problems. For dispersed phase and continuous phase problems, different front-

tracking [37, 38] and front-capturing [39, 40] methods are developed to identify

the interface between fluid phases. One of the main challenges in the simulation

of multiphase flows is the implementation of the interfacial forces such as surface
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tension. Several methods have been applied to calculate surface tension force such

as Continnum Surface Stress (CSS), and Continuum Surface Force (CSF) models.

The later which is developed by Brackbill et al. [41] was extensively implemented

on multiphase flow problems such as bubble dynamics [12, 42], fluid instabilities

[43, 44], and free surface flows [45, 46], amongst others.

1.4 State-Of-The-Art

In this part, the important features of this Ph.D. dissertation and its significance

to scientific community and industrial applications are presented. Moreover, the

numerical test-cases are introduced and their importance in the field of multi-

phase flow problems and electrohydrodynamics is briefly discussed. The numer-

ical method is also introduced and its advantages and drawbacks are concisely

discussed.

In this study, several dispersed flow and continuous flow multiphase problems are

investigated using the Smoothed Particle Hydrodynamics method and a commer-

cial CFD tool, under the effects of electrohydrodynamics. These problems are

the Rayleigh-Taylor instability, bubble rising, droplet coalescence and electro-jet

printing. These problems are interesting from different perspectives, such as their

practical applications and their length-scales. Regarding the electrohydrodynamic

aspects of this study, it is important to realize how multiphase flow systems be-

have under the impact of electric forces and how to control multiphase flow systems

using electrohydrodynamics.

The Rayleigh-Taylor Instability is a physical instability between two sheets of

fluids where the gravitational force is applied normal to the interface between fluid

phases from heavier to lighter phase. Thus, in the presence of a small perturbation

on the interface, spikes of heavier and bubbles of lighter phase penetrate into the

lighter and heavier fluids, respectively. A phenomenological study is performed

on the Rayleigh Taylor Instability, and the action of electrohydrodynamics on

multiphase flow systems and the impact of different electrostatic parameters are

investigated. The study of Rayleigh Taylor Instability gives general idea on the

effects of electrohydrodynamics and is essential for understanding the influence of

electrohydrodynamics on other problems.

The bubble rising occurs when a lighter dispersed phase travels in a heavier fluid

due to the gravitational force. The bubble rising which can be a meso-scale or
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a micro-scale phenomenon, is well-studied in literature, but the effect of electric

forces on this problem is not comprehensively investigated. It is important to in-

vestigate the controlling behaviour of electrohydrodynamics on bubble rising which

can be implemented in many industrial applications. The droplet coalescence is a

similar problem to bubble rising in terms of both industrial and phenomenological

importance, but had less attention due to its natural complexity.

The electro-jet printing is an industrial application of electrohydrodynamics on

multiphase flows where an injected fluid is printed to maintain a desirable depo-

sition film thickness (usually thinner than the injector diameter). The electro-jet

printing is a micro-scale problem where the influence of surface forces are more

pronounced. Numerical studies on the electro-jet printing is not extensively carried

out, although it has great potentials in many industrial applications.

1.4.1 The Smoothed Particle Hydrodynamics (SPH) method

In order to simulate the problems described above, the meshless Smoothed Particle

Hydrodynamics (SPH) method is selected. In the SPH method, the domain is

discretized into material particles and the governing equations of fluid dynamics

are solved for individual particles. The interactions between particles are made

via a kernel function with a finite domain of influence, smoothing the physical

properties over that domain. Based on the relative proximity of particles, the

influence of a neighboring particle on a particle of interest is determined.

The SPH method delivers certain advantages compared to conventional mesh-

dependant schemes. It does not require initial meshing and consequently, the

pre-processing of the SPH method is relatively simple for complex geometries.

The SPH method is a relatively simple-to-implement method compared to other

mesh-dependant methods such as Finite Element and Finite Volume methods.

Since many problems undergo large deformations during simulations, the SPH

method does not require remeshing or dynamic mesh adaptation which results in

massive computational cost for large-scale problems. Another important feature

of the SPH method is in the modelling of multiphase flows. The SPH method

treats large density ratios with no additional cost, and the interface between fluid

phases is a natural outcome of the SPH method, thus no interface reconstruction

is required.

The Smoothed Particle Hydrodynamics (SPH) method was initially developed by

Gingold and Monaghan [47] for astronomical purposes, but the method has been
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successfully applied to a wide range of fluid dynamics problems. In the framework

of fluid dynamic, the method was initially developed for simulating single phase

flow problems [48]. Soon after, Monaghan [49] showed that the method is capable

of simulating multiphase flow problems as well. Morris [50] extended the method

for simulation of surface tension force in the SPH method. He implemented the

continuum Surface Force (CSF) model introduced by Brackbill et al. [41] for this

purpose. Thereafter, the SPH method was successfully tested for multiphase flow

problems such as bubble rising, bubble under shear flow, and Rayleigh Taylor

Instability [44, 51, 52], amongst others. Details of the developments in the SPH

method can be found in [53, 54] for more interested readers.

Initially, the SPH method was introduced as a compressible method. In order to

impose incompressibility for incompressible fluid dynamics, an equation of motion

was solved to obtain the pressure as a function of density variations and an artifi-

cial speed of sound, named as the Weakly Compressible SPH (WCSPH) method.

However and in spite of improvements to increase its accuracy and performance,

the method suffers from artificial pressure fluctuation. Moreover, in order to keep

density variations in an acceptable range, time-steps should be taken sufficiently

small and consequently, the Courant-Friedrichs-Lewy (CFL) condition was not

only dependant on the fluid velocity, but also the speed of sound. Cummins et al.

[55] introduced the SPH projection method which is based on solving a pressure

Poisson equation to obtain the pressure field and impose the incompressibility,

which is later introduced as the Incompressible SPH (ISPH) method. Despite

being computationally more expensive to solve the Poisson equation compared to

the equation of state for pressure, the ISPH method allows much larger time steps

and provides non-fluctuating pressure field compared to the WCSPH method. Yet,

both the WCSPH and the ISPH methods are attractive to researchers and their

performance, accuracy, robustness and implementation are widely discussed, and

their results are compared to a broad extent. In this work, a numerical algorithm

based on the incompressible SPH method is used.

Recent studies on the simulation of multiphase flows using the SPH method are

performed in various directions, including improvements on the method as well as

applying existing schemes into different multiphase flow problems. Breinlinger et

al. [56] proposed a model for gas-liquid surface tension and the contact angle and

triple point on the wetted surfaces in the SPH method. Recently, Tartakovsky

et al. [57] introduced a Pairwise Force SPH method for modelling surface tension

and contact line by applying the Young-Laplace boundary condition for fluid-fluid

interface. Other investigations on modelling multiphase problems using the SPH
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method are the simulation of porous media [58, 59], and heat transfer [60, 61],

amongst others. A review of recent applications of the SPH method on different

problems can be found in [62]. However, the multiphase flow problems are not

investigated under the effects of electrohydrodynamics with the SPH method to

date.

Although the SPH method has numerous advantages compared to other numerical

schemes, it has its own limitations and restrictions. The SPH method, for example

is not capable of handling axi-symmetric problems due to its particle based nature.

Another drawback of the SPH method is the difficulty in simulation inlet-outlet

boundaries. Thus, in order to simulate multiphase flows with the aforementioned

characteristics, a commercial CFD tool is used.

1.4.2 ANSYS Fluent

The ANSYS-Fluent is a commercial CFD tool developed to simulate fluid flow

problems using the Finite Volume method, and the simulation of multiphase flows

for continuous and dispersed phases are treated using the Volume Of Fluid (VOF)

model. The ANSYS Fluent provides various solution schemes and method for

spatial and temporal discretizations and pressure-velocity couplings. The software

is equipped with useful modules to facilitate the simulation of a broad range of

problems. However, the electrohydrodynamic module has not developed, yet. In

order to simulate electrohydrodynamics forces, User Define Functions (UDFs) are

developed to calculate the electric and displacement fields, surface charges and

electric forces over the solution domain and the resultant electric forces are added

to the momentum equation as a source term.

1.4.3 The SPH method versus the ANSYS Fluent

In this study, the focus is on the development and implementation of the SPH

method for controlling a wide range of multiphase flow problems using the electro-

hydrodynamics. Thus, the SPH method is developed and tuned for the simulation

of Rayleigh-Taylor Instability, bubble rising of an oil/water system, coalescence of

binary approaching droplets and electro-coalescence of binary stationary droplets.

On the other hand, it is observed that there are interesting unfolded physics be-

hind the bubble rising of an air/water system and the electro-jet printing. The



Introduction 9

simulation of these problems by the SPH method encountered numerous problems,

thus a commercial CFD software is utilized for those simulations.

One of the main limitations in the simulation of the aforementioned problems using

the SPH method is the computational cost of these problems. For the simulation of

bubble rising with the two-dimensional 180 × 300 particles resolution (the selected

resolution), it takes approximately around 800 minutes of computational time for

0.1 seconds of simulation time on an Intel Xeon E5-2690 2.60 GHz CPU. The

computational cost of three-dimensional simulations would be around three order

of magnitude larger which hinders the simulation of three-dimensional test-cases.

Thus, all simulations are performed in two-dimensional framework to reduce com-

putational cost. On the other hand, for the simulation of bubble rising with large

density ratios, it is reported in literature [63–65] that the bubble may deform into

a toroidal shape in large Reynolds and Bond numbers magnitudes. However, this

is not observed in two-dimensional simulations such as [66, 67] where separations

alternatively occurs from the side tails of the rising bubble. In order to observe

this phenomena, an axi-symmetric system can be developed which keeps the com-

putational cost much smaller than full three-dimensional frameworks. Since the

implementation of axi-symmetric systems is not feasible within the framework of

the SPH method, the development of commercial CFD packages becomes the res-

olution to simulate the bubble rising with a high density ratio. This CFD package

is also employed to the electro-jet printing due to the limitations of SPH method

in inlet-outlet boundaries problems which has been discussed earlier.



Chapter 2

Governing Equations

2.1 Mechanical balance laws of continua

All constituents of the multiphase system are considered to be viscous, Newto-

nian and incompressible liquids with constant material properties. According to

these assumptions, the Navier-Stokes equation for the conservation of mass and

momentum can be written in the form of

∇ · u = 0, (2.1)

ρ
Du

Dt
= −∇p+ ∇ · τ + f(s) + f(e) + f(b), (2.2)

where u is the velocity vector, and ρ and p are density and pressure. t is time and
D
Dt

is the material time derivative represented as, D/Dt = ∂/∂t+ u · (∂/∂x), while

τ is the viscous stress tensor which can be expressed as

τ = µ
[
∇u + (∇u)T

]
, (2.3)

where µ denotes viscosity. In the above equation, the superscript T represents

the transpose operation. It should be noted that the surface tension force f(s) is a

local surface force and the calculation of which requires the solution of the jump

condition for the momentum balance. For the sake of computational convenience

and efficiency, it is a common practice to express the local surface force f(s) as

an equivalent volumetric force (force per unit volume). This has been introduced

10
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by Brackbill et al. [41] proposing the Continuum Surface Force (CSF) method.

The basic concept behind this approach is to replace the sharp interface between

two fluids with a transition region of a finite thickness which is also referred to

as a diffusive interface. This can be fulfilled through multiplying the local surface

tension force with a Dirac delta function δ, and the effect of surface tension can

be consequently included in the momentum balance equation in the form of an

external force term as [68, 69]

f(s) = γκn̂δ. (2.4)

In this equation, γ is the surface tension coefficient taken to be constant in this

study, κ is the surface curvature equal to −∇ ·n̂ where n̂ is the unit normal vector.

In equation 2.2, f(b) is the body force for imposing the gravitational force equal to

f(b) = ρg where g is the gravitational acceleration vector, and f(e) is the electric

force which is added to the momentum equation as a source term. It is important

to mention that all material and field properties in this chapter are dimensional.

In order to differentiate between dimensional and dimensionless properties in next

chapters, a plus sign is explicitly introduced and used for dimensional properties.

2.2 Electrohydrodynamics Balance Laws

Electrohydrodynamics (EHD) is a science concerned with the interactions of elec-

tric fields and electric charges in fluids. The electrical conductivity of fluids may

range from exceedingly low value to high value hence allowing for a fluid to be

classified as extremely good insulator (dielectrics) or highly conducting. In electro-

hydrodynamics transport phenomena, due to the transient nature of the problems,

the electric current distribution is not steady. Therefore, in accordance with the

Ampere-Maxwell’s law,

∇×B = µMJ + µMε
∂E

∂t
, (2.5)

dynamic currents in the system give rise to a time-varying induced magnetic field.

Here, B and E respectively are magnetic and electric field vectors, µM is the

magnetic permeability, and J is total volume current. In electrohydrodynamics,
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the dynamic currents are so small that the influence of magnetic induction is

negligible whereby the electromagnetic part of the system can be described by a

quasi-static electric field model. Additionally, in the system considered, there is

no externally applied time-varying magnetic field. In light of these assumptions,

the coupling between the electric and magnetic field quantities in the Faraday’s

law ∇ × E = −∂B/∂t disappears which requires that the electric field vector be

irrotational as [70]

∇× E = 0, (2.6)

which necessitates that the gradient of the electric field vector be a symmetric

tensor, namely, ∇E = (∇E)T . The total volume current is defined as

J = qvu + j, (2.7)

where the first term on the right hand side is the convection current due to the

free charges, qv is the volume-charge density of free charges, and j is the volume

conduction current density, ohmic current, which is related to electric field vector

through

j = σE, (2.8)

where σ is the electrical conductivity.

The Gauss’ law for electricity in a dielectric material with the absolute permitivity

(hereafter referred to as the permitivity) ε can be written in terms of the electric

displacement vector, D = εE as

∇·D = qv. (2.9)

On taking the divergence of the differential form of Ampere’s law, and using the

entity ∇ · ∇ × B = 0 (the divergence of the curl is equal to zero) together with

the Gauss’ law (Eq. (2.9)) for electricity, one can write the charge conservation as

Dqv

Dt
+∇ · j = 0. (2.10)
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Considering a homogeneous fluid with the constant permittivity and the electrical

conductivity, and then substituting the Gauss’ law for electricity in a dielectric

material (Eq. (2.9)) together with the volume conduction current density (Eq.

(2.8)) into the charge conservation equation (Eq. (2.10)), one can write

q̇v = −qvσ
ε
. (2.11)

The integration of this differential equation produces

qv = qvo exp(
−t
tE

), (2.12)

which describes the time relaxation of the net free charges along fluid particles line.

Hence, homogeneous fluids support no net free charges. However, in inhomoge-

neous materials, free charges can be generated by an electric field component along

the gradients of conductivity and/or permittivity. Here, tE = ε/σ is referred to

as the bulk relaxation time. For electrohydrodynamics problems, the time t can

be considered as the viscous time scale of the fluid motion, which is defined as

tµ = ρl2c/µ, where lc is the characteristic length scale. A two-fluid system can be

classified as dielectric-dielectric, dielectric-conducting, or conducting-conducting

by comparing the magnitude of tE with tµ where the last case is the focus of this

work.

As stated previously, the electrostatics and hydrodynamics of a fluid system can be

coupled together in the momentum balance equation through the Maxwell stress

tensor which accounts for the stress induced in an incompressible liquid medium

due to the presence of an electric field. The Maxwell stress tensor can be written

as [70, 71]

T(e) = D⊗ E− 0.5(D·E)I, (2.13)

where in Eq. (2.13), ⊗ and I represent the dyadic product and identity matrix,

respectively, while the contribution from the induced magnetic field was neglected.

Upon taking the divergence of the Maxwell stress tensor and then using Eq. (2.9)

and the symmetry of the gradient of the electric field vector as well as the product

rule of differentiation, one can obtain the electric force f(e) per unit volume as

[70, 71]



Governing equations 14

f(e) = qvE− 0.5E·E∇ε, (2.14)

Here, the first term on the right hand side of Eq. (2.14) is the electric force acting

along the direction of the electric field due to the interaction of the free charges

with the electric field while the second term accounts for the polarization force

due to the pairs of charges, which acts along the normal direction to the interface

as a result of term ∇ε.

2.3 Leaky dielectric model

For a two-fluid system with finite electrical conductivities in a quasistatic elec-

tric field and tµ >> tE and in the absence of buoyancy forces, volume charge

conservation can attain steady state condition (i.e., Dqv/Dt = 0) in a time scale

much smaller than the viscous time scale of the fluid motion. Such a system can

be referred to as conducting-conducting. Therefore, relying on the quasistatic

assumption, the conservation of charge in Eq. (2.10) can be simplified to

∇ · (σE) = 0. (2.15)

Additionally, since the electric field is irrotatioal (∇ × E = 0), due to the math-

ematical entity of ∇ × ∇φ = 0 (the curl of the gradient is equal to zero), which

holds for any arbitrary scalar field, the electric field vector can be expressed in

terms of electric potential as

E = −∇φ, (2.16)

where φ is the electric potential. This would mean that the charge conservation

equation (Eq. (2.15)) in the domain can be re-written as

∇ · (σ∇φ) = 0. (2.17)

With the solution of Eq. (2.17), the electric potential can be obtained, and then

the electric field strength is calculated by E = −∇φ. Based on Eq. (2.9), we

can obtain the distribution of volume charge density as qv = ∇ · (εE). Having
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calculated the distributions of electric charge density and electric field strength,

the electric force within the liquid bulk in the vicinity of interface can then be

determined through Eq. (2.14) for incompressible fluid.

Upon combining Eq. (2.2) with Eqs. (2.4) and (2.14), one can obtain the equation

of motion including volumetric surface tension and electric field forces as

ρ
Du

Dt
= −∇p+ µ∇2u + γκnδ + qvE− 0.5E·E∇ε+ ρg. (2.18)



Chapter 3

Numerical Methodology

3.1 The SPH Principles

Smoothed Particle Hydrodynamics (SPH) method is a meshless particle based

approach which was originally introduced separately by and Gingold et al. [47],

and Lucy [72] to simulate astrophysical problems. Later on, it was adapted to be

able to carry out simulations in other fields of engineering and natural sciences,

especially fluid dynamics and solid mechanics. Recent developments empowered

this method to model more complicated physical phenomena such as multiphase

flows, and fluid-solid interactions. Benefiting from its particle based nature, dis-

tributed particles in the continuum are influenced by their neighboring particles

by means of a weighting or kernel function W (rij, h), or in a concise notation, Wij.

Any arbitrary kernel function Wij, which satisfies certain conditions [73, 74], can

relate the particle of interest i to its neighboring particles j through the magnitude

of the distance vectors for pairs of particles rij = |rij| and the smoothing length

h, where rij = ri − rj. A particle j is called a neighbor particle to i as long as

rij < Kh where K is a constant associated with the particular weighting function

and Kh is referred to as a smoothing radius (cut-off distance, support or localized

domain) beyond which the weighting function goes to zero. For the clarity of the

presentation, it is worthy of introducing notational conventions to be used in the

rest of this article. Latin italic indices (i ; j) are used only as particle identifiers to

denote particles and will always be placed as subscripts that are not summed un-

less used under the summation symbol. When a vector is written in a component

form, suffix notation is employed with Latin italic indices placed as superscripts.

16
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As well, throughout this article the Einstein summation convention is employed

whereby any repeated component index is summed over the range of the index.

The integral approximation of any arbitrary function for particle i, fi, can be

written as

fi ∼= 〈fi〉 ≡
∫

Ω

fjWijdrj, (3.1)

where drj is a differential volume element and Ω represents the total bounded

volume of the domain. Upon replacing the integral operation over the volume of

the bounded domain by the mathematical summation operation over all neighbor-

ing particles j of the particle of interest i, and the differential volume element by

the inverse of the number density ψj for a particle j, one thus obtains a discrete

representation of Eq. (3.1) as

fi =
Jn∑
j=1

1

ψj

fjWij. (3.2)

The number density for the particle i can be calculated as

ψi =
Jn∑
j=1

Wij. (3.3)

It may also be expressed in terms of the particle density ρ and the mass m by

ψi = ρi/mi. (3.4)

Upon substituting fj by ∂fj/∂x
k
j in Eq. (3.1) and then performing the integration

by parts, then converting the following volume integral
∫

Ω
∂(fjWij)/∂x

k
j drj to the

surface integral through using the divergence theorem and noting that this surface

integral should be zero due to the fact that the kernel function goes to zero beyond

its support domain, and finally knowing that ∂Wij/∂x
k
j = −∂Wij/∂x

k
i , one may

obtain the simplest form of the SPH discretization for the gradient of the arbitrary

function fi as

∂fi
∂xki

=
Jn∑
j=1

1

ψj

fj
∂Wij

∂xki
. (3.5)
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The above SPH approximation for the spatial discretization of a gradient operation

has been known to be incapable of providing sufficient accuracy, wherefore more

accurate discretization schemes have been proposed in literature. One of them

is known as a corrective SPH gradient discretization [68] which can be obtained

upon using a Taylor series expansion and the properties of a second-rank isotropic

tensor, and written for an arbitrary vector valued function as

∂f pi
∂xki

aksi =
Jn∑
j=1

1

ψj

(fpj − f
p
i )
∂Wij

∂xsi
, (3.6)

where aksi =
∑Jn

j=1
1
ψj
rkji

∂Wij

∂xsi
is a second rank tensor. The SPH Laplacian formula-

tion can be written in two different ways as,

∂

∂xki
(ζi
∂f pi
∂xki

) = 8(apmi )−1

Jn∑
j=1

2

ψj

ζiζj
ζi + ζj

fpij
rpij
r2
ij

∂Wij

∂xmi
, (3.7)

∂

∂xki
(ζi
∂f pi
∂xki

) =
8

(2 + alli )

Jn∑
j=1

2

ψj

ζiζj
ζi + ζj

fpij
rsij
r2
ij

∂Wij

∂xsi
. (3.8)

In above equations, ζ might denote µ, ρ−1, ε or σ, and fpij = fpi − fpj . In this

work, Eq. (3.7) is used for the Laplacian of velocity while Eq. (3.8) is used for the

Laplacian of pressure in the Poisson pressure equation. In a multiphase system,

the accurate treatment of the jump in transport parameters across the interface is

important for the accuracy and robustness of the SPH scheme wherefore a weighted

harmonic mean interpolation is applied in above equations as

ζi = 2ζiζj/(ζi + ζj). (3.9)

It has been previously noted that the smoothing kernel has to satisfy several

conditions. The first one is the normalization condition that requires

∫
Ω

W (rij, h)drj = 1. (3.10)

The second one is the Dirac-delta function property. That is, as the smoothing

length approaches to zero, the Dirac-delta function is recovered. Hence,
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lim
h→0

W (rij, h) = δ(rij). (3.11)

The third one is the compactness or compact support property, which necessitates

that the kernel function be zero beyond its compact support domain.

W (rij, h) = 0 when rij > Kh, (3.12)

and be positive within the support domain.

The fourth one is that the kernel function has to be spherically symmetric even

function

W (rij, h) = W (−rij, h). (3.13)

Finally, the value of the smoothing function should decay with increasing distance

away from the center particle.

In literature, it is possible to find a variety of kernel function which satisfies above-

listed conditions. Most commonly used ones are spline kernel (for instance, cubic

or quintic) and Gaussian functions. The smoothing kernels might be considered

as discretization schemes in mesh dependent techniques such as finite difference

and volume. The stability, accuracy and the speed of the SPH simulation heavily

depend on the choice of the smoothing kernel function as well as the smoothing

length. Considering the stability and the accuracy of the simulations, throughout

the present work, the compactly supported two-dimensional quintic spline kernel

is used at the expense of higher computational cost. For example, the utilization of

the higher order quintic spline in simulations is at least two times computationally

more expensive than that of the cubic spline. The two-dimensional quintic spline

kernel function has the form of

Wij = χ

(3− q)5 − 6(2− q)5 + 15(1− q)5 0 ≤ q ≤ 1

(3− q)5 − 6(2− q)5 1 ≤ q ≤ 2

(3− q)5 2 ≤ q ≤ 3

0 3 ≤ q

(3.14)

where q = rij/h and χ is 7
478
πh2 for 2-D simulations.
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In order to implement multiphase flow problem, a color function ĉ is defined to

distinguish between different phases, such that it assumes a value of zero for one

phase and unity for the other. The color function is then smoothed out across the

phase boundaries as

ci =
Jn∑
j=1

ĉjWij

ψi

, (3.15)

to ensure smooth transition between the properties of each phase when used for

their interpolation. Interpolation of phase properties is carried out using Weighted

Arithmetic Mean (WAM),

Xi = ciX1 + (1− ci)X2, (3.16)

where X may denote density or viscosity of the fluids and numeric subscripts

represent different phase properties. The smoothed color function is also utilized

to evaluate δ ' |∇c|, κ = −∇ · n̂ and n̂ = ∇c/ |∇c| in equation (2.4). In this

formulation, a constraint has to be enforced to avoid possible erroneous normals

[50]. In this study, only gradient values exceeding a certain threshold, |∇ci| ' α/h,

are used in surface tension force calculations. A α value of 0.08 has been found to

provide accurate results without removing too much detail [75].

3.2 Numerical Algorithm of the In-house Code

A predictor-corrector scheme is employed to advance the governing equations of

flow in time using a first-order Euler approach with variable timestep according

to Courant-Friedrichs-Lewy condition, ∆t = Bh/umax, where umax is the largest

particle velocity magnitude and B is taken to be equal to 0.25 [75]. In predictor

step, particles are displaced to their intermediate positions using

r∗i = r
(n)
i + u

(n)
i ∆t+ δr

(n)
i , (3.17)

followed by an update in transport properties due to movement of the interface.

Here, the �∗ represents an intermediate value and superscript (n) denotes values at

the n-th time step. Artificial particle displacement vector in (3.17) is implemented

through δr
(n)
i as

δr
(n)
i = η

[
umax

Jn∑
j=1

(
rij

r3
ij

r2
avg,i

)](n)

∆t, (3.18)
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which ensures orderly particle distribution. Average particle spacing is found via

ravg,i =
∑Jn

j=1 rij/Jn while a value of η = 0.06 is employed throughout this study

to ensure satisfactory particle distribution and stabilizing effect [76].

Intermediate velocities are found by calculating the right-hand side of Eq. 2.2

excluding pressure gradients at the intermediate particle locations as

u∗i = u
(n)
i +

1

ρ
(n)
i

(
∇ · τ i + f(s)i + f(e)i + f(b)i

)(n)
∆t, (3.19)

while intermediate densities are calculated employing the following relations

ψ∗i =
Jn∑
j=1

W ∗
ij , (3.20)

ρ∗ = miψ
∗
i . (3.21)

In the corrector step, pressure at the next time step is found by solving Poisson

equation subject to zero gradient boundary condition using intermediate values

∇ ·
(

1

ρ∗i
∇p

(n+1)
i

)
=

∇ · u∗i
∆t

. (3.22)

The velocity of the particles are corrected using the pressure at the new time step

as

u
(n+1)
i = u∗i −

1

ρ∗i
∇p

(n+1)
i ∆t, (3.23)

and then the particles are moved to their final positions using their corrected

velocities

r
(n+1)
i = r

(n)
i +

1

2

(
u

(n)
i + u

(n+1)
i

)
∆t+ δr

(n)
i . (3.24)
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3.3 Numerical Algorithm of the ANSYS-Fluent

The ANSYS-Fluent (Fluent) software is a commercial package for solving the fluid

flow problems. The Finite Volume Method (FVM) is used to discretize the gov-

erning equations with the associated boundary conditions. The software provides

variety of solution options to solve fluid flow problems. In order to solve the dis-

persed phase multiphase flow problems, the Volume of Fluid (VOF) method is

used. In this method, the volume fraction Λ is calculated by solving an evolution

equation as,

∂Λ

∂t
+ u ·∇Λ = 0, (3.25)

and fluid properties are smoothed on the interface by,

X = ΛX1 + (1− Λ)X2, (3.26)

where X can be any physical fluid property such as density, viscosity, electrical

conductivity or permittivity whichever is appropriate.

The momentum equation (eq. 2.2) is solved by a second-order upwind formulation

both in time and space. The Pressure Implicit with Splitting of Operator (PISO)

method [77] is employed to calculate the pressure field, and the pressure and

velocity fields are coupled using the improved SIMPLE scheme [78]. In addition to

the continuity and momentum equations, a Laplace equation needs to be solved to

obtain the electric field (eq. 2.15) in the domain. This has been carried out using a

User Defined Function (UDF). Then, the electric field is evaluated as the gradient

of the electric potential in the entire domain and relevant forces are calculated.

Then the forces are added as a source term to the momentum equation.



Chapter 4

Numerical Validation

4.1 Numerical Validation

The present in-house ISPH code has been used to simulate a wide variety of multi-

phase flow problems including fluid-solid interaction, Rayleigh-Taylor Instability,

and bubble rising in the studies of the former members of our group [68, 69, 79, 80].

Nonetheless, results of numerical validation of the in-house SPH code as well as the

Fluent software are presented. The validations are made with credential available

numerical, experimental and analytical results in literature. These validations are

performed to present the accuracy and robustness of the in-house ISPH code for

calculating surface tension and electric forces as well as those of Fluent software

for simulating electrohydrodynamics. Further validations are performed in the

next chapter for each problem to show the validity of numerical results for various

physical test-cases.

4.1.1 Validation of the in-house SPH code

In order to validate the in-house SPH code for both surface tension and elec-

trohydrodynamic forces, a square computational domain with the dimension of

H = 4d is considered where d is the diameter of the droplet, and the droplet is

located at its center. No-slip boundary condition along with a potential difference

of ∆φ = E∞/H is applied to top and bottom walls while the periodicity condition

is implemented on the side boundaries. Here, E∞ is the undisturbed electric field

where in the absence of the droplet in the computational domain, the periodic

23
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Figure 4.1: The comparison of numerically computed pressure jumps as a
function of surface tension coefficient with that calculated by the analytical

equation, namely, Laplace’s law.

boundary condition for the electric potential produces a uniform downward elec-

tric field parallel to the side boundaries. The validations are done in constant

values of density and viscosity for both fluids, thus the density and viscosity ratios

of fluid phases are set to D = 1 and V = 1, respectively. The numerical validation

for the surface tension force is done in the absence of electric force, so E∞ is set

equal to zero. However, for the validation of electrohydrodynamic force, E∞ as

well as the electric permittivity P and conductivity C ratios are set properly to

maintain desired simulation conditions.

4.1.1.1 Validation of surface tension force

The deformation of a static circular droplet under the surface tension force is a

commonly utilized test case for validating the accuracy of numerically computed

pressure jump across the interface in multiphase systems, which can also be calcu-

lated analytically from pin − pout = 2γ/d. This relation is known as the Laplace’s

law that relates pressure difference between inside and outside of the droplet to

the surface tension coefficient and the curvature. The simulations are performed

for several values of the surface tension coefficient γ. Pressure jumps computed

across the interface for various surface tension coefficients are presented in Fig. 4.1

together with the results of the analytical solution, where the linear continuous

line represents the results obtained from the analytical relation while the outcomes

of the numerical simulations are shown with filled-in circles. It is shown that the

numerical results are in good agreement with analytical solutions.



Numerical Validation 25

4.1.1.2 Validation of electrohydrodynamics

In order to validate the code for implementation of the electric forces, the defor-

mation of a stationary droplet in a quiescent fluid is compared with analytical

solutions of Taylor [8] and Feng [11]. Accordingly, the deformation index of the

droplet D is calculated as the fraction of the difference of droplet vertical (ς) and

horizontal (%) diameters over their summation

D =
ς − %
ς + %

. (4.1)

It should be noted that the positive values of deformation index indicates the de-

formation of the droplet in the direction of electric field (prolate deformation) and

its negative values represents the deformation perpendicular to the direction of the

electric field (oblate deformation). Similar data can be obtained from analytical

results of Taylor which can predict the deformation index as

D =
9 ϕT

32(2 + C)2

εfE
2
∞d

γ
=

9 ϕT
32(2 + C)2

Ec, (4.2)

where ϕT is the Taylor discrimination function and can be found as,

ϕT = C2 + 1− 2P +
3

2
(P − C). (4.3)

In the above equation Ec is the Electro-capillary number and defined as Ec =

εfE
2
∞d/γ. Similarly, Feng [11] introduces an analytical solution for the deforma-

tion of a circular droplet under the effects of electric field as

D =
ϕF

6(1 + C)2

εfE
2
∞d

γ
=

ϕF
6(1 + C)2

Ec. (4.4)

where ϕF is the Feng discrimination function,

ϕF = C2 + C + 1− 3P . (4.5)

In order to compare numerical results with those obtained by using Taylor and

Feng theories quantitatively, Table 4.1 is presented. In this table, the droplet

deformation index D is presented for five different sets of simulation conditions.

As one may infer from the sign of evaluated droplet deformation D in Table 4.1,
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Table 4.1: The comparison of Taylor’s and Feng’s analytical solutions with
present ISPH results for the deformation index D for different combinations of

conductivity and permittivity ratios.

P C E∞
Taylor’s
theory

Feng’s
theory

Present
study

0.5 2 1 0.065 0.061 0.085
0.5 2 1 0.109 0.102 0.130
0.5 3 1 0.143 0.120 0.168
0.5 0.05 1 -0.045 -0.063 -0.061
5 0.5 1 -0.139 -0.196 -0.229

the input parameters given in the first three rows of the table lead to prolate

deformation while the input parameters in the fourth and fifth rows causes the

droplet to deform in the oblate form.

One may notice from Table 4.1 that for small deformation index values in both

oblate and prolate conditions, the results of numerical simulations agree very well

with those of analytical analysis except that there are rather small deviations

between the analytical and simulation results. However, for relatively higher val-

ues of the droplet deformation index, the results of numerical simulations deviate

observably from those of both theories. It is important to state that the theo-

retical analysis of both Taylor and Feng assume that the droplet remains circular

hence being accurate for small droplet deformations only. Therefore, our findings

matches with what have been reported in literature [10, 12, 81] wherein it was

shown both experimentally and numerically that for large droplet deformations,

these two analytical expressions underestimate the droplet deformation index. An-

other important point worthy of mentioning here is that for the prolate deforma-

tion, our results are closer in magnitude to those of the Taylor’s theory. On the

other hand, when the droplet oblates, our findings have better agreement with the

results of the Feng’s theory rather than the Taylor’s theory. In other words, in the

prolate deformation, the Taylor’s theory calculates higher values for the droplet

deformation index and the relative difference between Taylor data and ours are

less than the Feng’s theory. Yet, in oblate deformation, the opposite situation is

observed. The reason for such a controversy is hidden in equations (4.2) and (4.4)

where in Feng’s theory, the inner fluid permittivity is used while in Taylor’s theory,

the droplet deformation index is evaluated using the outer fluid’s permittivity.
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Figure 4.2: Comparison the deformation index of present numerical results
(square marks) with Lin et al. [42] (circle marks) and Taylor’s theory [82]
(dashed and solid lines) for the deformation of a neutrally buoyant bubble;

The parameters are set to D = 1, V = 1, C = 5, and Ec = 0.4.

4.1.2 EHD validation of the Fluent code

In order to validate the code for implementation of the electric forces in the Fluent

UDF, the deformation of a stationary bubble in a quiescent fluid is simulated. The

bubble is located in an axisymmetric domain of (H = 12(d/2)) and (W = 6(d/2))

where the distance of the bubble center from the top and bottom boundaries are

the same. No-slip condition along with a potential difference of E∞ = ∆φ/H is

applied to top and bottom walls. The left and right boundaries are the domain axis

and the side wall, respectively. The right boundary abides the no-slip boundary

condition and a Neumann boundary condition for the electric potential. In the

absence of the bubble, this produces a uniform downward electric field parallel to

the side walls. The density, viscosity and conductivity ratios are D = 1, V = 1, and

C = 5, respectively, and the applied electric potential yields the Electro-capillary

number of Ec = 0.4. Figure 4.2 compares the deformation index of the test case

for variations of electric permittivity ratio with Taylor’s theory [8] and numerical

results of Lin et al. [42] for an inviscid system.

In figure 4.2, square and circle signs indicate the numerical results of present study

and those of Lin et al. [42], respectively and Taylor’s theory is shown with solid and

dashed lines. It should be noted that the Taylor’s theory gives accurate results for

small deformations where the bubble is nearly spherical, but in high deformation

cases, the results of the Taylor’s theory become inaccurate [9, 11, 81]. Therefore,

the dash line illustrates the inaccurate Taylor’s theory while the solid lines indicate

the region where the theory is accurate. The comparison of the present study with
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referenced numerical and analytical results illustrates that in the region of small

deformation, the deformation index is predicted with a sufficient accuracy. For

large oblate deformations, the present results stand between the referenced nu-

merical and analytical results while for the large prolate deformations, the current

study slightly overestimates the deformation index compared to both referenced

data.



Chapter 5

Results

5.1 Rayleigh-Taylor Instability (RTI)

The interfacial region established due to the vicinity of multiple streams of immis-

cible fluids has been a subject of many studies, both numerical and experimental.

Of utmost interest has been the case of two phase system which is manifested in

many different flow configurations and plays an important role in many industrial

and natural phenomena such as cavitation, boiling heat transfer and astrophysics.

When two sheets of fluid of different densities are subjected to a pressure gradient

in a direction which is not parallel to the density interface, an unstable condition

coined by Rayleigh [83] and Taylor [84] will be formed. The initial stages of the

instability have been investigated by Chandrasekhar [85] and Mikaelian [86] and

shown to have linear growth with respect to Atwood number. Further investiga-

tion on long term evolution of the Rayleigh-Taylor Instability (RTI) have been

carried out by Goncharov [87] and Abarzhi et al. [88], among others, to provide

models for continuous bubble and spike evolutions from their earlier exponential

growth to the nonlinear regime.

While RTI depends upon gravitational acceleration to initiate the motion of the

flow configuration, buoyancy is but one of the many destabilizing agents available

in two phase flow systems. It is possible to excite an otherwise stable flow config-

uration into motion by exposing it to an external electric field. Gross and Porter

[89] have reported such observations for a thermally and gravitationally stable

stratified fluid, stating that a fluid with an inhomogeneous dielectric constant will

experience destabilizing forces when subjected to an external electric field. Elec-

trically excited RTI has been the subject of many studies [90–94]. Raco [90] and

29
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Dong et al. [92] conducted studies regarding air-liquid and liquid-liquid interfaces

reporting a direct relation between the intensity of the applied electric field and

the behavior of the fluids. Later studies by Joshi et al. [93] and Barannyk et al.

[94] show that the degree of instability may be controlled by the choice of electrical

properties and field intensities.

There have been several investigations of RTI within Smoothed Particle Hydrody-

namics (SPH) framework [95–97]. However, the combination of the two destabiliz-

ing agents, electric field and gravity, has not been fully investigated. In this study,

the effect of presence of an external electric field on the evolution of RTI-like insta-

bility in a confined domain has been investigated numerically using Incompressible

SPH (ISPH).

5.1.1 Problem Set-up

Figure 5.1 provides a schematic view of the computational domain used during

the simulations conducted in this study. A rectangle of height H = 4 and width

W = 1 is discretized by 320×80 particles arranged in an equally spaced formation.

Different phases are marked according to their positions relative to the interface

coordinates, x(s) and y(s), defined as

y(s) = 2 + ξs cos
(
kx(s)

)
, (5.1)

where particles above the interface are considered to belong to the heavier fluid

marked by subscript h and those remaining underneath are assigned to the lighter

one designated by subscript l. Disturbance amplitude, ξs, is taken to be 0.025

and the wave number k is equal to 2π/λ with λ taken equal to the width of the

computational domain, W. During the simulations conducted in this study, heavier

fluid penetrates the lighter one due to the presence of gravitational acceleration,

g, pointing vertically downward.

Boundary conditions are applied through Multiple Boundary Tangent (MBT) [98]

method where all bounding walls are assumed to abide the no-slip condition while

a zero gradient condition is enforced for pressure. A uniform and steady electric

field of magnitude E∞ = ∆φ/H pointing downward and parallel to side walls is

generated by applying constant electric potential difference, ∆φ, to the horizontal

plates.
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Figure 5.1: Initial condition used for simulations. (left) Whole domain; solid
line shows the intended interface as defined in (5.1); heavy fluid on top, light
fluid at the bottom. (right) Close up view of the portion included between the
dashed lines on the right showing the initial particle positions in the vicinity
of the interface. Solid line shows the intended interface profile while dashed
line is the acquired interface profile calculated as 0.5 level contour of the color

function.

Densities and viscosities of the fluid phases are assumed to be identical for all

of the simulations carried out during this study. While both phases are as-

sumed to have unit viscosity, a density ratio of 2 leads to an Atwood number

of At = (ρh − ρl) / (ρh + ρl) = 1/3. Surface tension coefficient and gravitational

acceleration’s effects are combined in Bond number defined as

Bo =
ρhgW2

γ
(5.2)

while dimensionless time and positions are defined as

t = t+
√

gW, x = x+/W, y = y+/W,

hs = h+
s /W, hb = h+

b /W, (5.3)

where a plus sign represents dimensional variables, and hs and hb denote spike and

bubble tip positions, respectively.

Electric field magnitudes and electric conductivities and permittivities of phases

differ among different test cases and are stated in tables provided in each of the

following sections.

The accuracy of the numerical method employed here has been tested out through
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Table 5.1: Simulation parameters for comparison of forces due to the applied
electric field

Case Bo At E∞ (V/m) εh (F/m) εl (F/m) σh (S/m) σl (S/m)
B 100 0.33 1 0.5 1 150 50
C 100 0.33 1 1 0.5 50 150

multiple simulations which were carried out separately for Rayleigh-Taylor Like

Instabilities [44]. Consequently, such calculations have been left out for the sake

of brevity.

5.1.2 The Comparison of Interfacial Forces

Figure 5.2 shows the comparison of interfacial forces for two cases having two

different force configurations. In this figure, the arrows and filled contours re-

spectively indicate the direction and the magnitude of the force vectors. The left

column of figure 5.2 shows the forces corresponding the case at which the direction

of the permittivity gradient vector is from the heavier fluid toward lighter fluid

wherefore the electrical polarization force (the second term in equation (2.14))

points toward heavier fluid from the lighter one. As for the Coulomb force (the

first term in equation (2.14)), it mainly acts from the heavier fluid into lighter one.

The right column represents the inverse force configuration that can be achieved

by enabling the permittivity gradient vector directed from the lighter fluid to heav-

ier one, thereby resulting in the polarization and electric field forces to be in the

opposite direction with respect to the case given in the left column. In this figure,

the interface is shown for the dimensionless time of t = 4.74 at which the spike

has started to have a mushroom like shaped front. Table 5.1 provides important

simulation parameters for these two cases.

As it is apparent from equation (2.14), the electrical polarization force needs to be

perpendicular to the interface while the orientation of the electric field force should

be dependent on the interface profile and the direction of permittivity gradient

vector as well as the applied electric field direction. For the cases shown in figure

5.2, the polarization force has greater magnitude on the frontier and main-stem of

spike for case B and on the bubble frontier for case C. Similarly, the electric field

force is concentrated on the spike tip for case B and on the bubble frontiers for

case C. The comparison of magnitudes of the polarization and electric field forces

at the bubble and spike frontiers of both B and C cases clearly reveals that the

electric field force is dominant over the polarization force on the tip positions of
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Figure 5.2: Comparison of components of the resultant electric force at t =
4.74; (left column) case B; (right column) case C. The left sub-column shows
polarization forces while the right sub-column gives electric field forces. The
direction and magnitude of the forces are respectively indicated by arrows and

filled contour levels.

Figure 5.3: Comparison of the resultant electric force and surface tension force
at t = 4.74; (left column) case B; (right column) case C. The left sub-column
shows the resultant electric force while the right sub-column gives surface tension
forces. The direction and magnitude of the forces are respectively indicated by

arrows and filled contour levels.

bubble and spike. On the other hand, the polarization force is obviously much

greater than the electric field force on the stem of the spike where the interface is

almost in the direction of applied electric field. Stated otherwise, in this region,

the electric field force is negligible due to the rather small value of volume charge

density (qv) that can be inferred from equation (2.9). For both case B and C, on

the stem the polarization force acts in the transversal direction while the electric

field force acts nearly parallel to the interface. Further observation of figure 5.2

for case B reveals that the electric field force (dominant over the polarization force

in the vicinity of tips of the spike and the bubble) tends to fasten the penetration

of spike into the lighter fluid and slows down rise of the bubble into the heavier
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fluid. The polarization force which is dominant over the electric field force for the

stem affects the main stem by imposing an inward force to the heavier fluid from

the lighter one, resulting in a narrow spike stem. As for the case C, the electric

field force dominates the bubble and spike tip positions with the force direction

opposite to that of case B, while the polarization force acts on the main stem area

in such a way that it leads to thickening of main stem.

Figure 5.3 shows the comparison of the resultant electric force and the surface

tension force. As the surface tension force is proportional to the interface curva-

ture, equation 2.4, the surface tension force is concentrated at sharper corners. At

this stage of instability, a surface tension force concentration is observed at spike

saddle regions (where the stem and the mushroom head of the spike merge) and

at the bubble tip positions. On the other hand, the resultant electrical force is

dominant in bubble and spike tip positions where the electric field force is much

greater in magnitude than the polarization force.

The left sub-column of figure 5.3 shows that the resultant electric force is much

larger at the spike frontier in the growth direction of instability for case B. On the

bubble frontier, the resultant electric force is in the downward direction thereby

acting in way of hindering the rising motion of the bubble. The comparison of the

resultant electric force and surface tension force reveals that at the spike frontier,

forces are competitive whereby the effect of surface tension to form a circular

topology is reduced. At the tip position of bubbles, both the resultant electric and

surface tension forces are directed with respect to interface such as to impede the

rising motion of the bubble. Wherever the interface is parallel to the electric field

direction, the polarization force affects the interface in the transversal direction

by exerting a force from the lighter fluid to the heavier one. Such an effect is

especially observable at the spike stem where the surface tension is negligible as

the curvature tends to zero. Another region at which the polarization force may be

deemed effective is at well-developed side-tails of spike at later simulation times.

In these regions, the polarization force has similarly a narrowing effect. Therefore,

once compared to non-electric field force simulation (case A in table 2), one may

expect a faster growth of spike with narrower spike stem and side-tails and a

slower rising motion of bubble. These effects may become augmented at higher

magnitudes of electric permittivity values or electric field potentials.

The right sub-column of figure 5.3 shows that the resultant electric force is prevail-

ing in the bubble frontiers for case C. At the spike frontier, the resultant electric

force is in a reverse direction with respect to the growth direction of the instability.
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Table 5.2: Simulation parameters for assessing the effect of electric force on
the instability. Cases B and C are retabulated for the ease of comparison.

Case Bo At E∞ (V/m) εh (F/m) εl (F/m) σh (S/m) σl (S/m)
A 100 0.33 0 - - - -
B 100 0.33 1 0.5 1 150 50
C 100 0.33 1 1 0.5 50 150

This assists the surface tension force to generate a slower growth of the instability

for the spike tip position. On the bubble frontier, however, the resultant electric

force counters the surface tension force resulting in a faster rising bubble. The

lateral polarization force tends to thicken the spike stem by providing an outward

force from the spike to the lighter fluid. The polarization force may also help to

widen the mushroom head in the lateral direction. As a result, the spike has a

larger frontier which experiences a larger drag force from the lighter fluid. Com-

pared to non-electric field force simulation, the case of interest has a faster rise of

bubble and slower descent of spike. A thicker spike stem and mushroom head are

also expected.

5.1.3 The Effect of the applied electric field on the insta-

bility

To further asses the effects of the external electric field on the evolution of an

unstable configuration, cases B and C are compared with case A, where no elec-

tric field is applied and the instability is only affected by gravity. Simulation

parameters are specified in table 5.2.

Figure 5.4 shows time evolution of the aforementioned cases sorted from top to

bottom corresponding to cases A, B and C of table 5.2, respectively. The first

column of figure 5.4 shows the instabilities at hs = 1.66 where the instability is

at its initial stages before the mushroom-head of the spike has been formed. As

can be noted from the figure, the polarization force plays its role at this stage

by encouraging the formation of thicker spike stem and frontier for case C and a

thinner one for case B. This effect is more pronounced in the second column given

for hs = 1.32. At this stage, the mushroom-head has been already formed for

all cases. However, it is obvious that case C is more developed compared to the

other two cases in terms of the head form of the spike and the mushroom-head

formation of case B is prolonged due to the resultant electric force which tend to

stretch and squeeze the spike head along the gravity and transversal directions
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Figure 5.4: The evolution of the instability, represented by the 0.5 level con-
tour of color function, for (top row) case A; (middle row) case B; (bottom row)
case C. From left to right, snapshots are taken at spike positions of hs = 1.66,

1.32, 0.98, 0.64 and 0.30.
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Figure 5.5: Normalized distance versus time for cases A, B and C (table 5.2);
(top) spike tip position; (bottom) bubble tip position.

respectively. The third column represents the instability for hs = 0.98 at which

the side-tails have been developed at the spike region. The effect of polarization

force at the spike stem is apparent. The spike stem is thicker in case C due

to the outward force component from the heavier fluid to the lighter one. The

same justification is valid for the bubble evolution. For case C, the size of bubble

pair is smaller whereas the positions of bubble tips are higher than the other two

cases. Considering the spike for case B, the total interface forces (the resultant

electric and surface tension forces) act on the instability such that the volume

of the penetrated heavier fluid is less than the other cases. The fourth column

represents the flow topology for hs = 0.64 where case B shows a thinner spike stem

and side-tails. It has been mentioned before that the polarization force affects the

spike side-tails and stem, imposing a force from lighter to heavier fluid for case

B. As for the bubble, its rising motion is mainly promoted by the hydrodynamic

forces due to the spike penetration in addition to the buoyancy force recalling

that the rise of the bubble is impeded by the total interface forces. The so referred

hydrodynamics force becomes present due to the replacement of the lighter fluid

by the heavier one as the spike falls down, which pushes the bubble in the upward

direction. For case C, the bubbles are inclined toward the boundary walls by the

exertion of the polarization force at the spike stem root which is from the heavier
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fluid to the lighter one. Another reason for this behavior may be found in the

side currents of heavier fluid in the vicinity of wall boundaries which experience a

lateral force causing further penetration into the bubble region. An undeveloped

form of bubble entrapment is observable at the final stage of the flow evolution at

hs = 0.3 which is due to the side currents and formation of secondary instabilities

on the spike stem.

The influence of the resultant electric forces on the growth of the instability may

be further demonstrated by investigating the temporal evolution of bubble and

spike tip positions. Figure 5.5 shows the normalized positions of the tip of bubble

and spike for the three test cases in table 5.2. The spike tip position shows that

the case B differs from the other two cases in terms of having a faster penetration

of spike while the case C features a faster bubble rising. Recall that for cases

having a permittivity gradient vector from lighter to heavier fluid such as case C,

the resultant electric force concentrates at the frontal region of the bubble. This

force is comparable to surface tension force at this region and enables a faster rising

motion of the bubble. At the spike region, however, the resultant electric force has

much lower magnitudes compared to surface tension force wherefore the growth of

the spike for the case C shows a similar behavior to that of the non-electric force

case. A similar reasoning can be made for case B where the resultant electric force

is concentrated at the tip position of the spike. The magnitude of the resultant

electric force at the tip region of the spike is also comparable to the surface tension

force at this region thereby reducing the effect of the surface tension force on the

growth of the spike and in turn promoting the spike penetration. Contrarily, at

the bubble region of case B, the resultant electric force is notably smaller than

the surface tension force, and therefore, it does not affect the motion of bubble

considerably.

5.1.4 Effect of Electric Permittivity Variations

As one of the influential parameters in the resultant electric force magnitude and

direction in equation (2.14), the electric permittivity values have a direct effect

on the evolution of instabilities. In order to provide a better understanding of

the extents of this effect, additional test cases have been simulated by changing

permittivity values whilst keeping their ratio constant.

Table 5.3 presents the simulation parameters of simulation sets D and E. The

simulation parameters of cases D-1 to D-5 bear resemblance to case B in terms of
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Table 5.3: The comparison of various electric permittivity values

Case Bo At E∞ (V/m) εh (F/m) εl (F/m) σh (S/m) σl (S/m)
D-1 100 0.33 1 0.125 0.25 150 50
D-2 100 0.33 1 0.25 0.5 150 50
D-3 100 0.33 1 0.5 1 150 50
D-4 100 0.33 1 1 2 150 50
D-5 100 0.33 1 2 4 150 50
E-1 100 0.33 1 0.25 0.125 50 150
E-2 100 0.33 1 0.5 0.25 50 150
E-3 100 0.33 1 1 0.5 50 150
E-4 100 0.33 1 2 1 50 150
E-5 100 0.33 1 4 2 50 150

the direction of the electric permittivity gradient vector which is from the heavier

fluid to lighter one, thus enhancing the spike penetration and resisting the rising

motion of the bubble. As for the opposite scenario which happens when the

permittivity gradient vector is from lighter fluid to heavier one, the relevant test

cases include E-1 to E-5. It should be noted that cases D-3 and E-3 of table 5.3

are identical to cases B and C of table 5.2, respectively.

Figure 5.6 shows a well-developed stage of instability at hs = 0.3 for D series at

top, and E series at the bottom row of the figure. An overview of sub-figures

indicates that the increase in permittivity values leads to more contribution from

the resultant electric forces on the growth of the instability. For instance, the

comparison of upper and lower sub-figures of the first column of this figure 5.6

does not represent a considerable difference between two cases.

A detailed observation of D series indicates that the resultant electric forces have a

considerable effect on the topology of side-tails and the position of the bubble. It is

clear that as the value of electrical permittivity increases, the side-tails get thinner

and smaller while the bubble rise gets slower due to the previously discussed

reasons. It should be also noted that the amount of heavier fluid penetrating into

the lighter one decreases due to the formation of a narrower jet of heavier fluid

with small side-tails for simulations with higher electrical permittivity values such

as cases D-4 and D-5.

The lower part of figure 5.6 shows that the electric permittivity increment enforces

the side currents along the vertical walls to enclose the bubble and form a bubble

entrapment. The side currents which are resulted from the lateral polarization

force triggers the formation of secondary instabilities at the main stem, which are

shown for the case E-3 (the third column of figure 5.6). The comparison of the
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Figure 5.6: Snapshots of 0.5 level contour of color function at hs = 0.3 for (top
row) D series; (bottom row) E series. From left to right, snapshots correspond

to case numbers 1 through 5 as set in table 5.3.

bubble growth shows that there is a notable difference among the given test cases

in terms of the bubble positions, shapes, and flow complexity, which is due to the

highly influential effect of the resultant electric forces at the bubble tip position

as elaborated in detail previously.

Figure 5.7 shows the bubble and spike tip positions versus time for three selected

test cases (D-1, D-3, and D-5) of table 5.3 until the spike tip reaches at the final

position of hs = 0.3. As mentioned previously, the resultant electric forces enhance

the penetration of spike into the lighter fluid while hindering the rising motion of

the bubble for the D series test case. Intuitively, one may expect that the bubble

front position for case D-5 should be the smallest among others because of the

resultant electric force which acts to hinder the upward motion of the bubble.

However, at earlier time steps, this is not the observed case due to the fact that

the resultant electric force on the tip of the spike causes the spike to descend
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Figure 5.7: Normalized distance versus time for cases D-1, D-3 and D-5 (table
5.3); (top) spike tip position; (bottom) bubble tip position.

faster, thereby enabling the formation of strong hydrodynamics force due to the

displacement of lighter fluid by the heavier one, which enhances the ascent of the

bubble given that at early time steps, the bubble and spike tip positions are close

to each other so that the motion of the spike can affect the bubble motion. A

more detailed observation illustrates a turning point at dimensionless time around

t = 3.5, after which this trend is reversed, meaning that the lower the electric

permittivity, the higher the bubble position.

Similar to figure 5.7, figure 5.8 shows the bubble and spike tip positions for cases

E-1, E-3 and E-5. In these cases, the resultant electric force is mainly dominant on

the bubble tip position forming a faster rising bubble into the heavier fluid as the

permittivity values increase. Figure 5.8 expresses that the spike tip positions of E

series show a similar behavior to that of the bubble tip positions in D series. For

E series, it is expected that the spike should descend slower in higher permittivity

values due to the resisting nature of the resultant electric forces at the frontier of

the spike. However, it is observed that for higher permittivity values, the front of

the spike grows faster at earlier time steps. The turning point is observed to be

around 4 < t < 5. The same justification, as given for D series, is valid for present

observation. More specifically, the fast rising motion of bubble which is generated
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Figure 5.8: Normalized distance versus time for cases E-1, E-3 and E-5 (table
5.3); (top) spike tip position; (bottom) bubble tip position.

by greater resultant electric forces at its tip provides hydrodynamic forces to cause

the spike to penetrate faster. At higher time steps, this force is not experienced by

the spike, considering the more complicated profile at those time steps, resulting

in slower growth for higher permittivity values.

5.1.5 Effect of Electric Field Strength Variations

Since the resultant electrical force is influenced by both the strength of electric

field and the value of electric permittivity, the instability is also analyzed for

varied electric field strengths and simulation parameters are presented in (table

5.4). Similar to previous section, the table is divided into two separate parts. The

first one (the F series) is shown for the scenario in compliance with cases B and D

series of previous sections. The other part of the table which is shown by G series

is correspondent to cases C and E series.

Figure 5.9 shows the simulation results for F series at the top and G series at

the bottom. The results are presented for hs = 0.3 similar to what has been

presented in previous sections. The strength of the electric field increases from



Results 43

Table 5.4: The comparison of various electric field strengths

Case Bo At E∞ (V/m) εh (F/m) εl (F/m) σh (S/m) σl (S/m)
F-1 100 0.33 0.2 0.6 1.2 50 20
F-2 100 0.33 0.4 0.6 1.2 50 20
F-3 100 0.33 0.6 0.6 1.2 50 20
F-4 100 0.33 0.8 0.6 1.2 50 20
F-5 100 0.33 1 0.6 1.2 50 20
G-1 100 0.33 0.2 1.2 0.6 20 50
G-2 100 0.33 0.4 1.2 0.6 20 50
G-3 100 0.33 0.6 1.2 0.6 20 50
G-4 100 0.33 0.8 1.2 0.6 20 50
G-5 100 0.33 1 1.2 0.6 20 50

left to right in figure 5.9 for F and G series. For example, in the sub-figures given

in the first column of figure in question have rather small values of the electric field

strength, these two results do not show a considerable difference in the evolution

of the instability. However, as the electric field strengths increases, the difference

becomes more observable.

Considering the results of the simulations in F-series, it is seen that as the strength

of the electric field increases, in light of the discussion on the resultant electric

forces in previous section, one should expect that the ascent of the bubble is

impeded, and the descent of the spike into the lighter fluid is promoted. The

polarization force, being the dominant component of the resultant electric force

in the transversal direction, leads to narrower stem and a pair of side-tails for the

spike as the strength of the electric field increases. On the other hand, the G

series experience the resultant electric force acting resistively to the growth of the

spike while being in accordance with the ascent of the bubble. This results in a

faster growth of bubble and slower penetration of heavier spike as the electric field

strength increases.

Similar to the analysis that have been made for spike and bubble tip positions

in previous section, the time history of bubble and spike tip positions for F (F-

1, F-3 and F-5) and G (G-1, G-3 and G-5) series are presented in figures 5.10

and 5.11. In figure 5.10, with the increment of electric field strength, the spike

penetrates faster which can be noted by comparing the dimensionless time t = 7.98

at hs = 0.3 for case F-5 with the other two cases, which is 16 and 10 percent less

than those of cases F-1 and F-3, respectively. The bubble tip position experiences

a similar behavior reported formerly for the associated test cases (i.e., Case D-

series). Apparently, for higher electric field strength, the bubble experiences more

resistive force at its tip position. However, the hydrodynamic forces due to the
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Figure 5.9: The evolution of the instability for different electric field strength,
which is shown for hs = 0.3 for all cases. The sub-figures at the top row
represent the cases F-1 to F-5 of table 5.3, and the sub-figures at the bottom

row represents the case G-1 to G-5 of the same table.

penetration of the spike into the lighter fluid affects the bubble motion, hence

making it to ascend faster than that in test cases with lower electric field strength.

In figure 5.11 which is shown for bubble and spike tip positions of G series, the

bubble rises faster for higher values of electric field strength. This can be quantified

by showing that at the final stage where the spike reaches hs = 0.3, the bubble tip

position is hb = 2.89 (for case G-5) comparing with cases G-1 and G-3 showing

29 and 18 percent increase, respectively. Moreover, setting the final stage shown

here to be hs = 0.3, the instability grows slower for higher electric field intensity

cases. The dimensionless time of the instability evolution for case G-5 is 4.5 and

3.8 percent more than of cases G-1 and G-3. It can be noted that the percentage

difference is less than that for the F series.
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Figure 5.10: Normalized distance versus time for cases F-1, F-3 and F-5 (table
5.4); (top) spike tip position; (bottom) bubble tip position.

Figure 5.11: Normalized distance versus time for cases G-1, G-3, and G-5
(table 5.4); (top) spike tip position; (bottom) bubble tip position.
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5.2 Bubble rising

The motion of a lighter fluid with a continuous interface in another heavier fluid

due to the gravitational force is known as the bubble rising. In addition to numer-

ous natural phenomena, there are plenty of industrial applications such as liquid

separation and waste-water treatments [99, 100], nucleate pool boiling [101] and

chemical reactions [102] where the bubble rising is frequently observed. In most of

these applications, the bubble rising is normally accompanied by the deformation

of the bubble due to external, environmental and geometrical parameters. Numer-

ous studies have been carried out to investigate the effect of various parameters

on the regimes of bubble rising. Clift [103] reviewed the bubble rising and illus-

trated that the motion of the bubble can be categorized by three dimensionless

numbers, namely the Reynolds, Morton, and Eotvos numbers which the later can

also be referred to as the Bond number. He showed that in small Reynolds and

Bond numbers, the bubble remains spherical, but increments of both Reynolds and

Bond numbers yield different bubble regimes such as elliptical and spherical caps,

as well as ellipsoidal and wobbling shapes. Further investigations [63–65, 104] re-

vealed that bubbles may deform to a toroid under sufficiently large magnitudes of

Reynolds and Bond numbers.

Chen et al. [63] studied the bubble deformation and its rise for variations of

Reynolds, Bond, density and viscosity ratios, and observed that the transition

from an elliptical cap to a toroid is facilitated by means of a jet at the wake of the

bubble. They concluded that such a transition occurs in density ratios of greater

than 5, but the viscosity ratio does not have a significant effect on the bubble

shape and velocity. They also realized that a toroidal bubble always travels slower

than an elliptical or mushroom-shaped bubble. Bonometti and Magnaudet [64]

investigated the transition from a spherical cap to a toroidal bubble and realized

that the transition takes place by means of two different scenarios. In the first

scenario, they mentioned that for large Reynolds numbers, an upward liquid jet is

driven by the hydrostatic pressure difference between the two poles of the bubble.

If surface tension can not compete with the force due to the upward jet current,

the bubble is pierced. The piercing occurs at the Bond number 32 ≤ Bo ≤ 35.

The piercing due to the second scenario occurs in the absence of surface tension

force. If the viscous effects are not sufficiently strong to sustain the local pressure

maximum at the bubble front, a toroidal bubble is formed. The second scenario

is found to take place in Reynold number 79 ≤ Re ≤ 84. Later, Hua and Lou [65]

numerically studied the bubble rising and reported that for constant magnitudes
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of Reynolds, Bond, density and viscosity ratios, a toroidal bubble is more likely

to be formed when the bubble has an initial prolate shape compared to an ini-

tially oblate one. Nonetheless, these bubble regimes can also be affected by other

parameters such as external forces and domain constraints.

In order to control the bubble rising conditions and maintain the preferable flow

regime and rising characteristics, various techniques have been examined in the

literature. Investigated both numerically [2, 105] and experimentally [1, 106],

adding surfactants to the multi-phase system can adjust the surface tension to a

desired value, resulting in proper control of the bubble rising regimes. However,

there are limitations in the usage of surfactants in multi-phase flow systems. For

instance, some surfactants are hazardous and have serious impacts on human-being

and animal lives [3, 107]. Alternatively, the utilization of magnetic and electric

forces is another feasible solution for controlling the bubble rising phenomenon.

There are numerous experimental [4] and numerical [5, 108] works investigating

the influence of magnetic field on the bubble rising. Yet, the electrohydrodynamic

effects on the rising bubble have not been fully discovered.

Mahlmann et al. [21] carried out a two-dimensional simulation of a gas bubble

rising in a viscous fluid under the perfect dielectric assumption. They investigated

the deformation of a rising bubble for variations of electric field strength, surface

tension and viscosity. They revealed that the bubble initially deforms into a prolate

shape and later flattens into an oblate one thereby experiencing ”wobbly-like”

oscillations. It was also shown that in presence of electric field, the bubble is

more stretched in the direction of the electric field, resulting in an increase in the

rising velocity of the bubble. Wang et al. [22] simulated a similar case and showed

that the increase in the electric field strength can induce separations of the tail of

the bubble. Consequently, the jet above the bubble is strong enough to turn the

spherical bubble to a toroidal shape. Finally, Yang et al. [109] studied the bubble

rising under horizontal and vertical electric fields using a perfect dielectric model,

numerically. They showed that vertical electric field enhances the rising motion of

the bubble while the horizontal electric field hinders the rising motion.
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5.2.1 Bubble rising of an oil-water system

Considering the governing equations explained in chapter 2, dimensionless values

are formed using the following scales

x = x+/r, ρ = ρ+/ρf , µ = µ+/µf u = u+/
√
gr,

t = t+
√
g/r, E = E+/E∞, p =

(
p+ − ρg · x+

)
/ρfgr,

D = ρb/ρf , V = µb/µf , P = εb/εf , C = σb/σf , (5.4)

leading to Reynolds, Bond, electro-gravitational and electrical capillary numbers

defined as

Re =
ρf
√
gr3

µf
, Bo =

ρfgr
2

γ
, Eg =

ρfgr

εfE2
∞
, Ec =

Bo

Eg
. (5.5)

Here r is the bubble radius, E∞ is the undisturbed electric field intensity. A plus

sign marks dimensional variables whereas subscripts �b and �f denote bubble and

background fluid phases, respectively.

5.2.1.1 Problem set-up

The schematic of the test case considered in this study is shown in figure 5.12. The

bubble is placed at a height of hd = 2r above the bottom wall in a rectangular com-

putational domain with a height and a width of H = 10r and W = 6r, respectively.

No-slip boundary condition along with a potential difference of E∞ = ∆φ/H is

applied to top and bottom walls denoted with solid lines while the periodicity

condition is implemented on the side boundaries, demarcated with dashed lines

in figure 5.12. In the absence of the bubble in the computational domain, the

periodic boundary condition for the electric potential produces a uniform down-

ward electric field parallel to the side boundaries. Particles discretizing the bubble

are positioned along concentric circles around the bubble’s center. The radii of

consecutive circles differ by one particle spacing and the outermost circle’s radius

is equal to r. The number of particles along each of these circles vary to keep the

overall inter-particle spacing uniform. Fluid particles are arranged on a uniformly

spaced Cartesian grid where particles coinciding with the bubble are removed.

In addition to the validations presented in chapter 4 for the implementation of

surface tension and the EHD forces on the deformation of a quiescent bubble, the

in-house code and the numerical algorithm used here were extensively validated
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Figure 5.12: Schematic of the test case.

via comparing the results of bubble rising simulations with those from Hysing

et al. [110] and Susmann et al. [67], in the studies of our former group member

in [76]. However, to present a self-contained study here, we have performed fur-

ther validations through numerically simulating a bubble rising problem with and

without electric field, and compared with level-set results of Mahlmann et al. [21].

The computational domain is an enclosed rectangle similar to figure 5.12, but the

dimensions of the computational domain are set to those given in [21], namely,

W = 7r, H = 14r and h = 2r. In this section, horizontal boundary conditions are

similar to what is employed for the rest of the simulations explained in previous

part.

To be compatible with those simulated in [21], however, vertical boundaries are

treated as solid walls with no-slip boundary condition while as for the boundary

conditions for the electric potential, the Neumann boundary condition is imposed

on vertical walls. Both cases have Re = 250 and Bo = 1, while the electrified case

has the electrical capillary number of Ec = 1. Figure 5.13 compares the bubble

shapes and centroid vertical velocities of non-electrified and electrified cases with

those of Mahlmann et al. [21]. The results for the non-electric test case have a

clear match both in terms of the bubble shape and its vertical velocity. In the

electrified case, both shape and the motion of the bubble are in a satisfactory

agreement with those of Mahlmann except at a stage where the bubble is close to

the boundary. This deviation might be attributed to the possible difference in the

resolution of electric field near the boundary.

In order to rely on the numerical results, the dependency of the results to the

particle resolution is tested. The resolution of the particles is scaled with respect

to the bubble diameter; the number of particles for a unit diameter of bubble
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Figure 5.13: The comparison of the bubble shape and centroid velocities
for non-electrified (a,c) and electrified (b,d) cases of the present study with
Mahlmann et al. [21] where the solid line corresponds to the results of the

current study.
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Figure 5.14: The temporal evolution of centroid positions and velocities of
the validation test case with dimensionless parameters of Re = 400, Bo = 12

and Ec = 5 for six different particle resolutions.

(x/d). In order to perform the test, a case with dimensionless numbers equal to

Re = 400, Bo = 12 and Ec = 5 is simulated for different particle resolutions. The

resolution is varied from 40 x/d to 70 x/d with a unit increment of 10. Figure 5.14

shows the bubble centroid positions and velocities for these particle resolutions. It

is observed that the solution converges when the particle resolution increases. The

centroid position of 60 x/d and 70 x/d adequately matches, and their velocities

at both the accelerating and terminal stages have negligible difference. Thus, in

this study, the particle resolution of 60 x/d is used to simulate the validation and

forthcoming test cases.

The rising of a single bubble in a quiescent fluid can be modeled using four dimen-

sionless numbers, namely the density ratio D, the viscosity ratio V , the Reynolds
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Table 5.5: The dimensionless parameters and their corresponding magnitudes
and/or ranges that is being used in this study

Parameter D V P C Re Bo Ec
Value 0.8 100 0.05 0.01 100− 400 2− 12 0− 5

number Re and the Bond number Bo. The introduction of electric forces to the

bubble rising problem adds three new dimensionless parameters to the numerical

model. These parameters are electrical permittivity P and conductivity ratios C,
and electrical capillary number Ec. In order to simulate the bubble rising for an

oil-water system, the Reynolds, Bond and electrical capillary numbers are em-

ployed to consider the various conditions of bubble rising of an oil-water system.

Table 5.5 presents the dimensionless parameters for an electrified bubble rising

and their magnitudes and/or ranges used in this work. It should be noted that

the case with simulation conditions of [Re = 400, Bo = 12, Ec = 5] is a base case

named ERB, which is used in all forthcoming comparisons of electrical capillary,

Reynolds and Bond numbers in the following sections.

The leaky dielectric model assumes a finite electrical conductivity thereby taking

into account the effect of electric charges on the interface [8, 13]. As a result, the

bubble is deformed prolately in the direction of electric field or oblately perpendic-

ular to the electric field direction. Feng [11] introduced a discrimination function

ϕF = C2 + C + 1− 3P which determines the shape of the deforming bubble. The

positive value of ϕF causes the prolate deformation while the negative value leads

to the oblate deformation. In this paper, the discrimination function is calculated

to be ϕF = 0.86, requiring the bubble to deform into a prolate shape if the grav-

itational force is absent. However, the deformation of the bubble rising in the

presence of gravitational and electric forces needs further investigation which is

the premise of this study.

5.2.1.2 Effect of Electro-capillary number

In this section, the variation of electrical capillary number and its impact on the

bubble rising is studied. The electrical capillary number is varied by changing the

external electric field strength. The bubble is subjected to six different electric field

strengths ranging from Ec = 0 to Ec = 5 with increments of unity. In this part,

the Reynolds and Bond numbers are kept constant for all test cases (Re = 400,

Bo = 12).
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Figure 5.15: Bubble shapes and velocity streamlines for non-electrified and
electrified cases at five early instants of the rising; The upper row shows the
non-electrified case Ec = 0 at (a) t = 0.4, (b) t = 10, (c) t = 5, (d) t = 9 and (e)
t = 13 while the bottom one represents the electrified case ERB, at (f) t = 0.4,

(g) t = 1, (h) t = 2, (i) t = 2.4 and (j) t = 4.

In order to show the impact of electric forces on the bubble rising, figure 5.15

presents bubble shape and velocity streamlines in the half of computational domain

at five early instants, sorted from left to right, for Ec = 0 and ERB cases shown

at the top and bottom part of the figure, respectively. As can be observed from

the figure, in the absence of the electric forces, the bubble rises forming an oblate

shape due to the hydrodynamic drag at the bubble front. However, the application

of a sufficiently large electric force elongates the bubble prolately. Considering the

vortex formation for the Ec = 0 case, a single vortex is generated at the sides of

the bubble at the early instances of the rising, but the vortex gradually moves

towards the region behind the bubble. This induces an upward jet current of

the surrounding fluid beneath the bubble, which promotes the formation of an

oblate shape. As for the case of ERB, a pair of vortices is generated due to the

electric forces [13]. The flow direction for these vortices can be determined by the

comparison of conductivity and permittivity ratios. Based on the parameter setup

of this study, these vortices encourage the bubble to elongate into the prolate shape

at the early rising moments where the buoyancy effects are not significant. As the

bubble ascends, the bottom vortex loses its strength due to the magnification of

hydrodynamic forces and finally disappears. Simultaneously, the upper vortex

grows and develops at the sides of the bubble.

To quantify the deformation of a bubble, we here introduce a dimensionless param-

eter, referred to as the aspect ratio, Ar = ς/%, where ς and % are bubble diameters
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Figure 5.16: The temporal variation of aspect ratio Ar as a function of elec-
trical capillary number Ec for six test cases.

in the vertical and horizontal directions passing the bubble centroid, respectively.

Figure 5.16 shows the temporal evolution of the aspect ratio for all test cases stud-

ied in this part. The general trend of all test cases excluding the non-electric case

of Ec = 0 demonstrates that the aspect ratio of the bubble increases, indicating

that the bubble acquires a prolate shape due to the electric force. As the bubble

gets slender, the pressure drag decreases while the friction drag increases, and the

surface tension force becomes augmented at the poles of the bubble due to the

increase in the curvature therein. After reaching a maximum value, the aspect

ratio starts decreasing and reaches a plateau. The aspect ratio levels off when

electrical and hydrodynamics forces balance each other.

The temporal evolution of centroid and bottom velocities of the bubble for different

electrical capillary numbers is shown in figure 5.17. Figure 5.17-a indicates that

the centroid velocity of the bubble increases with the rise of Ec. Comparing

the resultant forces applied to bubble due to pressure, viscous stress and electric

stresses, it is seen that the electric component is one order of magnitude smaller

than viscous and pressure components (not shown). However, the electric forces

implicitly affect the rising velocity by changing the bubble shape (figure 5.15).

Applying the electric field makes the bubble more prolate, reducing the pressure

drag while increasing the friction drag. The resultant drag is much less than when

no electric field is applied, increasing the rise velocity of the bubble.

Figure 5.17-b presents the effect of electrical capillary number on the bottom

velocity. It is observed that the bottom velocity attains a negative value except

for Ec = 0 and Ec = 1 cases and its magnitude increases with incrementing Ec

number. The negative bottom velocity and positive centroid velocity show that the

bubble becomes prolate right after its release. There is a transition from negative
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Figure 5.17: Temporal variations of centroid velocity vc at left and bottom
velocity vb at right for different electrical capillary numbers Ec.

to positive value of bottom velocity which occurs earlier in time for smaller values

of electrical capillary numbers. After this transition, the bottom velocities cross

each other at t ≈ 4.2 in vb ≈ 0.3 which coincides with the moment at which the

bubbles reach their highest aspect ratio, as can be seen from figure 5.16.

5.2.1.3 Effect of Reynolds number

In order to observe the effect of Reynolds number on the bubble rising, four cases

are studied here, ranging from Re = 100 to Re = 400 with constant increments of

100, while other dimensionless numbers are set to Bo = 12 and Ec = 5.

Figure 5.18 gives the variation of aspect ratio versus time for four test cases studied

here. Having the highest Reynolds number, the ERB case yields a faster response

to the electric forces due to the smaller viscous force and hence elongates more,

leading to the larger difference between the maximum and terminal aspect ratios.

One can additionally note that Re = 100 has the lowest variation of the aspect

ratio compared to the others, due to stronger viscous force. Moreover, there is not

a significant difference in terminal aspect ratio among these four cases.

Figure 5.19 shows the variations of bubble centroid and bottom velocities in time

for variations of Reynolds number. Considering the relative significance of vis-

cous force compared to inertial force, the smaller the Reynolds number, the later

the bubble reaches its terminal velocity. The terminal velocity increases with in-

crementing Reynolds number, but it appears that further increment of Reynolds

number does not lead to a significant increase in terminal velocity. As for the

bottom velocity, all test cases have initial negative velocity which increases with

the increment of Reynolds number. The cross-over of velocities occurs in smaller

magnitudes of velocity in earlier time compared to that discussed in figure 5.17.
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Figure 5.18: Temporal variation of aspect ratio Ar for four different Reynolds
numbers.
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Figure 5.19: Temporal variations of centroid velocities vc at left and bottom
velocity vb at right for four different Reynolds numbers.

5.2.1.4 Effect of Bond number

In this section, the influence of Bond number on the evolution of the bubble under

electric field is studied to investigate the significance of interfacial tension forces by

addressing the possible role of surfactants on the bubble rising. Here, six different

cases are studied and the Bond number is changed from Bo = 2 to Bo = 12 with

constant increments of 2, while other dimensionless numbers are set to Re = 400

and Ec = 5.

Figure 5.20 shows the variation of aspect ratio versus time for six different cases.

One may intuitively expect that the higher the Bond number, the bubble should

become more prolate since smaller surface tension force (opposing to electric force)

acts on the bubble interface. However, it is observed that the aspect ratio decreases

as the Bond number increases. The reduction in the Bond number will correlate

with the increase in the surface tension. To maintain constant Ec, electric force

needs to be augmented, increasing the prolateness of the bubble.
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Figure 5.20: Temporal variations of aspect ratio Ar for six different Bond
numbers.

The temporal evolution of the centroid and bottom velocities of the bubble for

variations of Bond number is presented in figure 5.21. For all the cases except for

Bo = 2, the centroid velocities increase monotonically in time. The initial notable

decrease in the centroid velocity of Bo = 2 is owing to the electrical interaction

between the bubble and bottom boundary. It is observed here that the bottom

boundary pulls the bubble towards itself due to the asymmetric electric force

balance at the interface right after the bubble is released. As the Bond number

decreases, the pulling effect of the bottom boundary becomes more prevalent.

In order to elaborate on the pulling effect, a dimensionless velocity scale U∗ is

introduced as the ratio of the dielectrophoretic velocity [82] to the gravitational

velocity,

U∗ =
ud
ug

=
εfE

2
∞r/µf√
2gr

=
εfE

2
∞

2µf

√
2r

g
. (5.6)

The dielectrophoretic velocity increases with the enhancement of electric field

strength, resulting in an increase in the dimensionless velocity scale, U∗ and con-

sequently the pulling effect. It is observable that the centroid velocity of the rising

bubble is initially larger for higher Bond number due to the smaller velocity scale.

At around t ≈ 10, there is a cross-over of centroid velocity where the order of the

centroid velocity plots for different Bond numbers changes. When the bubble is

sufficiently away from the boundary, the pulling effect of the boundary vanishes.

Thus, the bubble with a higher aspect ratio (corresponding to lower Bond num-

ber cases) will naturally rise faster due to the reduced hydrodynamic drag on the

bubble. The variation of bottom velocity as a function of Bond number in figure

5.21-b has a similar behavior with respect to the centroid velocity. The cross-over
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Figure 5.21: Temporal variations of centroid velocities vc at left and bottom
velocity vb at right for six different Bond numbers.
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Figure 5.22: Bubble shape and velocity streamlines at y = 7.5 for five various
cases; (a) Ec = 1, (b) ERB, (c) Re = 100, (d) Bo = 4, and (e) Ec = 1.

of the bottom velocities occurs earlier in time compared to variations of Reynolds

and electrical capillary numbers. This cross-over happens at t ≈ 3 where the

magnitude of the bottom velocity is almost zero.

Figure 5.22 represents concisely the influence of three different dimensionless num-

bers on bubble rising by showing bubble shape and corresponding streamlines for

five different cases in the half of the computational domain. The bubbles are shown

for the moment that their centroids are at y = 7.5. The presented cases in figure

5.22 are selected as: (a) the case Ec = 0 which has no electric forces acting on

the bubble, (b) is the case ERB while cases in (c), (d) and (e) are for Re = 100,

Bo = 4 and Ec = 1, respectively. According to the parameter setup of Reynolds

and Bond numbers, the oblate shape of the bubble in the absence of electric field

(Figure 5.22-a) is due to the formation of a jet current beneath the bubble and

hydrodynamic drag force. In the absence of electric forces, the vortex detaches

from the bubble and remains in the bubble wake, but the exertion of electric forces

keeps the vortex alongside the bubble as discussed in figure 5.15. The variation of

Reynolds number does not change the bubble shape considerably. The reason is
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Table 5.6: The dimensionless parameters and their corresponding magnitudes,
which have been used to investigate the interaction of bubbles for different

orientations and initial center to center distances.

Case P01 P02 P03 P04 P11 P12
l∗ 2.5 3 3.5 4 2.5 3
θ 0 0 0 0 π/4 π/4

that electric forces relatively dominate the physics, and decreasing the Reynolds

number or in other words enhancing viscous forces does not play a significant role

in terminal bubble shape. Raising the surface tension force increases the bubble

aspect ratio, enabling the bubble to rise faster. Reduction in Bond number corre-

sponds to an increase in electric force for constant Ec thereby giving rise to further

prolateness of the bubble. The case Ec = 1 is the intermediate case between cases

Ec = 0 and ERB where the electric forces are applied but they are not sufficiently

strong to elongate the bubble prolately.

5.2.1.5 The EHD interaction between a pair of rising bubble

In this section, the interaction between a pair of rising bubbles is studied for

six cases with simulation conditions similar to ERB, under two different initial

geometrical orientations. The initial placement of bubbles with respect to each

other is controlled by two parameters, namely; the initial center to center distance

between the pair of bubbles, l∗, and the angle, θ, between the y axis and the

imaginary line connecting the centers of the bubbles. Here, two different angles

of θ = 0 and θ = π/4 are simulated for various initial center to center distances.

Table 5.6 lists the parameters for the cases of this section. For all the cases,

the bubbles have the same size, and the distance between the center of the lower

bubble and the bottom boundary is one bubble diameter.

Figure 5.23 presents the results for the initial orientation of θ = 0. The left sub-

figure shows the distance between bubbles’ centroids during their rising motion for

all cases with θ = 0 versus the centroid position of the upper bubble. The solid

lines illustrate the moment where the bubbles are not merged while the dashed

lines represent the merged instances. Here, the bubbles are assumed to merge

when the distance between their interfaces is less than three particle spacings.

After this point, which happens only for cases P01 and P02, the bubbles ascend

in close proximity without forming a unified bubble. Unifying the smaller bubbles

into a single larger bubble requires specific algorithms that are beyond the scope

of this study. For all vertically in-line bubbles, the general interaction between
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Figure 5.23: The interaction of two bubbles with θ = 0 (vertically in-line) for
four cases of P01, P02, P03, and P04; The left sub-figure shows the distance
between bubble centroids for these cases versus the centroid position of the
upper bubble; the solid lines indicate the moments in which the bubbles are not
merged and dash lines show the merged instances. The right sub-figure shows
the difference between upper to lower centroid velocities during evolution time

for two cases of P03 and P04.

bubbles is observed to be attractive. For P01 case, the bubbles collide just after

their release, due to the initial prolate elongation of bubbles. For P02 case, the

bubbles merge due to: (i) the prolate elongation due to the electric field and (ii)

the pressure drop generated at the wake of the upper bubble. The larger the initial

center to center distances are, the merging occurs later in time. For the cases P03

and P04, the bubbles do not merge but the distance between centroids of two

bubbles decreases due to the same reasons explained above. The right sub-figure

shows the difference between the bubble centroid velocities versus time calculated

as δv = vub − vbb during their rise where the superscripts u and b denote the upper

and bottom bubbles, respectively. This velocity difference shows the effect of the

generated pressure drop at the wake of the upper bubble on the distance between

the bubbles’ centroids.

Figure 5.24 represents the bubble deformation for two cases with θ = π/4 orienta-

tion throughout their rising. The left figure shows the bubbles shapes for P11 and

the right figure presents those of P12 for three instances t = 0, t = 4 and t = 8.

The results show that the bubbles are initially deformed due to electric forces.

The bottom bubble rises much slower compared to the upper bubble. The rise of

the bottom bubble is hindered due to the fact that the bubble is attracted to the

bottom boundary. The effect is much smaller for the upper bubble which is further

away from the bottom boundary. Due to the initially oblique orientation of the

bubbles, the wake of the upper bubble is less effective in drawing the bottom bub-

ble when compared to the aligned configurations P01-P04. Figure 5.25 shows the

distance between the centroids of bubbles at left and their corresponding angle at
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Figure 5.24: The interaction of two bubbles with θ = π/4; The bubble inter-
face is shown for three different instants of the rising motion, namely, t = 0,

t = 4 and t = 8, for P11 at the left and for P12 at the right.
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Figure 5.25: The center to center distance of bubbles (left) and corresponding
angle (θ) (right) for two cases of P11 and P12.

right for two cases of P11 and P12. Unlike cases P01-P04, the distance between

the centroids of the bubbles increases during their rise (figure 5.25-a). Figure

5.25-b indicates that the angle between the bubble centroids decreases since the

wake of the upper bubble pulls the lower bubble in the transverse direction of the

domain. As the angle between the bubbles decreases, the bottom bubble feels the

wake of the upper bubble more and the attractive interaction between the bubbles

gets stronger. This can be confirmed from decreasing slope of centroid to centroid

distance of bubbles in figure 5.25-a. This may result in a pair of bubbles rising

vertically in-line for long rises.
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5.2.2 Bubble rising of an air-water system

Considering the governing equations explained in chapter 2, dimensionless values

are formed using the following scales

r = r+/d, z = z+/d, ρ = ρ+/ρf , µ = µ+/µf u = u+/
√
gd,

t = t+
√
g/d, E = E+/E∞, p =

(
p+ − ρg · x+

)
/ρfgd,

D = ρb/ρf , V = µb/µf , P = εb/εf , C = σb/σf , (5.7)

leading to Reynolds, Bond, Electro-gravitational and Electro-capillary numbers

defined as

Re =
ρf
√
gd3

µf
, Bo =

ρfgd2

γ
, Eg =

ρfgd

εfE2
∞
, Ec =

Bo

Eg
=
εfE

2
∞d

γ
. (5.8)

Here d is the bubble diameter, E∞ is the undisturbed electric field intensity and g

is the gravitational acceleration. A plus sign marks dimensional variables whereas

subscripts �b and �f denote bubble and surrounding fluid phases, respectively.

5.2.2.1 Problem set-up

Here, the axisymmetric simulation domain is a rectangle with a height of H and

width of W wherein the bubble is centered at a distance of hd = 4(d/2) from the

bottom boundary, as shown schematically in figure 5.26. The domain height is set

to H = 24(d/2) which is tested in the preliminary studies ensuring the system to

be independent from vertical boundary confinement. The width of the domain is

adjusted accordingly to maintain the desired confinement ratio. No-slip condition

along with a potential difference of E∞ = ∆φ/H is applied to top and bottom

walls shown by solid lines in figure 5.26. Referring to figure 5.26, the left and right

boundaries are shown with dash-dot and dash lines representing the domain axis

and the side wall, respectively. The right boundary abides the no-slip boundary

condition and a Neumann boundary condition for the electric potential. In the

absence of the bubble, this produces a uniform downward electric field parallel to

the side walls. In all simulations including the validation and convergence tests,

the time step is set to keep the Courant-Friedrichs-Lewy (CFL) condition below

0.2 (CFL < 0.2).

To validate the results of present study, three test cases (VT1, VT2 and VT3)

are simulated and compared with those from experiments of Bhaga et al. [111]
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Figure 5.26: Schematic of the test case.

and numerical findings of Hua et al. [65]. In order to ensure that the results are

not affected by the side wall effects, the diameter and height of the axisymmetric

domain is taken six and twelve times larger that the bubble diameter (W = 6(d/2))

and (H = 24(d/2)), respectively. The bubble is located at a distance of two bubble

diameter from the bottom boundary, and the boundary conditions are similar to

those indicated in figure 5.26. The simulation condition of the test case VT1 is

[Re = 33.02 , Bo = 116], while VT2 and VT3 cases have simulation conditions

of [Re = 135.4 , Bo = 116], and [Re = 15.24 , Bo = 243], respectively, and

the density and viscosity ratios are D = 1000, V = 100. These conditions are

identical to those of Hua et al. [65] and equivalent with results of Bhaga et al.

[111]. It should be noted that in [111] the Reynolds number is calculated based on

the terminal rise velocity (Ut) of the bubble and named as the terminal Reynolds

number Re∗ = ρfUtd/µf . Table 5.2 compares terminal bubble shapes and vertical

rise velocity of VT1, VT2 and VT3 with experiments in [111] and simulations

in [65]. Considering terminal bubble shapes, the present numerical results are

satisfactory in general, and matches with results of the provided references. The

comparison of terminal rise velocity with numerical simulations in [65] shows that

the present numerical results underestimates the vertical rise velocity for VT2 and

VT3 by the relative difference of 0.9% and 1.6%, respectively, and overestimates

the rise velocity of VT1 by the relative difference of 1.8%.

There is a difference observed between the characterized Reynolds number (Re)

of numerical simulations and calculated Reynolds number (Re∗) of experimental

studies. Based on the dimensionless and characteristic parameters, the terminal
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Table 5.7: Validation of Numerical code with the experiments of Bhaga et al.
[111] and Hua et al. [65] for three test cases; VT1: Re = 33.02 and Bo = 116,

VT2: Re = 135.4 and Bo = 116, and VT3: Re = 15.24 and Bo = 243.

Test
case

Experiment
conditions

Bhaga
[111]

Simulation
conditions

Hua
[65]

Simulation
conditions

Present
study

VT1
Re∗ = 20.4
Bo = 116
Ut = —

Re = 33.02
Bo = 116
Ut = 0.602

Re = 33.02
Bo = 116
Ut = 0.613

VT2
Re∗ = 94
Bo = 116
Ut = —

Re = 135.4
Bo = 116
Ut = 0.660

Re = 135.4
Bo = 116
Ut = 0.654

VT3
Re∗ = 7.77
Bo = 243
Ut = —

Re = 15.24
Bo = 243
Ut = 0.551

Re = 15.24
Bo = 243
Ut = 0.542

rise velocity of the bubble can be found by Ut.
√
gd, and the Reynolds number

calculated based on the dimensional terminal rise velocity can be obtained by

Re∗c = Ut.Re. For the above simulated cases, the calculated Reynolds number is

found to be Re∗c = 20.24, Re∗c = 88.55 and Re∗c = 8.26 for cases VT1, VT2, and

VT3 which shows relative difference ( |Re∗−Re∗c |
Re∗

×100) compared to the experimental

finding of Bhaga et al. [111] by 0.78, 5.8, and 6.3 percentages, respectively. It

should be noted that similar comparison has been made by Hua et al. [65] reporting

comparable results.

Figure 5.27 presents the dependency of present numerical results on the grid the

resolution for the test case VT3 from table 5.7. For all simulations in this paper,

the domain is meshed by Cartesian structured mesh model. The test is carried out

for four different resolution cases of MR1 = 24χp, MR2 = 32χp, MR3 = 48χp, and

MR4 = 64χp, where nχp indicates the number of grids per initial bubble diameter.

It is observed that for the coarse case of MR1, the bubble vertical velocity is under

predicted and the bubble shape has considerable distinctions compared to other

cases. The comparison of MR3 and MR4 reveals that the increase in the grid

resolution does not change the results considerably, thus the resolution of MR3 is

adopted for the simulations of the present study. It should be mentioned that the

validation of present study in table 5.7 are also carried out with the same mesh

resolution (MR3).

Here, the results of a rising bubble in a cylindrical confined domain under the

effect of an external electric field are presented. The domain confinement ratio Cr

is defined as the ratio of the diameter of the cylindrical domain over the bubble
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Figure 5.27: The grid resolution study for the test case VT3 from table 5.7
for bubble shape (at left) and vertical rise velocity (at right), employing four
different resolutions of MR1 = 24χp, MR2 = 32χp, MR3 = 48χp, and MR14 =

64χp where nχp indicates the number of grids per initial bubble diameter.

diameter, Cr = (2W/d). In our preliminary investigations, it is observed that

the side wall boundary effects are insignificant for confinement ratios above five

(Cr > 5). Thus, four confinement ratios of Cr = 2, Cr = 3, Cr = 4, and Cr = 5

are considered to take into account the effect of confinement ratio. The simulation

conditions of the rising bubble is Re = 100, Bo = 50, D = 0.001, V = 0.01,

C = 0.001, and P = 0.05. Under such simulation conditions and in the absence of

electric forces, the bubble deforms to a hemispherical shape in small confinement

ratios (Cr = 2) due to the effects of the side domain boundaries. By increasing

the confinement ratio, the bubble is flattened where the effects of the side domain

boundary are lessened. Despite having a wider frontal area, the bubble rises

faster in larger confinement ratios. This is a direct consequence of the effects

of domain confinement on hydrodynamics of the bubble rising such as the flow

vortices inside and outside of the bubble. It should be noted that similar results

have been reported in [112] for equivalent simulation conditions.

It should be noted that the Bond number can also be represented as the ratio

of the characteristic length (here the bubble diameter) over the capillary length

scale (Lc =
√

γ
ρfg

). In the present study, the characteristic length scale is almost

one order of magnitude larger that the capillary length scale. This leads to the

consideration of just geometrical confinement due to the domain constraints.

In the presence of electric field, the electric potential is adjusted to maintain the

Electro-capillary number in the range of 0.5 ≤ Ec ≤ 2.5. For small Electro-

capillary numbers, Ec ≈ 0.5, the electric forces does not significantly influence the

bubble shape and its vertical rise velocity in any confinement ratio. On the other

hand, applying the Electro-capillary number of Ec = 2.5 leads to the formation of a

toroidal bubble shape for all confinement ratios. In the following, the formation of

a toroidal rising bubble is separately investigated for the piercing effect of electric
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Figure 5.28: The history of bubble shapes at t = 0, 1, 2, 3, 4, 5 in confinement
ratio of Cr = 2 for variations of Electro-capillary number; (a) Ec = 1.0, (b)

Ec = 1.5, (c) Ec = 2.0, (d) Ec = 2.5.

forces in a confined domain, and the influence of confinement ratio in the presence

of electric forces. Afterwards, relevant discussions are made on the combined effect

of electric forces and confinement ratios on the formation of a toroidal bubble.

5.2.2.2 Effect of Electro-capillary number

Figure 5.28 represents the cross-section and the history of bubble shapes at t =

0, 1, 2, 3, 4, 5 for the confinement ratio of Cr = 2 and for four different Electro-

capillary numbers, (a) Ec = 1.0, (b) Ec = 1.5, (c) Ec = 2.0 and (d) Ec = 2.5.

During the initial transient stage wherein the bubble motion is dominated by in-

ertial force, the bubble deforms from an initial spherical shape to a spherical-cap

shape (t = 2 in (a) and (b) cases). Here, recall that the initial transient stage

refers to dynamics of the bubble from the initial spherical shape to the terminal

state of non-pierced cases and to the piercing moment of pierced cases. This de-

formation is followed by the formation of an upward jet current of the surrounding

fluid at the wake of the bubble. Consequently, the bottom surface of the bubble is

indented inwardly while the upper surface of the bubble remains nearly spherical.

Afterwards, the bubble tries to maintain its terminal shape due to the effect of

surface tension where the indentation of the bottom surface is vanished and the

bottom surface of the bubble flattens, reaching into a hemispherical state. In-

creasing the Electro-capillary number in (c) and (d) cases, the bubble is pierced

and a toroidal bubble is formed. The piercing occurs when the upward jet cur-

rent pushes the bottom surface and the distance between the upper and bottom

surfaces of the bubble is minimum in the transient stage (notice t = 2 in case
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Figure 5.29: The electric forces per unit volume normalized by εfE
2
∞/d shown

by vector field (on the left half) and contours (on the right half) on the interface
of the bubble at t = 1 in confinement ratio of Cr = 2 and for (a) Ec = 1.0, (b)
Ec = 1.5, (c) Ec = 2.0, (d) Ec = 2.5; In order to compare force magnitudes, the

electric field intensity for normalizing the forces En is taken equal to 1.

(c)). At this moment, the electric forces which act on the interface directing into

the bubble, facilitate the formation of a toroidal bubble if the magnitude of the

Electro-capillary number is sufficiently large. By comparing the bubble shapes at

t = 2 for (c) and (d) cases in figure 5.28, it is observed that the electric forces

pierce the bubble earlier in time in case (d) which has a larger magnitude of the

Electro-capillary number. After the bubble is pierced, the surface tension force

which is stronger in regions where the curvature is larger, preserves the shape of

the bubble ring (notice the deformation of the bubble shape from t = 2 to t = 5

for case (d)). This can be referred to as the ’secondary transient stage’ describing

the dynamics of a rising bubble between the piercing moment and reaching its

terminal state. Later, it will be discussed how domain confinement affects the

secondary transient stage.

In order to see how the electric forces assist the formation of a toroidal bubble,
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Figure 5.30: The vertical rise velocity versus time for constant confinement
ratio Cr = 2 at different Electro-capillary ratios, Ec = 1.0, 1.5, 2.0 and 2.5.

figure 5.29 is presented. In this figure, the normalized electric forces per unit vol-

ume are shown at t = 1 on the bubble interface for four cases represented in figure

5.28. It is seen that the electric forces increase with increments of Electro-capillary

number by comparing the normalized magnitudes of the forces. Considering the

distribution of electric forces on the bubble interface, it is observed that the elec-

tric forces are stronger on the bottom surface of the bubble. Moreover, the force

vectors show that the direction of electric forces are from the heavier fluid towards

the lighter one in that region. This shows that when the distance between the

upper and bottom surfaces of the bubble are small, the electric forces pierce the

bubble from the center.

The vertical rise velocities of cases (a), (b), (c) and (d) from figure 5.28 are pre-

sented in figure 5.30. For the initial moments of transient stage nearly up to

t ≈ 1, the vertical rise velocity increases and reaches a maximum, and thereafter

decreases due to the distended frontal area which augments the drag force and

nearly levels off with relatively small oscillations for non-pierced cases and drops

down further for pierced cases. The maximum value of rise velocity gets larger

with increments of the Electro-capillary number. This is due to the distribution

and direction of electric forces on the bubble interface, as described in figure 5.29.

Since the electric forces are stronger on the bottom surface of the bubble during

the initial transient stage directing from heavier to lighter fluid, slight increase on

the vertical rise velocity is observed for increments of Electro-capillary number. At

t ≈ 2, piercing occurs for Ec = 2.0 and Ec = 2.5 cases and the upward jet current

passes through the pierced area (not shown here), followed by a sudden drop in the

vertical rise velocity. As a result, the terminal rise velocity of the pierced bubbles

decreases by almost 50 percent compared to the non-pierced cases. During the

secondary transient stage for the pierced cases, the vertical rise velocity decreases
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Figure 5.31: The velocity streamlines and bubble shapes for confinement ratio
for Cr = 2 and different Electro-capillary numbers; (a) Ec = 1.0, (b) Ec = 1.5,
(c) Ec = 2.0, (d) Ec = 2.5 and (e) their corresponding wall shear stress; The
bubbles are shown in a half domain for the moment when their centroids are at

z = 5.

slightly from v ≈ 0.4 to v ≈ 0.3. This slight decrease is due to the effects of side

boundary, and occurs when the bubble ring approaches the side boundaries during

its secondary transient stage. For all cases, it is observed that the velocities are

oscillatory especially for pierced cases. It will be shown that these oscillations are

due to the confinement of the domain and disappear when the confinement ratio

is increased.

Figure 5.31 represents the velocity streamlines and bubble shapes in the half do-

main for confinement ratio of Cr = 2 and for different Electro-capillary numbers

(figures 5.31 (a)-(d)), and their corresponding wall shear stress τw = µf∇u|z at

the side wall boundary normalized by ρfgd (figure 5.31 (e)). The cases are shown

for the moment when the centroid of the bubble is at z = 5. For (a) and (b) cases,

the bubble is not pierced, and the velocity streamlines illustrate the structure of

the upward jet current at the wake of the bubble. For the pierced cases in (c)

and (d), however, no upward jet current of surrounding fluid which passes into

the pierced region is observed. It should be noted that after the formation of the

toroidal shape, a pair of vortices begin to develop at the sides of the bubble ring.

These vortices develop as the bubble rises in the fluid. Simultaneously, the effect of

the upward jet current in the pierced region gradually disappears. Consequently,

the direction of the surrounding fluid motion in the pierced region is reverted.

Such a transformation leads to the formation of some other complex vortices es-

pecially beneath the bubble ring. Considering the wall shear stress in figure 5.31

(e), it should be noted that positive magnitudes of wall shear stress indicate the
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Figure 5.32: The history of bubble shapes at t = 0, 1, 2, 3, 4, 5 in Electro-
capillary number of Ec = 1.35 for various confinement ratios; (a) Cr = 2, (b)

Cr = 3, (c) Cr = 4, (d) Cr = 5.

friction in the upward direction for downward motion of the surrounding fluid

at the vicinity of the wall. The maximum value of the wall shear stress slightly

increases with increments of Electro-capillary number for non-pierced cases. The

location of the maximum value stands at the elevation of the bottom surface of

the hemispherical bubble. For the pierced cases, the magnitude of the maximum

point increases considerably and its location is at the elevation of the centroid of

the bubble ring. Increments of Electro-capillary number for pierced bubbles show

a slight decrease in the maximum value of the wall shear stress. For Ec = 2.5, the

wall shear stress has negative values between z ≈ 3.5 and z ≈ 4.3 indicating that

an upward current of the surrounding fluid exists in the vicinity of the wall as a

direct consequence of the formation of vortices beneath the toroidal bubble.

5.2.2.3 Effect of confinement ratio

The cross-section and the history of bubble shapes at t = 0, 1, 2, 3, 4, 5 for Electro-

capillary Ec = 1.35 and various confinement ratios, (a) Cr = 2, (b) Cr = 3, (c)

Cr = 4, (d) Cr = 5 are shown in figure 5.32. Later it will be shown that how

the confinement ratio affects the minimum value of the Electro-capillary number

required for piercing the bubble. It will also be shown that in large confinement

ratios, there is not much of a difference between the minimum value of Electro-

capillary number which can pierce the bubble. Thus, Ec = 1.35 is selected to show

that the bubble pierces in two larger confinement ratios but remains hemispheri-

cal/ellipsoidal in more confined cases. Comparing the bubble terminal shapes for

(a) and (b) cases at t = 5, it is observed that the bubble is more flattened when

the confinement ratio increases, changing the terminal shape from a hemispherical

shape in Cr = 2 to an ellipsoidal-cap in Cr = 3. When the bubble is flattened
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Figure 5.33: The vertical rise velocity versus time for constant Electro-
capillary numbers Ec = 1.35 at different confinement ratios, Cr = 2, 3, 4 and

5.

in larger confinement ratios, the distance between the upper and bottom surface

of the bubble in the transient region decreases (notice the bubble shapes at time

t = 2 and consider the distance between upper and bottom surfaces in r = 0.0).

Then, the electric forces pierce the bubble from the center forming a toroidal bub-

ble as discussed in figure 5.28. After the formation of the toroidal bubble, the

secondary transient stage begins.

Figure 5.33 represents the vertical rise velocity versus time for the cases shown in

figure 5.32. The maximum value of vertical rise velocity increases with increments

of the confinement ratio. This is intuitively expected since the larger the confine-

ment ratio, the less the effect of the no-slip boundary on the rising velocity. Similar

to the variations of maximum of vertical rise velocity for different Electro-capillary

numbers (figure 5.30), the vertical rise velocity drops down (after t ≈ 1) due to the

enlargement of the frontal area of the bubble and levels off briefly. For (c) and (d)

cases, the vertical rise velocity sharply drops down further because of the piercing

of bubbles. Further decrease in the vertical rise velocity until t ≈ 5 for (c) and

(d) cases indicates the secondary transient stage of the bubble. After reaching the

terminal rise velocity, one can clearly observe the influence of the increments of

confinement ratio on the magnitude of the terminal rise velocity for both pierced

and non-pierced cases where upon the formation of toroidal bubble,the terminal

rise velocity of pierced bubbles falls below those of (a) and (b) cases. It is shown

earlier that the vertical rise velocity in small confinement ratios are oscillatory.

Here in figure 5.33, it is shown that by increasing the confinement ratio, these

oscillations tend to be reduced.

Figure 5.34 represents the velocity streamlines and cross section of bubble rings in
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Figure 5.34: The velocity streamlines and bubble shapes for Electro-capillary
number of Ec = 2.5 and different confinement ratios; (a) Cr = 2, (b) Cr = 3, (c)
Cr = 4, (d) Cr = 5 and (e) their corresponding wall shear stress; The bubbles
are shown in a half domain for the moment when their centroids are at z = 5.

the half domain for Electro-capillary number of Ec = 2.5 and various confinement

ratios (figure 5.34 (a) - (d)), and the corresponding side wall shear stress (figure

5.34 (e)), at the moment when the centroid of the bubble ring is at z = 5. In

relation to the formation of vortices after the piercing of the bubble, it is stated

earlier that the jet current of the surrounding fluid gradually disappears after the

development of a pair of vortices around the bubble ring. The pair vortices are

observable in figure 5.34 (a) and (b) at the sides of the bubble interface. However,

the development of these vortices depends on the domain confinement. In smaller

confinement ratios, the vortices are formed right after the bubble is torn from

the center (not shown here), but the formation of vortices are delayed in time

for larger confinement ratios. Thus, it is observed in figure 5.34 that for (a) and

(b) cases, the vortices are developed and the upward jet current disappears, but

the upward jet current passing through the pierced region still exists for (c) and

(d) cases. It should be noted that the development of pair vortices around the

bubble ring is accompanied by the formation of other vortices beneath the bubble

ring. Considering the wall shear stress, its magnitude dramatically increases with

decrements of confinement ratio. This represents the effect of side walls on the

flow of the surrounding fluid that affects the bubble shape and vertical rise velocity

and also the magnitude of Electro-capillary number in which the bubble pierces.

Since all the cases are pierced, the maximum values of wall shear stress for all the

confinement ratios are in the same location which corresponds to the centroid of

the bubble ring. Moreover, it is found that the existence of pair vortices around

the bubble ring for Cr = 2 and 3 cases generates negative magnitudes of shear

stress on the side wall.
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Figure 5.35: Three-dimensional demonstration of terminal bubble shape for
variations of Electro-capillary numbers and confinement ratios.

5.2.2.4 The combined effect of confinement ratio and Electro-capillary

number

Figure 5.35 represents the terminal shapes of bubbles in 3D for different confine-

ment ratios and Electro-capillary numbers at t = 10. For Electro-capillary number

of Ec = 1.0, the bubble remains non-pierced for all confinement cases and incre-

ments of confinement ratio make the bubble shape flattened. For Ec = 1.5, the

bubble keeps its hemispherical shape in Cr = 2, but the bubble is torn when the

confinement ratio is increased to Cr = 3. The toroidal shape of the bubble hori-

zontally spreads as the confinement ratio increases to Cr = 4 and 5. Considering

larger magnitudes of Electro-capillary number Ec = 2.0 and 2.5, it is observed

that the final bubble shape for all confinement ratios is toroidal.

It has shown earlier that both confinement ratio and Electro-capillary number

affect the bubble rising regime and have direct influence on the formation of a

toroidal bubble (refer to figures 5.32 and 5.28, respectively). In order to deter-

mine the region where the bubble is pierced, a set of simulations in different

Electro-capillary numbers and confinement ratios are carried out and the corre-

sponding results are shown in figure 5.36. For four different confinement ratios,

various Electro-capillary cases are simulated and the final state of the bubble is
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Figure 5.36: The map of the test cases for variations of Electro-capillary
numbers and confinement ratios simulated in present study; the circle marks
indicate the cases wherein the rising bubble remains non-pierced while the plus
marks represent the pierced cases. The red solid line indicates the transition

region where the bubble pierces.

indicated by circle and plus marks for the non-pierced and pierced cases, respec-

tively. Moreover, a solid line determines where the bubble shape transforms into

a toroidal shape as the Electro-capillary number increases. It is seen that in large

confinement ratios Cr = 5, Ec ≈ 1.3 is the threshold value in which a toroidal bub-

ble is formed. This threshold does not change considerably when the confinement

ratio of Cr = 4 is interested. Since the wall effects resist against the formation

of toroidal bubble shape, the threshold increases when the confinement ratio falls

below Cr = 4. Relatively large magnitude of Electro-capillary number Ec ≈ 1.9 is

required for Cr = 2 to make the bubble form a toroidal shape.

Figure 5.37 represents the terminal Reynolds number Re∗ for different confine-

ment ratios in variations of Electro-capillary number. It is stated earlier in figure

5.30 that when the bubble is pierced, the vertical rise velocity and consequently,

the terminal Reynold number decreases considerably. Considering the terminal

Reynolds number in two spectra of Electro-capillary number - Ec < 1.25 for non-

pierced bubbles and Ec > 1.85 for toroidal bubbles - the terminal Reynolds number

increases by incrementing the confinement ratio due to the effects of side bound-

ary on the vertical rise velocity of the bubble. Moreover, by noticing the trend

of terminal Reynolds number before the formation of the toroidal bubbles, it is

observed that increments of Electro-capillary number lead to a slight increase in

the vertical rise velocity and consequently, the terminal Reynolds number for all

confinement ratios. As it has been stated earlier, it is due to the formation of

electric forces on the interface of the bubble which leads to a faster rise of the
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Figure 5.37: Variations of Terminal Reynolds number as a function of Electro-
capillary number for different confinement ratios.
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Figure 5.38: The variations of normalized diameter of the bubble ring Dr in
time for CE1 [Cr = 5, Ec = 2.5], CE2 [Cr = 5, Ec = 2], CE3 [Cr = 5, Ec = 1.5],
CE4 [Cr = 4, Ec = 2.5], CE5 [Cr = 3, Ec = 2.5], and CE6 [Cr = 2, Ec = 2.5].

bubble in larger electric field strengths. After the formation of the toroidal bub-

ble, however, increase in the Electro-capillary number does not influence the trend

of terminal Reynolds number considerably. This indicates that the electric forces

do not have a significant impact on the vertical rise velocity of the bubble after

the formation of the toroidal shape.

Figure 5.38 presents the variations of normalized diameter of the bubble ring Dr

versus time after the bubble is pierced for some test cases in this study. The

Dr is defined as the magnitude of the toroidal bubble diameter divided by the

initial bubble diameter. The trend of Dr consists of two sections, one which has a

steep slope showing the second transient stage of the bubble, and the other with a

gentle slope indicating that the toroidal bubble gradually reaches its terminal state.

During the second transient stage of rising, the toroid expands circumferentially

and the bubble ring approaches the side boundary. This is due to the direction

of the flow field of the surrounding fluid around the bubble that directs from the
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inner region of the bubble ring towards the side boundary. The flow field of the

surrounding fluid around the bubble ring is motivated by the upward jet current,

and can be seen in figure 5.34 (d). It is observed that the pair vortices at the sides

of the bubble ring develop leading to the gradual disappearance of the upward jet

current. Considering the pair vortices, the vortex in the outer side of the bubble

ring is found to be effective on the expansion of the bubble ring during the second

transient stage. However, the expansion is ceased by the gradual strengthening of

the inner vortex during the bubble rise, which is a turning point in the trend of the

normalized diameter. Afterwards, the toroidal bubble reaches a plateau where the

change in the normalized diameter is quite negligible. Since the development of the

pair vortices around the bubble ring occurs earlier in time in smaller confinement

ratios, reaching the plateau happens earlier for CE5 and CE6 cases. It should be

noted that some oscillations are seen in the pattern of normalized diameter of the

bubble ring for CE5 and CE6 cases which is due to the effects of the side boundary

on the formation and strength of pair vortices around the bubble ring.

5.3 Droplet coalescence

The binary coalescence occurs when two droplets merge together and form a single

droplet. The coalescence phenomenon is observed both in nature and industrial

applications such as formation of rain droplets [113], spray in internal engines

[114, 115] and surface treatment processes [116]. Thus, the coalescence of binary

droplets is broadly investigated in experimental [117, 118] and numerical [119, 120]

studies.

The coalescence of binary droplets was initially investigated on the collision of

water droplets [113, 117, 118]. Brazier et al. [113] realized that three regimes of

coalescence exist under different experiment conditions: (i) permanent coalescence

(CP), (ii) coalescence followed by separation (CS), and (iii) coalescence followed by

separation and formation of satellite droplets (CD). They showed that the coales-

cence can be characterized by the Weber number (We) and the impact parameter

(β). The impact parameter varies between 0 and 1 representing head-on to grazing

coalescence, respectively. They reported that the transition between permanent

coalescence and coalescence with separation occurs when Weber number exceeds

a critical value. Moreover, the CS and CD regimes are promoted near head-on

and grazing collisions, respectively. Later studies on hydrocarbon droplets con-

ducted by Jiang et al. [114] revealed that in addition to these coalescence regimes,
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there is a bouncing regime which divides the permanent coalescence into a slow

coalescence regime in small We numbers and a fast coalescence regime in large We

numbers. This statement has been modified by Qian et al. [121] who studied differ-

ent regimes of binary coalescence of both water and hydrocarbon droplets. They

realized that both material properties of droplets and surrounding environment as

well as pressure are influential on the regimes of coalescence.

Numerical investigations of the coalescence of binary droplets was pioneered by

Foote [122] who studied the bouncing effect in head-on coalescence of equal-size

droplets using a Marker-and-Cell method neglecting the effects of surrounding

fluid. Thereafter, the coalescence of binary droplets was simulated by different

numerical methods [119, 123–126] in literature. Inamuro et al. [123, 127] devel-

oped the Lattice Boltzmann Method to simulate the coalescence of binary droplets

within the ranges of (20 ≤ We ≤ 80) and (0 ≤ β ≤ 0.82) and observed three dif-

ferent regimes of coalescence (i.e. CP, CS and CD). Tanguy et al. [124] employed

a Level-Set approach to simulate 2D and 3D coalescence by using the Ghost Fluid

method for interfacial discontinuities for the Weber range of (We ≤ 61). They

showed their results are in a good agreement with previous data in literature, but

stated that they may suffer from possible mass loss for some under-resolved re-

gions. In order to tackle the under-resolved problem, Nikolopoulos et al. [125, 128]

studied the head-on and head-off coalescence using the Volume-of-Fluid (VOF)

method and employed the Adaptive Mesh Refinement (AMR) technique. Conse-

quently, they succeeded to investigate the formation of satellite bubbles in high

Weber numbers. Within the framework of particle methods, the coalescence of

binary droplets was simulated as a single phase collision of two separate droplets

in vacuum by Yang et al. [129] and Melean [126], but no multiphase simulation

of the coalescence of binary droplets is carried out in literature, to date, which is

one of the important novelties of this study.

On the other hand, It is observed in some other studies in literature [130, 131]

that a film of the surrounding fluid exists between the colliding droplets both in

2D and 3D simulations. The authors of present study also observed the same issue

in primary simulations of binary coalescence which require a remedy to drain out

the existing film from the contact surface of droplets. In order to drain out the

thin film between the bubble interfaces, the film drainage model was developed

[132, 133] based on the lubrication theory. Various theoretical studies [134–137]

have been carried out on the development of the film drainage model. Klaseboer et

al. [137] experimented and mathematically modeled the drainage of thin liquid film

between two spherical bubbles. They compared two different assumptions, namely
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Figure 5.39: The schematic representation of bubble position and

the immobile interfaces and mobile interfaces assumptions by measuring the film

thickness and thinning rate of the film, and concluded that the immobile interfaces

assumption shows more accurate results. The experimental and theoretical devel-

opments in the framework of lubrication theory and film drainage model has been

reviewed by Chan et al. [138] where more interested readers can be referred to.

The film drainage models have also been employed in many numerical simulations

[139–141]. Janssen et al. [141], for instance, used the Boundary Integral method

to simulate head-on coalescence of viscous drops with the same viscosity as the

surrounding fluid, and found out that there is a difference between the buoyancy

driven and external flow driven coalescence due to the difference in the internal

flows inside droplets. Nonetheless, the lubrication theory and drainage model have

not been employed to any particle-based methods, to the best knowledge of the

authors.

5.3.1 Lubrication theory and film drainage model

In order to drain out the fluid particles from the thin film between interface of

droplets, the film drainage model based on the Reynolds lubrication theory [142]

can be applied. In this model which is described schematically in figure 5.39, it is

assumed that the thickness of the film is sufficiently small compared to the length

of the film, thus the general Navier-Stokes equation can be simplified for the flow

in the film as

− ∂p′

∂x′
+ µ

∂2u′

∂y′2
= 0. (5.9)
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In the above equation, prime superscript indicates parameters in the coalescence

coordinate where its origin is at the center of the film shown in figure 5.39, and

u′ is the velocity component in the direction of the x′. By integrating equation

5.9 twice and considering ∂u′

∂y′
= 0 at y′ = 0 and u′ = 0 at y′ = hl/2, an explicit

statement for the velocity profile in the film, u′, can be written as

u′ =
1

2µf

∂p′

∂x′
[y′2 − h2

l ], (5.10)

where h is the half of the film thickness.

In order to implement the lubrication theory in the numerical algorithm (referring

to chapter 3.1), the lubrication velocity ul is calculated based on the pressure

obtained from eq. 3.22 as

uli = λl

[
1

2µi

∇p
(n+1)
i rli

]
, (5.11)

where λl is a scalar coefficient. This coefficient is a case-dependent parameter

and should be adjusted based on material properties such as density and viscosity

as well as flow characteristics such as approaching velocity and droplet diameter.

Nonetheless, our simulations show satisfactory results for λl ≈ 0.02 in the case

of low viscous and/or small Weber numbers and 0.1 ≤ λl ≤ 0.2 for high viscous

and/or large Weber number cases. rli is the position of the particles with respect

to the coalescence coordinate as described in figure 5.39. Then, the lubrication

velocity is added to the final velocity in eq. 3.23. The final displacement equation

3.24 is modified by adding the lubrication velocity displacement

r
(n+1)
i = r

(n)
i +

1

2

(
u

(n)
i + u

(n+1)
i

)
∆t+ uli∆t+ δr

(n)
i . (5.12)

In order to implement film drainage model, the following considerations should be

made:

• The particles positions of both droplets should be stored in separate arrays

and updated in each time step. This is done to track droplets and to evaluate

the distance between them. This also helps to reduce the computational cost

incurred due to the implementation of the film drainage model.

• At each time step, the distance between droplets, L, should be calculated.

This is done by finding the minimum distance between particles of one



Results 79

droplet with those of the other one which is effectively the distance between

droplets’ interfaces.

• The film drainage model is applicable when the thickness of the film is

much smaller than the droplets diameter [137]. On the other hand, the

film drainage model should be applied when the particles of the surrounding

fluid have enough time to be drained out. Thus, the film drainage model

should be turned on when the distance between droplets are smaller than a

specific threshold. It is found that 0.1 ≤ L/d ≤ 0.12 provides satisfactory

results.

• At each time step, particles of the surrounding fluid should be checked to

be inside the film. For that purpose, the distance of surrounding fluid parti-

cles with both droplets should be checked, and drainage velocity should be

applied to those appropriate ones.

• The drainage velocity is applied until the distance between droplets are less

than 1.5 particle spacing. Thereafter, the coalescence has been occurred and

the film drainage model should be turned off, consequently.

It should be noted that since material properties of droplets are identical, inter-

facial and volumetric forces as well as field parameters will not be affected after

coalescence. Consequently, when the droplets are coalesced, no further considera-

tions should be made to eliminate possible numerical issues.

5.3.2 Problem Set-up

Considering the governing equations explained in chapter 2, dimensionless values

are formed using the following scales

x = x+/d, ρ = ρ+/ρd, µ = µ+/µd, u = u+/(d/t+), t = t+/(u+/d),

p = p+/ρd(u
+)2, D = ρd/ρf , V = µd/µf , P = εd/εf , C = σd/σf , (5.13)

leading to Reynolds, Weber, Electro-Weber and Electro-capillary numbers defined

as

Re =
ρdud

µd
, We =

ρdu
2d

γ
Ew =

ρdu
2

εdE2
∞
, Ec =

We

Ew
=
εdE

2
∞d

γ
. (5.14)
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Figure 5.40: Schematic of the test case in sub-figure (a) and the schematic
of the initial particle positions for droplets and their surrounding fluid (not full

domain representation) presented with different colors in sub-figure (b).

Here, d is the bubble diameter and E∞ is the undisturbed electric field intensity.

A plus sign marks dimensional variables whereas subscripts �d and �f denote

droplet and background fluid phases, respectively. The impact parameter β can

be expressed as β = zd/d where zd is the projection of the distance between

droplet centroids, perpendicular to the direction of droplets’ motion before coales-

cence (refer to figure 5.40 for schematic representation). In the present study, the

simulations are carried out in the absence of gravity, thus g is set to zero.

The schematic of the test case considered in this study is shown in figure 5.40-a.

The computational domain is a rectangle with a height and a width of H = 5d

and W = 5d, respectively. The droplets are vertically placed at the initial center

to center distance of 2d from each-other while the horizontal distance is adjusted

by z to provide desirable impact parameter β. No-slip boundary condition along

with a potential difference of E∞ = ∆φ/H is applied to top and bottom walls

denoted with solid lines while the periodicity condition is implemented on the

side boundaries, demarcated with dashed lines in figure 5.40. In the absence of

the droplet in the computational domain, the periodic boundary condition for

the electric potential produces a uniform downward electric field parallel to the

side boundaries. Particles discretizing the droplet are positioned along concentric

circles around the droplet’s center shown in figure 5.40-b. The radii of consecutive

circles differ by one particle spacing and the outermost circle’s radius is equal to

r. The number of particles along each of these circles vary to keep the overall

inter-particle spacing uniform. Fluid particles are arranged on a uniformly spaced

Cartesian grid where particles coinciding with the droplet are removed.
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Figure 5.41: The comparison of the results with experimental findings of Qian
et al. [121] and numerical findings from a FVM tool for simulation conditions
[We = 0.2,Re = 14.8, β = 0.20] at different simulation times; (a) present nu-

merical result, (b) experimental findings, (c) FVM results.

In order to validate numerical results, the current in-house code has been exten-

sively validated in our previous studies for numerous multiphase flow problems

[13, 76, 143] including bubble dynamics and electrohydrodynamics. Nonetheless,

the numerical results of two colliding droplets are validated by comparing the re-

sults with the experiments of Qian et al. [121] and the results of an available Finite

Volume (FV) numerical tool, for two cases with different simulation conditions.

The computational domain and boundary conditions of the test-cases performed

with the FV tool is set identical to those of the in-house SPH code. The simu-

lation conditions of two cases are [We = 0.2,Re = 14.8, β = 0.20] for case VT-I

and [We = 15.2,Re = 139.8, β = 0.08] for case VT-II, while the Electro-capillary

number is set to zero. Figures 5.41 and 5.42 show the coalesced droplet for some in-

stances of the VT-I and VT-II cases, respectively. In both figures, the top, middle

and bottom rows present the numerical results of the present study, experimen-

tal findings of Qian et al. [121] and numerical results from our FV simulations,

respectively. It should be noted that in order to illustrate the results clearly, the

numerical results are rotated in the post-processing stage, being aligned with the

experiments direction.

The general observation reveals that both cases perfectly agree with experimental

finding and FV results. For small values of Weber number shown in figure 5.41,

i.e. case VT-I, numerical results are perfectly match with experimental data and

FV results. The same observation is valid for large values of Weber number in

figure 5.42. However, the simulation conditions of the numerical results are slightly

different from those of the experimental findings. In other words, numerical results
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Figure 5.42: The comparison of the results with experimental findings of Qian
et al. [121] and numerical findings from a FVM tool for simulation conditions
[We = 15.2,Re = 139.8, β = 0.08] at different simulation times; (a) present

numerical result, (b) experimental findings, (c) FVM results.
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Figure 5.43: The particle resolution study for VT-I (sub-figures a and b) at
t = 0.1 and t = 0.2, and VT-II (sub-figures c and d) at t = 1.0 and t = 3.0 for
four different resolutions; Π = 40 x/d (green solid line),Π = 50 x/d (red solid

line), Π = 60 x/d (blue solid line) and Π = 70 x/d (black solid line)

in VT-II are comparable with those of experiments in higher values of Weber

and Reynolds numbers. This contrast arises from the difference between two-

dimensional nature of present numerical simulations and three-dimensional nature

of experimental findings.

The particle resolution study has been done for two different text-cases simulated

for the validation, VT-I and VT-II. Figure 5.43 provides the coalesced droplet
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interface at times t = 0.1 and t = 0.2 for VT-I and t = 1.0 and t = 3.0 for

VT-II, respectively. The tests are performed for four different resolution cases,

Π = 40, 50, 60 and 70 x/d denoted by green, red, blue and black solid lines in figure

5.43, respectively, where Π represents the number of particles per unit diameter

of droplets (x/d). It is shown that for Π = 60 x/d and Π = 70 x/d, the coalesced

droplet interface adequately matches. Thus, the particle resolution of Π = 60

x/d is chosen for the rest of the simulations performed in this study including the

validation VT-I and VT-II test-cases, unless it is stated otherwise.

5.3.3 Binary droplet coalescence

Now, the results of binary coalescence of droplets are presented, by simulating

three different sets of test-cases for head-on coalescence, head-off coalescence and

electro-coalescence. In all these cases, the film drainage model is applied and

represents the robustness of the proposed algorithm for simulation of different

collision problems. For the inertia driven head-on and head-off coalescence in the

following section, the electric potential is set to zero and the system experiences

no electric force. In this part, the droplets are approaching towards each other by

an initial velocity. However, for the electro-coalescence of two suspended droplet,

the electric force is applied, and the initial velocity is eliminated. Thus, the flow

currents generated by the electric stresses lead to the proximity of droplets which

will be discussed in details.

In order to represent how film drainage model improves numerical results, figure

5.44 is presented. In this figure, the results are compared for one of the test-case

simulated for head-on coalescence. In the figure, SPH particles are shown in col-

umn A for the case without the implementation of film drainage model and column

B for the case with the implementation of the model. This test-case has the sim-

ulation conditions of [We = 5.0,Re = 100,D = 1000,V = 100]. In figure 5.44,

two instants after the coalescence at t = 0.15 and t = 0.50 are shown where ma-

genta and green dots are used to represent upper and lower droplets, respectively,

while black dots show the surrounding fluid. For the test-cases without the im-

plementation of the drainage model in column A, it is seen that a film of particles

of surrounding fluid remains between droplet interfaces. The population of these

particles is around 2 percent of the number of coalesced droplet particles which

can affect the overall topology and behaviour of the coalescence. The thickness

of this film is about two particles spacing and in some regions, it may be reduced

to only one particle spacing. Thus, the interfacial forces such as surface tension
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Figure 5.44: SPH particles of a head-on test-case with the simulation condi-
tions of [We = 5.0,Re = 100,D = 1000,V = 100] at two different times after
coalescence for the original results (without the drainage mode) in column A,
and the modified model (including the drainage model) in column B; Magenta,
green and black points represent upper droplet, lower droplet and surrounding

fluid particles respectively.

and electric forces are not correctly calculated in that region since the diffusive

interface is four particle spacing thick. This numerical entrapment is resolved

after implementation of the drainage model. It is observed that in the modified

results where the drainage model is successfully applied in column B, the liquid

film of surrounding fluid particles is drained out. In some cases, it is observed that

individual particles of surrounding fluid will remain in the region. However, the

number of these discrete particles are less than 0.2 percent of the coalesced droplet

particles. These particles can be either converted to droplet particles or remain

there, since they will not deteriorate the accuracy of the simulation results.

5.3.3.1 Head-on coalescence

For the simulation of head-on coalescence, seven different test-cases are selected

and their simulation conditions are tabulated in table 5.8. In these cases, all

simulation conditions are set to be identical but the initial approaching velocity is

adjusted to maintain desired Weber number.
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Figure 5.45: The evolution of head-on coalescence (β = 0) at different simula-
tion times; The Reynolds number is set to Re = 100 and Weber number increase
from left to right columns by We = 2.0, We = 5.0, We = 20.0 and We = 30.0.
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Table 5.8: The magnitudes of the simulation conditions for head-on coales-
cence cases.

Case We Re β D V
hdn-1 0.5 100 0.0 1000 100
hdn-2 2.0 100 0.0 1000 100
hdn-3 5.0 100 0.0 1000 100
hdn-4 10.0 100 0.0 1000 100
hdn-5 15.0 100 0.0 1000 100
hdn-6 20.0 100 0.0 1000 100
hdn-7 30.0 100 0.0 1000 100
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Figure 5.46: The variation of deformation index of coalesced droplets in time
for different head-on cases shown in table 5.8.

The time evolution of head-on coalescence of two droplets is shown in figure 5.45

for four different cases from table 5.8. From the numerical point of view, the

lubrication theory shows robust results for the simulation of head-on coalescence

for a wide range of Weber numbers and the film drainage model perfectly drains out

the liquid film from the gap between the colliding droplets. After the coalescence

of droplets, two symmetric indented tips are formed at the sides of coalesced

droplet which grow perpendicular to the direction of coalescence. Further growth

of these indented tips leads to the formation of a hippopede, as can be seen for

We = 20.0 at t = 3.5. In large Weber numbers where the inertia is relatively

stronger than surface tension force, the neck of the hippopede becomes narrow

and two distinguished lobes of the hippopede form an oval shape. It is observed

that in We = 30.0, the inertial force is sufficiently strong to break the neck and

form two separate droplets. On the other hand and when the Weber number is

not large enough to tear apart the hippopede lobes, the surface tension force tries

to balance the droplet topology and thus, the droplet undergoes an oscillatory

deformation form a prolate to an oblate one. It is believed that this oscillatory

motion is dissipated by viscous effects.
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Table 5.9: The magnitudes of the simulation conditions for head-on and head-
off coalescence cases.

Case We Re β D V
hdf-1 10.0 100 0.05 1000 100
hdf-2 10.0 100 0.10 1000 100
hdf-3 10.0 100 0.20 1000 100
hdf-4 10.0 100 0.30 1000 100
hdf-5 10.0 100 0.40 1000 100
hdf-6 10.0 100 0.60 1000 100
hdf-7 10.0 100 0.80 1000 100

In order to quantify this oscillatory behaviour of the coalesced droplet, the defor-

mation index is defined similar to that for the deformation of the droplet under

the effect of the electric forces in previous section. Figure 5.46 shows the variation

of the deformation index in time for six test cases represented in table 5.8. The

oscillatory behaviour of the test cases are shown for at least two wave periods of

their oscillations. The amplitude of deformation decreases for all test cases due to

the viscous dissipation. This can be obtained by comparing the maximum prolate

deformation in first and second periods of oscillation. For all cases, it should be

also mentioned that at t = 2.0, the deformation index of hdn-5 and hdn-6 cases

are very close to D = −1. This shows that the neck of the hippopede is very

narrow at those times. For the case of hdn-7 (not shown here), the deformation

index reaches D = −1, which represents that the droplet is separated into two

smaller droplets.

5.3.3.2 Head-off coalescence

Similar to head-on coalescence, seven test-cases are simulated for head-off coales-

cence which their simulation conditions are tabulated in table 5.9. The simulation

conditions of these test-cases are set identical to each-other while their impact

parameter is changed for different test-cases.

Figure 5.47 represents the time evolution for four different test-cases from table 5.9.

The first row of the problem illustrates the droplets at the moment of coalescence.

It should be reminded that the direction of the droplets velocity is set in vertical

direction and relative dislocation of droplets represent the head-off conditions of

the coalescence. It is observed that the film drainage model can drain out the

surrounding fluid particles between colliding droplets. At this range of simulation

conditions, it is observed that all cases remain in the permanent coalescence regime
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Figure 5.47: The evolution of head-off coalescence (β = 0) at different simula-
tion times for four test-cases from table 5.9; The Reynolds and Weber numbers
are set to Re = 100 and We = 10.0, and the impact parameter is increased from

left to right, β = 0.2, β = 0.4, β = 0.6 and β = 0.8.
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Table 5.10: The magnitudes of the simulation conditions for electro-
coalescence cases.

Case Ec l∗ D V C P
edc-1 1.0 0.25 1 1 10 0.5
edc-2 1.0 0.25 1 1 0.5 10
edc-3 0.5 0.25 1 1 10 0.5
edc-4 1.5 0.25 1 1 10 0.5
edc-5 0.5 0.25 1 1 0.5 10
edc-6 0.75 0.25 1 1 0.5 10
edc-7 1.25 0.25 1 1 0.5 10
edc-8 0.5 0.5 1 1 0.5 10
edc-9 0.75 0.5 1 1 0.5 10
edc-10 1.0 0.5 1 1 0.5 10
edc-11 1.25 0.5 1 1 0.5 10
edc-12 0.5 1.0 1 1 0.5 10
edc-13 0.75 1.0 1 1 0.5 10
edc-14 1.0 1.0 1 1 0.5 10
edc-15 1.25 1.0 1 1 0.5 10

and no satellite droplets are formed. It is observed that all coalesce droplets spin

around its center of mass. For small impact parameter cases such as hdf-1 and

hdf-2 (not shown in the figure), the results does not differ much from those in

head-on coalescence shown in figure 5.45 for case hdn-5. However, for large values

of the impact parameter, for instance for the case of hdf-7, the coalesced droplet

spin faster in the simulation domain.

5.3.3.3 Electro-coalescence

The lubrication theory and the drainage model can also be applied to electro-

coalescence phenomenon where two droplets collide due to the presence of an

applied electric field. In order to simulate that, the initial velocity is removed and

the electric field is applied to manipulate the fluid flow in the domain. Addition-

ally, the impact parameter is set to zero to obtain head-on electro-coalescence.

Thus, the characteristic parameters change and the problem is governed by other

dimensionless numbers such as the Electro-capillary number. Since the initial ap-

proaching velocity is set to zero, the characteristic velocity and time are found

by

uc =
εdE

2
∞d

µd
, t = t+/(uc/d), (5.15)
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Figure 5.48: The time evolution of droplet interface for electro-coalescence for
two different cases; (A) an oblate deformation case of droplets corresponding to
edc-1 of table 5.10, and (B) a prolate deformation case corresponding to edc-2

of table 5.10.

where uc indicates the characteristic velocity.

Table 5.10 tabulates the dimensionless parameters for the electro-coalescence test-

cases. In order to eliminate the viscous effects, both density and viscosity ratios

are set to unity. On the other hand, permittivity and conductivity ratios are set to

provide two sets of runs for oblate and prolate deformations of droplets. Another

dimensionless parameter introduced here is the initial distance between droplets

l∗ which is normalized with respect to the droplet diameter.

Figure 5.48 shows the interface of droplets before and after coalescence for different

simulation times for edc-1 and edc-2 cases of table 5.10. According to the electric

permittivity and conductivity ratios and based on the analytical solution of Feng

[11], it is expected that edc-1 undergoes an oblate deformation while edc-2 case

deforms into a prolate shape. It is observed that both cases collide and the drainage

model drains out the particles entrapped between colliding droplet interfaces. It is

observed that for both cases, the droplets approach to each other due to the flow

currents around the droplets. After the coalescence for the edc-1 case, and due to

the action of electric forces, the coalesced droplet experiences electric forces on its

interface pushing it to form an oblate shape which results in a stretching motion

of the coalesced droplet seen at t = 9.0. This stretching motion is bounced back to
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Figure 5.49: Droplet interface of edc-1 and edc-2 test-cases from table 5.10;
velocity vectors and streamlines of particles are shown by black arrows and red
lines in the left and right halves of the figure, respectively, the upper row (sub-
figures A and C) represents the droplets before the coalescence and bottom row

(sub-figures B and D) represents the coalesced droplet after coalescence.

balance the hydrodynamic forces such as surface tension which results in the final

state of the coalesced droplet at t = 12.0 shown in the figure. On the other hand,

the edc-2 case experience a permanent stretching motion in the vertical direction

due to the formation of electric forces around the droplet.

Figure 5.49 illustrates the droplet interface and velocity vectors and streamlines

, at two arbitrary times before and after coalescence for edc-1 and edc-2 cases.

The edc-1 and edc-2 cases have reverse permittivity and conductivity ratios with

respect to each-other leading to an oblate and a prolate formation for these cases,

respectively. It is expected that the flow directions inside and around colliding

droplets should be in reverse directions. This is valid for the flow motion at the
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Figure 5.50: Comparison of droplet distance L and droplet center to center
distance l∗ for different oblate deformation cases edc-1, edc-3 and edc-4 of table

5.10.

outer halves (rear side) of two colliding droplets in sub-figures 5.49-A and -C, but

the flow motion in the inner halves (approaching side) of these droplets are in

the same direction for both cases. The flow direction is a clock-wise flow in the

upper-right quarter of the bottom droplet. It shows that the flow current tends to

push away the surrounding fluid from the region between droplets and make both

cases get closer to each other which will lead to coalescence. This flow motion

is assisted by the lubrication theory and the film drainage model for a better

coalescence. After permanent coalescence, the flow current inside and around the

coalesced droplet has reverse direction for edc-1 and edc-2 cases.

The distance between interfaces L and the center to center distance of droplets

l∗ are plotted in figure 5.50 for three oblate deformation cases from table 5.10.

In this figure, it is observed that the center to center distance between droplets

monotonically decreases for all cases which indicates the attraction of droplets due

to the electrically induced flow currents around droplets. Moreover, it is observed

that the case with smaller Electro-capillary number collides earlier in time and

in longer center to center distances. This later conclusion is trivial since the

larger the Electro-capillary number, the more deformation droplets may attain.

On the other hand, the distance between droplet interfaces shows a rising trend in

the early simulation time which is followed by a descending trend after reaching a

vertex. The droplets are subjected to an oblate deformation when the electric field

is applied at the beginning of the simulation which increases the distance between

droplets. However, this turns into a decreasing trend due to the attraction of

droplets resulted by electrohydrodynamic currents.

Figure 5.51 represents the distance between droplets for all prolate cases of table
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Figure 5.51: Comparison of droplet distance l∗ for prolate deformation coa-
lescence cases of table 5.10.

5.10. It is observed that in contrast to oblate deformation cases, it has a monotoni-

cally decreasing trend for all cases. That happens due to the fact that the direction

of droplet deformation and droplet attraction due to electrohydrodynamic currents

are in the same direction, in contrast to the oblate deformation cases. On the other

hand, it is observed that the cases with smaller Electro-capillary numbers collide

in shorter times. This is due to the definition of characteristic velocity and time,

and their direct proportionality with the second power of electric field.

5.4 Electro-jet printing

The jet printing can be used in numerous applications especially in micro-scale

systems ranging from soft tissue printing in biological systems [144], solar cells

[145, 146] and manufacturing electronic devices [145, 147], amongst others. In the

EHD jet printing, the printing quality can be controlled by means of an applied

electric potential which induces the EHD forces on the fluid interface leading to the

formation of a Taylor cone. This results in the deposition of a more than one order

of magnitude thinner liquid film compared to the nozzle diameter. This feature

makes the EHD jet printing a strong alternative for other means of jet printing

methods such as piezo-type printing [148, 149], specially in practices where micro-

scale diameters of deposition film is of interest.

The early investigations on the EHD jet and drop formation were carried out by

Zeleny [150, 151] and later by Taylor [152]. Thereafter, many experiments have

been done to examine the effect of different parameters on the Taylor cone jet

and printing features. The studies of Barrero et al. [153], Higuera [154] and Hay-

ati et al. [26, 27] are just a few examples of previous attempts to discover the
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phenomenon and examine the relative importance of different physical and envi-

ronmental parameters on the printing process. Barrero et al. [153] investigated the

effects of electric conductivity and viscosity on the motion of liquid film inside the

Taylor cone. They realized that there is a recirculation meridional motion induced

by the tangential electric stress. The recirculation moves towards the tip of the

jet along the cone surface and away from it along the axis. They also reported

that the recirculation motion increases when electric conductivity and viscosity of

the printing liquid decrease. Hayati et al. [26, 27] studied the mechanism of the

stable jet formation and stated that the electric conductivity of the printing liq-

uid has a significant impact on the phenomenon. For small magnitude of electric

conductivity (insulators), little disrupture is observed due to the insufficient free

charges in the bulk of the fluid. On the other hand, they reported that for large

magnitudes of electric conductivity (conductive materials), the printing is unstable

and sparks are observed in higher electric potentials. For moderate magnitudes

of electric conductivity (leaky dielectrics), however, the jet is formed for specific

ranges of electric potential. Nevertheless, the complexity of the phenomenon and

influence of numerous physical and environmental parameters have hindered ef-

forts to convey a well-studied systematic approach to the problem. Yet, one of

the exceptions is the experiments of Lee et al. [28] on the optimization and clas-

sification of the jetting modes employing a systematic approach to the problem.

They constructed maps of printing regimes for different volume concentrations of

a binary mixture and illustrated that how the printing pattern may change from

dripping to pulsating, cone-jet, tilted jet and multi-jet, due to the variations of

electric potential and injector feed rate. Experimental limitations on the selection

of material properties may motivate researchers to employ numerical simulations

as an available alternative for a systematic study on the EHD jet printing.

In the following, the behavior of EHD jet printing is numerically elaborated under

the influence of various parameters. In the EHD jet printing, the number of

dimensional parameters that influences the formation of the liquid jet is large.

Therefore, a set of dimensionless groups is used to model the problem. Here,

for the specific problem of interest with applications in micrometer scale, the

gravitational force can be neglected while the surface tension and EHD forces

are known to be the dominating forces. On the other hand, the injector inlet

feed rate and fluid physical properties are the other important parameters that

highlight the effect of inertial and viscous forces. Based on these set of forces, three

dimensionless numbers are introduced as Reynolds number (Re), Weber number
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Figure 5.52: The schematic figure of the solution domain.

(We) and Electro-Weber number (Ew) representing the relative importance of

inertia to viscous, surface tension and EHD forces, respectively.

This should be noted that the following study is carried out to provide some de-

sign criteria for the experimental setups of real-scale electro-jet printing devices.

Moreover, the present study is a simplified model with respect to real-scale mod-

els and some assumptions are made here. It is known that the process is not an

iso-thermal process and when the printing liquid is injected from the inlet nozzle,

it solidifies due to the pressure and temperature variations. Moreover, the numer-

ical model is simulated for a Newtonian liquid by considering a constant viscosity.

However, the printing liquid is normally a non-Newtonian shear-thinning fluid in

many occasions. Nonetheless, the present study tries to elaborate on the impor-

tance of electric forces on jet printing. It is believed that present model can be

extended to simulating the non-Newtonian fluids, temperature-dependent proper-

ties of materials and other applications of interest such as pulsed injector printers.

5.4.1 Problem set-up

Figure 5.52 shows the schematic geometry for simulating the EHD jet printing.

The domain has two regions, the nozzle (above the dash dot line) and the air

chamber (below the dash dot line). The horizontal dash line represents the inlet

boundary with a constant inlet velocity uin of the printing liquid. The vertical dash

lines are set to zero pressure outlet boundary condition. The bottom solid line is
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the deposition surface while the other solid surfaces at the top of the figure rep-

resent the nozzle walls. All solid boundaries abide the no slip boundary condition

but the deposition surface is a moving boundary with the velocity of ub = 5uin.

The moving bottom boundary condition is set to avoid fluid accumulation during

the printing process on the deposition surface. The electric potential is set to φ+

on the inlet and nozzle boundaries, and φ− on the bottom boundary. The vertical

dash lines are set to no flux boundary condition for the electric potential.

The computational domain is initialized by setting the nozzle region to the printing

liquid and the air chamber to the air properties, respectively. Thus, the dash-dot

line represents the initial interface between the fluid phases in figure 5.52. In this

study, the time step is set dynamically to keep the CourantFriedrichsLewy (CFL)

condition below 0.2 (CFL < 0.2).

In this study, the characteristic length scale is set equal to half of the nozzle

diameter lc = din
2

, so the dimensionless parameters can be represented as,

h =
h+

lc
, D =

D+

lc
, H =

H+

lc
, x =

x+

lc
, y =

y+

lc
, t = t+

uin
lc
, (5.16)

where h is the nozzle height, H and D are the air chamber height and width,

respectively. A plus sign represents dimensional variables and t is the simulation

time and uin is the inlet velocity. The star sign indicates the dimensionless vari-

ables. The injection nozzle has the height of hin = 2, while the size of the air

chamber is D = 6 and H = 6.

The EHD jet printing is a complex phenomenon and various hydrodynamic and

EHD properties can affect the behaviour of the printing pattern. Thus, a system-

atic study is barely feasible to be carried out since many dimensional properties

such as surface tension coefficient, fluid viscosity, density, electrical permittivity

and conductivity, and/or controllable external parameters like applied electric field

and geometrical dimensions can be influential. Moreover, if a systematic study is

performed for a selection of these effective parameters, it can not be generalized for

all possible combinations and scenarios. Instead, one may combine these dimen-

sional parameters into dimensionless groups such that those dimensionless groups

reflect the relative importance of different forces, thereafter the results are valid

for all experiments with different dimensional combinations, if they fit in the range

of those dimensionless numbers. Upon the recognition of inertia, surface tension,

viscous and EHD forces as the effective forces acting on the problem, three dimen-

sionless numbers of Reynolds (Re), Weber (We) and Electro-Weber (Ew) numbers
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Figure 5.53: The grid resolution study for simulation condition of [Re = 0.02,
Ew = 300] at t = 0.3; (a) the wide view, and (b) the zoomed view of the dashed
box in (a) for four different cases χp = 60, χp = 80, χp = 100 and χp = 120
which χp represents the number of nodes per nozzle diameter. The wide view

in (a) is shown for the resolution of χ = 100.

can be developed as the relative importance of inertia over viscous, inertia over

surface tension and EHD over inertia, respectively. These dimensionless numbers

can be shown as,

Re =
ρfuindin
µf

,We =
ρfu

2
indin
γ

,Ew =
εfE

2
∞

ρfu2
in

, (5.17)

where E∞ is defined as the characteristic electric field and evaluated as E∞ =

(φ+−φ−)/H. In addition to these dimensionless numbers, physical properties can

be represented in their dimensionless form as,

D =
ρf
ρg
,V =

µf
µg
,P =

εf
εg
, C =

σf
σg
. (5.18)

Here, the subscripts g and f refer to the appropriate properties of the air and

printing liquid phases, respectively.

In order to check the dependency of the numerical results to the Cartesian struc-

tured mesh used in this study, a case with simulation condition of [Re = 0.02,

Ew = 300] is simulated under different resolution cases. Figure 5.53 represents

the wide view at t = 0.3 in 5.53-a, and the fluid interface for four resolutions

of χp = 60, χp = 80, χp = 100 and χp = 120 at that instant in 5.53-b, which

χp represents the number of grids per nozzle diameter. The results indicate that

there is a considerable difference in the results of χp = 60, χp = 80 and χp = 100.

But, the captured interface for the resolutions of χp = 100 and χp = 120 have

minimal distinctions. Therefore, the resolution of χp = 100 is used to simulate the

numerical results in this study.
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Figure 5.54: Instants of the printing process for simulation condition of [Re =
0.02, Ew = 400] at (a) t = 1.511, (b) t = 1.566, and (c) t = 1.593.

5.4.2 The EHD jet printing process

In this section, the results of a printing process with respect to the variations of

dimensionless numbers are presented. Thus, ratios of physical properties are set to

D = 1000, V = 50, P = 14 and C = 106. We have performed a set of preliminary

test cases to define the region where the printing is generated. It is found that

the jet printing is produced in ranges of Reynolds and Electro-Weber numbers

equal to Re = 0.02 − 0.2 and Ew = 300 − 800 while keeping the Weber number

constant equal to We = 0.02. Here, It should be stated that the printing is not

solely producible in the specified ranges of dimensionless numbers, and other sets

of dimensionless parameters may also lead to the formation of printable jet.

Figure 5.54 shows the printing process for simulation condition of [Re = 0.02,

Ew = 400] at three instants of printing process, (a) t = 1.511, an instant before

the printing jet touches the deposition surface, (b) t = 1.566, the touching moment,

and (c) t = 1.593, the instant when the printing jet is formed and developed. One

may intuitively expect from the jet configuration that the electric forces push the

printing liquid from the sides and form a printable jet. However, the mechanism

of the printing is found to be different. When the printing liquid is injected, the

electric forces act on the interface from the heavier fluid towards the lighter one.

Thus, the printing liquid is pulled towards the deposition surface whereby it forms

a jet. According to the leaky dielectric assumption, the electrostatic relaxation

time is much faster than the viscous relaxation time. Thus, the electric potential

drop in the printing liquid is negligible compared to the electric potential drop in

the air, knowing that the electric conductivity of the printing liquid is six order of

magnitude larger than air. Therefore, the electric field in the region between the

tip of the printing jet and the deposition surface becomes larger when the distance

between them decreases. This results in stronger electric forces at the tip of the
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Figure 5.55: The surface tension force (at the left) and the electric force (at
the right) for simulation condition of [Re = 0.02, Ew = 400] at t = 1.593

printing jet at later times of printing process and before the moment when the jet

touches the deposition surface.

Figure 5.55 presents the surface tension (at the left) and electric (at the right)

forces per unit volume on the jet interface for the simulation condition of [Re =

0.02, Ew = 400] at t = 1.593. The surface tension and electric forces are normal-

ized by γ/ρfdin and εfE
2
∞/ρfdin, respectively. The direction of the surface tension

force is towards the inside of the curvature of the surface while the direction of

the electric forces is from the printing liquid towards the air. It is shown clearly

that the electric forces are stronger on parts of the interface which is closer to the

deposition surface. This is due to the existence of stronger electric field between

the jet and the deposition surface, as explained before.

5.4.3 Effect of Reynolds number

Figure 5.56 shows the jet for different Reynolds numbers (a) Re = 0.02, (b) Re =

0.05, (c) Re = 0.10, and (d) Re = 0.20 at a constant Electro-Weber number

of Ew = 400. It is observed that at a constant Electro-Weber number, with

increments of Reynolds number, the jet diameter gets thinner. Since the Reynolds

number scales the relative importance of inertia over viscous force, increasing the

Reynolds numbers represents a system with constant inlet feed rate and less viscous

printing liquid, or equivalently a system with constant viscosity and larger inlet

feed rate. For the first case (more viscous printing liquid), increasing the Reynold

number is equivalent to increasing the fluidity of the printing jet. This enables

the electric forces to better influence the printing liquid with a less resistive force,

and consequently reducing the printing diameter when the Reynold number in

increased. Considering the second case (increasing the inlet feed rate), one may at
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Figure 5.56: The variations of jet diameter for variations of Reynolds number
in Ew = 400; (a) Re = 0.02, (b) Re = 0.05, (c) Re = 0.10, and (d) Re = 0.20.

first sight argue that the printing diameter should increase due to the injecting of

larger amount of printing liquid during a given period of time. However, since the

Electro-Weber number is kept constant, the electric forces should be augmented

proportional to the increase in the inertial force. Therefore, the electric forces

become stronger and a thinner printing jet is produced.

5.4.4 Effect of Electro-Weber number

Figure 5.57 shows the variations of jet diameter with respect to a change in Electro-

Weber number from Ew = 300 to Ew = 800 at a constant Reynolds of Re = 0.02.

It is observed that by increasing the Electro-Weber number, a thinner printing

jet is produced. The reason behind this is rather straight forward and obvious

since the increments of Electro-Weber number in constant Weber and Reynolds

numbers enhance the dominance of electric forces over inertia, viscous and surface

tension forces.

5.4.5 Unstable regimes

In some cases, when the electric potential is set large enough, the electric forces

become extremely strong on the jet interface which leads to the formation of an

unstable jet. Figure 5.58 shows the three unstable cases with simulation conditions

of [Re = 0.10, Ew = 600], [Re = 0.10, Ew = 700], and [Re = 0.10, Ew = 800].

For these cases, the jet becomes very thin comparatively, and drippings of the

printing liquid initiates before the tip of the jet touches the deposition surface.

As it has been mentioned earlier, the electric forces become stronger at the tip of

the jet when the distance between the jet and the deposition surface decreases.

Here, prevailing over all other forces including viscous and surface tension forces,
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Figure 5.57: The variations of jet diameter for various Electro-Weber number
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Figure 5.58: The unstable regimes of printing obtained for three cases, (a)
Re = 0.10 and Ew = 600, (b) Re = 0.10 and Ew = 700, (c) Re = 0.10 and

Ew = 800.

the induced electric force on the tip of the jet forms tiny droplets of the printing

liquid. The formation of these tiny droplets is followed by the instability of the

jet and hence, no printing pattern is observable.

One of the most important features of printing is the diameter of the jet. Table

5.11 shows the normalized diameter of the printing jets for variations of Re and Ew

numbers. The data is shown for the full spectrum of the dimensionless numbers

used in this paper. The diameter is measured at the elevation of y = 4 and at the

moment where the printing process is completed (equivalent to figure 5.54 (c)).

The results are normalized with respect to the nozzle diameter S = δt
2lc

, where δt

is the dimensional measured diameter of the jet.
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Table 5.11: The normalized jet diameter for variations of Re and Ew numbers;
the Reynolds number varies from Re = 0.02 to Re = 0.02 and the Electro-Weber

number varies from Ew = 300 to Ew = 800.

Re

Ew 0.02 0.05 0.10 0.20

300 0.521 0.497 0.488 0.421

400 0.498 0.409 0.371 0.356

500 0.464 0.349 0.310 0.235

600 0.384 0.296 0.250� –

700 0.377 0.270 0.157� –

800 0.364 0.224 0.131� –
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Figure 5.59: The normalized diameter of the measure thickness of the printing
jet for variations of Ew and Re numbers.

The results presented in table 5.11 reveals that with increments of Electro-Weber

number in constant Reynolds numbers, the jet diameter becomes thinner. The

same observation is obtained for constant Electro-Weber numbers and increments

of Reynolds number. Thus, the maximum value for the normalized diameter is

equal to ∆ = 0.521 for Re = 0.02 and Ew = 300, and the minimum value is

obtained for ∆ = 0.224 for Re = 0.05 and Ew = 800. The � sign is used to mark

those parameters for which the jet is formed but it is unstable and as a result, no

film of jetting pattern is obtainable. The dash mark denotes the region where the

jet is not formed and thus, no data is provided.

Figure 5.59 presents the normalized diameter of the measured thickness of the

printing liquid for variations of Reynolds and Electro-Weber numbers. It is ob-

served that by increasing the Electro-Weber number at constant Reynolds num-

bers, the thickness of the film is reduced. One the other hand, increasing the
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Figure 5.60: The dimensionless touching time for variations of Reynolds and
Electro-Weber numbers.

Reynolds number for constant Electro-Weber numbers results in the formation of

thinner printing film, but it may reach unstable film in some cases. Thus, the

present results can be a good suggestion for the design of experimental setups for

the electro-jet printing. It is suggested that the Reynolds number should be kept

as small as possible for the formation of thinner printing films and desired film

thickness is provided by adjusting the external electric field. moreover, it should

be noted that by increasing the Reynolds number, there is the risk of formation

of an unstable regimes.

Figure 5.60 represents the dimensionless time of the touching moment for different

Reynolds and Electro-Weber numbers. The results show that the time of the

touching moment decreases as both Reynolds and Electro-Weber numbers increase.

It is explained earlier that by increasing the Reynolds number, the electric forces

become stronger with the same order of the inertia forces. Hence, the electric force

at the tip of the jet can pull the jet stronger towards the deposition surface, leading

to reduction in the time of the touching moment. For increments of Electro-Weber

number, the printing liquid is subjected to stronger electric forces in larger Ew

numbers, resulting in a faster printing process.



Chapter 6

Conclusion

6.1 Concluding remarks

The present study illustrates the effects of electrohydrodynamic effects on multi-

phase flow problems. This is an efficient, simple and precise approach to control

fluid-fluid multiphase flow problems. This approach can be applied to design in-

dustrial scale setups for a wide range of multiphase flow problems of industrial

applications where the manipulation of dispersed/separated multiphase systems

are of interest. In order to do that, numerical models have been developed for the

simulation of multiphase flow problems under the effects of electrohydrodynam-

ics by developing an in-house Incompressible Smoothed Particle Hydrodynamics

(ISPH) code and also by writing numerical subroutines for a commercial software

package named ANSYS-Fluent.

The Smoothed Particle Hydrodynamics is a meshless numerical scheme developed

for the simulation of fluid flow problems. This method is widely used in literature

for the simulation of various fluid flow problems such as bubble dynamics, fluid-

solid interactions, free surface flows and flow instabilities amongst others. In this

study, the method is extended for various problems in multiphase flow problems

under the effects of electrohydrodynamics.

The surface tension force is implemented through the Continuum Surface Force

model on the diffusive interface. The leaky dielectric model is employed for the im-

plementation of electrohydrodynamics which allows finite accumulation of surface

charges on the interface between fluid phases. In order to discretize the continuity
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and momentum equation, a predictor-corrector algorithm is used and the pressure

field is obtained by solving a pressure Poisson equation.

The ANSYS-Fluent software is a well-known package that is used to simulate

fluid flow problems for a wide range of academic and industrial applications. In

order to simulate dispersed multiphase flow problems, the software is equipped

with the Volume of Fluid (VOF) method. The ANSYS-Fluent is capable to model

numerous applications using different built-in modules, but it is not developed

to simulate multiphase flows under electrohydrodynamics effects. Thus, complex

User Defined Functions (UDFs) are coded and added to the main solver to serve

the aforementioned purpose.

In this study, numerical results of the in-house code and the Fluent software are

validated for the implementation of electrohydrodynamics by comparing with cre-

dential experimental, numerical and analytical data in literature. Additionally,

they are extensively validated for various test-cases in relation to the problems of

interest. These problems are the electrified Rayleigh-Taylor Instability, electrified

bubble rising, electro-coalescence of binary droplets and electro-jet printing. In

the following, the conclusions regarding each of these problems are discussed.

1. The Rayleigh-Taylor Instability occurs when two sheets of fluid are separated

by an interface and the gravitational force is directing from the heavier fluid

towards the lighter one. Thus, a perturbation on the interface generates an

instability which is followed by formation of descending heavier fluid spikes

and ascending lighter fluid bubbles. Depending on the direction of electric

properties gradients, two different force configurations on the interface may

be obtained. Several simulations have been performed for these two force

configurations and results have been compared with no electric field case.

In order to scrutinize the effect of the resultant electric on the instability

in question, simulations have been conducted by changing the values of the

electric permittivity as well as the strength of the electric field. The following

comments can be made as concluding remarks

• The electric polarization force always acts normal to the interface while

the electric field force is oriented in the direction of electric field. For

both electric permittivity gradient cases, the polarization force is dom-

inant wherever the interface is parallel to the growth direction of the

instability, such as spike stem and side-tails. The electric field force af-

fects the instability at spike tip providing a force in the direction of the
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growth of the instability and at the bubble tip creating a force in the

reverse direction to the ascent of the bubble, provided that the permit-

tivity gradient is from heavier to lighter fluid. As for the case with the

permittivity gradient vector from lighter to heavier fluid, the electric

field force affects the instability at the bubble tip position providing an

accordant force in the direction of bubble ascent.

• In comparison to the test case without electric force, the spike pene-

trates faster into the lighter fluid and the spike stem and side-tails are

narrower due to the presence of polarization force in the test case with

the permittivity gradient vector from heavier to lighter fluid. As for the

test case with the reverse permittivity gradient vector, the spike has a

slower descent and the resultant electric forces lead to a larger spike

frontier and thicker spike stem and side tails. The bubble experiences

resultant electric forces in the direction enhancing the rising motion of

bubble. The side currents of heavier fluid approach the main stem and

form a bubble entrapment, associated by secondary instabilities in the

main spike stem region.

• Increasing the value of electric permittivity and the strength of the

electric field, it is observed that for the case having electric permittivity

gradient vector from heavier to lighter fluid, despite having a resisting

force at the bubble tips, the bubble rises faster at early time steps for

higher electric force contributions. The reason for such an observation

lies behind the fact that the hydrodynamic force due to replacement

of lighter fluid by the heavier one as the spike descend contributes to

the ascent of the bubble. Similarly, for the other case, it is expected

that due to the presence of resistive electric forces at the spike tip, the

spike has a slower penetration in early times for larger electric force

magnitudes. However, the electric forces at the bubble region enhance

the rising motion of the bubble. This provides hydrodynamic forces

exerted onto the heavier fluid, resulting in faster penetration for larger

electric force values at early time steps.

2. The bubble rising is simulated for an oil-water system to represent the effects

of Reynolds, Bond and Electro-capillary numbers on different aspects of the

bubble rising under the effects of electric forces. The final conclusion can be

made as

• The general trend of bubble Aspect ratio is a linear increase to a max-

imum value which follows by a non-linear fashion reaching a plateau
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where the electric and hydrodynamic forces balance each other. More-

over, it is found that the bubble Aspect ratio increases by incrementing

electrical Capillary and Reynolds numbers, and decrementing the Bond

number. Increasing the Reynolds number, the bubble response to elec-

tric forces is faster and the maximum Aspect ratio is reached earlier

in time. Decrementing the Bond number, the surface tension force is

stronger on bubble interface which attempts to preserve the circular

bubble shape. Since the electrical Capillary number is kept constant

for variations of Bond number, the electric forces are augmented as

well, resulting in an increase in Aspect ratio by decrementing the Bond

number.

• The study of centroid and bottom velocities of bubble for variations

of electrical Capillary, Reynolds and Bond numbers reveals that the

centroid velocities increase with increments of electric Capillary and

Reynolds number. Increase in the Bond number yields in the increase of

the centroid velocities in the transient stage, in contrast to the terminal

stage. The bottom velocity is observed to be under the influence of

bottom boundary and initially gets negative values for all cases showing

the pulling effect of the bottom boundary. A dimensionless time scale

velocity is introduced as the ratio of dielectrophoretic velocity over the

hydrodynamic velocity. As this dimensionless velocity scale increases,

the pulling effect of the bottom boundary is enhanced.

• The interaction of a bubble pair shows that for vertically in-line bub-

bles, the distance between bubble centroids becomes smaller during the

bubble rise which infers that the bottom bubble feels the pressure drop

at the wake of the upper bubble. It is seen that for small values of ini-

tial center to center distance, the bubbles merge during their rise. For

the cases where the bubble centroids are not initially in-line in verti-

cal direction, however, the distance between bubble centroids increases

which indicates that the bottom bubble does not feel the wake of the

upper one. It is also observed that the bubbles gradually get in-line

during their rising motion.

3. In order to study the effect of domain confinement and electric force on

the formation of a toroidal bubble for the bubble rising, a case with the

simulation conditions of Re = 100, Bo = 50, D = 0.001, V = 0.01, C = 0.001,

and P = 0.05 is considered. Four confinement ratios, Cr = 2, 3, 4 and 5,
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are modeled and Electro-capillary number is adjusted to consider the effect

of electric forces. The concluding remarks are listed as

• It is found that both Electro-capillary number and confinement ratio

are influential on the formation of the toroidal bubble. The bubble is

pierced when the electric forces is sufficiently strong. The reason is that

when the bubble is in the initial transient stage, the distance between

the upper and bottom surfaces of the bubble decreases and then, the

electric forces pierces the bubble. For smaller confinement ratios, larger

Electro-capillary number is required to pierce the bubble. After the

formation of a toroidal bubble, a secondary transient stage is observed.

During the secondary transient stage, the vertical rise velocity of the

bubble ring slightly decreases while the diameter of the bubble ring

increases.

• It is observed that in all confinement ratios, the bubble terminal Reynolds

number increases with enhancement of electric forces up to the state

where the bubble remains non-pierced. The formation of the toroidal

bubble is followed by a sudden drop of almost 50 percent in bubble

vertical rise velocity. Increasing the Electro-capillary number after the

bubble piercing does not have a significant influence on the terminal

Reynolds number. The terminal Reynolds number increases with in-

crements of confinement ratio both before and after the formation of

the toroidal bubble.

• The study of the velocity streamlines revealed that after the formation

of the toroidal bubble, a pair of vortices gently develops around the bub-

ble ring resulting in gradual disappearance of the upward jet current.

For smaller confinement ratios, the pair vortices develop right after the

piercing, thus the upward jet current disappears earlier. Formation of

the pair vortices results in the development of other complex vortices

beneath the bubble ring.

• Considering the wall shear stress, it is found that for all confinement

ratios, the wall shear stress increases with increments of the Electro-

capillary number. In larger confinement ratios, the magnitude of the

wall shear stress is much smaller than the smaller confinements. Nega-

tive shear stress is found in some parts of the side wall elevations due

to the existence of complex vortices formed after the piercing of the

bubble, especially in smaller confinement ratio cases.
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4. A multiphase ISPH method is proposed based on the lubrication theory

and the film drainage model to simulate droplet coalescence and electro-

coalescence. Then, the method is utilized to simulate head-on and head-off

coalescence, as well as the electro-coalescence for wide ranges of simulation

conditions. Below, the concluding comments are provided as

• The implementation of the film drainage model shows that the model

can drain out those particles of surrounding fluid entrapped between

droplet interfaces. This is done by adding a lubrication velocity to

these particles when two droplets are approaching each other.

• For the head-on and head-off coalescence, we simulated test-cases up to

We = 30 and 0 ≤ β ≤ 0.8 . It is observed that all cases undergo perma-

nent coalescence except for hdn-7 where the inertia is strong enough to

separate the coalesced droplet into two smaller ones. For the electro-

coalescence, both oblate and prolate deformed droplets are attracted to

each other and permanent coalescence occurs for both types.

5. A systematic study is presented for the simulation of electro-jet printing

by introducing three dimensionless numbers, Reynolds, Electro-Weber and

Weber numbers. The Reynolds and Weber numbers represent the relative

importance of inertia over viscous and surface tension forces, respectively,

while Electro-Weber number is the ratio of electric forces over inertia. The

final comments as the concluding remarks are classified as

• The numerical findings show that the electric forces act on the interface

of the printing liquid directing from the liquid towards the surrounding

air. The electric forces contribute to the formation of the jet mainly

by pulling the printing liquid towards the deposition surface. Since

the electric relaxation time is much smaller than the viscous relaxation

time, the electric potential drop in the printing liquid is observed to be

negligible compared to that in the air. Thus, the electric field between

the tip of the jet and the deposition surface becomes larger as the

injection evolves, resulting in the formation of larger electric forces at

the tip of the jet.

• The systematic study shows that the electric diameter of the print-

ing jet becomes narrower with the increments of Reynolds number in

constant Electro-Weber numbers. By increasing the Reynolds number,

the relative importance of inertia with respect to the viscous effects
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is increased. Thus, in order to keep the Electro-Weber number con-

stant, electric field needs to be adjusted. This leads to increments of

electric forces on the interface which yields in the formation of a nar-

rower printing jet. By increasing the Electro-Weber number at constant

Reynolds number, the significance of electric forces over the inertia, sur-

face tension and viscous forces increases. Thus, narrower printing jets

are observed in larger Electro-Weber numbers. It is also seen that for

Re = 0.1 and 0.2, there is an unstable jet in Electro-Weber numbers

greater than Ew > 500. For these cases, it is found that electric forces

become so strong and drippings of the printing liquid is observed which

prevents the formation of a stable printing jet.

6.2 Future works

This work represents a comprehensive study on the capabilities of the electrohy-

drodynamics to control numerous multiphase flow problems. However, there are

many interesting and novel challenges in this field which can be tackled as future

research directions. Below, possible future patterns of research are suggested as

the extension of the present study, including but not limited to

1. There are numerous problems in the field of electrohydrodynamics effects

which require careful investigation and development of the SPH method.

Some of these problems are

• other multiphase flow problems,

• non-Newtonian fluids, and

• turbulent flows.

2. Studies on three dimensional problems within the context of electrohydro-

dynamics multiphase flows are also novel in the field.

3. Development of new models for the simulation of electrohydrodynamics which

can cover all fluid systems with different combinations of electrical proper-

ties.

4. Solution of real-world industrial problems where the electrohydrodynamics

can control the physical behavior of the fluid system.
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5. The performance of the present code can be improved by employing parallel-

processing techniques such as GPU-based CUDA platform which can mag-

nificently reduce the computational cost.

6. Considering the simulation of electro-jet printing, the present numerical

model can be extended to non-Newtonian fluids, non iso-thermal printing

process by including the solidification effects after injection, and pulsation

of the inlet feed rate.
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