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ABSTRACT

APPLICATIONS OF BAYESIAN INFERENCE FOR THE

ORIGIN DESTINATION MATRIX PROBLEM

This thesis presents a study of estimating the probability matrix of an origin-

destination model associated with a two-way transportation line with the help of

Bayesian inference and Markov chain Monte Carlo methods, more specifically, Metropo-

lis within Gibbs algorithm. Collecting the exact count data of a transportation system

is often not possible due to technical insufficiencies or data privacy issues. This thesis

concentrates on the utilization of Markov chain Monte Carlo Methods for two origin-

destination problems: one that assumes missing departure data and one that assumes

the availability of differentially private data instead of the complete data. Different

models are formulated for those two data conditions that are under study. The ex-

periments are conducted with synthetically generated data and the performance of

each model under these conditions were measured. It has been concluded that MCMC

methods can be useful for effectively estimating the probability matrix of certain OD

problems.
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ÖZET

KÖKENLİ VARIŞ NOKTASI PROBLEMLERİNE

YÖNELİK BAYESCİ ÇIKARIM UYGULAMALARI

Bu tez, çift yönlü ve tek hatlı bir metro sistemiyle ilişkili kökenli varış problem-

inin olasılık matrisini Bayesci çıkarım ve Markov zinciri Monte Carlo metodları kulla-

narak kestiren bir çalışma sunmaktadır. Bir ulaşım sisteminin kesin sayım verilerini

toplamak çoğu zaman teknik eksiklikler ve veri gizliliği politikaları sebebiyle mümkün

olmamaktadır. Bu tezin odağı eksik veri toplandığı veya gürültülü veri yayınlandığı

koşullarda, İstanbul’daki Kadıköy-Pendik metro hattına benzer, iki yönlü tek hatlı

metro sistemlerinin olasılık matrisini Markov zinciri Monte Carlo metodlarını kulla-

narak kestirmektir. Eksik ve gürültülü veri elde edildiği durumlarda kullanılabilecek

değişik modeller formüle edilmiştir. Veri sağlayıcıdan gerçek veri elde edilemediği için

veri sentetik olarak tarafımızca oluşturulmuş ve formüle edilen modellerin olasılık ma-

trisini kesirmekteki performansları değerlendirilmiştir. Markov zinciri Monte Carlo

metodlarının konumuz olan kökenli varış problerinin olasılık matrisini etkin bir şekilde

kestirmekte kullanılabileceği sonucuna ulaşılmıştır.
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1. INTRODUCTION

1.1. The Origin-Destination (OD) Matrix Problem

The origin-destination matrix (ODM) problem involves finding passenger prefer-

ences in a transportation line. Let n > 1 be the number of stations in a transportation

line and H be a n × n ODM associated with this transportation line. The (i, j)’th

element of the origin destination matrix H, hi,j, denotes the number of customers that

enter the metro line from the i’th station and depart from the j’th station. In this

thesis, it is assumed that for each customer that enters the metro line at station i, the

probability of leaving the line at station j is denoted by ρi,j. Let ρ be the matrix of

these probabilities with the (i, j)’th element being ρi,j.

The rows of the H can be normalized to yield a maximum likelihood estimation

of the probability matrix ρ. Note that, since one cannot enter and depart from the

same station, the diagonals of both H and ρ are zero. Estimating the ρ matrix directly

would be straightforward if the H matrix was fully observable, however most of the

time, these matrices can not be obtained directly due to various mechanisms which

result in incomplete or noisy data. Collecting the whole data would be possible by

recording each passenger’s entrance and exit stations. If each passenger’s entrance and

exit stations were recorded, it would mean that each passenger’s travel information

is also recorded. Knowing the routes and journeys of all passengers would lead to

computing the ρ matrix directly. Since collecting the complete data would require

collecting each individuals data separately, a technical infrastructure which collects

this data should be present, therefore each passenger needs to be registered to this

system. Especially, when it comes to estimating the ρ matrix of the traffic data,

this infrastructure is not present, however estimation to an extent is still possible. In

some cases, the original data might still not be available even if they were collected

completely. This situation might be faced if the data holders’ policy is to release a

differentially private data in order to protect the privacy of the passengers. This policy

causes the data obtained by the data holder to be noisy, therefore direct analysis from
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the obtained data will not yield the most realistic results. This thesis focuses on and

suggests methods for estimating the ρ matrix of a two-way metro-line which is similar

to the Istanbul railway system under two different cases in which the original H matrix

can not be obtained due to:

• incomplete data collection

• data privacy issues

which then leads to missing and noisy data conditions respectively.

1.1.1. Incomplete Data Collection

Previous studies conducted under incomplete data environment involved utiliz-

ing passenger surveys (Watling, 1994), and traffic counts, where the statistical ap-

proaches such as maximum likelihood were discussed (Cascetta et al., 1993; Cascetta

and Nguyen, 1988). However Bayesian statistics, which gives weight to prior beliefs

and available data, were explored deeply since as early as 1983 (Maher, 1983) with

available traffic link counts information. In a later work by Tebaldi and West (1998),

Bayesian statistics were proposed to be a feasible approach to such origin-destination

problems with missing data including the traffic flow rates, link counts, and prior out-

dated estimates of the matrices. Bayesian inference framework was investigated further

by Li with the addition of the Expectation Maximization algorithm which reduced the

computational effort required to compute the posterior (Li, 2005). Hazelton (2001)

suggested that estimating and predicting O-D matrices with the help of Markov chain

Monte Carlo methods, more specifically Metropolis-Hastings algorithm, have great po-

tential compared to reconstructing methods. Ni and Leonard II (2005) later proposed

using Markov chain Monte Carlo methods in order to impute, simulate, and sample

the missing data and analyze the estimation problem with the help of resampled data.

Their work is important because they have showed that Markov chain Monte Carlo

methods were successful and accurate to estimate the traffic count, speed, and, density

of the system when the complete data was not available. We will utilize a similar

approach in order to deal with our missing data model; however, our aim is not to
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simulate and impute the missing data only, but also to estimate the ρ matrix, the

mechanism that lies behind the data.

Estimating the ρ matrix of some railway systems is easier since some govern-

ments adopted the Smart Card system which either collects the complete data, such as

Netherlands Railway System, or the partial data, such as Istanbul Railway System. In

Istanbul, a smart-card issued by the government called Istanbul Kart is widely used by

locals. It is possible to purchase and load credits and use these credits when entering

public transportation. When a passenger enters the metro line, he scans his card at a

machine which then reduces the credits in the card. However, they do not re-scan their

cards when they leave the metro-line. Thus, the data collected on the cards contains

only the entrance information to the metro line, not the exit information. Since the

data regarding the exit information is not available, it is not possible to directly obtain

H, and therefore a direct estimate for the matrix ρ from H. A counting method which

accepts the departure station to be the second of two consecutive arrivals based on the

assumption that a daily passenger will not use other means of transportation between

two consecutive entries was proposed by Zhao and Rahbee (2007). However the as-

sumptions made by Zhao and Rahbee (2007) model the exit stations of the customers

deterministically rather than stochastically, hence statistical inference methods were

not utilized. Another similar work which estimates the destination points in a missing

data environment was conducted by Munizaga and Palma (2012) where the destination

point on a metro line is guessed by the combined information gathered from the Smart

Cards and the GPS data of the Santiago, Chile transportation system. The missing

data points were filled through Markov chain Monte Carlo methods and statistical

analysis on the completed data were conducted. Later, this work was validated to es-

timate the OD matrix up to 90 percent correctness (Munizaga et al., 2014). Since our

missing data model assumes that only the Smart Card data with missing exit station

information are available, we decided to fit a probabilistic model for the exit stations

and simulated these missing data points with the help of Markov chain Monte Carlo

methods.
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1.1.2. Data Privacy Issues

As mentioned previously, collecting the complete data means collecting and stor-

ing each individual’s data. In such cases where the whole data was collected, the

original H matrix might still not be available to the researchers due to differential

privacy issues. The related institution is likely to provide an altered version of the H

matrix, which adds noise to the original H matrix, so that the privacy of each passenger

is protected since it would not be ethical to issue each person’s travel data.

There are rather small number of work related to parameter estimation and sta-

tistical inference for the differentially private data. The first work that addresses the

parameter estimation problem from a differentially private data was conducted by

Charest (2010). In this work it was concluded that it is possible to infer the parame-

ters of a differentially private data through Markov chain Monte Carlo methods if the

parameters of the privacy mechanism is taken into consideration. Charest (2010) also

provided an example experiment in which they conducted analysis on the posterior

distributions of the Beta-Binomial mechanism. Although there is yet no work present

on the estimation of ODM parameters from differentially private data, Markov chain

Monte Carlo methods were proven to be a viable approach for estimation under dif-

ferential privacy (Lu and Miklau, 2014). In this thesis implementation of the Markov

chain Monte Carlo methods for differentially private ODM will be explored.

1.2. Differential Privacy

Differential Privacy concept has emerged to address the concern of releasing data

regarding the individuals in large data sets. As mentioned previously, collecting the

necessary data in order to conduct statistical analysis requires collecting each individ-

ual’s data. Most of the private data of an individual, such as health record, travel

information, purchases etc. are collected through electronic systems and databases

implemented by service providers. The collection of these data is mostly subject to

further statistical analysis in order to provide insights about the population. However,

releasing this data directly to third parties for analysis is either not possible due to



5

ethical and legal contracts or will give away important private information in individ-

ual level, therefore the institutions that possess this data are motivated to protect the

privacy of each individual when it comes to publishing this data. Differential Privacy is

a set of methods and algorithms devoted to protect each individual’s data while allow-

ing statistical analysis from the data as a whole (Dwork and Roth, 2014). Differential

Privacy algorithms aim to alter the collection of the data in such a way that reaching

to an individual’s data is not possible while the whole data’s implication is still viable.

This mechanism is achieved by adding randomness to the collection of the data so that

reaching to a definite conclusion about any individual is not possible.

There are a few definitions to be made in order to fully understand how Dif-

ferential Privacy algorithms work. These definitions have been made by Dwork and

Roth (2014) where they thoroughly formulated the fundamentals, algorithms, and ap-

plications of Differential Privacy. We need the following three definitions prior to

formulating a differential privacy of an algorithm.

• Randomized algorithm

• Probability Simplex

• Distance Between Databases

Definition 1 (Randomized Algorithm). A randomized algorithm is a mechanism, M ,

that produces a mapping, M : A→ ∆(B), where A denotes the domain of the algorithm,

B denotes a discrete range, and ∆(B) denotes the probability simplex over B.

Definition 2 (Probability simplex). The probability simplex, ∆(B) is defined as fol-

lows:

∆(B) =

x ∈ R|B| : xi ≥ 0,∀i and

|B|∑
i=1

xi = 1

 .

In this notation, X represents the data universe where each x is collected from,

where x denotes the histogram of the data. Namely, xi denotes the number of type
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i elements present in the universe X in the database x. As the logic suggests, x can

take values from the non-negative integers set.

Definition 3 (Hamming distance). The Hamming distance between a couple of databases

x and y is the number of entries that are different than each other. Hamming distance

can be calculated for data sets which are equal in length. In other words, Ham(x,y)

can be found by comparing each corresponding entry with each other and recording the

number of total different entities.

Finally Dwork and Roth (2014) define Differential Privacy as:

Definition 4 (Differential privacy). A randomized algorithm, M , with its domain being

N|X| and where N represents the set of non-negative integers, is (ε, δ) differentially

private if ∀S ⊆ Range(M) and ∀x,y ∈ N|X| such that Ham(x,y) ≤ 1:

P(M(x) ∈ S) ≤ eεP(M(y) ∈ S) + δ

The quantity ε is referred as the privacy factor that the algorithm provides and

is a positive real number. ε-differential privacy is a special case of differential privacy

where δ = 0. ε-differential privacy ensures that:

P(M(x) = m)

P(M(y) = m)
≤ eε.

1.2.1. Laplace Mechanism

The data we investigate in this thesis is an example of counting data since the

elements of the H matrix, Hi,j’s, denote the number of passengers which entered the

railway system from station i and departed from station j. A mechanism called the

Laplace mechanism is widely used to ensure the differential privacy of each individual’s

data in a counting data set. Laplace mechanism adds a Laplacian noise to each entry

in a counting data and issues a noisy version of the original count data. The Laplace
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mechanism applied to a function f : X → R of the data is defined by (Dwork and

Roth, 2014) as follows:

ML(x, f(·), ε) = f(x) + (Y1, . . . , Yk).

Here, Yis are random variables drawn from Lap(∆f
ε

) where ∆f represents the sensitivity.

The sensitivity is defined as follows:

∆f = max
y,y′:||y−y′||≤1

|f(y)− f(y′)|.

The sensitivity of the data helps to determine the noise that should be added in

order to ensure every user’s privacy. Sensitivity can be perceived as the maximum pos-

sible contribution of an individual to the whole data, therefore adding noise according

to this measure will prevent capturing data in individual level. The Laplace Mechanism

can be used to produce an ε-differentially private data from counting and histogram

databases (Dwork and Roth, 2014). There are other methods such as the Exponen-

tial Mechanism and the Gaussian Mechanism in order to generate differentially private

data, however these methods are out of the scope this thesis.

In Chen et al. (2014), differential privacy via the Laplace mechanism is ensured

in order to avoid jeopardising passengers individual data in transportation systems.

In this thesis, the noisy data model is assumed to be protected with the Laplace

mechanism and feasibility of the Metropolis-Hastings within Gibbs algorithm in order

to estimate the ρ matrix is explored. The literature review revealed that, a work which

employs Markov chain Monte Carlo estimation methods for transportation systems

and OD matrices in a differentially private environment is not yet present.
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1.3. Markov Chain Monte Carlo (MCMC) and Metropolis-Hastings

within Gibbs Algorithm

An ergodic Markov chain whose stationary distribution is π will converge to π

if it is simulated for a relatively long time. If it is possible to design such a Markov

chain which has the stationary distribution as the desired distribution of the estimated

parameters, then it is also possible to run this Markov chain for a long enough time and

sample the estimated parameters from this distribution (Yıldırım, 2016). This method

has been proven to converge in the previous literature. The foundations of the Markov

chain Monte Carlo methods were first built by Metropolis and Ulam (1949) and then

improved by Hastings (1970).

One of the most popular Markov chain Monte Carlo algorithms is the Metropolis-

Hastings (MH) algorithm and this algorithm has been studied quite widely in the liter-

ature in different application areas. The Metropolis-Hastings algorithm is an iterative

process which proposes a new value for the estimated parameter depending on its pre-

vious value in each iteration. The proposed value is accepted with a certain probability

called the acceptance probability α(X(k−1), X ′) and if accepted, the current value of the

parameter is updated to the proposed value X ′ (Hastings, 1970). The algorithm starts

by initializing X(1) from some beginning point, then the steps conducted at iteration

k, k > 1 is given in Algorithm 1.

Algorithm 1: Metropolis-Hastings Algorithm at k’th iteration

1 Sample X ′ ∼ Q(·|X(k−1))

2 Set X(k) = X ′ with probability α(X(k−1), X ′); otherwise set X(k) = X(k−1)

Let q(·|·) be the conditional density of the proposal kernel Q(·|·). The acceptance

probability, α(X(k−1), X ′), is defined as follows:

α(X(k−1), X ′) = min

[
1,

π(X ′)q(X(k−1)|X ′)
π(X(k−1))q(X ′|X(k−1))

]
.

There are two important special cases of the design of the Q. The first of these is the
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symmetric choice for Q so that q(X ′|X(k−1)) = q(X(k−1)|X ′). This special case is called

the random walk MH. Since q(X ′|X(k−1)) = q(X(k−1)|X ′), the acceptance probability

for this model becomes:

α(X(k−1), X ′) = min

[
1,

π(X ′)

π(X(k−1))

]
.

The second of the special cases is called the independence Metropolis-Hastings algo-

rithm. For this algorithm, Q is designed in such a way that the proposed value X ′ does

not depend on its previous value, namely q(X ′|X(k−1)) = q(X ′). In this case, it is easy

to see that the acceptance probability becomes:

α(X(k−1), X ′) = min

[
1,
π(X ′)q(X(k−1))

π(X(k−1))q(X ′)

]
.

Selection of Q determines the efficiency of the algorithm, therefore designing an ap-

propriate Q is of core importance for the algorithm. Metropolis-Hastings algorithm

is quite useful for targeting posterior distributions of parameters whose joint distribu-

tions are normally intractable but can be computed up to a proportionality constant.

Therefore selection of Q plays a very important role in this thesis and its applications

will further be examined in the coming chapters where the models are discussed in

more detail.

Another widely used MCMC algorithm is the Gibbs sampler (Gelfand and Smith,

1990; Geman and Geman, 1984). This algorithm is particulary useful when X, the

estimated parameters, is multi-dimensional, has D > 1 components such as X =

(X1, . . . , XD), as it allows sampling each component by their conditional densities,

namely full conditional distributions πd, depending on the other components (Yıldırım,

2016). Gibbs sampling is also an iterative process: At each iteration, each component

is sampled and updated depending on the full conditional distributions on the other

parameters. Since components of X are sampled from full conditional distributions,

there is no concept of acceptance probability as there is in the Metropolis-Hastings

algorithm (Gelfand and Smith, 1990; Geman and Geman, 1984). Similar to Metropolis-
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Hastings algorithm, Gibbs algorithm starts by initializing X(1) at some beginning point.

The steps conducted at iteration k, k > 1 is given in Algorithm 2.

Algorithm 2: Gibbs Sampling Algorithm at the k’th iteration

1 Sample Xk
d ,∼ πd(·|Xk

1:d−1, X
k−1
d+1:D) for d = 1, . . . , D

It can be clearly seen from the algorithm that, sampling Xk
d requires all con-

ditional distributions of the components to be computed. In some cases, the full

conditional density of the d’th component, πd(·|Xk
1:d−1, X

k−1
d+1:D), is not tractable. In

such cases, it is still valid to replace the Gibbs sampler move for the d’th step with

a Metropolis-Hastings move that updates this component, Xk
d that targets πd(·|Xk−1

d )

(Yıldırım, 2016). This alteration in the algorithm is called Metropolis-Hastings within

Gibbs algorithm and the generalized form is given in Algorithm 3.

Algorithm 3: Metropolis-Hastings within Gibbs algorithm at the k’th itera-

tion

1 Update X
(k)
d by using a Metropolis-Hastings move that targets

πd(·|Xk
1:d−1, X

k−1
d+1:D) for d = 1, . . . , D

We have utilized this property of these two algorithms in all of our models for

the parameters whose full conditionals were not tractable. In Chapters 2 and 3, the

detailed formulation of the model used to estimate the unknown parameters for the

Entry Only Data scenario and the results yielded by this model are given, in Chapter 3,

the detailed formulation of the model and comparison of 4 different proposal densities

used to estimate the unknown parameters for the Noisy Data scenario and results

yielded by this model are given. The thesis is then concluded in Chapter 4 and possible

improvements for the future work are discussed.
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2. BAYESIAN ODM PARAMETER ESTIMATION USING

ENTRY-ONLY DATA

2.1. The Entry Only Data and the Model

This model simulates a single line two-way transportation system. As an example,

we will consider the metro line in the Anatolian side of Istanbul. As stated above,

passengers of Istanbul metro-line use a smart-card called Istanbul Kart in order to

enter the metro system. This system only collects data when entering the metro-line

but does not collect information about the destination of the passenger, the station

from which the passenger leaves the system. We assume a single line with n > 1

stations, where passengers can travel in both directions. The available data in our

problem contain only the arrival information for passengers since the cards do not hold

any data regarding the exit information. A portion of an example of the available data

can be seen in Table 2.1.

Table 2.1. Example Data Regarding One Card

Card ID Time of Arrival Arrival Station

1 07.42 5

1 11.48 9

1 12.10 9

1 18.03 2
...

...
...

From such a data set, we can deduce the following variables for a trip that a

customer performs:

• Passenger ID,

• The stop the passenger arrives, A ∈ {1, . . . , n},

• The time of arrival, TA,

• The stop the passenger arrives next, B ∈ {1, . . . , n},

• The time of the next arrival, TB.
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In an entry-only data set, the missing information is the departure time and

the station that the passenger leaves the system from. Each passenger arrives to the

system at a random station A at a random time. We will denote the departure station

by the random variable D and the time of departure by TD. In the origin-destination

problem, the conditional probability distribution of D given A is represented by an

n× n ρ matrix, where

P(D = d|A = a) = ρa,d.

For simplicity, it is assumed that the travel time between each station is the same and

it is ∆; therefore, the departure time is calculated as follows:

TD = TA + |D − A|∆. (2.1)

Our model assumes that, as the time between the departure and the next arrival in-

creases, the probability of re-entering the system from the departure station decreases.

The reasoning behind this assumption is that it is highly likely that if a passenger

spends a large amount of time after departing, the probability of using other means of

transportation increases, and therefore they are less likely to come back to the same

station from which they departed. This assumption is reflected by our probability

model for the next station of arrival: The probability of arriving at station B = b

given D, TD and TB is denoted as:

P(B = b|D = d, TD = tD, TB = tB) =

gα(b|d, tB − tD), tB > tD

0, tB < tD.

(2.2)

If we let τ denote tB − tD, for τ > 0, we can calculate gα(b|d, τ) as

gα(b|d, τ) =


exp{−α/τ}

1+(n−1) exp{−α/τ} , b 6= d

1
1+(n−1) exp{−α/τ} , b = d.

(2.3)
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This constructs the conditional probability of the next station of arrival B given the

first station of arrival A,

P(B = b|A = a, TB = tB, TA = tA) =
n∑
d=1

ρα,dgα(b|d, τ) (2.4)

where tD is calculated from tA, α and d using the relation in (2.1).

2.2. The Inferential Problem

Without loss of any information with respect to our inferential goals, we can

reorganise the data into a collection of entries of the form

Y = (A,B, TA, TB).

That is, each entry Y contains a pair of successive stations a passenger arrives, A and

B, with the times of arrival, TA and TB. Since the behaviour of all passengers will be

treated as the same in this work, we do not keep the passenger ID in Y . If the original

data are organised into M such entries, then the whole data set can be expressed as

Y = {Yi = (Ai, Bi, TA,i, TB,i, i = 1, . . . ,M}.

The inference problem is, then, to estimate the static parameters of the system,

which are the ρ matrix and α. In Section 2.3, the proposed method of estimation is

explained.

2.3. Methodology

We propose to use the Metropolis-Hastings within Gibbs Sampling method in

order to estimate the ρ matrix and α. If we let y = (a, b, tA, tB) be the data portion

that describes information for two consecutive entries of a passenger and θ = (α, ρ),
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we have

p(y|θ) ∝
n∑
d=1

ρa,dgα(b|d, τ)

where the proportionality constant does not depend on θ. For any y = (a, b, tA, tB)

and θ, let f(y|θ) be defined as:

f(y|θ) =
n∑
d=1

ρa,dgα(b|d, τ) (2.5)

where tD is calculated from tA, a, and d using (2.1). Assume that there are M such

entries y1:M = y1, . . . , yM , so we have

y1:M = {Ai, Bi, tA,i, tB,i; i = 1, . . . ,M}.

Then, the likelihood of the whole data set can be expressed as:

p(y1:M |θ) ∝
M∏
m=1

f(ym|θ) (2.6)

and the proportionality constant does not depend on θ. In other words, the exact

expression for p(y1:M |θ) contains additional multiplicative factors that stand for the

probability density of the first arrival time of a passenger and the times of the next

arrival, however, this density does not depend either on ρ or on α, therefore, we can

omit those factors.

Our aim is to estimate θ in a Bayesian inference framework. Let the prior distri-

bution for θ has the density µ(θ), which leads to the posterior distribution π(θ|y1:M)

that can be written as

π(θ|y1:M) ∝ µ(θ)p(y1:M |θ). (2.7)

For simplicity, we introduce a new variable, η = logα. The parameters η and ρ are a
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priori independent with

p(η;µ, σ2) = N (η;µ, σ2)

where N (η;µ, σ2) is the density of the normal distribution with mean and variance

parameters µ and σ2, and

p(ρ; δ) =
n∏
i=1

p(ρi; δi)

=
n∏
i=1

Dirichlet(ρi,1, . . . , ρi,n; δ1,1, . . . , δn,n)

where Dirichlet(ρi,1, . . . , ρi,n; δ1,1, . . . , δn,n) is the density of the Dirichlet distribution

with parameters δi,1, . . . , δi,n. By design, we choose δi,i = 0 allowing no self transition

among the stations. The pdf of the Gaussian (µ, σ2) is given by

N (x;µ, σ2) =
1√

2πσ2x
exp

(
− 1

2σ2
(x− µ)2

)
.

Note that since the prior density of η was chosen to be a Gaussian density, the prior

density of α is then a Lognormal density with mean and variance parameters µ and σ2

as η = logα. The pdf of Dirichlet(δ1, . . . , δn) is given by

Dirichlet(x1, . . . , xn; δ1, . . . , δn) =

[∏n
i=1 Γ(δi)

Γ(
∑n

i=1 δi)

n∏
i=1

xδi−1
i

]
I(x1 + . . .+ xn = 1).

Overall, the prior density for θ = (ρ, η) is

µ(θ) = p(η;µ, σ2)
n∏
i=1

p(ρi; δi).
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2.3.1. Markov chain Monte Carlo

It is generally hard to evaluate certain expectations with respect to their posterior

distribution in (2.7). Therefore, we will use Markov chain Monte Carlo (MCMC). We

extend the unknowns from θ to θ,D(1:M) for the Metropolis Hastings within Gibbs

algorithm since the data do not contain the departure information.

First of all, θ is initialized, and in each iteration k of the Metropolis within Gibbs

algorithm, the steps given in Algorithm 4 are conducted.

Algorithm 4: k’th iteration of the Metropolis within Gibbs Sampling Algo-

rithm

1 Sample D
(k)
1:M ∼ p(D1:M |Y , ρ(k), α(k)) =

∏M
m=1 p(Dm|Am, Bm, tA, tB, ρ

(k), α(k))

2 Sample ρ(k) ∼ p(ρ|D(k)
1:M , A1:M , B1:M)

3 Run a one step Metropolis-Hastings (MH) algorithm for

p(α|D(k)
1:M , A1:M , B1:M , tA,1:M , tB,1:M) that updates α(k−1) to α(k)

The detailed explanation of the each step of the algorithm is as follows:

2.3.1.1. Sampling D1:M . Since we do not have information on the departures, we first

need to sample D for each entry i ∈ {1, . . . ,M}. We calculate the likelihood of each

d ∈ {1, . . . , n}, p(D(1:M)|Y , ρ(k), α(k)) and sample D from this likelihood. In order to

calculate this likelihood, we use the above mentioned probability model. In order to

do so, for each entry, we first calculate what the departure time would be for each

d ∈ {1, . . . , n}. Since we know the next arrival station, we can then calculate what the

time between departure and next arrival would be for each d ∈ {1, . . . , n}.

P(Di = d|Ai = a,Bi = b, TA,i = tA, TB,i = tB) ∝ ρa,dg(b|d, τ) (2.8)
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where tD = tA + |d− a|∆. Using this information about the time and the probability

model mentioned above, we can then calculate the likelihood of departing at each

d ∈ {1, . . . , n} and we can sample D for each entry.

2.3.1.2. Sampling ρ matrix. The information about the arrival stations and the sam-

pled departure stations of each entry results can be used to construct an H matrix

where (i, j)’th element of the H matrix, hi,j, denotes the total number of journeys that

started at station i and ended at station j. hi,j can be expressed as:

hi,j =
M∑
m=1

I(Am = i, Bm = j). (2.9)

The rows of the H matrix are distributed with Multinomial distribution with param-

eters being the corresponding row of the ρ matrix. Therefore, conditional on D and

a, the rows of ρ are independent, and their conditional distribution depends only on

D, from which H can be calculated. The Dirichlet distribution is a conjugate prior

for the Multinomial distribution, hence for each row, this conditional distribution of

(ρi,1, . . . , ρi,n) is also a Dirichlet distribution. We can show this conditional density as

p(ρi,1, . . . , ρi,n|H) =
n∏
i=1

Dirichlet(δ1,i + h1,i), . . . , δn,i + hn,i).

We can then use this posterior density to draw a sample for ρ since we can deduce that

p(ρ|D1:M , A1:M , B1:M) = p(ρ|H).

2.3.1.3. Updating α. Since the conditional probability of α given other variables is

not tractable, one step of the Metropolis Hastings algorithm within Gibbs Sampling is

utilized since we can calculate the likelihood p(α|D(k)
1:M , A1:M , B1:M , tA,1:M , tB,1:M) up to

a proportionality constant. The acceptance probability of the MH move becomes:

min

{
1,
p(α′|D(k)

1:M , A1:M , B1:M , tA,1:M , tB,1:M)q(α|α′)
p(α|D(k)

1:M , A1:M , B1:M , tA,1:M , tB,1:M)q(α′|α)

}
.
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As mentioned previously, we defined a new variable, η = logα, whose prior

density is a Gaussian. This conversion assures the positivity of the value of α and also

results is more convenient calculations, therefore η was proposed and updated and the

value of α was calculated thereon. We decided to use a symmetric random walk for

our proposal density, which is Gaussian, q(η|η′) = q(η′|η). The acceptance probability

can then be expressed as:

min

{
1,
p(η′|D(k)

1:M , A1:M , B1:M , tA,1:M , tB,1:M)

p(η|D(k)
1:M , A1:M , B1:M , tA,1:M , tB,1:M)

}
. (2.10)

We cannot directly compute the exact value of p(η|D(k)
1:M , A1:M , B1:M , tA,1:M , tB,1:M), but

since the value of this likelihood is proportional to the joint density

p(η,D
(k)
1:M , A1:M , B1:M , tA,1:M , tB,1:M),

we can compute its value up to a proportionality constant.

p(η,D
(k)
1:M , A1:M , B1:M , tA,1:M , tB,1:M) = p(η)p(ρ)

M∏
m=1

p(Am)ρAm,Dm , gα(Bm|Dm, τ)

(2.11)

If we eliminate the terms which do not depend on η, we can conclude that the likelihood

probability is proportional to the term:

p(η) ∝
M∏
i=1

gα(Bm|Dm, τ).

With the help of these derivations, we calculate the acceptance probability to be:

min

{
1,
p(η′)

∏M
i=1 gα′(Bm|Dm, τ)

p(η)
∏M

i=1 gα(Bm|Dm, τ)

}
. (2.12)

As mentioned above, the prior density for η was chosen to be a Gaussian density; hence,

we can calculate the ratio given in 2.12.
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2.4. Results

In the absence of real data from the relevant government office; the data were

synthetically generated using MATLAB with compliance with the missing data model.

The behavior of the passengers was simulated for a period of 72 hours until there was

a total of M , in our case 100000, entries. The generated data contains:

• The ρ matrix,

• Passenger ID,

• The station at which the passenger arrives, A ∈ {1, . . . , n},

• The time of arrival, TA,

• The station from which the passenger leaves, D ∈ {1, . . . , n},

• The time of departure, TD,

• The station at which the passenger arrives next, B ∈ {1, . . . , n}.

• The time of the next arrival, TB.

We assume that the time between departure and the next arrival is exponentially

distributed with a mean of 240 minutes. We have simulated for n = 10 stations. The

generation of the data simulates such behavior that a passenger enters the system

from a random station at a random time. The departure station is then sampled from

ρ. The time spent between the departure and the next arrival is then sampled from

exponential distribution with a mean of 240. The probabilities of each station being the

next arrival station are calculated, then the next arrival is sampled. After generating

the data, we modify it by removing the information regarding the departure stations

and the departure times since the data we would have received would not contain this

information. However, since we have generated the data, we know the true values of

α and the elements of the ρ matrix which can later be used to check the validity and

consistency of the algorithm.

We ran the Metropolis within Gibbs Algorithm for 20000 iterations for different

values of α. We have compared the true values with our estimations. The values of α

and the elements of the ρ matrix through 20000 iterations compared to the true value
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for α = 0.001 can be seen in Figure 2.1 and Figure 2.2.
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Figure 2.1. Comparison of the estimated α with its true value through iterations

when α = 0.001
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Figure 2.2. Comparison of the estimated ρ with their true values for α = 0.001

In this configuration, 46814 passengers out of 100000 returned to the station of

departure for their next arrival. We have also tested our model with higher and lower

rates of returning to the departure station. For example, if α is reduced, the probability

of returning to the same station will increase and vice-versa. The values of α and the

elements of the ρ matrix through 20000 iterations compared to the true values for

α = 0.0001 can be seen in Figure 2.3 and Figure 2.4.
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Figure 2.3. Comparison of the estimated α with its true value through iterations

when α = 0.0001
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Figure 2.4. Comparison of the estimated ρ with their true values for α = 0.0001

In this configuration 84476 passengers out of 100000 returned to the station of

departure for their next arrival. This increase in the number of passengers returning

to the station of departure is due to the decrease in the parameter α which causes

passengers to choose their next entering station less randomly.

Similarly, increase in α will cause passengers to choose their next entering station

more randomly and therefore more homogeneously. The value of α was then set to
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0.01 in order to simulate this phenomenon and conveniently the number of passengers

returning to the station of departure is 17922. The results regarding this configuration

can be seen in Figure 2.5 and Figure 2.6.
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Figure 2.5. Comparison of the estimated α with its true value through iterations

when α = 0.01
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Figure 2.6. Comparison of the estimated ρ with their true values for α = 0.01
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2.5. Discussion

In order to measure the performance of the algorithm, we have calculated two

different MSE’s, MSE1 and MSE2. How these values are calculated are as follows:

MSE1 =
1

T − tburn

T∑
t=tburn+1

n∑
i=1

n∑
j=1

(ρ
(t)
i,j − ρ∗i,j)2

MSE2 =
n∑
i=1

n∑
j=1

[
1

T − tburn

T∑
t=tburn+1

ρ
(t)
i,j − ρ∗i,j

]2

where T denotes the total number iterations and tburn denotes the number of iterations

in the burn-in period. Moreover, ρ∗ denotes the true posterior mean of ρ given the the

true H matrix. As mentioned previously, the posterior density p(ρ|H) is a Dirichlet

distribution and since the the true values of ρ and H matrices are stored after the data

generation, the true posterior mean can be calculated. Table 2.2 and Figure 2.7 shows

the MSE values obtained for several runs under different α values.

Table 2.2. MSE1 and MSE2 values for different values of α

α MSE1 MSE2

0.0001 1.6766× 10−4 5.1603× 10−5

0.0002 2.4188× 10−4 1.0312× 10−4

0.0005 5.7937× 10−4 4.0539× 10−4

0.001 0.0013 0.0011

0.002 0.0026 0.0022

0.005 0.0218 0.0208

0.01 0.192 0.1893

0.02 0.2446 0.2407

0.05 0.4305 0.4259

As it can be seen at Table 2.2 and Figure 2.7, both of the MSE values tend to

increase as the logα, hence α value increases.

This result was expected since as α increases, the effect of the time passed de-

creases and passengers start to move in the system more randomly and choose their
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Figure 2.7. Comparison of the MSE values for different logα levels

next station to enter the metro-line more homogeneously. This phenomenon causes

the algorithm to estimate the ρ matrix of the configuration with a lower α value more

accurately with its MSE values being quite low, 1.6766 × 10−4 and 5.1603 × 10−5,

whereas the algorithm estimates ρ matrix of the configuration with higher α value less

accurately with its MSE values being relatively larger, 0.192 and 0.1893. Nevertheless,

these results prove the algorithm to be valid when estimating the ρ matrix of such a

scenario with missing data models. Ni and Leonard II (2005) showed in their work

that Markov chain Monte Carlo methods can be used to simulate the missing data

for traffic counts, speed, and density. We have expanded this approach to simulate

the missing destination data and further to estimate the origin-destination matrix of

Istanbul metro-line.
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3. BAYESIAN ODM PARAMETER ESTIMATION USING

THE NOISY DATA

3.1. The Available Data and the Model

As mentioned in Chapter 1, another problem one might come across when es-

timating the origin-destination matrix is that the data provided by the data holders

might not be the original data collected directly from the passengers. Due to data

privacy issues and in order to protect each passengers private travel information, the

data holder is highly likely to provide a noisy version of the original data. In Chapter

2, we have defined H matrix to be an n× n ODM of a single line railway system with

n many stations where hi,j denotes the total number of journeys taken from station

i to station j. In a scenario where the whole data is collected, we can assume that

each user’s journeys are recorded and each user has their own n×n H matrix denoted

as Hu. Similar to H, (i, j)’th element of each of the Hu’s denotes the total number

of journeys made from station i to station j by the user. The following table is an

example of an Hu where n = 3:

Table 3.1. An example Hu where n = 3

0 2 1

3 0 2

1 1 0

With this information we can consider the H matrix to be the summation of H

matrices regarding each user individually, Hu. Let U be the total number of users,

then

H =
U∑
u=1

Hu (3.1)

For this model, it is assumed that the data holder will release a noisy version

of H matrix denoted as H̃ produced via the Laplace mechanism from the original H
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matrix. In order to formulate this inferential problem, it is essential to understand the

mechanism that produces the noisy origin-destination matrices

(H̃1, . . . , H̃D)

for a total of D periods; for example each period may be a day long. H̃’s will be the

only data available in order to estimate the ρ matrix of this system. It is assumed

that, the passengers arrive to each station i according to a Poisson arrival process with

parameters (λ1, . . . , λn). The λi’s are assumed to be independently and identically

distributed from some Gamma distribution Gamma(α, β). Let Xd,i denote the number

of total passengers arrived to the station i on day d due to this Poisson arrival process.

xd,i
i.i.d.∼ PO(λi), d = 1, . . . , D.

By construction, Xd,i can be computed from the H matrix as follows:

xd,i =
n∑
j=1

hd,i,j, i = 1, . . . , n. (3.2)

Similarly, if we let X̃i denote the number of passengers arrived to station i according

to the noisy data, then X̃i’s can be computed through the H̃ matrix.

When a passenger arrives to station i, the probability of him departing to a

station j, j¬i, is denoted as ρi,j. Our prior belief is that each row of the ρ matrix is

distributed with some Dirichlet distribution similar to Chapter 2. Passengers arrive

to the system as a result of a Poisson arrival process and depart to stations according

to probability matrix ρ and through this process, the H matrix is produced. By this
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mechanism, it can be seen that the joint density of the H matrixes given ρ are

p(H;X, ρ) =
D∏
d=1

n∏
i=1

p(hd,i,:;xd,i, ρi)

=
D∏
d=1

n∏
i=1

Multinomial(hd,i,:;xd,i, ρi)

where hi,j refers to the (i, j)’th element of the H matrix. The pmf of the Multinomial

distribution is given by

Multinomial(x1, . . . , xk;n, π1, ..., πk) =
n!

x1!, · · · , xk!
πx11 · · · π

xk
k .

As mentioned above, the data holder will not release this original H matrix but

will add a Laplacian noise distributed with Laplace (S
ε
). S is the sensitivity of the data

and defined to be

S = max
y,y′:h(y,y′)≤1

hd,i,j − h′d,i,j. (3.3)

This in fact is the maximum difference between two adjacent datasets y and y′ differing

in one user’s information. It is assumed that the data is collected for five days and

each passenger can make the same journey from a specific station i to station j for a

maximum of two times, therefore the sensitivity of this model, S is equal to 10. With

the addition of this Laplacian noise, the density of each H̃ is

p(H̃;H,S/ε) =
n∏
i=1

n∏
j=1

Laplace(h̃d,i,j;hd,i,j, S/ε).

The pdf of the Laplace distribution is given by

p(x;µ, b) =
1

2b
exp

(
−|x− µ|

b

)
.

For this model we will assume that HN is the only data available in use to conduct
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statistical analysis and estimate the ρ matrix.

3.2. The Inferential Problem

The organisation of the available data is as follows:

y = (h̃, x̃)

where h̃ denotes one row of the H̃ and x̃ denotes the sum of entries in this row. The

data is assumed to be organised into n such entries, then the whole data set can be

expressed as:

Y =
{
yd,i = (h̃d,i,:, x̃d,i), i = 1, . . . , n, d = 1, . . . , D

}

where Y is the noisy H̃ matrixes obtained for D many days and the x̃d,i’s computed

through this matrix. The inferential problem regarding this model then becomes esti-

mating the static parameter of this system ρ, and according to the hierarchical struc-

ture described in the previous section, λ. Our main goal does not include estimating

λ, however we need this estimation in order to estimate ρ.

3.3. Methodology

Our proposition to solve this estimation problem is to use Metropolis within Gibbs

algorithm as we proposed for the previous model. If we let y = (h̃, x̃) be the one row of

the noisy origin-destination matrix obtained from the data holder, and θ = (ρ, λ, x, h)

where x, h, ρ, λ denotes number of customers arrived to a specific station in five days

and the row of the H matrix associated with this station, row of the ρ matrix associated

with this station, and λ associated with this station respectively.
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The likelihood of the whole data can be expressed as:

p(y1:n|θ) ∝
n∏
i=1

f(yi|θ),

and similarly to the previous model, the proportionality constant does not depend on

θ. We are again working in a Bayesian inference framework, therefore the prior and

the posterior of θ and θ given the data need to be defined. Let µ(θ) denote the prior

distribution for θ and π(θ|y1:n) denote the posterior distribution derived from this prior

distribution. We can say:

π(θ|y1:n) ∝ µ(θ)p(y1:n|θ).

The parameters ρ and λ are a priori independent with

p(λ;α, β) =
n∏
i=1

p(λi;α, β)

=
n∏
i=1

Gamma(λi;α, β)

where Gamma(λi;α, β) is the density of the gamma distribution with shape and scale

parameters α and β, and

p(ρ; δ) =
n∏
i=1

p(ρi; δi)

=
n∏
i=1

Dirichlet(ρi,1, . . . , ρi,n; δ1,1, . . . , δn,n)

where Dirichlet(ρi,1, . . . , ρi,n; δ1,1, . . . , δn,n) is the density of the Dirichlet distribution

with parameters δi,1, . . . , δi,n. By design, we choose δi,i = 0 allowing no self transition

among the stations. The pdf of the Gamma(α, β) is given by

Gamma(x;α, β) =
βαxα−1e−βx

Γ(α)
.
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The pdf of Dirichlet(δ1, . . . , δn) is given by

Dirichlet(x1, . . . , xn; δ1, . . . , δn) =

[∏n
i=1 Γ(δi)

Γ(
∑n

i=1 δi)

n∏
i=1

xδi−1
i

]
I(x1 + . . .+ xn = 1).

Let

hd,i = (Hd(i, 1), . . . , Hd(i, n)), h̃d,i = (H̃d(i, 1), . . . , H̃d(i, n))

be the i’th row ofHd and H̃d, respectively. The joint distribution of θ = (ρ, λ,X1:D, H1:D)

and y = {H̃d, d = 1, . . . , D} is

p(θ, y) =
n∏
i=1

{
p(λi;α, β)p(ρi,:; δi,:)

D∏
d=1

[
p(xd,i|λi)p(hd,i,:|xd,i, ρi,:)p(h̃d,i,:|hd,i,:)

]}
. (3.4)

We can express the the density p(X;λ) as

p(X;λ) =
n∏
i=1

p(xd,i|λi)

=
n∏
i=1

Poisson(xd,i;λi).

The pmf of the Poisson distribution is given by

p(x;λ) =
e−λλx

x!
for x = 0, 1, 2, . . . .

Since p(θ, y) can fully be factorised over the variables regarding the rows of the ODM,

we can target the posterior of the variables corresponding to each row separately. In

other words, a separate instance of the same MCMC algorithm can be used for each

row.
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3.3.1. Markov Chain Monte Carlo - Type 1

Our proposed method of solving this estimation problem is again using Metropolis

within Gibbs algorithm which starts by initializing

θ(1) = (ρ(1), λ(1), x
(1)
1 , . . . , x

(1)
D , h

(1)
1 , . . . , h

(1)
D )

and the algorithm for this type of proposal at iteration k is given at Algorithm 5.

Algorithm 5: Metropolis within Gibbs Sampling Algorithm at iteration k

1 for i = 1, . . . , n do

2 for d = 1, . . . , D do

3 Update (x
(k)
d,i , h

(k)
d,i,:) to (x

(k+1)
d,i , h

(k+1)
d,i,: ) by a MH move that targets

p(x′d,i, h
′
d,i,:|h̃d,i,:, λ

(k)
i , ρ

(k)
i,: )

4 Sample λ
(k+1)
i ∼ p(λi|x(k+1)

1,i , . . . , x
(k+1)
D,i )

5 Sample ρ
(k+1)
i,: ∼ p(ρi,:|h(k+1)

1,i,: , . . . , h
(k+1)
D,i,: )

3.3.1.1. Updating (x1,i, . . . , xD,i) and (h1,i,:, . . . , hD,i,:). Computing the full conditional

probability of these parameters are not computationally feasible. In order to overcome

this problem, we propose to update these parameters with an Metropolis-Hastings

move that targets

p(x′1,i, . . . , x
′
D,i, h

′
1,i,:, . . . , h

′
D,i,:|h̃1,i,:, . . . , h̃D,i,:, λi, ρi).

As mentioned previously, we can conduct the steps for each xd,i and hdi,:. We can

express this probability as:

p(xd,i|h̃d,i,:, λi, ρi,:) = p(ρi,:)p(λi)p(xd,i|λi)p(hd,i,:|xi, λi)p(h̃d,i,:|hd,i,:)

∝ p(xd,i|λi)p(hd,i,:|xd,i, λi)p(h̃d,i,:|hd,i,:).



32

We have decided to propose the new values for (x1,i, . . . , xD,i) and (h1,i, . . . , hD,i) from

the prior distribution of these parameters given the current values of the other param-

eters. Each xd,i and hence hd,i,: are proposed and updated individually. Therefore we

will use the following proposal density for each xd,i:

q(x′d,ih
′
d,i,:|xd,i, hd,i,:, ρi,:, λi) = p(x′d,i|λi)p(h′d,i,:|x′d,i, λi). (3.5)

The acceptance probability of this MCMC kernel then becomes:

min

{
1,
p(x′d,i|λi)p(h′d,i,:|x′d,i, λi, ρi)p(xd,i|λi)p(hd,i,:|xd,i, λi, ρi)p(h̃d,i,:|h′d,i,:)
p(xd,i|λi)p(hd,i,:|xd,i, λi, ρi)p(x′d,i|λi)p(h′d,i,:|x′d,i, λi, ρi)p(h̃d,i,:|hd,i,:)

}
.

Which then simplifies to:

min

{
1,
p(h̃d,i,:|h′d,i,:)
p(h̃d,i,:|hd,i,:)

}
. (3.6)

Conveniently, the probability p(h̃d,i,:|hd,i,:) can be calculated easily since the density

p(h̃d,i,:|hd,i,:) is Laplace(hd,i,j,
S
ε
) We can therefore express this acceptance probability

as:

min

1,

ε
2S

exp

(∑n
j=1−ε|h̃d,i,j−h′d,i,j |

2S

)
ε

2S
exp

(∑n
j=1−ε|h̃d,i,j−hd,i,j |

2S

)
 .

This probability can be simplified as:

min

1, exp

−ε∑n
j=1

[
|h̃d,i,j − h′d,i,j|+ |h̃d,i,j − hd,i,j|

]
2S

 . (3.7)
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3.3.1.2. Sampling λi. In this step, λi is sampled from p(λi|x1,i, . . . , xD,i) for all i =

1, . . . , n. We can express this probability as:

p(λi|x1,i, . . . , xD,i) = p(λi)p(x1,i|λi) . . . p(xD,i|λi). (3.8)

p(λi) is the pdf of the Gamma distribution evaluated at the current λ values with

parameters, α and β and p(xd,i|λi) is the pdf of the Poisson distribution evaluated at

xi with parameters λi. Since Gamma distribution is the conjugate prior for the Poisson

distribution, this posterior density is also a pdf of a Gamma distribution. We can show

this mechanism as follows:

p(λi|x1,i, . . . , xD,i) ∝
βα

Γ(α)
λα−1
i e−βλi

D∏
d=1

λ
xd,i
i e−λi

xd,i!
.

We can see that:

p(λi|x1,i, . . . , xD,i) ∝ λ
α+

∑D
d=1 xd,i−1

i e−λi(β+D).

Therefore the posterior density p(λi|x1,i, . . . , xD,i) is also a Gamma distribution with

parameters (α +
∑D

d=1 xd,i) and (β +D).

3.3.1.3. Sampling ρi,:. In this step ρi,: is sampled from p(ρi,:|h1,i,:, . . . hD,i,:) for all i =

1, . . . , n. This probability can be expressed as:

p(ρi,:|h1,i,:, . . . , hD,i,:) = p(ρi,:)
D∏
d=1

p(hd,i,:|ρi,:). (3.9)

p(ρi,:) is the pdf of the Dirichlet distribution evaluated at the current ρ values with

parameters, δi, i = 1, . . . , n whereas p(hd,i,:|ρi,:) is the pdf of the Multinomial distri-

bution evaluated at hd,i,: with parameters n and xd,i. Since the Dirichlet distribution

is the conjugate prior for the Multinomial distribution, this posterior density is also a
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Dirichlet distribution. We can evaluate this posterior density as:

p(ρi,:|h1,i,:, . . . , hD,i,:) ∝
∏n

j=1 Γ(δi,j)

Γ(
∑n

j=1 δi,j)

(
n∏
j=1

ρ
δi,j−1
i,j

)
D∏
d=1

(
xd,i!

hd,i,1! · · ·hd,i,n!

n∏
j=1

ρ
hd,i,j
i,j

)
.

(3.10)

Therefore:

p(ρi,:|h1,i,:, . . . , hD,i,:) ∝
n∏
j=1

ρδi,j−1+
∑D

d=1 hd,i,j .

We can deduce that the posterior density p(ρi,:|h1,i,:, . . . , hD,i,:) is also a Dirichlet dis-

tribution with parameters (δi,: +
∑D

d=1 hd,i,:).

3.3.2. Markov Chain Monte Carlo - Type 2

In order to understand the effect of the proposal density on the performance of

the algorithm, we have designed other proposal densities for the Metropolis-Hastings

move. On of these proposal densities, namely Type 2 proposes X from the Poisson

(
xd,i+λi

2
). To sum up, the k’th iteration of this algorithm is given at Algorithm 6.

Algorithm 6: Metropolis within Gibbs Sampling Algorithm at iteration k

1 for i = 1, . . . , n do

2 for d = 1, . . . , D do

3 Update (x
(k)
d,i , h

(k)
d,i,:) to (x

(k+1)
d,i , h

(k+1)
d,i,: ) by a MH move that targets

p(x′d,i, h
′
d,i,:|x

(k)
d,i , h̃

(k)
d,i,:, λ

(k)
i , ρ

(k)
i )

4 Sample λ
(k+1)
i ∼ p(λi|x(k+1)

1,i , . . . , x
(k+1)
D,i )

5 Sample ρ
(k+1)
i,: ∼ p(ρi,:|h(k+1)

1,i,: , . . . , h
(k+1)
D,i,: )

Each xd,i and hence hd,i,: can be proposed and updated individually. In more

detail, the proposal density can be expressed as:

q(x′d,i, hd,i,:, |xd,iλi, ρi,:) = q(x′d,i|xd,i, λi)q(h′d,i,:|xd,i, λi, ρi,:). (3.11)
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When the proposal density is selected as this density, the acceptance probability of the

Metropolis Hastings move step of the algorithm is changed to the following:

min

{
1,
p(x′d,i|λi)p(h′d,i,:|x′d,i, λi, ρi,:)p(h̃d,i,:|h′d,i,:)q(xd,i|xd,i, λi)q(hd,i,:|xd,i, λi, ρi,:)
p(xd,i|λi)p(hd,i,:|xd,i, λi, ρi,:)p(h̃d,i,:|hd,i,:)q(x′d,i|xd,i, λi)q(h′d,i,:|x′d,i, λi, ρi,:)

}
.

This probability can then be simplified to:

min

{
1,
p(x′d,i|λi)q(xd,i|xd,i, λi)p(h̃d,i,:|h′d,i,:)
p(xd,i|λi)q(x′d,i|xd,i, λi)p(h̃d,i,:|hd,i,:)

}
. (3.12)

This expression can then be simplified to:

min

{
1, eλ̂i−λ̂

′
i

(
λi

λ̂i

)x′d,i−xd,i p(h̃d,i,:|h′d,i,:)
p(h̃d,i,:|hd,i,:)

}
. (3.13)

By using the same calculation used in Type 1 for the term
p(h̃d,i,:|h′d,i,:)
p(h̃d,i,:|hd,i,:)

, this prob-

ability can be easily computed. The other steps of the algorithm for updating λ and ρ

is the same with Type 1.

3.3.3. Markov Chain Monte Carlo - Type 3

Since we are aiming to estimate the X vector and the H matrix, we can de-

sign a proposal density which proposes (x1,1, . . . , xD,i) and (h1,i,:, . . . , hD,i,:) from their

marginal densities. This type of proposal density allows us to run the Metropolis Hast-

ings algorithm without the Gibbs sampling algorithm extension, and steps conducted

at iteration k is given at Algorithm 7.

In more detail, this proposal density allows us to run the Metropolis Hastings

algorithm without updating λ and ρ since for this type of proposal density λ and ρ are

not updated, therefore not stored. It is possible to propose each xd,i from its marginal
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Algorithm 7: Metropolis Hastings Algorithm regarding Type 3 proposal den-

sity at iteration k

1 for i = 1, . . . , n do

2 for d = 1, . . . , D do

3 Draw an x′d,i from its marginal density ∼
∫∞
−∞ p(x

′
d,i|λi)p(λi)dλi

4 Draw an h′d,i,: from its marginal density

∼
∫∞
−∞ p(h

′
d,i,:|ρi,:, x′d,i)p(ρi,:)dρi,:

5 Update x
(k)
d,i and h

(k)
d,i,: to x

(k+1)
d,i and h

(k+1)
d,i,: with an acceptance

probability min

{
1,

p(h̃d,i,:|h′d,i,:)
p(h̃d,i,:|hd,i,:)

}

density

∫ ∞
−∞

p(xd,i|λi)p(λi)dλi,

since λi is distributed with some Gamma distribution and (xd,i|λi) is distributed with

Poisson distribution with parameters λi. Solving out the given integral in its general

form for each xd,i yields:

∫ ∞
−∞

p(xd,i|λi)p(λi)dλi =

∫ ∞
−∞

n∏
i=1

exp(−λi)λ
xd,i
i

xd,i!

αβ

Γ(β)
λβ−1
i exp(−αλi)dλi

=
n∏
i=1

∫ ∞
−∞

αβ

xd,i!Γ(β)
λ
xd,i+β−1
i exp(−(α + 1)λi)dλi

=
n∏
i=1

αβ

xd,i!Γ(β)

Γ(xd,i + β)

(α + 1)xd,i+β

=
n∏
i=1

Γ(xd,i + β)

Γ(xd,i + 1)Γ(β)

(
α

α + 1

)β (
1

α + 1

)xd,i
.

This calculation shows that the marginal density of each xd,i is a Negative Binomial

distribution. Similarly if we propose each hd,i,: from its marginal density

∫ ∞
−∞

p(hd,i,:|ρi,:, xd,i)p(ρi,:)dρi,:,
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since ρi,: is distributed with a Dirichlet distribution and (hd,i,:|ρi,:, xd,i) is distributed

with Multinomial distribution, solving out the given integral for each i’th row of hd

yields:

∫ ∞
−∞

p(hd,i,:|ρi,:, xd,i)p(ρi,:)dρi,: =

∫ ∞
−∞

Γ(
∑n

j=1 δi,j)∏n
j=1 Γ(δi,j)

n∏
j=1

(ρi,j)
hd,i,j+δi,j−1dρi,j

=
Γ(
∑n

j=1 δi,j)∏n
j=1 Γ(δi,j)

∫ ∞
−∞

n∏
j=1

(ρi,j)
hd,i,j+δi,j−1dρi,j

=
Γ(
∑n

j=1 δi,j)∏n
j=1 Γ(δi,j)

∏n
j=1 Γ(δi,j + hd,i,j)

Γ(
∑n

j=1 δi,j + hd,i,j)
.

This density is known as the Multinomial-Dirichlet Compound distribution, hence the

marginal density of hd,i,: is a Multinomial-Dirichlet Compound distribution. It is then

possible to propose both xd,i and hd,i,: from above mentioned marginal densities and

accept them with the probability in relation 3.6. This modification allows us to omit

the steps regarding updating λi and ρi,: since we are integrating over them.

3.3.4. Markov Chain Monte Carlo - Type 4

We have designed a one more type of proposal density utilizing the similar mental-

ity behind the Type 3 proposal density. For this type of proposal density, xd,i and hd,i,:

are proposed from proposal densities computed using their posteriors with Metropolis

Hastings algorithm and updated according to the computed acceptance probability.

Since we are directly proposing xd,i and hd,i,: from their posterior densities, it is not

necessary to update and store λi and ρi,: values. Since these values are neither updated

nor stored, the Gibbs step in which these parameters were updated is omitted and the

overall steps of the Metropolis Hastings algorithm at iteration k is given by Algorithm

8.

The acceptance probability of this type of proposal density can be expressed as:

min

{
1,
p(x′d,i)p(h

′
d,i,:|x′d,i)q(xd,i|x′d,i)q(hd,i,:|xd,i, h′d,i,:)p(h̃d,i,:|h′d,i,:)

p(xd,i)p(hd,i,:|xd,i)q(x′d,i|xd,i)q(h′d,i,:|x′d,i, hd,i,:)p(h̃d,i,:|hd,i,:)

}
. (3.14)



38

Algorithm 8: Metropolis Hastings Algorithm regarding Type 4 proposal den-

sity at iteration k

1 for i = 1, . . . , n do

2 for d = 1, . . . , D do

3 Draw an x′d,i from q(x′d,i|x
(k−1)
d,i ) =

∫∞
−∞ p(λi|x

(k−1)
d,i )p(x′d,i|λi)dλi

4 Draw an h′d,i,: from

q(h′d,i,:|x
(k−1)
d,i , h

(k−1)
d,i,: ) =

∫∞
−∞ p(h

′
d,i,:|x′d,i, ρi,:)p(ρi,:|h

(k−1)
d,i,: )dρi,:

5 Update x
(k−1)
d,i and h

(k−1)
d,i,: to x

(k)
d,i and h

(k)
d,i,: respectively with the

computed acceptance probability

The above mentioned probability is easily computable since each of these densities

correspond to computable distributions. For this type of proposal density, the λi’s

and ρi,:’s are not stored and updated, instead the other densities are evaluated as an

integration over of these parameters. Hence

p(x′d,i) =

∫ ∞
−∞

p(x′d,i|λi)p(λi)dλi.

Since p(x′d,i|λi) a Poisson density and p(λi) is a Gamma density, the integral is similarly

to the Type 3 model solves out to be the probability mass function of a Negative

Binomial density, furthermore this mechanic is called the Gamma-Poisson mixture.

Similarly, since p(λi|xd,i) is a Gamma density and p(x′d,i|λi) is a Poisson density,

q(x′d,i|xd,i) =

∫ ∞
−∞

p(λi|xd,i)p(x′d,i|λi)dλi

solves out to be the probability mass function of a Negative Binomial random variable

as well. This computation can also be implemented for q(xd,i|x′d,i).

As for the conditional density of hd,i,: given xd,i, we have

p(hd,i,:|xd,i) =

∫ ∞
−∞

p(ρi,:)p(hd,i,:|xd,i, ρi,:)dρi,:.



39

Since p(ρi,:) is a Dirichlet distribution and p(hd,i,:|xd,i, ρi,:) is a Multinomial distribution,

this integral is a Multinomial-Dirichlet Compound distribution density. The calculation

of the value of p(h′d,i,:|x′d,i) then follows the same logic. Similarly, since p(h′d,i,:|x′d,i, ρi,:)

is a Multinomial density whereas p(ρi,:|hd,i,:) is a Dirichlet density

q(h′d,i,:|x′d,i, hd,i,:) =

∫ ∞
−∞

p(h′d,i,:|x′d,i, ρi,:)p(ρi,:|hd,i,:)dρi,:

solves out to be the density of a Multinomial-Dirichlet Compound distribution as men-

tioned in previously with Type 3 proposal density. This result can also be implemented

on the calculation for q(hd,i,:|xd,i, ρi,:).

The calculation of p(h̃d,i,:|hd,i,:) and p(h̃d,i,:|h′d,i,:) terms in the acceptance proba-

bility can be computed same as the previous types of proposal densities. The aim of

designing different proposal densities was to monitor the effect of the proposal density

and to determine which type of proposal density is giving more realistic results. In

Section 3.4, results regarding different types of proposal densities can be seen.

3.4. Discussion and Results

Since only two of the models generate samples of ρ and λ, calculation of the MSE

values for each model is not possible, hence MSE is not a valid indicator of performance

when comparing all models to each other. In order to decide which proposal density

yields more effective samples, an analysis on the effective sample sizes of the samples

created by each model was conducted. To conduct this analysis, calculation of the

integrated auto correlation (IAC) times regarding samples collected from each model

under different ε values were made. The IAC time is calculated through the evaluation

of the function:

f(θ(k)) =
D∑
d=1

log p(X
(k)
d ) + log p(H

(k)
d |X

(k)
d ) + log p(H̃d|H(k)

d ) (3.15)
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where k represents the index of the sample collected from the k’th iteration. Note

that, since a burn-in period is introduced to the models, the calculation of the f values

are conducted for the samples created after the burn-in period for a fair evaluation.

As discussed in Section 3.3, p(X
(k)
d ) is a Negative Binomial density, p(H

(k)
d |X

(k)
d ) is

a Dirichlet-Multinomial density, and p(H̃d|H(k)
d ) is Laplace density. The value of the

function f is calculated for each sample created by the models and stored for IAC time

calculation. We have investigated the models in two scenarios, where D = 1 and D = 7.

As D gets larger, the computation of the results get more computationally expensive.

Therefore we have started our analysis by taking D = 1 and calculated the IAC time

values computed for each model under the ε values chosen as: [0.1, 0.2, 0.5, 1, 2, 5, 10].

The values of IAC times calculated for this analysis can be seen in Table 3.2:

Table 3.2. Values of IAC times yielded by each model under different ε values

ε Type 1 Type 2 Type 3 Type 4

0.01 1430.8 3411.3 4596.1 2998.7

0.02 2515.9 7212 7999 6641.3

0.05 7297.9 6703.1 2825 7304.7

1 4903.4 7169.1 7335.9 7516.5

2 6686.3 7380.9 5463.6 3734.9

5 7561 7576.7 4756.6 8147.9

10 6034.6 7366.5 4669.6 7529.4

The lower values of the IAC times are more desirable since a lower value of

the IAC time means that the samples created by the given model are less correlated.

Looking at the Table 3.2, the models that yielded the lowest and highest average IAC

values are Type 1 and Type 2 respectively. However it is not possible to conclude that

Type 1 model works more efficiently than the other types of models since the results

correspond to a single run of MCMC and further analysis is required. In order to

address that, we have decided to run models Type 1 and Type 2 for 15 times for D = 7

under ε = [0.1, 0.2, 0.5, 1]. The IAC values obtained for this scenario are given in Table

3.3.

Since both of these models generate direct samples of ρ and λ, the posterior mean
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Table 3.3. Values of IAC times yielded by models in Scenario 2 under different ε

values

ε Type 1 Type 2

1 7714.9 7104.2

2 8000.7 7730.3

5 7980.4 7799.4

10 7780 7790.6

can be computed from these samples and can be compared to the true posterior mean

of the ρ matrix and λ vector used to generate the noisy data. The calculation of the

posterior mean of ρ for a given MCMC run is

µρi,j = E[ρi,j|H̃] ≈ 1

K − tburn

K∑
k=tburn+1

ρ
(k)
i,j (3.16)

and the calculation of the posterior mean of λ for a given run is:

µλi = E[λi|H̃] ≈ 1

K − tburn

K∑
k=tburn+1

λ
(k)
i (3.17)

where K denotes the total number of samples collected and k denotes the index of

the k’th sample. The posterior mean generated by each MCMC run is then compared

to the true posterior mean of the ρ matrix. The true posterior mean of ρ, p(ρ|H),

can be calculated using the original values stored when the data was generated. As

discussed in the Section 3.3, the posterior density p(ρi,:|h1,i,:, . . . , hD,i,:) is a Dirichlet

distribution with parameters (δi,:+
∑D

d=1 hd,i,:). Utilizing this information, the posterior

density of a known Dirichlet distribution can be calculated. Similarly, the posterior

density p(λi|x1,i, . . . , xD,i) is a Gamma distribution with parameters (α +
∑D

d=1 xd,i)

and (β + D). The norm of the difference vector of ρ and λ, defined as the difference

between the true posterior mean and the posterior mean generated by the MCMC

samples of ρ and γ respectively, were calculated for each MCMC run of models Type

1 and Type 2. The calculated mean value of norm of the difference of ρ and λ samples

generated by the MCMC runs after the burn in period with respect to correspondingε
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values are given in Table 3.4 and Table 3.5.

Table 3.4. Mean Value of Norm of the Difference Matrix of ρ for Type 1 and Type 2

ε Mean Value of Norm for Type 1 Mean Value of Norm for Type 2

1 0.0041 0.0040

2 0.0034 0.0032

5 0.0029 0.0028

10 0.0028 0.0027

Table 3.5. Mean Value of Norm of the Difference Matrix of λ for Type 1 and Type 2

ε Mean Value of Norm for Type 1 Mean Value of Norm for Type 2

1 7038 7033

2 7040 7039

5 7032 7038

10 7035 7038

It is observed that both of the mean of the norm of the difference vector calculated

for ρ decreases decreases as the ε value increases, therefore it can be concluded that

the models generate samples with smaller error as the noise decreases. The mean value

of the norm of the difference vector calculated for λ’s for both models do not change

according to the value of ε. These results are consistent with each other since the values

calculated are approximately equal. The trend of the decrease in the mean value of the

norm of the difference for ρ can be explained with the generated data being more noisy

as the ε value increases and hence the accuracy of the algorithm slightly decreases.

We would also expect this result since the data becomes more random as the noise

increases, hence the algorithm yields a higher error. In Figure 3.1, Figure 3.3, Figure

3.5, and Figure 3.7, samples of λ’s and in Figure 3.2, Figure 3.4, Figure 3.6, and Figure

3.8 samples of ρ generated by model Type 1 during a randomly selected MCMC run

under different values of ε can be seen. Moreover, In Figure 3.9, Figure 3.11, Figure

3.13, and Figure 3.15, samples of λ’s and in Figure 3.10, Figure 3.12, Figure 3.14,

and Figure 3.16 samples of ρ generated by model Type 2 during a randomly selected

MCMC run under different values of ε can be seen. In addition to the results we

obtained from the norm analysis, these figures further prove that both of the models

perform efficiently and yield realistic results when estimating the parameters λ and ρ.
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Figure 3.1. Comparison of the λ samples generated by model Type 1 with their true

value through iterations when ε = 1
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Figure 3.2. Comparison of the ρ samples generated by model Type 1 with their true

values for ε = 1
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Figure 3.3. Comparison of the λ samples generated by model Type 1 with their true

value through iterations when ε = 2
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Figure 3.4. Comparison of the ρ samples generated by model Type 1 with their true

values for ε = 2
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Figure 3.5. Comparison of the λ samples generated by model Type 1 with their true

value through iterations when ε = 5
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Figure 3.6. Comparison of the ρ samples generated by model Type 1 with their true

values for ε = 5
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Figure 3.7. Comparison of the λ samples generated by model Type 1 with their true

value through iterations when ε = 10
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Figure 3.8. Comparison of the ρ samples generated by model Type 1 with their true

values for ε = 10
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Figure 3.9. Comparison of the λ samples generated by model Type 2 with their true

value through iterations when ε = 1
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Figure 3.10. Comparison of the ρ samples generated by model Type 2 with their true

values for ε = 1
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Figure 3.11. Comparison of the λ samples generated by model Type 2 with their true

value through iterations when ε = 2
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Samples of rho generated by Model 2 when epsilon = 2

Figure 3.12. Comparison of the ρ samples generated by model Type 2 with their true

values for ε = 2
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Figure 3.13. Comparison of the λ samples generated by model Type 2 with their true

value through iterations when ε = 5
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Figure 3.14. Comparison of the ρ samples generated by model Type 2 with their true

values for ε = 5
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Figure 3.15. Comparison of the λ samples generated by model Type 2 with their true

value through iterations when ε = 10
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Figure 3.16. Comparison of the ρ samples generated by model Type 2 with their true

values for ε = 10
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4. CONCLUSION

The main aim of this research was to propose a novel method of estimation for

parameters of the Origin-Destination problem using the of Markov chain Monte Carlo

methods, Gibbs Algorithm, Metropolis-Hastings algorithm, and Metropolis-Hastings

within Gibbs algorithm.

In Chapter 2, a probability model for the Missing Data scenario was formulated

and the Metropolis-Hastings within Gibbs algorithm was utilized. For this scenario,

it was assumed, that the data obtained from the data holders were the original data,

but with a missing column of departure information. The algorithm used to estimate

the parameters α and the ρ matrix of the origin-destination matrix was proven to be a

viable methodology since it can estimate and generate samples which are very close to

the true values with small variation as discussed in Section 2.5. This conclusion means

that, if the original data follows the assumptions of our model and the synthetically

generated data, then we would also be able to estimate these values for the original

data. Improvements which can be conducted in the future include the computation

of different variations of the probability model. For example, if we have a reason to

believe that stations closer to the arrival station are more likely to be the departure

station, we can update our probability model as:

gα(b|d, τ) =
exp

{
−α |b−d|

τ

}
∑n

k=1 exp
{
−α |k−d|

τ

} . (4.1)

In our future work, we will also explore different models, which might more realisti-

cally represent the original data. Alterations such as the one mentioned in 4.1 might be

taken into consideration. Another improvement could be selection of different proposal

densities and comparing and contrasting the performance of the algorithm when differ-

ent proposal densities are chosen. As it was demonstrated in Chapter 2, the selection

of the proposal density has great effects on the effectiveness of the MCMC algorithm.
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In Chapter 3, 4 types of MCMC algorithms differing in proposal densities were

formulated for the Noisy Data scenario and their performance regarding the related

measures were compared. In contrast with the scenario discussed in Chapter 2, for this

scenario it was assumed, that the whole data was collected, but the data holder did not

release the original data, instead provided a version that was protected with Laplace

mechanism. These algorithms proved utilization of Markov chain Monte Carlo methods

to be a viable method to estimate the parameters the λ vector and the ρ matrix of an

origin-destination problem when the obtained data is protected with Laplace mecha-

nism due to data privacy issues. However the choice of proposal density plays the most

important role in the performance of the model as the results indicated great variability

in the performance as the proposal density varies. It is also important to note that, it

was found that the performance of the MCMC algorithm decreased slightly as the data

became more noisy. The improvements which can further enhance the performance of

the algorithms would be to select a proposed density for the Metropolis Hastings move

which demonstrates higher performance on the mentioned criteria, therefore a more

realistic approach. We were not able to obtain the data from the related government

office, hence we have worked with the synthetically generated data. Another improve-

ment for our future work would be obtaining the original data and measuring the

performance of the algorithms presented in both Chapter 2 and Chapter 3 when the

original data is used. Replicating these results with the original data would further

validate the results we obtained using the synthetic data.

Our work contributes to the origin destination matrix estimation studies in a

way that was not approached before. The previous work in the literature related to

the Missing Data scenario provides estimations without a Markovian approach, either

through passenger, surveys which are costly and dependent on passenger honesty for

their validity, or through counting approaches without statistical flavour, or through

usage of other means of data such as mobile phone location data (Calabrese et al., 2011).

Ni and Leonard II (2005) proposed that Markov chain Monte Carlo methods can be

used to impute values in a missing data environment so that they have used MCMC

algorithms to propose values for the missing data points, and we have improved this

approach by further using an MCMC algorithm that also updates the parameters in the
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probability model in order to estimate the ρ matrix of the origin-destination problem.

As it was mentioned in Chapter 1, there was not yet a published study conducted at the

time of this thesis was written on the performance of the Markov chain Monte Carlo

methods for parameter estimation in a differentially private data environment for the

Origin-Destination problem however MCMC algorithms were found to be a possible

viable option for parameter estimation for differentially private data (Lu and Miklau,

2014). To the best of our knowledge, the approach discussed in this thesis is novel.
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